TWI495849B - Pedometer with shoe mounted sensor and transmitter - Google Patents

Pedometer with shoe mounted sensor and transmitter Download PDF

Info

Publication number
TWI495849B
TWI495849B TW099140781A TW99140781A TWI495849B TW I495849 B TWI495849 B TW I495849B TW 099140781 A TW099140781 A TW 099140781A TW 99140781 A TW99140781 A TW 99140781A TW I495849 B TWI495849 B TW I495849B
Authority
TW
Taiwan
Prior art keywords
pedometer
shoe
sensor
signal
signal generators
Prior art date
Application number
TW099140781A
Other languages
Chinese (zh)
Other versions
TW201221916A (en
Inventor
Shengbo Zhu
Su Shiong Huang
Original Assignee
Silicon Valley Micro E Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Valley Micro E Corp filed Critical Silicon Valley Micro E Corp
Priority to TW099140781A priority Critical patent/TWI495849B/en
Publication of TW201221916A publication Critical patent/TW201221916A/en
Application granted granted Critical
Publication of TWI495849B publication Critical patent/TWI495849B/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Distances Traversed On The Ground (AREA)

Description

安裝感測器與傳送器之鞋的計步器Pedometer for installing sensors and conveyor shoes

本發明係有關用來量測步行者腳步計數且計算步行距離之計步器。更具體而言,本發明係有關一種包含用來取得步行者表現資料且將計算出的結果傳送到分離的顯示單元的鞋裝系統之計步器。The present invention relates to a pedometer for measuring a pedestrian's footstep count and calculating a walking distance. More specifically, the present invention relates to a pedometer that includes a footwear system for obtaining walker performance data and transmitting the calculated results to a separate display unit.

職業及業餘健身愛好者正日益將計步器用來作為一種監視及評估例行運動之輔助設備。藉由使用計步器,即可量測及記錄諸如步數、行走距離、速度、以及消耗卡路里等的各種資料參數。這些參數被用於決定特定健身計劃的效果及效率。此外,計步器可提供一種追蹤使用者的日常體力活動水平之方式,而被用來作為一種激勵裝置,且可相應地設立較高的活動水平目標。在許多例子中,計步器的使用已激勵許多使用者顯著地增加其體力活動水平,因而導致較低的血壓、減肥、及較佳的整體健康。Professional and amateur fitness enthusiasts are increasingly using pedometers as an aid to monitoring and evaluating routine sports. By using a pedometer, various data parameters such as the number of steps, walking distance, speed, and calories burned can be measured and recorded. These parameters are used to determine the effectiveness and efficiency of a particular fitness program. In addition, the pedometer can provide a means of tracking the level of daily physical activity of the user, and is used as an incentive device, and a higher activity level target can be set accordingly. In many instances, the use of a pedometer has motivated many users to significantly increase their level of physical activity, resulting in lower blood pressure, weight loss, and better overall health.

已知目前市場上供應了數種不同類型的計步器。這些習知的計步器利用一些計數來決定步數及距離。一種古典類型的習知計步器是一種將一擺錘用來偵測身體移動且然後將該移動轉換為步數之機械裝置。使用者通常將該機械計步器沿著實質上垂直的方位佩戴在其腰帶上。當該使用者行走時,其臀部將擺動傳送到該計步器,因而又使加重的擺錘在計步器外殼內移動。利用一棘輪機構或機械止塊感測該擺錘的慣性,因而使一機械計數器前進。使用擺錘偵測步伐的計步器雖然是多少有用,但是經常記錄到"假步伐"或諸彎腰及傾身等的錯誤移動。此外,以擺錘引動的計步器對適當的垂直對準是敏感的,且通常需要以與使用者的步態(gait)/跨步(stride)有關之方式進行機械調整,以便準確地記錄步伐,且將步數轉換為距離值。It is known that several different types of pedometers are currently available on the market. These conventional pedometers use some count to determine the number of steps and distance. A classical type of conventional pedometer is a mechanical device that uses a pendulum to detect body movement and then convert the movement into steps. The user typically wears the mechanical pedometer on its waistband in a substantially vertical orientation. As the user walks, his buttocks will swing into the pedometer, which in turn causes the weighted pendulum to move within the pedometer housing. The inertia of the pendulum is sensed using a ratchet mechanism or mechanical stop, thereby advancing a mechanical counter. Although the pedometer using the pendulum detection step is useful, it often records "false steps" or erroneous movements such as bending and leaning. In addition, pendulum-driven pedometers are sensitive to proper vertical alignment and typically require mechanical adjustment in a manner related to the user's gait/stride for accurate recording The pace, and the number of steps is converted to a distance value.

其他類型的習知計步器將電機械系統用來偵測及記錄步數。一種此類的計步器利用被嵌入鞋內之一或多個電機械開關執行計步。當使用者邁步時,該開關開啟或閉合,而產生將被用來遞增一電子計數器的計數之一電信號。雖然此種類型的計步器在使用上比擺錘型的計步器更準確,但是當使用者將其重量自一腳移到另一腳時,仍然經常記錄到假步伐。此外,將該等開關安置到鞋中使該等開關可靠地感測每一步伐是非常瑣細的工作。此外,該等開關易於在原位被弄髒,且處於惡劣環境時也易於損壞。Other types of conventional pedometers use electromechanical systems to detect and record the number of steps. One such pedometer performs step counting using one or more electromechanical switches that are embedded in the shoe. When the user steps, the switch opens or closes, producing an electrical signal that will be used to increment an electronic counter. Although this type of pedometer is more accurate in use than a pendulum type pedometer, when the user moves his weight from one foot to the other, a false pace is often recorded. Moreover, placing the switches in the shoe such that the switches reliably sense each step is a very trivial task. In addition, the switches are prone to soiling in situ and are susceptible to damage in harsh environments.

更複雜的電機械計步器使用一或多個加速度計以及被適當地程式化成偵測步行者步伐之一些微處理器。這些計步器通常有1、2、或3軸加速度計,用以量測加速度,且產生對應於身體移動之電子信號。該微處理器中之軟體然後處理該加速度電子信號,以便決定步數、步伐頻率、及跨步長度。雖然此種類型的計步器合於實用,且在高頻率步數下可能比基於擺錘及基於開關的計步器更準確,但是在低速度移動時,可能產生假步伐及錯誤的距離。此外,計步器在使用期間的不正確之軸向對準可能對這些計步器有不利的影響。More complex electromechanical pedometers use one or more accelerometers and some microprocessors that are properly programmed to detect the pace of the walker. These pedometers typically have 1, 2, or 3-axis accelerometers that measure acceleration and produce an electrical signal that corresponds to body movement. The software in the microprocessor then processes the acceleration electronic signal to determine the number of steps, the pace frequency, and the stride length. While this type of pedometer is practical and may be more accurate at high frequency steps than pendulum-based and switch-based pedometers, false movements and erroneous distances may occur at low speeds. In addition, incorrect axial alignment of the pedometer during use may adversely affect these pedometers.

