TWI481923B - Liquid crystal display with touch panel - Google Patents

Liquid crystal display with touch panel Download PDF

Info

Publication number
TWI481923B
TWI481923B TW099120708A TW99120708A TWI481923B TW I481923 B TWI481923 B TW I481923B TW 099120708 A TW099120708 A TW 099120708A TW 99120708 A TW99120708 A TW 99120708A TW I481923 B TWI481923 B TW I481923B
Authority
TW
Taiwan
Prior art keywords
layer
carbon nanotube
transparent conductive
liquid crystal
conductive layer
Prior art date
Application number
TW099120708A
Other languages
Chinese (zh)
Other versions
TW201200937A (en
Inventor
Li Qian
Liang Liu
Chen Feng
Original Assignee
Beijing Funate Innovation Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Funate Innovation Tech filed Critical Beijing Funate Innovation Tech
Priority to TW099120708A priority Critical patent/TWI481923B/en
Publication of TW201200937A publication Critical patent/TW201200937A/en
Application granted granted Critical
Publication of TWI481923B publication Critical patent/TWI481923B/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)

Description

觸摸式液晶顯示器 Touch liquid crystal display

本發明涉及一種液晶顯示器,尤其涉及一種觸摸式液晶顯示器。 The present invention relates to a liquid crystal display, and more particularly to a touch liquid crystal display.

液晶顯示因為低功耗、小型化及高品質的顯示效果,成為最佳的顯示方式之一。近年來,伴隨著行動電話、觸摸導航系統、集成式電腦顯示器及互動電視等各種電子設備的高性能化和多樣化的發展,在液晶顯示器的顯示面安裝透光性的觸摸屏的電子設備逐漸增加。電子設備的使用者通過觸摸屏,一邊對位於觸摸屏背面的液晶顯示器的顯示內容進行視覺確認,一邊利用手指或筆等方式按壓觸摸屏來進行操作。由此,可以操作使用該液晶顯示器的電子設備的各種功能。 The liquid crystal display is one of the best display modes because of its low power consumption, miniaturization, and high-quality display. In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones, touch navigation systems, integrated computer monitors, and interactive televisions, electronic devices that mount translucent touch screens on the display surface of liquid crystal displays have gradually increased. . The user of the electronic device visually confirms the display content of the liquid crystal display located on the back surface of the touch screen through the touch screen, and presses the touch panel to operate by a finger or a pen. Thereby, various functions of the electronic device using the liquid crystal display can be operated.

然而,先前的使用電容觸摸屏的液晶顯示器從外至內依次包括一電容觸摸屏、一第一偏光片、一第二基體、一第一配向層、液晶層、一第二配向層、一薄膜晶體管模板以及一第二偏光片。所述電容觸摸屏可以為單點式或多點式,以多點電容觸摸屏常用投射式電容觸摸屏為例,其從外至內一般包括一第一基體、一第一銦錫氧化物(Indium Tin Oxide,ITO)層(下稱ITO層)、一第二基體、一第二ITO層,該第二ITO層與所述第一偏光片接觸設置。由此可見,將觸摸屏集成在液晶顯示器中必然使得液晶顯示器的厚度增加,結構比較複雜,不利於液晶顯示器及應用液晶顯示器的電 子設備的小型化和薄型化的發展。 However, the liquid crystal display using the capacitive touch screen includes a capacitive touch screen, a first polarizer, a second substrate, a first alignment layer, a liquid crystal layer, a second alignment layer, and a thin film transistor template. And a second polarizer. The capacitive touch screen may be a single-point or multi-point type. For example, a multi-point capacitive touch screen commonly used as a projected capacitive touch screen generally includes a first substrate and a first indium tin oxide (Indium Tin Oxide) from the outside to the inside. , an ITO layer (hereinafter referred to as an ITO layer), a second substrate, and a second ITO layer, the second ITO layer being disposed in contact with the first polarizer. It can be seen that integrating the touch screen into the liquid crystal display inevitably increases the thickness of the liquid crystal display, and the structure is relatively complicated, which is disadvantageous for the liquid crystal display and the application of the liquid crystal display. The development of miniaturization and thinning of sub-devices.

有鑒於此,提供一種結構簡單并具有較薄厚度的觸摸式液晶屏實為必要。 In view of this, it is necessary to provide a touch type liquid crystal panel having a simple structure and a thin thickness.

一種觸摸式液晶顯示器從上至下依次包括:一電容式觸摸屏,該電容式觸摸屏包括一第一基體及一透明導電層,該透明導電層設置於該第一基體的上表面,該透明導電層為導電異向性層,該導電異向性層為一奈米碳管層,該奈米碳管層包括複數個奈米碳管,且該奈米碳管層中的奈米碳管沿同一方向擇優取向延伸;一上基板,該上基板從上至下依次包括一第一偏光片、一上基體、一上電極以及一第一配向層,其中,所述第一偏光片為所述奈米碳管層,所述上基體為所述第一基體;一液晶層;以及一下基板,該下基板從上至下依次包括一第二配向層、一薄膜電晶體面板以及一第二偏光片。 The touch-type liquid crystal display includes a capacitive touch screen including a first substrate and a transparent conductive layer, and the transparent conductive layer is disposed on the upper surface of the first substrate, the transparent conductive layer. Is a conductive anisotropic layer, the conductive anisotropic layer is a carbon nanotube layer, the carbon nanotube layer comprises a plurality of carbon nanotubes, and the carbon nanotubes in the carbon nanotube layer are along the same An upper substrate, the upper substrate includes a first polarizer, an upper substrate, an upper electrode and a first alignment layer in order from top to bottom, wherein the first polarizer is the a carbon nanotube layer, the upper substrate is the first substrate; a liquid crystal layer; and a lower substrate, the lower substrate includes a second alignment layer, a thin film transistor panel and a second polarizer in order from top to bottom .

一種觸摸式液晶顯示器從上至下依次包括:一電容式觸摸屏,該電容式觸摸屏從上至下依次包括:一第二透明導電層、一第二基體、一第一透明導電層以及一第一基體;一上基板,該上基板從上至下依次包括一第一偏光片、一上基體、一上電極以及一第一配向層;一液晶層;以及一下基板,該下基板從上至下依次包括一第二配向層、一薄膜電晶體面板以及一第二偏光片;其中,所述第一透明導電層與第二透明導電層中的一個透明導電層為導電異向性層,該導電各向異性層為一奈米碳管層,該奈米碳管層包括複數個奈米碳管,且該奈米碳管層中的奈米碳管沿同一方向擇優取向延伸,另一個透明導電層包括複數個間隔設置的導電結構 ,所述第一偏光片為所述奈米碳管層,所述上基體為所述第一基體。 The touch-type liquid crystal display comprises, in order from top to bottom, a capacitive touch screen comprising, in order from top to bottom, a second transparent conductive layer, a second substrate, a first transparent conductive layer and a first a substrate; the upper substrate includes a first polarizer, an upper substrate, an upper electrode, and a first alignment layer; a liquid crystal layer; and a lower substrate from top to bottom Including a second alignment layer, a thin film transistor panel, and a second polarizer; wherein one of the first transparent conductive layer and the second transparent conductive layer is a conductive anisotropic layer, the conductive The anisotropic layer is a carbon nanotube layer, the carbon nanotube layer comprises a plurality of carbon nanotubes, and the carbon nanotubes in the carbon nanotube layer extend in a preferred orientation in the same direction, and the other transparent conductive layer The layer includes a plurality of electrically conductive structures spaced apart The first polarizer is the carbon nanotube layer, and the upper substrate is the first substrate.

與先前技術相比較,本發明提供的觸摸式液晶顯示器採用奈米碳管層不僅作為觸摸屏的透明導電層,而且兼作該觸摸式液晶顯示器的第一偏光片,所述電容式觸摸屏中的第一基體兼作所述上基板的上基體,故,該觸摸式液晶顯示器具有簡單的結構和較薄的厚度,簡化了製造工藝,降低了製造成本。 Compared with the prior art, the touch liquid crystal display provided by the present invention uses a carbon nanotube layer not only as a transparent conductive layer of the touch screen, but also as a first polarizer of the touch liquid crystal display, the first of the capacitive touch screens. The substrate doubles as the upper substrate of the upper substrate, so that the touch liquid crystal display has a simple structure and a thin thickness, which simplifies the manufacturing process and reduces the manufacturing cost.

