TWI459507B - Method for fabricating through-silicon via structure - Google Patents

Method for fabricating through-silicon via structure Download PDF

Info

Publication number
TWI459507B
TWI459507B TW098120407A TW98120407A TWI459507B TW I459507 B TWI459507 B TW I459507B TW 098120407 A TW098120407 A TW 098120407A TW 98120407 A TW98120407 A TW 98120407A TW I459507 B TWI459507 B TW I459507B
Authority
TW
Taiwan
Prior art keywords
layer
conductive layer
dielectric layer
semiconductor substrate
conductive
Prior art date
Application number
TW098120407A
Other languages
Chinese (zh)
Other versions
TW201101424A (en
Inventor
Chien Li Kuo
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW098120407A priority Critical patent/TWI459507B/en
Publication of TW201101424A publication Critical patent/TW201101424A/en
Application granted granted Critical
Publication of TWI459507B publication Critical patent/TWI459507B/en

Links

Description

一種製作矽貫通電極的方法Method for making 矽through electrode

本發明是關於一種製作矽貫通電極(through-silicon via,TSV)的方法,尤指一種於製作矽貫通電極時同時維持層間介電層厚度的製作方法。The present invention relates to a method for fabricating a through-silicon via (TSV), and more particularly to a method for fabricating a tantalum through-electrode while maintaining the thickness of the interlayer dielectric layer.

矽貫通電極(TSV)技術是一種新穎的半導體技術。矽貫通電極技術主要在於解決晶片間互連的問題,屬於一種新的三度空間立體封裝技術。當紅的矽貫通電極技術藉由三度空間的堆疊、經由矽貫通電極創造出更符合輕、薄、短、小之市場需求產品,提供微機電系統(MEMS)、光電及電子元件等晶圓級封裝所需之封裝製程技術。The through-electrode (TSV) technology is a novel semiconductor technology.矽Through-electrode technology mainly solves the problem of interconnection between wafers, and belongs to a new three-dimensional space three-dimensional packaging technology. The popular 矽 through-electrode technology provides wafer level for micro-electromechanical systems (MEMS), optoelectronics and electronic components through the stacking of three-dimensional space and the creation of products that are more suitable for light, thin, short and small through the through-electrode. The packaging process technology required for packaging.

矽貫通電極技術是在晶圓上以蝕刻或雷射的方式鑽孔,再將導電材料如銅、多晶矽、鎢等填入導孔(Via)形成導電的通道(即連接內、外部的接合線路)。最後則將晶圓或晶粒薄化再加以堆疊、結合(bonding),而成為三度空間的堆疊積體電路(3D IC)。如此一來,就可以去除打線連結(wire bonding)方式。而改以蝕刻或雷射的方式鑽孔(Via)並導通電極,不僅省去打線空間,也縮小了電路板的使用面積與封裝件的體積。由於採用矽貫通電極技術的構裝內部接合距離,即為薄化後之晶圓或晶粒的厚度,相較於採取打線連結的傳統堆疊封裝,三度空間堆疊積體電路的內部連接路徑更短,相對可使晶片間的傳輸速度更快、雜訊更小、效能更佳。尤其在中央處裡器(CPU)與快取記憶體,以及記憶卡應用中的資料傳輸上,更能突顯矽貫通電極技術的短距離內部接合路徑所帶來的效能優勢。此外,三度空間堆疊積體電路的封裝尺寸等同於晶粒尺寸。在強調多功能、小尺寸的可攜式電子產品領域,三度空間堆疊積體電路的小型化特性更是市場導入的首要因素。The through-electrode technology is to etch holes on the wafer by etching or laser, and then electrically conductive materials such as copper, polysilicon, tungsten, etc. are filled into the vias (Via) to form conductive channels (ie, the inner and outer bonding lines are connected). ). Finally, the wafer or the grain is thinned and then stacked and bonded to become a three-dimensional stacked integrated circuit (3D IC). In this way, the wire bonding method can be removed. By etching or lasering the Via and turning on the electrodes, it not only eliminates the wiring space, but also reduces the use area of the board and the volume of the package. Due to the internal bonding distance of the 矽-through electrode technology, that is, the thickness of the thinned wafer or the die, the internal connection path of the three-dimensional space-stacked integrated circuit is more than that of the conventional stacked package with wire bonding. Short, the relative transfer speed between the wafers is faster, the noise is smaller, and the performance is better. Especially in the central unit (CPU) and cache memory, as well as data transfer in memory card applications, it can highlight the performance advantages of the short-distance internal joint path of the through-electrode technology. In addition, the package size of the three-dimensional space-stacked integrated circuit is equivalent to the grain size. In the field of portable electronic products that emphasize multi-function and small size, the miniaturization of three-dimensional space-stacked integrated circuits is the primary factor in market introduction.

