TWI501649B - Video signal processing apparatus and method - Google Patents

Video signal processing apparatus and method Download PDF

Info

Publication number
TWI501649B
TWI501649B TW101119326A TW101119326A TWI501649B TW I501649 B TWI501649 B TW I501649B TW 101119326 A TW101119326 A TW 101119326A TW 101119326 A TW101119326 A TW 101119326A TW I501649 B TWI501649 B TW I501649B
Authority
TW
Taiwan
Prior art keywords
pixel data
offset
delay
image signal
signal
Prior art date
Application number
TW101119326A
Other languages
Chinese (zh)
Other versions
TW201304542A (en
Inventor
Maki Koizumi
Atsushi Yoshida
Original Assignee
Jvc Kenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012032803A external-priority patent/JP5880119B2/en
Priority claimed from JP2012032741A external-priority patent/JP5880116B2/en
Priority claimed from JP2012032801A external-priority patent/JP5880118B2/en
Priority claimed from JP2012032747A external-priority patent/JP5880117B2/en
Application filed by Jvc Kenwood Corp filed Critical Jvc Kenwood Corp
Publication of TW201304542A publication Critical patent/TW201304542A/en
Application granted granted Critical
Publication of TWI501649B publication Critical patent/TWI501649B/en

Links

Landscapes

  • Television Systems (AREA)

Description

影像訊號處理裝置及方法Image signal processing device and method

本發明,係有關於對影像訊號作處理之影像訊號處理裝置及方法,特別是有關於對於根據運動向量而產生內插像素的內插處理作了改良之影像訊號處理裝置及方法。The present invention relates to an image signal processing apparatus and method for processing an image signal, and more particularly to an image signal processing apparatus and method for improving interpolation processing for generating interpolated pixels based on a motion vector.

在使用有液晶面板之畫像顯示裝置中,若是顯示動畫像,則會容易產生殘影。因此,為了降低殘影,係進行有:在影像訊號之實際圖框之間,將內插圖框作內插而使圖框數增大,例如將垂直頻率60Hz之圖框速率變換為2倍之120Hz或者是此以上之垂直頻率,而進行畫像顯示。在進行圖框速率變換之影像訊號處理裝置中,係檢測出畫像之運動向量,並使用運動向量來產生各內插像素,再產生內插於實際圖框之間的內插圖框。作為進行圖框速率變換之影像訊號處理裝置的其中一例,係在專利文獻1中有所記載。In an image display device using a liquid crystal panel, if a moving image is displayed, image sticking is likely to occur. Therefore, in order to reduce the residual image, the image frame is interpolated between the actual frames of the image signal to increase the number of frames, for example, the frame rate of the vertical frequency of 60 Hz is converted to 2 times. Image display is performed at 120 Hz or above. In the image signal processing device that performs frame rate conversion, the motion vector of the image is detected, and each interpolation pixel is generated using the motion vector, and an inner frame interpolated between the actual frames is generated. An example of the video signal processing device that performs frame rate conversion is described in Patent Document 1.

[先前技術文獻][Previous Technical Literature] [專利文獻][Patent Literature]

[專利文獻1]日本特開2008-141546號公報[Patent Document 1] Japanese Patent Laid-Open Publication No. 2008-141546

在根據運動向量而產生內插像素並產生內插圖框的影像訊號處理裝置中,為了使內插精確度提昇並得到高畫質的圖框速率變換畫像,將內插處理之範圍增廣一事係為有效。亦即是,係有必要能夠就算是在畫像之運動為大的情況時亦可使用適當之實際圖框的像素來產生內插像素。然而,為了將內插處理之範圍增廣,係必須要增加使影像訊號在垂直方向上作延遲之掃描線記憶體或者是使影像訊號在水平方向上作延遲之像素延遲器的數量。若是使掃描線記憶體或像素延遲器之數量增加,則電路規模會變大,而成本會變高。特別是,掃描線記憶體之增加,係會對於電路規模之增大以及成本之提昇有很大的影響。因此,係期望能夠對於掃描線記憶體之增加作抑制同時亦將內插處理之範圍擴大。In an image signal processing apparatus that generates an interpolated pixel based on a motion vector and generates an inset frame, in order to increase the interpolation accuracy and obtain a high-quality frame rate conversion image, the range of the interpolation processing is increased. To be effective. That is, it is necessary to be able to generate interpolated pixels even when the motion of the portrait is large, using pixels of an appropriate actual frame. However, in order to widen the range of the interpolation processing, it is necessary to increase the number of scanning line memories for delaying the image signal in the vertical direction or the number of pixel delays for delaying the image signal in the horizontal direction. If the number of scan line memories or pixel delays is increased, the circuit scale becomes larger and the cost becomes higher. In particular, the increase in scan line memory has a large impact on the increase in circuit scale and cost. Therefore, it is desirable to be able to suppress the increase in the scanning line memory while also expanding the range of the interpolation processing.

本發明,係為了對應此種需求,而以提供一種:能夠抑制掃描線記憶體之增加,並且能夠擴大內插處理之範圍,就算是當畫像之垂直方向的運動為大的情況時,亦能夠根據運動向量而產生適當的內插像素之影像訊號處理裝置及方法。In order to cope with such a demand, the present invention provides a method capable of suppressing an increase in scanning line memory and expanding the range of interpolation processing, even when the vertical movement of an image is large. An image signal processing apparatus and method for generating appropriate interpolated pixels based on motion vectors.

本發明,係為了解決上述之先前技術的課題,而提供一種影像訊號處理裝置,其特徵為,係具備有:第1延遲部(2),係使輸入影像訊號作1圖框期間或者是複數掃描線期間之延遲,並作為第1延遲影像訊號而輸出;和第 2延遲部(3),係使前述第1延遲影像訊號作1圖框期間之延遲,並作為第2延遲影像訊號而輸出;和第1延遲選擇部(62),係使前述第1延遲影像訊號之像素資料在水平以及垂直方向上逐次作延遲,並產生被包含於當產生內插像素資料時所使用的第1參考範圍中之複數的像素資料,再從前述複數之像素資料而選擇其中一者;和第2延遲選擇部(63),係使前述第2延遲影像訊號之像素資料在水平以及垂直方向上逐次作延遲,並產生被包含於當產生前述內插像素資料時所使用的第2參考範圍中之複數的像素資料,再從前述複數之像素資料而選擇其中一者;和頻度分布監測部(4),係將在產生前述內插像素資料時所使用的運動向量之垂直成分的大小區分為複數之級別,並檢測出運動向量之垂直成分在各個的級別中是分別以何種出現次數的頻度而發生;和偏置(offset)控制部(5、50、51、52),係當藉由前述頻度分布監測部所檢測出之運動向量的垂直成分在預先所制訂之特定的級別中而超過了特定之臨限值的情況時,產生將從前述第1延遲部而讀出前述第1延遲影像訊號時之垂直方向的讀出位址作平移之第1偏置訊號,並供給至前述第1延遲部處,且產生將從前述第2延遲部而讀出前述第2延遲影像訊號時之垂直方向的讀出位址作平移之第2偏置訊號,並供給至前述第2延遲部處;和選擇控制部(61),係以根據前述第1偏置訊號而將前述第1延遲選擇部所選擇的像素資料在垂直方向上作平移並且根據前述第2偏置訊號而將前述第2延遲 選擇部所選擇的像素資料在垂直方向上作平移的方式,來進行控制。The present invention provides an image signal processing device including a first delay unit (2) for causing an input video signal to be a frame period or a plurality of numbers in order to solve the above-described problems of the prior art. The delay during the scan line and output as the first delayed video signal; and The delay unit (3) delays the first delayed video signal by one frame period and outputs the second delayed video signal as a second delayed video signal; and the first delay selecting unit (62) causes the first delayed video The pixel data of the signal is successively delayed in the horizontal and vertical directions, and the pixel data included in the first reference range used when generating the interpolated pixel data is generated, and then selected from the plurality of pixel data. And the second delay selecting unit (63) sequentially delays the pixel data of the second delayed video signal in the horizontal and vertical directions, and generates the data to be included when the interpolated pixel data is generated. Selecting one of the plurality of pixel data in the second reference range, and selecting one of the plurality of pixel data; and the frequency distribution monitoring unit (4) is a vertical of the motion vector to be used when generating the interpolated pixel data. The size of the component is divided into a plurality of levels, and it is detected that the vertical component of the motion vector occurs in each of the levels of the frequency of occurrences; and an offset control unit (5, 50, 51, 52), when the vertical component of the motion vector detected by the frequency distribution monitoring unit exceeds a certain threshold value in a predetermined level defined in advance, The first delay signal for reading the vertical read position when the first delayed video signal is read by the first delay unit is supplied to the first delay unit, and the second delay unit is generated from the second delay unit. And reading the second offset signal in the vertical direction when the second delayed video signal is read, and supplying the second offset signal to the second delay unit; and selecting the control unit (61) according to the foregoing 1 shifting the pixel data selected by the first delay selecting unit in the vertical direction and shifting the second delay according to the second offset signal The pixel data selected by the selection unit is panned in the vertical direction for control.

又,本發明,係為了解決上述之先前技術的課題,而提供一種影像訊號處理方法,其特徵為:經由第1延遲部而使輸入影像訊號作1圖框期間或者是複數掃描線期間之延遲,並作為第1延遲影像訊號而輸出;經由第2延遲部而使前述第1延遲影像訊號作1圖框期間之延遲,並作為第2延遲影像訊號而輸出;使前述第1延遲影像訊號之像素資料在水平以及垂直方向上逐次作延遲,並產生被包含於當產生內插像素資料時所使用的第1參考範圍中之複數的像素資料;使前述第2延遲影像訊號之像素資料在水平以及垂直方向上逐次作延遲,並產生被包含於當產生前述內插像素資料時所使用的第2參考範圍中之複數的像素資料;將在產生前述內插像素資料時所使用的運動向量之垂直成分的大小區分為複數之級別,並檢測出運動向量之垂直成分在各個的級別中是分別以何種出現次數的頻度而發生;當運動向量的垂直成分在預先所制訂之特定的級別中而超過了特定之臨限值的情況時,根據第1偏置訊號來將從前述第1延遲部而讀出前述第1延遲影像訊號時之垂直方向的讀出位址作平移,且根據第2偏置訊號來將從前述第2延遲部而讀出前述第2延遲影像訊號時之垂直方向的讀出位址作平移;根據前述第1偏置訊號而將從前述第1參考範圍內之複數的像素資料來選擇第1像素資料並讀出時的垂直方向之位置作平移,並且根據前述第2偏置訊號 而將從前述第2參考範圍內之複數的像素資料來選擇第2像素資料並讀出時的垂直方向之位置作平移;根據從前述第1參考範圍所讀出的前述第1像素資料和從前述第2參考範圍所讀出的前述第2像素資料,來產生內插像素資料。Furthermore, the present invention provides a video signal processing method for solving the above-described problems of the prior art, wherein the input of the input video signal by the first delay unit is delayed by one frame period or during the complex scanning line period. And outputting as the first delayed video signal; delaying the first delayed video signal by one frame period via the second delay unit, and outputting as the second delayed video signal; and making the first delayed video signal The pixel data is successively delayed in the horizontal and vertical directions, and generates pixel data included in the first reference range used when generating the interpolated pixel data; and the pixel data of the second delayed image signal is horizontal And successively delaying in the vertical direction, and generating a plurality of pixel data included in the second reference range used when generating the aforementioned interpolated pixel data; a motion vector to be used in generating the aforementioned interpolated pixel data The size of the vertical component is divided into multiple levels, and it is detected which vertical component of the motion vector is in each level. The frequency of the number of occurrences occurs; when the vertical component of the motion vector exceeds a certain threshold value in a predetermined level defined in advance, the first delay signal is read from the first delay unit. The vertical read position of the first delayed video signal is translated, and the read position in the vertical direction when the second delayed video signal is read from the second delay unit based on the second offset signal Translating the address; selecting, according to the first offset signal, the first pixel data from the plurality of pixel data in the first reference range and reading the position in the vertical direction when reading, and according to the second offset Signal And the second pixel data is selected from the plurality of pixel data in the second reference range and translated in the vertical direction at the time of reading; and the first pixel data and the slave read from the first reference range are read. The second pixel data read by the second reference range generates interpolated pixel data.

若依據本發明之影像訊號處理裝置及方法,則係能夠抑制掃描線記憶體之增加,並且能夠擴大內插處理之範圍,就算是當畫像之垂直方向的運動為大的情況時,亦能夠根據運動向量而產生適當的內插像素。According to the video signal processing apparatus and method of the present invention, it is possible to suppress an increase in the scanning line memory and to expand the range of the interpolation processing, even when the vertical movement of the portrait is large, Motion vectors produce appropriate interpolated pixels.

以下,參考所添附之圖面,針對本發明之影像訊號處理裝置及方法的各實施形態作說明。以下所詳述之第1、第2、第4、第5實施型態,係作為影像訊號處理裝置之其中一例,而對於將垂直頻率60Hz之圖框速率變換為120Hz之圖框速率變換裝置作展示。第3實施型態,係以並不進行圖框速率變換,而進行使根據膠片畫像所產生之影像訊號的運動成為平滑之所謂的去顫動處理之去顫動處理裝置,作為例子。作為影像訊號處理裝置,只要是根據運動向量而產生內插像素者即可。亦可為將圖框速率變換為4倍或者是4倍以上之圖框速率變換裝置。Hereinafter, each embodiment of the video signal processing apparatus and method of the present invention will be described with reference to the attached drawings. The first, second, fourth, and fifth embodiments described in detail below are examples of image signal processing devices, and are used for a frame rate conversion device that converts a frame rate of a vertical frequency of 60 Hz to 120 Hz. Show. In the third embodiment, a debounce processing device that performs smoothing so-called defibrillation processing based on the motion of the image signal generated by the film image is performed as an example without performing the frame rate conversion. As the video signal processing device, it is only necessary to generate an interpolation pixel based on the motion vector. It is also possible to convert the frame rate to 4 times or more than 4 times the frame rate conversion device.

〈第1實施型態〉<First embodiment>

使用圖1~圖8,針對第1實施型態之構成以及動作作說明。在圖1中,在運動向量檢測部1以及圖框記憶體2中,係逐次被輸入有構成輸入影像訊號S0之各像素資料。輸入影像訊號S0之垂直頻率,係為60Hz。圖框記憶體2,係將輸入影像訊號S0作1圖框期間之延遲,並作為影像訊號(第1延遲影像訊號)S1而輸出。影像訊號S1,係被輸入至運動向量檢測部1、圖框記憶體3、內插像素產生部6內的延遲選擇部62處。圖框記憶體3,係將影像訊號S1作1圖框期間之延遲,並作為影像訊號(第2延遲影像訊號)S2而輸出。影像訊號S2,係被輸入至內插像素產生部6內的延遲選擇部63處。The configuration and operation of the first embodiment will be described with reference to Figs. 1 to 8 . In FIG. 1, in the motion vector detecting unit 1 and the frame memory 2, pixel data constituting the input video signal S0 is sequentially input. The vertical frequency of the input image signal S0 is 60 Hz. The frame memory 2 is delayed by the input image signal S0 as a frame period, and is output as an image signal (first delayed image signal) S1. The video signal S1 is input to the motion vector detecting unit 1, the frame memory 3, and the delay selecting unit 62 in the interpolation pixel generating unit 6. The frame memory 3 is delayed by the image signal S1 as a frame period and output as an image signal (second delayed image signal) S2. The video signal S2 is input to the delay selecting unit 63 in the interpolation pixel generating unit 6.

運動向量檢測部1,係對於輸入影像訊號S0以及影像訊號S1各別之由特定的水平方向以及垂直方向之複數像素所成的探索範圍間之像素的準位作比較,並將差分成為最小之方向作為運動向量MV來輸出。運動向量檢測部1,係包含有複數之掃描線記憶體以及正反器等之複數的像素延遲器。作為運動向量檢測部1,由於係只要採用周知之構成即可,因此,關於運動向量檢測部1之具體性構成,於此係省略說明。於此,雖係使用相鄰接之2個圖框的複數像素來檢測出運動向量MV,但是,亦可為了將檢測精確度提昇,而使用3個圖框以上之複數像素來檢測出運動向量MV。The motion vector detecting unit 1 compares the positions of the pixels between the search ranges formed by the plurality of pixels in the specific horizontal direction and the vertical direction of the input image signal S0 and the image signal S1, and minimizes the difference. The direction is output as a motion vector MV. The motion vector detecting unit 1 is a plurality of pixel delay devices including a plurality of scanning line memories and flip-flops. The motion vector detecting unit 1 is only required to have a well-known configuration. Therefore, the specific configuration of the motion vector detecting unit 1 will not be described here. Here, although the motion vector MV is detected using the complex pixels of the two adjacent frames, the motion vector may be detected using the complex pixels above the three frames in order to improve the detection accuracy. MV.