在2000年11月14日授予Ebeling等人的美國專利6,145,389(本發明特此引用該專利之完整揭示以供參照)所述之一習知加速度計類型之計步器中,一加速度計被連接到一鞋,且一微處理器將該加速度計產生之信號用來計算跨步長度。該計步器要求小心地對準該加速度計,使加速度量測軸實質上對準步行者腳行進的方向。同樣地,如果在使用期間發生了加速度計的不正確之軸向對準,則可能得到不完整及不準確的量測。An accelerometer is connected to one of the conventional accelerometer type pedometers, as described in U.S. Patent No. 6,145,389, the entire disclosure of which is incorporated by reference. A shoe, and a microprocessor uses the signal generated by the accelerometer to calculate the stride length. The pedometer requires careful alignment of the accelerometer such that the acceleration measuring axis is substantially aligned with the direction in which the foot of the walker travels. Likewise, if an incorrect axial alignment of the accelerometer occurs during use, incomplete and inaccurate measurements may be obtained.

在2001年1月16日授予Pyles等人的美國專利6,175,608(本發明特此引用該專利之完整揭示以供參照)所述之另一習知加速度計類型之計步器中,一慣性裝置被安裝到使用者的腰部、胸部、或腿部,以便決定步數。該計步器之該慣性裝置以類似於擺錘型計步器之方式偵測粗略身體移動。雖然此種類型的計步器由其實用性,但是可能將諸如彎腰及傾身等的假步伐或不相關的移動記錄為步伐。此外,因為該慣性裝置根據加速度而決定步數,所以可能無法準確地低速度的步伐。此外,該慣性裝置在使用期間之不正確的對準可能對這些計步器的準確性有不利的影響。An inertial device is installed in another conventional accelerometer type pedometer described in U.S. Patent No. 6,175,608, the entire disclosure of which is incorporated herein by reference. Go to the user's waist, chest, or leg to determine the number of steps. The inertial device of the pedometer detects coarse body movement in a manner similar to a pendulum type pedometer. While this type of pedometer is useful, it may record a false pace or unrelated movement such as bending and tilting as a step. Further, since the inertial device determines the number of steps in accordance with the acceleration, the pace of the low speed may not be accurately obtained. Moreover, incorrect alignment of the inertial device during use may adversely affect the accuracy of these pedometers.

至今為止,提供一種沒有上述該等缺點的計步器之努力尚未成功地實現。To date, efforts to provide a pedometer without these disadvantages have not been successfully implemented.

本發明包含一種沒有上述缺點的計步器,該計步器實質上減少了假步數讀取,且提供了低速度下之高準確度,且該計步器較易於在現有的足部穿著物品中實施。The present invention comprises a pedometer that does not have the above disadvantages, the pedometer substantially reduces false step readings and provides high accuracy at low speeds, and the pedometer is easier to wear on existing feet Implemented in the item.

在一最寬廣的觀點中,本發明包含一種計步器,該計步器具有:由一第一鞋的一第一部分承載之一第一信號產生器;由該第一鞋的一第二部分承載之一第二信號產生器,該第一及第二信號產生器分開了一固定距離;以及被耦合到一第二鞋之一感測器總成,該感測器總成包含用來感測該第一及第二信號產生器產生之信號且產生對應的電信號之一感測器、以及一微處理器單元,該微處理器單元具有被耦合到該感測器而接收該等對應的電信號之一輸入,且將該等對應的電信號轉換為步行者表現資料。當該第一及第二鞋被使用者穿著時,最好是在該第一及第二鞋上以面對之關係對準該第一及第二信號產生器與該感測器,以便將該感測器偵測來自該第一及第二信號產生器的信號之範圍最大化。In one broadest aspect, the present invention comprises a pedometer having: a first signal generator carried by a first portion of a first shoe; and a second portion of the first shoe Carrying a second signal generator, the first and second signal generators are separated by a fixed distance; and coupled to a sensor assembly of a second shoe, the sensor assembly includes a sense Detecting signals generated by the first and second signal generators and generating a corresponding one of the electrical signals, and a microprocessor unit having a sensor coupled to the sensor to receive the corresponding One of the electrical signals is input, and the corresponding electrical signals are converted into pedestrian performance data. Preferably, when the first and second shoes are worn by the user, the first and second signal generators and the sensor are aligned in a facing relationship on the first and second shoes so as to The sensor detects a range of signals from the first and second signal generators to be maximized.

最好是將該第一及第二信號產生器安裝在鄰接該第一鞋的內緣,且最好是將該感測器安裝在鄰接該第二鞋的內緣。該第一與第二信號產生器間之該固定分開距離最好是大致沿著該第一鞋的縱向而延伸。Preferably, the first and second signal generators are mounted adjacent the inner edge of the first shoe, and preferably the sensor is mounted adjacent the inner edge of the second shoe. Preferably, the fixed separation distance between the first and second signal generators extends generally along the longitudinal direction of the first shoe.

可用各種技術而替代地實施該第一及第二信號產生器以及該感測器。在一磁性技術實施例中,該第一及第二信號產生器包含永久磁鐵;且該感測器包含諸如霍爾效應(Hall effect)感測器或磁阻(MR)感測器等的裝置,用以將該等永久磁鐵產生的磁場轉換為對應的電信號。在一光學技術實施例中,該第一及第二信號產生器包含諸如發光二極體等的光輻射源;且該感測器包含用來將該等光輻射源產生的光輻射轉換為對應的電信號之一裝置。在一射頻技術實施例中,該第一及第二信號產生器包含射頻識別(RFID)標籤,用以產生已知頻率的射頻信號;且該感測器包含用來將自該等RFID標籤接收的射頻信號轉換為對應的電信號之一RFID讀取器裝置。該等RFID信號產生器標籤可包含主動式或被動式RFID標籤。The first and second signal generators and the sensor can be implemented alternatively by various techniques. In a magnetic technology embodiment, the first and second signal generators comprise permanent magnets; and the sensor comprises a device such as a Hall effect sensor or a magnetoresistive (MR) sensor. The magnetic field generated by the permanent magnets is converted into a corresponding electrical signal. In an embodiment of the optical technology, the first and second signal generators comprise an optical radiation source such as a light emitting diode; and the sensor comprises means for converting the optical radiation generated by the optical radiation sources into corresponding One of the electrical signals. In an embodiment of the radio frequency technology, the first and second signal generators comprise a radio frequency identification (RFID) tag for generating a radio frequency signal of a known frequency; and the sensor includes means for receiving from the RFID tag The RF signal is converted to an RFID reader device that is one of the corresponding electrical signals. The RFID signal generator tags can include active or passive RFID tags.

該計步器可進一步包含被耦合到該微處理器單元之一傳送器,用以將該步行者表現資料傳送到一接收器/顯示單元,以便提供即時使用者回饋。The pedometer can further include a transmitter coupled to the microprocessor unit for transmitting the pedestrian performance data to a receiver/display unit to provide instant user feedback.

