TWI462544B - Method and apparatus for compensation of frequency-dependent i/q imbalance - Google Patents

Method and apparatus for compensation of frequency-dependent i/q imbalance Download PDF

Info

Publication number
TWI462544B
TWI462544B TW100141928A TW100141928A TWI462544B TW I462544 B TWI462544 B TW I462544B TW 100141928 A TW100141928 A TW 100141928A TW 100141928 A TW100141928 A TW 100141928A TW I462544 B TWI462544 B TW I462544B
Authority
TW
Taiwan
Prior art keywords
compensation
frequency domain
imbalance
preamble sequence
long preamble
Prior art date
Application number
TW100141928A
Other languages
Chinese (zh)
Other versions
TW201322695A (en
Inventor
Terng Yin Hsu
Wei Chi Lai
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW100141928A priority Critical patent/TWI462544B/en
Publication of TW201322695A publication Critical patent/TW201322695A/en
Application granted granted Critical
Publication of TWI462544B publication Critical patent/TWI462544B/en

Links

Landscapes

  • Radio Transmission System (AREA)

Description

對頻率相依I/Q不平衡的補償方法及其裝置Compensation method and device for frequency dependent I/Q imbalance

本發明係關於一種補償方法,尤其係關於一種對頻率相依I/Q不平衡的補償方法與其裝置。The present invention relates to a compensation method, and more particularly to a compensation method and apparatus for frequency dependent I/Q imbalance.

現有無線網路的資料傳輸為求能支援快速成長的使用者數目與普及訊號覆蓋率,在訊號的調變與解調變上已採行能實施多輸入多輸出的訊號傳輸架構,尤其是在訊號接收端往往為求對資料作正確的解碼,運用多支天線接收射頻信號後再以同步訊號技術與濾波器排除雜訊等,使欲得到的接收資料能順利經由對訊號相位與振幅的補償與解調變後的解碼,而得到相同於傳輸端的資料已成為大型無線傳輸系統不可或缺的技術手段。其中,若想對訊號相位與振幅進行回復,首先必須先對頻率相依的I/Q不平衡作補償,因為接收訊號相對於其正確值的游離度會決定位於該正確值附近的某一訊號被完整的解調為例如數位訊號的機率。The data transmission of the existing wireless network is to support the rapid growth of the number of users and the popular signal coverage. In the modulation and demodulation of the signal, a signal transmission architecture capable of implementing multiple input and multiple output has been adopted, especially in the signal transmission architecture. The signal receiving end often seeks to correctly decode the data, and uses multiple antennas to receive the RF signal, and then uses the synchronous signal technology and the filter to eliminate the noise, so that the desired receiving data can smoothly compensate the signal phase and amplitude. Decoding with demodulation, and obtaining the same data as the transmission end has become an indispensable technical means for large-scale wireless transmission systems. Among them, if you want to reply to the signal phase and amplitude, you must first compensate the frequency-dependent I/Q imbalance, because the freeness of the received signal relative to its correct value will determine that a signal located near the correct value is Complete demodulation is the probability of, for example, a digital signal.

而經由對I/Q不平衡作補償有助於對載波的導頻信號(pilot)進行同位化,而更進一步的說,可因而使訊號接收模組在無須提供對大量錯誤的訊號之恢復下,快速得到所該獲得的資料。Compensating for the I/Q imbalance helps to homogenize the pilot signal of the carrier, and further, the signal receiving module can be recovered without the need to provide a signal for a large number of errors. , quickly get the information you get.

目前頻率相依的I/Q不平衡補償都是直接利用已知的時域或是頻域的前導序列或是導頻信號來加以估算並在時域或是頻域加以補償;但是部分規格中的時域或是頻域的前導序列格式並不足以估算出I/Q的參數,或是即使有足夠的I/Q的參數,也因為會使訊號接收模組的設計更複雜化與增加運算的負擔,而無法滿足於現行無線系統所應具備的即時傳輸特性。Currently, the frequency dependent I/Q imbalance compensation is directly estimated by using the known time domain or frequency domain preamble sequence or pilot signal and compensated in the time domain or the frequency domain; but in some specifications The format of the preamble sequence in the time domain or the frequency domain is not enough to estimate the I/Q parameters, or even if there are enough I/Q parameters, it will make the design of the signal receiving module more complicated and increase the operation. The burden is not enough to satisfy the immediate transmission characteristics of the current wireless system.

另外一種的補償方法是利用時域的濾波器來加以補償,但此舉會牽涉到不同類型的濾波器例如切比雪夫濾波器(Chebyshev filter)之極點與零點(poles and zeros)等的設計必須適應於動態無線系統之運作,如此一來會使得收斂所需的時間增加,也為無形中提高訊號接收器的製造成本。惟如何經由有限的技術改良在無線通訊訊號接收技術的應用上有具體性的貢獻,還需配合各項有用的偵測與除錯方法之演進,予以正確規範並獲得相關成果。Another method of compensation is to use the time domain filter to compensate, but this involves the design of poles and zeros of different types of filters such as Chebyshev filters. Adapting to the operation of the dynamic wireless system, this will increase the time required for convergence, and also increase the manufacturing cost of the signal receiver invisibly. However, how to make a specific contribution to the application of wireless communication signal receiving technology through limited technical improvement, it is necessary to cooperate with the evolution of various useful detection and debugging methods to correctly regulate and obtain relevant results.

為了解決上述問題,發明人經深入研究分析,及無數次實驗及改良,終於開發出嶄新的對於頻率相依I/Q不平衡之補償方法及其裝置,輔以電子運算執行方法,而開發出一種具有非常優異的軟硬體整合與系統利用之補償裝置。In order to solve the above problems, the inventors have intensively studied and analyzed, and countless experiments and improvements, and finally developed a new compensation method and device for frequency dependent I/Q imbalance, supplemented by electronic operation execution method, and developed a kind It has a very good compensation device for software and hardware integration and system utilization.

