TWI460574B - Method of calibrating signal skews in mipi and related transmission system - Google Patents

Method of calibrating signal skews in mipi and related transmission system Download PDF

Info

Publication number
TWI460574B
TWI460574B TW100121456A TW100121456A TWI460574B TW I460574 B TWI460574 B TW I460574B TW 100121456 A TW100121456 A TW 100121456A TW 100121456 A TW100121456 A TW 100121456A TW I460574 B TWI460574 B TW I460574B
Authority
TW
Taiwan
Prior art keywords
data
signal
test
channel
clock
Prior art date
Application number
TW100121456A
Other languages
Chinese (zh)
Other versions
TW201248352A (en
Inventor
Ching Chun Lin
Chih Wei Tang
Hsueh Yi Lee
Yu Hsun Peng
Original Assignee
Novatek Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novatek Microelectronics Corp filed Critical Novatek Microelectronics Corp
Priority to US13/231,972 priority Critical patent/US8886988B2/en
Publication of TW201248352A publication Critical patent/TW201248352A/en
Application granted granted Critical
Publication of TWI460574B publication Critical patent/TWI460574B/en

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Information Transfer Systems (AREA)

Description

校正行動產業處理器介面中訊號偏移的方法及相關傳輸系統Method for correcting signal offset in mobile processor interface and related transmission system

本發明相關於一種校正訊號偏移的方法及相關傳輸系統,尤指一種校正行動產業處理器介面中訊號偏移的方法及相關傳輸系統。The invention relates to a method for correcting signal offset and related transmission system, in particular to a method for correcting signal offset in a processor interface of an action industry and a related transmission system.

隨著科技的演進,電子資訊產品需要使用高速串列傳輸技術來支援越來越大的資料傳輸量,例如使用移動產業處理器介面(Mobile Industry Processor Interface,MIPI)、行動顯示數位介面(Mobile Display Digital Interface,MDDI)及通用序列匯流排(Universal Serial Bus,USB)等傳輸技術。其中,MIPI規定了一個差分時脈通道(clock lane)和可擴展(數量從一個到四個)的資料通道(data lane),可根據處理器和周邊需求來調節資料速率,並被廣泛地應用在智慧型手機或個人數位助理(Personal Digital Assistant,PDA)等手持裝置。With the evolution of technology, electronic information products need to use high-speed serial transmission technology to support the increasing volume of data transmission, such as the use of mobile industry processor interface (MIPI), mobile display digital interface (Mobile Display Digital Interface (MDDI) and general serial bus (USB) transmission technologies. Among them, MIPI specifies a differential clock lane and scalable (from one to four) data lanes, which can adjust the data rate according to processor and peripheral requirements, and are widely used. Handheld devices such as smart phones or personal digital assistants (PDAs).

第1圖為先前技術中一傳輸系統10之示意圖。傳輸系統10採用四資料通道之MIPI,其包含有一主控端(host side)電路HS、傳輸通道200~204,以及一用戶端(client side)電路CS。主控端電路HS包含有傳送電路110~114,分別用來傳送一時脈訊號CLK及資料訊號DATA1~DATA4。用戶端電路CS包含有接收電路310~314,分別用來接收時脈訊號CLK及資料訊號DATA1~DATA4。傳送電路110~114分別透過傳輸通道200~204來將時脈訊號CLK及資料訊號DATA1~DATA4傳送至接收電路310~314。Figure 1 is a schematic illustration of a transmission system 10 of the prior art. The transmission system 10 employs four data channel MIPIs including a host side circuit HS, transmission channels 200-204, and a client side circuit CS. The main control circuit HS includes transmission circuits 110 to 114 for transmitting a clock signal CLK and data signals DATA1 to DATA4, respectively. The client circuit CS includes receiving circuits 310-314 for receiving the clock signal CLK and the data signals DATA1 to DATA4, respectively. The transmission circuits 110 to 114 transmit the clock signal CLK and the data signals DATA1 to DATA4 to the reception circuits 310 to 314 through the transmission channels 200 to 204, respectively.

第2A~2D圖為先前技術傳輸系統10運作時之訊號圖,顯示了時脈訊號CLK和資料訊號DATA1~DATA4之波形。用戶端電路CS會在時脈訊號CLK之上升邊緣或下降邊緣讀取資料訊號DATA1~DATA4。建立時間(setup time)TS 為時脈訊號CLK之上升邊緣和資料訊號DATA1~DATA4之上升邊緣之間的最短時間,或是時脈訊號CLK之下降邊緣和資料訊號DATA1~DATA4之下降邊緣之間的最短時間。保持時間(hold time)TH 為時脈訊號CLK之上升邊緣和資料訊號DATA1~DATA4之下降邊緣之間的最短時間,或是時脈訊號CLK之下降邊緣和資料訊號DATA1~DATA4之上升邊緣之間的最短時間。2A-2D are signal diagrams of the prior art transmission system 10, showing waveforms of the clock signal CLK and the data signals DATA1 to DATA4. The client circuit CS reads the data signals DATA1 to DATA4 at the rising edge or the falling edge of the clock signal CLK. The setup time T S is the shortest time between the rising edge of the clock signal CLK and the rising edge of the data signals DATA1 to DATA4, or the falling edge of the clock signal CLK and the falling edge of the data signals DATA1 to DATA4. The shortest time between. The hold time T H is the shortest time between the rising edge of the clock signal CLK and the falling edge of the data signals DATA1 to DATA4, or the falling edge of the clock signal CLK and the rising edge of the data signals DATA1 to DATA4. The shortest time between.