根據本發明的揭示而製造之計步器易於在製造點上被加入足部穿著物品,或者可在較低的成本下被用來作為售後服務市場之商品。此種計步器能夠提供準確之諸如行進速度、步數、行走距離、步頻(cadence)、以及使用者可能有興趣的許多其他績效參數等的步行者表現資料。A pedometer manufactured in accordance with the teachings of the present invention is readily incorporated into a foot wearing item at the point of manufacture, or can be used as a commodity in the aftermarket of the aftermarket at a lower cost. Such a pedometer can provide accurate walker performance data such as travel speed, number of steps, walking distance, cadence, and many other performance parameters that the user may be interested in.

若要對本發明的本質及優點有更完整的瞭解,請配合各附圖而參閱接續的實施方式。For a fuller understanding of the nature and advantages of the invention, reference should be

現在請參閱各圖式,第1圖是一典型的雙腳行走周期100。如該圖所示,大致直線向前動的一典型之人類或雙腳行走周期100包含一右腳彎曲路徑101及一左腳彎曲路徑102。當結合該右及左腳彎曲路徑101、102時,即實現了可產生向前大致直線移動之雙腳行走周期100。為了開始一行走周期100,一前腳104承受人體重的大部分。然後擡起後腳106,且如方向箭頭所示,沿著大致向前方向而移動。當後腳106朝向前腳104移動時,後腳106之路徑向內沿著曲線朝向前腳104移動,而形成一拱形的路徑。當起始前腳104及起始後腳106達到一最小分開距離時,界定了兩腳104、106間之最小間隔距離108。在行走周期100的該點上,起始後腳106通常不承受任何體重,且起始前腳104承受了人的整個體重。然後,起始後腳106沿著曲線離開起始前腳104,且接觸位於大致在起始前腳104的前方的一位置110上之地面,且達到一最大間隔距離112。當起始後腳106支援地接觸地面時,人的體重分佈在起始前腳與起始後腳104、106之間。Referring now to the drawings, Figure 1 is a typical two-leg walking cycle 100. As shown in the figure, a typical human or two-legged walking cycle 100 that moves generally linearly includes a right foot curved path 101 and a left foot curved path 102. When the right and left foot bending paths 101, 102 are combined, a two-legged walking cycle 100 that produces a substantially straight forward movement is achieved. In order to begin a walking cycle 100, a forefoot 104 receives most of the weight of the person. The rear foot 106 is then raised and moved in a generally forward direction as indicated by the directional arrows. As the rear foot 106 moves toward the forefoot 104, the path of the rear leg 106 moves inwardly along the curve toward the forefoot 104 to form an arched path. When the starting forefoot 104 and the starting hind foot 106 reach a minimum separation distance, the minimum separation distance 108 between the two legs 104, 106 is defined. At this point in the walking cycle 100, the starting hind foot 106 is typically not subjected to any weight and the starting forefoot 104 is subjected to the entire weight of the person. The starting rear foot 106 then exits the starting forefoot 104 along the curve and contacts the ground at a location 110 generally in front of the starting forefoot 104 and reaches a maximum separation distance 112. When the starting rear foot 106 supports ground contact, the weight of the person is distributed between the starting forefoot and the starting hind foot 104, 106.

如第1圖所示,針對起始前腳104而以一種與前文所述類似但是腳的作用相反之方式重複行走周期100。因此,在腳106承受人體重的大部分之情形下,然後擡起腳104,且如方向箭頭所示,沿著大致向前方向而移動。當腳104朝向腳106移動時,腳104之路徑向內沿著曲線朝向腳106移動,而形成一拱形的路徑。當腳104及腳106達到一最小分開距離時,界定了兩腳104、106間之最小間隔距離108。在行走周期100的該點上,腳104通常不承受任何體重,且腳106承受了人的整個體重。然後,腳104沿著曲線離開腳106,且接觸位於大致在腳106的前方的一位置上之地面,且達到最大間隔距離112。當腳104支援地接觸地面時,人的體重分佈在腳104、106之間。As shown in Fig. 1, the walking cycle 100 is repeated for the starting forefoot 104 in a manner similar to that described above but in the opposite direction of the action of the foot. Thus, in the event that the foot 106 is subjected to a substantial portion of the person's weight, the foot 104 is then raised and moved in a generally forward direction as indicated by the directional arrows. As the foot 104 moves toward the foot 106, the path of the foot 104 moves inwardly along the curve toward the foot 106 to form an arched path. When the foot 104 and the foot 106 reach a minimum separation distance, the minimum separation distance 108 between the two legs 104, 106 is defined. At this point in the walking cycle 100, the foot 104 is typically not subjected to any weight and the foot 106 is subjected to the entire weight of the person. The foot 104 then exits the foot 106 along the curve and contacts the ground at a location generally in front of the foot 106 and reaches a maximum separation distance 112. When the foot 104 is in contact with the ground in support, the weight of the person is distributed between the feet 104, 106.

右及左彎曲路徑101、102的確切形式通常是諸如臀部轉動、體重轉移、及雙腳移動所需之許多其他姿勢對準等的人體力學(body mechanics)的結果。最小間隔距離108小於0.5英吋,且通常取決於人行走的身體結構及其他屬性。最大間隔距離112通常大約為人的肩寬,但是可根據人的步態及跨步而改變。The exact form of the right and left curved paths 101, 102 is typically the result of body mechanics such as hip rotation, weight transfer, and many other posture alignments required for foot movement. The minimum separation distance 108 is less than 0.5 inches and is generally dependent on the body structure and other attributes of the person walking. The maximum separation distance 112 is typically about the shoulder width of a person, but can vary depending on the gait and stride of the person.

由於雙腳在最小間隔距離108時的接近,所以可實施一些鞋裝信號產生器及一接近感測器,用以偵測腳在行走周期中何時相互通過。下文中將參照第4圖而進一步詳細說明對通過腳之偵測。Due to the proximity of the feet at a minimum separation distance 108, some shoe-mounted signal generators and a proximity sensor can be implemented to detect when the feet pass each other during the walking cycle. Detection of the passing foot will be described in further detail below with reference to FIG.