10;20‧‧‧觸摸式液晶顯示器 10;20‧‧‧Touch LCD

110;210‧‧‧觸摸屏 110; 210‧‧‧ touch screen

112;211‧‧‧第一基體 112; 211‧‧‧ first substrate

114‧‧‧透明導電層 114‧‧‧Transparent conductive layer

115;216‧‧‧第一電極 115; 216‧‧‧ first electrode

116;218‧‧‧第二電極 116;218‧‧‧second electrode

118;215‧‧‧透明保護層 118; 215‧‧ ‧ transparent protective layer

120;220‧‧‧上基板 120; 220‧‧‧Upper substrate

122;222‧‧‧第一配向層 122; 222‧‧‧ first alignment layer

124;224‧‧‧上電極 124; 224‧‧‧ upper electrode

130;230‧‧‧下基板 130; 230‧‧‧ lower substrate

132;232‧‧‧第二配向層 132; 232‧‧‧ second alignment layer

134;234‧‧‧薄膜電晶體面板 134; 234‧‧‧film transistor panel

136;236‧‧‧第二偏光片 136;236‧‧‧second polarizer

140;240‧‧‧液晶層 140; 240‧‧‧ liquid crystal layer

212‧‧‧第一透明導電層 212‧‧‧First transparent conductive layer

213‧‧‧第二基體 213‧‧‧Second substrate

214‧‧‧第二透明導電層 214‧‧‧Second transparent conductive layer

圖1係本發明第一實施例提供的觸摸式液晶顯示器的剖面示意圖。 1 is a schematic cross-sectional view of a touch liquid crystal display according to a first embodiment of the present invention.

圖2係圖1中的觸摸屏的俯視示意圖。 2 is a top plan view of the touch screen of FIG. 1.

圖3係圖1中的透明導電層採用的奈米碳管拉膜的掃描電鏡照片。 3 is a scanning electron micrograph of a carbon nanotube film taken by the transparent conductive layer in FIG.

圖4係本發明第二實施例提供的觸摸式液晶顯示器的剖面示意圖。 4 is a cross-sectional view of a touch liquid crystal display according to a second embodiment of the present invention.

圖5係圖4中的觸摸屏的俯視示意圖。 FIG. 5 is a top plan view of the touch screen of FIG. 4. FIG.

下面將結合附圖及具體實施例,對本發明提供的觸摸式液晶顯示器作進一步的詳細說明。 The touch liquid crystal display provided by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.

請參閱圖1,本發明第一實施例提供一種觸摸式液晶顯示器10。該觸摸式液晶顯示器10其包括:一觸摸屏110、一上基板120、一下基板130及一液晶層140。其中,所述觸摸屏110設置於該上基板120的上表面;所述下基板130與所述上基板120相對設置;所述液晶層140設置於所述上基板120與所述下基板130之間。在本 說明書中,“上”、“下”僅指相對的方位,“上”係指靠近觸摸式液晶顯示器的觸摸表面的方向,而“下”則指遠離觸摸式液晶顯示器的觸摸表面的方向。 Referring to FIG. 1, a first embodiment of the present invention provides a touch liquid crystal display 10. The touch liquid crystal display 10 includes a touch screen 110, an upper substrate 120, a lower substrate 130, and a liquid crystal layer 140. The touch screen 110 is disposed on the upper surface of the upper substrate 120; the lower substrate 130 is disposed opposite to the upper substrate 120; the liquid crystal layer 140 is disposed between the upper substrate 120 and the lower substrate 130 . In this In the specification, "upper" and "lower" refer only to the relative orientation, "upper" refers to the direction of the touch surface near the touch liquid crystal display, and "lower" refers to the direction away from the touch surface of the touch liquid crystal display.

請一併參閱圖2,所述觸摸屏110為一表面電容式觸摸屏,該觸摸屏110包括一第一基體112、一透明導電層114、兩個第一電極115、兩個第二電極116以及一透明保護層118。其中,所述透明導電層114設置於所述第一基體112的上表面;所述兩個第一電極115以及兩個第二電極116與所述透明導電層114電連接;所述透明保護層118可直接設置在所述透明導電層114的上表面,用於保護該透明導電層114。 Referring to FIG. 2 , the touch screen 110 is a surface capacitive touch screen. The touch screen 110 includes a first substrate 112 , a transparent conductive layer 114 , two first electrodes 115 , two second electrodes 116 , and a transparent surface . Protective layer 118. The transparent conductive layer 114 is disposed on the upper surface of the first substrate 112; the two first electrodes 115 and the two second electrodes 116 are electrically connected to the transparent conductive layer 114; the transparent protective layer 118 may be directly disposed on the upper surface of the transparent conductive layer 114 for protecting the transparent conductive layer 114.

所述上基板120從上至下依次包括一透明導電層114、一第一基體112、一上電極124及一第一配向層122。其中,所述上電極124設置於所述第一基體112的下表面。所述第一配向層122設置於所述上電極124的下表面,靠近液晶層140設置。進一步地,該第一配向層122的下表面可包括複數個平行的第一溝槽,用於使液晶層140的液晶分子定向排列。 The upper substrate 120 includes a transparent conductive layer 114, a first substrate 112, an upper electrode 124 and a first alignment layer 122 in order from top to bottom. The upper electrode 124 is disposed on a lower surface of the first substrate 112. The first alignment layer 122 is disposed on a lower surface of the upper electrode 124 and disposed adjacent to the liquid crystal layer 140. Further, the lower surface of the first alignment layer 122 may include a plurality of parallel first trenches for aligning the liquid crystal molecules of the liquid crystal layer 140.

其中,所述觸摸屏110中的透明導電層114還兼作所述上基板120的第一偏光片,所述第一基體112既作為所述觸摸屏110的基體,又作為所述上基板120的上基體,故,所述觸摸式液晶顯示器10具有較薄的厚度和簡單的結構,簡化了製造工藝,降低了製造成本,提高了背光源的利用率,改善了顯示品質。 The transparent conductive layer 114 in the touch screen 110 also serves as the first polarizer of the upper substrate 120. The first substrate 112 serves as both a base of the touch screen 110 and an upper base of the upper substrate 120. Therefore, the touch liquid crystal display 10 has a thin thickness and a simple structure, simplifies the manufacturing process, reduces the manufacturing cost, improves the utilization ratio of the backlight, and improves the display quality.

所述液晶層140包括複數個長棒狀的液晶分子。所述液晶層140的液晶材料為先前技術中常用的液晶材料。所述液晶層140的厚度1~50微米,本實施例中,液晶層140的厚度為5微米。 The liquid crystal layer 140 includes a plurality of long rod-shaped liquid crystal molecules. The liquid crystal material of the liquid crystal layer 140 is a liquid crystal material commonly used in the prior art. The thickness of the liquid crystal layer 140 is 1 to 50 micrometers. In the embodiment, the thickness of the liquid crystal layer 140 is 5 micrometers.

所述下基板130從上至下依次包括一第二配向層132、一薄膜電晶體面板134及一第二偏光片136。該第二配向層132設置在該薄膜電晶體面板134的上表面,靠近所述液晶層140設置。進一步地,第二配向層132的上表面可包括複數個平行的第二溝槽,該第二溝槽的排列方向與所述第一配向層122的第一溝槽的排列方向垂直。該第二偏光片136設置在該薄膜電晶體面板134的下表面。 The lower substrate 130 includes a second alignment layer 132, a thin film transistor panel 134 and a second polarizer 136 in this order from top to bottom. The second alignment layer 132 is disposed on an upper surface of the thin film transistor panel 134, disposed adjacent to the liquid crystal layer 140. Further, the upper surface of the second alignment layer 132 may include a plurality of parallel second trenches arranged in a direction perpendicular to the direction in which the first trenches of the first alignment layer 122 are arranged. The second polarizer 136 is disposed on a lower surface of the thin film transistor panel 134.

可以理解,根據各種功能的需求,上述各層之間還可選擇性地插入額外的其他層。 It will be appreciated that additional layers may optionally be interposed between the various layers as desired for various functions.

所述第一基體112為透明的薄膜或薄板。該第一基體112的材料可以為玻璃、石英或金剛石等硬性材料。所述第一基體112主要起支撐的作用。當用於柔性觸摸屏中時,該第一基體112的材料亦可以係塑膠或樹脂等柔性材料。具體地,該第一基體112所用的材料可以為聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二醇酯(PET)等聚酯材料,或聚醚碸(PES)、纖維素酯、聚氯乙烯(PVC)、苯並環丁烯(BCB)或丙烯酸樹脂等材料。該第一基體112的厚度為1毫米~1釐米。本實施例中,該第一基體112的材料為玻璃,厚度均為5毫米。可以理解,形成第一基體112的材料並不限於上述列舉的材料,只要能使所述第一基體112具有較好的透明度,起到支撐的作用即可。 The first substrate 112 is a transparent film or sheet. The material of the first substrate 112 may be a hard material such as glass, quartz or diamond. The first substrate 112 serves primarily as a support. When used in a flexible touch screen, the material of the first substrate 112 may also be a flexible material such as plastic or resin. Specifically, the material used for the first substrate 112 may be a polyester material such as polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), or polyether. Materials such as bismuth (PES), cellulose ester, polyvinyl chloride (PVC), benzocyclobutene (BCB) or acrylic resin. The first substrate 112 has a thickness of 1 mm to 1 cm. In this embodiment, the first substrate 112 is made of glass and has a thickness of 5 mm. It can be understood that the material forming the first substrate 112 is not limited to the materials listed above, as long as the first substrate 112 can have a good transparency and serve as a support.