目前廣泛製作矽貫通電極的製程主要先於一半導體基底表面完成所需的金氧半導體電晶體,例如一互補型金氧半導體電晶體,然後形成貫穿層間介電層並連接金氧半導體電晶體的接觸插塞。接著在層間介電層與半導體基底中作出填有隔離用之介電層與導電用之銅金屬的矽貫通電極。在形成接觸插塞及矽貫通電極的過程當中需要多道化學機械研磨,每一道化學機械研磨製程係用以研磨不同的材料。At present, the process of widely fabricating a through electrode is mainly performed on a surface of a semiconductor substrate to complete a desired MOS transistor, such as a complementary MOS transistor, and then formed through the interlayer dielectric layer and connected to the MOS transistor. Contact the plug. Next, a tantalum through electrode filled with a dielectric layer for isolation and a copper metal for conduction is formed in the interlayer dielectric layer and the semiconductor substrate. In the process of forming the contact plug and the through electrode, multiple chemical mechanical polishing is required, and each chemical mechanical polishing process is used to grind different materials.

需注意的是,一般以化學機械研磨進行的研磨製程需倚靠不同的移除率來將研磨製程停止於某個特定的材料層。由於層間介電層與覆蓋於其上用來隔離矽貫通電極的介電層都屬相同性質的介電材料,因此在以化學機械研磨製程分別去除這兩個材料層的時候容易因相同移除率而無法有效停止研磨步驟。在此條件下,層間介電層的厚度將會變得難以控制,且在大部分情況下容易流失過多的層間介電層而造成層間介電層厚度不足的問題。It should be noted that the polishing process generally performed by chemical mechanical polishing relies on different removal rates to stop the polishing process to a specific material layer. Since the interlayer dielectric layer and the dielectric layer covering the pass-through electrode for separating the same are the same dielectric materials, the two material layers are easily removed by the same process in the chemical mechanical polishing process. The rate does not effectively stop the grinding step. Under these conditions, the thickness of the interlayer dielectric layer will become difficult to control, and in most cases, it is easy to lose too much interlayer dielectric layer to cause a problem of insufficient interlayer dielectric thickness.

因此本發明是揭露一種製作矽貫通電極的方法,以改良目前製程中容易導致層間介電層過度流失的問題。Therefore, the present invention discloses a method for fabricating a tantalum through electrode to improve the problem that the interlayer dielectric layer is easily lost in the current process.

本發明較佳實施例是揭露一種製作矽貫通電極的方法,包含有下列步驟:提供一半導體基底;形成至少一金氧半導體電晶體於該半導體基底表面;形成一介電層於該半導體基底上,並覆蓋於該金氧半導體電晶體上;於該介電層中形成連接該金氧半導體電晶體的接觸插塞開口;形成一第一導電層於該介電層上並填入該接觸插塞開口中;進行一蝕刻製程,於該導電層、該介電層及該半導體基底中形成一穿矽導孔;填入一第二導電層於該穿矽導孔中並覆蓋部分該第一導電層表面;以及進行一平坦化製程,以去除部分該第二導電層直到該第一導電層表面。A preferred embodiment of the invention discloses a method of fabricating a germanium through electrode, comprising the steps of: providing a semiconductor substrate; forming at least one MOS transistor on the surface of the semiconductor substrate; forming a dielectric layer on the semiconductor substrate And covering the MOS transistor; forming a contact plug opening connecting the MOS transistor in the dielectric layer; forming a first conductive layer on the dielectric layer and filling the contact plug Forming an etching process, forming a via via in the conductive layer, the dielectric layer and the semiconductor substrate; filling a second conductive layer in the through via and covering a portion of the first a surface of the conductive layer; and performing a planarization process to remove a portion of the second conductive layer up to the surface of the first conductive layer.