現在請參閱第2圖,第2圖是一般以代號200標示的一計步器之一正視圖,計步器200包含能夠在走動的步行者移動期間取得步行者的即時表現資料之一鞋裝系統。如第2圖所示,計步器200被安裝在一右鞋204及一對應的左鞋206。右及左鞋204、206通常構成適於穿著且被用於諸如行走、跑步、及慢跑等的走動移動之一匹配對的鞋。右鞋204上被安裝了一第一信號產生器208及一第二信號產生器210。第一信號產生器208被定位在鄰接右鞋204的一較前方位置212,且第二信號產生器210被定位在鄰接右鞋204的一較後方位置214。最好是沿著右鞋204之內緣而定位第一及第二信號產生器208、210,以便使第一及第二信號產生器208、210最接近對應的左鞋206,且接近右鞋204之一鞋面區213。在一實施例中,分別利用永久磁鐵材料製造 第一及第二信號產生器208、210,而該永久磁鐵材料產生足以到達左鞋206上被設置一感測器202的一區之磁場。如對此項技術具有一般知識者易於了解的,可使用諸如鐵磁材料(例如,鈷及鎳)、次鐵磁材料(ferrimagnetic materials)、以及諸如Alnico、Ticonal、及粉末狀氧化鐵及碳酸鋇/碳酸鍶陶瓷之燒結複合材料等的許多不同類型的磁鐵材料。一信號產生器縱向分開距離216界定了沿著右鞋204的大致縱軸的第一與第二信號產生器208、210間之一固定距離。在一實施例中,縱向分開距離216大約是五英吋;然而,考慮到:可根據鞋的相對尺寸及結構而使用縱向分開距離216之其他固定尺寸。在一實施例中,第一與第二信號產生器208、210被嵌入鞋底(圖中未示出)內,而構成右鞋204的一部分。我們應可了解:可藉由模製或黏著而將第一與第二信號產生器208、210併入右鞋204之其他組件,或以諸如以根據商標Velcro銷售之黏扣帶扣件材料等的任何適當之連結技術將第一與第二信號產生器208、210以機械方式連結到右鞋204之一適當部分。Referring now to Figure 2, which is a front elevational view of one of the pedometers, generally designated by the code 200, the pedometer 200 includes one of the ready-to-wear performance data that can be obtained during walking of the pedestrian. system. As shown in FIG. 2, the pedometer 200 is mounted to a right shoe 204 and a corresponding left shoe 206. The right and left shoes 204, 206 generally constitute a shoe that is suitable for wearing and is used for one of a pair of walking movements such as walking, running, and jogging. A first signal generator 208 and a second signal generator 210 are mounted on the right shoe 204. The first signal generator 208 is positioned adjacent a forward position 212 of the right shoe 204 and the second signal generator 210 is positioned adjacent a rearward position 214 of the right shoe 204. Preferably, the first and second signal generators 208, 210 are positioned along the inner edge of the right shoe 204 such that the first and second signal generators 208, 210 are closest to the corresponding left shoe 206 and are adjacent to the right shoe. One of the upper areas 213. In one embodiment, the permanent magnet material is separately fabricated. The first and second signal generators 208, 210 generate a magnetic field sufficient to reach a region of the left shoe 206 that is provided with a sensor 202. As will be readily appreciated by those of ordinary skill in the art, materials such as ferromagnetic materials (e.g., cobalt and nickel), ferrimagnetic materials, and such as Alnico, Ticonal, and powdered iron oxide and barium carbonate can be used. Many different types of magnet materials such as sintered composite materials of strontium carbonate ceramics. A signal generator longitudinal separation distance 216 defines a fixed distance between the first and second signal generators 208, 210 along a substantially longitudinal axis of the right shoe 204. In one embodiment, the longitudinal separation distance 216 is approximately five inches; however, it is contemplated that other fixed dimensions of the longitudinal separation distance 216 can be used depending on the relative size and configuration of the footwear. In one embodiment, the first and second signal generators 208, 210 are embedded within a sole (not shown) to form a portion of the right shoe 204. It should be understood that the first and second signal generators 208, 210 can be incorporated into other components of the right shoe 204 by molding or adhesive, or in a fastener tape material such as that sold under the trademark Velcro. Any suitable joining technique mechanically couples the first and second signal generators 208, 210 to an appropriate portion of the right shoe 204.

左鞋206上安裝有位於左鞋206的一固定位置上之一感測器及傳送器總成202。在一實施例中,感測器及傳送器總成202包含:能夠感測右鞋204上安裝的第一與第二產生器208、210產生的磁場信號之至少一接近感測器(例如,霍爾效應感測器)、一微控制器單元、以及一傳送器。下文中將參照第3圖而進一步詳細說明這些元件。考慮到:感測器及傳送器總成202被嵌入鞋底(圖中未示出)內, 而構成左鞋206的一部分。在替代實施例中,感測器及傳送器總成202可被耦合到右鞋204之其他組件及區域。雖然已以與該右鞋有關之方式說明了第一與第二信號產生器208、210,且已以與左鞋206有關之方式說明了感測器及傳送器總成202,但是對此項技術具有一般知識者將易於了解:使該右及左鞋之結構相反也是可能的。A sensor and conveyor assembly 202 at a fixed position of the left shoe 206 is mounted on the left shoe 206. In an embodiment, the sensor and transmitter assembly 202 includes at least one proximity sensor capable of sensing magnetic field signals generated by the first and second generators 208, 210 mounted on the right shoe 204 (eg, Hall effect sensor), a microcontroller unit, and a transmitter. These elements will be described in further detail below with reference to FIG. Considering that the sensor and transmitter assembly 202 is embedded in a sole (not shown), It forms part of the left shoe 206. In an alternate embodiment, the sensor and transmitter assembly 202 can be coupled to other components and regions of the right shoe 204. Although the first and second signal generators 208, 210 have been described in relation to the right shoe, and the sensor and transmitter assembly 202 has been described in relation to the left shoe 206, this item Those skilled in the art will readily appreciate that it is also possible to reverse the structure of the right and left shoes.

第3圖是具有鞋裝第一與第二信號產生器208、210、一鞋裝感測器及傳送器總成202、以及一相關聯的獨立顯示單元300的第2圖所示計步器之一方塊圖。如第3圖所示,一接近感測器302被定位在與第一及第二信號產生器208、210間之可操作範圍內,因而當右與左鞋204、206之間存在相對移動而使第一與第二信號產生器208、210在接近感測器302的操作範圍內通過左鞋206之區域時,在感測器302中感應磁性脈衝信號。在所述之該磁性實施例中,接近感測器302最好是Allegro Microsystems Inc.,供應的霍爾效應感測器(零件編號:A1395SEHLT)。或者,接近感測器302可以是Honeywell Microelectronics供應的磁阻(MR)感測器(零件編號:HMC1001)。Figure 3 is a pedometer shown in Figure 2 with shoe-mounted first and second signal generators 208, 210, a shoe-mounted sensor and transmitter assembly 202, and an associated independent display unit 300. One of the block diagrams. As shown in FIG. 3, a proximity sensor 302 is positioned within an operable range between the first and second signal generators 208, 210 such that there is relative movement between the right and left shoes 204, 206. The magnetic pulse signals are induced in the sensor 302 when the first and second signal generators 208, 210 pass the region of the left shoe 206 within the operational range of the proximity sensor 302. In the magnetic embodiment described, proximity sensor 302 is preferably a Hall effect sensor (part number: A1395SEHLT) supplied by Allegro Microsystems Inc. Alternatively, proximity sensor 302 may be a magnetoresistive (MR) sensor supplied by Honeywell Microelectronics (part number: HMC1001).