所述觸摸屏110中的透明導電層114為一奈米碳管層。奈米碳管層為一電阻異向性層。所述奈米碳管層包括複數個奈米碳管,且該複數個奈米碳管沿同一方向擇優取向排列,從而使得奈米碳管層在一方向的電阻小於其他方向的電阻。該奈米碳管層中大多數奈米碳管的延伸方向基本平行於該奈米碳管層的表面,且在奈米碳 管延伸方向上的電阻率小於其他方向上的電阻率,優選地,所述奈米碳管層在奈米碳管延伸方向上的電阻率與其他方向上的電阻率的比值小於等於1:2,即奈米碳管層在奈米碳管延伸方向上的電導率係其他方向的2倍以上。所述奈米碳管層包括至少一個奈米碳管拉膜。其中,當所述奈米碳管層包括複數個奈米碳管拉膜時,該奈米碳管拉膜層疊設置或平行無間隙鋪設設置,且該複數個奈米碳管拉膜中的大多數奈米碳管基本沿同一方向擇優取向排列,即相鄰的奈米碳管拉膜中的奈米碳管的排列方向基本一致。本實施例中,所述奈米碳管層為一個奈米碳管拉膜,即所述透明導電層114由一個奈米碳管拉膜組成。所述奈米碳管層的厚度不限,可以根據需要選擇;所述奈米碳管層的厚度為0.5奈米~100微米;優選地,該奈米碳管層的厚度為100奈米~200奈米。 The transparent conductive layer 114 in the touch screen 110 is a carbon nanotube layer. The carbon nanotube layer is a resistive anisotropic layer. The carbon nanotube layer comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes are arranged in a preferred orientation in the same direction, so that the resistance of the carbon nanotube layer in one direction is smaller than the resistance of the other direction. Most of the carbon nanotubes in the carbon nanotube layer extend substantially parallel to the surface of the carbon nanotube layer and are in the nanocarbon The resistivity in the direction in which the tube extends is smaller than the resistivity in the other direction. Preferably, the ratio of the resistivity of the carbon nanotube layer in the direction in which the carbon nanotube extends is different from the resistivity in the other direction is less than or equal to 1:2. That is, the conductivity of the carbon nanotube layer in the direction in which the carbon nanotubes extend is more than twice that of the other directions. The carbon nanotube layer includes at least one carbon nanotube film. Wherein, when the carbon nanotube layer comprises a plurality of carbon nanotube film, the carbon nanotube film is laminated or arranged in parallel without gaps, and the plurality of carbon nanotube films are large Most of the carbon nanotubes are arranged in the same direction in the same direction, that is, the arrangement direction of the carbon nanotubes in the adjacent carbon nanotube film is substantially the same. In this embodiment, the carbon nanotube layer is a carbon nanotube film, that is, the transparent conductive layer 114 is composed of a carbon nanotube film. The thickness of the carbon nanotube layer is not limited and may be selected according to requirements; the thickness of the carbon nanotube layer is 0.5 nm to 100 μm; preferably, the thickness of the carbon nanotube layer is 100 nm~ 200 nm.

請參閱圖3,所述奈米碳管拉膜係由複數奈米碳管組成的自支撐結構。所述複數奈米碳管為沿同一方向擇優取向排列。所述擇優取向係指在奈米碳管拉膜中大多數奈米碳管的整體延伸方向基本朝同一方向。而且,所述大多數奈米碳管的整體延伸方向基本平行於奈米碳管拉膜的表面。進一步地,所述奈米碳管拉膜中多數奈米碳管係通過凡得瓦力首尾相連。具體地,所述奈米碳管拉膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連。當然,所述奈米碳管拉膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會對奈米碳管拉膜中大多數奈米碳管的整體取向排列構成明顯影響。所述自支撐為奈米碳管拉膜不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身膜狀狀態,即將該奈米碳管拉膜置於(或固定於)間隔一定距離設置的兩個支撐 體上時,位於兩個支撐體之間的奈米碳管拉膜能夠懸空保持自身膜狀狀態。所述自支撐主要通過奈米碳管拉膜中存在連續的通過凡得瓦力首尾相連延伸排列的奈米碳管而實現。 Referring to FIG. 3, the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction. The preferred orientation means that the overall extension direction of most of the carbon nanotubes in the carbon nanotube film is substantially in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes of the majority of the carbon nanotubes extending in the same direction in the carbon nanotube film is connected end to end with the carbon nanotubes adjacent in the extending direction by van der Waals force . Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. The self-supporting carbon nanotube film does not require a large-area carrier support, and as long as the support force is provided on both sides, it can be suspended in the whole to maintain its own film state, that is, the carbon nanotube film is placed (or Fixed at two distances set at a distance On the body, the carbon nanotube film located between the two supports can be suspended to maintain its own film state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end-to-end extension of the van der Waals force in the carbon nanotube film.

具體地,所述奈米碳管拉膜中基本朝同一方向延伸的多數奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者並非完全按照延伸方向上排列,可以適當的偏離延伸方向。故,不能排除奈米碳管拉膜的基本朝同一方向延伸的多數奈米碳管中並列的奈米碳管之間可能存在部分接觸。 Specifically, the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent; or are not completely aligned in the extending direction, and may be appropriately deviated from the extending direction. . Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes extending substantially in the same direction.

具體地,所述奈米碳管拉膜包括複數個連續且定向排列的奈米碳管片段。該複數個奈米碳管片段通過凡得瓦力首尾相連。每一奈米碳管片段包括複數個相互平行的奈米碳管,該複數個相互平行的奈米碳管通過凡得瓦力緊密結合。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該奈米碳管拉膜中的奈米碳管沿同一方向擇優取向排列。 Specifically, the carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments. The plurality of carbon nanotube segments are connected end to end by van der Waals force. Each of the carbon nanotube segments includes a plurality of mutually parallel carbon nanotubes, and the plurality of mutually parallel carbon nanotubes are tightly coupled by van der Waals force. The carbon nanotube segments have any length, thickness, uniformity, and shape. The carbon nanotubes in the carbon nanotube film are arranged in a preferred orientation in the same direction.

從奈米碳管陣列中拉取獲得所述奈米碳管拉膜的具體方法包括:(a)從所述奈米碳管陣列中選定一奈米碳管片段,本實施例優選為採用具有一定寬度的膠帶或黏性基條接觸該奈米碳管陣列以選定具有一定寬度的一奈米碳管片段;(b)通過移動該拉伸工具,以一定速度拉取該選定的奈米碳管片段,從而首尾相連的拉出複數個奈米碳管片段,進而形成一連續的奈米碳管拉膜。該複數個奈米碳管相互並排使該奈米碳管片段具有一定寬度。當該被選定的奈米碳管片段在拉力作用下沿拉取方向逐漸脫離奈米碳管陣列的生長基底的同時,由於凡得瓦力作用,與該選定的奈米碳管片段相鄰的其他奈米碳管片段首尾相連地相繼地被拉出,從而 形成一連續、均勻且具有一定寬度和擇優取向的奈米碳管拉膜。 The specific method for extracting the carbon nanotube film from the carbon nanotube array comprises: (a) selecting a carbon nanotube segment from the carbon nanotube array, and the embodiment preferably adopts a tape or viscous strip of a certain width contacting the array of carbon nanotubes to select a carbon nanotube segment having a width; (b) pulling the selected nanocarbon at a certain speed by moving the stretching tool The tube segments, thereby connecting the plurality of carbon nanotube segments end to end, form a continuous carbon nanotube film. The plurality of carbon nanotubes are arranged side by side such that the carbon nanotube segments have a certain width. When the selected carbon nanotube segment is gradually separated from the growth substrate of the carbon nanotube array in the pulling direction under the pulling force, adjacent to the selected carbon nanotube segment due to the effect of van der Waals force Other carbon nanotube segments are successively pulled out end to end, thereby A continuous, uniform carbon nanotube film having a certain width and a preferred orientation is formed.

所述奈米碳管拉膜在拉伸方向具有最小的電阻抗,而在垂直於拉伸方向具有最大電阻抗,因而具備電阻抗異向性,即導電異向性。 The carbon nanotube film has a minimum electrical resistance in the stretching direction and a maximum electrical resistance in a direction perpendicular to the stretching direction, and thus has an electrical anisotropy, that is, an anisotropic conductivity.

所述奈米碳管拉膜的結構請參見於2008年8月16日公開的,公開號為TW 200833862的台灣發明專利申請公佈說明書。由於該奈米碳管拉膜中的奈米碳管具有很好的柔韌性,使得該奈米碳管拉膜具有很好的柔韌性,可以彎曲折疊成任意形狀而不易破裂;故,所述奈米碳管層亦具有較好的柔韌性,從而使得採用該奈米碳管層作透明導電層的觸摸屏110具有較好的耐用性,進而使得使用該觸摸屏110的觸摸式液晶顯示器10具有較好的耐用性。 For the structure of the carbon nanotube film, please refer to the Taiwan invention patent application publication disclosed in the publication No. TW 200833862. Since the carbon nanotube in the carbon nanotube film has good flexibility, the carbon nanotube film has good flexibility and can be bent and folded into any shape without being easily broken; The carbon nanotube layer also has better flexibility, so that the touch screen 110 using the carbon nanotube layer as a transparent conductive layer has better durability, and thus the touch liquid crystal display 10 using the touch screen 110 has a comparative advantage. Good durability.

