TWI502176B - Tunable filter element and menufacturing method thereof - Google Patents

Tunable filter element and menufacturing method thereof Download PDF

Info

Publication number
TWI502176B
TWI502176B TW102134089A TW102134089A TWI502176B TW I502176 B TWI502176 B TW I502176B TW 102134089 A TW102134089 A TW 102134089A TW 102134089 A TW102134089 A TW 102134089A TW I502176 B TWI502176 B TW I502176B
Authority
TW
Taiwan
Prior art keywords
filter
substrate
reflective film
layer
upper electrode
Prior art date
Application number
TW102134089A
Other languages
Chinese (zh)
Other versions
TW201512634A (en
Inventor
Chien Nan Yeh
Lung Tai Chen
Chin Sheng Chang
Chung Yi Hsu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW102134089A priority Critical patent/TWI502176B/en
Publication of TW201512634A publication Critical patent/TW201512634A/en
Application granted granted Critical
Publication of TWI502176B publication Critical patent/TWI502176B/en

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

可調式濾光元件及其製作方法Adjustable filter element and manufacturing method thereof

本揭露是有關於一種濾光元件及其製作方法,且特別是有關於一種可調式濾光元件及其製作方法。The present disclosure relates to a filter element and a method of fabricating the same, and more particularly to an adjustable filter element and a method of fabricating the same.

目前,生物晶片檢測裝置種類眾多,其中光學檢測裝置更蔚為主流。具體來說,生物晶片是運用分子生物學、基因資訊以及分析化學等原理進行設計,以矽晶圓、玻璃或高分子為基材,並配合微機電自動化或其他精密加工技術所製作之高科技元件,其有如半導體晶片一般能快速進行繁複運算,因此生物晶片具有快速、精確、低成本之生物分析檢驗能力。目前發展中的生物晶片可大略分為:基因晶片(gene chip)與實驗室晶片(Lab-on-a-chip)兩大類。At present, there are many kinds of biochip detecting devices, and optical detecting devices are more mainstream. Specifically, biochips are designed using the principles of molecular biology, genetic information, and analytical chemistry to produce wafers, glass, or polymers, and micro-electromechanical automation or other precision processing technologies. Components, such as semiconductor wafers, can generally perform complex calculations quickly, so biochips have fast, accurate, and low-cost bioanalytical inspection capabilities. Currently developing biochips can be roughly divided into two categories: gene chip and lab-on-a-chip.

另一方面,一般常見的光學檢測裝置例如是光譜儀,光譜儀是物理化學分析儀器的一種,依適用的波長可區分為不同種類的光譜儀,如紫外-可見光譜儀、近紅外線光譜儀和紅外線光譜 儀。具體來說,紫外-可見光譜儀常用於顏色量測、水質分析及生化檢驗等,近紅外光光譜儀可應用於食品加工業、製藥業等的製程監測,而紅外光譜儀則常用於氣體分析。On the other hand, a common optical detecting device is, for example, a spectrometer, which is a kind of physical and chemical analysis instrument, which can be distinguished into different kinds of spectrometers according to applicable wavelengths, such as an ultraviolet-visible spectrometer, a near-infrared spectrometer, and an infrared spectrum. instrument. Specifically, UV-Vis spectrometers are commonly used for color measurement, water quality analysis, and biochemical tests. Near-infrared spectrometers can be used for process monitoring in food processing and pharmaceutical industries, while infrared spectrometers are commonly used for gas analysis.

光譜儀的主要的功用是將成分複雜的光分解為光譜線的科學儀器,其由稜鏡或繞射光柵等構成,當複色光通過分光元件(如光柵、棱鏡)進行分光後,依照光的波長(或頻率)的大小順次排列形成的圖案。換言之,光譜儀並無法達到同步濾出兩種以上波段的光,以取得特定的檢測參數的功效。此外,光譜儀通常具有體積過大且縮小不易以及成本較高等缺點,因此如何將光檢測裝置微型化並降低成本,即成為本技術領域亟待解決的問題之一。The main function of the spectrometer is to scientifically decompose the complex light into a spectral line. It consists of a 稜鏡 or a diffraction grating. When the complex light is split by a spectroscopic element (such as a grating or a prism), it depends on the wavelength of the light. The size of (or frequency) is sequentially arranged to form a pattern. In other words, the spectrometer does not achieve the simultaneous filtering of light in more than two bands to achieve the specific detection parameters. In addition, spectrometers generally have the disadvantages of excessive volume, difficulty in reduction, and high cost. Therefore, how to miniaturize the photodetection device and reduce the cost is one of the problems to be solved in the technical field.

本揭露的一實施例提出一種可調式濾光元件,其包括基材層、支撐組件、第一濾光結構、第二濾光結構、第一彈性單元、第二彈性單元、第一上電極以及第二上電極。基材層包括基板、第一反射薄膜、第二反射薄膜、第一下電極以及第二下電極。第一反射薄膜與第二反射薄膜配置於基板上。第一下電極與一第二下電極配置於基板上,其中第一下電極配置於第一反射薄膜旁,第二下電極配置於第二反射薄膜旁。支撐組件配置於基板上。第一濾光結構位於第一反射薄膜上方。第二濾光結構位於第二反射薄膜上方。第一彈性單元連接第一濾光結構與支撐組件。第二彈 性單元連接第二濾光結構與支撐組件。第一上電極連接第一濾光結構。第二上電極連接第二濾光結構。An embodiment of the present disclosure provides an adjustable filter element including a substrate layer, a support assembly, a first filter structure, a second filter structure, a first elastic unit, a second elastic unit, a first upper electrode, and Second upper electrode. The substrate layer includes a substrate, a first reflective film, a second reflective film, a first lower electrode, and a second lower electrode. The first reflective film and the second reflective film are disposed on the substrate. The first lower electrode and the second lower electrode are disposed on the substrate, wherein the first lower electrode is disposed beside the first reflective film, and the second lower electrode is disposed beside the second reflective film. The support assembly is disposed on the substrate. The first filter structure is located above the first reflective film. The second filter structure is located above the second reflective film. The first elastic unit connects the first filter structure and the support assembly. Second bomb The sex unit connects the second filter structure and the support assembly. The first upper electrode is connected to the first filter structure. The second upper electrode is connected to the second filter structure.

本揭露的一實施例提出一種可調式濾光元件的製作方法,包括:形成反射薄膜基材層;提供晶圓基板,其中晶圓基板包括矽基板、絕緣層以及基板層;於矽基板的表面上形成氮化物層;蝕刻氮化物層,以暴露出矽基板的部分表面;於矽基板上依序形成至少一支撐固定座與阻擋層,其中阻擋層位於這些支撐固定座之間;於矽基板上分別形成第一濾光結構、第二濾光結構、第一上電極、第二上電極以及第二金屬線路,其中第一上電極連接至第一濾光結構,第二上電極連接至第二濾光結構;接合矽基板與基材層,其中第一濾光結構面向第一反射薄膜,第二濾光結構面向第二反射薄膜;以及分別形成第一彈性單元與第二彈性單元於矽基板上,其中第一彈性單元連接第一濾光結構與部分支撐固定座,第二彈性單元連接第二濾光結構與其他部分支撐固定座。An embodiment of the present disclosure provides a method for fabricating a tunable filter element, including: forming a reflective film substrate layer; providing a wafer substrate, wherein the wafer substrate includes a ruthenium substrate, an insulating layer, and a substrate layer; Forming a nitride layer thereon; etching a nitride layer to expose a portion of the surface of the germanium substrate; forming at least one support mount and a barrier layer on the germanium substrate, wherein the barrier layer is located between the support mounts; Forming a first filter structure, a second filter structure, a first upper electrode, a second upper electrode, and a second metal line, wherein the first upper electrode is connected to the first filter structure, and the second upper electrode is connected to the first a second filter structure; the bonding germanium substrate and the substrate layer, wherein the first filter structure faces the first reflective film, the second filter structure faces the second reflective film; and the first elastic unit and the second elastic unit are respectively formed On the substrate, the first elastic unit is connected to the first filter structure and the partial support mount, and the second elastic unit is connected to the second filter structure and the other part support mount.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