接近感測器302在操作上被耦合到一微控制器單元(Microcontrollcr Unit;簡稱MCU)304,因而接近感測器302接收的磁性脈衝信號被轉換為電信號,且該等電信號被耦合到MCU 304,而被用於各種信號處理功能(下文中將參照第5及6圖而進一步詳細說明)。MCU 304在操作上被耦合到傳送器306,以便將被處理的步行者表現資料以 無線方式傳送到顯示單元300。表現資料可包括:總步伐、每分鐘之步伐、瞬間行進速度、平均行進速度、步頻、總行走距離、每一跨步之距離、消耗卡路里、以及MCU 304產生的其他參數資料。最好是將MCU 304及傳送器306結合在ANT of Cochrane,Alberta,Canada供應的SensRcore零件標號nRF24LO1之AT3類型晶片組。傳送器306以無線方式與顯示單元300通訊,而單向地或雙向地將表現資料及步伐資訊傳送到顯示單元300。考慮到:顯示單元300可以是諸如由Garmin Ltd.,供應的Edge 705單元(零件編號010-00555-20)等的第三方績效監視裝置或健身電腦。在一替代實施例中,傳送器306可被配置成與諸如行動電話、MP3播放器、或其他可攜式顯示裝置等的其他電子裝置通訊,並將表現資料傳送到該等其他電子裝置。The proximity sensor 302 is operatively coupled to a microcontroller unit (Microcontrollcr Unit; MCU for short) 304 such that the magnetic pulse signals received by the proximity sensor 302 are converted to electrical signals, and the electrical signals are coupled to The MCU 304 is used for various signal processing functions (which will be described in further detail below with reference to Figures 5 and 6). The MCU 304 is operatively coupled to the transmitter 306 to present the processed pedestrian performance data to The wireless transmission to the display unit 300. Performance data may include: total pace, pace per minute, instantaneous travel speed, average travel speed, stride frequency, total travel distance, distance per stride, calories burned, and other parameters generated by the MCU 304. Preferably, the MCU 304 and transmitter 306 are combined with the AT3 type wafer set of the SensRcore part number nRF24LO1 supplied by ANT of Cochrane, Alberta, Canada. The transmitter 306 communicates with the display unit 300 in a wireless manner, and transmits the performance data and the step information to the display unit 300 unidirectionally or bidirectionally. It is considered that the display unit 300 may be a third-party performance monitoring device or a fitness computer such as an Edge 705 unit (part number 010-00555-20) supplied by Garmin Ltd. In an alternate embodiment, transmitter 306 can be configured to communicate with other electronic devices, such as mobile phones, MP3 players, or other portable display devices, and communicate performance data to such other electronic devices.

在一實施例中,傳送器306與顯示單元300之間所使用的無線通訊協定是通常被稱為"ANT"(由Dynastream Innovation,Inc.of Cochrane,Alberta,Canada供應)之一無線感測器網路通訊協定。該ANT協定之某些特徵包括低電力消耗、低成本開銷、以及多個收發器共同存在於其他收發器附近之能力。於該ANT協定由於用來減少在待機狀態下的電力消耗之各種程式化組態設定,而有大約47%的估計效率。然而,對此項技術具有一般知識者當可易於了解:可將諸如藍芽(Bluetooth)或Zigbee(基於電機及電子工程師協會(IEEE)標準802.15.4)等的其他類型之無線通訊協定用來促進傳送器306與顯示單元300間之資料傳 送。In one embodiment, the wireless communication protocol used between transmitter 306 and display unit 300 is one of the wireless sensors commonly referred to as "ANT" (supplied by Dynastream Innovation, Inc. of Cochrane, Alberta, Canada). Network protocol. Some of the features of the ANT protocol include low power consumption, low cost overhead, and the ability of multiple transceivers to coexist near other transceivers. The ANT protocol has an estimated efficiency of approximately 47% due to various stylized configuration settings used to reduce power consumption in the standby state. However, those who have a general knowledge of this technology can easily understand that other types of wireless communication protocols such as Bluetooth or Zigbee (based on the Institute of Electrical and Electronics Engineers (IEEE) standard 802.15.4) can be used. Promoting data transmission between the transmitter 306 and the display unit 300 give away.

適用之直流電源如電池(未示出)被用來供電給第3圖所示之系統元件接近感測器302、MCU304、及傳送器306。在該替代實施例中,第一信號產生器208、第二信號產生器210當被與總成202中包含的一線圈及一直流整流電路結合時,可被用來作為一能源。單當地按遲的可用能量耗盡時,該配置不需要更換電池。顯示單元300設有諸如一電池等的一獨立電源。A suitable DC power source, such as a battery (not shown), is used to power the system component proximity sensor 302, MCU 304, and transmitter 306 shown in FIG. In this alternative embodiment, the first signal generator 208, the second signal generator 210, when combined with a coil and DC rectifier circuit included in the assembly 202, can be used as an energy source. This configuration does not require a battery replacement when the local is exhausted by the late available energy. The display unit 300 is provided with an independent power source such as a battery.

現在請參閱第4及5圖,其中第4圖是雙腳行走周期100的一代表性部分之一放大示意圖,且第5圖示出感測器信號與時間的關係圖。當一鞋通過另一鞋時,本發明之計步器產生一步數及一步伐時間。例如,在第4圖中,當右鞋204遵循右腳右腳彎曲路徑101時,使第一及第二信號產生器208、210相繼地接近感測器及傳送器總成202。在最小間隔距離108下,且當第一信號產生器208通過總成202內之接近感測器時,接近感測器302(第3圖)產生一第一脈衝信號500(第5圖),且該第一脈衝信號之最大值發生在第一信號產生器208與接近感測器302最接近之點。該第一脈衝信號被耦合到感測器及傳送器總成202中之MCU 304(第3圖)。當右鞋204向前移動等於固定縱向分開距離216之一額外的距離時,第二信號產生器210通過總成202內之接近感測器,且產生將被MCU 304接收之一第二脈衝信號502。該對的第一及第二脈衝信號500、502被隔離了一第一時間間隔"t",而在已知第一與第二信號產生器208 、210間之該分開距離時,MCU 304可決定該第一時間間隔"t"。當左鞋206行進到行走周期100中之次一步伐時,在感測器及傳送器總成202內包含的接近感測器302移動到第二信號產生器210之附近時,在一第二時間間隔上產生了一第三脈衝信號504。一旦產生了第三脈衝信號504之後,MCU 304可決定被稱為步伐時間"T"的一參數之值。Referring now to Figures 4 and 5, wherein FIG. 4 is an enlarged schematic view of a representative portion of the two-leg walking cycle 100, and FIG. 5 is a graph showing sensor signals versus time. The pedometer of the present invention produces a step count and a step time when one shoe passes another shoe. For example, in FIG. 4, when the right shoe 204 follows the right foot and right foot bending path 101, the first and second signal generators 208, 210 are sequentially brought into proximity to the sensor and transmitter assembly 202. At a minimum separation distance 108, and as the first signal generator 208 passes the proximity sensor within the assembly 202, the proximity sensor 302 (Fig. 3) produces a first pulse signal 500 (Fig. 5), And the maximum value of the first pulse signal occurs at a point where the first signal generator 208 is closest to the proximity sensor 302. The first pulse signal is coupled to the MCU 304 (Fig. 3) in the sensor and transmitter assembly 202. When the right shoe 204 is moved forward by an additional distance equal to one of the fixed longitudinal separation distances 216, the second signal generator 210 passes the proximity sensor within the assembly 202 and produces a second pulse signal to be received by the MCU 304. 502. The first and second pulse signals 500, 502 of the pair are isolated for a first time interval "t", while the first and second signal generators 208 are known. At the separation distance of 210, the MCU 304 can determine the first time interval "t". When the left shoe 206 travels to the next step in the walking cycle 100, when the proximity sensor 302 included in the sensor and transmitter assembly 202 moves to the vicinity of the second signal generator 210, in a second A third pulse signal 504 is generated over the time interval. Once the third pulse signal 504 is generated, the MCU 304 can determine the value of a parameter referred to as the step time "T".