本發明揭露一種可使用多相時鐘產生器(multi-phase clock generator)來減少濾波器偏合的效應,並且將時域的前導序列轉到頻域,和原來頻域的前導序列做比較,可以較準確的擷取出I/Q不平衡的參數以對其進行補償,能有效地降低無線訊號接收端設計的複雜度,並提供通訊系統之訊號雜訊比(SNR)對接收訊號誤碼率(bit error rate)之有效維持性。The present invention discloses that a multi-phase clock generator can be used to reduce the effect of filter offset, and the preamble sequence of the time domain is transferred to the frequency domain, and compared with the preamble sequence of the original frequency domain. Accurately extracting I/Q unbalanced parameters to compensate for it, can effectively reduce the complexity of the wireless signal receiving end design, and provide the signal-to-noise ratio (SNR) of the communication system to the received signal error rate ( Bit error rate) Effective maintenance.

因此,本發明提出一種對頻率相依I/Q不平衡的補償方法,其包含:個別控制一I路徑類比/數位轉換器與一Q路徑類比/數位轉換器,進而降低複數濾波器之偏合對一I/Q不平衡的影響;以及利用時域與頻域的複數前導序列的一不等交叉比率,可在一頻域餘差中估算該I/Q不平衡之參數,以對該I/Q不平衡實施補償。Therefore, the present invention provides a compensation method for frequency dependent I/Q imbalance, which comprises: individually controlling an I path analog/digital converter and a Q path analog/digital converter, thereby reducing the bias of the complex filter. An I/Q imbalance effect; and an unequal crossover ratio of the complex preamble sequence in the time domain and the frequency domain, the I/Q imbalance parameter can be estimated in a frequency domain residual to the I/ Q is unbalanced to implement compensation.

根據上述構想,將該些濾波器的複數主波同調,以降低該些濾波器之偏合對該I/Q不平衡的影響。According to the above concept, the complex main waves of the filters are coherent to reduce the influence of the bias of the filters on the I/Q imbalance.

根據上述構想,估算該I/Q不平衡之該不等交叉比率之步驟包括:收集時域之複數短前導序列;將該些短前導序列經由一傅立葉轉換為頻域之一虛擬長前導序列;以及利用一多輸入多輸出(MIMO)長前導序列與該虛擬長前導序列,以求出該不等交叉比率。而該傅立葉轉換為一快速傅立葉轉換。According to the above concept, the step of estimating the unequal cross ratio of the I/Q imbalance comprises: collecting a complex short preamble sequence in the time domain; converting the short preamble sequences to a virtual long preamble sequence in the frequency domain via a Fourier transform; And using a multiple input multiple output (MIMO) long preamble sequence and the virtual long preamble sequence to find the unequal cross ratio. The Fourier transform is converted to a fast Fourier transform.

根據上述構想,其中該不等交叉比率可由下列公式求出:According to the above concept, the unequal cross ratio can be obtained by the following formula:

其中,C i (k) 為該不等交叉比率,MLP i,1 (k) 為該MIMO長前導序列,VirtualLP i (k) 為該虛擬長前導序列,i 為傳輸天線索引,k 為一子載波索引,而星號(*)表示該MIMO長前導序列或該虛擬長前導序列之共軛複數函數,而-k表示MIMO長前導序列之長度加上1-k,其為正交頻分複用技術(OFDM)之該符號的該些資料子載波之鏡像位置。Where C i (k) is the unequal cross ratio, MLP i,1 (k) is the MIMO long preamble sequence, VirtualLP i (k) is the virtual long preamble sequence, i is the transmit antenna index, and k is a sub Carrier index, and the asterisk (*) indicates the conjugate complex function of the MIMO long preamble sequence or the virtual long preamble sequence, and -k indicates the length of the MIMO long preamble sequence plus 1-k, which is orthogonal frequency division multiplexing. The mirrored position of the data subcarriers of the symbol of the technology (OFDM).

本發明另提出一種無線頻率補償裝置,其包含:一I/Q頻率補償估計器,其經由一傅立葉轉換器可與一多相位時序產生器以及一射頻接收器的相連,並可接收來自一多輸入多輸出(MIMO)頻道估計器的資料,其中,該I/Q頻率補償估計器可利用一I/Q不平衡之一不等交叉比率來估算出I/Q不平衡之參數;以及一類比/數位轉換器,執行一抗扭斜取樣,以提供複數數位訊號流給予該I/Q頻率補償估計器。The invention further provides a wireless frequency compensation device, comprising: an I/Q frequency compensation estimator connected to a multi-phase timing generator and a radio frequency receiver via a Fourier converter, and capable of receiving from more than one Inputting a data of a multiple output (MIMO) channel estimator, wherein the I/Q frequency compensation estimator can estimate an I/Q imbalance parameter using an unequal cross ratio of an I/Q imbalance; and an analogy /Digital converter, performing a anti-skew sampling to provide a complex digital signal stream to the I/Q frequency compensation estimator.

本發明另提出一種補償裝置,其包含:一I/Q補償估計器,其經由一不等交叉比率計算出關聯於一I/Q不平衡之一參數,以校正該I/Q不平衡。。The present invention further provides a compensation apparatus comprising: an I/Q compensation estimator that calculates a parameter associated with an I/Q imbalance via an unequal crossover ratio to correct the I/Q imbalance. .

本發明另提出一種補償裝置,其包含:一I/Q補償器,其利用接收一訊號並計算該訊號在一頻域中之一實部成分及一虛部成分之一比率,來計算獲得一補償參數。The invention further provides a compensation device, comprising: an I/Q compensator, which calculates and obtains a signal by receiving a signal and calculating a ratio of a real component and an imaginary component of the signal in a frequency domain. Compensation parameters.

根據上述構想,其可經由對該訊號之該實部成分與該虛部成分作快速傅立葉轉換而求得一調校序列,其中該調校序列包含一多輸入多輸出(MIMO)長前導序列與一虛擬長前導序。According to the above concept, a tuning sequence can be obtained by performing fast Fourier transform on the real component and the imaginary component of the signal, wherein the tuning sequence comprises a multiple input multiple output (MIMO) long preamble sequence and A virtual long frontian.

根據上述構想,其中該補償參數為經由估算出至少四分之一的子載波為一準序列,且其滿足該比率不為零,進而對該訊號校正一I/Q不平衡。According to the above concept, wherein the compensation parameter is a quasi-sequence by estimating at least one quarter of the subcarriers, and it satisfies the ratio not being zero, thereby correcting an I/Q imbalance for the signal.