10‧‧‧光源裝置10‧‧‧Light source device

12‧‧‧光束12‧‧‧ Beam

12a‧‧‧第一光12a‧‧‧First light

12b‧‧‧第二光12b‧‧‧second light

30、40‧‧‧光偵測單元30, 40‧‧‧Light detection unit

50‧‧‧待測物50‧‧‧Test object

56‧‧‧框體56‧‧‧ frame

60‧‧‧偵測裝置60‧‧‧Detection device

100‧‧‧可調式濾光元件100‧‧‧Adjustable filter elements

110‧‧‧基材層110‧‧‧ substrate layer

111‧‧‧基板111‧‧‧Substrate

112‧‧‧第一反射薄膜112‧‧‧First reflective film

113‧‧‧第二反射薄膜113‧‧‧Second reflective film

114‧‧‧第一下電極114‧‧‧First lower electrode

115‧‧‧第二下電極115‧‧‧second lower electrode

116‧‧‧第一金屬線路116‧‧‧First metal line

117‧‧‧防護氧化層117‧‧‧ protective oxide layer

118‧‧‧介層窗口118‧‧‧Intermediate window

120‧‧‧支撐組件120‧‧‧Support components

120a‧‧‧支撐固定座120a‧‧‧Support mount

130‧‧‧第一濾光結構130‧‧‧First filter structure

130a‧‧‧第一濾光層130a‧‧‧First filter layer

130b‧‧‧第三反射薄膜130b‧‧‧third reflective film

140‧‧‧第二濾光結構140‧‧‧Second filter structure

140a‧‧‧第二濾光層140a‧‧‧Second filter layer

140b‧‧‧第四反射薄膜140b‧‧‧fourth reflective film

150‧‧‧第一彈性單元150‧‧‧First elastic unit

152‧‧‧主彈性構件152‧‧‧Main elastic member

154、156‧‧‧子彈性構件154, 156‧‧‧ sub-elastic members

160‧‧‧第二彈性單元160‧‧‧Second elastic unit

170‧‧‧第一上電極170‧‧‧First upper electrode

180‧‧‧第二上電極180‧‧‧Second upper electrode

190a‧‧‧第一框架結構190a‧‧‧First frame structure

190a1、190b1‧‧‧底面190a1, 190b1‧‧‧ bottom

190b‧‧‧第二框架結構190b‧‧‧second frame structure

210‧‧‧晶圓基板210‧‧‧ wafer substrate

211‧‧‧矽基板211‧‧‧矽 substrate

211a‧‧‧表面211a‧‧‧ surface

211b‧‧‧氮化物層211b‧‧‧ nitride layer

211c‧‧‧阻擋層211c‧‧‧Block

212‧‧‧基板層212‧‧‧ substrate layer

213、214‧‧‧氧化層213, 214‧‧‧ oxide layer

215‧‧‧第二金屬線路215‧‧‧Second metal line

A1‧‧‧第一軸向A1‧‧‧first axial direction

A2‧‧‧第二軸向A2‧‧‧second axial

F‧‧‧靜電吸引力F‧‧‧Electrostatic attraction

G‧‧‧初始間距G‧‧‧Initial spacing

G1‧‧‧第一間距G1‧‧‧ first spacing

G2‧‧‧第二間距G2‧‧‧Second spacing

L‧‧‧傳遞路徑L‧‧‧Transfer path

圖1是本揭露一實施例的偵測裝置的示意圖。FIG. 1 is a schematic diagram of a detecting apparatus according to an embodiment of the present disclosure.

圖2是圖1的可調式濾光元件的俯視示意圖。2 is a top plan view of the adjustable filter element of FIG. 1.

圖3是圖2的可調式濾光元件沿A-A線段的剖面示意圖。3 is a cross-sectional view of the adjustable filter element of FIG. 2 taken along line A-A.

圖4是圖2的可調式濾光元件受靜電吸引力後的剖面示意圖。4 is a schematic cross-sectional view of the adjustable filter element of FIG. 2 after being electrostatically attracted.

圖5A至圖5M是圖2的可調式濾光元件的製作流程圖。5A to 5M are flowcharts showing the fabrication of the adjustable filter element of Fig. 2.

圖1是本揭露一實施例的偵測裝置的示意圖。圖2是圖1的可調式濾光元件的俯視示意圖。圖3是圖2的可調式濾光元件沿A-A線段的剖面示意圖。請參考圖1,在本實施例中,偵測裝置60用以偵測由光源裝置10所發出的光束12。偵測裝置60包括可調式濾光元件100以及光偵測單元30、40,其中可調式濾光元件100例如是同步多通道可調式濾光元件,用以同步濾出至少兩種以上不同波段的光波。FIG. 1 is a schematic diagram of a detecting apparatus according to an embodiment of the present disclosure. 2 is a top plan view of the adjustable filter element of FIG. 1. 3 is a cross-sectional view of the adjustable filter element of FIG. 2 taken along line A-A. Referring to FIG. 1 , in the embodiment, the detecting device 60 is configured to detect the light beam 12 emitted by the light source device 10 . The detecting device 60 includes an adjustable filter element 100 and light detecting units 30 and 40. The adjustable filter element 100 is, for example, a synchronous multi-channel adjustable filter element for synchronously filtering out at least two different bands. Light waves.

詳細而言,可調式濾光元件100與光偵測單元30、40位於光束12的傳遞路徑L上,其中在光束12通過可調式濾光元件100後,會產生兩不同波段的第一光12a與第二光12b,且第一光12a與第二光12b分別傳遞至光偵測單元30、40。在本實施例中,光源裝置10例如是發光二極體(LED),用以發出具有全波段的光束12。光束12沿其傳遞路徑L通過位於光源裝置10與可調式濾光元件100之間的待側物50,其中待測物50例如是微流體晶片或蛋白質晶片等生物晶片,亦或是其他載體。In detail, the adjustable filter element 100 and the light detecting unit 30, 40 are located on the transmission path L of the light beam 12, wherein after the light beam 12 passes through the adjustable filter element 100, the first light 12a of two different wavelength bands is generated. And the second light 12b, and the first light 12a and the second light 12b are respectively transmitted to the light detecting units 30, 40. In the present embodiment, the light source device 10 is, for example, a light emitting diode (LED) for emitting a light beam 12 having a full wavelength band. The light beam 12 passes along its transmission path L through a side object 50 between the light source device 10 and the adjustable filter element 100, wherein the object to be tested 50 is, for example, a biochip such as a microfluidic wafer or a protein wafer, or other carrier.

由於待測物內的組織含有大量的水分子,水分子會吸收部份波段的光(通常為1300奈米至2600奈米之間的紅外光(IR)波段)。其次,組織內的黑色素(melanin)也會吸收紫外光 (ultraviolet)波段與可見光波段的光波。換言之,為取得前述特定波段的光的變化量,在光束12通過可調式濾光元件100之後,所產生的第一光12a與第二光12b即例如是紫外光(UV)波段與可見光波段的光波的組合,又或者是紅外光(IR)波段、紫外光(UV)波段與可見光波段的光波中任兩者的組合,其可視檢測所需而有所調整,本揭露在此並不加以限制。Since the tissue in the analyte contains a large amount of water molecules, the water molecules absorb some of the light in the band (usually the infrared (IR) band between 1300 nm and 2600 nm). Second, the melanin in the tissue also absorbs ultraviolet light. (ultraviolet) light waves in the band and visible light. In other words, in order to obtain the amount of change of the light of the specific wavelength band, after the light beam 12 passes through the tunable filter element 100, the generated first light 12a and second light 12b are, for example, ultraviolet (UV) band and visible light band. The combination of light waves, or a combination of either the infrared (IR) band, the ultraviolet (UV) band, and the visible wave, may be adjusted for visual detection, and the disclosure is not limited herein. .