藉由運動向量檢測部1所輸出的運動向量MV,係被 輸入至頻度分布監測部4以及內插像素產生部6內之選擇控制部61處。於圖2中,影像訊號S1,係為實際圖框f1,影像訊號S2,係為實際圖框f2。假設在實際圖框f1、f2之間,將內插圖框f12作內插。運動向量檢測部1,作為其中一例,係將實際圖框f2之像素作為基準,而檢測出運動向量MV。如圖2中所示一般,在實際圖框f1上,係被配列有像素P f1(-2)、P f1(-1)、P f1(0)、P f1(1)、P f1(2)、…,在實際圖框f2上,係被配列有像素P f2(-2)、P f2(-1)、P f2(0)、P f2(1)、P f2(2)、…。在產生內插圖框f12之內插像素P f12(0)時的運動向量MV,假設係為如同圖示一般之向量。The motion vector MV output by the motion vector detecting unit 1 is It is input to the frequency distribution monitoring unit 4 and the selection control unit 61 in the interpolation pixel generating unit 6. In FIG. 2, the image signal S1 is the actual frame f1, and the image signal S2 is the actual frame f2. It is assumed that the inner frame f12 is interpolated between the actual frames f1 and f2. The motion vector detecting unit 1 detects the motion vector MV by using the pixel of the actual frame f2 as a reference. As shown in FIG. 2, in the actual frame f1, pixels P f1 (-2), P f1 (-1), P f1 (0), P f1 (1), P f1 (2) are arranged. ), ..., in the actual frame f2, pixels P f2 (-2), P f2 (-1), P f2 (0), P f2 (1), P f2 (2), ... are arranged. The motion vector MV when the pixel P f12(0) is inserted within the inner inset frame f12 is assumed to be a vector as shown.

在圖2中,為了產生內插像素P f12(0),係只要求取出實際圖框f1上之像素P f1(-2)和實際圖框f2上之像素P f2(2)間的平均即可。後述之內插像素產生部6,在產生內插像素時,係並不將以實際圖框f2之像素作為基準的運動向量MV直接作使用。內插像素產生部6,係將運動向量MV,變換為以內插像素P f12(0)作為基準之實際圖框f1和內插圖框f12之間的運動向量MV/2、和以內插像素P f12(0)作為基準之實際圖框f2和內插圖框f12之間的運動向量-MV/2,而使用運動向量MV/2、-MV/2。In FIG. 2, in order to generate the interpolated pixel Pf12(0), it is only required to take out the average between the pixel Pf1(-2) on the actual frame f1 and the pixel Pf2(2) on the actual frame f2. can. The interpolation pixel generating unit 6, which will be described later, does not directly use the motion vector MV based on the pixel of the actual frame f2 when the interpolation pixel is generated. The interpolation pixel generating unit 6 converts the motion vector MV into a motion vector MV/2 between the actual frame f1 and the inset frame f12 with the interpolation pixel P f12(0) as a reference, and the interpolation pixel P f12 (0) The motion vector -MV/2 between the actual frame f2 and the inner frame f12 as the reference, and the motion vectors MV/2, -MV/2 are used.

頻度分布監測部4,係對於運動向量MV而以例如圖框單位來作監測,並檢測出運動向量MV之垂直成分是以何種大小來作何種之分布。例如,如圖3中之直方圖所示 一般,將取得運動向量MV之垂直成分的範圍以一定之範圍來各自作區分,並設為級別,再將各個的級別之於1圖框中的出現次數設為頻度。圖3中所示之例,係在8~-8之範圍中取得運動向量MV之垂直成分,並以2作為單位來對於範圍作區分而設為級別。級別之數字,係代表運動向量MV之身為垂直成分的像素數(掃描線數)。另外,運動向量MV之垂直成分,係將從影像訊號S1之實際圖框f1來對於影像訊號S2之實際圖框f2作觀察時的朝向垂直方向上側之情況設為正方向,並將朝向下側之情況設為負方向。The frequency distribution monitoring unit 4 monitors, for example, the frame unit for the motion vector MV, and detects what kind of distribution the vertical component of the motion vector MV is. For example, as shown in the histogram in Figure 3. Generally, the range of the vertical components of the motion vector MV is determined by a certain range, and is set to the level, and the number of occurrences of each level in the 1 frame is set to the frequency. In the example shown in FIG. 3, the vertical component of the motion vector MV is obtained in the range of 8 to -8, and the range is determined by dividing the range by 2 as the unit. The number of the level is the number of pixels (the number of scanning lines) representing the vertical component of the motion vector MV. In addition, the vertical component of the motion vector MV is set to the positive direction from the upper side in the vertical direction when the actual frame f2 of the video signal S2 is observed from the actual frame f1 of the video signal S1, and will be oriented toward the lower side. The case is set to the negative direction.

可根據在1個圖框內所檢測出的全部之運動向量MV,來對於各個的級別之出現次數作計數,亦可將運動向量MV作跳過地來對於出現次數作計數。另外,係可對於1個圖框內之全部像素而分別求取出運動向量MV,亦能夠以複數之像素單位來求取出運動向量MV。The number of occurrences of each level may be counted based on all motion vectors MV detected in one frame, or the number of occurrences may be counted by skipping the motion vector MV. Further, the motion vector MV can be extracted for all the pixels in one frame, and the motion vector MV can be extracted in a plurality of pixel units.

頻度分布監測部4,係將如圖3一般所求取出之代表頻度分布的資料Sfd,供給至偏置控制部5處。偏置控制部5,當在圖3中所示之頻度分布的特定之級別C Lsp處而頻度超過了臨限值y的情況時,產生絕對值為超過0之代表特定之偏置量的偏置訊號S os1、S os2。偏置控制部5,當並未超過臨限值y的情況時,係輸出代表偏置量0之偏置訊號S os1、S os2。關於偏置量,係於後再行詳述。The frequency distribution monitoring unit 4 supplies the data Sfd representing the frequency distribution which is generally obtained as shown in FIG. 3 to the bias control unit 5. The bias control unit 5, when the frequency exceeds the threshold y at the specific level C Lsp of the frequency distribution shown in FIG. 3, generates an offset whose absolute value exceeds 0 and represents a specific offset amount. Set the signal number S os1, S os2. The bias control unit 5 outputs the offset signals S os1 and S os2 representing the offset amount 0 when the threshold value y is not exceeded. The offset amount will be described later in detail.

如同後述一般,內插像素產生部6內之延遲選擇部62 、63,係成為使被輸入了的像素資料在水平方向上作1~4像素之延遲,並在垂直方向上作1~4掃描線之延遲。亦即是,延遲選擇部62、63,係成為從影像訊號S1、S2中之水平方向5個像素、垂直方向5個像素的範圍內之像素資料,來選擇特定之像素資料。藉由偏置控制部5所設定之特定的級別C Lsp,較理想,係設為當根據運動向量MV(MV/2、-MV/2)來經由延遲選擇部62、63而選擇用以產生內插像素資料之特定的像素資料時,會成為無法作選擇之範圍的級別。The delay selecting unit 62 in the interpolation pixel generating unit 6 is as will be described later. 63 is a delay of making the input pixel data 1 to 4 pixels in the horizontal direction and 1 to 4 scanning lines in the vertical direction. In other words, the delay selecting units 62 and 63 select pixel data in a range from five pixels in the horizontal direction and five pixels in the vertical direction in the video signals S1 and S2 to select specific pixel data. Preferably, the specific level C Lsp set by the offset control unit 5 is selected to be generated by the delay selecting sections 62 and 63 based on the motion vectors MV (MV/2, -MV/2). When a specific pixel data of a pixel material is interpolated, it becomes a level that cannot be selected.

在第1實施型態中,會成為無法選擇之範圍的級別,係為5,6之級別、7,8之級別、-5,-6之級別、-7,-8之級別,於此,係將特定之級別C Lsp,設為7,8之級別和-7,-8之級別。圖3之例,係對於在7,8之級別處而超過了臨限值y的狀態作展示。又,亦可將5,6之級別和-5,-6之級別作為特定之級別,亦可將5,6之級別、7,8之級別、-5,-6之級別、-7,-8之級別全部作為特定之級別。In the first embodiment, the level of the range that cannot be selected is the level of 5, 6, the level of 7, 8, the level of -5, -6, and the level of -7, -8. The specific level of C Lsp is set to the level of 7, 8 and the level of -7, -8. The example of Fig. 3 is shown for the state in which the threshold y is exceeded at the level of 7,8. Also, the level of 5, 6 and the level of -5, -6 can be used as a specific level, and the level of 5, 6, the level of 7, 8, the level of -5, -6, -7, - The levels of 8 are all specific levels.

當將5,6之級別、7,8之級別、-5,-6之級別、-7,-8之級別作為特定之級別C Lsp的情況時,亦可設為:當在5,6之級別中的頻度和7,8之級別中的頻度的合計頻度超過了臨限值y或者是在-5,-6之級別中的頻度和-7,-8之級別中的頻度之合計頻度超過了臨限值y的情況時,則產生代表特定之偏置量的偏置訊號S os1、S os2。When the level of 5, 6, the level of 7, 8, the level of -5, -6, and the level of -7, -8 are taken as the specific level of C Lsp , it can also be set as: when at 5, 6 The total frequency of the frequency in the level and the frequency in the level of 7,8 exceeds the threshold y or the frequency in the level of -5, -6 and the frequency in the level of -7, -8 exceeds the total frequency. In the case of the threshold y, offset signals S os1 , S os2 representing a specific offset amount are generated.

偏置訊號S os1係被輸入至圖框記憶體2中,偏置訊 號S os2係被輸入至圖框記憶體3中。偏置訊號S os1、S os2,係亦被輸入至選擇控制部61中。The offset signal S os1 is input to the frame memory 2, and the offset signal The No. S os2 system is input to the frame memory 3. The offset signals S os1 and S os2 are also input to the selection control unit 61.

於此,使用圖4,針對延遲選擇部62、63之具體性構成以及動作作說明。延遲選擇部62、63,係具備有掃描線記憶體601~604、和身為像素延遲器之正反器605~624、以及選擇部625。影像訊號S1、S2之像素資料,係經由掃描線記憶體601~604而各被作1掃描線期間之逐次延遲。被輸入的像素資料,係經由正反器605~608而各被作1像素期間之逐次延遲。藉由掃描線記憶體601所輸出之像素資料,係經由正反器609~612而各被作1像素期間之逐次延遲。藉由掃描線記憶體602所輸出之像素資料,係經由正反器613~616而各被作1像素期間之逐次延遲。藉由掃描線記憶體603所輸出之像素資料,係經由正反器617~620而各被作1像素期間之逐次延遲。藉由掃描線記憶體604所輸出之像素資料,係經由正反器621~624而各被作1像素期間之逐次延遲。Here, the specific configuration and operation of the delay selecting units 62 and 63 will be described with reference to FIG. 4 . The delay selecting units 62 and 63 include scan line memories 601 to 604, flip-flops 605 to 624 which are pixel retarders, and a selection unit 625. The pixel data of the image signals S1 and S2 are successively delayed by one of the scanning line memories 601 to 604. The input pixel data is successively delayed by one period of one pixel via the flip-flops 605 to 608. The pixel data outputted by the scanning line memory 601 is successively delayed by one pixel period via the flip-flops 609 to 612. The pixel data outputted by the scan line memory 602 is successively delayed by one pixel period via the flip-flops 613 to 616. The pixel data outputted by the scanning line memory 603 is successively delayed by one pixel period via the flip-flops 617 to 620. The pixel data outputted by the scan line memory 604 is successively delayed by one pixel period via the flip-flops 621 to 624.

被輸入的像素資料、和藉由掃描線記憶體601~604所輸出之像素資料、以及藉由正反器605~624所輸出之像素資料,係被輸入至選擇部625中。被輸入至選擇部625中之像素資料,係為影像訊號S1、S2中之被包含於水平方向5個像素、垂直方向5個像素的範圍內之總計25個像素的像素資料。藉由正反器614所輸出的像素資料,係為25個像素之像素資料中的中央之像素資料,藉由正反器614所輸出之像素資料的位置,係成為基準位置。The input pixel data, the pixel data output by the scanning line memories 601 to 604, and the pixel data output by the flip-flops 605 to 624 are input to the selection unit 625. The pixel data input to the selection unit 625 is pixel data of a total of 25 pixels included in the range of 5 pixels in the horizontal direction and 5 pixels in the vertical direction among the image signals S1 and S2. The pixel data outputted by the flip-flop 614 is the central pixel data in the pixel data of 25 pixels, and the position of the pixel data output by the flip-flop 614 becomes the reference position.

在第1實施型態中,延遲選擇部62、63,雖係設為作為產生內插像素資料時之參考範圍,而從25個像素之像素資料中來各別選擇1個的像素資料,但是,參考範圍係並不被限定於25個像素。亦可進而具備更多的掃描線記憶體以及正反器,並從較25個像素而更多之各參考範圍內的像素來選擇1個的像素資料。In the first embodiment, the delay selecting units 62 and 63 are selected as the reference range when the pixel data is generated, and one pixel data is selected from the pixel data of 25 pixels. The reference range is not limited to 25 pixels. Furthermore, it is possible to further have more scan line memories and flip-flops, and select one pixel data from more pixels in each reference range than 25 pixels.

首先,針對運動向量MV之垂直成分為例如4個像素(4掃描線)的情況作說明。如同前述一般,在藉由內插像素產生部6而產生內插像素資料時所使用的運動向量,由於係為運動向量MV/2、-MV/2,因此,當運動向量MV之垂直成分為4個像素的情況時,內插像素產生部6所使用之運動向量的垂直成分,係成為+2像素、-2像素。如同由圖4而可得知一般,延遲選擇部62、63,當將藉由正反器614所輸出之像素資料的位置作為基準位置的情況時,係能夠選擇在+2像素、-2像素垂直方向上作了平移的位置之像素資料。亦即是,若是運動向量MV之垂直成分係為4個像素以內,則係能夠在維持於將藉由正反器614所輸出之像素資料的位置作為基準位置的狀態下,而對於像素資料所選擇。First, a case where the vertical component of the motion vector MV is, for example, four pixels (four scanning lines) will be described. As described above, the motion vector used when interpolating the pixel data by the interpolation pixel generating portion 6 is the motion vector MV/2, -MV/2, and therefore, when the vertical component of the motion vector MV is In the case of four pixels, the vertical component of the motion vector used by the interpolation pixel generating unit 6 is +2 pixels and -2 pixels. As can be seen from FIG. 4, the delay selecting sections 62 and 63 can select between +2 pixels and -2 pixels when the position of the pixel data output by the flip-flop 614 is used as the reference position. The pixel data of the position where the translation is made in the vertical direction. That is, if the vertical component of the motion vector MV is within 4 pixels, it is possible to maintain the position of the pixel data output by the flip-flop 614 as the reference position, and for the pixel data. select.

接著,針對運動向量MV之垂直成分為例如8個像素(8掃描線)的情況作說明。當運動向量MV之垂直成分為8個像素的情況時,內插像素產生部6所使用之運動向量的垂直成分係成為+4像素、-4像素。如同由圖4而可得知一般,延遲選擇部62、63,當將藉由正反器614所輸 出之像素資料的位置作為基準位置的情況時,係無法選擇在+4像素、-4像素垂直方向上作了平移的位置之像素資料。因此,在第1實施型態中,係以當在身為特定之級別C Lsp的7,8之級別和-7,-8之級別中的至少一者之級別中而頻度超過了臨限值y的情況時,能夠經由延遲選擇部62、63來對於與運動向量MV之垂直成分相對應的像素資料作選擇並輸出的方式,而如同下述一般地構成之。Next, a case where the vertical component of the motion vector MV is, for example, 8 pixels (8 scanning lines) will be described. When the vertical component of the motion vector MV is 8 pixels, the vertical component of the motion vector used by the interpolation pixel generating unit 6 is +4 pixels and -4 pixels. As can be seen from FIG. 4, the delay selection sections 62, 63 will be input by the flip-flop 614. When the position of the pixel data is used as the reference position, the pixel data at the position shifted by +4 pixels and -4 pixels in the vertical direction cannot be selected. Therefore, in the first embodiment, the frequency exceeds the threshold value in the level of at least one of the level of 7, 8 and the level of -7, -8 of the specific level C Lsp . In the case of y, the pixel data corresponding to the vertical component of the motion vector MV can be selected and output via the delay selecting sections 62 and 63, and is generally configured as follows.