該奈米碳管層具有一理想的透光度,單層奈米碳管拉膜的可見光透過率大於85%,該奈米碳管層中奈米碳管拉膜的層數不限,只要能夠具有理想的透光度即可。 The carbon nanotube layer has an ideal transmittance, and the visible light transmittance of the single-layer carbon nanotube film is greater than 85%, and the number of layers of the carbon nanotube film in the carbon nanotube layer is not limited, as long as It can have ideal light transmittance.

另外,所述奈米碳管層可以進一步包括增強材料,該增強材料均勻分佈於所述複數奈米碳管中,從而形成一奈米碳管複合層。具體地,該奈米碳管複合層包括至少一奈米碳管拉膜及所述增強材料,該增強材料均勻分佈於該至少一奈米碳管拉膜中的奈米碳管之間的間隙中。其中,所述增強材料可以為一高分子材料或金屬材料。所述高分子材料為一透明高分子材料,其具體材料不限,可以為聚苯乙烯、聚乙烯、聚碳酸酯、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、對苯二甲酸乙二醇酯(PET)、苯丙環丁烯(BCB)或聚環烯烴等。所述金屬材料為鎳、金、鉑、鐵、鈷或銅等金屬材料。 Additionally, the carbon nanotube layer may further include a reinforcing material uniformly distributed in the plurality of carbon nanotubes to form a carbon nanotube composite layer. Specifically, the carbon nanotube composite layer includes at least one carbon nanotube film and the reinforcing material, and the reinforcing material is uniformly distributed in a gap between the carbon nanotubes in the at least one carbon nanotube film in. Wherein, the reinforcing material may be a polymer material or a metal material. The polymer material is a transparent polymer material, and the specific material thereof is not limited, and may be polystyrene, polyethylene, polycarbonate, polymethyl methacrylate (PMMA), polycarbonate (PC), and benzene. Ethylene glycol dicarboxylate (PET), phenylcyclobutene (BCB) or polycycloolefin. The metal material is a metal material such as nickel, gold, platinum, iron, cobalt or copper.

可以理解,所述奈米碳管層還可以包括經過蝕刻或雷射處理的奈米碳管拉膜。該奈米碳管拉膜經過雷射處理在其表面形成複數個雷射切割線,從而進一步增強該奈米碳管層疊導電異向性。 It will be appreciated that the carbon nanotube layer may also include an etched or laser treated carbon nanotube film. The carbon nanotube film is subjected to laser treatment to form a plurality of laser cutting lines on the surface thereof, thereby further enhancing the laminated carbon nanotube electrical anisotropy.

由於所述透明導電層114為一奈米碳管層,該奈米碳管層中的奈米碳管對電磁波的吸收接近絕對黑體,奈米碳管對於各種波長的電磁波均有均一的吸收特性,故所述透明導電層114對於各種波長的電磁波亦有均一的偏振吸收性能。而且,由於該透明導電層114中的奈米碳管基本沿同一方向排列,當光波入射時,振動方向平行於奈米碳管長度方向的光被吸收,垂直於奈米碳管長度方向的光能透過,所以透射光成為線偏振光。故,該透明導電層114不僅具有導電的作用,還具有偏光片的偏光作用,可以作為第一偏光片,上基板120無需額外增加偏光片,從而可使得觸摸式液晶顯示器10具有較薄的厚度,簡化觸摸式液晶顯示器10的結構和製造成本,並提高背光源的利用率,改善顯示品質。 Since the transparent conductive layer 114 is a carbon nanotube layer, the absorption of electromagnetic waves by the carbon nanotubes in the carbon nanotube layer is close to an absolute black body, and the carbon nanotubes have uniform absorption characteristics for electromagnetic waves of various wavelengths. Therefore, the transparent conductive layer 114 also has uniform polarization absorption performance for electromagnetic waves of various wavelengths. Moreover, since the carbon nanotubes in the transparent conductive layer 114 are arranged substantially in the same direction, when the light wave is incident, the light whose direction of vibration is parallel to the length of the carbon nanotube is absorbed, and the light perpendicular to the length of the carbon nanotube It is transparent, so the transmitted light becomes linearly polarized light. Therefore, the transparent conductive layer 114 not only has the function of conducting electricity, but also has the polarizing effect of the polarizer, and can be used as the first polarizer. The upper substrate 120 does not need to additionally add a polarizer, so that the touch liquid crystal display 10 has a thin thickness. The structure and manufacturing cost of the touch liquid crystal display 10 are simplified, and the utilization ratio of the backlight is improved, and the display quality is improved.

在所述觸摸屏110中,所述兩個第一電極115間隔設置在所述透明導電層114沿第一方向的兩端或第一基體112沿第一方向的兩端,與所述透明導電層114電連接,所述第一方向即圖2中所示的X方向,該第一方向基本上平行於大多數奈米碳管的延伸方向;所述兩個第二電極116間隔設置在所述透明導電層114沿第二方向的兩端或第一基體112沿第二方向的兩端,與所述透明導電層114電連接,所述第二方向即圖2中所示的Y方向。其中,所述第一方向與第二方向只要相交即可;優選地,所述第一方向與第二方向垂直設置。 In the touch screen 110, the two first electrodes 115 are spaced apart from both ends of the transparent conductive layer 114 in the first direction or both ends of the first substrate 112 in the first direction, and the transparent conductive layer. 114 electrically connected, the first direction is the X direction shown in FIG. 2, the first direction is substantially parallel to the extending direction of the majority of the carbon nanotubes; the two second electrodes 116 are spaced apart at the The transparent conductive layer 114 is electrically connected to the transparent conductive layer 114 at both ends in the second direction or both ends of the first substrate 112 in the second direction, that is, the Y direction shown in FIG. Wherein, the first direction and the second direction are only required to intersect; preferably, the first direction is perpendicular to the second direction.

具體地,所述第一電極115以及第二電極116可以設置於透明導電 層114的同一表面;亦可以設置於透明導電層114的不同表面,只要與所述透明導電層114電連接,且可以在所述透明導電層114上形成均勻的電阻網路即可。所述兩個第一電極115以及兩個第二電極116的材料為金屬、奈米碳管或其他導電材料,只要確保該兩個第一電極115以及兩個第二電極116能導電即可。本實施例中,所述兩個第一電極115沿X方向間隔設置於所述透明導電層114的兩端,所述兩個第二電極116沿Y方向間隔設置於所述透明導電層114的兩端;且X方向與Y方向正交。所述第一電極115以及第二電極116都為條形的銀層。 Specifically, the first electrode 115 and the second electrode 116 may be disposed on the transparent conductive The same surface of the layer 114 may be disposed on different surfaces of the transparent conductive layer 114 as long as it is electrically connected to the transparent conductive layer 114, and a uniform resistor network may be formed on the transparent conductive layer 114. The materials of the two first electrodes 115 and the two second electrodes 116 are metal, carbon nanotubes or other conductive materials, as long as the two first electrodes 115 and the two second electrodes 116 are electrically conductive. In this embodiment, the two first electrodes 115 are spaced apart from each other at opposite ends of the transparent conductive layer 114 in the X direction, and the two second electrodes 116 are spaced apart from the transparent conductive layer 114 in the Y direction. Both ends; and the X direction is orthogonal to the Y direction. The first electrode 115 and the second electrode 116 are both strip-shaped silver layers.

在所述觸摸屏110中,所述透明保護層118設置於所述透明導電層114的上表面,可同時覆蓋所述兩個第一電極115以及兩個第二電極116。所述透明保護層118可由氮化矽、氧化矽、苯丙環丁烯(BCB)、聚酯膜或丙烯酸樹脂等材料形成。該透明保護層118亦可採用一層表面經過硬化處理、光滑防刮的塑膠層,用於保護所述透明導電層114,提高耐用性。該透明保護層118還可用以提供一些附加功能,如可以減少眩光或降低反射。本實施例中,該透明保護層118的材料為聚對苯二甲酸乙二醇酯(PET)。 In the touch screen 110, the transparent protective layer 118 is disposed on the upper surface of the transparent conductive layer 114, and covers the two first electrodes 115 and the two second electrodes 116 at the same time. The transparent protective layer 118 may be formed of a material such as tantalum nitride, hafnium oxide, phenylcyclobutene (BCB), a polyester film, or an acrylic resin. The transparent protective layer 118 can also be a plastic layer with a hardened surface and a smooth scratch-resistant layer for protecting the transparent conductive layer 114 and improving durability. The transparent protective layer 118 can also be used to provide additional functionality such as reducing glare or reducing reflections. In this embodiment, the transparent protective layer 118 is made of polyethylene terephthalate (PET).