簡言之,本發明在整個補償過程中,想要降低SNR的需求,並同時不會增加收斂時間,故提供一種偏移校準(skew calibration)的機制,利用分別控制I路徑的類比/數位轉換器和Q路徑的類比/數位轉換器來減少濾波器偏合對I/Q不平衡所造成的影響,並提供一創新的I/Q不平衡補償方法,利用將有限個時域的前導序列(preamble)轉為頻域以和原頻域長前導序列來比較,以找出所需的I/Q不平衡資訊來加以估算和補償剩餘的頻率相依I/Q不平衡,不僅可用於現有的無線網路傳輸訊號接收之解調變使用,還可應用於未來新興的系統晶片與應用程式之整合。In short, the present invention wants to reduce the SNR requirement during the entire compensation process without increasing the convergence time, so a skew calibration mechanism is provided to control the analog/digital conversion of the I path separately. And Q-path analog/digital converters to reduce the effects of filter bias on I/Q imbalance and provide an innovative I/Q imbalance compensation method that utilizes a finite number of time domain preamble sequences ( Preamble) is converted to the frequency domain to compare with the original frequency domain long preamble sequence to find the required I/Q imbalance information to estimate and compensate for the remaining frequency dependent I/Q imbalance, not only for existing wireless The demodulation of network transmission signal reception can also be applied to the integration of emerging system chips and applications in the future.

本發明可以透過I/Q不平衡模型與其參數計算補償來達成,如第1圖的I/Q不平衡模型之示意圖所示,其中,天線110接收無線訊號後會分別為一訊號振盪產生器113之訊號及其所產生具有90度相位差訊號114之兩組訊號所解調變,而其解調變可經由乘法器111、112來運作,使該兩組訊號成為I路徑訊號ILQ1 (t)=Z1 (t)cos(2πfc t)與Q路徑訊號QLQ1 (t)=-Z1 (t)(1+ε1 )sin(2πfc t+Θ1 ),其中Θ1 與ε1 分別為訊號傳輸頻道所造成的相位差與扭曲振幅,而該扭曲振幅被定義是由Q路徑訊號通過一振幅放大器所得到,同時相位差與扭曲振幅被展現在Q路徑訊號內。該兩路徑訊號隨後分別通過具有轉換函數hI(t) 與hQ(t) 的低頻濾波器116、117以將高頻訊號濾除,再個別通過I路徑的類比/數位轉換器118與Q路徑的類比/數位轉換器119,而得到兩組基頻訊號IBB (t)與QBB (t)。隨後再將由四組無線訊號處理模組11、12、13、14所產生的複數基頻訊號提供給多輸入多輸出正交頻分複用技術(OFDM)調變解調器15來進行處理。The present invention can be achieved by the I/Q imbalance model and its parameter calculation compensation, as shown in the schematic diagram of the I/Q imbalance model of FIG. 1 , wherein the antenna 110 receives a wireless signal and is respectively a signal oscillation generator 113. The signal and the two sets of signals generated by the 90-degree phase difference signal 114 are demodulated, and the demodulation can be operated by the multipliers 111, 112 to make the two sets of signals become the I path signal I LQ1 (t )=Z 1 (t)cos(2πf c t) and Q path signal Q LQ1 (t)=-Z 1 (t)(1+ε 1 )sin(2πf c t+Θ 1 ), where Θ 1 and ε 1 is the phase difference and the distortion amplitude caused by the signal transmission channel, respectively, and the distortion amplitude is defined by the Q path signal obtained by an amplitude amplifier, and the phase difference and the distortion amplitude are displayed in the Q path signal. The two path signals are then passed through the low frequency filters 116, 117 having the transfer functions h I(t) and h Q(t) to filter the high frequency signals, and then individually pass through the I path analog/digital converters 118 and Q. The analog/digital converter 119 of the path obtains two sets of fundamental frequency signals I BB (t) and Q BB (t). The complex fundamental signals generated by the four sets of wireless signal processing modules 11, 12, 13, 14 are then provided to a multiple input multiple output orthogonal frequency division multiplexing (OFDM) modulation demodulator 15 for processing.

在本發明一實施例中,為了可以減少一濾波器偏合造成的影響,我們分別控制I路徑的類比/數位轉換器118和Q路徑的類比/數位轉換器119來將I/Q路徑之濾波器的主要脈衝訊號同調,使得該濾波器偏合對其後的I/Q不平衡影響降低,接著利用時域和頻域的前導序列來將I/Q不平衡的參數估出並加以補償。In an embodiment of the invention, in order to reduce the effects of a filter offset, we control the I-path analog/digital converter 118 and the Q-path analog/digital converter 119 to filter the I/Q path, respectively. The main pulse signal is coherent, so that the filter bias reduces the subsequent I/Q imbalance, and then the time domain and frequency domain preamble sequences are used to estimate and compensate the I/Q imbalance parameters.

如第2圖所示之頻域I/Q不平衡估算與補償模塊示意圖,由四組天線21接收之射頻訊號個別通過射頻處理區塊22,再利用多相時鐘產生器23來將I/Q路徑之濾波器的主要脈衝訊號同調,處理之訊號通過串行轉為並行區塊24與快速傅立葉轉換區塊25,以形成有組織的資料組合,接著該資料組合可同時匯入頻域I/Q不平衡估算補償器27與多輸入多輸出頻道估計器26,其後頻域I/Q不平衡估算補償器27再利用接收之該資料組合與來自多輸入多輸出頻道估計器26之訊息,將剩餘的I/Q不平衡參數估算出並將接收訊號校正為補償信息28。As shown in FIG. 2, a schematic diagram of the frequency domain I/Q imbalance estimation and compensation module, the RF signals received by the four antennas 21 are individually passed through the RF processing block 22, and then the I/Q is utilized by the multi-phase clock generator 23. The main pulse signal of the path filter is coherent, and the processed signal is serially converted into parallel block 24 and fast Fourier transform block 25 to form an organized data combination, and then the data combination can be simultaneously input into the frequency domain I/ The Q imbalance estimation compensator 27 and the multiple input multiple output channel estimator 26, after which the frequency domain I/Q imbalance estimation compensator 27 reuses the received data combination with the message from the MIMO channel estimator 26, The remaining I/Q imbalance parameters are estimated and the received signal is corrected to compensation information 28.