請參照第1圖至第6圖,第1圖至第6圖為本發明較佳實施例製作一矽貫通電極之方法示意圖。如第1圖所示,首先提供一半導體基底12,例如一由單晶矽(monocrystalline silicon)、砷化鎵(gallium arsenide,GaAs)或其他習知技藝所熟知之半導體材質所構成的基底。然後依據標準金氧半導體電晶體製程於半導體基底12表面形成至少一金氧半導體電晶體14,例如一P型金氧半導體(PMOS)電晶體、N型金氧半導體(NMOS)電晶體或互補型金氧半導體(CMOS)電晶體,或其他各式半導體元件。其中金氧半導體電晶體14可各具有閘極、側壁子、輕摻雜源極汲極、源極/汲極區域及矽化金屬層等標準電晶體結構,在此不另加贅述。Please refer to FIG. 1 to FIG. 6 . FIG. 1 to FIG. 6 are schematic diagrams showing a method for fabricating a through-electrode according to a preferred embodiment of the present invention. As shown in FIG. 1, a semiconductor substrate 12 is first provided, for example, a monocrystalline germanium (monocrystalline). Silicon), gallium arsenide (GaAs) or other substrate made of a semiconductor material well known in the art. Then, at least one MOS transistor 14 is formed on the surface of the semiconductor substrate 12 according to a standard MOS transistor process, such as a P-type MOS transistor, an N-type MOS transistor, or a complementary type. A metal oxide semiconductor (CMOS) transistor, or various other semiconductor components. The MOS semiconductor transistors 14 may each have a standard transistor structure such as a gate, a sidewall, a lightly doped source drain, a source/drain region, and a deuterated metal layer, which are not described herein.

然後形成一厚度為數千埃如約3000埃的層間介電層16並覆蓋整個金氧半導體電晶體14。層間介電層16較佳由四乙基氧矽烷(tetraethylorthosilicate,TEOS)及磷矽玻璃(phosphosilicate glass,PSG)所構成的複合材料層所構成,但不侷限於此。層間介電層16亦可為BPSG、低介電係數(low-k)材料所構成,且層間介電層16與金氧半導體電晶體14之間可選擇性地置入應力材料如提供拉伸應力或伸張應力的氮化矽材料、蝕刻停止層如氮化矽材料、襯層如薄氧化層、或上述者之組合。An interlayer dielectric layer 16 having a thickness of several thousand angstroms, such as about 3000 angstroms, is then formed and covers the entire MOS transistor 14. The interlayer dielectric layer 16 is preferably composed of a composite material layer composed of tetraethylorthosilicate (TEOS) and phosphosilicate glass (PSG), but is not limited thereto. The interlayer dielectric layer 16 may also be composed of a BPSG, a low-k material, and a stress material such as a tensile layer may be selectively interposed between the interlayer dielectric layer 16 and the MOS transistor 14. A stress or tensile stress tantalum nitride material, an etch stop layer such as a tantalum nitride material, a liner such as a thin oxide layer, or a combination thereof.