在取得了前文所述之即時步行者資料"t"及"T"之後,可計算諸如步頻、速度、及總行走距離等的各種其他績效參數。將總步數除以總步伐時間而計算出計步器步頻。然後可應用標準時間轉換,而將步頻值轉換為諸如每分鐘的步伐等的各種單位。對於總行走距離而言,請參閱第6圖,首先決定第一時間間隔"t"中之一平均行進速度V1。使用第一及第二信號產生器208、210間之該固定分開距離以及第一時間間隔"t"而計算出平均行進速度。在一實施例中,將第一及第二信號產生器208、210分開的該縱向距離是5英吋,且界定該第一時間間隔"t"中之得到的行進速度為每秒有V1=5/t英吋。在第二步驟中,將一係數"K"用來將平均行進速度V1比例地縮放到平均行進速度V2。可根據實際使用者跨步長度而以校準方式決定係數K,或根據使跨步長度與人身高相關聯的標準身體屬性,而以組合一平均跨步長度表之方式決定係數K。一旦決定了"K"之後,用於步伐速度之方程式被界定為V2=KV1。第三,將V2乘以"T"而決定步伐長度"d",d=V2T。累加步伐時間"T"的總數而決定總步數"N"。最後,為了得到總行走距離"D", 將總步數"N"乘以步伐長度"d",亦即D=Nd。可易於使用標準技術而在MCU 304中實施所有上述之演算法。After obtaining the instant walker data "t" and "T" described above, various other performance parameters such as pitch, speed, and total walking distance can be calculated. The pedometer step frequency is calculated by dividing the total number of steps by the total step time. Standard time conversion can then be applied, and the step frequency value can be converted to various units such as the pace per minute. For the total walking distance, refer to Figure 6, first determining the average travel speed V1 of the first time interval "t". The average travel speed is calculated using the fixed separation distance between the first and second signal generators 208, 210 and the first time interval "t". In one embodiment, the longitudinal distance separating the first and second signal generators 208, 210 is 5 inches, and the travel speed defined in the first time interval "t" is V1 per second. 5/t miles. In the second step, a coefficient "K" is used to proportionally scale the average travel speed V1 to the average travel speed V2. The coefficient K can be determined in a calibrated manner according to the actual user step length, or the coefficient K can be determined in a manner that combines an average step length table according to a standard body attribute that associates the step length with the height of the person. Once "K" is determined, the equation for the pace speed is defined as V2 = KV1. Third, multiply V2 by "T" to determine the step length "d", d = V2T. The total number of steps "N" is determined by accumulating the total number of step times "T". Finally, in order to get the total walking distance "D", Multiply the total number of steps "N" by the step length "d", that is, D = Nd. All of the above algorithms can be implemented in MCU 304 easily using standard techniques.

可將MCU 304決定的所得到之表現資料儲存在MCU 304之記憶體中,以供後續之分析,傳送器306亦可將該表現資料傳送到顯示單元300,以便將即時表現資料回饋提供給使用者。The obtained performance data determined by the MCU 304 can be stored in the memory of the MCU 304 for subsequent analysis, and the transmitter 306 can also transmit the performance data to the display unit 300 to provide real-time performance data feedback for use. By.

雖然是在磁性領域操作前文所述之步驟,但是亦可使用諸如光學及射頻技術等的其他技術實施第一與第二信號產生器208、210及接近感測器302。例如,在使用光學技術之一實施例中,第一與第二信號產生器208、210可包含用來產生具有一已知波長的光束之一些發光二極體(Light Emitting Diode;簡稱LED),且接近感測器302可包含用來感測該LED波長上的光輻射之一光感測器。在該實施例中,必須以諸如一電池等的一電能源供電給LED第一與第二信號產生器208、210。同樣地,在使用射頻技術之一實施例中,第一與第二信號產生器208、210可包含用來在一已知頻率下產生射頻信號之一些RFID標籤,且接近感測器302可包含能夠感測該已知頻率上的射頻信號之一RFID讀取器/查詢器。該等RFID標籤可包含主動式或被動式RFID標籤。如果採用主動式RFID標籤,則必須以諸如一電池等的一電能源供電給該等RFID標籤。如果採用被動式RFID標籤,則將以來自接近感測器302的射頻查詢信號供電給該等RFID標籤,且第一與第二信號產生器208、210不需要有獨立的電源。被動式RFID標籤的一適 用選擇是Atmel Corporation of San Jose,California供應之Atmel編號ATA5577 RFID標籤。RFID讀取器/查詢器的一適用選擇是也由Atmel Corporation of San Jose,California供應之Atmel編號ATA5577裝置。Although the foregoing steps are performed in the magnetic field, the first and second signal generators 208, 210 and proximity sensors 302 can also be implemented using other techniques, such as optical and radio frequency techniques. For example, in one embodiment using optical techniques, the first and second signal generators 208, 210 can include some Light Emitting Diodes (LEDs) for generating a light beam having a known wavelength, And proximity sensor 302 can include a light sensor for sensing light radiation at the wavelength of the LED. In this embodiment, the LED first and second signal generators 208, 210 must be powered by an electrical energy source such as a battery. Similarly, in one embodiment using radio frequency technology, the first and second signal generators 208, 210 can include some RFID tags used to generate radio frequency signals at a known frequency, and the proximity sensor 302 can include An RFID reader/querier capable of sensing one of the radio frequency signals at the known frequency. These RFID tags can include active or passive RFID tags. If an active RFID tag is used, it must be powered by an electrical energy source such as a battery. If a passive RFID tag is employed, the RF tag will be powered by the RF query signal from proximity sensor 302, and the first and second signal generators 208, 210 need not have separate power supplies. A suitable passive RFID tag The selection is an Atmel number ATA5577 RFID tag supplied by Atmel Corporation of San Jose, California. One suitable option for the RFID reader/querier is the Atmel number ATA5577 device also supplied by Atmel Corporation of San Jose, California.