在所述上基板120中,所述上電極124的材料可採用ITO等透明導電材料,該上電極124起到給液晶層140施加配向電壓的作用。 In the upper substrate 120, the material of the upper electrode 124 may be a transparent conductive material such as ITO, and the upper electrode 124 functions to apply an alignment voltage to the liquid crystal layer 140.

所述上基板120的第一配向層122的材料可以為聚苯乙烯及其衍生物、聚醯亞胺、聚乙烯醇、聚酯、環氧樹脂、聚胺酯、聚矽烷等。所述第一配向層122的第一溝槽可以採用磨擦法,傾斜蒸鍍SiOx膜法和對膜進行微溝槽處理法等方法形成,該第一溝槽可使液晶分子定向排列。本實施例中,所述第一配向層122的材料為 聚醯亞胺,厚度為1~50微米。 The material of the first alignment layer 122 of the upper substrate 120 may be polystyrene and its derivatives, polyimine, polyvinyl alcohol, polyester, epoxy resin, polyurethane, polydecane, and the like. The first trench of the first alignment layer 122 may be formed by a rubbing method, a tilt evaporation SiOx film method, and a micro trench treatment method for the film, and the first trench may align the liquid crystal molecules. In this embodiment, the material of the first alignment layer 122 is Polyimine with a thickness of 1 to 50 microns.

所述下基板130中,所述第二配向層132與第一配向層122的材料相同,所述第二配向層132的第二溝槽可使液晶分子定向排列。由於所述第一配向層122的第一溝槽與第二配向層132的第二溝槽的排列方向垂直,故第一配向層122與第二配向層132之間的液晶分子在該兩個配向層之間的排列角度產生90度旋轉,從而起到旋光的作用,將第二偏光片136起偏後的光線的偏振方向旋轉90度。本實施例中,所述第二配向層132的材料為聚醯亞胺,厚度為1~50微米。 In the lower substrate 130, the second alignment layer 132 is the same material as the first alignment layer 122, and the second trench of the second alignment layer 132 may align the liquid crystal molecules. Since the first trench of the first alignment layer 122 and the second trench of the second alignment layer 132 are perpendicular to each other, the liquid crystal molecules between the first alignment layer 122 and the second alignment layer 132 are in the two The alignment angle between the alignment layers produces a 90-degree rotation, thereby functioning as an optical rotation, and the polarization direction of the polarized light of the second polarizer 136 is rotated by 90 degrees. In this embodiment, the second alignment layer 132 is made of polyimide and has a thickness of 1 to 50 micrometers.

所述薄膜電晶體面板134進一步包括一第三基體、形成於該第三基體上表面的複數個薄膜電晶體、複數個像素電極及一顯示器驅動電路。所述複數個薄膜電晶體與像素電極一一對應連接,所述複數個薄膜電晶體通過源極線與柵極線與顯示器驅動電路電連接。優選地,所述複數個薄膜電晶體及複數個像素電極以陣列的方式設置於第三基體上表面。 The thin film transistor panel 134 further includes a third substrate, a plurality of thin film transistors formed on the upper surface of the third substrate, a plurality of pixel electrodes, and a display driving circuit. The plurality of thin film transistors are connected in one-to-one correspondence with the pixel electrodes, and the plurality of thin film transistors are electrically connected to the display driving circuit through the source lines and the gate lines. Preferably, the plurality of thin film transistors and the plurality of pixel electrodes are disposed in an array on the upper surface of the third substrate.

所述第二偏光片136的材料為先前技術中常用的偏光材料,如二向色性有機高分子材料,具體可以為碘系材料或染料材料等。所述第二偏光片136的材料亦可以為所述奈米碳管拉膜。所述第二偏光片136的厚度為1微米~0.5毫米。所述第二偏光片136的作用為將從設置於觸摸式液晶顯示器10下表面的背光模組發出的光進行起偏,從而得到沿單一方向偏振的光線。所述第二偏光片136的偏振方向與所述透明導電層114的偏振方向可以垂直亦可以平行,即,該第二偏光片136的偏振方向與所述奈米碳管層的偏振方向可以垂直亦可以平行。本實施例中,所述第二偏光片136的 材料為奈米碳管拉膜。該第二偏光片136的偏振方向與所述透明導電層114的偏振方向垂直,即,所述透明導電層114中的大多數奈米碳管擇優取向排列的方向與該第二偏光片136中的大多數奈米碳管擇優取向排列的方向垂直。 The material of the second polarizer 136 is a polarizing material commonly used in the prior art, such as a dichroic organic polymer material, and specifically may be an iodine-based material or a dye material. The material of the second polarizer 136 may also be the carbon nanotube film. The second polarizer 136 has a thickness of 1 micrometer to 0.5 millimeter. The second polarizer 136 functions to polarize light emitted from the backlight module disposed on the lower surface of the touch liquid crystal display 10 to obtain light polarized in a single direction. The polarization direction of the second polarizer 136 and the polarization direction of the transparent conductive layer 114 may be perpendicular or parallel, that is, the polarization direction of the second polarizer 136 may be perpendicular to the polarization direction of the carbon nanotube layer. Can also be parallel. In this embodiment, the second polarizer 136 The material is a carbon nanotube film. The polarization direction of the second polarizer 136 is perpendicular to the polarization direction of the transparent conductive layer 114, that is, the direction in which the majority of the carbon nanotubes in the transparent conductive layer 114 are preferentially aligned and the second polarizer 136 Most of the carbon nanotubes are oriented in a preferred orientation with a vertical orientation.

請參閱圖4,本發明第二實施例提供一觸摸式液晶顯示器20,該觸摸式液晶顯示器20其包括:一觸摸屏210;一上基板220,所述電容觸摸屏210設置於該上基板220;一下基板230,該下基板230與所述上基板220相對設置;以及一液晶層240,該液晶層240設置於所述上基板220與所述下基板230之間。其中,所述上基板220從上至下依次為一第一偏光片、一上基體、一上電極224及一第一配向層222;所述下基板230從上至下依次包括一第二配向層232、一薄膜電晶體面板234及一第二偏光片236。 Referring to FIG. 4, a second embodiment of the present invention provides a touch-type liquid crystal display 20, which includes: a touch screen 210; an upper substrate 220, the capacitive touch screen 210 is disposed on the upper substrate 220; The substrate 230 is disposed opposite to the upper substrate 220; and a liquid crystal layer 240 is disposed between the upper substrate 220 and the lower substrate 230. The upper substrate 220 is a first polarizer, an upper substrate, an upper electrode 224 and a first alignment layer 222 from top to bottom; the lower substrate 230 includes a second alignment from top to bottom. The layer 232, a thin film transistor panel 234 and a second polarizer 236.

該第二實施例提供的觸摸式液晶顯示器20與第一實施例提供的觸摸式液晶顯示器10的結構基本相同,不同之處在於,本實施例中的觸摸屏210為一投射式電容觸摸屏。請一併參閱圖5,該觸摸屏210包括一第一基體211、一第一透明導電層212、一第二基體213、一第二透明導電層214、一透明保護層215、複數個第一電極216以及複數個第二電極218。其中,所述第一透明導電層212設置於所述第一基體211的上表面,所述第二基體213設置於所述第一透明導電層212與第二透明導電層214之間。所述透明保護層215設置於所述第二透明導電層214的上表面。所述複數個第一電極216沿一第一方向如X方向相互間隔設置於所述第一透明導電層212平行於所述X方向的一側邊,且分別與該第一透明導電層212電連接;所述複數個第二電極218沿一第二方向如Y方向相互間隔 設置於所述第二透明導電層214平行於所述Y方向的一側邊,且分別與該第二透明導電層214電連接。 The touch liquid crystal display 20 provided by the second embodiment is substantially the same as the touch liquid crystal display 10 provided in the first embodiment, except that the touch screen 210 in this embodiment is a projected capacitive touch screen. Referring to FIG. 5 , the touch screen 210 includes a first substrate 211 , a first transparent conductive layer 212 , a second substrate 213 , a second transparent conductive layer 214 , a transparent protective layer 215 , and a plurality of first electrodes. 216 and a plurality of second electrodes 218. The first transparent conductive layer 212 is disposed on the upper surface of the first substrate 211 , and the second substrate 213 is disposed between the first transparent conductive layer 212 and the second transparent conductive layer 214 . The transparent protective layer 215 is disposed on an upper surface of the second transparent conductive layer 214. The plurality of first electrodes 216 are spaced apart from each other along a side of the first transparent conductive layer 212 parallel to the X direction along a first direction, such as an X direction, and are respectively electrically connected to the first transparent conductive layer 212. Connecting; the plurality of second electrodes 218 are spaced apart from each other along a second direction such as the Y direction The second transparent conductive layer 214 is disposed on one side parallel to the Y direction, and is electrically connected to the second transparent conductive layer 214, respectively.