為了估算出剩餘IQ的參數,符合以下條件的前導序列需被找出,In order to estimate the parameters of the remaining IQ, the preamble sequence that meets the following conditions needs to be found.

然而,頻域的長前導序列並不符合以上的特性,所以收集m個時域的短前導序列,並經過快速傅立葉轉換將其轉成頻域之內容,且稱該頻域之內容為虛擬長前導序列(VirtualLP)。如下式所載,其中CSP為時域的短前導序列,而(k )為快速傅立葉轉換的相關轉換參數。However, the long preamble sequence in the frequency domain does not meet the above characteristics, so the short preamble sequences of m time domains are collected and converted into frequency domain contents by fast Fourier transform, and the content of the frequency domain is called virtual length. Leader sequence (VirtualLP). As shown in the following formula, where CSP is a short preamble sequence in the time domain, and ( k ) is the relevant conversion parameter of the fast Fourier transform.

由此,可以利用虛擬長前導序列和原來頻域的長前導序列找到Ci(k)≠0的特性,將I/Q不平衡的參數求出,如下所示。Thus, the characteristics of Ci(k)≠0 can be found using the virtual long preamble sequence and the long preamble sequence in the original frequency domain, and the parameters of the I/Q imbalance are obtained as follows.

其中MLP為原來的頻域之長前導序列。The MLP is the long leading sequence of the original frequency domain.

第3圖則顯示虛擬長前導序列與原頻域長前導序列之子載波在頻率上的位置之示意圖,其中虛擬長前導序列之子載波31與原頻域長前導序列之子載波32估算出至少四分之一的原頻域長前導序列之子載波33為一準序列,且其滿足Ci(k)≠0的特性,進而對傳輸訊號校正一I/Q不平衡。Figure 3 is a diagram showing the position of the virtual long preamble sequence and the subcarriers of the original frequency domain long preamble sequence in frequency, wherein the subcarriers 31 of the virtual long preamble sequence and the subcarriers 32 of the original frequency domain long preamble sequence are estimated to be at least four quarters. The subcarrier 33 of the original frequency domain long preamble sequence is a quasi-sequence, and it satisfies the characteristic of Ci(k) ≠0, thereby correcting an I/Q imbalance for the transmission signal.

經由比較本發明在不同訊號傳輸條件所能達的效益則可參閱如第4a圖及第4b圖所示的802.11n多輸入多輸出正交頻分複用技術系統效能示意圖。在第4a圖及第4b圖中,411與421為無線通訊系統在理想補償狀態下之系統效能曲線,412與422為該系統在有偏移校準與I/Q補償下之系統效能曲線,413與423為該系統在無偏移校準但有I/Q補償下之系統效能曲線,414與424為該系統在無任何補償下之系統效能曲線。其可以發現,將本發明的方法應用在802.11n多輸入多輸出正交頻分複用技術系統下,經過TGnD(8 taps及50-ns均方根延遲分布,如第4a圖)和TGnE(15 taps及100-ns均方根延遲分布,如第4b圖)的多路徑效應,其所造成的訊號雜訊比損失約為1.5 dB(比較411與412及比較421與422);同時,如果沒有分別控制I路徑類比/數位轉換器和Q路徑類比/數位轉換器並將I/Q路徑之濾波器的主要脈衝訊號同調的話,整體的系統效能會再降低1.5 dB~1.8 dB(比較412與413及比較422與423),因此本發明所提出的偏移校準的方法可以確實降低無線通訊系統表現在需達到固定傳輸資料錯誤率下其所需的訊號雜訊比,另外,I/Q不平衡補償也確能對無線通訊系統提供該效能上的改善。By comparing the benefits that can be achieved by the present invention under different signal transmission conditions, reference can be made to the system performance diagram of the 802.11n multiple-input multiple-output orthogonal frequency division multiplexing (OFDM) system as shown in Figures 4a and 4b. In Figures 4a and 4b, 411 and 421 are the system performance curves of the wireless communication system under ideal compensation conditions, and 412 and 422 are the system performance curves of the system under offset calibration and I/Q compensation, 413 And 423 is the system performance curve of the system without offset calibration but with I/Q compensation, and 414 and 424 are the system performance curves of the system without any compensation. It can be found that the method of the present invention is applied to the 802.11n multiple-input multiple-output orthogonal frequency division multiplexing (OFDM) system via TGnD (8 taps and 50-ns rms delay distribution, as shown in Fig. 4a) and TGnE ( 15 taps and 100-ns rms delay distribution, as shown in Figure 4b), the resulting signal-to-noise ratio loss is approximately 1.5 dB (compare 411 and 412 and compare 421 and 422); Without the separate control of the I path analog/digital converter and the Q path analog/digital converter and the main pulse signal of the I/Q path filter, the overall system performance will be reduced by 1.5 dB~1.8 dB (compare 412 with 413 and comparing 422 and 423), therefore, the method of offset calibration proposed by the present invention can surely reduce the signal-to-noise ratio required for the wireless communication system to achieve a fixed transmission data error rate. In addition, I/Q does not Balance compensation also does provide this performance improvement for wireless communication systems.