接著進行一圖案轉移製程,例如先利用一圖案化光阻層(圖未示)當作遮罩於層間介電層16中蝕刻出至少一接觸洞18,然後形成一由鎢所構成的導電材料在層間介電層16表面並填滿接觸洞18,使填滿接觸洞18的導電材料連接金氧 半導體電晶體14並於層間介電層16上形成一導電層20,如第2圖所示。其中,在形成導電層20之前亦可先選擇性形成一由鉭(Ta)、氮化鉭(tantalum,TaN)、鈦(Ti)、氮化鈦(TiN)或其組合所構成之黏著層(adhesive layer)。導電層20之導電材料可為W以外的其他導電材料如鋁、銅、或其合金。Then, a pattern transfer process is performed. For example, a patterned photoresist layer (not shown) is used as a mask to etch at least one contact hole 18 in the interlayer dielectric layer 16, and then a conductive material composed of tungsten is formed. The contact hole 18 is filled on the surface of the interlayer dielectric layer 16 to connect the conductive material filling the contact hole 18 to the gold oxide. The semiconductor transistor 14 is formed with a conductive layer 20 on the interlayer dielectric layer 16, as shown in FIG. Wherein, before the formation of the conductive layer 20, an adhesive layer composed of tantalum (Ta), tantalum (Tatan), titanium (Ti), titanium nitride (TiN) or a combination thereof may be selectively formed ( Adhesive layer). The conductive material of the conductive layer 20 may be other conductive materials other than W such as aluminum, copper, or alloys thereof.

如第3圖所示,隨後進行另一圖案轉移製程,例如形成另一圖案化光阻層(圖未示)在導電層20表面,然後以此圖案化光阻層當作遮罩進行單次或多次蝕刻製程,以於導電層20、層間介電層16以及半導體基底12中形成一穿矽導孔22。As shown in FIG. 3, another pattern transfer process is subsequently performed, for example, another patterned photoresist layer (not shown) is formed on the surface of the conductive layer 20, and then the patterned photoresist layer is used as a mask for a single time. Or a plurality of etching processes to form a via via 22 in the conductive layer 20, the interlayer dielectric layer 16, and the semiconductor substrate 12.

如第4圖所示,隨後形成一絕緣層24在穿矽導孔22的側壁與底部並同時覆蓋導電層20表面。絕緣層24較佳作為後續矽貫通電極與半導體基底12之間的隔絕,使矽貫通電極與半導體基底12不至直接導通。在本實施例中,絕緣層24可包含氧化物或氮化物等絕緣材料,且可由單層或複合材料層所組成。As shown in FIG. 4, an insulating layer 24 is then formed to penetrate the sidewalls and the bottom of the via 22 while covering the surface of the conductive layer 20. The insulating layer 24 is preferably used as a barrier between the subsequent tantalum through electrode and the semiconductor substrate 12 so that the through electrode and the semiconductor substrate 12 are not directly electrically connected. In the present embodiment, the insulating layer 24 may comprise an insulating material such as an oxide or a nitride, and may be composed of a single layer or a composite material layer.

接著依序以化學氣相沈積(chemical vapor deposition,CVD)形成一阻障層26與一晶種層28於絕緣層24表面,然後再以電鍍製程形成一由銅所構成的金屬層30於晶種層28表面並填滿整個穿矽導孔22。其中阻障層26可由鉭(Ta)、氮化鉭(tantalum,TaN)、鈦(Ti)、氮化鈦(TiN)或其組合所構 成,其可用來防止金屬層30中的銅離子向外遷移(migration)而擴散至絕緣層24內,而晶種層28則是與金屬層30中的銅離子附著於絕緣層24上,以利後續之銅電鍍製程。應瞭解,金屬層30可為銅以外的其他導電材料,且晶種層28為選擇性存在且其材料會隨著金屬層30而改變。Then, a barrier layer 26 and a seed layer 28 are formed on the surface of the insulating layer 24 by chemical vapor deposition (CVD), and then a metal layer 30 made of copper is formed by electroplating. The layer 28 is surfaced and fills the entire through hole 22 . The barrier layer 26 may be composed of tantalum (Ta), tantalum nitride (TaN), titanium (Ti), titanium nitride (TiN) or a combination thereof. In order to prevent the copper ions in the metal layer 30 from migrating outwardly into the insulating layer 24, the seed layer 28 is attached to the insulating layer 24 with copper ions in the metal layer 30. Follow-up copper plating process. It should be appreciated that the metal layer 30 can be other conductive materials than copper, and the seed layer 28 is selectively present and its material will vary with the metal layer 30.