所述第一基體211與所述第二基體213均為絕緣材料,且均與第一實施例中的第一基體112的材料相同。所述第一基體211同時亦為所述上基板220的上基體,故,所述觸摸式液晶顯示器20具有較薄的厚度和簡單的結構,簡化了製造工藝,降低了製造成本,並且提高了背光源的利用率,改善了顯示品質。 The first base 211 and the second base 213 are both insulating materials and are the same as the first base 112 in the first embodiment. The first substrate 211 is also the upper substrate of the upper substrate 220. Therefore, the touch liquid crystal display 20 has a thin thickness and a simple structure, simplifies the manufacturing process, reduces the manufacturing cost, and improves the height. The utilization of the backlight improves the display quality.

所述第一透明導電層212設置於所述第二基體213的下表面。該第一透明導電層212為所述奈米碳管層,且包括複數個奈米碳管,該複數個奈米碳管沿同一方向擇優取向延伸。該第一透明導電層212的材料及與第一實施例中的透明導電層114的材料及結構相同,所以該第一透明導電層212還兼作所述上基板220的第一偏光片。該奈米碳管層包括至少一個所述奈米碳管拉膜,該至少一個奈米碳管拉膜在其拉伸方向具有最小的電阻抗,而在垂直於拉伸方向具有最大電阻抗,因而具備電阻抗異向性,即導電異向性。其中,該第一透明導電層212中的第二方向如圖5中的Y方向為該奈米碳管層中的大多數奈米碳管的整體軸向延伸方向,亦就係該奈米碳管層中的奈米碳管沿Y方向首尾相連擇優取向排列的方向。該第一透明導電層212在Y方向上的電阻率小於其在其他方向上的電阻率,而垂直於該Y方向上的電阻率最大。該第一透明導電層的第一方向如圖5中的X方向,該X方向平行於該奈米碳管層的表面,且與Y方向相交。本實施例中,X方向垂直於Y方向,該第一透明導電層212在Y方向上的電阻率小於其在X方向上的電阻率。 The first transparent conductive layer 212 is disposed on a lower surface of the second substrate 213. The first transparent conductive layer 212 is the carbon nanotube layer, and includes a plurality of carbon nanotubes, and the plurality of carbon nanotubes extend in a preferred orientation in the same direction. The material of the first transparent conductive layer 212 is the same as that of the transparent conductive layer 114 in the first embodiment. Therefore, the first transparent conductive layer 212 also serves as the first polarizer of the upper substrate 220. The carbon nanotube layer includes at least one of the carbon nanotube film, the at least one carbon nanotube film has a minimum electrical resistance in a tensile direction thereof and a maximum electrical resistance in a direction perpendicular to the stretching direction, Therefore, it has electrical anisotropy, that is, conductive anisotropy. Wherein the second direction in the first transparent conductive layer 212 is the overall axial extension direction of most of the carbon nanotubes in the carbon nanotube layer as shown in FIG. 5, and the nanocarbon is also The carbon nanotubes in the tube layer are connected end to end in the Y direction in a direction in which the preferred orientation is arranged. The resistivity of the first transparent conductive layer 212 in the Y direction is smaller than that in other directions, and the resistivity perpendicular to the Y direction is the largest. The first direction of the first transparent conductive layer is the X direction in FIG. 5, which is parallel to the surface of the carbon nanotube layer and intersects the Y direction. In this embodiment, the X direction is perpendicular to the Y direction, and the resistivity of the first transparent conductive layer 212 in the Y direction is smaller than its resistivity in the X direction.

由於該第一透明導電層212中的奈米碳管層在Y方向上具有很好的 導電性,所述複數個第一電極216沿X方向相互間隔地設置在該第一透明導電層212一側時該第一透明導電層212可看作形成複數個相互間隔並與Y方向平行的導電帶,該複數個導電帶與該複數個第一電極216分別導通。所述複數個第一電極216的材料為導體,如金屬。 Since the carbon nanotube layer in the first transparent conductive layer 212 has a good orientation in the Y direction The first transparent conductive layer 212 can be regarded as forming a plurality of mutually spaced and parallel to the Y direction when the plurality of first electrodes 216 are spaced apart from each other in the X direction on the side of the first transparent conductive layer 212. The conductive strips are electrically connected to the plurality of first electrodes 216 respectively. The material of the plurality of first electrodes 216 is a conductor such as a metal.

進一步地,該第一透明導電層212中的奈米碳管層還可以經過蝕刻或雷射處理形成複數個雷射切割線,該複數個雷射切割線沿Y方向延伸,增加該奈米碳管層的導電異向性。 Further, the carbon nanotube layer in the first transparent conductive layer 212 may further form a plurality of laser cutting lines by etching or laser processing, and the plurality of laser cutting lines extend in the Y direction to increase the nano carbon. Conductive anisotropy of the tube layer.

所述第二透明導電層214設置於所述第二基體213的上表面。該第二透明導電層214具有複數個圖案化的間隔設置的導電結構,例如長條形導電結構,其大致上相互平行且間隔一預設距離。該複數個導電結構沿所述X方向延伸,且沿所述第二透明導電層214的Y方向間隔設置。一般來說,該第二透明導電層214的導電結構的導電方向垂直於所述第一透明導電層212的最小電阻率的方向。本實施例中,該第二透明導電層214為圖案化的ITO薄膜,且包括複數個長條形導電結構,該複數個長條形導電結構的導電方向垂直於所述第一透明導電層212中的大多數奈米碳管的延伸方向。 The second transparent conductive layer 214 is disposed on an upper surface of the second substrate 213. The second transparent conductive layer 214 has a plurality of patterned spaced apart conductive structures, such as elongated conductive structures, which are substantially parallel to each other and spaced apart by a predetermined distance. The plurality of conductive structures extend along the X direction and are spaced apart along the Y direction of the second transparent conductive layer 214. Generally, the conductive direction of the conductive structure of the second transparent conductive layer 214 is perpendicular to the direction of the minimum resistivity of the first transparent conductive layer 212. In this embodiment, the second transparent conductive layer 214 is a patterned ITO film, and includes a plurality of elongated conductive structures. The conductive directions of the plurality of elongated conductive structures are perpendicular to the first transparent conductive layer 212. The direction in which most of the carbon nanotubes extend.

可以理解,所述第二透明導電層214的材料還可為奈米碳管等透明導電材料。即所述第二透明導電層214可以為一奈米碳管膜,該奈米碳管膜由均勻分佈的奈米碳管組成,且奈米碳管之間通過凡得瓦力緊密結合。該奈米碳管膜中的奈米碳管為無序或有序排列。所謂無序排列係指奈米碳管的排列方向無規則。所謂有序排列係指奈米碳管的排列方向有規則。具體地,當奈米碳管膜包括無序排列的奈米碳管時,奈米碳管相互纏繞或者奈米碳管膜各向 同性;當奈米碳管膜包括有序排列的奈米碳管時,該奈米碳管膜中的大多數奈米碳管沿一個方向或者複數個方向擇優取向排列。 It can be understood that the material of the second transparent conductive layer 214 may also be a transparent conductive material such as a carbon nanotube. That is, the second transparent conductive layer 214 may be a carbon nanotube film composed of uniformly distributed carbon nanotubes, and the carbon nanotubes are tightly coupled by van der Waals force. The carbon nanotubes in the carbon nanotube film are disordered or ordered. The so-called disordered arrangement means that the arrangement direction of the carbon nanotubes is irregular. The so-called ordered arrangement means that the arrangement direction of the carbon nanotubes is regular. Specifically, when the carbon nanotube film includes a disordered arrangement of carbon nanotubes, the carbon nanotubes are intertwined or the carbon nanotube membranes are oriented Same as the same; when the carbon nanotube film comprises an ordered arrangement of carbon nanotubes, most of the carbon nanotubes in the carbon nanotube film are arranged in a preferred orientation in one direction or in a plurality of directions.

所述複數個第二電極218沿第二方向間隔排列設置於所述第二透明導電層214的一側,並與該第二透明導電層214的複數個導電結構分別導通。每個第二電極218沿第一方向延伸。該複數個第二電極218的材料與所述複數個第一電極216的材料相同。 The plurality of second electrodes 218 are arranged on the side of the second transparent conductive layer 214 at intervals in the second direction, and are electrically connected to the plurality of conductive structures of the second transparent conductive layer 214, respectively. Each second electrode 218 extends in a first direction. The material of the plurality of second electrodes 218 is the same as the material of the plurality of first electrodes 216.