我們應可了解:根據本發明的揭示而製造之計步器提供了勝過習知計步器的準確度及便利性優點。首先,鞋裝接近感測器及信號產生器之使用提供了決定步數之較佳準確度。該較佳之準確度得自於每當該等鞋相互通過時即產生脈衝信號。此外,根據本發明的揭示而製造之計步器由於無須依賴機械移動及加速度計的軸向對準,而減少了所記錄的"假步伐"數目。此外,藉由採用鞋裝感測器以及以無線方式與一獨立的顯示器通訊之傳送器,而得到比設有整體式顯示單元的計步器更佳之使用者便利性。最後,藉由採用第2-5圖所示之接近感測器及信號產生器配置,而可在極低的步行速度下得到高步伐計數準確度。It should be understood that the pedometer manufactured in accordance with the teachings of the present invention provides advantages over the accuracy and convenience of conventional pedometers. First, the use of shoe-mounted proximity sensors and signal generators provides better accuracy in determining the number of steps. This preferred accuracy results from the generation of a pulse signal whenever the shoes pass each other. Moreover, the pedometer manufactured in accordance with the teachings of the present invention reduces the number of "false steps" recorded as it does not rely on mechanical movement and axial alignment of the accelerometer. In addition, by using a shoe-mounted sensor and a transmitter that wirelessly communicates with a separate display, better user convenience than a pedometer with an integral display unit is obtained. Finally, by using the proximity sensor and signal generator configurations shown in Figures 2-5, high step count accuracy can be achieved at very low walking speeds.

雖然已參照一些特定實施例而說明了本發明,但是可在不脫離本發明之精神下,採用各種各種修改、替代結構、及等效物。例如,雖然已揭示了某些電路組件,但是亦可視需要而採用其他的等效單元。因此,不應將前文所述之實施例詮釋為對本發明之限制,而是由最後的申請專利範圍界定本發明。While the invention has been described with respect to the specific embodiments thereof, various modifications, alternative structures, and equivalents may be employed without departing from the spirit of the invention. For example, although certain circuit components have been disclosed, other equivalent units may be employed as desired. Therefore, the above-described embodiments are not to be construed as limiting the invention, but the invention is defined by the scope of the appended claims.

100‧‧‧雙腳行走周期100‧‧‧foot walking cycle

101‧‧‧右腳彎曲路徑101‧‧‧right foot bending path

102‧‧‧左腳彎曲路徑102‧‧‧ Left foot curved path

104‧‧‧前腳104‧‧‧Front foot

106‧‧‧後腳106‧‧‧ hind feet

108‧‧‧最小間隔距離108‧‧‧ Minimum separation distance

110‧‧‧位置110‧‧‧ position

112‧‧‧最大間隔距離112‧‧‧Maximum separation distance

200‧‧‧計步器200‧‧‧ pedometer

204‧‧‧右鞋204‧‧‧right shoes

206‧‧‧左鞋206‧‧‧ Left shoes

208‧‧‧第一信號產生器208‧‧‧First signal generator

210‧‧‧第二信號產生器210‧‧‧Second signal generator

212‧‧‧較前方位置212‧‧‧front position

214‧‧‧較後方位置214‧‧‧Lower position

213‧‧‧鞋面區213‧‧‧Shoe area

202‧‧‧感測器及傳送器總成202‧‧‧Sensor and transmitter assembly

216‧‧‧縱向分開距離216‧‧‧ longitudinal separation distance

300‧‧‧顯示單元300‧‧‧ display unit

302‧‧‧接近感測器302‧‧‧ proximity sensor

304‧‧‧微控制器單元(MCU)304304‧‧‧Microcontroller Unit (MCU) 304

306‧‧‧傳送器306‧‧‧transmitter

500‧‧‧第一脈衝信號500‧‧‧ first pulse signal

502‧‧‧第二脈衝信號502‧‧‧second pulse signal

504‧‧‧第三脈衝信號504‧‧‧ third pulse signal

在各圖式中,相同的代號通常參照到所有不同圖式中 之相同部分。此外,不必然按照比例繪製該等圖式,而是通常將強調出本發明之原理。在上文之說明中,係參照下列各圖式而說明本發明之各實施例,其中:第1圖是一雙腳行走周期之一示意圖;第2圖是根據本發明的一鞋裝計步器之一正視圖;第3圖是具有一鞋裝信號產生器、一感測器及傳送器、以及一相關聯的獨立步行者參數顯示單元的一計步器之一方塊圖;第4圖是一典型雙腳行走周期之一放大示意圖;第5圖是感測器信號與時間之一關係圖形;以及第6圖是行進速度與時間之一關係圖形。In each figure, the same code is usually referenced in all the different figures. The same part. In addition, the drawings are not necessarily to scale, the In the above description, various embodiments of the present invention are described with reference to the following drawings, wherein: FIG. 1 is a schematic diagram of one of the two-leg walking cycles; and FIG. 2 is a shoe-mounted step according to the present invention. a front view of one of the devices; Figure 3 is a block diagram of a pedometer having a shoe mounted signal generator, a sensor and transmitter, and an associated independent walker parameter display unit; It is an enlarged schematic diagram of one of the typical two-leg walking cycles; Figure 5 is a graph of the relationship between the sensor signal and time; and Figure 6 is a graph of the relationship between the traveling speed and time.

200...計步器200. . . Pedometer

204...右鞋204. . . Right shoe

206...左鞋206. . . Left shoe

208...第一信號產生器208. . . First signal generator

210...第二信號產生器210. . . Second signal generator

212...較前方位置212. . . Front position

214...較後方位置214. . . Rear position

213...鞋面區213. . . Upper area

202...感測器及傳送器總成202. . . Sensor and transmitter assembly

216...縱向分開距離216. . . Longitudinal separation distance

Claims (13)