請參考圖2以及圖3,在本實施例中,可調式濾光元件100包括基材層110、支撐組件120、第一濾光結構130、第二濾光結構140、第一彈性單元150、第二彈性單元160、第一上電極170以及第二上電極180。基材層110包括基板111、第一反射薄膜112、第二反射薄膜113、第一下電極114以及第二下電極115。其中,基材層110為透明基材層,例如是由玻璃晶圓(glass wafer)製作而成。Referring to FIG. 2 and FIG. 3 , in the embodiment, the adjustable filter element 100 includes a substrate layer 110 , a support assembly 120 , a first filter structure 130 , a second filter structure 140 , and a first elastic unit 150 . The second elastic unit 160, the first upper electrode 170, and the second upper electrode 180. The substrate layer 110 includes a substrate 111, a first reflective film 112, a second reflective film 113, a first lower electrode 114, and a second lower electrode 115. The base material layer 110 is a transparent base material layer, and is made of, for example, a glass wafer.

第一反射薄膜112與第二反射薄膜113配置於基板111上。第一下電極114與一第二下電極115極配置於基板111上,其中第一下電極114配置於第一反射薄膜112旁,第二下電極115配置於第二反射薄膜113旁。詳細而言,第一反射薄膜112與第二反射薄膜113例如是藉由薄膜沉積技術(物理氣相沉積法或化學氣相沉積法),將折射率各不相同的介電材料或半導體材料,以高低接續的折射率週期性交互相疊,而形成多層膜堆疊的分佈式布拉格反射鏡(Distributed Bragg Reflector,DBR)。The first reflective film 112 and the second reflective film 113 are disposed on the substrate 111. The first lower electrode 114 and the second lower electrode 115 are disposed on the substrate 111. The first lower electrode 114 is disposed adjacent to the first reflective film 112, and the second lower electrode 115 is disposed adjacent to the second reflective film 113. In detail, the first reflective film 112 and the second reflective film 113 are, for example, dielectric materials or semiconductor materials having different refractive indices by a thin film deposition technique (physical vapor deposition or chemical vapor deposition). The high-low continuous refractive index is periodically alternately stacked to form a distributed Bragg Reflector (DBR) of the multilayer film stack.

在本實施例中,支撐組件120配置於基板111上。第一 濾光結構130位於第一反射薄膜112上方。第二濾光結構140位於第二反射薄膜113上方。第一彈性單元150連接第一濾光結構130與支撐組件120。第二彈性單元160連接第二濾光結構140與支撐組件120,其中第一彈性單元150的彈性係數不同於第二彈性單元160的彈性係數。第一上電極170連接第一濾光結構130。第二上電極180連接第二濾光結構140。In this embodiment, the support assembly 120 is disposed on the substrate 111. the first The filter structure 130 is located above the first reflective film 112. The second filter structure 140 is located above the second reflective film 113. The first elastic unit 150 connects the first filter structure 130 and the support assembly 120. The second elastic unit 160 connects the second filter structure 140 and the support assembly 120 , wherein the elastic coefficient of the first elastic unit 150 is different from the elastic coefficient of the second elastic unit 160 . The first upper electrode 170 is connected to the first filter structure 130. The second upper electrode 180 is connected to the second filter structure 140.

具體來說,支撐組件120例如是多個支撐固定座120a所組成,第一彈性單元150與第二彈性單元160透過這些支撐固定座120a連接至基板111,並使得第一濾光結構130與第一反射薄膜112之間以及第二濾光結構140與第二反射薄膜113之間具有相同的初始間距G。Specifically, the support assembly 120 is composed of, for example, a plurality of support fixing seats 120a. The first elastic unit 150 and the second elastic unit 160 are connected to the substrate 111 through the support fixing seats 120a, and the first filter structure 130 and the first filter structure 130 A reflective film 112 has the same initial pitch G between the second filter structure 140 and the second reflective film 113.

在本實施例中,可調式濾光元件100更包括第一框架結構190a與第二框架結構190b。詳細來說,第一濾光結構130連接至第一框架結構190a,其中第一框架結構190a沿第一軸向A1連接至第一彈性單元150,且第一上電極170配置於該第一濾光結構130旁。也就是說,本實施例的第一上電極170例如是位於第一框架結構190a面向第一下電極114的底面190a1上。In this embodiment, the adjustable filter element 100 further includes a first frame structure 190a and a second frame structure 190b. In detail, the first filter structure 130 is coupled to the first frame structure 190a, wherein the first frame structure 190a is coupled to the first elastic unit 150 along the first axial direction A1, and the first upper electrode 170 is disposed at the first filter Next to the light structure 130. That is, the first upper electrode 170 of the present embodiment is, for example, located on the bottom surface 190a1 of the first frame structure 190a facing the first lower electrode 114.

另一方面,第二濾光結構140連接至第二框架結構190b,其中第二框架結構190b沿第一軸向A1與垂直第一軸向A1的第二軸向A2連接至第二彈性單元160,且第二上電極180極配置於該第二濾光結構140旁。也就是說,本實施例的第二上電極180例如是位於第二框架結構190b面向第二下電極115的底面 190b1上。On the other hand, the second filter structure 140 is coupled to the second frame structure 190b, wherein the second frame structure 190b is coupled to the second elastic unit 160 along the first axial direction A1 and the second axial direction A2 of the vertical first axial direction A1. And the second upper electrode 180 is disposed at the side of the second filter structure 140. That is, the second upper electrode 180 of the present embodiment is, for example, located on the bottom surface of the second frame structure 190b facing the second lower electrode 115. On 190b1.

在本實施例中,第一濾光結構130包括第一濾光層130a與第三反射薄膜130b,第三反射薄膜130b位於第一濾光層130a與基板111之間。此外,第二濾光結構140包括第二濾光層140a與第四反射薄膜140b,第四反射薄膜140b位於第二濾光層140a與基板111之間。一般而言,第一濾光層130a與第二濾光層140a為帶通濾光片(bandpass filter),用以過濾紅外光(IR)波段、紫外光(UV)波段或可見光波段以外不必要的雜光。In the embodiment, the first filter structure 130 includes a first filter layer 130a and a third reflective film 130b, and the third reflective film 130b is located between the first filter layer 130a and the substrate 111. In addition, the second filter structure 140 includes a second filter layer 140a and a fourth reflective film 140b, and the fourth reflective film 140b is located between the second filter layer 140a and the substrate 111. In general, the first filter layer 130a and the second filter layer 140a are bandpass filters for filtering infrared (IR), ultraviolet (UV) or visible light bands. The stray light.

值得注意的是,第三反射薄膜130b與第四反射薄膜140b亦例如是藉由薄膜沉積技術(物理氣相沉積法或化學氣相沉積法),將折射率各不相同的介電材料或半導體材料,以高低接續的折射率週期性交互相疊,而形成多層膜堆疊的分佈式布拉格反射鏡(Distributed Bragg Reflector,DBR)。It is to be noted that the third reflective film 130b and the fourth reflective film 140b are also, for example, dielectric materials or semiconductors having different refractive indices by thin film deposition techniques (physical vapor deposition or chemical vapor deposition). The material is periodically alternately stacked with high and low refractive indices to form a distributed Bragg Reflector (DBR) of the multilayer film stack.