在理想情況下,時脈訊號CLK和資料訊號DATA1之相位平衡,亦即TS =TH ,如第2A圖所示。然而在實際應用上,可能因為傳輸通道200~204的長度或負載不對稱、傳送電路110~114的輸出不對稱、接收電路310~314的負載不對稱,或是主控端電路HS及用戶端電路CS之間存在之阻抗不連續等種種因素,MIDI中存在偏移(skew),造成時脈訊號CLK及資料訊號DATA1~DATA4到達用戶端電路CS的時間不相同。舉例來說,時脈訊號CLK之相位可能會領先資料訊號DATA2(TS <TH ),如第2B圖所示;時脈訊號CLK之相位可能會落後資料訊號DATA3(TS >TH ),如第2C圖所示;時脈訊號CLK和資料訊號DATA4之相位差可能會大於單位週期UI(TS <0),如第2D圖所示。In an ideal case, the phase of the clock signal CLK and the data signal DATA1 are balanced, that is, T S =T H , as shown in FIG. 2A. However, in practical applications, the length or load of the transmission channels 200 to 204 may be asymmetric, the output of the transmission circuits 110 to 114 may be asymmetric, the load of the receiving circuits 310 to 314 may be asymmetric, or the host circuit HS and the user terminal may be used. There are various factors such as the discontinuity of impedance between the circuits CS, and there is a skew in the MIDI, which causes the time of the clock signal CLK and the data signals DATA1 to DATA4 to reach the user circuit CS to be different. For example, the phase of the clock signal CLK may lead the data signal DATA2 (T S <T H ), as shown in Figure 2B; the phase of the clock signal CLK may lag behind the data signal DATA3 (T S >T H ) As shown in Fig. 2C; the phase difference between the clock signal CLK and the data signal DATA4 may be greater than the unit period UI (T S <0), as shown in Fig. 2D.

在實際應用中,MIDI通常包含複數個資料傳輸通道,若時脈訊號與複數筆資料訊號間存在不同程度的相位領先或落後,在時脈訊號頻率逐漸提升的趨勢下,訊號偏移的容錯空間(建立時間TS 和保持時間TH )越來越窄,因此容易導致資料擷取錯誤。為了維持資料傳輸的正確率,需要一種校正MIPI中訊號偏移之方法。In practical applications, MIDI usually contains a plurality of data transmission channels. If there is a different degree of phase lead or lag between the clock signal and the plurality of data signals, the fault-tolerant space of the signal offset is gradually increased in the trend of the clock signal frequency. (Settling time T S and holding time T H ) are getting narrower and narrower, so it is easy to cause data acquisition errors. In order to maintain the correct rate of data transmission, a method of correcting the signal offset in MIPI is needed.

本發明提供一種校正一行動產業處理器介面中訊號偏移的方法,包含有在一校正模式下,透過該行動產業處理器介面之一時脈通道和一資料通道分別傳送一時脈訊號和一第一資料訊號;調整該時脈訊號和該第一資料訊號之相位以分別提供相對應之一測試時脈訊號和一第一測試資料訊號;依據該測試時脈訊號來擷取該第一測試資料訊號以得到一第一擷取資料;依據該第一擷取資料求出對應於該時脈通道和該資料通道之一最佳相位關係;以及在一正常模式下傳送該時脈訊號和該資料訊號時,依據該最佳相位關係來調整該時脈通道和該資料通道之訊號延遲。The present invention provides a method for correcting a signal offset in a mobile industry processor interface, including transmitting, in a calibration mode, a clock signal and a first channel through a clock channel and a data channel of the mobile industry processor interface. Data signal; adjusting the phase of the clock signal and the first data signal to provide a corresponding one of the test clock signal and a first test data signal; and extracting the first test data signal according to the test clock signal Obtaining a first captured data; determining an optimal phase relationship corresponding to the one of the clock channel and the data channel according to the first captured data; and transmitting the clock signal and the data signal in a normal mode The signal delay of the clock channel and the data channel is adjusted according to the optimal phase relationship.

本發明另提供一種使用一行動產業處理器介面之傳輸系統,其包含有一主控端電路,用來透過該行動產業處理器介面之一第一通道和一第二通道分別傳送一時脈訊號和一資料訊號;一用戶端電路,用來依據一最佳相位關係來調整該第一通道和該第二通道之訊號延遲,其包含一接收電路,用來接收該時脈訊號和該資料訊號;一校正電路,用來調整該時脈訊號和該資料訊號之相位以分別提供相對應之一測試時脈訊號和一測試資料訊號、依據該測試時脈訊號來擷取該測試資料訊號以得到一擷取資料,並依據該擷取資料求出該最佳相位關係。The present invention further provides a transmission system using a mobile industry processor interface, which includes a host terminal circuit for transmitting a clock signal and a first channel and a second channel respectively through the mobile industry processor interface. a data signal; a user terminal circuit for adjusting a signal delay of the first channel and the second channel according to an optimal phase relationship, comprising a receiving circuit for receiving the clock signal and the data signal; a correction circuit for adjusting a phase of the clock signal and the data signal to respectively provide a corresponding one of the test clock signal and a test data signal, and extracting the test data signal according to the test clock signal to obtain a Take the data and find the best phase relationship based on the captured data.

第3A圖為本發明實施例一傳輸系統20之示意圖。傳輸系統20採用四資料通道之MIPI,包含有一主控端電路HS、傳輸通道200~204及一用戶端電路CS。主控端電路HS包含有傳送電路110~114,分別用來傳送一時脈訊號CLK及資料訊號DATA1~DATA4。用戶端電路CS包含有接收電路310~314和一校正電路300,接收電路310~314分別用來接收時脈訊號CLK及資料訊號DATA1~DATA4,而校正電路300用來校時脈訊號CLK及資料訊號DATA1~DATA4之間的訊號偏移。傳送電路110~114各包含兩低功率傳送器LP_TX和一高速傳送器HS_TX,而接收電路310~314各包含兩低功率接收器LP_RX和一高速接收器HS_RX。低功率傳送器LP_TX和低功率接收器LP_RX可處理低功率狀態之單端(singled-ended)訊號,高速傳送器HS_TX和高速接收器HS_RX則可處理高速之差動(differential)訊號。因此,傳送電路110~114可分別透過傳輸通道200~204將序列差動時脈訊號CLK及資料訊號DATA1~DATA4傳送至接收電路310~314。FIG. 3A is a schematic diagram of a transmission system 20 according to an embodiment of the present invention. The transmission system 20 uses the MIPI of four data channels, and includes a master terminal circuit HS, transmission channels 200-204, and a client circuit CS. The main control circuit HS includes transmission circuits 110 to 114 for transmitting a clock signal CLK and data signals DATA1 to DATA4, respectively. The client circuit CS includes receiving circuits 310-314 and a correction circuit 300. The receiving circuits 310-314 are respectively configured to receive the clock signal CLK and the data signals DATA1 to DATA4, and the correction circuit 300 is used for the clock signal CLK and the data. Signal offset between signals DATA1 to DATA4. The transmitting circuits 110 to 114 each include two low power transmitters LP_TX and one high speed transmitter HS_TX, and the receiving circuits 310 to 314 each include two low power receivers LP_RX and one high speed receiver HS_RX. The low power transmitter LP_TX and the low power receiver LP_RX can handle single-single-ended signals in a low power state, and the high speed transmitter HS_TX and high speed receiver HS_RX can handle high speed differential signals. Therefore, the transmission circuits 110 to 114 can transmit the sequence differential clock signal CLK and the data signals DATA1 to DATA4 to the receiving circuits 310 to 314 through the transmission channels 200 to 204, respectively.