如第5圖所示,接著利用導電層20當作停止層來進行一平坦化製程,例如以化學機械研磨製程去除部分設於導電層20表面的金屬層30、晶種層28、阻障層26以及絕緣層24,使填充於穿矽導孔22中的金屬層30表面與導電層20齊平並同時暴露出導電層20表面。隨後如第6圖所示,進行另一平坦化製程,例如再以化學機械研磨完全去除導電層20並暴露出設於其下的層間介電層16與設於接觸洞18中的導電材料,以於層間介電層16中同時形成接觸插塞34與本發明較佳實施例的矽貫通電極32。此外,亦可於導電層20上選擇性形成一具有與導電層20不同移除率的停止層,此實施例也屬本發明所涵蓋的範圍。As shown in FIG. 5, a planarization process is then performed using the conductive layer 20 as a stop layer, for example, removing a portion of the metal layer 30, the seed layer 28, and the barrier layer provided on the surface of the conductive layer 20 by a chemical mechanical polishing process. 26 and the insulating layer 24, such that the surface of the metal layer 30 filled in the through-via via 22 is flush with the conductive layer 20 and simultaneously exposes the surface of the conductive layer 20. Then, as shown in FIG. 6, another planarization process is performed, for example, the conductive layer 20 is completely removed by chemical mechanical polishing and the interlayer dielectric layer 16 disposed underneath and the conductive material disposed in the contact hole 18 are exposed. The contact plug 34 and the tantalum through electrode 32 of the preferred embodiment of the present invention are simultaneously formed in the interlayer dielectric layer 16. In addition, a stop layer having a different removal rate from the conductive layer 20 may be selectively formed on the conductive layer 20, and this embodiment is also within the scope of the present invention.

值得注意的是,本發明主要在形成穿矽導孔22前先保留層間介電層16表面的鎢導電層20,然後於後續研磨銅金屬層30的時候先將研磨製程停止在鎢導電層20表面,接著再以另一道研磨製程以現場(in-situ)或非現場方式去除剩餘的鎢導電層20。由於鎢導電層20與設於其下方的層間介電層 16在研磨過程中會分別具有不同的移除率,因此以化學機械研磨製程來去除導電層20的時候可有效控制研磨終點(end point)並進而控制層間介電層16的厚度,使研磨的過程中不至流失過多的層間介電層16而導致厚度不足的問題。It should be noted that the present invention mainly preserves the tungsten conductive layer 20 on the surface of the interlayer dielectric layer 16 before forming the via hole 22, and then stops the polishing process on the tungsten conductive layer 20 after subsequently grinding the copper metal layer 30. The surface, followed by another polishing process, removes the remaining tungsten conductive layer 20 in an in-situ or off-site manner. Due to the tungsten conductive layer 20 and the interlayer dielectric layer disposed therebelow 16 will have different removal rates during the grinding process, so that the removal of the conductive layer 20 by the chemical mechanical polishing process can effectively control the end point of the polishing and thereby control the thickness of the interlayer dielectric layer 16 to make the grinding In the process, too much interlayer dielectric layer 16 is not lost, resulting in a problem of insufficient thickness.

最後於去除導電層20後進行半導體晶片的後段(back-end-of-the-line,BEOL)製程,例如可在層間介電層16與矽貫通電極32上另形成複數個介電層(圖未示)並搭配金屬內連線與接觸墊製程,以完成複數個連接接觸插塞34的金屬內連線結構與接觸墊。Finally, after the conductive layer 20 is removed, a back-end-of-the-line (BEOL) process is performed. For example, a plurality of dielectric layers may be formed on the interlayer dielectric layer 16 and the germanium through electrode 32 (FIG. Not shown) and with a metal interconnect and contact pad process to complete a plurality of metal interconnect structures and contact pads connecting the contact plugs 34.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