在本實施例中,第一彈性單元150包括主彈性構件152與二子彈性構件154、156,其中子彈性構件154、156藉由第一框架結構190a連接至主彈性構件152。詳細來說,第一彈性單元150的主彈性構件152與第二彈性單元160構成框體56,而此框體56環繞第一濾光結構130與第二濾光結構140。另一方面,子彈性構件154、156例如是對稱地連接於第一框架結構190a的相對兩側,且沿第二軸向A2朝向框體56延伸,使得子彈性構件154、156分別連接於第一框架結構190a與支撐固定座120a之間。也就是說,第一彈性單元150例如是由主彈性構件152與子彈性構件154、156 串聯而成的彈簧結構。In the present embodiment, the first elastic unit 150 includes a main elastic member 152 and two sub-elastic members 154, 156, wherein the sub-elastic members 154, 156 are coupled to the main elastic member 152 by the first frame structure 190a. In detail, the main elastic member 152 and the second elastic unit 160 of the first elastic unit 150 constitute a frame 56 , and the frame 56 surrounds the first filter structure 130 and the second filter structure 140 . On the other hand, the sub-elastic members 154, 156 are, for example, symmetrically connected to opposite sides of the first frame structure 190a, and extend toward the frame 56 along the second axial direction A2 such that the sub-elastic members 154, 156 are respectively connected to the first A frame structure 190a is interposed between the support base 120a. That is, the first elastic unit 150 is, for example, the main elastic member 152 and the sub elastic members 154, 156. Spring structure in series.

具體而言,第一彈性單元150的主彈性構件152與第二彈性單元160具有相同的彈性係數,但由於第一彈性單元150是由主彈性構件152與子彈性構件154、156串聯而成,因此可得知第一彈性單元150的彈性係數小於第二彈性單元160的彈性係數,本揭露並不以此為限。Specifically, the main elastic member 152 of the first elastic unit 150 has the same elastic modulus as the second elastic unit 160, but since the first elastic unit 150 is formed by connecting the main elastic member 152 and the sub elastic members 154 and 156 in series, Therefore, it can be known that the elastic modulus of the first elastic unit 150 is smaller than the elastic modulus of the second elastic unit 160, and the disclosure is not limited thereto.

圖4是圖2的可調式濾光元件受靜電吸引力後的剖面示。請參考圖2以及圖4,當施加相同電壓於第一上電極170與第一下電極114之間以及第二上電極180與第二下電極115之間時,第一上電極170與第一下電極114之間以及第二上電極180與第二下電極115之間產生靜電吸引力F,使得第一濾光結構130與第二濾光結構140朝向基板111移動,並使得第一濾光結構130與第一反射薄膜112之間具有第一間距G1,而第二濾光結構140與第二反射薄膜113之間具有第二間距G2。4 is a cross-sectional view of the adjustable filter element of FIG. 2 after being electrostatically attracted. Referring to FIG. 2 and FIG. 4, when the same voltage is applied between the first upper electrode 170 and the first lower electrode 114 and between the second upper electrode 180 and the second lower electrode 115, the first upper electrode 170 and the first An electrostatic attraction force F is generated between the lower electrodes 114 and between the second upper electrode 180 and the second lower electrode 115, so that the first filter structure 130 and the second filter structure 140 move toward the substrate 111, and the first filter is made The structure 130 has a first pitch G1 between the first reflective film 112 and a second pitch G2 between the second filter structure 140 and the second reflective film 113.

更進一步來說,由於第一彈性單元150的彈性係數小於第二彈性單元160的彈性係數的緣故,且在相同靜電吸引力F的牽引下,將導致第一框架結構190a朝向基板111移動的位移量大於第二框架結構190b朝向基板111移動的位移量。也就是說,第一濾光結構130與第一反射薄膜112之間的第一間距G1小於第二濾光結構140與第二反射薄膜113之間的第二間距G2。Furthermore, since the elastic modulus of the first elastic unit 150 is smaller than the elastic coefficient of the second elastic unit 160, and under the traction of the same electrostatic attractive force F, the displacement of the first frame structure 190a toward the substrate 111 will be caused. The amount is greater than the amount of displacement of the second frame structure 190b toward the substrate 111. That is, the first pitch G1 between the first filter structure 130 and the first reflective film 112 is smaller than the second pitch G2 between the second filter structure 140 and the second reflective film 113.

藉此,如圖1所示,當光束12入射至可調式濾光元件100之後,光束12將分別於第一濾光結構130與第一反射薄膜112之 間與第二濾光結構140與第二反射薄膜113之間形成法布立-培若干涉(Fabry-Perot interference),如此便可濾出特定的光波段,其中穿透光譜(transmission spectrum)為波長的函數,且穿透光譜(transmission spectrum)的峰值與第一濾光結構130與第一反射薄膜112之間以及第二濾光結構140與第二反射薄膜113之間所形成的共振腔的共振相對應。也就是說,本揭露藉由調整第一濾光結構130與第一反射薄膜112之間以及第二濾光結構140與第二反射薄膜113之間的間距(且分別為兩大小不同的第一間距G1與第二間距G2),以達到上述的干涉現象,且分別濾出例如是紅外光(IR)波段、紫外光(UV)波段與可見光波段的光波中任兩者的第一光12a與第二光12b,其中第一光12a與第二光12b分別被進一步傳遞至光偵測單元30、40,以針對待測物50例如是微流體晶片或蛋白質晶片等生物晶片,亦或是其他載體進行分析。Thereby, as shown in FIG. 1, after the light beam 12 is incident on the adjustable filter element 100, the light beam 12 will be respectively between the first filter structure 130 and the first reflective film 112. Forming a Fabry-Perot interference between the second filter structure 140 and the second reflective film 113, so that a specific optical band can be filtered out, wherein the transmission spectrum is a function of the wavelength, and a peak of the transmission spectrum and a resonant cavity formed between the first filter structure 130 and the first reflective film 112 and between the second filter structure 140 and the second reflective film 113 Resonance corresponds. That is, the present disclosure adjusts the spacing between the first filter structure 130 and the first reflective film 112 and between the second filter structure 140 and the second reflective film 113 (and respectively is the first of two different sizes) The pitch G1 and the second pitch G2) are such as to achieve the interference phenomenon described above, and filter out the first light 12a of, for example, an infrared light (IR) band, an ultraviolet (UV) band, and a visible wave band, respectively. The second light 12b, wherein the first light 12a and the second light 12b are further transmitted to the light detecting units 30, 40, respectively, for the biological object such as a microfluidic chip or a protein wafer, or other The vector was analyzed.

另一方面,雖然在本實施例中,主要是藉由第一彈性單元150與第二彈性單元160的彈性係數不同,以在相同靜電吸引力的牽引的情形下,使得第一濾光結構130與第一反射薄膜112之間以及第二濾光結構140與第二反射薄膜113之間分別具有兩不相同的第一間距G1與第二間距G2,但本揭露並不以此為限。具體來說,在其他可能的實施例中,本揭露的第一彈性單元的彈性係數亦可相同於第二彈性單元,藉由改變上、下電極的面積大小,或施加不同電壓於第一上電極與第一下電極之間以及第二上電極與第二下電極之間時,用以產生不同的靜電吸引力,從而獲 致與上述實施例相同的技術功效。On the other hand, although in the present embodiment, the elastic coefficient of the first elastic unit 150 and the second elastic unit 160 are different, the first filter structure 130 is made in the case of traction with the same electrostatic attraction. There are two different first pitches G1 and second pitches G2 between the first reflective film 112 and the second filter structure 140 and the second reflective film 113, but the disclosure is not limited thereto. Specifically, in other possible embodiments, the elastic coefficient of the first elastic unit of the present disclosure may be the same as that of the second elastic unit, by changing the size of the upper and lower electrodes, or applying different voltages to the first When the electrode is between the first lower electrode and the second upper electrode and the second lower electrode, to generate different electrostatic attractive forces, thereby obtaining The same technical effects as the above embodiment are obtained.