第3B圖為本發明實施例之傳輸系統20中校正電路300之功能方塊圖。校正電路300包含延遲單元DL0~DL4、序列至並列(serial-to-parallel)轉換單元S2P1~S2P4、一除頻器CD、一儲存單元320、一比較單元330、一計算單元340,以及一控制單元350。校正電路300可對時脈訊號CLK或資料訊號DATA1~DATA4進行不同程度的訊號延遲,再求出每一通道的資料正確區域(pass zone),進而求出每一通道之最佳延遲時間。FIG. 3B is a functional block diagram of the correction circuit 300 in the transmission system 20 of the embodiment of the present invention. The correction circuit 300 includes delay units DL0 DL DL4, serial-to-parallel conversion units S2P1 S S2P4, a frequency divider CD, a storage unit 320, a comparison unit 330, a calculation unit 340, and a control Unit 350. The correction circuit 300 can perform different signal delays on the clock signal CLK or the data signals DATA1 to DATA4, and then obtain the data pass zone of each channel, thereby obtaining the optimal delay time of each channel.

第4圖為校正電路300運作時之流程圖,其包含下列步驟:Figure 4 is a flow chart of the operation of the correction circuit 300, which includes the following steps:

步驟410:進入校準模式,執行步驟420。Step 410: Enter the calibration mode, and perform step 420.

步驟420:求出一偏移校準表,執行步驟430。Step 420: Find an offset calibration table and perform step 430.

步驟430:依據偏移校準表求出對應於每一通道之資料正確區域,執行步驟440。Step 430: Determine the correct area of the data corresponding to each channel according to the offset calibration table, and perform step 440.

步驟440:依據每一資料正確區域判斷相對應之通道是否校正成功;若是,執行步驟450;若否,執行步驟470。Step 440: Determine whether the corresponding channel is successfully corrected according to the correct area of each data; if yes, go to step 450; if no, go to step 470.

步驟450:求出每一資料正確區域之中心點,並依此求出每一通道之最佳相位關係,執行步驟460。Step 450: Find the center point of the correct region of each data, and determine the optimal phase relationship of each channel accordingly, and perform step 460.

步驟460:進入正常模式,並依據每一通道之最佳相位關係來調整時脈訊號或相對應資料訊號之相位。Step 460: Enter the normal mode, and adjust the phase of the clock signal or the corresponding data signal according to the optimal phase relationship of each channel.

步驟470:判定校正失敗。Step 470: Determine that the correction failed.

在步驟410進入校準模式後,延遲單元DL0~DL4可分別提供時脈訊號CLK及資料訊號DATA1~DATA4不同程度的訊號延遲。在不同訊號延遲條件下,時脈訊號CLK和資料訊號DATA1~DATA4之間的相位關係如第5圖所示。在此實施例中,延遲單元DL0~DL4可提供31組偏移調整階段S0~S30:偏移調整階段S0代表時脈訊號和資料訊號皆延遲0個單位時間Td;偏移調整階段S1~S15代表時脈訊號分別延遲1~15個單位時間Td,而資料訊號DATA1~DATA4皆延遲0個單位時間Td;偏移調整階段S16~S30代表時脈訊號延遲0個單位時間Td,而資料訊號DATA1~DATA4各分別延遲1~15個單位時間Td。每一偏移調整階段皆對應至一特定時脈延遲索引(-15~15之間的整數)。After entering the calibration mode in step 410, the delay units DL0-DL4 can provide different signal delays of the clock signal CLK and the data signals DATA1 to DATA4, respectively. Under different signal delay conditions, the phase relationship between the clock signal CLK and the data signals DATA1 to DATA4 is as shown in FIG. In this embodiment, the delay units DL0-DL4 can provide 31 sets of offset adjustment stages S0-S30: the offset adjustment stage S0 represents that the clock signal and the data signal are delayed by 0 unit time Td; the offset adjustment stage S1-S15 The clock signal is delayed by 1~15 unit time Td, and the data signals DATA1~DATA4 are delayed by 0 unit time Td; the offset adjustment stage S16~S30 represents the delay of the clock signal by 0 unit time Td, and the data signal DATA1 Each of DATA4 is delayed by 1 to 15 unit times Td. Each offset adjustment phase corresponds to a specific clock delay index (an integer between -15 and 15).

第6A~6D圖為在不同訊號延遲條件下之訊號圖。為了說明方面,僅以時脈訊號CLK和資料訊號DATA1為例。第6A和6B圖顯示了在偏移調整階段S0~S15內各訊號之時序圖,而第6C和6D圖顯示了在偏移調整階段S0、S16~S30內各訊號之時序圖。Figures 6A to 6D are signal diagrams under different signal delay conditions. For the sake of explanation, only the clock signal CLK and the data signal DATA1 are taken as an example. 6A and 6B are timing charts showing signals in the offset adjustment stages S0 to S15, and FIGS. 6C and 6D are timing charts showing signals in the offset adjustment stages S0, S16 to S30.