相較於利用時域的濾波器來補償需要有較長之收斂時間,本發明經由對802.11n多輸入多輸出正交頻分複用技術系統之無線傳輸的補償收斂時間小於或等於前導序列的個數所佔用的時間,因此較有優勢。經由以上對最佳實施例所述,可得知利用控制I路徑和Q路徑的類比/數位轉換器來降低濾波器(filter)之偏合對一I/Q不平衡的影響,並將有限個時域的前導序列(preamble)轉為頻域以和原頻域長前導序列來比較以找出所需的IQ資訊來加以估算和補償剩餘的頻域訊號I/Q不平衡,而且,本發明藉上述分別控制I路徑的類比/數位轉換器118和Q路徑的類比/數位轉換器119之方法來減少系統所需的訊號雜訊比需求,並同時利用時域和頻域的前導序列來估算出頻率相依I/Q不平衡的參數,克服只用頻域的前導序列並不足以估算I/Q不平衡的問題。The compensation convergence time of the wireless transmission of the 802.11n multiple-input multiple-output orthogonal frequency division multiplexing (OFDM) system is less than or equal to the preamble sequence, as compared to the use of the time domain filter to compensate for a longer convergence time. The time taken by the number is therefore more advantageous. Through the above description of the preferred embodiment, it can be known that the analog/digital converter that controls the I path and the Q path is used to reduce the influence of the bias of the filter on an I/Q imbalance, and a limited number of The preamble of the time domain is converted to the frequency domain to be compared with the original frequency domain long preamble sequence to find the required IQ information to estimate and compensate for the remaining frequency domain signal I/Q imbalance, and the present invention The above-mentioned analog/digital converter 118 for controlling the I path and the analog/digital converter 119 of the Q path are respectively used to reduce the signal noise ratio requirement required by the system, and simultaneously estimate the preamble sequence in the time domain and the frequency domain. Out of the frequency dependent I/Q imbalance parameters, overcoming the use of only the frequency domain leader sequence is not sufficient to estimate the I/Q imbalance.

應用本發明技術之產品包括各種有關基頻通訊和數位電視相關的積體電路元件,應用範圍則涵蓋數位電視、電子、通訊等產業。故運用此項專利可以大幅提高基頻處理應用技術的正確率,使得產品有較好的效能展現。Products using the technology of the present invention include various integrated circuit components related to fundamental frequency communication and digital television, and the application range covers digital television, electronics, communication and other industries. Therefore, the use of this patent can greatly improve the correct rate of the fundamental frequency processing application technology, so that the product has a better performance.

實施例:Example:

1. 一種對頻域訊號I/Q不平衡的補償方法,其包含:個別控制一I路徑類比/數位轉換器與一Q路徑類比/數位轉換器,進而降低複數濾波器之偏合對一I/Q不平衡的影響;以及利用時域與頻域的複數前導序列之一不等交叉比率,可在一頻域餘差中估算該I/Q不平衡效應之參數,以對該I/Q不平衡實施補償。A compensation method for frequency domain signal I/Q imbalance, comprising: individually controlling an I path analog/digital converter and a Q path analog/digital converter, thereby reducing a complex filter biasing pair I The influence of the /Q imbalance; and the unequal crossover ratio of one of the complex preamble sequences in the time domain and the frequency domain, the parameter of the I/Q imbalance effect can be estimated in a frequency domain residual to the I/Q Unbalanced implementation of compensation.

2. 如上述實施例所述的方法,其中將該些濾波器的複數主波同調,以降低該些濾波器之偏合對該I/Q不平衡的影響。2. The method of the above embodiment, wherein the complex main waves of the filters are coherent to reduce the effect of the bias of the filters on the I/Q imbalance.

3. 如上述任一實施例所述的方法,其中估算該I/Q不平衡之該不等交叉比率之步驟包括:收集時域之複數短前導序列;將該些短前導序列經由一傅立葉轉換為頻域之一虛擬長前導序列;以及利用一多輸入多輸出(MIMO)長前導序列與該虛擬長前導序列,以求出該不等交叉比率。3. The method of any of the preceding embodiments, wherein the step of estimating the unequal crossover ratio of the I/Q imbalance comprises: collecting a complex short preamble sequence in the time domain; and converting the short preamble sequences via a Fourier transform a virtual long preamble sequence of one of the frequency domains; and using a multiple input multiple output (MIMO) long preamble sequence and the virtual long preamble sequence to find the unequal cross ratio.

4. 如上述任一實施例所述的方法,其中該傅立葉轉換為一快速傅立葉轉換。4. The method of any of the preceding embodiments, wherein the Fourier transform is a fast Fourier transform.

5. 如上述任一實施例所述的方法,其中該不等交叉比率可由下列公式求出:5. The method of any of the preceding embodiments, wherein the unequal intersection ratio is determined by the following formula:

其中,C i (k) 為該不等交叉比率,MLP i,1 (k) 為該MIMO長前導序列,VirtualLP i (k) 為該虛擬長前導序列,i 為傳輸天線索引,k 為一子載波索引,而星號(*)表示該MIMO長前導序列或該虛擬長前導序列之共軛複數函數,而-k表示MIMO長前導序列之長度加上1-k,其為正交頻分複用技術(OFDM)之該符號的該些資料子載波之鏡像位置。Where C i (k) is the unequal cross ratio, MLP i,1 (k) is the MIMO long preamble sequence, VirtualLP i (k) is the virtual long preamble sequence, i is the transmit antenna index, and k is a sub Carrier index, and the asterisk (*) indicates the conjugate complex function of the MIMO long preamble sequence or the virtual long preamble sequence, and -k indicates the length of the MIMO long preamble sequence plus 1-k, which is orthogonal frequency division multiplexing. The mirrored position of the data subcarriers of the symbol of the technology (OFDM).

6. 一種無線頻率補償裝置,其包含:一I/Q頻率補償估計器,其經由一傅立葉轉換器可與一多相位時序產生器以及一射頻接收器的相連,並可接收來自一多輸入多輸出(MIMO)頻道估計器的資料,其中,該I/Q頻率補償估計器可利用前導序列的不等交叉比率來估算一I/Q不平衡之參數;以及一類比/數位轉換器,執行一抗扭斜取樣,以提供複數數位訊號流給予該I/Q頻率補償估計器。6. A radio frequency compensation apparatus, comprising: an I/Q frequency compensation estimator connected to a multi-phase timing generator and a radio frequency receiver via a Fourier converter, and capable of receiving from a multi-input Outputting (MIMO) channel estimator data, wherein the I/Q frequency compensation estimator can estimate an I/Q imbalance parameter using a unequal cross ratio of the preamble sequence; and performing a analog/digital converter Anti-skew sampling to provide a complex digital signal stream to the I/Q frequency compensation estimator.

7. 一種補償裝置,其包含:一I/Q補償估計器,其經由一不等交叉比率計算出關聯於一I/Q不平衡之一參數,以校正該I/Q不平衡。。7. A compensation device comprising: an I/Q compensation estimator that calculates a parameter associated with an I/Q imbalance via an unequal crossover ratio to correct the I/Q imbalance. .