由於所述第一透明導電層212及第二透明導電層214通過所述第二基體213間隔,在所述第一透明導電層212的複數個導電帶與所述第二透明導電層214的複數個導電結構相互交叉的複數個交叉位置處形成複數個電容。該複數個電容可通過與所述第一電極216及第二電極218電連接的外部電路測得。當手指等觸摸物靠近一個或複數個交叉位置時,該交叉位置的電容發生變化,所述外部電路檢測到該變化的電容,從而得到該觸摸位置的座標。 The first transparent conductive layer 212 and the second transparent conductive layer 214 are separated by the second substrate 213, and the plurality of conductive strips of the first transparent conductive layer 212 and the second transparent conductive layer 214 are plural. A plurality of capacitors are formed at a plurality of intersection positions at which the conductive structures intersect each other. The plurality of capacitors can be measured by an external circuit electrically coupled to the first electrode 216 and the second electrode 218. When a touch object such as a finger approaches one or more intersection positions, the capacitance of the intersection position changes, and the external circuit detects the changed capacitance, thereby obtaining a coordinate of the touch position.

所述透明保護層215的材料及作用與第一實施例中的觸摸屏110中的透明保護層118的材料及作用相同。 The material and function of the transparent protective layer 215 are the same as those of the transparent protective layer 118 in the touch screen 110 in the first embodiment.

可以理解,所述第一透明導電層212與所述第二透明導電層214的材料及結構可以互換。如,所述第一透明導電層212可以為ITO或奈米碳管膜等透明導電材料,且具有複數個導電結構;第二透明導電層214為所述奈米碳管層,且該奈米碳管層具有導電異向性。 It can be understood that the materials and structures of the first transparent conductive layer 212 and the second transparent conductive layer 214 are interchangeable. For example, the first transparent conductive layer 212 may be a transparent conductive material such as ITO or a carbon nanotube film, and has a plurality of conductive structures; the second transparent conductive layer 214 is the carbon nanotube layer, and the nanometer The carbon tube layer has an electrically conductive anisotropy.

本發明實施例提供的觸摸式液晶顯示器,具有以下優點:第一,本發明實施提供的靠近所述上基板的透明導電層為奈米碳管層,該奈米碳管層不僅作為觸摸屏的透明導電層,而且兼作該觸摸式 液晶顯示器的第一偏光片,本發明實施例提供的電容式觸摸屏中的第一基體又兼作上基板的基體,相對於先前的觸摸式液晶顯示器節省了一個基體與一個偏光片,故具有較薄的厚度和簡單的結構,簡化了製造工藝,降低了製造成本,並提高了背光源的利用率,改善了顯示品質。第二,由於所述奈米碳管層具有很好的韌性和機械強度,故,採用所述的奈米碳管層作透明導電層,可以相應的提高觸摸屏的耐用性,進而提高了使用該觸摸式液晶顯示器的耐用性。第三,由於奈米碳管在所述的奈米碳管層中定向排列,故,採用上述的奈米碳管層作透明導電層,可使得透明導電層具有均勻的阻值分佈,從而提高觸摸屏及使用該觸摸屏的顯示裝置的解析度和精確度。綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 The touch liquid crystal display provided by the embodiment of the invention has the following advantages: First, the transparent conductive layer near the upper substrate provided by the implementation of the invention is a carbon nanotube layer, and the carbon nanotube layer is not only transparent as a touch screen Conductive layer, and double as the touch The first polarizer of the liquid crystal display, the first substrate in the capacitive touch screen provided by the embodiment of the invention also serves as the base of the upper substrate, which saves a substrate and a polarizer compared to the previous touch liquid crystal display, so that it has a thinner The thickness and simple structure simplify the manufacturing process, reduce manufacturing costs, improve backlight utilization, and improve display quality. Secondly, since the carbon nanotube layer has good toughness and mechanical strength, the use of the carbon nanotube layer as a transparent conductive layer can correspondingly improve the durability of the touch screen, thereby improving the use of the carbon nanotube layer. Durability of touch-screen LCDs. Third, since the carbon nanotubes are aligned in the carbon nanotube layer, the above-mentioned carbon nanotube layer is used as the transparent conductive layer, so that the transparent conductive layer has a uniform resistance distribution, thereby improving The resolution and accuracy of the touch screen and the display device using the touch screen. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧觸摸式液晶顯示器 10‧‧‧Touch LCD

110‧‧‧觸摸屏 110‧‧‧ touch screen

112‧‧‧第一基體 112‧‧‧First substrate

114‧‧‧透明導電層 114‧‧‧Transparent conductive layer

115‧‧‧第一電極 115‧‧‧First electrode

116‧‧‧第二電極 116‧‧‧Second electrode

118‧‧‧透明保護層 118‧‧‧Transparent protective layer

120‧‧‧上基板 120‧‧‧Upper substrate

122‧‧‧第一配向層 122‧‧‧First alignment layer

124‧‧‧上電極 124‧‧‧Upper electrode

130‧‧‧下基板 130‧‧‧lower substrate

132‧‧‧第二配向層 132‧‧‧Second alignment layer

134‧‧‧薄膜電晶體面板 134‧‧‧film transistor panel

136‧‧‧第二偏光片 136‧‧‧Second polarizer

140‧‧‧液晶層 140‧‧‧Liquid layer

Claims (12)