在第6A圖所示之實施例中,主控端電路HS會透過傳送電路110傳送時脈訊號CLK至用戶端電路CS之接收電路310,且透過傳送電路111傳送「01010101」之資料訊號DATA1至用戶端電路CS之接收電路311。接著,延遲單元DL0會以0個單位時間Td來延遲時脈訊號CLK,延遲單元DL1會分別以0~15個單位時間Td來延遲資料訊號DATA1,進而提供一測試時脈訊號CLK0’和16筆測試資料訊號DT0’~DT15’。用戶端電路CS可在測試時脈訊號CLK’之上升/下降邊緣擷取測試資料訊號DT0’~DT15’,從每一測試資料訊號可擷取到8個序列位元BT1~BT8,再透過序列至並列轉換單元S2P1分別匯整為並列資料DP0~DP15。In the embodiment shown in FIG. 6A, the master terminal circuit HS transmits the clock signal CLK to the receiving circuit 310 of the client circuit CS through the transmitting circuit 110, and transmits the data signal DATA1 of "01010101" through the transmitting circuit 111 to The receiving circuit 311 of the client circuit CS. Then, the delay unit DL0 delays the clock signal CLK by 0 unit time Td, and the delay unit DL1 delays the data signal DATA1 by 0 to 15 unit time Td, respectively, thereby providing a test clock signal CLK0' and 16 pens. Test data signals DT0'~DT15'. The client circuit CS can capture the test data signals DT0'-DT15' at the rising/falling edge of the pulse signal CLK' during the test, and can extract 8 sequence bits BT1~BT8 from each test data signal, and then transmit the sequence. The parallel conversion unit S2P1 is merged into parallel data DP0 to DP15, respectively.

在第6B圖所示之實施例中,主控端電路HS會透過傳送電路110傳送時脈訊號CLK至用戶端電路CS之接收電路310,且透過傳送電路111傳送「00110011」之資料訊號DATA1至用戶端電路CS之接收電路311。接著,延遲單元DL0會以0個單位時間Td來延遲時脈訊號CLK,延遲單元DL1會分別以0~15個單位時間Td來延遲資料訊號DATA1,進而提供一測試時脈訊號CLK0’和16筆測試資料訊號DT0’~DT15’。用戶端電路CS可在測試時脈訊號CLK’之上升/下降邊緣擷取測試資料訊號DT0’~DT15’,從每一測試資料訊號可擷取到8個序列位元BT1~BT8,再透過序列至並列轉換單元S2P1分別匯整為並列資料DP0~DP15。In the embodiment shown in FIG. 6B, the master terminal circuit HS transmits the clock signal CLK to the receiving circuit 310 of the client circuit CS through the transmitting circuit 110, and transmits the data signal DATA1 of "00110011" through the transmitting circuit 111 to The receiving circuit 311 of the client circuit CS. Then, the delay unit DL0 delays the clock signal CLK by 0 unit time Td, and the delay unit DL1 delays the data signal DATA1 by 0 to 15 unit time Td, respectively, thereby providing a test clock signal CLK0' and 16 pens. Test data signals DT0'~DT15'. The client circuit CS can capture the test data signals DT0'-DT15' at the rising/falling edge of the pulse signal CLK' during the test, and can extract 8 sequence bits BT1~BT8 from each test data signal, and then transmit the sequence. The parallel conversion unit S2P1 is merged into parallel data DP0 to DP15, respectively.

在第6C圖所示之實施例中,主控端電路HS會透過傳送電路110傳送時脈訊號CLK至用戶端電路CS之接收電路310,且透過傳送電路111傳送「01010101」之資料訊號DATA1至用戶端電路CS之接收電路311。接著,延遲單元DL0會分別以0~15個單位時間Td來延遲時脈訊號CLK,延遲單元DL1會以0個單位時間Td來延遲資料訊號DATA1,進而提供16筆測試時脈訊號CLK0’~CLK15’和一測試資料訊號DT0’。用戶端電路CS可在測試時脈訊號CLK0’~CLK15’之上升/下降邊緣擷取測試資料訊號DT0’,依據每一測試時脈訊號CLK0’~CLK15’可分別擷取到8個序列位元BT1~BT8,再透過序列至並列轉換單元S2P1分別匯整為並列資料DP0~DP15。In the embodiment shown in FIG. 6C, the master terminal circuit HS transmits the clock signal CLK to the receiving circuit 310 of the client circuit CS through the transmitting circuit 110, and transmits the data signal DATA1 of "01010101" through the transmitting circuit 111 to The receiving circuit 311 of the client circuit CS. Then, the delay unit DL0 delays the clock signal CLK by 0 to 15 unit times Td, and the delay unit DL1 delays the data signal DATA1 by 0 unit time Td, thereby providing 16 test clock signals CLK0' to CLK15. 'and a test data signal DT0'. The client circuit CS can capture the test data signal DT0' at the rising/falling edge of the pulse signal CLK0'~CLK15' during the test, and can respectively capture 8 sequence bits according to each test clock signal CLK0'~CLK15' BT1 to BT8 are further combined into parallel data DP0 to DP15 through the sequence-to-parallel conversion unit S2P1.

在第6D圖所示之實施例中,主控端電路HS會透過傳送電路110傳送時脈訊號CLK至用戶端電路CS之接收電路310,且透過傳送電路111傳送「00110011」之資料訊號DATA1至用戶端電路CS之接收電路311。接著,延遲單元DL0會依序以0~15個單位時間Td來延遲時脈訊號CLK,延遲單元DL1會以0個單位時間Td來延遲資料訊號DATA1,進而提供16筆測試時脈訊號CLK0’~CLK15’和一測試資料訊號DT0’。用戶端電路CS可在測試時脈訊號CLK0’~CLK15’之上升/下降邊緣擷取測試資料訊號DT0’,依據每一測試時脈訊號CLK0’~CLK15’可分別擷取到8個序列位元BT1~BT8,再透過序列至並列轉換單元S2P1分別匯整為並列資料DP0~DP15。In the embodiment shown in FIG. 6D, the master terminal circuit HS transmits the clock signal CLK to the receiving circuit 310 of the client circuit CS through the transmitting circuit 110, and transmits the data signal DATA1 of "00110011" through the transmitting circuit 111 to The receiving circuit 311 of the client circuit CS. Then, the delay unit DL0 delays the clock signal CLK by 0 to 15 unit time Td, and the delay unit DL1 delays the data signal DATA1 by 0 unit time Td, thereby providing 16 test clock signals CLK0'~ CLK15' and a test data signal DT0'. The client circuit CS can capture the test data signal DT0' at the rising/falling edge of the pulse signal CLK0'~CLK15' during the test, and can respectively capture 8 sequence bits according to each test clock signal CLK0'~CLK15' BT1 to BT8 are further combined into parallel data DP0 to DP15 through the sequence-to-parallel conversion unit S2P1.