將作為偏置控制部5之求取出偏置量的基準之運動向量MV的垂直成分,假設為8個像素。為了藉由延遲選擇部62、63來對於在+4像素、-4像素之垂直方向上作了平移的位置之像素資料作選擇,由於在將藉由正反器614所輸出的像素資料之位置作為基準位置的情況時之垂直方向的像素資料之選擇範圍係為+2像素、-2像素,因此,係只要將偏置訊號S os1之偏置量設為2,並將偏置訊號S os2之偏置量設為-2即可。代表偏置量2之偏置訊號S os1,係被輸入至圖框記憶體2中,代表偏置量-2之偏置訊號S os2,係被輸入至圖框記憶體3中。圖框記憶體2、3,係因應於被輸入了的偏置量,來將讀出影像訊號S1、S2時之垂直方向的讀出位址作平移。The vertical component of the motion vector MV which is the reference of the offset amount obtained by the offset control unit 5 is assumed to be eight pixels. In order to select the pixel data of the position shifted in the vertical direction of +4 pixels by -4 pixels by the delay selecting sections 62, 63, the position of the pixel data to be output by the flip-flop 614 is used. In the case of the reference position, the selection range of the pixel data in the vertical direction is +2 pixels and -2 pixels. Therefore, the offset amount of the offset signal S os1 is set to 2, and the offset signal S os2 is set. The offset amount can be set to -2. The offset signal S os1 representing the offset amount 2 is input to the frame memory 2, and the offset signal S os2 representing the offset amount -2 is input to the frame memory 3. The frame memories 2 and 3 translate the read address in the vertical direction when the image signals S1 and S2 are read, in response to the input offset.

選擇控制部61,係因應於被輸入的偏置訊號S os1、S os2之偏置量,來產生選擇控制訊號S sel1、S sel2,並輸入至延遲選擇部62、63中。如圖4中所示一般,選擇控制訊號S sel1、S sel2,係被輸入至選擇部625中。若是偏置訊號S os1、S os2之偏置量係為0,則選擇控制部 61,係對於延遲選擇部62、63之選擇部625,而產生會以藉由正反器614所輸出之像素資料的位置作為基準位置並根據運動向量MV/2、-MV/2來對於像素資料作選擇之選擇控制訊號S sel1、S sel2並作供給。The selection control unit 61 generates the selection control signals S sel1 and S sel2 in response to the offset amounts of the input offset signals S os1 and S os2 , and inputs them to the delay selection units 62 and 63 . As shown in FIG. 4, the control signals S sel1 and S sel2 are selected and input to the selection unit 625. If the offset amounts of the offset signals S os1 and S os2 are 0, the control unit is selected. 61, for the selection unit 625 of the delay selection sections 62, 63, the position of the pixel data output by the flip-flop 614 is generated as a reference position and is based on the motion vectors MV/2, -MV/2. The data selection control signals S sel1, S sel2 are supplied and supplied.

另一方面,若是偏置訊號S os1之偏置量係為2,則選擇控制部61,係對於延遲選擇部62之選擇部625,而產生會以藉由正反器622所輸出之像素資料的位置作為基準位置並根據運動向量MV/2來對於像素資料作選擇之選擇控制訊號S sel1並作供給。又,若是偏置訊號S os2之偏置量係為-2,則選擇控制部61,係對於延遲選擇部63之選擇部625,而產生會以藉由正反器606所輸出之像素資料的位置作為基準位置並根據運動向量-MV/2來對於像素資料作選擇之選擇控制訊號S sel2並作供給。On the other hand, if the offset amount of the offset signal S os1 is 2, the selection control unit 61 generates the pixel data to be output by the flip-flop 622 for the selection unit 625 of the delay selection unit 62. The position is used as the reference position and the selection control signal S sel1 is selected for the pixel data according to the motion vector MV/2. Further, if the offset amount of the offset signal S os2 is -2, the selection control unit 61 generates the pixel data output by the flip-flop 606 for the selection unit 625 of the delay selection unit 63. The position is used as the reference position and the selection control signal S sel2 is selected for the pixel data according to the motion vector -MV/2.

選擇控制部61,係因應於偏置訊號S os1、S os2之偏置量,而使延遲選擇部62、63處之作為基準的垂直方向之像素資料的位置作平移。其結果,選擇部625之因應於運動向量MV/2、-MV/2所選擇並輸出的像素資料,係成為在垂直方向上被作平移。The selection control unit 61 shifts the position of the pixel data in the vertical direction as the reference at the delay selecting sections 62 and 63 in response to the offset amounts of the offset signals S os1 and S os2 . As a result, the pixel data selected and output by the selection unit 625 in response to the motion vectors MV/2 and -MV/2 is shifted in the vertical direction.

從延遲選擇部62之選擇部625,係輸出有所選擇了的像素資料P sel1,從延遲選擇部63之選擇部625,係輸出有所選擇了的像素資料P sel2。混合部64,係將像素資料P sel1、P sel2作混合並產生內插像素資料Pi。混合部64,係只要以求取出像素資料P sel1、P sel2之平均的方式來將兩者作混合即可。內插像素資料Pi,係相當於圖2中 之內插像素P f12(0)。The selection unit 625 of the delay selection unit 62 outputs the selected pixel data P sel1 , and the selection unit 625 of the delay selection unit 63 outputs the selected pixel data P sel2 . The mixing unit 64 mixes the pixel data P sel1 and P sel2 to generate an interpolated pixel data Pi. The mixing unit 64 may mix the two of the pixel data P sel1 and P sel2 in order to extract the average of the pixel data P sel1 and P sel2 . Interpolating the pixel data Pi, which is equivalent to Figure 2 The pixel P f12(0) is interpolated.

影像訊號S1,係作為實際圖框訊號而被輸入至時間序列變換記憶體7中,藉由混合部64所逐次輸出之內插像素資料Pi,係作為內插圖框訊號而被輸入至時間序列變換記憶體7中。時間序列變換記憶體7。係經由將實際圖框訊號之像素資料和內插圖框訊號之內插像素資料Pi以垂直頻率120Hz來交互作讀出,而輸出作了圖框速率變換之影像訊號。The image signal S1 is input to the time series conversion memory 7 as an actual frame signal, and the interpolated pixel data Pi sequentially output by the mixing unit 64 is input to the time series conversion as an internal frame signal. In memory 7. The time series transforms the memory 7. The image data of the frame rate conversion is outputted by interactively reading the pixel data of the actual frame signal and the interpolated pixel data Pi of the inner frame signal at a vertical frequency of 120 Hz.

使用圖5、圖6,針對圖框記憶體2、3處之垂直方向的讀出位址之平移作說明。圖5,係針對偏置訊號S os1、S os2之偏置量為0的情況時之內插像素產生作概念性展示。在作為內插圖框f12內之像素而產生內插像素P f12(0)的情況時,在影像訊號S1之圖框f1中所參考的像素,係為身為參考範圍之區域A rf1內的像素,在影像訊號S2之圖框f2中所參考的像素,係為身為參考範圍之區域A rf2內的像素。在第1實施型態中,區域A rf1、A rf2之掃描線數L f1、L f2,係為5掃描線。將垂直成分為4個像素之運動向量MV設為MV(v4),並將垂直成分為8個像素之運動向量MV設為MV(v8)。The translation of the read address in the vertical direction at the frame memory 2, 3 will be described with reference to FIGS. 5 and 6. FIG. 5 is a conceptual representation of the interpolated pixel generation for the case where the offset amounts of the offset signals S os1 and S os2 are zero. When the interpolated pixel P f12 (0) is generated as a pixel in the inset frame f12, the pixel referred to in the frame f1 of the image signal S1 is a pixel in the region A rf1 which is the reference range. The pixel referred to in the frame f2 of the image signal S2 is a pixel in the region A rf2 which is the reference range. In the first embodiment, the number of scanning lines L f1 and L f2 of the areas A rf1 and A rf2 is five scanning lines. The motion vector MV having a vertical component of 4 pixels is set to MV (v4), and the motion vector MV having a vertical component of 8 pixels is set to MV (v8).

如圖5中所示一般,運動向量檢測部1所檢測出的運動向量MV,若是為運動向量MV(v4),則係能夠使用區域A rf1、A rf2內之像素來產生內插像素P f12(0)。當運動向量MV為運動向量MV(v8)的情況時,用以產生內插像素P f12(0)之圖框f1、f2內的像素,係成為區 域A rf1、A rf2之範圍外。故而,內插像素產生部6係無法產生內插像素P f12(0)。As shown in FIG. 5, in general, if the motion vector MV detected by the motion vector detecting unit 1 is the motion vector MV (v4), the pixels in the regions A rf1 and A rf2 can be used to generate the interpolated pixel P f12 . (0). When the motion vector MV is the motion vector MV (v8), the pixels in the frames f1 and f2 used to generate the interpolated pixel P f12(0) become regions. The range of the fields A rf1 and A rf2 is outside. Therefore, the interpolation pixel generating unit 6 cannot generate the interpolation pixel P f12 (0).

因此,在第1實施型態中,係如同前述一般,將特定之偏置量的偏置訊號S os1、S os2供給至圖框記憶體2、3處以使垂直方向之讀出位址作平移,並且使延遲選擇部62、63處之垂直方向的基準位置作平移。其結果,如圖6中所示一般,區域A rf1,係成為相較於圖5而朝向垂直方向下方作了平移之區域A rf1’所示之位置,區域A rf2,係成為相較於圖5而朝向垂直方向上方作了平移之區域A rf2’所示之位置。區域A rf1’、A rf2’之掃描線數L f1’、L f2’,係為5掃描線。如圖6中所示一般,就算是運動向量MV為運動向量MV(v8)的情況時,用以產生內插像素P f12(0)之圖框f1、f2內的像素,亦係成為區域A rf1’、A rf2’之範圍內,內插像素產生部6係成為能夠產生內插像素P f12(0)。Therefore, in the first embodiment, as described above, a specific offset amount of the offset signals S os1 , S os2 is supplied to the frame memory bodies 2 and 3 to translate the vertical read position. And the reference position in the vertical direction at the delay selecting sections 62, 63 is shifted. As a result, as shown in Fig. 6, in general, the area A rf1 is a position indicated by the area A rf1 ' which is translated downward in the vertical direction as compared with Fig. 5, and the area A rf2 is compared with the figure. 5, the position indicated by the area A rf2' which is translated upward in the vertical direction. The number of scanning lines L f1' and L f2' of the areas A rf1' and A rf2' are five scanning lines. As shown in FIG. 6, in general, even when the motion vector MV is the motion vector MV (v8), the pixels in the frames f1 and f2 for generating the interpolated pixel P f12 (0) are also the area A. In the range of rf1' and Arf2', the interpolation pixel generating unit 6 is capable of generating the interpolation pixel Pf12(0).

在圖6中,為了方便,係以使區域A rf1成為朝向垂直方向下方作了平移之區域A rf1’且區域A rf2成為朝向垂直方向上方作了平移之區域A rf2’的方式,來作圖示。實際上,係如同圖7(A)、(B)中所示一般,從圖框記憶體2、3而來之像素資料的垂直方向之讀出位址,係被作平移。圖7(A)中之以一點鍊線所示的圖框f2,係對於並不使讀出位址作平移的狀態作概念性展示,圖7(B)之以一點鍊線所示的圖框f1,係對於並不使讀出位址作平移的狀態作概念性展示。In FIG. 6, for convenience, the area Arf1 is changed to the area A rf1' which is translated downward in the vertical direction, and the area A rf2 is changed to the area A rf2' which is translated upward in the vertical direction. Show. Actually, as shown in Figs. 7(A) and (B), the reading address in the vertical direction of the pixel data from the frame memories 2, 3 is shifted. The frame f2 shown by a one-dot chain line in Fig. 7(A) is conceptually shown for a state in which the read address is not translated, and the figure shown by a little chain line in Fig. 7(B) is shown. Block f1 is a conceptual representation of the state in which the read address is not translated.

當偏置訊號S os1、S os2之偏置量係為0,而並不使讀出位址作平移的情況時,從圖框記憶體2、3而來之像素資料,係成為在以一點鍊線所示之時序處而被作讀出。圖7(A)中之以實線所示的圖框f2,係對於使讀出位址作了平移的狀態作概念性展示,圖7(B)之以實線所示的圖框f1,係對於使讀出位址作了平移的狀態作概念性展示。若是偏置量為超過0之特定之值,則從圖框記憶體2、3而來之像素資料,係成為在以實線所展示之圖框f1、f2中所示的時序處而被作讀出。另外,在圖7(A)、(B)中,係為了易於理解,而對於平移量作了較誇張的圖示。When the offset amount of the offset signals S os1 and S os2 is 0, and the read address is not translated, the pixel data from the frame memory 2, 3 is changed to a point. The timing shown by the chain line is read out. The frame f2 shown by the solid line in Fig. 7(A) is conceptually shown for the state in which the read address is translated, and the frame f1 shown by the solid line in Fig. 7(B), A conceptual representation of the state in which the read address is translated is performed. If the offset amount is a specific value exceeding 0, the pixel data from the frame memory 2, 3 is made at the timing shown in the frames f1 and f2 displayed by the solid line. read out. In addition, in FIGS. 7(A) and (B), the amount of shift is more exaggerated for easy understanding.

在前述之例中,由於由偏置訊號S os1所致之偏置量係為2,因此,圖框記憶體2係將讀出位址朝向上方而作相當於偏置量2的掃描線數L s1(亦即是,2掃描線)的平移。又,由於由偏置訊號S os2所致之偏置量係為-2,因此,圖框記憶體3係將讀出位址朝向下方而作相當於偏置量-2的掃描線數L s2(亦即是,2掃描線)的平移。In the above example, since the offset amount by the offset signal S os1 is 2, the frame memory 2 has the number of scanning lines corresponding to the offset amount 2 with the read address facing upward. Translation of L s1 (that is, 2 scan lines). Moreover, since the offset amount by the offset signal S os2 is -2, the frame memory 3 has the number of scanning lines corresponding to the offset amount -2, which is the lower side of the read address. (ie, 2 scan lines) translation.

其結果,在延遲選擇部62處所參考之像素的範圍,係成為從圖5中所示之區域A rf1而朝向圖6中所示之區域A rf1’來平移至垂直方向下方,在延遲選擇部63處所參考之像素的範圍,係成為從圖5中所示之區域A rf2而朝向圖6中所示之區域A rf2’來平移至垂直方向上方。另外,讀出位址之朝向垂直方向下方或上方的平移,係能夠經由將影像訊號S1、S2之讀出開始位置和讀出結束位置 在遮沒(Blanking)期間中作平移,而容易地實現。As a result, the range of the pixel referred to at the delay selecting portion 62 is shifted from the region Arf1 shown in FIG. 5 toward the region Arf1' shown in FIG. 6 to the lower side in the vertical direction, in the delay selecting portion. The range of pixels referred to at 63 is translated from the area Arf2 shown in Fig. 5 toward the area Arf2' shown in Fig. 6 to the upper side in the vertical direction. In addition, the translation of the read address below or above the vertical direction can be performed by reading the read start position and the read end position of the image signals S1 and S2. It is easy to implement by panning during the blanking period.

於圖1中,雖係經由圖框記憶體2來將輸入影像訊號S0作1圖框期間之延遲,並作為影像訊號S1,但是,係亦可設為作未滿1圖框之期間的延遲。圖8,係對於代替圖框記憶體2而使用了作未滿1圖框之期間的延遲之延遲部20的情況之構成作展示。延遲部20,係可經由複數之掃描線記憶體來構成之。延遲部20,係將輸入影像訊號S0作未滿1圖框之期間的延遲,並作為影像訊號S1’而輸出。影像訊號S1’,係被供給至延遲選擇部62處。In FIG. 1, although the input video signal S0 is delayed by one frame period via the frame memory 2, and is used as the image signal S1, it may be set as a delay period of less than one frame. . FIG. 8 shows a configuration in which the delay unit 20 for delaying the period of the frame 1 is used instead of the frame memory 2. The delay unit 20 can be configured by a plurality of scan line memories. The delay unit 20 delays the input video signal S0 as a period of less than one frame, and outputs it as the video signal S1'. The video signal S1' is supplied to the delay selecting unit 62.

於此情況,在運動向量檢測部1處,由於係需要輸入相互離開了1個圖框期間之2個的圖框訊號,因此,係設置有圖框記憶體21。圖框記憶體21,係將輸入影像訊號S0作1圖框期間之延遲,並作為影像訊號S10而輸出。運動向量檢測部1,係根據輸入影像訊號S0和影像訊號S10,而檢測出運動向量MV。如此這般,供給至延遲選擇部62處之影像訊號,係並不被限定於將輸入影像訊號S0作1圖框期間之延遲的影像訊號S1。In this case, in the motion vector detecting unit 1, since it is necessary to input two frame signals that are separated from each other during one frame period, the frame memory 21 is provided. The frame memory 21 delays the input image signal S0 as a frame period and outputs it as the image signal S10. The motion vector detecting unit 1 detects the motion vector MV based on the input video signal S0 and the video signal S10. In this manner, the video signal supplied to the delay selecting unit 62 is not limited to the video signal S1 in which the input video signal S0 is delayed by one frame period.