8. 一種補償裝置,其包含:一I/Q補償器,其接收一訊號並利用該訊號在一頻域中之一實部成分及一虛部成分之一比率,來計算出以一補償參數。8. A compensation device comprising: an I/Q compensator that receives a signal and uses the ratio of a real component and an imaginary component of the signal in a frequency domain to calculate a compensation parameter .

9. 如上述實施例所述的裝置,其可經由對該訊號之該實部成分與該虛部成分作快速傅立葉轉換而求得一調校序列,其中該調校序列包含一多輸入多輸出(MIMO)長前導序列與一虛擬長前導序。9. The apparatus according to the above embodiment, wherein a tuning sequence is obtained by performing fast Fourier transform on the real component and the imaginary component of the signal, wherein the tuning sequence comprises a multiple input multiple output (MIMO) long preamble sequence with a virtual long preamble.

10.如上述任一實施例所述的裝置,其中該補償參數為經由估算出至少四分之一的子載波為一準序列,且其滿足該比率不為零,進而對該訊號校正一I/Q不平衡。10. The apparatus according to any of the preceding embodiments, wherein the compensation parameter is that a sub-carrier is estimated to be at least one quarter of a quasi-sequence, and the ratio is not zero, and the signal is corrected by an I. /Q is not balanced.

以上所述者,僅為本發明之較佳實施例,當不能以之限定本發明,本發明的保護範圍當視後附之申請專利範圍及其均等領域而定,即大凡依本發明申請專利範圍所作之均等變化與修飾,皆應屬於本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the invention is not limited thereto, and the scope of the present invention is determined by the scope of the appended patent application and its equivalent field, that is, the patent application according to the present invention Equivalent changes and modifications to the scope are intended to fall within the scope of the invention.

11...無線訊號處理模組11. . . Wireless signal processing module

12...無線訊號處理模組12. . . Wireless signal processing module

13...無線訊號處理模組13. . . Wireless signal processing module

14...無線訊號處理模組14. . . Wireless signal processing module

15...多輸入多輸出正交頻分複用技術(OFDM)調變解調器15. . . Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (OFDM) Modulation Demodulator

110...天線110. . . antenna

111...乘法器111. . . Multiplier

112...乘法器112. . . Multiplier

113...訊號振盪產生器113. . . Signal oscillation generator

114...具有90度相位差訊號114. . . Has a 90 degree phase difference signal

115...振幅放大器115. . . Amplitude amplifier

116...低頻濾波器116. . . Low frequency filter

117...低頻濾波器117. . . Low frequency filter

118...I路徑的類比/數位轉換器118. . . I-path analog/digital converter

119...Q路徑的類比/數位轉換器119. . . Q path analog/digital converter

21...四組天線twenty one. . . Four antennas

22...射頻處理區塊twenty two. . . RF processing block

23...多相時鐘產生器twenty three. . . Multiphase clock generator

24...串行轉為並行區塊twenty four. . . Serial to parallel block

25...快速傅立葉轉換區塊25. . . Fast Fourier transform block

26...多輸入多輸出頻道估計器26. . . Multiple input multiple output channel estimator

27...頻域I/Q不平衡估算補償器27. . . Frequency domain I/Q imbalance estimation compensator

28...補償信息28. . . Compensation information

31...虛擬長前導序列之子載波31. . . Subcarrier of virtual long preamble sequence

32...原頻域長前導序列之子載波32. . . Subcarrier of the original frequency domain long preamble sequence

33...四分之一的原頻域長前導序列之子載波33. . . One-quarter of the subcarriers of the original frequency domain long preamble sequence

411...理想補償狀態下之系統效能411. . . System performance under ideal compensation

412...有偏移校準與I/Q補償下之系統效能412. . . System performance with offset calibration and I/Q compensation

413...無偏移校準但有I/Q補償下之系統效能413. . . No offset calibration but system performance with I/Q compensation

414...無任何補償下之系統效能414. . . System performance without any compensation

421...理想補償狀態下之系統效能421. . . System performance under ideal compensation

422...有偏移校準與I/Q補償下之系統效能422. . . System performance with offset calibration and I/Q compensation

423...無偏移校準但有I/Q補償下之系統效能423. . . No offset calibration but system performance with I/Q compensation

424...無任何補償下之系統效能424. . . System performance without any compensation

第1圖為本發明頻域I/Q不平衡模型之示意圖。Figure 1 is a schematic diagram of a frequency domain I/Q imbalance model of the present invention.

第2圖為本發明頻域I/Q不平衡估算與補償模塊之示意圖。2 is a schematic diagram of a frequency domain I/Q imbalance estimation and compensation module according to the present invention.

第3圖為本發明虛擬長前導序列與原頻域長前導序列之子載波在時序上的位置之示意圖。FIG. 3 is a schematic diagram showing the position of the sub-carrier of the virtual long preamble sequence and the original frequency domain long preamble sequence in time series according to the present invention.

第4a圖為本發明802.11n多輸入多輸出正交頻分複用技術具有TGnD多路徑效應系統效能示意圖。4a is a schematic diagram of the 802.11n multiple-input multiple-output orthogonal frequency division multiplexing technology with TGnD multipath effect system performance.

第4b圖為本發明802.11n多輸入多輸出正交頻分複用技術具有TGnE多路徑效應系統效能示意圖。Figure 4b is a schematic diagram showing the performance of the 802.11n multiple-input multiple-output orthogonal frequency division multiplexing (OFDM) multi-path effect system.

21...四組天線接收端twenty one. . . Four antenna receivers

22...射頻處理區塊twenty two. . . RF processing block

23...多相時鐘產生器twenty three. . . Multiphase clock generator

24...串行轉為並行區塊twenty four. . . Serial to parallel block

25...快速傅立葉轉換區塊25. . . Fast Fourier transform block

26...多輸入多輸出頻道估計器26. . . Multiple input multiple output channel estimator

27...頻域I/Q不平衡估算補償器27. . . Frequency domain I/Q imbalance estimation compensator

28...補償信息28. . . Compensation information

118...I路徑類比/數位轉換器118. . . I path analog/digital converter

119...Q路徑類比/數位轉換器119. . . Q path analog/digital converter

Claims (8)

一種對頻域相依I/Q不平衡的補償方法,其包含:個別控制一I路徑類比/數位轉換器與一Q路徑類比/數位轉換器,進而降低複數個濾波器之偏合對一I/Q不平衡的影響;以及利用時域與頻域的複數個前導序列之一不等交叉比率,可在一頻域餘差中估算該I/Q不平衡之參數,以對該I/Q不平衡實施補償,其中估算該I/Q不平衡之該不等交叉比率之步驟包括:收集時域之複數個短前導序列;將該些短前導序列經由一傳立葉轉換為頻域之一虛擬長前導序列;以及利用一頻域多輸入多輸出(MIMO)長前導序列與頻域之該虛擬長前導序列,以求出該不等交叉比率。 A compensation method for frequency domain dependent I/Q imbalance, comprising: individually controlling an I path analog/digital converter and a Q path analog/digital converter, thereby reducing the bias of a plurality of filters to an I/ The effect of the Q imbalance; and the unequal crossover ratio of one of the plurality of preamble sequences in the time domain and the frequency domain, the parameter of the I/Q imbalance can be estimated in a frequency domain residual to not Balancing the implementation of the compensation, wherein the step of estimating the unequal cross-ratio of the I/Q imbalance comprises: collecting a plurality of short preamble sequences in the time domain; converting the short preamble sequences to a virtual length in the frequency domain via a transposed leaf a preamble sequence; and utilizing a frequency domain multiple input multiple output (MIMO) long preamble sequence and the virtual long preamble sequence in the frequency domain to determine the unequal cross ratio. 如申請專利範圍第1項所述之方法,其中將該些濾波器的複數個主波同調,以降低該些濾波器之偏合對該I/Q不平衡的影響。 The method of claim 1, wherein the plurality of main waves of the filters are coherent to reduce the influence of the bias of the filters on the I/Q imbalance. 如申請專利範圍第1項所述之方法,其中該傅立葉轉換為一快速傅立葉轉換。 The method of claim 1, wherein the Fourier transform is a fast Fourier transform. 如申請專利範圍第1項所述之方法,其中該不等交叉比率由下列公式求出: 其中,C i (k) 為該不等交叉比率,MLP i,1 (k) 為該MIMO長前導序列,VirtualLP i (k) 為該虛擬長前導序列,i 為傳輸天線索引,k 為一子載波索引, 而星號(*)表示該MIMO長前導序列或該虛擬長前導序列之共軛複數(complex number)函數,而-k表示MIMO長前導序列之長度加上1-k,其為正交頻分複用技術(OFDM)之一符號的複數個資料子載波之鏡像位置。The method of claim 1, wherein the unequal intersection ratio is determined by the following formula: Where C i (k) is the unequal cross ratio, MLP i,1 (k) is the MIMO long preamble sequence, VirtualLP i (k) is the virtual long preamble sequence, i is the transmit antenna index, and k is a sub Carrier index, and the asterisk (*) indicates the conjugate length number function of the MIMO long preamble sequence or the virtual long preamble sequence, and -k indicates the length of the MIMO long preamble sequence plus 1-k, which is orthogonal The mirror position of a plurality of data subcarriers of one symbol of frequency division multiplexing (OFDM). 一種無線頻率補償裝置,其包含:一I/Q頻率補償估計器,其經由一傅立葉轉換器可與一多相位時序產生器以及一射頻接收器相連,並可接收來自一多輸入多輸出(MIMO)頻道估計器的資料,其中,該I/Q頻率補償估計器可利用一不等交叉比率來估算一I/Q不平衡之參數,且估算該I/Q不平衡之參數的步驟包括:收集時域之複數個短前導序列;將該些短前導序列經由一傅立葉轉換為頻域之一頻域虛擬長前導序列;以及利用一頻域多輸入多輸出(MIMO)長前導序列與頻域之該虛擬長前導序列,以求出該不等交叉比率;以及一類比/數位轉換器,執行一抗扭斜取樣(deskew sampling),以提供複數個數位訊號流給予該I/Q頻率補償估計器。 A radio frequency compensation apparatus includes: an I/Q frequency compensation estimator connected to a multi-phase timing generator and a radio frequency receiver via a Fourier converter, and receivable from a multiple input multiple output (MIMO) a data of a channel estimator, wherein the I/Q frequency compensation estimator can estimate a parameter of an I/Q imbalance using an unequal cross ratio, and the step of estimating the parameter of the I/Q imbalance includes: collecting a plurality of short preamble sequences in the time domain; converting the short preamble sequences to a frequency domain virtual long preamble sequence via a Fourier transform; and utilizing a frequency domain multiple input multiple output (MIMO) long preamble sequence and a frequency domain The virtual long preamble sequence is used to determine the unequal cross ratio; and an analog/digital converter performs a deskew sampling to provide a plurality of digital signal streams to the I/Q frequency compensation estimator . 一種補償裝置,其包含:一I/Q補償估計器,其經由一不等交叉比率計算出關聯於一I/Q不平衡之一參數,以校正該I/Q不平衡,其中計算該參數的步驟包括:收集時域之複數個短前導序列;將該些短前導序列經由一傅立葉轉換為頻域之一虛擬長前導序列;以及 利用一頻域多輸入多輸出(MIMO)長前導序列與頻域之該虛擬長前導序列,以求出該不等交叉比率。 A compensation device includes: an I/Q compensation estimator that calculates a parameter associated with an I/Q imbalance via an unequal cross ratio to correct the I/Q imbalance, wherein the parameter is calculated The method includes: collecting a plurality of short preamble sequences in the time domain; converting the short preamble sequences to a virtual long preamble sequence in one of the frequency domains via a Fourier transform; The unequal crossover ratio is determined using a frequency domain multiple input multiple output (MIMO) long preamble sequence and the virtual long preamble sequence in the frequency domain. 一種補償裝置,其可經由對一訊號之一實部成分與一虛部成分作快速傅立葉轉換而求得一調校序列,其中該調校序列包含一頻域多輸入多輸出(MIMO)長前導序列與一頻域虛擬長前導序,該補償裝置包含:一I/Q補償器,其利用該訊號在一頻域中之該實部成分及該虛部成分之一比率,來計算獲得一補償參數。 A compensating device can obtain a tuning sequence by performing fast Fourier transform on a real component and an imaginary component of a signal, wherein the tuning sequence includes a frequency domain multiple input multiple output (MIMO) long preamble a sequence and a frequency domain virtual long preamble, the compensation device comprising: an I/Q compensator that uses the ratio of the real component and the imaginary component of the signal in a frequency domain to calculate a compensation parameter. 如申請專利範圍第7項所述之裝置,其中該補償參數為經由估算出至少四分之一的子載波為一準序列,且其滿足該比率不為零,進而對該訊號校正一I/Q不平衡。 The device of claim 7, wherein the compensation parameter is a quasi-sequence by estimating at least one-quarter of the sub-carriers, and the ratio is not zero, and the signal is corrected by an I/ Q is not balanced.
TW100141928A 2011-11-16 2011-11-16 Method and apparatus for compensation of frequency-dependent i/q imbalance TWI462544B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100141928A TWI462544B (en) 2011-11-16 2011-11-16 Method and apparatus for compensation of frequency-dependent i/q imbalance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100141928A TWI462544B (en) 2011-11-16 2011-11-16 Method and apparatus for compensation of frequency-dependent i/q imbalance