12‧‧‧半導體基底12‧‧‧Semiconductor substrate

14‧‧‧金氧半導體電晶體14‧‧‧Gold Oxygen Semiconductor Crystal

16‧‧‧層間介電層16‧‧‧Interlayer dielectric layer

18‧‧‧接觸洞18‧‧‧Contact hole

20‧‧‧導電層20‧‧‧ Conductive layer

22‧‧‧穿矽導孔22‧‧‧Wear through the guide hole

24‧‧‧絕緣層24‧‧‧Insulation

26‧‧‧阻障層26‧‧‧Barrier layer

28‧‧‧晶種層28‧‧‧ seed layer

30‧‧‧金屬層30‧‧‧metal layer

32‧‧‧矽貫通電極32‧‧‧矽through electrode

34‧‧‧接觸插塞34‧‧‧Contact plug

第1圖至第6圖為本發明較佳實施例製作一矽實通電極之方法示意圖。1 to 6 are schematic views showing a method of fabricating a solid electrode according to a preferred embodiment of the present invention.

12...半導體基底12. . . Semiconductor substrate

14...金氧半導體電晶體14. . . Metal oxide semiconductor transistor

16...層間介電層16. . . Interlayer dielectric layer

18...接觸洞18. . . Contact hole

22...穿矽導孔twenty two. . . Through the guide hole

24...絕緣層twenty four. . . Insulation

26...阻障層26. . . Barrier layer

28...晶種層28. . . Seed layer

30...金屬層30. . . Metal layer

32...矽貫通電極32. . .矽through electrode

34...接觸插塞34. . . Contact plug

Claims (12)

一種製作矽貫通電極的方法,包含:提供一半導體基底;形成至少一半導體元件於該半導體基底表面;形成一介電層於該半導體基底上,並覆蓋該半導體元件,且該介電層中具有至少一接觸洞;形成一第一導電層於該介電層上並填滿該接觸洞;進行一蝕刻製程,於該第一導電層、該介電層及該半導體基底中形成一穿矽導孔;填入一第二導電層於該穿矽導孔中並覆蓋部分該第一導電層表面;以及進行一第一平坦化製程,以去除部分該第二導電層直到該第一導電層表面。 A method of fabricating a germanium through electrode, comprising: providing a semiconductor substrate; forming at least one semiconductor component on a surface of the semiconductor substrate; forming a dielectric layer on the semiconductor substrate and covering the semiconductor component, and having the dielectric layer At least one contact hole; forming a first conductive layer on the dielectric layer and filling the contact hole; performing an etching process to form a via guide in the first conductive layer, the dielectric layer and the semiconductor substrate a second conductive layer is filled in the through-via via and covers a portion of the surface of the first conductive layer; and a first planarization process is performed to remove a portion of the second conductive layer until the surface of the first conductive layer . 如申請專利範圍第1項所述之方法,其中填入該第二導電層之前另包含形成一絕緣層於該第一導電層表面與該穿矽導孔之側壁及底部。 The method of claim 1, wherein before the filling the second conductive layer, an insulating layer is formed on the surface of the first conductive layer and the sidewalls and the bottom of the through-via. 如申請專利範圍第2項所述之方法,其中該第一平坦化製程另包含去除部分該第二導電層及部分該絕緣層直至該第一導電層表面。 The method of claim 2, wherein the first planarization process further comprises removing a portion of the second conductive layer and a portion of the insulating layer up to a surface of the first conductive layer. 如申請專利範圍第2項所述之方法,其中填入該第二導電層之前另包含形成一阻障層於該絕緣層表面。 The method of claim 2, wherein the filling of the second conductive layer further comprises forming a barrier layer on the surface of the insulating layer. 如申請專利範圍第4項所述之方法,其中該阻障層選自鉭(Ta)、氮化鉭(tantalum,TaN)、鈦(Ti)、氮化鈦(TiN)或其組合。 The method of claim 4, wherein the barrier layer is selected from the group consisting of tantalum (Ta), tantalum (TaN), titanium (Ti), titanium nitride (TiN), or combinations thereof. 如申請專利範圍第4項所述之方法,其中填入該第二導電層之前另包含形成一晶種層於該阻障層表面。 The method of claim 4, wherein the filling of the second conductive layer further comprises forming a seed layer on the surface of the barrier layer. 如申請專利範圍第1項所述之方法,其中該第一平坦化製程包含一化學機械研磨製程。 The method of claim 1, wherein the first planarization process comprises a chemical mechanical polishing process. 如申請專利範圍第1項所述之方法,其中進行該第一平坦化製程之後另包含進行一第二平坦化製程以去除該第一導電層,以於該接觸洞中形成一接觸插塞連接該半導體元件。 The method of claim 1, wherein the performing the first planarization process further comprises performing a second planarization process to remove the first conductive layer to form a contact plug connection in the contact hole. The semiconductor component. 如申請專利範圍第8項所述之方法,其中該第二平坦化製程包含一化學機械研磨製程。 The method of claim 8, wherein the second planarization process comprises a chemical mechanical polishing process. 如申請專利範圍第8項所述之方法,其中該第一導電層及該接觸插塞包含鎢。 The method of claim 8, wherein the first conductive layer and the contact plug comprise tungsten. 如申請專利範圍第1項所述之方法,其中該第二導電層包含銅。 The method of claim 1, wherein the second conductive layer comprises copper. 如申請專利範圍第1項所述之方法,其中該半導體元件包含互補型金氧半導體電晶體。 The method of claim 1, wherein the semiconductor component comprises a complementary MOS transistor.
TW098120407A 2009-06-18 2009-06-18 Method for fabricating through-silicon via structure TWI459507B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098120407A TWI459507B (en) 2009-06-18 2009-06-18 Method for fabricating through-silicon via structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098120407A TWI459507B (en) 2009-06-18 2009-06-18 Method for fabricating through-silicon via structure

Publications (2)

Publication Number Publication Date
TW201101424A TW201101424A (en) 2011-01-01
TWI459507B true TWI459507B (en) 2014-11-01

Family

ID=44837013

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098120407A TWI459507B (en) 2009-06-18 2009-06-18 Method for fabricating through-silicon via structure

Country Status (1)

Country Link
TW (1) TWI459507B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW291576B (en) * 1992-02-26 1996-11-21 Ibm
TW200741965A (en) * 2006-01-17 2007-11-01 Ibm Method for direct electroplating of copper onto a non-copper plateable layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW291576B (en) * 1992-02-26 1996-11-21 Ibm
TW200741965A (en) * 2006-01-17 2007-11-01 Ibm Method for direct electroplating of copper onto a non-copper plateable layer

Also Published As

Publication number Publication date
TW201101424A (en) 2011-01-01

Similar Documents

Publication Publication Date Title
US8202766B2 (en) Method for fabricating through-silicon via structure
US9824973B2 (en) Integrated circuit devices having through-silicon via structures and methods of manufacturing the same
US8816491B2 (en) Stacked integrated chips and methods of fabrication thereof
US8742583B2 (en) Seal ring in an integrated circuit die
US8481425B2 (en) Method for fabricating through-silicon via structure
US8609506B2 (en) On-chip heat spreader
US20100164062A1 (en) Method of manufacturing through-silicon-via and through-silicon-via structure
US9691733B1 (en) Bonded semiconductor structure and method for forming the same
TWI532136B (en) Semiconductor device and method of fabricating the same
JP2010045371A (en) Through-silicon-via structure including conductive protective film, and method of forming the same
TWI602273B (en) Semiconductor device
US9984926B2 (en) Solution for TSV substrate leakage
JP2014517547A (en) Integrated circuit structure, integrated circuit, and method of forming a robust TSV structure
TWI649815B (en) Multiple impact processes for joining
US10504821B2 (en) Through-silicon via structure
TW202310186A (en) Three-dimensional device structure
US20130140688A1 (en) Through Silicon Via and Method of Manufacturing the Same
US11315904B2 (en) Semiconductor assembly and method of manufacturing the same
US20130200519A1 (en) Through silicon via structure and method of fabricating the same
US9412653B2 (en) Through silicon via (TSV) process
TWI459507B (en) Method for fabricating through-silicon via structure
CN112530899A (en) Semiconductor device and method for manufacturing the same
CN113644039A (en) Semiconductor structure and forming method thereof
TWI502716B (en) Method for fabricating through-silicon via structure
US20230070532A1 (en) Semiconductor device, semiconductor package and method of manufacturing the same