在以上之說明中,雖係針對運動向量MV之垂直成分為偶數的情況來作了說明,但是,當為奇數的情況時,係只要如同下述一般來處理即可。亦即是,在延遲選擇部62、63中之選擇部625,係只要取得在垂直方向上相鄰接之2個的像素資料之平均,並將平均後的像素資料作為像素資料P sel1、P sel2來輸出即可。當運動向量MV之水平成分為奇數的情況時,亦相同的,選擇部625,係只要取 得在水平方向上相鄰接之2個的像素資料之平均,並將平均後的像素資料作為像素資料P sel1、P sel2來輸出即可。In the above description, the case where the vertical component of the motion vector MV is an even number has been described. However, when it is an odd number, it is only necessary to process it as follows. In other words, the selection unit 625 in the delay selecting units 62 and 63 acquires the average of the pixel data adjacent to each other in the vertical direction, and uses the averaged pixel data as the pixel data P sel1, P. Sel2 can output. When the horizontal component of the motion vector MV is an odd number, the same is true, the selection unit 625 is only required to take The average of the two adjacent pixel data in the horizontal direction is obtained, and the averaged pixel data is output as the pixel data P sel1 , P sel2 .

又,當運動向量MV之垂直成分為奇數的情況時,偏置控制部5,只要在正的情況時,根據更大了1的偶數之值來求取出偏置量,並在負的情況時,根據更小了1的偶數之值來求取出偏置量即可。亦即是,在圖3中,當運動向量MV之垂直成分為1、3、5、7的情況時,係分別將垂直成分設為2、4、6、8來求取出偏置量,當運動向量MV之垂直成分為-1、-3、-5、-7的情況時,係分別將垂直成分設為-2、-4、-6、-8來求取出偏置量。Further, when the vertical component of the motion vector MV is an odd number, the offset control unit 5 obtains the offset amount based on the value of the even number greater than 1 in the case of the positive state, and in the case of the negative case According to the value of the even number of 1 smaller, the offset amount can be obtained. That is, in FIG. 3, when the vertical components of the motion vector MV are 1, 3, 5, and 7, the vertical components are set to 2, 4, 6, and 8, respectively, to obtain the offset amount. When the vertical component of the motion vector MV is -1, -3, -5, or -7, the vertical component is set to -2, -4, -6, and -8 to obtain the offset amount.

如此這般,偏置控制部5,當運動向量MV之垂直成分為奇數的情況時,係置換為偶數並求取出偏置量,延遲選擇部62、63,係藉由將與運動向量MV之垂直成分為奇數的情況相對應之像素資料P sel1、P sel2作輸出,而成為就算是在運動向量MV之垂直成分為奇數的情況時,亦能夠進行與運動向量MV之垂直成分為偶數的情況時相同之處理。In this manner, when the vertical component of the motion vector MV is an odd number, the offset control unit 5 replaces the even number and obtains the offset amount, and delays the selection units 62 and 63 by the motion vector MV. When the vertical component is an odd number, the corresponding pixel data P sel1 and P sel2 are output, and even when the vertical component of the motion vector MV is odd, the vertical component of the motion vector MV can be made even. The same processing.

另外,在第1實施型態中,當從在特定之級別C Lsp處而頻度並未超過臨限值y的偏置訊號S os1、S os2之值為0的狀態起,而改變為特定之級別C Lsp處而頻度超過臨限值y的偏置訊號S os1、S os2之值成為了特定之值的情況時,或者是與此相反的情況時,較理想,係設為不會在並不使從圖框記憶體2,3而來之影像訊號S1、S2之讀 出位址作平移的狀態和使其作平移的狀態間作急遽的變化。偏置控制部5,較理想,係使偏置訊號S os1、S os2之值在1或者是複數的圖框之每一者處而逐次作變化。例如,當將偏置量從0而設為2的情況時,係只要在檢測出超過了臨限值y一事的圖框之下一個圖框處,將偏置量設為1,並於再下一個圖框處,將偏置量設為2即可。Further, in the first embodiment, when the value of the offset signals S os1 and S os2 whose frequency does not exceed the threshold value y at the specific level C Lsp is 0, the state is changed to a specific one. When the value of the offset signal S os1 and S os2 whose frequency exceeds the threshold value y is a specific value, or is the opposite, it is preferable that the level C Lsp is not Do not read the image signals S1, S2 from the frame memory 2, 3 The location of the address is changed in a state of translation and the state in which it is translated. Preferably, the offset control unit 5 sequentially changes the values of the offset signals S os1 and S os2 at each of 1 or a plurality of frames. For example, when the offset amount is set from 0 to 2, the offset amount is set to 1 at the frame below the frame where the detection of the threshold value y is exceeded, and then At the next frame, set the offset to 2.

〈第2實施型態〉<Second embodiment>

使用圖9~圖11,針對第2實施型態之構成以及動作作說明。於圖9中,針對與圖1相同之部分,係附加相同的符號,並省略其說明。在圖9中,代替圖1之偏置控制部5,係設置有偏置控制部50。偏置控制部50,係具備有判別部501和偏置量決定部502。The configuration and operation of the second embodiment will be described with reference to Figs. 9 to 11 . In FIG. 9, the same portions as those in FIG. 1 are denoted by the same reference numerals, and their description will be omitted. In FIG. 9, instead of the bias control unit 5 of FIG. 1, the offset control unit 50 is provided. The offset control unit 50 includes a determination unit 501 and an offset amount determination unit 502.

在第2實施型態中,如圖10中所示一般,偏置控制部50,係將5,6之級別、7,8之級別、-5,-6之級別、-7,-8之級別,作為特定之級別C Lsp。於圖10所示之例中,係對於在身為特定之級別C Lsp的7,8之級別處而超過臨限值y,並且在相對於7,8之級別而垂直方向之運動方向為相反方向的並非身為特定之級別C Lsp的-1,-2之級別處亦超過了臨限值y的狀態作展示。判別部501,係將在特定之級別中的其中一者之級別處而超過臨限值y,並且在相對於超過了臨限值y之其中一者的特定之級別C Lsp而垂直方向之運動方向為相反方向的特定之級別C Lsp以外的級別處亦超過了臨限值y的狀態判別出來。In the second embodiment, as shown in FIG. 10, the bias control unit 50 is of a level of 5, 6, a level of 7, 8 , a level of -5, -6, and a level of -7, -8. Level, as a specific level of C Lsp. In the example shown in Fig. 10, the threshold y is exceeded at the level of 7, 8 which is a specific level C Lsp , and the direction of motion in the vertical direction is opposite to the level of 7, 8 The direction is not the level of the specific level C Lsp -1, and the level of -2 exceeds the state of the threshold y for display. The discriminating section 501 is to move beyond the threshold value y at the level of one of the specific levels, and to move in the vertical direction with respect to the specific level C Lsp exceeding one of the threshold values y. The level other than the specific level C Lsp in the opposite direction is also judged by the state exceeding the threshold y.

判別部501,當判別出上述之狀態的情況時,係將超過臨限值y之特定的級別C Lsp之垂直成分之值、和在特定之級別C Lsp以外而超過臨限值y之級別的垂直成分之值,輸入至偏置量決定部502處。偏置量決定部502,在圖10之例中,係將超過臨限值y之特定的級別C Lsp之垂直成分之值「8」、和在特定之級別C Lsp以外而超過臨限值y之級別的垂直成分之值「-2」作加算,並算出垂直方向之像素數為6個像素。故而,在內插像素產生部6處所使用之運動向量的垂直成分,係成為+3像素、-3像素。When the determination unit 501 determines the state described above, the value of the vertical component exceeding the specific level C Lsp of the threshold value y and the level exceeding the threshold value y outside the specific level C Lsp The value of the vertical component is input to the offset amount determining unit 502. In the example of FIG. 10, the offset amount determining unit 502 exceeds the threshold value y by a value "8" of a vertical component exceeding a specific level C Lsp of the threshold value y and beyond a specific level C Lsp . The value of the vertical component of the level "-2" is added, and the number of pixels in the vertical direction is calculated to be 6 pixels. Therefore, the vertical component of the motion vector used in the interpolation pixel generating unit 6 is +3 pixels and -3 pixels.

另外,當在7,8之級別和5,6之級別處而超過臨限值y,且在-1,-2之級別處一超過臨限值y的情況時,係將垂直成分之大小為最大之級別的7,8之級別作為基準。亦即是,於此情況,亦係將8和-2作加算,而算出垂直方向之像素數係為6個像素。In addition, when the threshold y is exceeded at the level of 7,8 and 5,6, and the threshold y is exceeded at the level of -1, -2, the vertical component is The highest level of 7,8 is used as the benchmark. That is, in this case, 8 and -2 are also added, and the number of pixels in the vertical direction is calculated to be 6 pixels.

而後,偏置量決定部502,係與第1實施型態相同的,由於在將藉由正反器614所輸出的像素資料之位置作為基準位置的情況時之垂直方向的像素資料之選擇範圍係為+2像素、-2像素,因此,係只要將偏置訊號S os10之偏置量設為1,並將偏置訊號S os20之偏置量設為-1即可。Then, the offset amount determining unit 502 is the same as the first embodiment, and the selection range of the pixel data in the vertical direction when the position of the pixel data output by the flip-flop 614 is used as the reference position is used. Since it is +2 pixels and -2 pixels, the offset amount of the offset signal S os10 is set to 1, and the offset amount of the offset signal S os20 is set to -1.

使用圖11,針對第2實施型態所得之效果作說明。圖11(A),係對於在延遲選擇部62、63處之垂直方向的記憶體區域作展示。記憶體區域,係相當於在圖5中所說明之區域A rf1、A rf2的掃描線數Lf1、Lf2。如圖11(B) 中所示一般,7,8之級別,係為以a所展示之位置,-1,-2之級別的級別,係為以b所展示之位置。圖11(C),係對於進行了在第1實施型態中所說明了的平移之狀態作展示。The effect obtained by the second embodiment will be described with reference to Fig. 11 . Fig. 11(A) shows the memory region in the vertical direction at the delay selecting portions 62, 63. The memory area corresponds to the number of scanning lines Lf1 and Lf2 of the areas A rf1 and A rf2 described in FIG. 5 . Figure 11 (B) Generally shown, the level of 7,8 is the position shown by a, the level of -1, -2, which is the position shown by b. Fig. 11(C) shows the state of the translation explained in the first embodiment.

如同由圖11(C)而可得知一般,若是進行在第1實施型態中所說明了的平移,則雖然能夠產生運動向量MV之垂直成分為7,8之級別的內插像素資料Pi,但是,由於-1,-2之級別係落於記憶體區域之外,因此,係成為無法產生-1,-2之級別的內插像素資料Pi。圖11(D),係為並未進行平移之狀態。於圖11(D)的情況中,雖然能夠產生-1,2之級別的內插像素資料Pi,但是,係並無法產生7,8之級別的內插像素資料Pi。As can be seen from Fig. 11(C), in general, if the translation described in the first embodiment is performed, it is possible to generate the interpolated pixel data Pi of the level of the vertical component of the motion vector MV of 7,8. However, since the level of -1, -2 falls outside the memory area, the interpolated pixel data Pi of the level of -1, -2 cannot be generated. Fig. 11(D) shows a state in which no translation is performed. In the case of Fig. 11(D), although the interpolation pixel data Pi of the level of -1, 2 can be generated, the interpolation pixel data Pi of the level of 7, 8 cannot be generated.

-1,-2之級別的運動,原本,係為能夠在內插像素產生部6處而產生內插像素資料Pi的範圍之運動,不產生-1,-2之級別的內插像素資料Pi一事,係並不理想。針對能夠在不進行平移之狀態下而產生內插像素資料Pi的範圍之運動,係以產生內插像素資料Pi為理想。因此,在第2實施型態中,係為了能夠對-1,-2之級別的運動作對應,並且亦儘量對於超過了記憶體區域之部分的運動作對應,而如圖11(E)中所示一般,將偏置量設為1(以及-1)。The motion of the level of -1, -2 is originally a motion in which the range of the interpolated pixel data Pi can be generated by interpolating the pixel generating portion 6, and the interpolated pixel data Pi of the level of -1, -2 is not generated. The matter is not ideal. It is desirable to generate the interpolated pixel data Pi for the motion of the range in which the interpolated pixel data Pi can be generated without being translated. Therefore, in the second embodiment, in order to be able to correspond to the motion of the level of -1, -2, and also to correspond to the motion of the portion exceeding the memory area, as shown in Fig. 11(E) Generally shown, the offset is set to 1 (and -1).

若依據圖11(E)中所示之平移,則係能夠產生-1,-2之級別的內插像素資料Pi。雖然無法產生7,8之級別的內插像素資料Pi,但是係能夠產生接近於7,8之級別 的在圖11(D)中並無法作對應的5,6之級別的內插像素資料Pi。If the translation is as shown in Fig. 11(E), it is possible to generate the interpolated pixel data Pi of the level of -1, -2. Although it is impossible to generate the interpolated pixel data Pi of the level of 7,8, it is able to produce a level close to 7,8. In Fig. 11(D), the corresponding pixel data Pi of the level of 5, 6 cannot be made.

在第2實施型態中,亦同樣的,偏置控制部50,較理想,係使偏置訊號S os10、S os20之值在1或者是複數的圖框之每一者處而逐次作變化。In the second embodiment, similarly, the bias control unit 50 preferably changes the values of the offset signals S os10 and S os20 one by one or each of the plurality of frames. .

〈第3實施型態〉<Third embodiment>

使用圖12~圖14,針對第3實施型態之構成以及動作作說明。於圖12中,針對與圖1相同之部分,係附加相同的符號,並省略其說明。圖12中所示之第3實施型態,係以去顫動處理裝置作為例子。The configuration and operation of the third embodiment will be described with reference to Figs. 12 to 14 . In FIG. 12, the same portions as those in FIG. 1 are denoted by the same reference numerals, and their description will be omitted. The third embodiment shown in Fig. 12 is an example of a debounce processing device.

於圖12中,在膠片訊號檢測部8處,係被輸入有影像訊號S1、S2。膠片訊號檢測部8,係根據影像訊號S1、S2,來檢測出輸入影像訊號S0是否為從膠片畫像而經由2-2降轉或者是2-3降轉所變換為垂直頻率60Hz之影像訊號。若是膠片畫像為30格(30圖框),則係可經由2-2降轉來變換為60圖框之圖框速率,若是膠片畫像為24格(24圖框),則係可經由2-3降轉來變換為60圖框之圖框速率。In Fig. 12, image signals S1 and S2 are input to the film signal detecting unit 8. The film signal detecting unit 8 detects, based on the image signals S1 and S2, whether or not the input image signal S0 is an image signal converted from a film image by 2-2 or 2-3 down to a vertical frequency of 60 Hz. If the film image is 30 grids (30 frames), it can be converted to the frame rate of 60 frames by 2-2 reduction. If the film image is 24 grids (24 frames), it can be via 2- 3 is reduced to convert to the frame rate of the 60 frame.

當輸入影像訊號S0係為經由2-3降轉所產生之影像訊號的情況時,如同由圖13(A)而能夠理解一般,係成為在2圖框中而為相同之畫像,並在接下來的3圖框中而為相同的畫像,且進而在更接下來的2圖框中而為相同的畫像。在圖13(A)所示之圖框f1~f6中,係成為在圖框 f1、f2處而為相同的畫像Im1,在圖框f3~f5處而為相同的畫像Im2,在圖框f6以及未圖示之下一個圖框處而為相同的畫像Im3。膠片訊號檢測部8,係產生代表著是否為經由2-2降轉或者是2-3降轉所變換的影像訊號一事之檢測訊號S det,並輸入至偏置控制部51處。When the input image signal S0 is a video signal generated by the 2-3 transition, as can be understood from FIG. 13(A), it is the same image in the 2 frame, and is connected. The same picture is shown in the lower 3 frames, and is the same image in the next 2 frames. In the frames f1 to f6 shown in Fig. 13(A), the frame is in the frame. The same image Im1 at f1 and f2 is the same image Im2 at the frames f3 to f5, and is the same image Im3 at the frame f6 and the lower frame not shown. The film signal detecting unit 8 generates a detection signal S det indicating whether or not the image signal is converted by 2-2 or 2-3, and is input to the offset control unit 51.

例如,膠片訊號檢測部8,當檢測出係並非為被作了降轉變換之影像訊號的情況時,係作為檢測訊號S det而輸出值「0」,當檢測出係為被作了降轉變換之影像訊號的情況時,係作為檢測訊號S det而輸出值「1」。膠片訊號檢測部8,較理想,當身為被作了降轉變換之影像訊號的情況時,係區別並檢測出其係為2-2降轉或者是2-3降轉。在對兩者作區別的情況時,例如,膠片訊號檢測部8,當檢測出係並非為被作了降轉變換之影像訊號的情況時,係作為檢測訊號S det而輸出值「00」,當檢測出係為被作了2-2降轉變換的情況時,係作為檢測訊號S det而輸出值「01」,當檢測出係為被作了2-3降轉變換的情況時,係作為檢測訊號S det而輸出值「10」。For example, when the film signal detecting unit 8 detects that the image signal is not a down-converted image signal, it outputs a value of “0” as the detection signal S det, and detects that the system is down-converted. In the case of changing the video signal, the value "1" is output as the detection signal S det. The film signal detecting unit 8 is preferably used to distinguish and detect that it is 2-2 down or 2-3 down when it is a video signal that has been subjected to a down-conversion. In the case where the two are distinguished, for example, the film signal detecting unit 8 outputs a value of "00" as the detection signal S det when it is detected that the image signal is not subjected to the down conversion conversion. When it is detected that the 2-2 down conversion is performed, the value is "01" as the detection signal S det, and when it is detected that the system is 2-3 down conversion, The value "10" is output as the detection signal S det .

如同由圖13(A)而可得知一般,經由2-2降轉或者是2-3降轉所變換的影像訊號,畫像之運動係並不順暢,為了使畫像之運動成為順暢,係會有如圖13(B)中所示一般而進行去顫動處理的情況。圖13(B)中所示之圖框f10,係與圖框f1相同。畫像Im10,係與畫像Im1相同。在圖框f20中,係於畫像Im1和畫像Im2之間的成為與畫像Im1以及畫像Im2等間隔之位置處,產生有畫像Im20 。圖框f30係與圖框f3相同,畫像Im30係與畫像Im2相同。As can be seen from Fig. 13(A), the image signal converted by 2-2 or 2-3 is not smooth, and the movement of the portrait is smooth. There is a case where the debounce processing is performed as shown generally in Fig. 13(B). The frame f10 shown in Fig. 13(B) is the same as the frame f1. The image Im10 is the same as the image Im1. In the frame f20, a position Im20 is generated between the image Im1 and the image Im2 at a position spaced apart from the image Im1 and the image Im2. . The frame f30 is the same as the frame f3, and the image Im30 is the same as the image Im2.

在圖框f40中,係於畫像Im2和畫像Im3之間的距離畫像Im2之位置1/3的位置處,產生有畫像Im40。在圖框f50中,係於畫像Im2和畫像Im3之間的距離畫像Im2之位置2/3的位置處,產生有畫像Im50。圖框f60係與圖框f6相同,畫像Im60係與畫像Im3相同。經由將圖13(A)之影像訊號如同圖13(B)一般地作變換,係能夠使畫像之運動成為順暢。In the frame f40, an image Im40 is generated at a position 1/3 of the distance image Im2 between the image Im2 and the image Im3. In the frame f50, an image Im50 is generated at a position 2/3 of the distance image Im2 between the image Im2 and the image Im3. The frame f60 is the same as the frame f6, and the image Im60 is the same as the image Im3. By changing the image signal of Fig. 13(A) as shown in Fig. 13(B) in general, the movement of the image can be made smooth.

圖14,係對於產生圖框f50之畫像Im50的情況時之內插處理作概念性展示。在通常之像素內插中,係於相鄰接之2個的像素之中央處產生內插像素,相對於此,在去顫動處理中,係如同藉由上述之說明而可得知一般,會有在偏向相鄰接之2個像素的其中一者之位置處而產生內插像素的情況。在圖14中,係對於水平方向之內插作展示,但是,關於垂直方向,亦為相同。在進行去顫動處理的情況時,若是依據第1實施型態中所說明的偏置訊號S os1、S os2之偏置量,則會成為產生有偏置量不足的情況。Fig. 14 is a conceptual representation of the interpolation process in the case where the image Im50 of the frame f50 is generated. In a normal pixel interpolation, an interpolated pixel is generated at the center of two adjacent pixels. In contrast, in the debounce processing, as described above, it is known that There is a case where an interpolated pixel is generated at a position shifted toward one of two adjacent pixels. In Fig. 14, the interpolation is shown for the horizontal direction, but the same is true for the vertical direction. When the debounce processing is performed, the offset amount of the offset signals S os1 and S os2 described in the first embodiment may be insufficient.

因此,在第3實施型態中,當藉由膠片訊號檢測部8所輸出的檢測訊號S det,為代表其係為經由2-2降轉或者是2-3降轉所變換的影像訊號一事之值的情況時,偏置控制部51,係作為偏置訊號S os11、S os21,而輸出較在第1實施型態中之偏置量而更作了增大的偏置量。例如, 當檢測訊號S det係為值「1」或者是值「01」、值「10」的情況時,係使偏置量作50%的增大。若是並非為降轉的情況時之偏置量,係為2,-2,則在作了降轉的情況時之偏置量,係成為3,-3。Therefore, in the third embodiment, the detection signal S det outputted by the film signal detecting unit 8 is a video signal which is converted by 2-2 or 2-3. In the case of the value, the offset control unit 51 outputs the offset amount which is larger than the offset amount in the first embodiment as the offset signals S os11 and S os21. E.g, When the detection signal S det is a value of "1" or a value of "01" or a value of "10", the offset amount is increased by 50%. If the offset amount is not 2, the offset amount is 3, -3.

在對於2-2降轉和2-3降轉作區別的情況時,較理想,係將2-3降轉的情況時之偏置量的增大程度,設為較2-2降轉的情況時之偏置量的增大程度更大。例如,在2-2降轉的情況時,係使偏置量作50%之增大,在2-3降轉的情況時,係使偏置量作60%之增大。若是並非為降轉的情況時之偏置量,係為2,-2,則在作了2-2降轉的情況時之偏置量,係成為3,-3,在作了2-3降轉的情況時之偏置量,係將小數點作無條件進位,而成為4,-4。在2-3降轉的情況時,亦可將偏置量以超過60%的倍率來作增大。In the case of distinguishing between 2-2 turnaround and 2-3 turnaround, it is preferable to set the degree of increase of the offset amount in the case of 2-3 turndown to be lower than 2-2. In the case of the situation, the amount of offset increases to a greater extent. For example, in the case of 2-2 downshift, the offset amount is increased by 50%, and in the case of 2-3 turndown, the offset amount is increased by 60%. If the offset is not 2, the offset is 2, -3, and it is 2-3. The amount of offset in the case of a fall is the unconditional carry of the decimal point, which becomes 4, -4. In the case of a 2-3 turn-off, the offset can also be increased by a magnification of more than 60%.

藉由使偏置訊號S os11、S os21相較於第1實施型態的情況而更加增大,延遲選擇部62、63之根據選擇控制訊號S sel1、S sel2所選擇並輸出的像素資料P sel1、P sel2,亦係成為被平移至與第1實施型態的情況相異之垂直方向的位置處。By making the offset signals S os11 and S os21 larger than in the case of the first embodiment, the pixel data P selected and output by the delay selection sections 62 and 63 according to the selection control signals S sel1 and S sel2 is increased. The sel1 and the sel2 are also shifted to a position in the vertical direction different from the case of the first embodiment.

另外,當在使偏置量增大前之偏置量,係成為偏置量之上限值或者是接近上限值之值的情況時,若是如同上述一般而將偏置量作50%或60%之增大,則在計算上會成為超過上限值。於此情況,由於偏置量係被作限幅(clipping),因此,就算是經由降轉所作了變換的影像訊 號,偏置量亦不會增大。又,在計算上,當將小數點做捨去的情況時,亦會有並不使偏置量增大的情況。In addition, when the offset amount before the offset amount is increased is the upper limit value of the offset amount or the value close to the upper limit value, if the offset amount is 50% as described above or If the increase is 60%, it will be calculated to exceed the upper limit. In this case, since the offset amount is clipped, even if the image is changed by the down-conversion No. The offset will not increase. Further, in the case of calculating, when the decimal point is rounded off, there is a case where the offset amount is not increased.

於圖12中,去顫動處理部9,係經由將實際圖框訊號之像素資料和內插圖框訊號之內插像素資料Pi以垂直頻率60Hz來交互作讀出,而輸出作了去顫動處理之影像訊號。去顫動處理部9,係可藉由記憶體來構成。在第3實施型態中,雖係以具備有去顫動處理部9之去顫動處理裝置作為例子,但是,係亦可與第1、第2實施型態相同的,而設為圖框速率變換裝置。In FIG. 12, the debounce processing unit 9 performs readout by interpolating the pixel data of the actual frame signal and the interpolated pixel data Pi of the inner frame signal at a vertical frequency of 60 Hz, and outputs the defibrillation processing. Image signal. The debounce processing unit 9 can be configured by a memory. In the third embodiment, the debounce processing device including the debounce processing unit 9 is taken as an example. However, the frame rate conversion may be the same as in the first and second embodiments. Device.

在第3實施型態中,亦同樣的,偏置控制部51,較理想,係使偏置訊號S os11、S os21之值在1或者是複數的圖框之每一者處而逐次作變化。Similarly, in the third embodiment, the offset control unit 51 preferably changes the values of the offset signals S os11 and S os21 one by one or each of the plural frames. .

〈第4實施型態〉<Fourth embodiment>

使用圖15,針對第4實施型態之構成以及動作作說明。於圖15中,針對與圖1、圖12相同之部分,係附加相同的符號,並省略其說明。第4實施型態,係相當於將第2實施型態和第3實施型態作了組合者。在圖15中,偏置控制部52,係具備有判別部521和限制部522以及偏置量決定部533。判別部521,係如同在圖9之判別部501中所作了說明一般,將在特定之級別C Lsp處而超過臨限值y,並且在相對於超過了臨限值y之特定的級別C Lsp而垂直方向之運動方向為相反方向的特定之級別C Lsp以外的級別處亦超過了臨限值y的狀態判別出來。The configuration and operation of the fourth embodiment will be described with reference to Fig. 15 . In FIG. 15 , the same portions as those in FIGS. 1 and 12 are denoted by the same reference numerals, and their description will be omitted. The fourth embodiment corresponds to the combination of the second embodiment and the third embodiment. In FIG. 15, the offset control unit 52 includes a determination unit 521, a restriction unit 522, and an offset amount determination unit 533. The discriminating unit 521, as explained in the discriminating unit 501 of Fig. 9, will exceed the threshold y at a specific level C Lsp and at a specific level C Lsp with respect to the threshold y. The direction in which the direction of motion in the vertical direction is a level other than the specific level C Lsp in the opposite direction is also determined by the state exceeding the threshold y.

限制部522,當判別部521判別出上述之狀態的情況時,係與第2實施型態相同的,將超過臨限值y之特定的級別C Lsp之垂直成分之值、和在特定之級別C Lsp以外而超過臨限值y之級別的垂直成分之值,此兩者作加算,並計算出將垂直方向之像素數作了限制的像素數。經由限制部522所計算出之像素數,係被輸入至偏置量決定部533中。在偏置量決定部533中,係被輸入有藉由膠片訊號檢測部8所輸出之檢測訊號S det。When the determination unit 521 determines the above-described state, the restriction unit 522 sets the value of the vertical component of the specific level C Lsp exceeding the threshold value y and the specific level as in the second embodiment. The value of the vertical component of the level other than the threshold y other than C Lsp is added, and the number of pixels that limit the number of pixels in the vertical direction is calculated. The number of pixels calculated by the restriction unit 522 is input to the offset amount determination unit 533. In the offset amount determining unit 533, the detection signal S det outputted by the film signal detecting unit 8 is input.

偏置量決定部533,當檢測訊號S det並非為代表降轉之值的情況時,係輸出身為基於從限制部522所輸入的作了限制之像素數所得的偏置量之偏置訊號S os12、S os22。偏置量決定部533,當檢測訊號S det係為代表降轉之值的情況時,係輸出使基於從限制部522所輸入的作了限制之像素數所得的偏置量作了增大之偏置訊號S os12、S os22。The offset amount determining unit 533 outputs an offset signal based on the offset amount obtained by the limited number of pixels input from the limiting unit 522 when the detection signal S det is not a value representing the down-conversion value. S os12, S os22. The offset amount determining unit 533 increases the offset amount based on the number of pixels that are limited by the input from the limiting unit 522 when the detection signal S det is a value representing the value of the down-conversion. Offset signals S os12, S os22.

又,當判別部521並未判別出上述之狀態,而限制部522係並不對於垂直方向之像素數作限制地而將與第1實施型態相同之像素數輸入至偏置量決定部533中的情況時,偏置量決定部533,係根據並未被作限制的像素數,而根據檢測訊號S det是否為代表降轉之值一事來決定偏置量,並輸出偏置訊號S os12、S os22。In addition, when the determination unit 521 does not determine the above-described state, the restriction unit 522 inputs the same number of pixels as the first embodiment to the offset amount determination unit 533 without limiting the number of pixels in the vertical direction. In the case of the middle, the offset amount determining unit 533 determines the offset amount based on the number of pixels that are not limited, and determines whether the detection signal S det represents the value of the falling, and outputs the offset signal S os12 . , S os22.

在第4實施型態中,亦同樣的,偏置控制部51,較理想,係使偏置訊號S os12、S os22之值在1或者是複數的圖框之每一者處而逐次作變化。Similarly, in the fourth embodiment, the offset control unit 51 preferably changes the values of the offset signals S os12 and S os22 one by one or each of the plural frames. .

〈第5實施型態〉<Fifth Embodiment>

使用圖16~圖20,針對第5實施型態之構成以及動作作說明。於圖16中,針對與圖1相同之部分,係附加相同的符號,並適宜省略其說明。在第1~第4實施型態中,頻度分布監測部4,係經由對於運動向量MV而以例如圖框單位來作監測,來檢測出運動向量MV之垂直成分是以何種大小來作何種之分布,並產生代表頻度分布之資料Sfd。當畫像為在1個圖框之全體處而同樣地作運動的情況時,係根據代表頻度分布之資料Sfd而檢測出在特定之級別C Lsp處頻度係超過了臨限值y一事,在圖框記憶體2、3處之垂直方向的讀出位址係被作平移。The configuration and operation of the fifth embodiment will be described with reference to Figs. 16 to 20 . In FIG. 16, the same portions as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. In the first to fourth embodiments, the frequency distribution monitoring unit 4 detects the vertical component of the motion vector MV by monitoring, for example, the frame unit for the motion vector MV. The distribution of the species and the data Sfd representing the frequency distribution. When the portrait is moved in the same manner in the entire frame, it is detected based on the data Sfd representing the frequency distribution that the frequency system exceeds the threshold y at the specific level C Lsp . The read address in the vertical direction at the frame memories 2, 3 is translated.

例如,當進行了在畫像顯示裝置之畫面的左右而顯示互為相異之影像訊號的所謂2畫面顯示的情況時,由於畫像之運動係在左右而互為相異,因此,就算是對1個圖框之全體而對於運動向量MV作監測,並如同圖3中所說明一般地描繪出直方圖,亦會發生在特定之級別C Lsp處而並不超過臨限值y的情況。於此情況,在圖框記憶體2、3處之垂直方向的讀出位址係並不會被作平移,而不會得到將內插處理之範圍擴大的效果。此種事態,係並不僅限於2畫面顯示的情況,就算是在顯示1個的影像訊號的情況時,當其係身為在1個圖框內而於左右進行互為相異之運動之畫像的情況時,亦會同樣的發生。For example, when a so-called two-screen display in which the image signals of different images are displayed on the left and right sides of the screen of the image display device is performed, since the motion of the images is different from each other, it is even 1 The motion vector MV is monitored for all of the frames, and the histogram is generally depicted as illustrated in Figure 3, and also occurs at a particular level C Lsp without exceeding the threshold y. In this case, the reading address in the vertical direction at the frame memories 2, 3 is not translated, and the effect of expanding the range of the interpolation processing is not obtained. This kind of state of affairs is not limited to the case of two-screen display. Even when one video signal is displayed, it is a portrait that is in a frame and is different from each other in the left and right. The same will happen in the same situation.

第5實施型態,係以就算是畫像之運動為在複數之區 域處而互為相異的情況時,亦能夠得到將內插處理之範圍擴大之效果的方式,而對於第1實施型態之構成作了更進一步的發展。於此,雖係將使第1實施型態之構成作了發展的構成,作為第5實施型態來作說明,但是,第2~第4實施型態,係亦能夠採用與第5實施型態相同之構成。在第5實施型態中,作為其中一例,係在將1個圖框均等地作了左右2分割之各個區域中,而對於影像訊號進行處理。亦可並不作均等分割,而以使各個區域之面積互為相異的方式來作分割並進行處理。The fifth embodiment is based on the movement of the portrait. In the case where the domains are different from each other, the effect of expanding the range of the interpolation processing can be obtained, and the configuration of the first embodiment is further developed. Here, the configuration in which the configuration of the first embodiment is developed is described as the fifth embodiment. However, the second to fourth embodiments can also be used in the fifth embodiment. The same state of composition. In the fifth embodiment, as an example, the image signal is processed in each of the areas in which one frame is equally divided into two. It is also possible to divide and process the areas in which the areas of the respective regions are different from each other without equal division.

在圖16中,藉由運動向量檢測部1所輸出的運動向量MV,係被輸入至左區域頻度分布監測部4L以及右區域頻度分布監測部4R、和左區域內插像素產生部6L以及右區域內插像素產生部6R處。左區域頻度分布監測部4L以及右區域頻度分布監測部4R,係與頻度分布監測部4相同的,對於運動向量MV而以例如圖框單位來作監測,並檢測出運動向量MV之垂直成分是以何種大小來作何種之分布。但是,左區域內插像素產生部6L,係僅對於1圖框中之左區域內的運動向量MV作監測,右區域內插像素產生部6R,係僅對於1圖框中之右區域內的運動向量MV作監測。In FIG. 16, the motion vector MV outputted by the motion vector detecting unit 1 is input to the left region frequency distribution monitoring unit 4L and the right region frequency distribution monitoring unit 4R, and the left region interpolation pixel generating portion 6L and the right. The area is interpolated at the pixel generating portion 6R. The left-region frequency distribution monitoring unit 4L and the right-region frequency distribution monitoring unit 4R are similar to the frequency distribution monitoring unit 4, and monitor the motion vector MV by, for example, a frame unit, and detect that the vertical component of the motion vector MV is What size is used for distribution. However, the left-region interpolating pixel generating portion 6L monitors only the motion vector MV in the left region of the one frame, and the right region interpolating pixel generating portion 6R is only for the right region in the 1 frame. The motion vector MV is monitored.

圖17(A),係為對於左區域頻度分布監測部4L所產生的運動向量MV之分布作展示的直方圖之例,圖17(B),係為對於右區域頻度分布監測部4R所產生的運動向量MV之分布作展示的直方圖之例。運動向量MV之級別 的設定,係與圖3相同。左區域頻度分布監測部4L,係將代表左區域內之頻度分布的資料S fdL,供給至左區域偏置控制部5L處,右區域頻度分布監測部4R,係將代表右區域內之頻度分布的資料S fdR,供給至右區域偏置控制部5R處。如圖17(A)、(B)中所示一般,於此,亦係將特定之級別C Lsp,設為7,8之級別和-7,-8之級別。17(A) is an example of a histogram showing the distribution of the motion vector MV generated by the left-region frequency distribution monitoring unit 4L, and FIG. 17(B) is generated for the right-region frequency distribution monitoring unit 4R. An example of a histogram of the distribution of motion vectors MV. Motion vector MV level The setting is the same as that of FIG. The left-region frequency distribution monitoring unit 4L supplies the data S fdL representing the frequency distribution in the left region to the left region offset control unit 5L, and the right region frequency distribution monitoring unit 4R, which represents the frequency distribution in the right region. The data S fdR is supplied to the right region bias control portion 5R. As shown in Fig. 17 (A) and (B), in general, the specific level C Lsp is also set to the level of 7, 8 and the level of -7, -8.

圖17(C),係為為了進行與圖17(A)、(B)之比較,而對於並不將1個圖框作左右2分割,而與第1實施型態相同的來在1個圖框之全體而對於運動向量MV作監測所產生的直方圖作展示。17(C) is a comparison with FIGS. 17(A) and (B), and is not divided into two frames, and is the same as the first embodiment. The histogram generated by monitoring the motion vector MV is displayed as a whole of the frame.

左區域偏置控制部5L,當在圖17(A)中所示之頻度分布的特定之級別C Lsp處而頻度超過了臨限值y1的情況時,係產生絕對值為超過0之代表特定之偏置量的偏置訊號S os1L、S os2L。右區域偏置控制部5R,當在圖17(B)中所示之頻度分布的特定之級別C Lsp處而頻度超過了臨限值y1的情況時,係產生絕對值為超過0之代表特定之偏置量的偏置訊號S os1R、S os2R。在第5實施型態中,左區域偏置控制部5L以及右區域偏置控制部5R,係設定身為較圖3、圖17(C)中所示之臨限值y而更小之值的臨限值y1。此係因為,由於係將1個圖框作左右2分割,因此,左右之各區域中的運動向量MV之垂直成分之各個的級別之出現次數,係會成為較對於1圖框全體而進行了監測時的出現次數更少之故。The left-region bias control unit 5L, when the frequency exceeds the threshold y1 at the specific level C Lsp of the frequency distribution shown in FIG. 17(A), generates a representative value whose absolute value exceeds 0. The offset signals of the offset amounts S os1L, S os2L. The right-region bias control unit 5R, when the frequency exceeds the threshold y1 at the specific level C Lsp of the frequency distribution shown in FIG. 17(B), generates a representative value whose absolute value exceeds 0. Offset offset signals S os1R, S os2R. In the fifth embodiment, the left area offset control unit 5L and the right area offset control unit 5R are set to have smaller values than the threshold value y shown in Figs. 3 and 17(C). The threshold y1. This is because, since one frame is divided into two sides, the number of occurrences of each level of the vertical component of the motion vector MV in each of the left and right regions is more than that for the entire frame. There are fewer occurrences during monitoring.

在圖17(C)的情況時,於特定之級別C Lsp處,頻度係並不會超過臨限值y。在圖17(A)、(B)的情況時,由於係設定為較臨限值y而更小之值的臨限值y1,因此,於特定之級別C Lsp處,頻度係超過臨限值y1。In the case of Fig. 17(C), the frequency system does not exceed the threshold y at a specific level C Lsp . In the case of Figs. 17(A) and (B), since the threshold value y1 is set to a value smaller than the threshold value y, the frequency system exceeds the threshold value at the specific level C Lsp . Y1.

偏置訊號S os1L、S os2L,係被輸入至圖框記憶體2、3以及左區域內插像素產生部6L中,偏置訊號S os1R、S os2R,係被輸入至圖框記憶體2、3以及右區域內插像素產生部6R中。偏置訊號S os1L、S os2L,係因應於偏置量,而使圖框記憶體2、3中之垂直方向的讀出位址相互朝向反方向作平移。偏置訊號S os1R、S os2R,係因應於偏置量,而使圖框記憶體2、3中之垂直方向的讀出位址相互朝向反方向作平移。The offset signals S os1L and S os2L are input to the frame memory 2, 3 and the left area interpolation pixel generating unit 6L, and the offset signals S os1R and S os2R are input to the frame memory 2. 3 and the right region are interpolated in the pixel generating portion 6R. The offset signals S os1L and S os2L are caused by the offset amounts, and the read addresses in the vertical direction in the frame memories 2 and 3 are shifted in opposite directions. The offset signals S os1R and S os2R are caused by the offset amounts, and the read addresses in the vertical direction in the frame memories 2 and 3 are shifted toward each other in the opposite direction.

左區域內插像素產生部6L以及右區域內插像素產生部6R之內部構成,係與內插像素產生部6相同。如同在圖1中所作了說明一般,左區域內插像素產生部6L以及右區域內插像素產生部6R,係具備有選擇控制部61、和延遲選擇部62、63、以及混合部64。延遲選擇部62、63之具體性構成,係如同圖4中所作了說明一般。The internal configuration of the left-region interpolating pixel generating portion 6L and the right region interpolating pixel generating portion 6R is the same as that of the interpolating pixel generating portion 6. As described above with reference to FIG. 1, the left-region interpolating pixel generating unit 6L and the right-region interpolating pixel generating unit 6R include a selection control unit 61, delay selecting units 62 and 63, and a mixing unit 64. The specific configuration of the delay selecting sections 62, 63 is as described in the description of FIG.

圖框記憶體2,係將為了使左區域內插像素產生部6L產生左區域內之內插像素所必要的影像訊號S1L,供給至左區域內插像素產生部6L處,並將為了使右區域內插像素產生部6R產生右區域內之內插像素所必要的影像訊號S1R,供給至右區域內插像素產生部6R處。圖框記憶體3,係將為了使左區域內插像素產生部6L產生左區域內之 內插像素所必要的影像訊號S2L,供給至左區域內插像素產生部6L處,並將為了使右區域內插像素產生部6R產生右區域內之內插像素所必要的影像訊號S2R,供給至右區域內插像素產生部6R處。The frame memory 2 is supplied to the left-region interpolating pixel generating portion 6L in order to cause the left-region interpolating pixel generating portion 6L to generate an image signal S1L necessary for interpolating pixels in the left region, and to make the right The area interpolating pixel generating unit 6R generates an image signal S1R necessary for interpolating pixels in the right area, and supplies it to the right area interpolating pixel generating unit 6R. The frame memory 3 will be generated in the left area in order to cause the left area interpolation pixel generating section 6L. The video signal S2L necessary for interpolating the pixels is supplied to the left-region interpolating pixel generating unit 6L, and is supplied to the right-region interpolating pixel generating unit 6R to generate the video signal S2R necessary for the interpolating pixels in the right region. The right region is interpolated at the pixel generating portion 6R.

影像訊號S1L,係為作為影像訊號S1而藉由圖框記憶體2所逐次輸出之像素資料中的左區域內之像素資料,並為因應於偏置訊號S os1L所代表之偏置量而在垂直方向上使位址作了平移之像素資料。影像訊號S2L,係為藉由圖框記憶體3所逐次輸出之像素資料中的左區域內之像素資料,並為因應於偏置訊號S os2L所代表之偏置量而在垂直方向上使位址作了平移之像素資料。如果偏置量為0,則影像訊號S1L、S2L係為並不作平移之像素資料。The image signal S1L is the pixel data in the left region of the pixel data successively outputted by the frame memory 2 as the image signal S1, and is in response to the offset amount represented by the offset signal S os1L Pixel data that translates the address in the vertical direction. The image signal S2L is the pixel data in the left region in the pixel data sequentially output by the frame memory 3, and is made in the vertical direction in response to the offset amount represented by the offset signal S os2L . The address is translated into pixel data. If the offset amount is 0, the image signals S1L, S2L are pixel data that are not translated.

影像訊號S1R,係為作為影像訊號S1而藉由圖框記憶體2所逐次輸出之像素資料中的右區域內之像素資料,並為因應於偏置訊號S os1R所代表之偏置量而在垂直方向上使位址作了平移之像素資料。影像訊號S2R,係為藉由圖框記憶體3所逐次輸出之像素資料中的右區域內之像素資料,並為因應於偏置訊號S os2R所代表之偏置量而在垂直方向上使位址作了平移之像素資料。如果偏置量為0,則影像訊號S1R、S2R係為並不作平移之像素資料。The image signal S1R is the pixel data in the right region of the pixel data sequentially outputted by the frame memory 2 as the image signal S1, and is in response to the offset amount represented by the offset signal S os1R Pixel data that translates the address in the vertical direction. The image signal S2R is the pixel data in the right region in the pixel data sequentially output by the frame memory 3, and is made in the vertical direction in response to the offset amount represented by the offset signal S os2R . The address is translated into pixel data. If the offset amount is 0, the image signals S1R and S2R are pixel data that are not translated.

左區域內插像素產生部6L內之選擇控制部61,係因應於偏置訊號S os1L、S os2L之偏置量,而使延遲選擇部62、63處之作為基準的垂直方向之像素資料的位置作平移。右區域內插像素產生部6R內之選擇控制部61,係因應 於偏置訊號S os1R、S os2R之偏置量,而使延遲選擇部62、63處之作為基準的垂直方向之像素資料的位置作平移。經由與圖1之內插像素產生部6相同的動作,左區域內插像素產生部6L係產生左區域內插訊號,右區域內插像素產生部6R係產生右區域內插訊號。將左區域內插訊號和右區域內插訊號作了組合者,係為內插圖框訊號。The selection control unit 61 in the left-region interpolating pixel generating unit 6L sets the pixel data of the vertical direction as the reference in the delay selecting sections 62 and 63 in response to the offset amounts of the offset signals S os1L and S os2L . Position for translation. The selection control unit 61 in the right region interpolation pixel generating portion 6R is in response to The offset amounts of the offset signals S os1R and S os2R are shifted by the position of the pixel data in the vertical direction as the reference at the delay selecting sections 62 and 63. The left area interpolated pixel generating unit 6L generates a left area interpolated signal by the same operation as the interpolated pixel generating unit 6 of FIG. 1, and the right area interpolated pixel generating unit 6R generates a right area interpolated signal. The combination of the left area interpolated signal and the right area interpolated signal is the internal frame signal.

在時間序列變換記憶體7中,影像訊號S1係作為實際圖框訊號而被輸入,左區域內插訊號和右區域內插訊號係作為內插圖框訊號而被輸入。時間序列變換記憶體7,係藉由將左區域內插訊號和右區域內插訊號作合成,而作為內插圖框訊號之內插像素資料。時間序列變換記憶體7。係經由將實際圖框訊號之像素資料和內插圖框訊號之內插像素資料以垂直頻率120Hz來交互作讀出,而輸出作了圖框速率變換之影像訊號。In the time series conversion memory 7, the video signal S1 is input as an actual picture frame signal, and the left area interpolated signal and the right area interpolated signal are input as inner picture frame signals. The time series conversion memory 7 is an interpolated pixel data of the inner frame signal by synthesizing the left area interpolated signal and the right area interpolated signal. The time series transforms the memory 7. The image data of the frame rate conversion is output by interactively reading the pixel data of the actual frame signal and the interpolated pixel data of the inner frame signal at a vertical frequency of 120 Hz.

使用圖18~圖20,針對第5實施型態所得之效果作說明。圖18,係對於在圖框f1、f2之左區域中而朝向垂直方向下方作了平移的區域A rf1’L和朝向垂直方向上方作了平移的區域A rf2’L作展示。就算是運動向量MV之垂直成分為8個像素之運動向量MV(v8)的情況時,用以產生內插像素P f12(0)L之圖框f1、f2內的像素,亦係成為區域A rf1’L、A rf2’L之範圍內,左區域內插像素產生部6L係成為能夠產生內插像素P f12(0)L。The effects obtained in the fifth embodiment will be described with reference to Figs. 18 to 20 . Fig. 18 shows an area Arf1'L that translates downward in the vertical direction in the left area of the frames f1, f2, and an area Arf2'L that translates upward in the vertical direction. Even in the case where the vertical component of the motion vector MV is the motion vector MV (v8) of 8 pixels, the pixels in the frames f1 and f2 for generating the interpolated pixel P f12(0)L are also the region A. In the range of rf1'L and A rf2'L, the left-region interpolating pixel generating portion 6L is capable of generating the interpolated pixel Pf12(0)L.

圖19,係對於在圖框f1、f2之右區域中而朝向垂直方向上方作了平移的區域A rf1’R和朝向垂方向下方作了 平移的區域A rf2’R作展示。圖19中,運動向量MV之垂直成分係為與圖18相反方向之-8像素,運動向量MV係為MV(-v8)。就算是運動向量MV之垂直成分為-8像素之運動向量MV(-v8)的情況時,用以產生內插像素P f12(0)R之圖框f1、f2內的像素,亦係成為區域A rf1’R、A rf2’R之範圍內,右區域內插像素產生部6R係成為能夠產生內插像素P f12(0)R。Figure 19 is a view of the area Arf1'R and the downward direction of the vertical direction in the right region of the frames f1 and f2. The translated area A rf2'R is shown. In Fig. 19, the vertical component of the motion vector MV is -8 pixels in the opposite direction to Fig. 18, and the motion vector MV is MV (-v8). Even in the case where the vertical component of the motion vector MV is a motion vector MV (-v8) of -8 pixels, the pixels in the frames f1 and f2 for generating the interpolated pixel P f12(0)R are also regions. In the range of A rf1 'R and A rf2'R, the right-region interpolating pixel generating portion 6R is capable of generating the interpolated pixel P f12(0)R.

圖20,係為為了進行與圖18、圖19間之比較,而對於並不將1個圖框作左右2分割,而與第1實施型態相同的來在1個圖框之全體而對於運動向量MV作監測並產生偏置訊號S os1、S os2的情況作展示。如圖17(C)中所示一般,由於在特定之級別C Lsp處頻度係並未超過臨限值y,因此,偏置量係成為0,用以產生P f12(0)L、P f12(0)R之區域A rf1L、A rf1R、A rf2L、A rf2R係並不會被作平移。故而,當在左區域中而運動向量MV為運動向量MV(v8)、在右區域中而運動向量MV為運動向量MV(-v8)的情況時,係並無法產生內插像素P f12(0)L、P f12(0)R。20 is a comparison with FIGS. 18 and 19, and is not divided into two frames, and is the same as the first embodiment, and is the same for all the frames. The motion vector MV is monitored and the bias signals S os1 , S os2 are generated for display. As shown in Fig. 17(C), since the frequency system does not exceed the threshold y at a specific level C Lsp , the offset amount becomes 0 to generate P f12(0)L, P f12 (0) The areas of R, A rf1L, A rf1R, A rf2L, and A rf2R are not translated. Therefore, when the motion vector MV is the motion vector MV (v8) in the left region and the motion vector MV is the motion vector MV (-v8) in the right region, the interpolation pixel P f12 cannot be generated. L, P f12 (0) R.

如同上述一般,若依據第5實施型態,則就算是當在圖框內之複數區域中而進行有互為相異之運動的情況時,亦成為能夠對於各個區域而分別適當地擴大內插處理之範圍。故而,係能夠在複數之區域的各個處,而成為就算是當畫像之垂直方向的運動為大的情況時,亦能夠根據運動向量而產生適當的內插像素。As described above, according to the fifth embodiment, even when motions of mutually different motions are performed in a plurality of regions in the frame, it is possible to appropriately expand the interpolation for each region. The scope of processing. Therefore, it is possible to generate appropriate interpolated pixels in accordance with the motion vector even when the motion in the vertical direction of the portrait is large in each of the plurality of regions.

在第5實施型態中,雖係將圖框之區域作了2分割,但是,亦可作3分割以上之分割,將區域在水平方向上作分割之方法以及分割數量,係只要適宜作設定即可。只要將頻度分布監測部4和偏置控制部5以及內插像素產生部6,分別因應於分割數而作設置即可。In the fifth embodiment, although the area of the frame is divided into two, it is also possible to divide the area by three or more, and to divide the area in the horizontal direction and the number of divisions, as long as it is suitable for setting. Just fine. The frequency distribution monitoring unit 4, the offset control unit 5, and the interpolation pixel generating unit 6 may be provided in accordance with the number of divisions.

本發明,係並不被限定於以上所說明之第1~第5實施型態,在不脫離本發明之要旨的範圍內,係可作各種之變更。在第1~第5實施型態中,雖係對於具備有運動向量檢測部1之構成作了展示,但是,亦可構成為將為了在其他裝置中作利用所檢測出的運動向量MV供給至頻度分布監測部4(4L、4R)以及內插像素產生部6(6L、6R)處。頻度分布監測部4(4L、4R),雖係將在各個的級別之於1個圖框中的出現次數設為頻度,但是,亦可將在2個圖框中的出現次數設為頻度,只要適宜作設定即可。The present invention is not limited to the first to fifth embodiments described above, and various modifications can be made without departing from the spirit and scope of the invention. In the first to fifth embodiments, the configuration including the motion vector detecting unit 1 is shown. However, the motion vector MV detected for use in other devices may be supplied to the motion vector MV. The frequency distribution monitoring unit 4 (4L, 4R) and the interpolation pixel generating unit 6 (6L, 6R). The frequency distribution monitoring unit 4 (4L, 4R) sets the number of occurrences in one frame at each level to the frequency, but the number of occurrences in the two frames may be set to a frequency. As long as it is suitable for setting.

1‧‧‧運動向量檢測部1‧‧‧Sport Vector Detection Department

2、3、21‧‧‧圖框記憶體(延遲部)2, 3, 21‧‧‧ frame memory (delay)

4‧‧‧頻度分布監測部4‧‧‧frequency distribution monitoring department

4L‧‧‧左區域頻度分布監測部4L‧‧‧ Left Regional Frequency Distribution Monitoring Department

4R‧‧‧右區域頻度分布監測部4R‧‧‧Right Area Frequency Distribution Monitoring Department

5、50~52‧‧‧偏置控制部5, 50~52‧‧‧Offset Control Department

5L‧‧‧左區域偏置控制部5L‧‧‧Left Area Bias Control Unit

5R‧‧‧右區域偏置控制部5R‧‧‧Right Area Offset Control

6‧‧‧內插像素產生部6‧‧‧Interpolation Pixel Generation Department

6L‧‧‧左區域內插像素產生部6L‧‧‧Lead area interpolation pixel generation unit

6R‧‧‧右區域內插像素產生部6R‧‧‧Right area interpolation pixel generation unit

7‧‧‧時間序列變換記憶體7‧‧‧ Time Series Transformation Memory

8‧‧‧膠片訊號檢測部8‧‧‧Film Signal Detection Department

9‧‧‧去顫動處理部9‧‧‧Defibrillation Processing Department

20‧‧‧延遲部20‧‧‧Delay Department

61‧‧‧選擇控制部61‧‧‧Select Control Department

62、63‧‧‧延遲選擇部62, 63‧‧‧Delay Selection Department

64‧‧‧混合部64‧‧‧Mixed Department

501、521‧‧‧判別部501, 521‧‧‧Discrimination Department

502、533‧‧‧偏置量決定部502, 533‧‧‧ Offset determination unit

522‧‧‧限制部522‧‧‧Restrictions

[圖1]對於第1實施型態作展示之區塊圖。Fig. 1 is a block diagram showing the first embodiment.

[圖2]用以對於運動向量作說明之圖。[Fig. 2] A diagram for explaining a motion vector.

[圖3]對於頻度分布監測部4所檢測出之頻度分布的直方圖之例作展示的圖。FIG. 3 is a diagram showing an example of a histogram of the frequency distribution detected by the frequency distribution monitoring unit 4.

[圖4]對於延遲選擇部62、63之具體性構成例作展示的區塊圖。FIG. 4 is a block diagram showing an example of the specific configuration of the delay selecting sections 62 and 63.

[圖5]用以對於並不使圖框記憶體2、3處之垂直方向的讀出位址作平移的情況時之內插像素產生動作作說明的 概念圖。[Fig. 5] for explaining the interpolation pixel generating operation in the case where the reading address in the vertical direction at the frame memory 2, 3 is not shifted. Concept map.

[圖6]用以對於使圖框記憶體2、3處之垂直方向的讀出位址作了平移的情況時之內插像素產生動作作說明的概念圖。Fig. 6 is a conceptual diagram for explaining an interpolation pixel generating operation in the case where the reading address in the vertical direction at the frame memories 2, 3 is shifted.

[圖7]用以對於圖框記憶體2、3處之垂直方向的讀出位址之平移作說明的圖。[Fig. 7] A diagram for explaining translation of a read address in the vertical direction at the frame memories 2, 3.

[圖8]對於圖1之變形構成作展示的部份區塊圖。[Fig. 8] A partial block diagram showing the configuration of Fig. 1.

[圖9]對於第2實施型態作展示之區塊圖。Fig. 9 is a block diagram showing the second embodiment.

[圖10]用以對於第2實施型態中之運動向量作說明之圖。Fig. 10 is a view for explaining a motion vector in the second embodiment.

[圖11]用以對於第2實施型態中之動作作說明之圖。Fig. 11 is a view for explaining an operation in the second embodiment.

[圖12]對於第3實施型態作展示之區塊圖。Fig. 12 is a block diagram showing the third embodiment.

[圖13]用以對於2-3降轉之影像訊號以及去顫動處理作說明之圖。[Fig. 13] A diagram for explaining an image signal for demotion of 2-3 and a defibrillation process.

[圖14]用以對於去顫動處理之像素內插作說明之圖。[Fig. 14] A diagram for explaining pixel interpolation for defibrillation processing.

[圖15]對於第4實施型態作展示之區塊圖。Fig. 15 is a block diagram showing the fourth embodiment.

[圖16]對於第5實施型態作展示之區塊圖。Fig. 16 is a block diagram showing the fifth embodiment.

[圖17]對於第5實施型態中之頻度分布監測部4L、4R所檢測出之頻度分布的直方圖之例作展示的圖。FIG. 17 is a view showing an example of a histogram of the frequency distribution detected by the frequency distribution monitoring units 4L and 4R in the fifth embodiment.

[圖18]用以對於在左區域中,使圖框記憶體2、3處之垂直方向的讀出位址作了平移的情況時之內插像素產生動作作說明的概念圖。FIG. 18 is a conceptual diagram for explaining an interpolation pixel generating operation in the case where the reading address in the vertical direction at the frame memory 2, 3 is shifted in the left area.

[圖19]用以對於在右區域中,使圖框記憶體2、3處之垂直方向的讀出位址作了平移的情況時之內插像素產生 動作作說明的概念圖。[Fig. 19] Interpolated pixel generation for the case where the read address in the vertical direction at the frame memory 2, 3 is translated in the right area A conceptual diagram of the action.

[圖20]用以對於在左區域以及右區域中,並不使圖框記憶體2、3處之垂直方向的讀出位址作平移的情況時之內插像素產生動作作說明的概念圖。[Fig. 20] A conceptual diagram for explaining an interpolation pixel generating operation in the case where the reading addresses in the vertical direction of the frame memories 2, 3 are not shifted in the left area and the right area. .

1‧‧‧運動向量檢測部1‧‧‧Sport Vector Detection Department

2、3‧‧‧圖框記憶體(延遲部)2, 3‧‧‧ frame memory (delay)

4‧‧‧頻度分布監測部4‧‧‧frequency distribution monitoring department

5‧‧‧偏置控制部5‧‧‧Offset Control Department

6‧‧‧內插像素產生部6‧‧‧Interpolation Pixel Generation Department

7‧‧‧時間序列變換記憶體7‧‧‧ Time Series Transformation Memory

61‧‧‧選擇控制部61‧‧‧Select Control Department

62、63‧‧‧延遲選擇部62, 63‧‧‧Delay Selection Department

64‧‧‧混合部64‧‧‧Mixed Department

Claims (16)

一種影像訊號處理裝置,其特徵為,係具備有:第1延遲部,係使輸入影像訊號作1圖框期間或者是複數掃描線期間之延遲,並作為第1延遲影像訊號而輸出;和第2延遲部,係使前述第1延遲影像訊號作1圖框期間之延遲,並作為第2延遲影像訊號而輸出;和第1延遲選擇部,係使前述第1延遲影像訊號之像素資料在水平以及垂直方向上逐次作延遲,並產生被包含於當產生內插像素資料時所使用的第1參考範圍中之複數的像素資料,再從前述複數之像素資料而選擇其中一者;和第2延遲選擇部,係使前述第2延遲影像訊號之像素資料在水平以及垂直方向上逐次作延遲,並產生被包含於當產生前述內插像素資料時所使用的第2參考範圍中之複數的像素資料,再從前述複數之像素資料而選擇其中一者;和頻度分布監測部,係將在產生前述內插像素資料時所使用的運動向量之垂直成分的大小區分為複數之級別,並檢測出運動向量之垂直成分在各個的級別中是分別以何種出現次數的頻度而發生;和偏置(offset)控制部,係當藉由前述頻度分布監測部所檢測出之運動向量的垂直成分在預先所制訂之特定的級別中而超過了特定之臨限值的情況時,產生將從前述第1延遲部而讀出前述第1延遲影像訊號時之垂直方向的讀 出位址作平移之第1偏置訊號,並供給至前述第1延遲部處,且產生將從前述第2延遲部而讀出前述第2延遲影像訊號時之垂直方向的讀出位址作平移之第2偏置訊號,並供給至前述第2延遲部處;和選擇控制部,係以根據前述第1偏置訊號而將前述第1延遲選擇部所選擇的像素資料在垂直方向上作平移並且根據前述第2偏置訊號而將前述第2延遲選擇部所選擇的像素資料在垂直方向上作平移的方式,來進行控制。An image signal processing device comprising: a first delay unit configured to delay a period of an input image signal during a frame period or a plurality of scanning lines, and output the first delayed image signal; and The delay unit is configured to delay the first delayed video signal by one frame period and output the second delayed video signal as a second delayed video signal, and the first delay selecting unit causes the pixel data of the first delayed video signal to be horizontal And successively delaying in the vertical direction, and generating pixel data included in the plurality of first reference ranges used when generating the interpolated pixel data, and selecting one of the plurality of pixel data; and the second The delay selecting unit sequentially delays the pixel data of the second delayed image signal in the horizontal and vertical directions, and generates a plurality of pixels included in the second reference range used when the interpolation pixel data is generated. Data, and then selecting one of the plurality of pixel data; and the frequency distribution monitoring unit is used to generate the aforementioned interpolation pixel data The size of the vertical component of the quantity is divided into a plurality of levels, and it is detected that the vertical component of the motion vector occurs in each of the levels of the frequency of occurrences; and the offset control section is used by When the vertical component of the motion vector detected by the frequency distribution monitoring unit exceeds the specific threshold value in a predetermined level defined in advance, the first delay is read from the first delay unit. Vertical reading of the image signal The address is a first offset signal for translation, and is supplied to the first delay unit, and a read address in a vertical direction when the second delayed video signal is read from the second delay unit is generated. Translating the second offset signal to the second delay unit; and the selection control unit is configured to vertically display the pixel data selected by the first delay selection unit based on the first offset signal The panning is controlled such that the pixel data selected by the second delay selecting unit is shifted in the vertical direction based on the second offset signal. 如申請專利範圍第1項所記載之影像訊號處理裝置,其中,前述偏置控制部,係作為前述第1偏置訊號,而產生使前述第1延遲部處之垂直方向的讀出位址朝向第1方向作平移之偏置訊號,並作為前述第2偏置訊號,而產生使前述第2延遲部處之垂直方向的讀出位址朝向與第1方向相反側之第2方向作平移之偏置訊號,前述選擇控制部,係以使前述第1延遲選擇部所選擇的像素資料朝向第1垂直方向作平移,並根據前述第2偏置訊號而使前述第2延遲選擇部所選擇的像素資料朝向與前述第1垂直方向相反側之第2垂直方向作平移的方式,來對於前述第1以及第2延遲選擇部作控制。The video signal processing device according to claim 1, wherein the offset control unit generates the read address in the vertical direction of the first delay unit as the first offset signal The first direction is a translational offset signal, and as the second bias signal, the read position in the vertical direction of the second delay portion is shifted toward the second direction opposite to the first direction. In the offset signal, the selection control unit shifts the pixel data selected by the first delay selection unit toward the first vertical direction, and selects the second delay selection unit based on the second offset signal. The first and second delay selecting units are controlled such that the pixel data is shifted in the second perpendicular direction opposite to the first perpendicular direction. 如申請專利範圍第1項或第2項所記載之影像訊號處理裝置,其中,前述偏置控制部,係將前述特定之級別,設定為在並不經由前述第1以及第2偏置訊號來使前述第1以及第2延遲部處之讀出位址作平移且並不經由前述 選擇控制部來使前述第1以及第2延遲選擇部所選擇之像素資料作平移的狀態下,與運動向量之垂直成分的大小相對應之像素資料會成為前述第1以及第2參考範圍外的級別。The video signal processing device according to the first or second aspect of the invention, wherein the offset control unit sets the specific level to be independent of the first and second offset signals. Translating the read addresses at the first and second delay portions without passing through the foregoing When the control unit selects the pixel data selected by the first and second delay selecting units to shift, the pixel data corresponding to the vertical component of the motion vector may be outside the first and second reference ranges. level. 如申請專利範圍第3項所記載之影像訊號處理裝置,其中,係更進而具備有:判定部,係判定是否發生有:藉由前述頻度分布監測部所檢測出的運動向量之垂直成分,為在前述特定之級別中的其中一者之級別處而超過了前述特定之臨限值,並且,在垂直方向之運動方向為與超過了前述特定之臨限值的前述其中一者之級別相反之方向且身為前述特定之級別以外的級別處亦超過了前述特定之臨限值的狀態,前述偏置控制部,當前述判別部判別出前述狀態的情況時,係將由前述第1以及第2偏置訊號所致之前述第1以及第2延遲部處的讀出位址之平移的程度,限制為較當前述判別部並未判別出前述狀態的情況時而更小之值,前述選擇控制部,係根據平移之程度被限制的前述第1以及第2偏置訊號而進行控制,使得前述第1以及第2延遲選擇部所選擇的像素資料在垂直方向上平移。The image signal processing device according to claim 3, further comprising: a determination unit that determines whether or not a vertical component of the motion vector detected by the frequency distribution monitoring unit is generated At a level of one of the aforementioned specific levels, exceeding the aforementioned specific threshold, and the direction of motion in the vertical direction is opposite to the level of one of the foregoing exceeding the aforementioned specific threshold. In the direction in which the level other than the specific level exceeds the specific threshold value, the offset control unit determines the first and second states when the determination unit determines the state. The degree of translation of the read address at the first and second delay sections due to the offset signal is limited to a value smaller than when the discriminating section does not determine the state, and the selection control is performed. The portion is controlled based on the first and second offset signals whose degree of translation is limited, such that the pixel data selected by the first and second delay selecting units are vertical Pan up. 如申請專利範圍第4項所記載之影像訊號處理裝置,其中,前述偏置控制部,係根據將超過了前述特定之臨限值的垂直成分為最大之級別的正或者是負的其中一方之方向的垂直成分、和超過了前述特定之臨限值的前述特定 之級別以外的級別之正或者是負的另外一方之方向的垂直成分,此兩者作了加算後的垂直成分之值,來產生前述第1以及第2偏置訊號。The video signal processing device according to claim 4, wherein the offset control unit is based on one of a positive or negative level that maximizes a vertical component exceeding the specific threshold value. The vertical component of the direction, and the aforementioned specificity exceeding the aforementioned specific threshold The positive component of the level other than the level or the vertical component of the other direction of the negative one, and the two of the vertical component values are added to generate the first and second offset signals. 如申請專利範圍第1項或第2項所記載之影像訊號處理裝置,其中,係更進而具備有:膠片(film)訊號檢測部,係檢測出前述輸入影像訊號是否為根據膠片畫像而經由降轉(pull down)來變換為特定之垂直頻率的影像訊號,前述偏置控制部,當前述膠片訊號檢測部檢測出前述輸入影像訊號係身為經由降轉所變換之影像訊號的情況時,係將由前述第1以及第2偏置訊號所致之前述第1以及第2延遲部處的讀出位址之平移的程度,設為比並未檢測出前述輸入影像訊號係身為經由降轉所變換之影像訊號的情況時的值而更大。The image signal processing device according to claim 1 or 2, further comprising: a film signal detecting unit that detects whether the input image signal is based on a film image Pulling down to convert a video signal of a specific vertical frequency, the offset control unit, when the film signal detecting unit detects that the input image signal is a video signal converted by the down-conversion And shifting a degree of translation of the read address at the first and second delay portions by the first and second offset signals as a ratio of the input video signal is not detected The value of the converted image signal is larger. 如申請專利範圍第6項所記載之影像訊號處理裝置,其中,前述膠片訊號檢測部,係檢測出前述輸入影像訊號係為根據膠片畫像而經由2-2降轉所變換之影像訊號、或者是經由2-3降轉而變換之影像訊號,前述偏置控制部,當前述膠片訊號檢測部檢測出前述輸入影像訊號係身為經由2-3降轉所變換之影像訊號的情況時,係將由前述第1以及第2偏置訊號所致之前述第1以及第2延遲部處的讀出位址之平移的程度,設為比檢測出前述輸入影像訊號係身為經由2-2降轉所變換之影像訊 號的情況時的值而更大。The image signal processing device according to claim 6, wherein the film signal detecting unit detects that the input image signal is an image signal converted by 2-2 rotation according to a film image, or When the film signal detecting unit detects that the input image signal is converted into an image signal converted by 2-3, the image signal detecting unit changes the image signal converted by 2-3. The degree of translation of the read address at the first and second delay portions due to the first and second offset signals is greater than the detection of the input video signal by the 2-2 transition Transformed video The value of the number is greater. 如申請專利範圍第1項或第2項所記載之影像訊號處理裝置,其中,係將由前述第1延遲選擇部所進行之選擇的動作、和由前述第2延遲選擇部所進行之選擇的動作、和由前述頻度分布監測部所進行之檢測的動作、和由前述偏置控制部所進行之供給前述第1以及第2偏置訊號的動作、以及由前述選擇控制部所進行之平移的動作,對於將前述輸入影像訊號之圖框分割成複數之區域後的前述複數之區域分別進行。The video signal processing device according to the first or second aspect of the invention, wherein the operation performed by the first delay selecting unit and the operation selected by the second delay selecting unit are performed. And an operation of detecting by the frequency distribution monitoring unit, an operation of supplying the first and second offset signals by the offset control unit, and a translation operation by the selection control unit. The region of the complex number after dividing the frame of the input image signal into a plurality of regions is performed separately. 一種影像訊號處理方法,其特徵為:經由第1延遲部而使輸入影像訊號作1圖框期間或者是複數掃描線期間之延遲,並作為第1延遲影像訊號而輸出;經由第2延遲部而使前述第1延遲影像訊號作1圖框期間之延遲,並作為第2延遲影像訊號而輸出;使前述第1延遲影像訊號之像素資料在水平以及垂直方向上逐次作延遲,並產生被包含於當產生內插像素資料時所使用的第1參考範圍中之複數的像素資料;使前述第2延遲影像訊號之像素資料在水平以及垂直方向上逐次作延遲,並產生被包含於當產生前述內插像素資料時所使用的第2參考範圍中之複數的像素資料;將在產生前述內插像素資料時所使用的運動向量之垂直成分的大小區分為複數之級別,並檢測出運動向量之垂直成分在各個的級別中是分別以何種出現次數的頻度而發 生;當運動向量的垂直成分在預先所制訂之特定的級別中而超過了特定之臨限值的情況時,根據第1偏置訊號來將從前述第1延遲部而讀出前述第1延遲影像訊號時之垂直方向的讀出位址作平移,且根據第2偏置訊號來將從前述第2延遲部而讀出前述第2延遲影像訊號時之垂直方向的讀出位址作平移;根據前述第1偏置訊號而將從前述第1參考範圍內之複數的像素資料來選擇第1像素資料並讀出時的垂直方向之位置作平移,並且根據前述第2偏置訊號而將從前述第2參考範圍內之複數的像素資料來選擇第2像素資料並讀出時的垂直方向之位置作平移;根據從前述第1參考範圍所讀出的前述第1像素資料和從前述第2參考範圍所讀出的前述第2像素資料,來產生內插像素資料。An image signal processing method is characterized in that the input delay signal is delayed by one frame period or a plurality of scanning line periods via the first delay unit, and is output as a first delayed video signal; and is output via the second delay unit. Delaying the first delayed video signal in a frame period and outputting it as a second delayed video signal; delaying the pixel data of the first delayed video signal in the horizontal and vertical directions, and generating the a plurality of pixel data in a first reference range used when interpolating pixel data is generated; wherein pixel data of said second delayed image signal is successively delayed in a horizontal direction and a vertical direction, and generated in the foregoing a plurality of pixel data in the second reference range used when inserting the pixel data; dividing the size of the vertical component of the motion vector used in generating the aforementioned interpolated pixel data into a plurality of levels, and detecting the vertical of the motion vector The composition is sent at each level in which frequency of occurrences When the vertical component of the motion vector exceeds a certain threshold value in a predetermined level defined in advance, the first delay is read from the first delay unit based on the first offset signal Translating, in the vertical direction, the read address of the video signal, and shifting the read address in the vertical direction when the second delayed video signal is read from the second delay unit according to the second offset signal; Selecting, according to the first offset signal, the first pixel data from the plurality of pixel data in the first reference range, and shifting the position in the vertical direction when reading, and according to the second offset signal Selecting the second pixel data in the plurality of pixel data in the second reference range and shifting the position in the vertical direction when reading the second pixel data; and reading the first pixel data read from the first reference range and from the second The second pixel data read out in the reference range is used to generate interpolated pixel data. 如申請專利範圍第9項所記載之影像訊號處理方法,其中,係根據前述第1偏置訊號,而使前述第1延遲部處之垂直方向的讀出位址朝向第1方向作平移,並根據前述第2偏置訊號,而使前述第2延遲部處之垂直方向的讀出位址朝向與第1方向相反側之第2方向作平移,根據前述第1偏置訊號,而使從前述第1參考範圍內之複數的像素資料而讀出像素資料的位置,朝向第1垂直方向作平移,並讀出前述第1像素資料,根據前述第2偏 置訊號,而使從前述第2參考範圍內之複數的像素資料而讀出像素資料的位置,朝向與前述第1垂直方向相反側之第2垂直方向作平移,並讀出前述第2像素資料。The image signal processing method according to claim 9, wherein the vertical reading address in the first delay portion is translated toward the first direction based on the first offset signal, and Translating, in the second direction of the second delay portion, the read address in the vertical direction toward the second direction opposite to the first direction by the second offset signal, and using the first offset signal from the foregoing Reading the position of the pixel data by the plurality of pixel data in the first reference range, shifting toward the first vertical direction, and reading the first pixel data, according to the second partial offset Transmitting a signal, and reading a position of the pixel data from a plurality of pixel data in the second reference range, shifting in a second vertical direction opposite to the first perpendicular direction, and reading the second pixel data . 如申請專利範圍第9項或第10項所記載之影像訊號處理方法,其中,係將前述特定之級別,設定為在並不使前述第1以及第2延遲部處之讀出位址作平移且並不使從前述第1以及第2參考範圍內之複數的像素資料而讀出像素資料之位置作平移的狀態下,與運動向量之垂直成分的大小相對應之像素資料會成為前述第1以及第2參考範圍外的級別。The image signal processing method according to claim 9 or 10, wherein the specific level is set such that the read address at the first and second delay portions is not translated. In the state in which the position of the pixel data is read from the plurality of pixel data in the first and second reference ranges, the pixel data corresponding to the vertical component of the motion vector becomes the first And the level outside the second reference range. 如申請專利範圍第11項所記載之影像訊號處理方法,其中,係判定是否發生有:運動向量之垂直成分,為在前述特定之級別中的其中一者之級別處而超過了前述特定之臨限值,並且,在垂直方向之運動方向為與超過了前述特定之臨限值的前述其中一者之級別相反之方向且身為前述特定之級別以外的級別處亦超過了前述特定之臨限值的狀態,當判別出前述狀態的情況時,係將由前述第1以及第2偏置訊號所致之前述第1以及第2延遲部處的讀出位址之平移的程度,限制為較並未判別出前述狀態的情況時而更小之值,根據對平移之程度作了限制的前述第1以及第2偏置訊號,來使從前述第1以及第2參考範圍內之複數的像素 資料而選擇前述第1以及第2像素資料並讀出時的垂直方向之位置作平移。The image signal processing method according to claim 11, wherein determining whether a vertical component of the motion vector occurs is at a level of one of the specific levels and exceeds the specific The limit value, and the direction of movement in the vertical direction is opposite to the level of one of the aforementioned ones exceeding the specific threshold value, and the level other than the aforementioned specific level also exceeds the aforementioned specific threshold When the state of the value is determined, the degree of translation of the read address at the first and second delay portions due to the first and second offset signals is limited to A value smaller than the case where the state is not determined, and the plurality of pixels from the first and second reference ranges are set based on the first and second offset signals that limit the degree of translation. The first and second pixel data are selected as the data, and the position in the vertical direction at the time of reading is shifted. 如申請專利範圍第12項所記載之影像訊號處理方法,其中,係根據將超過了前述特定之臨限值的垂直成分為最大之級別的正或者是負的其中一方之方向的垂直成分、和超過了前述特定之臨限值的前述特定之級別以外的級別之正或者是負的另外一方之方向的垂直成分,此兩者作了加算後的垂直成分之值,來產生前述第1以及第2偏置訊號。The image signal processing method according to claim 12, wherein the vertical component in a direction in which one of the positive or negative levels of the vertical component exceeding the specific threshold value is the largest is a vertical component that exceeds the positive or negative direction of the level other than the specific level of the specific threshold, and the two of the vertical components are added to generate the first and the first 2 offset signal. 如申請專利範圍第9項或第10項所記載之影像訊號處理方法,其中,係檢測出前述輸入影像訊號是否為根據膠片訊號而經由降轉(pull down)來變換為特定之垂直頻率的影像訊號,當檢測出前述輸入影像訊號係身為經由降轉所變換之影像訊號的情況時,係將由前述第1以及第2偏置訊號所致之前述第1以及第2延遲部處的讀出位址之平移的程度,設為比並未檢測出前述輸入影像訊號係身為經由降轉所變換之影像訊號的情況時的值而更大。The image signal processing method of claim 9 or 10, wherein detecting whether the input image signal is converted to a specific vertical frequency by a pull down according to a film signal When detecting that the input image signal is a video signal converted by the down-conversion, the signal is read by the first and second delay portions caused by the first and second offset signals The degree of translation of the address is set to be larger than the value when the input image signal is not detected as the image signal converted by the down-conversion. 如申請專利範圍第14項所記載之影像訊號處理方法,其中,係檢測出前述輸入影像訊號係為根據膠片畫像而經由2-2降轉所變換之影像訊號、或者是經由2-3降轉而變換之影像訊號, 當檢測出前述輸入影像訊號係身為經由2-3降轉所變換之影像訊號的情況時,係將由前述第1以及第2偏置訊號所致之前述第1以及第2延遲部處的讀出位址之平移的程度,設為比檢測出前述輸入影像訊號係身為經由2-2降轉所變換之影像訊號的情況時的值而更大。The image signal processing method according to claim 14, wherein the input image signal is detected as a video signal converted by 2-2 according to the film image, or is rotated by 2-3. The transformed image signal, When it is detected that the input image signal is converted into an image signal converted by 2-3, the reading at the first and second delay portions caused by the first and second offset signals is detected. The degree of translation of the address is set to be larger than the value when the image signal of the input image signal is detected to be converted by 2-2. 如申請專利範圍第9項或第10項所記載之影像訊號處理方法,其中,在將前述輸入影像訊號之圖框分割成複數之區域後的前述複數之區域的各個中,產生被包含於前述第1參考範圍內之複數的像素資料,在前述複數之區域的每一者中,產生被包含於前述第2參考範圍內之複數的像素資料,在前述複數之區域的每一者中,檢測出前述出現次數之頻度,在前述複數之區域的每一者中,將垂直方向之讀出位址平移,在前述複數之區域的每一者中,將選擇並讀出前述第1以及第2像素資料時之垂直方向的位置作平移,在前述複數之區域的每一者中,產生前述內插畫像資料。The image signal processing method according to claim 9 or claim 10, wherein each of the plurality of regions after dividing the frame of the input image signal into a plurality of regions is generated in the foregoing a plurality of pixel data in the first reference range, in each of the plurality of regions, generating a plurality of pixel data included in the second reference range, and detecting each of the plurality of regions In the frequency of the occurrence number, in each of the plurality of regions, the read address in the vertical direction is translated, and in each of the plurality of regions, the first and second are selected and read. The position in the vertical direction of the pixel data is translated, and in each of the aforementioned plural regions, the aforementioned inner illustrator data is generated.
TW101119326A 2011-05-31 2012-05-30 Video signal processing apparatus and method TWI501649B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011122051 2011-05-31
JP2011122057 2011-05-31
JP2011122045 2011-05-31
JP2012032803A JP5880119B2 (en) 2011-05-31 2012-02-17 Video signal processing apparatus and method
JP2012032741A JP5880116B2 (en) 2012-02-17 2012-02-17 Video signal processing apparatus and method
JP2012032801A JP5880118B2 (en) 2011-05-31 2012-02-17 Video signal processing apparatus and method
JP2012032747A JP5880117B2 (en) 2011-05-31 2012-02-17 Video signal processing apparatus and method

Publications (2)

Publication Number Publication Date
TW201304542A TW201304542A (en) 2013-01-16
TWI501649B true TWI501649B (en) 2015-09-21

Family

ID=48138302

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101119326A TWI501649B (en) 2011-05-31 2012-05-30 Video signal processing apparatus and method

Country Status (1)

Country Link
TW (1) TWI501649B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200616457A (en) * 2004-11-15 2006-05-16 Mediatek Inc Video/image processing devices and methods
US7460172B2 (en) * 2003-05-13 2008-12-02 Samsung Electronics Co., Ltd. Frame interpolating method and apparatus thereof at frame rate conversion
TW200922323A (en) * 2007-09-27 2009-05-16 Samsung Electronics Co Ltd Image processing device and method performing motion compensation using motion estimation
US7710498B2 (en) * 2004-02-13 2010-05-04 Sony Corporation Image processing apparatus, image processing method and program
US20110122951A1 (en) * 2009-11-20 2011-05-26 Canon Kabushiki Kaisha Video signal processing apparatus and video signal processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460172B2 (en) * 2003-05-13 2008-12-02 Samsung Electronics Co., Ltd. Frame interpolating method and apparatus thereof at frame rate conversion
US7710498B2 (en) * 2004-02-13 2010-05-04 Sony Corporation Image processing apparatus, image processing method and program
TW200616457A (en) * 2004-11-15 2006-05-16 Mediatek Inc Video/image processing devices and methods
TW200922323A (en) * 2007-09-27 2009-05-16 Samsung Electronics Co Ltd Image processing device and method performing motion compensation using motion estimation
US20110122951A1 (en) * 2009-11-20 2011-05-26 Canon Kabushiki Kaisha Video signal processing apparatus and video signal processing method

Also Published As

Publication number Publication date
TW201304542A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
US7075988B2 (en) Apparatus and method of converting frame and/or field rate using adaptive motion compensation
CN103227889B (en) Image signal processing apparatus, image-signal processing method, image display device, television receiver, electronic equipment
US20070103588A1 (en) System and method for adjacent field comparison in video processing
US20070053013A1 (en) Image signal processing apparatus and interlace-to-progressive conversion method
CN100576878C (en) Aliasing in the image processing is avoided
JP5490236B2 (en) Image processing apparatus and method, image display apparatus and method
US20120008692A1 (en) Image processing device and image processing method
CN101283587A (en) Scan convertion image filtering
EP2530935A2 (en) Video signal processing apparatus and method
JP4374047B2 (en) Video signal processing apparatus and video signal processing method
TWI501649B (en) Video signal processing apparatus and method
JP2008118223A (en) Pull-down signal detecting apparatus and method, and video-signal converting apparatus
JP4339237B2 (en) Sequential scan converter
JP5880116B2 (en) Video signal processing apparatus and method
US20120169927A1 (en) Color difference signal ip conversion method
KR20080041581A (en) Image processing apparatus, image processing method, electro-optical device and electronic device
JP4483255B2 (en) Liquid crystal display
JP2008078848A (en) Frame interpolation device, frame frequency converter, frame interpolation method, and frame frequency conversion method
JP5880119B2 (en) Video signal processing apparatus and method
JP5880118B2 (en) Video signal processing apparatus and method
JP5880117B2 (en) Video signal processing apparatus and method
US8373798B2 (en) Text protection device and related motion adaptive de-interlacing device
JP2010213180A (en) Telecine video signal detector, video processor, method of detecting telecine video signal, and computer program
WO2006013510A1 (en) De-interlacing
JP2011055021A (en) Image generating device, display system and image generating method