圖5A至圖5M是圖2的可調式濾光元件的製作流程圖。就製程上而言,請先參考圖5A,提供例如為玻璃晶圓的基板111。接著,藉由金屬沉積例如是以化學氣相沉積(CVD)的方式,於基板111上形成第一下電極114、一第二下電極115以及互連的第一金屬線路116,即如圖5B所示。完成上述製程後,於基板111上沉積一層防護氧化層(protective oxide)117,且於防護氧化層(protective oxide)117上形成多個介層窗口118,以暴露出基板111的部分表面,其中防護氧化層(protective oxide)117覆蓋第一下電極114、第二下電極115以及第一金屬線路116,即如圖5C所示。5A to 5M are flowcharts showing the fabrication of the adjustable filter element of Fig. 2. In terms of process, please refer to FIG. 5A first to provide a substrate 111 such as a glass wafer. Next, a first lower electrode 114, a second lower electrode 115, and an interconnected first metal line 116 are formed on the substrate 111 by metal deposition, for example, by chemical vapor deposition (CVD), that is, as shown in FIG. 5B. Shown. After the above process is completed, a protective oxide 117 is deposited on the substrate 111, and a plurality of vias 118 are formed on the protective oxide 117 to expose a portion of the surface of the substrate 111. A protective oxide 117 covers the first lower electrode 114, the second lower electrode 115, and the first metal line 116, as shown in FIG. 5C.

之後,將第一反射薄膜112與第二反射薄膜113沉積於基板111上,其中第一反射薄膜112與第二反射薄膜113分別位於介層窗口118內,並移除部分防護氧化層(protective oxide)117以暴露出部分第一金屬線路116,作為後續接合製程之用,其中由圖5D可得知完成前述製程的結構配置。至此,基材層110的製作已完成。Thereafter, the first reflective film 112 and the second reflective film 113 are deposited on the substrate 111, wherein the first reflective film 112 and the second reflective film 113 are respectively located in the via window 118, and a part of the protective oxide layer is removed. 117 to expose a portion of the first metal line 116 for use in a subsequent bonding process, wherein the structural configuration of the foregoing process is known from FIG. 5D. So far, the fabrication of the substrate layer 110 has been completed.

接著,請參考圖5E,提供晶圓基板210,且特別是絕緣層覆矽(SOI)晶圓基板,其包括矽基板(device layer)211、絕緣層(圖未示)以及基板層(handle layer)212,並於矽基板211的表面211a上進行氮化物沉積(nitride deposition),以形成氮化物層211b。在完成上述製程後,於氮化物層211b上進行氮化物蝕 刻(nitride etch),以暴露出矽基板211的表面211a的部分區域,如圖5F所示。Next, referring to FIG. 5E, a wafer substrate 210, and particularly an insulating layer overlay (SOI) wafer substrate, including a device layer 211, an insulating layer (not shown), and a handle layer is provided. 212, and nitride deposition is performed on the surface 211a of the ruthenium substrate 211 to form a nitride layer 211b. After the above process is completed, nitride etching is performed on the nitride layer 211b. A nitride etch is performed to expose a partial region of the surface 211a of the ruthenium substrate 211 as shown in FIG. 5F.

接著,請參考圖5G,於矽基板211上進行矽蝕刻(silicon etch),以形成至少一支撐固定座120a。之後將氮化物層211b移除,並於矽基板211上的部分區域形成氧化層213,之後再蝕刻矽基板211以形成阻擋層(stopper layer)211c,如圖5H所示。如此配置下,可防止結構之間的沾黏(stiction)以及提升後續製程上的精確度,其中阻擋層211c位於這些支撐固定座120a之間。Next, referring to FIG. 5G, a silicon etch is performed on the germanium substrate 211 to form at least one support mount 120a. Thereafter, the nitride layer 211b is removed, and an oxide layer 213 is formed on a portion of the germanium substrate 211, and then the germanium substrate 211 is etched to form a stopper layer 211c as shown in FIG. 5H. With this configuration, stiction between structures and accuracy in subsequent processes can be prevented, with the barrier layer 211c being located between the support mounts 120a.

在完成上述製程後,首先於矽基板211上沉積氧化層214(如圖5I所示),以作為後續製程中的阻擋結構,再分別形成第一濾光結構130、第二濾光結構140、第一上電極170、第二上電極180以及第二金屬線路215,其中第一上電極170連接至第一濾光結構130,第二上電極180連接至第二濾光結構140,而第二金屬線路215是於移除支撐固定座120a上的氧化層213後所形成,如圖5I所示。After the above process is completed, an oxide layer 214 (shown in FIG. 5I) is first deposited on the germanium substrate 211 as a barrier structure in a subsequent process, and then the first filter structure 130 and the second filter structure 140 are respectively formed. a first upper electrode 170, a second upper electrode 180, and a second metal line 215, wherein the first upper electrode 170 is connected to the first filter structure 130, the second upper electrode 180 is connected to the second filter structure 140, and the second The metal line 215 is formed after the oxide layer 213 on the support holder 120a is removed, as shown in FIG. 5I.

具體來說,形成第一濾光結構130、第二濾光結構140的方法是首先於矽基板211上分別形成第一濾光層130a與第二濾光層140a,其中第一上電極170連接至第一濾光層130a,第二上電極180連接至第二濾光層140a。然後將第三反射薄膜130b與第四反射薄膜140b藉由金屬沉積例如是以化學氣相沉積(CVD)的方式分別沉積於第一濾光層130a與第二濾光層140a上,以分別形成如圖5J所示的第一濾光結構130與第二濾光結構140。Specifically, the first filter structure 130 and the second filter structure 140 are formed by first forming a first filter layer 130a and a second filter layer 140a on the germanium substrate 211, wherein the first upper electrode 170 is connected. To the first filter layer 130a, the second upper electrode 180 is connected to the second filter layer 140a. Then, the third reflective film 130b and the fourth reflective film 140b are respectively deposited on the first filter layer 130a and the second filter layer 140a by metal deposition, for example, by chemical vapor deposition (CVD), to form separately. The first filter structure 130 and the second filter structure 140 are as shown in FIG. 5J.

接著,請參考圖5K,藉由陽極接合(anodic bonding)連接矽基板211與如圖5D所示的基材層110,並以第一金屬線路116與第二金屬線路215相互結合,其中由第一濾光層130a與第三反射薄膜130b所構成的第一濾光結構130面向第一反射薄膜112,而由第二濾光層140a與第四反射薄膜140b所構成的第二濾光結構140則面向第二反射薄膜113。於完成上述製程後,再行移除晶圓基板210上的絕緣層(圖未示)與基板層212。Next, referring to FIG. 5K, the ruthenium substrate 211 and the substrate layer 110 as shown in FIG. 5D are connected by anodic bonding, and the first metal line 116 and the second metal line 215 are combined with each other. The first filter structure 130 formed by the filter layer 130a and the third reflective film 130b faces the first reflective film 112, and the second filter structure 140 composed of the second filter layer 140a and the fourth reflective film 140b Then, it faces the second reflective film 113. After the above process is completed, the insulating layer (not shown) on the wafer substrate 210 and the substrate layer 212 are removed.