第7圖為匯整第6A~6D圖結果之圖表。比較單元330可比較每一筆擷取資料和相對應期待資料之值,再依此產生對應於每一偏移調整階段和不同值資料訊號之比較結果R1和R2。如比較結果R1顯示,「01010101」資料訊號DATA1在經過偏移調整階段S0~S30處理後,會包含兩個資料正確區域,亦即時脈延遲索引-6~3之間和14~15之間;如比較結果R2顯示,「00110011」資料訊號DATA1在經過偏移調整階段S0~S30處理後,會包含單一資料正確區域,亦即時脈延遲索引-6~3之間。在決定最佳相位關係時,複數個資料正確區域會增加判斷難度。因此,本發明之比較電路會對R1和R2執行特定邏輯運算,例如執行AND運算(R1&R2)可確保每一期待資料只有單一資料正確區域。針對每一偏移調整階段,本發明可依據一特定資料訊號之結果(R1或R2)來決定最佳相位關係;或者,本發明可同時依據不同特定資料訊號之結果(R1和R2)來決定最佳相位關係。Figure 7 is a graph showing the results of the 6A to 6D graphs. The comparing unit 330 can compare the values of each of the captured data and the corresponding expected data, and then generate comparison results R1 and R2 corresponding to each offset adjustment phase and different value data signals. If the comparison result R1 shows that the "01010101" data signal DATA1 is processed by the offset adjustment stages S0 to S30, it will contain two data correct areas, and the instantaneous pulse delay index is between -6 and 3 and between 14 and 15; If the comparison result R2 shows that the "00110011" data signal DATA1 is processed by the offset adjustment stages S0 to S30, it will contain a single data correct area, and the instantaneous pulse delay index is between -6 and 3. When determining the optimal phase relationship, the correct area of multiple data will increase the difficulty of judgment. Therefore, the comparison circuit of the present invention performs specific logic operations on R1 and R2, for example, performing an AND operation (R1 & R2) to ensure that each expected data has only a single data correct region. For each offset adjustment phase, the present invention can determine the optimal phase relationship based on the result of a particular data signal (R1 or R2); alternatively, the present invention can simultaneously determine the results (R1 and R2) of different specific data signals. The best phase relationship.

第8A~8B圖和第9A~9B圖說明了本發明校正電路300執行步驟420~470時之運作。第6A~6D圖和第7圖所示前述實施例以資料訊號DATA1來作說明,在以相同方式對資料訊號DATA2~DATA4經過偏移調整階段S0~S30處理後,可在步驟420求出一偏移校準表,並將其存入儲存單元320。Figures 8A-8B and 9A-9B illustrate the operation of the calibration circuit 300 of the present invention when performing steps 420-470. The foregoing embodiments shown in FIGS. 6A to 6D and FIG. 7 are described by the data signal DATA1. After the data signals DATA2 to DATA4 are processed in the offset adjustment stages S0 to S30 in the same manner, a step 420 can be found. The calibration table is offset and stored in storage unit 320.

第8A圖和第9A圖顯示了兩種情況下得到的偏移校準表。REG1~4為儲存單元310內之32位元暫存器,分別用來儲存傳輸通道201~204之校準結果,其中”1”代表資料正確區域,而”0”代表資料錯誤區域。Figures 8A and 9A show the offset calibration tables obtained in both cases. REG1~4 are 32-bit registers in the storage unit 310 for storing the calibration results of the transmission channels 201-204, wherein "1" represents the correct area of the data, and "0" represents the data error area.

在第8B圖和第9B圖中,步驟431~439為計算單元340執行步驟430之運作,其詳細步驟說明如下:In Figures 8B and 9B, steps 431-439 perform the operation of step 430 for computing unit 340, the detailed steps of which are illustrated as follows:

步驟431:將暫存器REG1~REG4內存資料D1(A)~D4(A)向右平移一位元,以分別得到資料D1(B)~D4(B)。Step 431: Translating the memory data D1(A) to D4(A) of the registers REG1 to REG4 to the right by one bit to obtain the data D1(B) to D4(B), respectively.

步驟432:將資料D1(A)~D4(A)分別和資料D1(B)~D4(B)進行AND運算,以分別得到資料D1(C)~D4(C)。Step 432: AND data D1 (A) to D4 (A) and data D1 (B) to D4 (B) are respectively ANDed to obtain data D1 (C) to D4 (C), respectively.

步驟433:將資料D1(C)~D4(C)向右平移一位元,以分別得到資料D1(D)~D4(D)。Step 433: The data D1 (C) to D4 (C) are shifted to the right by one bit to obtain the data D1 (D) to D4 (D), respectively.

步驟434:將資料D1(C)~D4(C)分別和資料D1(D)~D4(D)進行XOR運算,以分別得到資料D1(E)~D4(E)。Step 434: XOR the data D1 (C) to D4 (C) and the data D1 (D) to D4 (D) to obtain the data D1 (E) to D4 (E), respectively.

步驟435:將資料D1(E)~D4(E)向左平移一位元,以分別得到資料D1(F)~D4(F)。Step 435: The data D1(E) to D4(E) are shifted to the left by one bit to obtain the data D1(F) to D4(F), respectively.

在步驟440中,本發明會計算資料D1(F)~D4(F)中所有位元之總值SUM。若SUM為2則判定校正成功,接著執行步驟450以依據資料D1(F)~D4(F)中位元1之位置求出相對應中心點,並依此求出每一通道之最佳相位關係,如第8A~8B圖所示;若SUM不為2則會執行步驟470以判定校正失敗,如第9A和9B圖所示。In step 440, the present invention calculates the total value SUM of all the bits in the data D1(F) - D4(F). If SUM is 2, it is determined that the calibration is successful, and then step 450 is performed to obtain the corresponding center point according to the position of the bit 1 in the data D1(F) to D4(F), and the optimal phase of each channel is obtained accordingly. The relationship is as shown in Figs. 8A-8B; if SUM is not 2, step 470 is performed to determine the correction failure, as shown in Figs. 9A and 9B.

在求出每一通道之最佳相位關係後,本發明在步驟460中可進入正常模式,並依據每一通道之最佳相位關係來調整時脈訊號或相對應資料訊號之相位。After determining the optimal phase relationship for each channel, the present invention can enter the normal mode in step 460 and adjust the phase of the clock signal or the corresponding data signal according to the optimal phase relationship of each channel.

針對MIDI中每一傳輸通道,本發明可針對一個或多個特定值之資料訊號進行不同階段的偏移調整,再求出每一傳輸通道之最佳相位關係,因此能依據每一通道之最佳相位關係來調整時脈訊號或相對應資料訊號之相位。For each transmission channel in MIDI, the present invention can perform offset adjustment for different stages of data signals of one or more specific values, and then find the optimal phase relationship of each transmission channel, so that it can be based on the most Good phase relationship to adjust the phase of the clock signal or the corresponding data signal.

綜上所述,在非理想傳輸環境下,即使MIDI中每一通道存在不同程度的訊號偏移,本發明能同步所有訊號的時序,進而確保資料讀取之正確性。In summary, in a non-ideal transmission environment, even if there is a different degree of signal offset in each channel of MIDI, the present invention can synchronize the timing of all signals, thereby ensuring the correctness of data reading.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10、20...傳輸系統10, 20. . . Transmission system

300...校正電路300. . . Correction circuit

320...儲存單元320. . . Storage unit

330...比較單元330. . . Comparison unit

340...計算單元340. . . Computing unit

350...控制單元350. . . control unit

200~204...傳輸通道200~204. . . Transmission channel

110~114...傳送電路110~114. . . Transmission circuit

310~314...接收電路310~314. . . Receiving circuit

200~204...傳輸通道200~204. . . Transmission channel

CD...除頻器CD. . . Frequency divider

HS...主控端電路HS. . . Master terminal circuit

CS...用戶端電路CS. . . Client circuit

LP_TX...低功率傳送器LP_TX. . . Low power transmitter

HS_TX...高速傳送器HS_TX. . . High speed transmitter

LP_RX...低功率接收器LP_RX. . . Low power receiver

HS_RX...高速接收器HS_RX. . . High speed receiver

DL0~DL4...延遲單元DL0~DL4. . . Delay unit

S2P1~S2P4...序列至並列轉換單元S2P1~S2P4. . . Sequence to parallel conversion unit

410~470...步驟410~470. . . step

第1圖為先前技術中一傳輸系統之示意圖。Figure 1 is a schematic diagram of a transmission system of the prior art.

第2A~2D圖顯示了先前技術之傳輸系統運作時之訊號圖。Figures 2A through 2D show signal diagrams of prior art transmission systems in operation.

第3A圖為本發明實施例中一傳輸系統之示意圖。FIG. 3A is a schematic diagram of a transmission system in an embodiment of the present invention.

第3B圖為本發明實施例之傳輸系統中一校正電路之功能方塊圖。FIG. 3B is a functional block diagram of a correction circuit in the transmission system according to the embodiment of the present invention.

第4圖為本發明實施例之校正電路運作時之流程圖。Figure 4 is a flow chart showing the operation of the correction circuit in the embodiment of the present invention.

第5圖為在不同訊號延遲條件下時脈訊號和資料訊號之間的相位關係。Figure 5 shows the phase relationship between the clock signal and the data signal under different signal delay conditions.

第6A~6D圖為在不同訊號延遲條件下校正結果之訊號圖。Figures 6A to 6D are signal diagrams of the correction results under different signal delay conditions.

第7圖為匯整第6A~6D圖結果之圖表。Figure 7 is a graph showing the results of the 6A to 6D graphs.

第8A~8B圖和第9A~9B圖為本發明實施例之校正電路運作時之示意圖。8A-8B and 9A-9B are schematic diagrams showing the operation of the correction circuit in accordance with an embodiment of the present invention.

20...傳輸系統20. . . Transmission system

300...校正電路300. . . Correction circuit

320...儲存單元320. . . Storage unit

330...比較單元330. . . Comparison unit

340...計算單元340. . . Computing unit

350...控制單元350. . . control unit

200~204...傳輸通道200~204. . . Transmission channel

110~114...傳送電路110~114. . . Transmission circuit

310~314...接收電路310~314. . . Receiving circuit

200~204...傳輸通道200~204. . . Transmission channel

CD...除頻器CD. . . Frequency divider

HS...主控端電路HS. . . Master terminal circuit

CS...用戶端電路CS. . . Client circuit

LP_TX...低功率傳送器LP_TX. . . Low power transmitter

HS_TX...高速傳送器HS_TX. . . High speed transmitter

LP_RX...低功率接收器LP_RX. . . Low power receiver

HS_RX...高速接收器HS_RX. . . High speed receiver

S2P1~S2P4...序列至並列轉換單元S2P1~S2P4. . . Sequence to parallel conversion unit

Claims (4)

一種校正一行動產業處理器介面(Mobile Industry Processor Interface,MIPI)中訊號偏移(skew)的方法,包含有:在一校正模式下,透過該行動產業處理器介面之一時脈通道和一資料通道分別傳送一時脈訊號和一第一資料訊號;將該時脈訊號分別延遲0至(N-1)個單位時間以分別提供第1至N筆測試時脈訊號,其中N為大於1之整數;將該第一資料訊號分別延遲0至(N-1)個單位時間以分別提供第1至N筆第一測試資料訊號;依據該第1筆測試時脈訊號來擷取該第1至N筆第一測試資料訊號且分別依據該第1至N筆測試時脈訊號來擷取該第1筆第一測試資料訊號,進而得到2N筆第一擷取資料;判斷每一筆第一擷取資料是否符合對應於該第一資料訊號之一預定資料;將每一筆第一擷取資料中符合該預定資料之位元判定為一資料正確區域;以及依據該資料正確區域之一中心點來決定一最佳相位關係;以及 在一正常模式下傳送該時脈訊號和該資料訊號時,依據該最佳相位關係來調整該時脈通道和該資料通道之訊號延遲。 A method for correcting a signal offset in a Mobile Industry Processor Interface (MIPI), comprising: a calibration channel, a clock channel and a data channel through a processor interface of the mobile industry Transmitting a clock signal and a first data signal respectively; delaying the clock signal by 0 to (N-1) unit time respectively to provide the first to N test clock signals, wherein N is an integer greater than 1; Delaying the first data signal by 0 to (N-1) unit time to provide the first to N first test data signals respectively; and extracting the first to N pens according to the first test clock signal The first test data signal is obtained according to the first to N test clock signals to obtain the first first test data signal, thereby obtaining the first data of the 2N pen; determining whether each of the first captured data is Corresponding to the predetermined data corresponding to one of the first data signals; determining, in each of the first captured data, the bit that meets the predetermined data as a correct area of the data; and determining the most central point according to one of the correct areas of the data Good phase System; and When the clock signal and the data signal are transmitted in a normal mode, the signal delay of the clock channel and the data channel is adjusted according to the optimal phase relationship. 一種校正一行動產業處理器介面中訊號偏移的方法,包含有:在一校正模式下,透過該行動產業處理器介面之一時脈通道來傳送一時脈訊號;在該校正模式下,透過該行動產業處理器介面之一資料通道來傳送一第一資料訊號和一第二資料訊號,其中該第一資料訊號和該第二資料訊號具不同值;將該時脈訊號分別延遲0至(N-1)個單位時間以分別提供第1至N筆測試時脈訊號,其中N為大於1之整數;將該第一資料訊號分別延遲0至(N-1)個單位時間以分別提供第1至N筆第一測試資料訊號;將該第二資料訊號分別延遲0至(N-1)個單位時間以分別提供第1至N筆第二測試資料訊號;依據該第1筆測試時脈訊號來擷取該第1至N筆第一測試資料訊號且分別依據該第1至N筆測試時脈訊號來擷取該第1筆第一測試資料訊號,進而得到2N筆第一擷取資料;依據該第1筆測試時脈訊號來擷取該第1至N筆第二測 試資料訊號且分別依據該第1至N筆測試時脈訊號來擷取該第1筆第二測試資料訊號,進而得到2N筆第二擷取資料;判斷每一筆第一擷取資料是否符合對應於該第一資料訊號之一第一預定資料;判斷每一筆第二擷取資料是否符合對應於該第二資料訊號之一第二預定資料;將每一筆第一擷取資料中符合該第一預定資料之位元判定為一第一資料正確區域且將每一筆第二擷取資料中符合該第二預定資料之位元判定為一第二資料正確區域;依據該第一資料正確區域和該第二資料正確區域來決定對應於該資料通道之一最佳資料正確區域;依據該最佳資料正確區域之一中心點決定該時脈通道和該資料通道之間之一最佳相位關係;以及在一正常模式下傳送該時脈訊號和該第一資料訊號時,依據該最佳相位關係來調整該時脈通道和該資料通道之訊號延遲。 A method for correcting a signal offset in an action industry processor interface, comprising: transmitting, in a calibration mode, a clock signal through a clock channel of a processor interface of the mobile industry; and in the correcting mode, transmitting the signal One of the data channels of the industrial processor interface transmits a first data signal and a second data signal, wherein the first data signal and the second data signal have different values; delaying the clock signal by 0 to (N- 1) unit time to provide the first to N test clock signals respectively, where N is an integer greater than 1; delay the first data signal by 0 to (N-1) unit time respectively to provide the first to N pen first test data signal; delay the second data signal by 0 to (N-1) unit time to provide the first to N second test data signals respectively; according to the first test clock signal Taking the first to N first test data signals and extracting the first first test data signal according to the first to N test clock signals respectively, thereby obtaining the first data of the 2N pen; The first test clock signal is used to capture 1 to N second measured Pen Test the data signal and retrieve the first second test data signal according to the first to N test clock signals respectively, thereby obtaining the second data of the 2N pen; determining whether each of the first captured data meets the corresponding Determining, according to one of the first data signals, a first predetermined data; determining whether each of the second captured data meets a second predetermined data corresponding to one of the second data signals; and matching each of the first captured data to the first The bit of the predetermined data is determined as a first data correct area and the bit of each second captured data that meets the second predetermined data is determined as a second data correct area; according to the first data correct area and the The correct area of the second data determines the correct area corresponding to one of the data channels; and the center point of one of the correct areas of the best data determines an optimal phase relationship between the clock channel and the data channel; When the clock signal and the first data signal are transmitted in a normal mode, the signal delay of the clock channel and the data channel is adjusted according to the optimal phase relationship. 一種使用一行動產業處理器介面之傳輸系統,其包含有:一主控端(host side)電路,用來透過該行動產業處理器介面之一第一通道和一第二通道分別傳送一時脈訊號和一資料訊號; 一用戶端(client side)電路,用來依據一最佳相位關係來調整該第一通道和該第二通道之訊號延遲,其包含:一接收電路,用來接收該時脈訊號和該資料訊號;一校正電路,用來:將該時脈訊號分別延遲0至(N-1)個單位時間以分別提供第1至N筆測試時脈訊號,其中N為大於1之整數;將該資料訊號分別延遲0至(N-1)個單位時間以分別提供第1至N筆測試資料訊號;依據該第1筆測試時脈訊號來擷取該第1至N筆測試資料訊號且分別依據該第1至N筆測試時脈訊號來擷取該第1筆第一測試資料訊號,進而得到2N筆擷取資料;判斷每一筆擷取資料是否符合對應於該資料訊號之一預定資料;將每一筆擷取資料中符合該預定資料之位元判定為一資料正確區域;依據該資料正確區域之一中心點來決定該第一通道和該第二通道之間之一最佳相位關係。 A transmission system using an action industry processor interface, comprising: a host side circuit for transmitting a clock signal through one of the first channel and the second channel of the mobile industry processor interface And a data signal; a client side circuit for adjusting a signal delay of the first channel and the second channel according to an optimal phase relationship, comprising: a receiving circuit, configured to receive the clock signal and the data signal a correction circuit for: delaying the clock signal by 0 to (N-1) unit time respectively to provide the first to N test clock signals, wherein N is an integer greater than 1: the data signal Delaying from 0 to (N-1) unit time to provide the first to N test data signals respectively; and extracting the first to N test data signals according to the first test pulse signal and respectively according to the first 1 to N test clock signals to capture the first test data of the first test, and then obtain 2N pen data; determine whether each of the captured data meets the predetermined data corresponding to one of the data signals; The bit in the captured data that meets the predetermined data is determined as a data correct region; and an optimal phase relationship between the first channel and the second channel is determined according to a central point of the correct region of the data. 如請求項3所述之傳輸系統,其中該校正電路包含:一延遲單元,用來調整該時脈訊號和該資料訊號之相 位;一比較單元,用來比較該擷取資料和對應於該資料訊號之該預定資料之值;一儲存單元,用來儲存該比較單元之比較結果;一計算單元,用來依據該比較單元之比較結果求出該最佳相位關係;以及一控制單元,用來依據該最佳相位關係來控制該延遲單元以調整該第一通道和該第二通道之訊號延遲。 The transmission system of claim 3, wherein the correction circuit comprises: a delay unit for adjusting the phase of the clock signal and the data signal a comparison unit for comparing the value of the captured data with the predetermined data corresponding to the data signal; a storage unit for storing the comparison result of the comparison unit; and a calculation unit for using the comparison unit The comparison result finds the optimal phase relationship; and a control unit is configured to control the delay unit according to the optimal phase relationship to adjust the signal delay of the first channel and the second channel.
TW100121456A 2011-05-19 2011-06-20 Method of calibrating signal skews in mipi and related transmission system TWI460574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/231,972 US8886988B2 (en) 2011-05-19 2011-09-14 Method of calibrating signal skews in MIPI and related transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161488143P 2011-05-19 2011-05-19

Publications (2)

Publication Number Publication Date
TW201248352A TW201248352A (en) 2012-12-01
TWI460574B true TWI460574B (en) 2014-11-11

Family

ID=47154846

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121456A TWI460574B (en) 2011-05-19 2011-06-20 Method of calibrating signal skews in mipi and related transmission system

Country Status (2)

Country Link
CN (1) CN102789442B (en)
TW (1) TWI460574B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483119B (en) * 2013-02-05 2015-05-01 Ind Tech Res Inst Usb ssic removable electronic device and the adaptor thereof
CN104237760B (en) * 2013-06-08 2017-05-10 京元电子股份有限公司 Testing device and testing method for semiconductor components
US9355054B2 (en) * 2014-01-07 2016-05-31 Omnivision Technologies, Inc. Digital calibration-based skew cancellation for long-reach MIPI D-PHY serial links
CN106776418A (en) * 2015-11-24 2017-05-31 上海和辉光电有限公司 A kind of MIPI interface physicals Rotating fields
CN108964691A (en) * 2017-05-26 2018-12-07 聚晶半导体股份有限公司 Data transmission system
CN111163311B (en) * 2020-02-13 2022-05-24 维沃移动通信有限公司 Phase calibration method and electronic device
CN111475455B (en) * 2020-04-03 2022-02-01 上海安路信息科技股份有限公司 MIPI offset cancellation method, offset cancellation circuit and communication receiving device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122514A1 (en) * 2000-10-31 2002-09-05 Agere Systems Guardian Corp. Method and apparatus for synchronizing data transfer
US6654897B1 (en) * 1999-03-05 2003-11-25 International Business Machines Corporation Dynamic wave-pipelined interface apparatus and methods therefor
US6775328B1 (en) * 1999-08-11 2004-08-10 Rambus Inc. High-speed communication system with a feedback synchronization loop
US20060184817A1 (en) * 2005-02-11 2006-08-17 Dreps Daniel M Elastic interface de-skew mechanism
TW200826100A (en) * 2006-12-01 2008-06-16 Realtek Semiconductor Corp Circuit and method for calibrating data control signal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211327A (en) * 2006-12-29 2008-07-02 佛山市顺德区顺达电脑厂有限公司 Data transmission line and data-transmission mode switching method
US8073090B2 (en) * 2008-07-11 2011-12-06 Integrated Device Technology, Inc. Synchronous de-skew with programmable latency for multi-lane high speed serial interface
CN102004711B (en) * 2010-11-17 2012-02-29 北京理工大学 Single-interrupt real-time data transmission method based on FPGA (Field Programmable Gate Array)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654897B1 (en) * 1999-03-05 2003-11-25 International Business Machines Corporation Dynamic wave-pipelined interface apparatus and methods therefor
US6775328B1 (en) * 1999-08-11 2004-08-10 Rambus Inc. High-speed communication system with a feedback synchronization loop
US20020122514A1 (en) * 2000-10-31 2002-09-05 Agere Systems Guardian Corp. Method and apparatus for synchronizing data transfer
US20060184817A1 (en) * 2005-02-11 2006-08-17 Dreps Daniel M Elastic interface de-skew mechanism
TW200826100A (en) * 2006-12-01 2008-06-16 Realtek Semiconductor Corp Circuit and method for calibrating data control signal

Also Published As

Publication number Publication date
TW201248352A (en) 2012-12-01
CN102789442B (en) 2015-09-16
CN102789442A (en) 2012-11-21

Similar Documents

Publication Publication Date Title
TWI460574B (en) Method of calibrating signal skews in mipi and related transmission system
US10771231B2 (en) Signaling system with adaptive timing calibration
US8886988B2 (en) Method of calibrating signal skews in MIPI and related transmission system
US10496332B2 (en) Data path training and timing signal compensation for non-volatile memory device interface
US8644085B2 (en) Duty cycle distortion correction
TWI769274B (en) Electronic circuit configured to adjust skew between clock signals
US20140241082A1 (en) Auto-Calibration for High Speed Input/Output
US9515686B2 (en) Signal transmitting circuit using common clock, and storage device therewith
US20170097655A1 (en) System on chip and integrated circuit for performing skew calibration using dual edge and mobile device including the same
US10708093B2 (en) Supply voltage adaptation via decision feedback equalizer
TW201419759A (en) Timing calibration for on-chip interconnect
US10313100B2 (en) Method and apparatus for automatic skew compensation
US20180175839A1 (en) Apparatus and method for strobe centering for source synchronous links
CN114094996A (en) Calibration circuit, calibration method, interface and related equipment
US9154291B2 (en) Differential signal skew adjustment method and transmission circuit
US11044123B2 (en) Auto-zero receiver with integrated DFE, VGA and eye monitor
TW202036315A (en) Apparatus and method for providing fast-settling quadrature detection and correction
US9922248B2 (en) Asynchronous on-die eye scope
US11561923B2 (en) Method for training multichannel data receiver timing
US20180188364A1 (en) Method for determining sampling phase of sampling clock signal and associated electronic device
US9921899B2 (en) Monitoring serial link errors
US9484967B1 (en) Method for duty cycle distortion detection through decision feedback equalizer taps
US11736230B1 (en) Digitally-controlled quadrature correction loop
WO2009134844A1 (en) High-speed source-synchronous signaling
US20120288046A1 (en) Signal Calibration Method and Client Circuit and Transmission System Using the Same