一種計步器,包含:由一第一鞋的一第一部分承載之一第一信號產生器,用以產生大致朝該第一鞋外部輻射之第一信號;由該第一鞋的一第二部分承載之一第二信號產生器,用以產生大致朝該第一鞋外部輻射之第二信號,該第一及第二信號產生器分開了一大致沿著該第一鞋的縱向而延伸之固定距離;以及被耦合到一第二鞋之一感測器總成,該感測器總成包含用來直接地感測大致朝該第一鞋外部輻射之該第一信號和該第二信號且產生對應的電信號之一感測器、以及一微處理器單元,該微處理器單元具有被耦合到該感測器而接收該等對應的電信號之一輸入,且使用該等對應的電信號和該固定距離之值以產生步行者表現資料。 A pedometer comprising: a first signal generator carried by a first portion of a first shoe for generating a first signal radiating substantially toward the exterior of the first shoe; and a second by the first shoe Partially carrying a second signal generator for generating a second signal radiating substantially toward the exterior of the first shoe, the first and second signal generators being separated from each other substantially along a longitudinal direction of the first shoe a fixed distance; and a sensor assembly coupled to a second shoe, the sensor assembly including means for directly sensing the first signal and the second signal radiating substantially toward the exterior of the first shoe And generating a sensor of the corresponding electrical signal, and a microprocessor unit having an input coupled to the sensor to receive the corresponding electrical signal, and using the corresponding The electrical signal and the value of the fixed distance are used to generate pedestrian performance data. 如申請專利範圍第1項之計步器,其中當該第一及第二鞋被使用者穿著時,在該第一及第二鞋上以面對之關係對準該第一及第二信號產生器與該感測器。 The pedometer of claim 1, wherein when the first and second shoes are worn by the user, the first and second signals are aligned in a facing relationship on the first and second shoes Generator and the sensor. 如申請專利範圍第1項之計步器,其中該第一鞋有一內緣;且其中該第一及第二信號產生器被安裝在鄰接該第一鞋的該內緣。 The pedometer of claim 1, wherein the first shoe has an inner edge; and wherein the first and second signal generators are mounted adjacent the inner edge of the first shoe. 如申請專利範圍第3項之計步器,其中該第二鞋有一內緣;且其中該感測器被安裝在鄰接該第二鞋的該內緣。 A pedometer of claim 3, wherein the second shoe has an inner edge; and wherein the sensor is mounted adjacent the inner edge of the second shoe. 如申請專利範圍第1項之計步器,其中該第一及第 二信號產生器包含永久磁鐵;且其中該感測器包含用來將該等永久磁鐵產生的朝外輻射磁場轉換為對應的電信號之一裝置。 Such as the pedometer of claim 1 of the patent scope, wherein the first and the first The two signal generators comprise permanent magnets; and wherein the sensor includes means for converting the outwardly radiating magnetic fields generated by the permanent magnets into corresponding electrical signals. 如申請專利範圍第5項之計步器,其中該感測器包含一霍爾效應感測器裝置。 A pedometer as claimed in claim 5, wherein the sensor comprises a Hall effect sensor device. 如申請專利範圍第5項之計步器,其中該感測器包含一磁阻(MR)感測器裝置。 A pedometer according to claim 5, wherein the sensor comprises a magnetoresistive (MR) sensor device. 如申請專利範圍第1項之計步器,其中該第一及第二信號產生器包含一些光輻射源;且其中該感測器包含用來將該等光輻射源產生的朝外輻射光輻射轉換為對應的電信號之一裝置。 The pedometer of claim 1, wherein the first and second signal generators comprise a plurality of optical radiation sources; and wherein the sensor comprises outwardly radiating light radiation for generating the optical radiation sources A device that converts to one of the corresponding electrical signals. 如申請專利範圍第8項之計步器,其中該等光輻射源是發光二極體。 A pedometer as claimed in claim 8 wherein the sources of optical radiation are light emitting diodes. 如申請專利範圍第1項之計步器,其中該第一及第二信號產生器包含射頻識別(RFID)標籤,用以產生已知頻率的朝外輻射射頻信號;且其中該感測器包含用來將自該等RFID標籤接收的射頻信號轉換為對應的電信號之一RFID讀取器裝置。 The pedometer of claim 1, wherein the first and second signal generators comprise a radio frequency identification (RFID) tag for generating an outwardly radiated radio frequency signal of a known frequency; and wherein the sensor comprises An RFID reader device for converting radio frequency signals received from the RFID tags into corresponding electrical signals. 如申請專利範圍第10項之計步器,其中該等RFID標籤是主動式RFID裝置。 A pedometer as claimed in claim 10, wherein the RFID tags are active RFID devices. 如申請專利範圍第10項之計步器,其中該等RFID標籤是被動式RFID裝置。 A pedometer as claimed in claim 10, wherein the RFID tags are passive RFID devices. 如申請專利範圍第1項之計步器,進一步包含被耦合到該微處理器單元之一傳送器,用以將該步行者表現資 料傳送到一接收器/顯示單元,以便提供即時使用者回饋。 A pedometer as claimed in claim 1 further comprising a transmitter coupled to the microprocessor unit for performing the pedestrian performance The material is delivered to a receiver/display unit to provide instant user feedback.
TW099140781A 2010-11-25 2010-11-25 Pedometer with shoe mounted sensor and transmitter TWI495849B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099140781A TWI495849B (en) 2010-11-25 2010-11-25 Pedometer with shoe mounted sensor and transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099140781A TWI495849B (en) 2010-11-25 2010-11-25 Pedometer with shoe mounted sensor and transmitter

Publications (2)

Publication Number Publication Date
TW201221916A TW201221916A (en) 2012-06-01
TWI495849B true TWI495849B (en) 2015-08-11

Family

ID=46725085

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099140781A TWI495849B (en) 2010-11-25 2010-11-25 Pedometer with shoe mounted sensor and transmitter

Country Status (1)

Country Link
TW (1) TWI495849B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655148A (en) * 2013-11-22 2015-05-27 纳米新能源(唐山)有限责任公司 Step-counting system, self-powdered signal generator, terminal and step-counting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956628A (en) * 1987-08-07 1990-09-11 Dennis Furlong Electronic monitoring of ground contact by an athlete's shoes
US5807283A (en) * 1997-01-27 1998-09-15 Ng; Kim Kwee Activity monitor
US6243659B1 (en) * 1996-06-28 2001-06-05 Carlo Maria Dominici Pedometer
US20080082025A1 (en) * 2006-09-29 2008-04-03 Hughes Robert D Method and apparatus for a self-powered RFID-readable pedometer
TW200848119A (en) * 2007-06-15 2008-12-16 qing-ming Lai Control system frame of treadmill and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956628A (en) * 1987-08-07 1990-09-11 Dennis Furlong Electronic monitoring of ground contact by an athlete's shoes
US6243659B1 (en) * 1996-06-28 2001-06-05 Carlo Maria Dominici Pedometer
US5807283A (en) * 1997-01-27 1998-09-15 Ng; Kim Kwee Activity monitor
US20080082025A1 (en) * 2006-09-29 2008-04-03 Hughes Robert D Method and apparatus for a self-powered RFID-readable pedometer
TW200848119A (en) * 2007-06-15 2008-12-16 qing-ming Lai Control system frame of treadmill and method thereof

Also Published As

Publication number Publication date
TW201221916A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
US8990045B2 (en) Pedometer with shoe mounted sensor and transmitter
US10789708B1 (en) Athletic performance and technique monitoring
US11426630B1 (en) Stride change detection and correction
EP2672854B1 (en) Systems and methods for monitoring athletic performance
US10959666B2 (en) Wearable hip joint-action detectors
US8876738B1 (en) Human activity monitoring device
US10413218B2 (en) Wristband-type arm movement determination device and wristband-type activity tracker
CN104165637B (en) Method and apparatus for the attachment position for determining motion sensing apparatus
US20160219968A1 (en) Footwear with performance measurement device
US20030163283A1 (en) Exercise monitoring apparatus
TW200831864A (en) Method and apparatus for a self-powered RFID-readable pedometer
US11016111B1 (en) Stride monitoring
WO2009075446A1 (en) System for measuring stride length using ultrasonic sensors
EP2458338B1 (en) Pedometer With Shoe Mounted Sensor And Transmitter
CN102564448B (en) There is the pedometer of footwear dress sensor and transmitter
JP5616763B2 (en) Pedometer with shoe-mounted sensor and transmitter
TWI495849B (en) Pedometer with shoe mounted sensor and transmitter
WO2015121690A1 (en) Device apt for measuring physical efficiency and power output of human running, walking and other movements in watts and a method for its usage, application and processes
KR200216691Y1 (en) Adhesion on foot counter device of shoes
JP2003337930A (en) Measuring instrument for number of steps taken
CN111712154B (en) Pace analysis apparatus
KR20060023003A (en) Apparatus for measuring a quantity of motion by using acceleration sensor
KR20150104330A (en) Mileage Sports Shoes
TWM515793U (en) Health management shoes
JP3086224U (en) Step and heart rate detector