最後,請參考圖5M,蝕刻此矽基板211,以分別形成第一彈性單元150與第二彈性單元160,其中蝕刻的方式例如是深反應離子式蝕刻(Deep Reactive Ion Etching,RIE)。另一方面,第一彈性單元150連接第一濾光結構130與部分支撐固定座120a,而第二彈性單元160連接第二濾光結構140與其他部分支撐固定座120a。Finally, referring to FIG. 5M, the germanium substrate 211 is etched to form a first elastic unit 150 and a second elastic unit 160, respectively, wherein the etching is performed by, for example, Deep Reactive Ion Etching (RIE). On the other hand, the first elastic unit 150 connects the first filter structure 130 and the partial support mount 120a, and the second elastic unit 160 connects the second filter structure 140 with the other partial support mounts 120a.

具體來說,於矽基板211上分別形成第一彈性單元150與第二彈性單元160的方法包括於矽基板211上分別形成第一框架結構190a與第二框架結構190b,第一濾光結構130連接至第一框架結構190a,其中第一框架結構190a沿第一軸向A1連接至第一彈性單元150,且第一上電極170配置於該第一濾光結構130旁。而第二濾光結構140連接至第二框架結構190b,其中第二框架結構190b分別沿第一軸向A1與垂直第一軸向A1的第二軸向A2連接至第二彈性單元160,且第二上電極180配置於第二濾光結構140旁,如圖2所示。至此,可調式濾光元件100的製作已 完成。Specifically, the method of forming the first elastic unit 150 and the second elastic unit 160 on the 矽 substrate 211 includes forming a first frame structure 190a and a second frame structure 190b on the 矽 substrate 211, respectively, and the first filter structure 130 Connected to the first frame structure 190a, wherein the first frame structure 190a is coupled to the first elastic unit 150 along the first axial direction A1, and the first upper electrode 170 is disposed adjacent to the first filter structure 130. The second filter structure 140 is coupled to the second frame structure 190b, wherein the second frame structure 190b is coupled to the second elastic unit 160 along the first axis A1 and the second axis A2 of the vertical first axis A1, respectively, and The second upper electrode 180 is disposed beside the second filter structure 140, as shown in FIG. So far, the production of the adjustable filter element 100 has been carry out.

綜上所述,本揭露的可調式濾光元件藉由將兩濾光結構分別連結至不同彈性係數的兩彈性單元,其中各個彈性單元位於基板上方,對應於各個濾光結構的兩反射薄膜配置於基板上。當施加相同電壓於對應的上、下電極之間時,對應的上、下電極之間產生靜電吸引力,使得各個濾光結構朝向基板移動。由於各個彈性單元的彈性係數互不相同,也因此,靜電吸引力會使得各個濾光結構與各個反射薄膜之間產生兩不同的間距,另本揭露兩彈性單元也可以是相同彈性係數施加不同電壓也可以同時產生不同之間距。藉此,當光束通過可調式濾光元件後可產生不同波段的光。也就是說,本揭露提出了一種整合式的可調式濾光元件,不僅可達到同步濾出不同波段的光的功效,亦可達到微型化之目的與有效降低製作上的成本。In summary, the adjustable filter element of the present disclosure is configured by respectively connecting two filter structures to two elastic units of different elastic coefficients, wherein each elastic unit is located above the substrate, corresponding to the two reflective film configurations of the respective filter structures. On the substrate. When the same voltage is applied between the corresponding upper and lower electrodes, an electrostatic attraction force is generated between the corresponding upper and lower electrodes, so that the respective filter structures move toward the substrate. Since the elastic coefficients of the respective elastic units are different from each other, the electrostatic attraction force causes two different spacings between the respective filter structures and the respective reflective films, and it is disclosed that the two elastic units can also apply different voltages with the same elastic coefficient. It is also possible to generate different distances at the same time. Thereby, light of different wavelength bands can be generated when the light beam passes through the adjustable filter element. That is to say, the present disclosure proposes an integrated adjustable filter element, which not only achieves the effect of simultaneously filtering out light of different wavelength bands, but also achieves the purpose of miniaturization and effectively reduces the cost of production.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of this disclosure is subject to the definition of the scope of the appended claims.

100‧‧‧可調式濾光元件100‧‧‧Adjustable filter elements

110‧‧‧基材層110‧‧‧ substrate layer

111‧‧‧基板111‧‧‧Substrate

112‧‧‧第一反射薄膜112‧‧‧First reflective film

113‧‧‧第二反射薄膜113‧‧‧Second reflective film

114‧‧‧第一下電極114‧‧‧First lower electrode

115‧‧‧第二下電極115‧‧‧second lower electrode

116‧‧‧第一金屬線路116‧‧‧First metal line

117‧‧‧防護氧化層117‧‧‧ protective oxide layer

120a‧‧‧支撐固定座120a‧‧‧Support mount

130‧‧‧第一濾光結構130‧‧‧First filter structure

130a‧‧‧第一濾光層130a‧‧‧First filter layer

130b‧‧‧第三反射薄膜130b‧‧‧third reflective film

140‧‧‧第二濾光結構140‧‧‧Second filter structure

140a‧‧‧第二濾光層140a‧‧‧Second filter layer

140b‧‧‧第四反射薄膜140b‧‧‧fourth reflective film

150‧‧‧第一彈性單元150‧‧‧First elastic unit

160‧‧‧第二彈性單元160‧‧‧Second elastic unit

170‧‧‧第一上電極170‧‧‧First upper electrode

180‧‧‧第二上電極180‧‧‧Second upper electrode

190a‧‧‧第一框架結構190a‧‧‧First frame structure

190a1、190b1‧‧‧底面190a1, 190b1‧‧‧ bottom

190b‧‧‧第二框架結構190b‧‧‧second frame structure

211‧‧‧矽基板211‧‧‧矽 substrate

211c‧‧‧阻擋層211c‧‧‧Block

213、214‧‧‧氧化層213, 214‧‧‧ oxide layer

215‧‧‧第二金屬線路215‧‧‧Second metal line

F‧‧‧靜電吸引力F‧‧‧Electrostatic attraction

G1‧‧‧第一間距G1‧‧‧ first spacing

G2‧‧‧第二間距G2‧‧‧Second spacing

Claims (11)

一種可調式濾光元件,包括:一基材層,包括:一基板;一第一反射薄膜與一第二反射薄膜,配置於該基板上;以及一第一下電極與一第二下電極,配置於該基板上,其中該第一下電極配置於該第一反射薄膜旁,該第二下電極配置於該第二反射薄膜旁;一支撐組件,配置於該基板上;一第一濾光結構,位於該第一反射薄膜上方;一第二濾光結構,位於該第二反射薄膜上方;一第一彈性單元,連接該第一濾光結構與該支撐組件;一第二彈性單元,連接該第二濾光結構與該支撐組件;一第一上電極,連接至該第一濾光結構;以及一第二上電極,連接至該第二濾光結構,該可調式濾光元件滿足一第一條件或一第二條件,在該第一條件中,該第一彈性單元的彈性係數不同於該第二彈性單元的彈性係數,且當施加一相同電壓於該第一上電極與該第一下電極之間以及該第二上電極與該第二下電極之間時,該第一濾光結構與該第一反射薄膜之間具有一第一間距,而該第二濾光結構與該第二反射薄膜之間具有一第二間距; 在該第二條件中,該第一彈性單元的彈性係數相同於該第二彈性單元的彈性係數,且當施加一不同電壓於該第一上電極與該第一下電極之間以及該第二上電極與該第二下電極之間時,該第一濾光結構與該第一反射薄膜之間具有該第一間距,而該第二濾光結構與該第二反射薄膜之間具有該第二間距。 An adjustable filter element includes: a substrate layer comprising: a substrate; a first reflective film and a second reflective film disposed on the substrate; and a first lower electrode and a second lower electrode, Disposed on the substrate, wherein the first lower electrode is disposed beside the first reflective film, the second lower electrode is disposed beside the second reflective film; a support component is disposed on the substrate; a first filter a structure, located above the first reflective film; a second filter structure, located above the second reflective film; a first elastic unit connecting the first filter structure and the support assembly; a second elastic unit, connected The second filter structure and the support assembly; a first upper electrode connected to the first filter structure; and a second upper electrode connected to the second filter structure, the adjustable filter element satisfying a a first condition or a second condition, in which the modulus of elasticity of the first elastic unit is different from the modulus of elasticity of the second elastic unit, and when applying the same voltage to the first upper electrode and the first Next electrode And between the second upper electrode and the second lower electrode, the first filter structure and the first reflective film have a first spacing, and the second filter structure and the second reflective film Having a second spacing therebetween; In the second condition, the first elastic unit has the same spring rate as the second elastic unit, and when a different voltage is applied between the first upper electrode and the first lower electrode and the second Between the upper electrode and the second lower electrode, the first filter structure and the first reflective film have the first spacing, and the second filter structure and the second reflective film have the first Two spacing. 如申請專利範圍第1項所述的可調式濾光元件,其中當施加該相同電壓於該第一上電極與該第一下電極之間以及該第二上電極與該第二下電極之間時,該第一上電極與該第一下電極之間及該第二上電極與該第二下電極之間產生靜電吸引力,使得該第一濾光結構與該第二濾光結構朝向該基板移動。 The tunable filter element of claim 1, wherein the same voltage is applied between the first upper electrode and the first lower electrode and between the second upper electrode and the second lower electrode An electrostatic attraction force is generated between the first upper electrode and the first lower electrode and between the second upper electrode and the second lower electrode, such that the first filter structure and the second filter structure face the The substrate moves. 如申請專利範圍第1項所述的可調式濾光元件,其中當施加該不同電壓於該第一上電極與該第一下電極之間以及該第二上電極與該第二下電極之間時,該第一上電極與該第一下電極之間及該第二上電極與該第二下電極之間產生不同的靜電吸引力,使得該第一濾光結構與該第二濾光結構朝向該基板移動。 The tunable filter element of claim 1, wherein the different voltage is applied between the first upper electrode and the first lower electrode and between the second upper electrode and the second lower electrode a different electrostatic attraction between the first upper electrode and the first lower electrode and between the second upper electrode and the second lower electrode, such that the first filter structure and the second filter structure Move toward the substrate. 如申請專利範圍第1項所述的可調式濾光元件,更包括:一第一框架結構,該第一濾光結構連接至該第一框架結構,其中該第一框架結構沿一第一軸向連接至該第一彈性單元,且該第一上電極配置於該第一濾光結構旁;以及一第二框架結構,該第二濾光結構連接至該第二框架結構,其中該第二框架結構分別沿該第一軸向與垂直該第一軸向的一第二軸向連接至該第二彈性單元,且該第二上電極配置於該第二濾 光結構旁。 The tunable filter element of claim 1, further comprising: a first frame structure, the first filter structure being coupled to the first frame structure, wherein the first frame structure is along a first axis Connecting to the first elastic unit, and the first upper electrode is disposed beside the first filter structure; and a second frame structure, the second filter structure is coupled to the second frame structure, wherein the second The frame structure is respectively connected to the second elastic unit along a first axial direction and a second axial direction perpendicular to the first axial direction, and the second upper electrode is disposed on the second filter Next to the light structure. 如申請專利範圍第1項所述的可調式濾光元件,其中該基材層為透明基材層。 The tunable filter element of claim 1, wherein the substrate layer is a transparent substrate layer. 如申請專利範圍第1項所述的可調式濾光元件,其中該第一反射薄膜與該第二反射薄膜為分佈式布拉格反射鏡。 The tunable filter element of claim 1, wherein the first reflective film and the second reflective film are distributed Bragg reflectors. 如申請專利範圍第1項所述的可調式濾光元件,其中該第一濾光結構包括一第一濾光層與一第三反射薄膜,而該第二濾光結構包括一第二濾光層與一第四反射薄膜,該第三反射薄膜位於該第一濾光層與該基板之間,該第四反射薄膜位於該第二濾光層與該基板之間。 The tunable filter element of claim 1, wherein the first filter structure comprises a first filter layer and a third reflective film, and the second filter structure comprises a second filter The layer and a fourth reflective film are located between the first filter layer and the substrate, and the fourth reflective film is located between the second filter layer and the substrate. 一種可調式濾光元件的製作方法,包括:形成一反射薄膜基材層;提供一晶圓基板,該晶圓基板包括一矽基板、一絕緣層以及一基板層;於該矽基板的一表面上形成一氮化物層;蝕刻該氮化物層,以暴露出該矽基板的部分表面;於該矽基板上依序形成至少一支撐固定座與一阻擋層,其中該阻擋層位於該些支撐固定座之間;於該矽基板上分別形成一第一濾光結構、一第二濾光結構、一第一上電極、一第二上電極以及一第二金屬線路,其中該第一上電極連接至該第一濾光結構,該第二上電極連接至該第二濾光結構; 接合該矽基板與該基材層,其中該第一濾光結構面向該第一反射薄膜,該第二濾光結構面向該第二反射薄膜;以及分別形成一第一彈性單元與一第二彈性單元於該矽基板上,其中該第一彈性單元連接該第一濾光結構與部分該些支撐固定座,該第二彈性單元連接該第二濾光結構與其他部分該些支撐固定座。 A method for fabricating an adjustable filter element, comprising: forming a reflective film substrate layer; providing a wafer substrate, the wafer substrate comprising a germanium substrate, an insulating layer and a substrate layer; and a surface of the germanium substrate Forming a nitride layer thereon; etching the nitride layer to expose a portion of the surface of the germanium substrate; forming at least one support mount and a barrier layer on the germanium substrate, wherein the barrier layer is located at the support Between the sockets, a first filter structure, a second filter structure, a first upper electrode, a second upper electrode and a second metal line are respectively formed on the substrate, wherein the first upper electrode is connected To the first filter structure, the second upper electrode is connected to the second filter structure; Bonding the germanium substrate and the substrate layer, wherein the first filter structure faces the first reflective film, the second filter structure faces the second reflective film; and respectively forms a first elastic unit and a second elastic The unit is disposed on the substrate, wherein the first elastic unit is connected to the first filter structure and a portion of the support holders, and the second elastic unit is connected to the second filter structure and other portions of the support holders. 如申請專利範圍第8項所述的可調式濾光元件的製作方法,其中形成該基材層的方法包括:於一基板上分別形成一第一下電極、一第二下電極以及一第一金屬線路;於該基板上形成一防護氧化層;於該防護氧化層上形成多個介層窗口,以暴露出該基板的部分表面,該防護氧化層覆蓋該第一下電極、該第二下電極以及該金屬線路的區域;以及於該基板上分別形成一第一反射薄膜與一第二反射薄膜,其中該第一反射薄膜與該第二反射薄膜分別位於該介層窗口內。 The method of fabricating the tunable filter element of claim 8, wherein the method of forming the substrate layer comprises: forming a first lower electrode, a second lower electrode, and a first on a substrate Forming a protective oxide layer on the substrate; forming a plurality of via windows on the protective oxide layer to expose a portion of the surface of the substrate, the protective oxide layer covering the first lower electrode, the second lower portion An electrode and a region of the metal line; and a first reflective film and a second reflective film are respectively formed on the substrate, wherein the first reflective film and the second reflective film are respectively located in the via window. 如申請專利範圍第8項所述的可調式濾光元件的製作方法,其中於該矽基板上分別形成該第一彈性單元與該第二彈性單元的方法包括:於該矽基板上形成一第一框架結構,該第一濾光結構連接至該第一框架結構,其中該第一框架結構沿一第一軸向連接至該第一彈性單元,且該第一上電極配置於該第一濾光結構旁;以及 於該矽基板上形成一第二框架結構,該第二濾光結構連接至該第二框架結構,其中該第二框架結構分別沿該第一軸向與垂直該第一軸向的一第二軸向連接至該第二彈性單元,且該第二上電極配置於該第二濾光結構旁。 The method of fabricating the tunable filter element of claim 8, wherein the forming the first elastic unit and the second elastic unit on the cymbal substrate comprises: forming a first a frame structure, the first filter structure is coupled to the first frame structure, wherein the first frame structure is coupled to the first elastic unit along a first axial direction, and the first upper electrode is disposed on the first filter Next to the light structure; Forming a second frame structure on the substrate, the second filter structure is coupled to the second frame structure, wherein the second frame structure is along the first axial direction and a second portion perpendicular to the first axial direction The second elastic unit is axially connected, and the second upper electrode is disposed beside the second filter structure. 如申請專利範圍第8項所述的可調式濾光元件的製作方法,其中於該矽基板上分別形成該第一濾光結構與該第二濾光結構的方法包括:於該矽基板上分別形成一第一濾光層與一第二濾光層,其中第一上電極連接至第一濾光層,第二上電極連接至第二濾光層;以及於該第一濾光層與該第二濾光層上分別形成一第三反射薄膜與一第四反射薄膜。 The method of fabricating the tunable filter element of claim 8, wherein the method of forming the first filter structure and the second filter structure on the ruthenium substrate comprises: respectively Forming a first filter layer and a second filter layer, wherein the first upper electrode is connected to the first filter layer, the second upper electrode is connected to the second filter layer; and the first filter layer and the first filter layer A third reflective film and a fourth reflective film are respectively formed on the second filter layer.
TW102134089A 2013-09-23 2013-09-23 Tunable filter element and menufacturing method thereof TWI502176B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102134089A TWI502176B (en) 2013-09-23 2013-09-23 Tunable filter element and menufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102134089A TWI502176B (en) 2013-09-23 2013-09-23 Tunable filter element and menufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201512634A TW201512634A (en) 2015-04-01
TWI502176B true TWI502176B (en) 2015-10-01

Family

ID=53437084

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102134089A TWI502176B (en) 2013-09-23 2013-09-23 Tunable filter element and menufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI502176B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287320B2 (en) 2017-05-23 2022-03-29 Hamamatsu Photonics K.K. Filter controlling expression derivation method, light measurement system, control method for Fabry-Perot interference filter, and filter control program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040218187A1 (en) * 2002-03-18 2004-11-04 Cole Barrett E. Multiple wavelength spectrometer
US20060054795A1 (en) * 2002-03-18 2006-03-16 Cole Barrett E Spectrally tunable detector
US20060183644A1 (en) * 2005-01-28 2006-08-17 Ryosuke Nakamura Optical tunable filter and method of manufacturing the same
US20080088910A1 (en) * 1994-05-05 2008-04-17 Idc, Llc System and method for a mems device
CN100538432C (en) * 2006-01-19 2009-09-09 精工爱普生株式会社 Wave length variable filter, wave length variable filter module and optical spectrum analyser
TW201137392A (en) * 2010-03-15 2011-11-01 Seiko Epson Corp Method of manufacturing optical filter, analytical instrument, and optical apparatus
TW201333546A (en) * 2012-02-14 2013-08-16 Seiko Epson Corp Optical filter device and manufacturing method for the optical filter device
CN103293660A (en) * 2013-05-31 2013-09-11 华中科技大学 Miniature F-P (Fabry-Perot) cavity tunable filter and method for manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080088910A1 (en) * 1994-05-05 2008-04-17 Idc, Llc System and method for a mems device
US20040218187A1 (en) * 2002-03-18 2004-11-04 Cole Barrett E. Multiple wavelength spectrometer
US20060054795A1 (en) * 2002-03-18 2006-03-16 Cole Barrett E Spectrally tunable detector
US20060183644A1 (en) * 2005-01-28 2006-08-17 Ryosuke Nakamura Optical tunable filter and method of manufacturing the same
CN100538432C (en) * 2006-01-19 2009-09-09 精工爱普生株式会社 Wave length variable filter, wave length variable filter module and optical spectrum analyser
TW201137392A (en) * 2010-03-15 2011-11-01 Seiko Epson Corp Method of manufacturing optical filter, analytical instrument, and optical apparatus
TW201333546A (en) * 2012-02-14 2013-08-16 Seiko Epson Corp Optical filter device and manufacturing method for the optical filter device
CN103293660A (en) * 2013-05-31 2013-09-11 华中科技大学 Miniature F-P (Fabry-Perot) cavity tunable filter and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287320B2 (en) 2017-05-23 2022-03-29 Hamamatsu Photonics K.K. Filter controlling expression derivation method, light measurement system, control method for Fabry-Perot interference filter, and filter control program
TWI788353B (en) * 2017-05-23 2023-01-01 日商濱松赫德尼古斯股份有限公司 Derivation method of optical filter control equation, optical measurement system, control method of Fabry-Pereaux interference filter, and optical filter control program

Also Published As

Publication number Publication date
TW201512634A (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP7086239B2 (en) Variable optical filter and wavelength-selective sensor based on it
US9268144B2 (en) Method for producing a mirror plate for Fabry-Perot interferometer, and a mirror plate produced by the method
Schuler et al. MEMS-based microspectrometer technologies for NIR and MIR wavelengths
CN108955877B (en) Driving method and spectroscopic measurement method
US20110049340A1 (en) Wavelength spectroscopy device with integrated filters
JP6260080B2 (en) Wavelength variable interference filter, method for manufacturing wavelength variable interference filter, optical module, and electronic device
US9075198B2 (en) Wavelength tunable interference filter, method of manufacturing wavelength tunable interference filter, optical apparatus, and optical component
CN109798979B (en) Design method of semiconductor process compatible high-spectrum imaging chip with wide spectrum range
JP2014182170A (en) Sealing structure, interference filter, optical module, and electronic apparatus
EP3683557B1 (en) Tunable fabry-perot filter element, spectrometer device and method for manufacturing a tunable fabry-perot filter element
US10921503B2 (en) Wavelength variable interference filter and optical module
US20160103019A1 (en) Optical spectroscopy device including a plurality of emission sources
KR20200014808A (en) Spectral Filter with Controllable Spectral Bandwidth and Resolution
US10557753B2 (en) Spectrometer apparatus
TWI502176B (en) Tunable filter element and menufacturing method thereof
US8970957B2 (en) Tunable interference filter, optical module, and electronic device
JP5999159B2 (en) Optical filter, optical filter module, spectrophotometer and optical instrument
US11060909B2 (en) Spectrometer, analysis equipment, and wavelength-variable light source
JP5888002B2 (en) Wavelength variable interference filter, optical filter device, optical module, and electronic apparatus
US20100220331A1 (en) Micro-electromechanical system fabry-perot filter cavity
CN112415647A (en) Semiconductor etalon device and method of manufacturing the same
JP2019045599A (en) Tunable light filter, optical module and electronic apparatus
JP5970686B2 (en) Optical module and electronic equipment
JP7471347B2 (en) Spectrometer
KR101823096B1 (en) spectral module and method of manufacturing the same