一種觸摸式液晶顯示器,其改良在於,該觸摸式液晶顯示器從上至下依次包括:一電容式觸摸屏,該電容式觸摸屏包括一第一基體及一透明導電層,該透明導電層設置於該第一基體的上表面,該透明導電層為導電異向性層,該導電異向性層為一奈米碳管層,該奈米碳管層包括複數個奈米碳管,且該奈米碳管層中的奈米碳管沿同一方向擇優取向延伸,所述奈米碳管層沿該奈米碳管的延伸方向上具有複數個雷射切割線;一上基板,該上基板從上至下依次包括一第一偏光片、一上基體、一上電極以及一第一配向層,其中,所述第一偏光片為所述電容式觸摸屏的奈米碳管層,所述上基體為所述電容式觸摸屏的第一基體;一液晶層;以及一下基板,該下基板從上至下依次包括一第二配向層、一薄膜電晶體面板以及一第二偏光片。 A touch-type liquid crystal display is improved in that the touch-type liquid crystal display comprises, in order from top to bottom, a capacitive touch screen, the capacitive touch screen comprising a first substrate and a transparent conductive layer, wherein the transparent conductive layer is disposed on the first An upper surface of the substrate, the transparent conductive layer is a conductive anisotropic layer, the conductive anisotropic layer is a carbon nanotube layer, the carbon nanotube layer comprises a plurality of carbon nanotubes, and the nanocarbon The carbon nanotubes in the tube layer extend in a preferred orientation in the same direction, the carbon nanotube layer having a plurality of laser cutting lines along the extending direction of the carbon nanotube; an upper substrate, the upper substrate from the top to the top The lower polarizer includes a first polarizer, an upper substrate, an upper electrode, and a first alignment layer, wherein the first polarizer is a carbon nanotube layer of the capacitive touch screen, and the upper substrate is The first substrate of the capacitive touch screen; a liquid crystal layer; and a lower substrate, the lower substrate includes a second alignment layer, a thin film transistor panel and a second polarizer in order from top to bottom. 如請求項1所述的觸摸式液晶顯示器,其中,所述奈米碳管層中基本朝同一方向延伸的大多數奈米碳管中的每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連。 The touch liquid crystal display of claim 1, wherein each of the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube layer is adjacent to the extending direction The carbon nanotubes are connected end to end by van der Waals force. 如請求項1所述的觸摸式液晶顯示器,其中,所述奈米碳管層在奈米碳管延伸方向上的電阻率小於其他方向上的電阻率。 The touch liquid crystal display according to claim 1, wherein the carbon nanotube layer has a resistivity in a direction in which the carbon nanotubes extend is smaller than a resistivity in the other direction. 如請求項3所述的觸摸式液晶顯示器,其中,所述奈米碳管層在奈米碳管延伸方向上的電阻率與其他方向上的電阻率的比值小於等於1:2。 The touch liquid crystal display of claim 3, wherein a ratio of a resistivity of the carbon nanotube layer in a direction in which the carbon nanotube extends is different from a resistivity in other directions is less than or equal to 1:2. 如請求項1所述的觸摸式液晶顯示器,其中,所述奈米碳管層進一步包括增強材料,該增強材料均勻分佈於所述複數奈米碳管中。 The touch liquid crystal display of claim 1, wherein the carbon nanotube layer further comprises a reinforcing material uniformly distributed in the plurality of carbon nanotubes. 如請求項1所述的觸摸式液晶顯示器,其中,所述電容式觸摸屏進一步包括至少兩個電極,該至少兩個電極間隔設置且與所述透明導電層電連接。 The touch liquid crystal display of claim 1, wherein the capacitive touch screen further comprises at least two electrodes that are spaced apart and electrically connected to the transparent conductive layer. 一種觸摸式液晶顯示器,其從上至下依次包括:一電容式觸摸屏,該電容式觸摸屏從上至下依次包括:一第二透明導電層、一第二基體、一第一透明導電層以及一第一基體;一上基板,該上基板從上至下依次包括一第一偏光片、一上基體、一上電極以及一第一配向層;一液晶層;以及一下基板,該下基板從上至下依次包括一第二配向層、一薄膜電晶體面板以及一第二偏光片;其改良在於,所述第一透明導電層與第二透明導電層中的一個透明導電層為導電異向性層,該導電各向異性層為一奈米碳管層,該奈米碳管層包括複數個奈米碳管,且該奈米碳管層中的奈米碳管沿第二方向擇優取向延伸,所述奈米碳管層具有複數個沿第二方向延伸的雷射切割線,另一個透明導電層包括複數個導電結構,該複數個導電結構沿第一方向延伸,且相互間隔設置,所述第一偏光片為所述電容式觸摸屏的奈米碳管層,所述上基體為所述電容式觸摸屏的第一基體。 A touch-type liquid crystal display includes a capacitive touch screen in order from top to bottom: a second transparent conductive layer, a second substrate, a first transparent conductive layer, and a first a first substrate; an upper substrate, the upper substrate includes a first polarizer, an upper substrate, an upper electrode, and a first alignment layer; a liquid crystal layer; and a lower substrate from the top to the bottom The second alignment layer includes a second alignment layer, a thin film transistor panel and a second polarizer; the improvement is that one of the first transparent conductive layer and the second transparent conductive layer is conductive anisotropy a layer, the conductive anisotropic layer is a carbon nanotube layer, the carbon nanotube layer comprises a plurality of carbon nanotubes, and the carbon nanotubes in the carbon nanotube layer are preferentially oriented in a second direction The carbon nanotube layer has a plurality of laser cutting lines extending in a second direction, and the other transparent conductive layer includes a plurality of conductive structures extending in a first direction and spaced apart from each other. Description A carbon nanotube layer polarizer of the capacitive touch screen, the upper substrate is a first substrate of the capacitive touch screen. 如請求項7所述的觸摸式液晶顯示器,其中,所述奈米碳管層中基本朝第二方向延伸的大多數奈米碳管中的每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連。 The touch liquid crystal display of claim 7, wherein each of the plurality of carbon nanotubes extending substantially in the second direction in the carbon nanotube layer is adjacent to the extending direction The carbon nanotubes are connected end to end by van der Waals force. 如請求項7所述的觸摸式液晶顯示器,其中,所述奈米碳管層進一步包括一增強材料,該增強材料均勻分佈於所述複數奈米碳管中。 The touch liquid crystal display of claim 7, wherein the carbon nanotube layer further comprises a reinforcing material uniformly distributed in the plurality of carbon nanotubes. 如請求項7所述的觸摸式液晶顯示器,其中,所述第一透明導電層為所述奈米碳管層,該奈米碳管層中的奈米碳管沿第二方向擇優取向延伸,且 該奈米碳管層在第二方向上的電阻率小於該奈米碳管層在其他方向上的電阻率;所述第二透明導電層包括複數個導電結構,該複數個導電結構沿第一方向延伸,並沿第二方向間隔排列設置;其中,所述第一方向與第二方向垂直設置。 The touch liquid crystal display of claim 7, wherein the first transparent conductive layer is the carbon nanotube layer, and the carbon nanotubes in the carbon nanotube layer extend in a preferred orientation in a second direction. And The resistivity of the carbon nanotube layer in the second direction is smaller than the resistivity of the carbon nanotube layer in other directions; the second transparent conductive layer comprises a plurality of conductive structures, the plurality of conductive structures along the first The directions extend and are arranged at intervals in the second direction; wherein the first direction is perpendicular to the second direction. 如請求項10所述的觸摸式液晶顯示器,其中,所述電容式觸摸屏進一步包括複數個第一電極及複數個第二電極,該複數個第一電極設置於所述第一透明導電層平行於所述第一方向的一側邊,且沿該第一方向間隔排列設置該第一透明導電層,並與該第一透明導電層電連接;該複數個第二電極設置於所述第二透明導電層平行於所述第二方向的一側邊,且沿該第二方向間隔排列設置在該第二透明導電層,並分別與所述複數個導電結構電連接。 The touch liquid crystal display of claim 10, wherein the capacitive touch screen further comprises a plurality of first electrodes and a plurality of second electrodes, wherein the plurality of first electrodes are disposed on the first transparent conductive layer in parallel One side of the first direction, and the first transparent conductive layer is arranged along the first direction and electrically connected to the first transparent conductive layer; the plurality of second electrodes are disposed on the second transparent The conductive layer is parallel to one side of the second direction, and is disposed at intervals along the second direction on the second transparent conductive layer, and is electrically connected to the plurality of conductive structures respectively. 如請求項11所述的觸摸式液晶顯示器,其中,所述導電結構的材料為氧化銦錫或奈米碳管。 The touch liquid crystal display of claim 11, wherein the conductive structure is made of indium tin oxide or a carbon nanotube.
TW099120708A 2010-06-24 2010-06-24 Liquid crystal display with touch panel TWI481923B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099120708A TWI481923B (en) 2010-06-24 2010-06-24 Liquid crystal display with touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099120708A TWI481923B (en) 2010-06-24 2010-06-24 Liquid crystal display with touch panel

Publications (2)

Publication Number Publication Date
TW201200937A TW201200937A (en) 2012-01-01
TWI481923B true TWI481923B (en) 2015-04-21

Family

ID=46755592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099120708A TWI481923B (en) 2010-06-24 2010-06-24 Liquid crystal display with touch panel

Country Status (1)

Country Link
TW (1) TWI481923B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576372A (en) 2012-07-23 2014-02-12 天津富纳源创科技有限公司 Liquid crystal display panel
CN103576351A (en) 2012-07-23 2014-02-12 天津富纳源创科技有限公司 Liquid crystal module having touch function
CN103576370A (en) 2012-07-23 2014-02-12 天津富纳源创科技有限公司 Polarizing plate
CN103576371A (en) * 2012-07-23 2014-02-12 天津富纳源创科技有限公司 Liquid crystal panel
CN104133569A (en) * 2013-04-30 2014-11-05 天津富纳源创科技有限公司 Touch control display device
CN105589584A (en) * 2014-10-21 2016-05-18 宸鸿科技(厦门)有限公司 Touch device and production method thereof
CN104898328B (en) * 2015-06-30 2019-04-09 厦门天马微电子有限公司 Compartmentalization structure of polarized light and preparation method thereof, liquid crystal display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200907771A (en) * 2007-08-10 2009-02-16 Egalax Empia Technology Inc Sensing device for capacitive touch screen
US20090153516A1 (en) * 2007-12-12 2009-06-18 Tsinghua University Touch panel, method for making the same, and display device adopting the same
TW200929638A (en) * 2007-12-21 2009-07-01 Hon Hai Prec Ind Co Ltd Touch panel, method for making the same, and displaying device adopting the same
TW200947070A (en) * 2008-05-09 2009-11-16 Hon Hai Prec Ind Co Ltd Method of making liquid crystal display screen
TW201003199A (en) * 2008-07-11 2010-01-16 Hon Hai Prec Ind Co Ltd Method for making liquid crystal display with touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200907771A (en) * 2007-08-10 2009-02-16 Egalax Empia Technology Inc Sensing device for capacitive touch screen
US20090153516A1 (en) * 2007-12-12 2009-06-18 Tsinghua University Touch panel, method for making the same, and display device adopting the same
TW200929638A (en) * 2007-12-21 2009-07-01 Hon Hai Prec Ind Co Ltd Touch panel, method for making the same, and displaying device adopting the same
TW200947070A (en) * 2008-05-09 2009-11-16 Hon Hai Prec Ind Co Ltd Method of making liquid crystal display screen
TW201003199A (en) * 2008-07-11 2010-01-16 Hon Hai Prec Ind Co Ltd Method for making liquid crystal display with touch panel

Also Published As

Publication number Publication date
TW201200937A (en) 2012-01-01

Similar Documents

Publication Publication Date Title
CN101825796B (en) Touch liquid crystal screen
US8416351B2 (en) Liquid crystal display screen
CN101876766B (en) Touch liquid crystal display
TWI481923B (en) Liquid crystal display with touch panel
US8253870B2 (en) Liquid crystal display screen
JP4571698B2 (en) LCD panel using touch panel
JP5415852B2 (en) Liquid crystal display device using touch panel
CN101625465B (en) Touch liquid crystal display screen
TW201405209A (en) Polarizer
TWI489172B (en) Hybrid touch panel
JP5415849B2 (en) LCD panel using touch panel
TW201405200A (en) Liquid crystal panel
TWI486675B (en) Method for making liquid module with touch capacity
TWI489173B (en) Method for making liqiuid module with touch capacity
TW201405210A (en) Liquid crystal panel
TWI539202B (en) Liquid crystal display with touch panel
TWI486682B (en) Liquid module with touch capacity
TWI391853B (en) Liquid crystal display with touch panel
TWI377396B (en) Liquid crystal display with touch panel
TWI416210B (en) Liquid crystal display with touch panel
TWI427366B (en) Liquid crystal display with touch panel
TWI377395B (en) Liquid crystal display with touch panel
CN103592788B (en) Touch LCD screen
CN103592788A (en) Touch liquid crystal display screen