Publications (2)

Publication Number Publication Date
TW201322695A TW201322695A (en) 2013-06-01
TWI462544B true TWI462544B (en) 2014-11-21

Family

ID=49032564

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100141928A TWI462544B (en) 2011-11-16 2011-11-16 Method and apparatus for compensation of frequency-dependent i/q imbalance

Country Status (1)

Country Link
TW (1) TWI462544B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113132031B (en) * 2021-04-25 2022-07-12 成都天奥测控技术有限公司 IQ correction method for receiving end

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200308159A (en) * 2002-05-03 2003-12-16 Atheros Comm Inc Systems and methods to provide wideband magnitude and phase imbalance calibration and compensation in quadrature receivers
TWI241793B (en) * 2003-09-02 2005-10-11 Mediatek Inc Method and apparatus for I/Q mismatch calibration in a receiver
US7466768B2 (en) * 2004-06-14 2008-12-16 Via Technologies, Inc. IQ imbalance compensation
US7490187B2 (en) * 2002-05-15 2009-02-10 Broadcom Corporation Hypertransport/SPI-4 interface supporting configurable deskewing
TWI344775B (en) * 2006-09-07 2011-07-01 Via Tech Inc Transmitters and methods of compensating for one or more errors in a transmitter
US20110222638A1 (en) * 2010-03-12 2011-09-15 Chester Park Frequency-dependent iq imbalance estimation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200308159A (en) * 2002-05-03 2003-12-16 Atheros Comm Inc Systems and methods to provide wideband magnitude and phase imbalance calibration and compensation in quadrature receivers
US7490187B2 (en) * 2002-05-15 2009-02-10 Broadcom Corporation Hypertransport/SPI-4 interface supporting configurable deskewing
TWI241793B (en) * 2003-09-02 2005-10-11 Mediatek Inc Method and apparatus for I/Q mismatch calibration in a receiver
US7466768B2 (en) * 2004-06-14 2008-12-16 Via Technologies, Inc. IQ imbalance compensation
TWI344775B (en) * 2006-09-07 2011-07-01 Via Tech Inc Transmitters and methods of compensating for one or more errors in a transmitter
US20110222638A1 (en) * 2010-03-12 2011-09-15 Chester Park Frequency-dependent iq imbalance estimation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Katsuhiko Ogata,"Modern Control Engineering,"Upper Saddle River, NJ: Prentice-Hall, 3rd ed., 1997. Guanbin Xing, Manyuan Shen, and Hui Liu,"Frequency offset and I/Q imbalance compen *

Also Published As

Publication number Publication date
TW201322695A (en) 2013-06-01

Similar Documents

Publication Publication Date Title
US7573954B2 (en) Apparatus and method for compensating IQ imbalance in OFDM system with carrier frequency offset
CN106664278B (en) Phase noise estimation and compensation
US8565352B2 (en) Digital IQ imbalance compensation for dual-carrier double conversion receiver
US7885360B2 (en) Wireless communication apparatus and receiving method
CN109560825B (en) Quadrature error correcting method for zero intermediate frequency receiver
US7856065B2 (en) Method and apparatus for correcting IQ imbalance in an OFDM receiver
US7620124B2 (en) Direct conversion receiver and receiving method
US20050201475A1 (en) COFDM demodulator
TWI555360B (en) In the uplink transmission system to solve the radio frequency is not perfect joint estimation compensation method
CA2724735A1 (en) System and method for iq imbalance estimation using loopback with frequency offset
US7545891B1 (en) Carrier recovery architectures for multi input multi output orthogonal frequency division multiplexing receivers
TWI455497B (en) Method and associated apparatus applied to receiver of wireless network for frequency offset
US8781421B2 (en) Time-domain diversity combining of signals for broadcast receivers
TWI234950B (en) Mode detection for OFDM signals
JPH098765A (en) Frequency correcting device
WO2011072305A1 (en) Low-complexity diversity using preequalization
CN108616469B (en) Method and device for estimating and compensating IQ imbalance of receiving end of SC-FDE system
CN110278167B (en) Wireless communication method for continuous estimation and compensation of IQ imbalance
US20110206105A1 (en) Method for determining hybrid domain compensation parameters for analog loss in ofdm communication systems and compensating for the same
CN100414860C (en) Information channel balancer for quadrature frequency division multiplexing receiver and method thereof
US7865202B2 (en) Method and system for I/Q branch equalization in OFDM systems
JP3719427B2 (en) Carrier frequency error estimation circuit, radio signal receiver
TWI502935B (en) Method for estimation and compensation and apparatus using the same
TWI462544B (en) Method and apparatus for compensation of frequency-dependent i/q imbalance
Harris et al. Cascade of perfect reconstruction analysis and synthesis filter banks: The new architecture of next generation wideband receivers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees