TWI501198B - Slope safety analysis system and its method for applying portable electronic device - Google Patents

Slope safety analysis system and its method for applying portable electronic device Download PDF

Info

Publication number
TWI501198B
TWI501198B TW102139527A TW102139527A TWI501198B TW I501198 B TWI501198 B TW I501198B TW 102139527 A TW102139527 A TW 102139527A TW 102139527 A TW102139527 A TW 102139527A TW I501198 B TWI501198 B TW I501198B
Authority
TW
Taiwan
Prior art keywords
slope
module
analysis
data
target
Prior art date
Application number
TW102139527A
Other languages
Chinese (zh)
Other versions
TW201516985A (en
Inventor
Wei Yao Chen
Zhe Ping Shen
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW102139527A priority Critical patent/TWI501198B/en
Publication of TW201516985A publication Critical patent/TW201516985A/en
Application granted granted Critical
Publication of TWI501198B publication Critical patent/TWI501198B/en

Links

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

應用可攜式電子裝置之邊坡安全性分析系統及其方法Slope safety analysis system using portable electronic device and method thereof

本發明係關於一種應用可攜式電子裝置之邊坡安全性分析系統及其方法,特別是指一種使用智慧型行動裝置進行分析邊坡安全性,並將分析結果顯示於智慧型行動裝置上,以讓土木、測量或是防災的現地人員能夠評估現地邊坡安全狀況。The invention relates to a slope safety analysis system and a method thereof for using a portable electronic device, in particular to a method for analyzing slope safety using a smart mobile device, and displaying the analysis result on a smart mobile device. In order to allow civil, surveying or disaster prevention personnel to assess the safety of the local slope.

水一向是邊坡穩定和地滑災害的最重要致災因子,會帶來沖刷、侵蝕效應並降低土壤剪力強度而降低該區的邊坡穩定性,近年來由於全球氣候變遷致使超大豪雨事件遽增,遂令邊坡滑動易於發生,且受到大眾的關切。Water has always been the most important hazard factor for slope stability and ground-slip disasters. It will bring erosion and erosion effects and reduce soil shear strength to reduce the slope stability in this area. In recent years, due to global climate change, the super-heavy rain event The increase in the number of slopes is prone to slippage and is of concern to the public.

而現今舊有常見邊坡穩定分析數值模型需以工作站電腦或桌上型電腦為運算硬體,方可達到計算需求,且需事先針對欲分析處所進行地質鑽探或土壤組成分析等事前作業,又現地工作往往需要攜帶多類測量工具,相關前置作業需多人協同且耗時較久,故會使得整體之分析耗時,同時亦無法即時快速得知每一地區的邊坡安全係數,因此無法作為簡易安全評估之用。However, the current common numerical model for slope stability analysis requires a workstation computer or a desktop computer as the computing hardware to meet the calculation requirements, and it is necessary to perform pre-operations such as geological drilling or soil composition analysis for the site to be analyzed. On-the-spot work often requires carrying multiple types of measurement tools. The related front-end operations require multiple people to work together and take a long time. This makes the overall analysis time-consuming and does not immediately and quickly know the slope safety factor of each area. Cannot be used for easy safety assessment.

以中華民國專利號201030687、M432028來看,這兩件專利案皆有提及邊坡監測的概念,就以中華民國專利號201030687這一件專利 案來看,是使用無線感測器進行邊坡監測,然後用ANP進行分析,而中華民國專利號M432028則是提及了數種監測設備來觀測邊坡,例如三維雷射掃描儀和複數共軛掃瞄球、複數電極(採用溫奈排列法Wenner Array或施蘭卜吉排列法Schlumberger Array)、及一地電勘測儀或是佈設於邊坡各處之複數GPS接收儀,但這兩種邊坡監測與分析專利案皆有前述所提及之缺點,就是量測之前置作業必須耗時較久,因此會使得整體之分析耗時,這也顯示了無法讓量測者能夠即時且快速得知每一地區的邊坡安全係數,因此如何能夠改善習用耗時較久的量測模式,除了提高便利性之外,亦能節省許多成本,故將會是急需克服的目標。According to the Republic of China patent number 201030687, M432028, both patent cases refer to the concept of slope monitoring, the patent of the Republic of China patent number 201030687 In the case of the case, the wireless sensor is used for slope monitoring and then analyzed by ANP, while the Republic of China patent number M432028 refers to several monitoring devices to observe the slope, such as a three-dimensional laser scanner and a plurality of Yoke scan ball, complex electrode (Wenner Array or Schlumberger Array), and a geoelectric surveyor or a plurality of GPS receivers placed around the slope, but these two The slope monitoring and analysis patent case has the shortcomings mentioned above, that is, the measurement of the pre-operation must take a long time, so the overall analysis is time-consuming, which also shows that the measurement can not be instantaneous and Quickly know the safety factor of the slope in each area, so how to improve the long-term measurement mode, in addition to improving convenience, can also save a lot of costs, so it will be an urgent need to overcome the goal.

因此,為了使防災相關工具易於取得,幫助社會大眾了解可能邊坡的滑動災害,乃考慮到可以利用現今極為普及的智慧型行動裝置,藉由裝置本身所具備的陀螺儀和GPS等功能,並自動拍攝並量測地表坡度和定位空間座標,然後透過網路擷取各防災資料庫中當地的地質、地形、河川、水文等相關圖資和基本資訊,自動整理並呼叫邊坡穩定分析程式進行運算,然後將結果顯示在智慧型行動裝置的螢幕上,這樣的分析模式非常具有便利性,因此不但可以提升邊坡分析效率,更可以達到保障民眾生命與財產安全之目的,如此應為一最佳解決方案。Therefore, in order to make disaster prevention-related tools easy to obtain, and to help the public understand the sliding disasters of possible slopes, it is considered that it is possible to utilize the smart mobile devices that are nowadays popular, with the gyroscopes and GPS functions of the devices themselves, and Automatically capture and measure the surface slope and positioning space coordinates, and then retrieve the relevant geology, terrain, river, hydrology and other related maps and basic information in each disaster prevention database through the network, automatically organize and call the slope stability analysis program. Computing, and then displaying the results on the screen of the smart mobile device, this analysis mode is very convenient, so not only can improve the efficiency of slope analysis, but also achieve the purpose of protecting people's lives and property safety, so should be the most Good solution.

本發明即在於提供一種應用可攜式電子裝置之邊坡安全性分析系統及其方法,係其操作與使用上非常具有便利性,因此不但可以提升邊坡分析效率,更可以達到保障民眾生命與財產安全之目的。The invention provides a slope safety analysis system and a method thereof for using a portable electronic device, which are very convenient in operation and use, thereby not only improving the efficiency of slope analysis, but also ensuring the life of the people and The purpose of property security.

可達成上述應用可攜式電子裝置之邊坡安全性分析系統及 其方法,係用以分析一勘驗地區之目標邊坡的安全性,該邊坡安全性分析系統係包含:一邊坡穩定性分析運算平台,係內建有一邊坡穩定性分析程式,能夠用以分析目標邊坡的安全性,而該邊坡穩定性分析程式內更包含有一植生力學分析模組、一人工智慧優化模組及一安全係數計算模組,其中該植生力學分析模組及人工智慧優化模組能夠用以挑選對應勘驗地區之潛在滑動面,並再由該安全係數計算模組藉由潛在滑動面分析出勘驗地區之目標邊坡的安全係數;一智慧型行動裝置,該智慧型行動裝置係設有攝影模組、GPS定位模組及角度感測模組,該攝影模組係能夠針對勘驗地區之目標邊坡於不同角度下拍攝多張照片,而該智慧型行動裝置內係安裝有一邊坡安全性分析程式,該邊坡安全性分析程式內係包含一影像疊合分析模組,係能夠接收該攝影模組所拍攝之複數張照片,該影像疊合分析模組能夠自動辨識各張照片的特徵點,並將複數張照片進行疊合以建構出勘驗地區之目標邊坡的現地場景資料;一坡面角度測量模組,係能夠透過將智慧型行動裝置平放於目標邊坡表面上,並由該角度感測模組進行量測後,將資料傳送至該坡面角度測量模組,以運算出勘驗地區之目標邊坡的坡面角度;一資料查詢模組,係與一環境地形地質資料庫平台相連線,而該資料查詢模組能夠透過將智慧型行動裝置之GPS定位模組進行勘驗地區之目標邊坡位置的定位座標,並於該環境地形地質資料庫平台中查詢勘驗地區之目標邊坡位置周圍的環境地形資料及數值地形模型資料;一剖面資訊生成模組,係與該坡面角度測量模組及該資料查詢模組相連接,該剖面資訊生成模組能夠依據目標邊坡的坡面角度與目標邊坡位置周圍的環境地形資料及數值地形模型資料,建構出一邊坡分析剖面圖資;一邊坡穩定性分析 模組,係與該邊坡穩定性分析運算平台、資料查詢模組、剖面資訊生成模組相連接,該邊坡穩定性分析模組能夠將邊坡分析剖面圖資及目標邊坡位置周圍的環境地形資料上傳至該邊坡穩定性分析運算平台,以由邊坡穩定性分析程式之植生力學分析模組、人工智慧優化模組及安全係數計算模組進行分析,以運算出對應勘驗地區之潛在滑動面與勘驗地區之目標邊坡的安全係數,並回傳至該邊坡穩定性分析模組;以及一邊坡穩定性告知模組,係與該邊坡穩定性分析模組及該影像疊合分析模組相連接,該邊坡穩定性告知模組能夠將安全係數與對應之潛在滑動面與勘驗地區之目標邊坡的現地場景資料進行疊合,以將分析結果顯示於現地場景資料上。The above-mentioned slope safety analysis system for portable electronic devices can be achieved and The method is for analyzing the safety of a target slope in an inspection area, and the slope safety analysis system comprises: a slope stability analysis calculation platform, and a side slope stability analysis program is built therein, which can be used To analyze the safety of the target slope, the slope stability analysis program further includes a planting mechanical analysis module, an artificial intelligence optimization module and a safety factor calculation module, wherein the planting mechanical analysis module and the artificial The smart optimization module can be used to select a potential sliding surface of the corresponding inspection area, and the safety factor calculation module analyzes the safety factor of the target slope of the inspection area by the potential sliding surface; a smart mobile device, The smart mobile device is provided with a photography module, a GPS positioning module and an angle sensing module, and the photography module is capable of taking multiple photos at different angles for the target slope of the inspection area, and the smart type A mobile slope analysis program is installed in the mobile device. The slope safety analysis program includes an image overlay analysis module, which is capable of receiving the camera module. Taking multiple photos, the image overlay analysis module can automatically identify the feature points of each photo and overlay a plurality of photos to construct the local scene data of the target slope of the survey area; The measuring module is capable of transmitting the data to the slope angle measuring module by placing the smart mobile device on the surface of the target slope and measuring by the angle sensing module, thereby calculating the survey The slope angle of the target slope of the area; a data query module is connected to an environmental topographic geological database platform, and the data query module can be used to survey the GPS positioning module of the smart mobile device Locating the location coordinates of the target slope position of the area, and querying the environmental topographic data and numerical terrain model data around the target slope position of the inspection area in the environmental topographic geological database platform; a profile information generation module, The slope angle measuring module is connected to the data query module, and the section information generating module can be based on the slope angle of the target slope and the ring around the target slope position. Terrain data and numerical terrain model data, construct a cross-sectional view of slope analysis of capital; a slope stability analysis The module is connected with the slope stability analysis computing platform, the data query module, and the profile information generation module, and the slope stability analysis module can analyze the profile of the slope and the position around the target slope. The environmental topographic data is uploaded to the slope stability analysis computing platform, and analyzed by the physiognomy analysis module, the artificial intelligence optimization module and the safety factor calculation module of the slope stability analysis program to calculate the corresponding inspection area. The potential sliding surface and the safety factor of the target slope of the survey area are transmitted back to the slope stability analysis module; and the slope stability notification module is coupled to the slope stability analysis module and the The image overlay analysis module is connected, and the slope stability notification module can overlap the safety factor with the corresponding potential sliding surface and the local scene data of the target slope of the inspection area to display the analysis result in the field. On the scene data.

更具體的說,所述攝影模組所拍攝之每兩張照片間至少有15%以上的影像重疊。More specifically, at least 15% of the images overlap between each of the two photos taken by the camera module.

更具體的說,所述環境地形資料係為土地利用、土石流潛勢溪流、降雨量、坡度、坡向、崩塌地、活動斷層、土壤、地層分佈、順向坡、人口密度和道路密度、現地地質資料、土壤特性分析資料、地下水位分佈資料、植被覆蓋比例資料、植生資料、地表侵蝕程度資料或土壤剪力強度資料。More specifically, the environmental topographic data is land use, earth-rock flow potential stream, rainfall, slope, aspect, collapse, active fault, soil, stratigraphic distribution, forward slope, population density and road density, local Geological data, soil characterization data, groundwater level distribution data, vegetation cover ratio data, vegetative data, surface erosion degree data or soil shear strength data.

更具體的說,所述角度感測模組係為水平儀、傾角儀、電子羅盤、陀螺儀或加速度計。More specifically, the angle sensing module is a level, an inclinometer, an electronic compass, a gyroscope or an accelerometer.

更具體的說,所述邊坡穩定性分析模組更具有一包含一植生力學分析模組、一人工智慧優化模組及一安全係數計算模組之邊坡穩定性分析程式,若邊坡穩定性分析模組無法與該邊坡穩定性分析運算平台進行連線時,該邊坡穩定性分析模組將會自行運作邊坡穩定性分析程式,以運 算出對應勘驗地區之潛在滑動面與勘驗地區之目標邊坡的安全係數。More specifically, the slope stability analysis module further includes a slope stability analysis program including a planting mechanical analysis module, an artificial intelligence optimization module, and a safety factor calculation module, if the slope is stable. When the analysis module cannot be connected to the slope stability analysis platform, the slope stability analysis module will operate the slope stability analysis program by itself. Calculate the safety factor of the potential slip surface corresponding to the survey area and the target slope of the survey area.

更具體的說,所述智慧型行動裝置係為手機、智慧型手機或平板電腦。More specifically, the smart mobile device is a mobile phone, a smart phone or a tablet.

本發明之邊坡安全性分析方法,其量測方法為:1.首先,使用者能夠於智慧型行動裝置上開啟一邊坡安全性分析程式,以進行分析一勘驗地區之目標邊坡的安全性;2.再藉由智慧型行動裝置,於勘驗地區之目標邊坡處,使用不同角度以進行拍攝多張照片後,藉由邊坡安全性分析程式將複數張照片進行疊合,以建構出勘驗地區之目標邊坡的現地場景資料;3.之後,由於該智慧型行動裝置上係具有一角度感測模組,因此能夠藉由該角度感測模組進行量測並運算出勘驗地區之目標邊坡的坡面角度;4.再定位出勘驗地區之目標邊坡的位置座標,並依據位置座標於一環境地形地質資料庫平台中進行查詢該勘驗地區之目標邊坡位置周圍的環境地形資料及數值地形模型資料;5.再依據目標邊坡的坡面角度與目標邊坡位置周圍的環境地形資料及數值地形模型資料,建構出一邊坡分析剖面圖資,並再將邊坡分析剖面圖資、目標邊坡位置周圍的環境地形資料上傳至一邊坡穩定性分析運算平台,而該邊坡穩定性分析運算平台能夠以植生力學分析技術及人工智慧優化技術進行分析,以運算出對應勘驗地區之潛在滑動面與勘驗地區之目標邊坡的安全係數;6.最後,將目標邊坡的安全係數與對應之潛在滑動面回傳至智慧型行 動裝置上,並將安全係數與對應之潛在滑動面與勘驗地區之目標邊坡的現地場景資料進行疊合,以將分析結果顯示於現地場景資料上。The method for analyzing the slope safety of the present invention is as follows: 1. First, the user can open a slope safety analysis program on the smart mobile device to analyze the safety of the target slope in an inspection area. 2. By using a smart mobile device, after taking multiple photos at different target angles on the target slope of the inspected area, the multiple photos are superimposed by the slope safety analysis program. Constructing the local scene data of the target slope of the survey area; 3. After that, the smart mobile device has an angle sensing module, so the angle sensing module can be used for measurement and calculation The slope angle of the target slope of the survey area; 4. Relocate the location coordinates of the target slope of the survey area, and query the target side of the survey area according to the location coordinates in an environmental topographic geological database platform Environmental topographic data and numerical terrain model data around the slope position; 5. Based on the slope angle of the target slope and the environmental topographic data and numerical terrain model data around the target slope location, The slope analysis section is extracted, and the environmental topographic data around the slope analysis section and the target slope position are uploaded to the slope stability analysis calculation platform, and the slope stability analysis calculation platform can be constructed by the planting mechanics. Analytical techniques and artificial intelligence optimization techniques are analyzed to calculate the safety factor of the target sliding surface of the corresponding inspected area and the target slope of the inspected area; 6. Finally, the safety factor of the target slope and the corresponding potential sliding surface Return to the smart line On the moving device, the safety factor is superimposed with the corresponding potential sliding surface and the local scene data of the target slope of the inspection area to display the analysis result on the local scene data.

更具體的說,所述所拍攝之每兩張照片間至少有15%以上的影像重疊。More specifically, at least 15% of the images overlap between each of the two photographs taken.

更具體的說,所述環境地形資料係為土地利用、土石流潛勢溪流、降雨量、坡度、坡向、崩塌地、活動斷層、土壤、地層分佈、順向坡、人口密度和道路密度、現地地質資料、土壤特性分析資料、地下水位分佈資料、植被覆盖比例資料、植生資料、地表侵蝕程度資料或土壤剪力強度資料。More specifically, the environmental topographic data is land use, earth-rock flow potential stream, rainfall, slope, aspect, collapse, active fault, soil, stratigraphic distribution, forward slope, population density and road density, local Geological data, soil characterization data, groundwater level distribution data, vegetation cover ratio data, vegetative data, surface erosion degree data or soil shear strength data.

更具體的說,所述角度感測模組係為水平儀、傾角儀、電子羅盤、陀螺儀或加速度計,而使用者能夠將智慧型行動裝置平放於勘驗地區之目標邊坡表面上,以運算出勘驗地區之目標邊坡的坡面角度。More specifically, the angle sensing module is a level, an inclinometer, an electronic compass, a gyroscope or an accelerometer, and the user can place the smart mobile device on the target slope surface of the inspection area. To calculate the slope angle of the target slope of the inspected area.

更具體的說,所述當邊坡分析剖面圖資、目標邊坡位置周圍的環境地形資料無法上傳至一邊坡穩定性分析運算平台時,該智慧型行動裝置之邊坡安全性分析程式則會自行運算出對應勘驗地區之潛在滑動面與勘驗地區之目標邊坡的安全係數。More specifically, when the environmental topographic data around the slope analysis profile and the target slope position cannot be uploaded to the slope stability analysis calculation platform, the slope safety analysis program of the smart mobile device will Calculate the safety factor of the potential sliding surface corresponding to the inspected area and the target slope of the inspected area.

更具體的說,所述智慧型行動裝置係為手機、智慧型手機或平板電腦。More specifically, the smart mobile device is a mobile phone, a smart phone or a tablet.

〔本發明〕〔this invention〕

1‧‧‧邊坡安全性分析系統1‧‧‧Slope Safety Analysis System

11‧‧‧邊坡穩定性分析運算平台11‧‧‧Slope stability analysis computing platform

111‧‧‧邊坡穩定性分析程式111‧‧‧Slope stability analysis program

1111‧‧‧植生力學分析模組1111‧‧‧Planting mechanics analysis module

1112‧‧‧人工智慧優化模組1112‧‧‧Artificial Intelligence Optimization Module

1113‧‧‧安全係數計算模組1113‧‧‧Safety factor calculation module

12‧‧‧智慧型行動裝置12‧‧‧Smart mobile device

121‧‧‧攝影模組121‧‧‧Photography module

122‧‧‧GPS定位模組122‧‧‧GPS positioning module

123‧‧‧角度感測模組123‧‧‧Angle sensing module

124‧‧‧邊坡安全性分析程式124‧‧‧Slope safety analysis program

1241‧‧‧影像疊合分析模組1241‧‧•Image overlay analysis module

1242‧‧‧坡面角度測量模組1242‧‧‧Slope angle measurement module

1243‧‧‧資料查詢模組1243‧‧‧Information inquiry module

1244‧‧‧剖面資訊生成模組1244‧‧‧Profile Information Generation Module

1245‧‧‧邊坡穩定性分析模組1245‧‧‧Slope stability analysis module

12451‧‧‧邊坡穩定性分析程式12451‧‧‧Slope stability analysis program

124511‧‧‧植生力學分析模組124511‧‧‧Phytomechanical Analysis Module

124512‧‧‧人工智慧優化模組124512‧‧‧Artificial Intelligence Optimization Module

124513‧‧‧安全係數計算模組124513‧‧‧Safety factor calculation module

1246‧‧‧邊坡穩定性告知模組1246‧‧‧Slope stability notification module

第1A圖係本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之 系統架構示意圖;第1B圖係本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之邊坡穩定性分析運算平台之架構示意圖;第1C圖係本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之邊坡安全性分析程式之架構示意圖;第2A圖係本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之目標邊坡的現地場景照片疊合示意圖;第2B圖係本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之目標邊坡位置周圍的環境查詢示意圖;第2C圖係本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之邊坡分析剖面圖資示意圖;第2D圖係本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之目標邊坡的安全係數與對應之潛在滑動面示意圖;第2E圖係本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之分析結果與現地場景資料疊合示意圖;以及第3圖係本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之流程示意圖。1A is a slope safety analysis system and method thereof for applying a portable electronic device according to the present invention Schematic diagram of the system architecture; FIG. 1B is a schematic diagram of the architecture of the slope stability analysis and calculation platform of the slope safety analysis system and method thereof for the portable electronic device of the present invention; FIG. 1C is a diagram of the application of the portable electronic device of the present invention Schematic diagram of the slope safety analysis program of the slope safety analysis system and the method thereof; FIG. 2A is a local scene of the target slope of the slope safety analysis system and the method thereof using the portable electronic device of the present invention Photo overlay diagram; FIG. 2B is a schematic diagram of environmental query around the target slope position of the slope safety analysis system and method of the present invention using the portable electronic device; FIG. 2C is a portable electronic device using the present invention The slope analysis analysis system and the method of the slope analysis profile diagram of the method; the 2D diagram is the safety factor and correspondingity of the target slope of the slope safety analysis system and the method of the invention using the portable electronic device The schematic diagram of the potential sliding surface; the second embodiment is the analysis result of the slope safety analysis system and the method of the portable electronic device of the present invention and the field field Information laminated schematic; and FIG. 3 based on the present invention is applied to the slope of the portable electronic device security systems and methods of flow analysis of FIG.

有關於本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.

請參閱第1A圖、第1B圖及第1C圖,為本發明應用可攜式電子裝置之邊坡安全性分析系統及其方法之系統架構示意圖、邊坡穩定 性分析運算平台之架構示意圖、邊坡安全性分析程式之架構示意圖,由圖中可知,該邊坡安全性分析系統1係包含一邊坡穩定性分析運算平台11及一智慧型行動裝置12,其中該邊坡穩定性分析運算平台11內建有一邊坡穩定性分析程式111,該邊坡穩定性分析程式111能夠分析目標邊坡的安全性,而該邊坡穩定性分析程式111內更包含有一植生力學分析模組1111、一人工智慧優化模組1112及一一安全係數計算模組1113;本發明使用極限平衡法(Limit Equilibrium Method,LEM)來進行邊坡穩定分析,主要參數為土壤剪力強度參數,如摩擦角(φ)、凝聚力(c)和單位重(γ)等,假設邊坡破壞瞬間,土體為剛性並沿著一個連續的破壞面滑動,可以將整個滑動塊體一起分析或將土體切片分析,基本分析方法包括一般切片法、Bishop Method、Simplified Janbu Method、Spencer Method等,基於不同假設計算邊坡土體磨擦力和驅動力之間的比值,以磨擦力除以驅動力,即可取得安全因數;但本發明極限平衡法與一般習用的不同,由於邊坡的植生和其根系具有保護邊坡的效果,尤其是根系的作用類似地錨,具有固結土壤、防止滑動的功能,可惜一般極限平衡法算法並未列入邊坡穩定分析,各類植生有獨特的特徵要素可供辨識,如各種樹木的樹葉外觀可經行動裝置拍攝影像後獲得該樹種的學名,然後根據其名稱查詢資料庫得知其根系類別、根系分布、根面積比(Root Area Ratio)、可能根系深度與根系抗拉強度等參數,本發明可針對這些參數計算土壤因植生而產生的剪力強度增量,併入邊坡穩定程式中進行分析。Please refer to FIG. 1A, FIG. 1B and FIG. 1C. FIG. 1 is a schematic diagram of a system architecture of a slope safety analysis system and a method for applying the portable electronic device according to the present invention, and the slope is stable. The schematic diagram of the architecture of the analysis platform and the architecture diagram of the slope safety analysis program. As can be seen from the figure, the slope safety analysis system 1 includes a slope stability analysis computing platform 11 and a smart mobile device 12, wherein The slope stability analysis computing platform 11 has a slope stability analysis program 111 built therein. The slope stability analysis program 111 can analyze the safety of the target slope, and the slope stability analysis program 111 further includes a slope stability analysis program 111. The planting mechanics analysis module 1111, an artificial intelligence optimization module 1112 and a safety factor calculation module 1113; the invention uses the Limit Equilibrium Method (LEM) for slope stability analysis, the main parameter is soil shear Strength parameters, such as friction angle (φ), cohesion (c), and unit weight (γ), assuming that the slope is instantaneous, the soil is rigid and slides along a continuous failure surface, and the entire sliding block can be analyzed together. Or soil slice analysis, basic analysis methods include general slicing method, Bishop Method, Simplified Janbu Method, Spencer Method, etc., based on different assumptions The ratio between the frictional force and the driving force of the slope soil is obtained by dividing the friction force by the driving force, and the safety factor is obtained. However, the limit equilibrium method of the present invention is different from the conventional one, because the vegetation of the slope and the root system have a protective edge. The effect of the slope, especially the root system, is similar to the anchor, which has the function of consolidating the soil and preventing the sliding. Unfortunately, the general limit equilibrium method is not included in the slope stability analysis, and various types of vegetation have unique characteristic elements for identification. For example, the appearance of the leaves of various trees can be obtained by taking images of the tree, and then the scientific name of the tree species can be obtained. Then, according to the name query database, the root type, root distribution, root area ratio (Root Area Ratio), possible root depth and root resistance can be obtained. For parameters such as tensile strength, the present invention can calculate the shear strength increment of the soil due to planting for these parameters, and incorporate the analysis into the slope stability program.

另外,本發明在進行邊坡穩定分析時,會假設不同的滑動面 進行計算,找出最小的安全因數,但一般習用的邊坡穩定程式多在人工設定的搜索範圍內以隨機亂數挑選數十個潛在滑動面加以分析,並不會全面地搜尋最可能滑動面(因此沒有辦法保證找到最小的安全因數),本發明使用人工智慧之粒子群演算法(Particle Swarm Optimization,PSO)針對各潛在滑動面的搜尋方式進行優化,以快速收斂到最小安全因數出現的區域,並找出最小的安全因數。In addition, the present invention assumes different sliding surfaces when performing slope stability analysis. Calculate to find the minimum safety factor, but the commonly used slope stabilization program analyzes dozens of potential sliding surfaces in a random random number within the manually set search range, and does not comprehensively search for the most likely sliding surface. (Therefore, there is no way to ensure that the minimum safety factor is found.) The present invention uses Artificial Intelligence's Particle Swarm Optimization (PSO) to optimize the search for each potential sliding surface to quickly converge to the area where the minimum safety factor occurs. And find the smallest safety factor.

而當使用者要進行野外現勘時,能透過智慧型行動裝置12針對可疑不穩定邊坡進行調查,因此當使用者操作該智慧型行動裝置12時,由於該智慧型行動裝置12係設有攝影模組121、GPS定位模組122及角度感測模組123,因此使用者必須先開啟所安裝之邊坡安全性分析程式124,並再藉由攝影模組121於不同角度下拍攝多張勘驗地區之目標邊坡的照片,而為了後續能夠將多張照片疊合之處理,故拍攝之每兩張照片間必須至少有15%以上的影像重疊;而該邊坡安全性分析程式124中係具有一影像疊合分析模組1241、一坡面角度測量模組1242、一資料查詢模組1243、一剖面資訊生成模組1244、一邊坡穩定性分析模組1245及一邊坡穩定性告知模組1246,當該影像疊合分析模組121接收該攝影模組121所拍攝之複數張照片時,由於拍攝之每兩張照片間必須至少有15%以上的影像重疊,因此由該影像疊合分析模組1241自動辨識各張照片的特徵點,並將複數張照片進行疊合後,如第2A圖所示,能夠建構出勘驗地區之目標邊坡的現地場景資料;之後,為了要明確定義出邊坡剖面,以便分析其安全性,故先藉由該坡面角度測量模組進行運算,由於智慧型行動裝置12係設有角度 感測模組123,本實施中之角度感測模組123係為水平儀、傾角儀、電子羅盤、陀螺儀或加速度計,因此當使用者將智慧型行動裝置12平放於目標邊坡表面上時,陀螺儀及加速度計則能夠進行量測取得數據,並將數據傳入該坡面角度測量模組1242中,以運算出勘驗地區之目標邊坡的坡面角度;而角度感測模組123量測邊坡角度方式亦有不同的方式,以陀螺儀(或水平儀或傾角儀)來看,第一種方式是將智慧型行動裝置12放置於邊坡表面上後,則再利用陀螺儀(或水平儀、或傾角儀)量測邊坡大範圍的平均坡度;第二種方式是將利用陀螺儀(或水平儀、或傾角儀)使智慧型行動裝置12畫面上產生一條水平基準線,然後以垂直地面的方式拍攝邊坡影像,並藉由影像處理功能繪出邊坡地表線,而邊坡地表線與水平基準線的夾角即為坡面角度。When the user wants to perform the field survey, the smart mobile device 12 can be used to investigate the suspected unstable slope. Therefore, when the user operates the smart mobile device 12, the smart mobile device 12 is provided. The camera module 121, the GPS positioning module 122, and the angle sensing module 123, so the user must first open the installed slope safety analysis program 124, and then take multiple shots at different angles by the camera module 121. Investigate the photo of the target slope of the area, and in order to be able to superimpose multiple photos in the future, at least 15% of the images must overlap each other between the two photographs; and the slope safety analysis program 124 The middle system has an image overlay analysis module 1241, a slope angle measurement module 1242, a data query module 1243, a profile information generation module 1244, a slope stability analysis module 1245, and a slope stability notification. The module 1246, when the image overlay analysis module 121 receives a plurality of photos taken by the camera module 121, since at least 15% of the images must overlap each other between the two photos, The image overlay analysis module 1241 automatically recognizes the feature points of each photo and superimposes the plurality of photos. As shown in FIG. 2A, the local scene data of the target slope of the inspected area can be constructed; In order to clearly define the slope profile in order to analyze its safety, the slope angle measurement module is first used for calculation, because the smart mobile device 12 is equipped with an angle. The sensing module 123, the angle sensing module 123 in the present embodiment is a level, an inclinometer, an electronic compass, a gyroscope or an accelerometer, so when the user places the smart mobile device 12 on the target slope surface The gyroscope and the accelerometer are capable of measuring and obtaining data, and transmitting the data to the slope angle measuring module 1242 to calculate the slope angle of the target slope of the inspection area; and the angle sensing mode Group 123 measures the angle of the slope in different ways. In the gyroscope (or level or inclinometer), the first way is to place the smart mobile device 12 on the slope surface, then use the gyro. The instrument (or level, or inclinometer) measures the average slope of a wide range of slopes; the second way is to use a gyroscope (or level, or inclinometer) to create a horizontal reference line on the smart mobile device 12 screen. Then, the image of the slope is photographed in a vertical manner, and the surface line of the slope is drawn by the image processing function, and the angle between the surface line of the slope and the horizontal reference line is the slope angle.

由於現今因多種地質、水文圖資、歷年氣象資料與即時雨量觀測資訊皆可連線雲端資料庫,根據已知的空間座標即時取得,甚至有相當不錯的地表地形模型可以使用,例如美國在2002年提供全球多處地區的數位地形模型(精度為30m x 30m),全台也已建置多處的高精度地形模型(精度為5m x 5m),因此結合該智慧型行動裝置所提供的多項功能,如上所述,使用者能將智慧型行動裝置12貼近邊坡地表,即時拍照並測量邊坡角度,之後再透過該智慧型行動裝置12之GPS定位模組122進行勘驗地區之目標邊坡位置的定位座標後,如第2B圖所示,係使用資料查詢模組1243於一環境地形地質資料庫平台2中查詢勘驗地區之目標邊坡位置周圍的環境地形資料及數值地形模型資料(包含環境地形資料、地質資料及影像資料),例如能夠連接至國內或國外的數位地形模型DTM進行查詢,如GDEM, 則能夠查詢出土地利用、土石流潛勢溪流、降雨量、坡度、坡向、崩塌地、活動斷層、土壤、地層分佈、順向坡、人口密度和道路密度、現地地質資料、土壤特性分析資料、地下水位分佈資料、植被覆蓋比例資料、植生資料、地表侵蝕程度資料或土壤剪力強度資料等等,本發明所查詢的資料庫包括中央地調所相關眾多資料庫、美國GDEM資料庫、台北市政府大地工程處等等。之後,該剖面資訊生成模組1244能夠依據目標邊坡的坡面角度資料與目標邊坡位置周圍的環境地形資料及數值地形模型資料,如第2C圖所示,則會建構出一邊坡分析剖面圖資(其X軸為水平距離(公尺),Y軸為垂直距離(公尺));而後則進一步開始分析邊坡安全性,由該邊坡穩定性分析模組1245將邊坡分析剖面圖資及目標邊坡位置周圍的環境地形資料上傳至該邊坡穩定性分析運算平台11,並由邊坡穩定性分析運算平台11之邊坡穩定性分析程式111的植生力學分析模組1111及人工智慧優化模組1112進行分析後,由於該植生力學分析模組1111及人工智慧優化模組1112會與該安全係數計算模組1113相連接,因此由該植生力學分析模組1111及人工智慧優化模組1112取出對應之潛在滑動面後,再由該安全係數計算模組1113總合運算出勘驗地區之目標邊坡的安全係數,而所分析出之對應之潛在滑動面(崩塌面)與安全係數與則如第2D圖所示,而潛在滑動面的圖資之X軸為水平距離(公尺)、Y軸為垂直距離(公尺),本實施例中是測出了八組潛在滑動面,而不同潛在滑動面之安全係數皆不同,本次測得之安全係數FS為1.05、1.17、1.23、1.38、1.46、1.52、1.64、1.72,而程式會挑選最低的FS作為整體的安全因數; 如上所述,本發明主要參照現地影像資料、手持行動裝置之感測器量測數值與各類雲端資料庫之相關參數,智慧地組成現地邊坡資料和所需的分析參數,並考慮根系強度的貢獻,結合人工智慧快速搜尋出最危險的滑動面,作為該地邊坡安全性之判識依據。使用者先以GPS測得該地之空間座標,查詢雲端地質資料庫、地形資料庫與影像資料庫而得該地的地質和環境資訊,再以植生辨識系統判讀邊坡的植生種類而得根系強度,代入邊坡穩定分析系統,經人工智慧演算法的快速搜尋能力,得到該邊坡的安全因數。而之後為了能夠使分析結果能夠顯示於智慧型行動裝置12上,並讓使用者能夠清楚了解邊坡安全程度,由於邊坡穩定性分析運算平台11分析完後會將分析結果傳送回該邊坡穩定性分析模組1245,之後,再藉由該邊坡穩定性告知模組1246將安全係數與對應之潛在滑動面與勘驗地區之目標邊坡的現地場景資料進行疊合,如第2E圖所示,實施例中則是重新挑選一個新的目標邊坡進行測試,故與前述第2D圖所提之FS數據略有不同,當然亦會經過如同第2D圖的處理程序,先找出多組的潛在滑動面與安全係數,而由第2E圖中可知,最後取得最低的FS為0.893,故作為整體的安全因數,再將安全係數與對應之潛在滑動面與勘驗地區之目標邊坡的現地場景資料進行疊合後,則將分析結果顯示於現地場景資料上。Due to the variety of geological, hydrographic, historical meteorological data and instantaneous rainfall observations, the cloud database can be connected to the cloud database according to known spatial coordinates. Even a fairly good surface model can be used, for example, in the United States in 2002. The digital terrain model (with an accuracy of 30m x 30m) is provided in many regions around the world. The high-precision terrain model (with an accuracy of 5m x 5m) has been built in the whole station, so it combines many of the smart mobile devices. Function, as described above, the user can bring the smart mobile device 12 close to the slope surface, take a picture and measure the angle of the slope, and then use the GPS positioning module 122 of the smart mobile device 12 to perform the target side of the inspection area. After the positioning coordinates of the slope position, as shown in FIG. 2B, the data query module 1243 is used to query the environmental topographic data and the numerical terrain model data around the target slope position of the inspection area in an environmental topographic geological database platform 2. (including environmental topographical data, geological data and image data), such as DTM that can be connected to domestic or foreign digital terrain models, such as GDE M, It can query land use, earth-rock flow potential stream, rainfall, slope, aspect, collapse, active fault, soil, stratigraphic distribution, forward slope, population density and road density, local geological data, soil characteristics analysis data, Groundwater level distribution data, vegetation cover ratio data, vegetative data, surface erosion degree data or soil shear strength data, etc., the database queried by the present invention includes a large number of databases related to the central harmonization, the US GDEM database, and the city of Taipei. Government Land Engineering Office and so on. Thereafter, the profile information generation module 1244 can construct a slope analysis profile according to the slope angle data of the target slope and the environmental topographic data and the numerical terrain model data around the target slope position, as shown in FIG. 2C. Figure (the X axis is the horizontal distance (meter), the Y axis is the vertical distance (meter)); then the slope safety is further analyzed, the slope stability analysis module 1245 will analyze the slope The environmental topographic data around the position and the target slope position is uploaded to the slope stability analysis computing platform 11, and the phytomechanical analysis module 1111 of the slope stability analysis program 111 of the slope stability analysis computing platform 11 and After the artificial intelligence optimization module 1112 analyzes, the planting mechanics analysis module 1111 and the artificial intelligence optimization module 1112 are connected to the safety factor calculation module 1113, so the planting mechanics analysis module 1111 and artificial intelligence optimization are performed. After the module 1112 takes out the corresponding potential sliding surface, the safety factor calculation module 1113 sums up the safety factor of the target slope of the inspection area, and the corresponding analysis is performed. The potential sliding surface (crashing surface) and the safety factor are as shown in FIG. 2D, and the X-axis of the potential sliding surface is a horizontal distance (meter) and the Y-axis is a vertical distance (meter), this embodiment In the middle, eight sets of potential sliding surfaces were measured, and the safety factors of different potential sliding surfaces were different. The safety factor FS measured this time was 1.05, 1.17, 1.23, 1.38, 1.46, 1.52, 1.64, 1.72, and the program would Pick the lowest FS as the overall safety factor; As described above, the present invention mainly refers to the local image data, the sensor measurement value of the handheld mobile device and the related parameters of various cloud databases, intelligently composing the existing slope data and the required analysis parameters, and considering the root strength. The contribution, combined with artificial intelligence, quickly searched for the most dangerous sliding surface as the basis for the safety of the slope. The user first measures the spatial coordinates of the place by GPS, queries the cloud geological database, the topographic database and the image database to obtain the geological and environmental information of the place, and then uses the phytolith identification system to interpret the vegetative species of the slope to obtain the root system. The strength is substituted into the slope stability analysis system, and the safety factor of the slope is obtained by the rapid search ability of the artificial intelligence algorithm. Then, in order to enable the analysis result to be displayed on the smart mobile device 12, and to enable the user to clearly understand the degree of safety of the slope, the analysis result is transmitted back to the slope after the slope stability analysis computing platform 11 analyzes the analysis result. The stability analysis module 1245, and then, by the slope stability notification module 1246, superimposes the safety factor and the corresponding potential sliding surface with the local scene data of the target slope of the inspection area, as shown in FIG. 2E. As shown in the figure, in the embodiment, a new target slope is re-selected for testing, so it is slightly different from the FS data mentioned in the above 2D figure, and of course, it will be found through the processing procedure like the 2D figure. The potential sliding surface of the group and the safety factor. As can be seen from Fig. 2E, the lowest FS is 0.893. Therefore, as a whole safety factor, the safety factor and the corresponding potential sliding surface are compared with the target slope of the inspection area. After the existing scene data is superimposed, the analysis result is displayed on the local scene data.

但由於邊坡穩定性分析運算平台11並不是都能夠常保持連線的,若是邊坡穩定性分析模組1245無法連上邊坡穩定性分析運算平台11時,如第1C圖所示,由於該邊坡穩定性分析模組1245更具有一包含植生力學分析模組124511、人工智慧優化模組124512及安全係數計算模組 124513之邊坡穩定性分析程式12451,因此該邊坡穩定性分析模組1245將會自行運作邊坡穩定性分析程式12451,以運算出勘驗地區之目標邊坡對應之潛在滑動面與安全係數。However, since the slope stability analysis calculation platform 11 is not always able to maintain the connection, if the slope stability analysis module 1245 cannot be connected to the slope stability analysis calculation platform 11, as shown in FIG. 1C, The slope stability analysis module 1245 further includes a planting mechanical analysis module 124511, an artificial intelligence optimization module 124512, and a safety factor calculation module. 124513 slope stability analysis program 12451, so the slope stability analysis module 1245 will run the slope stability analysis program 12451 to calculate the potential sliding surface and safety factor corresponding to the target slope of the survey area. .

綜上所述,如第3圖所示,本發明之應用可攜式電子裝置之邊坡安全性分析方法,其步驟為:1.首先,使用者能夠於智慧型行動裝置上開啟一邊坡安全性分析程式,以進行分析一勘驗地區之目標邊坡的安全性301;2.再藉由智慧型行動裝置,於勘驗地區之目標邊坡處,使用不同角度進行拍攝多張照片後,藉由邊坡安全性分析程式將複數張照片進行疊合,以建構出勘驗地區之目標邊坡的現地場景資料302;3.之後,由於該智慧型行動裝置上係具有一角度感測模組,因此能夠藉由該角度感測模組進行量測並運算出勘驗地區之目標邊坡的坡面角度303;4.再定位出勘驗地區之目標邊坡的位置座標,並依據位置座標於一環境地形地質資料庫平台中進行查詢該勘驗地區之目標邊坡位置周圍的環境地形資料及數值地形模型資料304;5.再依據目標邊坡的坡面角度與目標邊坡位置周圍的環境地形資料,建構出一邊坡分析剖面圖資,並再將邊坡分析剖面圖資、目標邊坡位置周圍的環境地形資料及數值地形模型資料上傳至一邊坡穩定性分析運算平台,而該邊坡穩定性分析運算平台能夠以植生力學分析技術及人工智慧優化技術進行分析,以運算出勘驗地區之目標邊坡對應之潛在滑動面與安全係數305; 6.最後,將目標邊坡的安全係數與對應之潛在滑動面回傳至智慧型行動裝置上,並將安全係數與對應之潛在滑動面與勘驗地區之目標邊坡的現地場景資料進行疊合,以將分析結果顯示於現地場景資料上306。In summary, as shown in FIG. 3, the method for analyzing the slope safety of the portable electronic device of the present invention has the following steps: 1. First, the user can turn on the side slope safety on the smart mobile device. Sexual analysis program to analyze the safety of the target slope of an inspected area 301; 2. After taking multiple photos at different angles on the target slope of the inspected area by means of a smart mobile device The plurality of photographs are superimposed by the slope safety analysis program to construct the local scene data 302 of the target slope of the survey area; 3. After that, the smart mobile device has an angle sensing mode Group, so the angle sensing module can be used to measure and calculate the slope angle 303 of the target slope of the inspected area; 4. reposition the positional coordinates of the target slope of the inspected area, and according to the position The coordinates are in an environmental topographic geological database platform to query the environmental topographic data and numerical terrain model data around the target slope location of the survey area; 5. According to the slope angle of the target slope and the target slope The surrounding environmental topographic data is constructed, and the slope analysis profile is constructed, and the slope analysis profile, the environmental topographic data around the target slope location, and the numerical terrain model data are uploaded to the slope stability analysis computing platform. The slope stability analysis computing platform can be analyzed by the planting mechanics analysis technology and the artificial intelligence optimization technology to calculate the potential sliding surface and the safety factor 305 corresponding to the target slope of the inspection area; 6. Finally, the safety factor of the target slope and the corresponding potential sliding surface are transmitted back to the smart mobile device, and the safety factor is overlapped with the corresponding potential sliding surface and the local scene data of the target slope of the inspection area. In order to display the analysis results on the local scene data 306.

本發明所提供之應用可攜式電子裝置之邊坡安全性分析系統及其方法,與其他習用技術相互比較時,其優點如下:The slope safety analysis system and method thereof for applying the portable electronic device provided by the present invention have the following advantages when compared with other conventional technologies:

1.本發明可即時地針對潛在滑動性邊坡擷取立體地形模型資料,以所在地的空間座標,於雲端上的資料庫或是網路上其他種類的地理資訊系統平台中,取得相關資料以進行邊坡安全係數分析,以從而判定該處的潛在地滑風險,如此將能夠作為快速迅捷的防災決策之用。1. The present invention can instantly capture the stereoscopic terrain model data for the potential sliding slope, obtain relevant data by using the spatial coordinates of the location, the database on the cloud or other kinds of geographic information system platforms on the network. The slope safety factor is analyzed to determine the potential slip risk at the site, which will serve as a quick and rapid disaster prevention decision.

2.本發明其操作與使用上非常具有便利性,讓使用者能夠輕便勘訪、隨處計算、即時得知目標區域的安全性,以作為防災或架設便橋、便道之參考,除此之外,更可提昇災後災區狀況勘查的時效,以達到保障民眾生命與財產安全之目的。2. The invention is very convenient in operation and use, so that the user can easily search, calculate anywhere, and instantly know the security of the target area, as a reference for disaster prevention or erection of bridges and access roads, in addition, It can also improve the timeliness of the investigation of the situation in the disaster area after the disaster, so as to achieve the purpose of safeguarding the lives and property of the people.

3.本發明的重點在於整合所有技術,提供行動式的現地分析系統,盡可能將資料的擷取自動化、智慧化,而不像過去必須在辦公室內由工程師判斷和輸入資料,才能進行分析邊坡安全性。3. The focus of the present invention is to integrate all technologies, provide a mobile local analysis system, and automate and intelligentize the data as much as possible, instead of having to judge and input data in the office by engineers in the past. Slope safety.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

1‧‧‧邊坡安全性分析系統1‧‧‧Slope Safety Analysis System

11‧‧‧邊坡穩定性分析運算平台11‧‧‧Slope stability analysis computing platform

12‧‧‧智慧型行動裝置12‧‧‧Smart mobile device

121‧‧‧攝影模組121‧‧‧Photography module

122‧‧‧GPS定位模組122‧‧‧GPS positioning module

123‧‧‧角度感測模組123‧‧‧Angle sensing module

124‧‧‧邊坡安全性分析程式124‧‧‧Slope safety analysis program

Claims (12)

一種應用可攜式電子裝置之邊坡安全性分析系統,係用以分析一勘驗地區之目標邊坡的安全性,該邊坡安全性分析系統係包含:一邊坡穩定性分析運算平台,係內建有一邊坡穩定性分析程式,能夠用以分析目標邊坡的安全性,而該邊坡穩定性分析程式內更包含有一植生力學分析模組、一人工智慧優化模組及一安全係數計算模組,其中該植生力學分析模組及人工智慧優化模組能夠用以挑選對應勘驗地區之潛在滑動面,並再由該安全係數計算模組藉由潛在滑動面分析出勘驗地區之目標邊坡的安全係數;一智慧型行動裝置,該智慧型行動裝置係設有攝影模組、GPS定位模組及角度感測模組,該攝影模組係能夠針對勘驗地區之目標邊坡於不同角度下拍攝多張照片,而該智慧型行動裝置內係安裝有一邊坡安全性分析程式,該邊坡安全性分析程式內係包含:一影像疊合分析模組,係能夠接收該攝影模組所拍攝之複數張照片,該影像疊合分析模組能夠自動辨識各張照片的特徵點,並將複數張照片進行疊合以建構出勘驗地區之目標邊坡的現地場景資料;一坡面角度測量模組,係能夠透過將智慧型行動裝置平放於目標邊坡表面上,並由該角度感測模組進行量測後,將資料傳送至該坡面角度測量模組,以運算出勘驗地區之目標邊坡的坡面角度;一資料查詢模組,係與一環境地形地質資料庫平台相連線,而該資料查詢模組能夠透過將智慧型行動裝置之GPS定位模組進行勘驗地區之目標邊坡位置的定位座標,並於該環境地形地質資料庫平台中 查詢勘驗地區之目標邊坡位置周圍的環境地形資料及數值地形模型資料;一剖面資訊生成模組,係與該坡面角度測量模組及該資料查詢模組相連接,該剖面資訊生成模組能夠依據目標邊坡的坡面角度與目標邊坡位置周圍的環境地形資料及數值地形模型資料,建構出一邊坡分析剖面圖資;一邊坡穩定性分析模組,係與該邊坡穩定性分析運算平台、資料查詢模組、剖面資訊生成模組相連接,該邊坡穩定性分析模組能夠將邊坡分析剖面圖資及目標邊坡位置周圍的環境地形資料上傳至該邊坡穩定性分析運算平台,以由邊坡穩定性分析程式之植生力學分析模組、人工智慧優化模組及安全係數計算模組進行分析,以運算出對應勘驗地區之潛在滑動面與勘驗地區之目標邊坡的安全係數,並回傳至該邊坡穩定性分析模組;以及一邊坡穩定性告知模組,係與該邊坡穩定性分析模組及該影像疊合分析模組相連接,該邊坡穩定性告知模組能夠將安全係數與對應之潛在滑動面與勘驗地區之目標邊坡的現地場景資料進行疊合,以將分析結果顯示於現地場景資料上。A slope safety analysis system using a portable electronic device for analyzing the safety of a target slope in an inspection area, the slope safety analysis system comprising: a slope stability analysis and calculation platform, A side slope stability analysis program is built in, which can be used to analyze the safety of the target slope. The slope stability analysis program also includes a planting mechanical analysis module, an artificial intelligence optimization module and a safety factor calculation. The module, wherein the phytomechanical analysis module and the artificial intelligence optimization module can be used to select a potential sliding surface of the corresponding inspection area, and the safety coefficient calculation module analyzes the target of the inspection area by the potential sliding surface The safety factor of the slope; a smart mobile device, which is provided with a photography module, a GPS positioning module and an angle sensing module, which can be aimed at the target slope of the inspection area. Multiple photos are taken at different angles, and the smart mobile device is equipped with a slope safety analysis program. The slope safety analysis program includes: a shadow The overlay analysis module is capable of receiving a plurality of photos taken by the camera module, and the image overlay analysis module can automatically identify feature points of each photo and superimpose a plurality of photos to construct an inquest. The local scene data of the target slope of the area; a slope angle measurement module is capable of placing the smart mobile device on the surface of the target slope and measuring by the angle sensing module Transfer to the slope angle measuring module to calculate the slope angle of the target slope of the survey area; a data query module is connected to an environmental terrain geological database platform, and the data query module The positioning target of the target slope position of the inspected area can be obtained by using the GPS positioning module of the smart mobile device, and in the environmental terrain geological database platform Querying the environmental topographic data and numerical terrain model data around the target slope position of the inspected area; a section information generating module is connected with the slope angle measuring module and the data query module, and the section information generating module The group can construct the slope analysis section according to the slope angle of the target slope and the environmental topographic data and numerical terrain model data around the target slope position; the slope stability analysis module, the stability of the slope The analysis computing platform, the data query module, and the profile information generation module are connected, and the slope stability analysis module can upload the slope analysis profile and the environmental topographic data around the target slope position to the slope stability. The analysis and calculation platform is analyzed by the plant mechanics analysis module, the artificial intelligence optimization module and the safety factor calculation module of the slope stability analysis program to calculate the potential sliding surface of the corresponding inspection area and the target of the inspection area. The safety factor of the slope is transmitted back to the slope stability analysis module; and the slope stability notification module is stabilized with the slope The analysis module and the image overlay analysis module are connected, and the slope stability notification module can overlap the safety factor with the corresponding potential sliding surface and the local scene data of the target slope of the inspection area, The analysis results are displayed on the local scene data. 如申請專利範圍第1 項所述之應用可攜式電子裝置之邊坡安全性分析系統,其中該攝影模組所拍攝之每兩張照片間至少有15%以上的影像重疊。The slope safety analysis system for applying the portable electronic device according to claim 1 , wherein at least 15% of the images overlap between each of the two photos taken by the camera module. 如申請專利範圍第1 項所述之應用可攜式電子裝置之邊坡安全性分析系統,其中該環境地形資料係為土地利用、土石流潛勢溪流、降雨量、 坡度、坡向、崩塌地、活動斷層、土壤、地層分佈、順向坡、人口密度和道路密度、現地地質資料、土壤特性分析資料、地下水位分佈資料、植被覆蓋比例資料、植生資料、地表侵蝕程度資料或土壤剪力強度資料。The application of the portable electronic device applications Slope Analysis System The patentable scope of item 1, wherein the environmental terrain data based land use, potential landslides streams, precipitation, slope, aspect, to collapse, Active faults, soil, stratigraphic distribution, sloping slope, population density and road density, local geological data, soil characterization data, groundwater level distribution data, vegetation cover ratio data, vegetative data, surface erosion degree data or soil shear strength data . 如申請專利範圍第1 項所述之應用可攜式電子裝置之邊坡安全性分析系統,其中該角度感測模組係為水平儀、傾角儀、電子羅盤、陀螺儀或加速度計。The slope safety analysis system for applying the portable electronic device according to claim 1 , wherein the angle sensing module is a level, an inclinometer, an electronic compass, a gyroscope or an accelerometer. 如申請專利範圍第1 項所述之應用可攜式電子裝置之邊坡安全性分析系統,其中該邊坡穩定性分析模組更具有一包含一植生力學分析模組、一人工智慧優化模組及一安全係數計算模組之邊坡穩定性分析程式,若邊坡穩定性分析模組無法與該邊坡穩定性分析運算平台進行連線時,該邊坡穩定性分析模組將會自行運作邊坡穩定性分析程式,以運算出對應勘驗地區之潛在滑動面與勘驗地區之目標邊坡的安全係數。The slope safety analysis system applied to the portable electronic device of the patent scope of item 1, wherein the slope stability analysis module further comprises a plant having a raw mechanical analysis module, a module optimization AI And a slope stability analysis program of the safety factor calculation module, if the slope stability analysis module cannot be connected with the slope stability analysis calculation platform, the slope stability analysis module will operate by itself The slope stability analysis program is used to calculate the safety factor of the target slip surface of the corresponding inspected area and the target slope of the survey area. 如申請專利範圍第1 項所述之應用可攜式電子裝置之邊坡安全性分析系統,其中該智慧型行動裝置係為手機、智慧型手機或平板電腦。The slope safety analysis system for a portable electronic device, as described in claim 1 , wherein the smart mobile device is a mobile phone, a smart phone or a tablet computer. 一種應用可攜式電子裝置之邊坡安全性分析方法,其量測方法為:首先,使用者能夠於智慧型行動裝置上開啟一邊坡安全性分析程式,以進行分析一勘驗地區之目標邊坡的安全性;再藉由智慧型行動裝置,於勘驗地區之目標邊坡處,使用不同角度進行拍攝多張照片後,藉由邊坡安全性分析程式將複數張照片進行疊合,以建構出勘驗地區之目標邊坡的現地場景資料;之後,由於該智慧型行動裝置上係具有一角度感測模組,因此能夠藉由該角度感測模組進行量測並運算出勘驗地區之目標邊坡的坡面角度; 再定位出勘驗地區之目標邊坡的位置座標,並依據位置座標於一環境地形地質資料庫平台中進行查詢該勘驗地區之目標邊坡位置周圍的環境地形資料及數值地形模型資料;再依據目標邊坡的坡面角度與目標邊坡位置周圍的環境地形資料及數值地形模型資料,建構出一邊坡分析剖面圖資,並再將邊坡分析剖面圖資、目標邊坡位置周圍的環境地形資料上傳至一邊坡穩定性分析運算平台,而該邊坡穩定性分析運算平台能夠以植生力學分析技術及人工智慧優化技術進行分析,以運算出對應勘驗地區之潛在滑動面與勘驗地區之目標邊坡的安全係數;最後,將目標邊坡的安全係數與對應之潛在滑動面回傳至智慧型行動裝置上,並將安全係數與對應之潛在滑動面與勘驗地區之目標邊坡的現地場景資料進行疊合,以將分析結果顯示於現地場景資料上。A method for analyzing the slope safety of a portable electronic device is as follows: First, the user can open a slope safety analysis program on the smart mobile device to analyze the target side of the inspection area The safety of the slope; then, by using a smart mobile device, after taking multiple photos at different angles on the target slope of the inspected area, the multiple photos are superimposed by the slope safety analysis program to The local scene data of the target slope of the inspected area is constructed; after that, since the smart mobile device has an angle sensing module, the angle sensing module can be used to measure and calculate the inspecting The slope angle of the target slope of the area; Relocating the location coordinates of the target slope of the inspected area, and querying the environmental topographic data and numerical terrain model data around the target slope location of the inspected area according to the location coordinates in an environmental topographic geological database platform; According to the slope angle of the target slope and the environmental topographic data and numerical terrain model data around the target slope position, the slope analysis section is constructed, and the slope analysis section and the environment around the target slope position are constructed. The topographic data is uploaded to the slope stability analysis computing platform, and the slope stability analysis computing platform can be analyzed by the planting mechanical analysis technology and the artificial intelligence optimization technology to calculate the potential sliding surface and the inspection area of the corresponding inspection area. The safety factor of the target slope; finally, the safety factor of the target slope and the corresponding potential sliding surface are transmitted back to the smart mobile device, and the safety factor and the corresponding potential sliding surface are compared with the target slope of the inspection area. The local scene data is superimposed to display the analysis results on the local scene data. 如申請專利範圍第7 項所述之應用可攜式電子裝置之邊坡安全性分析方法,其中所拍攝之每兩張照片間至少有15%以上的影像重疊。The method for analyzing the slope safety of a portable electronic device according to claim 7 , wherein at least 15% of the images between the two photographs are overlapped. 如申請專利範圍第7 項所述之應用可攜式電子裝置之邊坡安全性分析方法,其中環境地形資料係為土地利用、土石流潛勢溪流、降雨量、坡度、坡向、崩塌地、活動斷層、土壤、地層分佈、順向坡、人口密度和道路密度、現地地質資料、土壤特性分析資料、地下水位分佈資料、植被覆盖比例資料、植生資料、地表侵蝕程度資料或土壤剪力強度資料。For example, the method for analyzing the slope safety of the portable electronic device described in claim 7 is that the environmental topographic data is land use, earth-rock flow potential stream, rainfall, slope, aspect, collapse, activity Faults, soil, stratigraphic distribution, sloping slope, population density and road density, local geological data, soil characterization data, groundwater level distribution data, vegetation cover ratio data, vegetative data, surface erosion degree data or soil shear strength data. 如申請專利範圍第7 項所述之應用可攜式電子裝置之邊坡安全性分析方法,其中角度感測模組係為水平儀、傾角儀、電子羅盤、陀螺儀或加速度計,而使用者能夠將智慧型行動裝置平放於勘驗地區之目標邊坡表 面上,以運算出勘驗地區之目標邊坡的坡面角度。The method for analyzing the slope safety of the portable electronic device according to the seventh aspect of the patent application, wherein the angle sensing module is a level, an inclinometer, an electronic compass, a gyroscope or an accelerometer, and the user can The smart mobile device is placed flat on the target slope surface of the survey area to calculate the slope angle of the target slope of the survey area. 如申請專利範圍第7 項所述之應用可攜式電子裝置之邊坡安全性分析方法,其中當邊坡分析剖面圖資、目標邊坡位置周圍的環境地形資料無法上傳至邊坡穩定性分析運算平台時,該智慧型行動裝置之邊坡安全性分析程式則會自行運算出對應勘驗地區之潛在滑動面與勘驗地區之目標邊坡的安全係數。For example, the method for analyzing the slope safety of the portable electronic device described in claim 7 of the patent application, wherein the environmental topographic data around the slope analysis profile and the target slope position cannot be uploaded to the slope stability analysis. When calculating the platform, the slope safety analysis program of the smart mobile device calculates the safety factor of the potential sliding surface of the corresponding inspection area and the target slope of the inspection area. 如申請專利範圍第7 項所述之應用可攜式電子裝置之邊坡安全性分析方法,其中智慧型行動裝置係為手機、智慧型手機或平板電腦。For example, the method for analyzing the slope safety of a portable electronic device as described in claim 7 wherein the smart mobile device is a mobile phone, a smart phone or a tablet computer.
TW102139527A 2013-10-31 2013-10-31 Slope safety analysis system and its method for applying portable electronic device TWI501198B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102139527A TWI501198B (en) 2013-10-31 2013-10-31 Slope safety analysis system and its method for applying portable electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102139527A TWI501198B (en) 2013-10-31 2013-10-31 Slope safety analysis system and its method for applying portable electronic device

Publications (2)

Publication Number Publication Date
TW201516985A TW201516985A (en) 2015-05-01
TWI501198B true TWI501198B (en) 2015-09-21

Family

ID=53720441

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102139527A TWI501198B (en) 2013-10-31 2013-10-31 Slope safety analysis system and its method for applying portable electronic device

Country Status (1)

Country Link
TW (1) TWI501198B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI597405B (en) * 2016-04-01 2017-09-01 System and method for monitoring slope with tree displacement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578256B (en) * 2016-06-28 2017-04-11 安研科技股份有限公司 Method for searching flood potential map from database of two-dimensional flood potential map
CN113295113B (en) * 2021-04-29 2022-03-18 中国科学院武汉岩土力学研究所 Beidou GNSS monitoring system layout method based on slope stability state analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201030687A (en) * 2009-02-09 2010-08-16 Univ Nat Pingtung Sci & Tech Intelligent side slope evaluation and forecast decision system
CN203012914U (en) * 2013-01-09 2013-06-19 中铁二十一局集团有限公司 Integral stability remote 3-D digital safety early warning system for high slope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201030687A (en) * 2009-02-09 2010-08-16 Univ Nat Pingtung Sci & Tech Intelligent side slope evaluation and forecast decision system
CN203012914U (en) * 2013-01-09 2013-06-19 中铁二十一局集团有限公司 Integral stability remote 3-D digital safety early warning system for high slope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1、溫仁志,"以粒子群演算法分析邊坡臨界滑動面 ",國立台北科技大學,2011年5月4日 李志林,王星華,謝李釗,孫志彬,劉運思,"基於滑動面深度的地震作用下邊坡強度參數反分析",公路交通科技第30卷第5 期,2013年5月 陳佳菱,"以粒子群演算法改善傳統二次曲面擬合區域性大地起伏精度之研究",國立中興大學機構典藏,2012年 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI597405B (en) * 2016-04-01 2017-09-01 System and method for monitoring slope with tree displacement

Also Published As

Publication number Publication date
TW201516985A (en) 2015-05-01

Similar Documents

Publication Publication Date Title
Pulighe et al. Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy
Barlow et al. Kinematic analysis of sea cliff stability using UAV photogrammetry
US9552669B2 (en) System, apparatus, and method for utilizing geographic information systems
Lato et al. Comparison of airborne laser scanning, terrestrial laser scanning, and terrestrial photogrammetry for mapping differential slope change in mountainous terrain
US20200097618A1 (en) Design engineering tools for visualizing existing utility lines within a land area and validating placement of new utility lines
US20140324630A1 (en) System and method for delivering relevant, location-specific gis information to a mobile device
KR101891087B1 (en) Evaluation method for stability of rock slope using drone
US11543080B2 (en) Automated pipeline construction modelling
Pichon et al. Quality of digital elevation models obtained from unmanned aerial vehicles for precision viticulture
TWI501198B (en) Slope safety analysis system and its method for applying portable electronic device
KR101659433B1 (en) System for pollution management of river-water and method of the same
Kim et al. Data management framework of drone-based 3D model reconstruction of disaster site
Themistocleous et al. Monitoring ground deformation of cultural heritage sites using UAVs and geodetic techniques: the case study of Choirokoitia, JPI PROTHEGO project
Liu et al. Close range digital photogrammetry applied to topography and landslide measurements
JP5008756B2 (en) Disaster recovery support system
JP6996047B2 (en) Two-time change estimation device and two-time change estimation method
Sampaleanu The role of intact rock fracture in rockfall initiation
CN115018973A (en) Low-altitude unmanned-machine point cloud modeling precision target-free evaluation method
Olsen et al. Movement and erosion quantification of the Johnson Creek, Oregon, landslide through 3D laser scanning
CN105651209A (en) Emergency obtaining method and device for designated region area
Soulakellis et al. Synergistic Exploitation of Geoinformation Methods for Post-earthquake 3D Mapping and Damage Assessment
Kulhavy et al. Comparing remotely sensed Pictometry® web based slope distance estimates with in situ total station and tape slope distance estimates
Peng et al. Application of digital twins in high precision geological hazard survey and prevention in Beijing
Cechavicius et al. Three-dimensional (3d) modelling of the pedestrian bridge over the river neris
TWI597405B (en) System and method for monitoring slope with tree displacement

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees