TWI455138B - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device Download PDF

Info

Publication number
TWI455138B
TWI455138B TW100120717A TW100120717A TWI455138B TW I455138 B TWI455138 B TW I455138B TW 100120717 A TW100120717 A TW 100120717A TW 100120717 A TW100120717 A TW 100120717A TW I455138 B TWI455138 B TW I455138B
Authority
TW
Taiwan
Prior art keywords
layer
memory device
gate
semiconductor memory
volatile semiconductor
Prior art date
Application number
TW100120717A
Other languages
Chinese (zh)
Other versions
TW201250694A (en
Inventor
Horng Chih Lin
Zer Ming Lin
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW100120717A priority Critical patent/TWI455138B/en
Publication of TW201250694A publication Critical patent/TW201250694A/en
Application granted granted Critical
Publication of TWI455138B publication Critical patent/TWI455138B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

非揮發性半導體記憶體裝置Non-volatile semiconductor memory device

本發明係有關一種非揮發性半導體記憶體裝置,特別是指一種具有共用背閘極的雙閘極之非揮發性半導體記憶體裝置。The present invention relates to a non-volatile semiconductor memory device, and more particularly to a non-volatile semiconductor memory device having a dual gate sharing a back gate.

隨著時代的進步,大量電器或電子產品已經是生活不可或缺的輔助工具,這些產品基本架構是都須要微處理器來執行運算功能,而一個微處理器又通常伴隨多個記憶體使用,這些記憶體負責儲存微處理器運算時所需的程式碼或者儲存使用者的資料。微處理器所需要的程式以及需要永久保存的資料,則必須存放在非揮發性記憶體(Non Volatile Memory,NVM)或稱為唯讀記憶體(Read Only Memory)中。此類記憶體在電源中斷後資料仍得以繼續保存,例如應用於資料儲存的快閃記憶體,以反及閘(NAND)結構為例,其體積小、耐震;省電及存取速度快,進而成為近年來最受矚目的記憶體元件,並且廣泛應用於電子、電腦以及通訊產品中。With the advancement of the times, a large number of electrical or electronic products have become an indispensable auxiliary tool for life. The basic architecture of these products requires a microprocessor to perform computing functions, and a microprocessor is usually used with multiple memories. These memories are responsible for storing the code required for microprocessor operations or for storing user data. The programs required by the microprocessor and the data that needs to be permanently saved must be stored in Non Volatile Memory (NVM) or Read Only Memory. In this type of memory, the data can be saved after the power interruption. For example, the flash memory used for data storage is exemplified by a reverse NAND structure, which is small in size and shock-resistant; and has low power saving and fast access speed. It has become the most watched memory component in recent years and is widely used in electronics, computers, and communication products.

如第1圖所示,傳統的快閃記憶體裝置包括配置有複數個快閃記憶體單元10之控制閘極12與源極/汲極之半導體層14,兩者之間沈積有一電荷儲存層16。讀取時,常受限於低的讀取電流,除了施加讀取偏壓於欲讀取單元(cell)的控制閘極12上,為減低寄生電阻,必須施加一相當大的讀取通過電壓(Vread-pass)於同一列快閃記憶體單元10的控制閘極12;如此一來,易造成嚴重的讀取干擾(read disturb)。針對此問題,有人提出獨立雙閘元件結構來加以改善,如圖一所示,於半導體層14之另一側製作對應每一控制閘極12的獨立背閘極18,使控制閘極12與背閘極18為一對一配置結構,運作時,除了施加讀取偏壓於欲讀取單元(cell)的控制閘極12上,同時可將讀取通過電壓施加於相對應的背閘極18上,以避免讀取干擾。但此結構的製作步驟相對複雜甚多,包括兩獨立閘極間存在微影時互相對準的問題,造成製程上的困難度,在實際量產時相當不易達成,且價格相當的昂貴。As shown in FIG. 1, a conventional flash memory device includes a control gate 12 and a source/drain semiconductor layer 14 configured with a plurality of flash memory cells 10, and a charge storage layer is deposited therebetween. 16. When reading, it is often limited by a low read current. In addition to applying a read bias to the control gate 12 of the cell to be read, in order to reduce the parasitic resistance, a relatively large read pass voltage must be applied. (Vread-pass) in the same column of the control gate 12 of the flash memory cell 10; as a result, it is easy to cause serious read disturb. In response to this problem, an independent double gate element structure has been proposed for improvement. As shown in FIG. 1, an independent back gate 18 corresponding to each control gate 12 is formed on the other side of the semiconductor layer 14, so that the control gate 12 is The back gate 18 has a one-to-one configuration. In operation, in addition to applying a read bias voltage to the control gate 12 of the cell to be read, a read pass voltage can be applied to the corresponding back gate. 18 to avoid reading interference. However, the fabrication steps of this structure are relatively complicated, including the problem of mutual alignment when there are lithography between the two independent gates, which causes difficulty in the process, which is quite difficult to achieve in actual mass production, and the price is quite expensive.

有鑑於此,本發明遂針對上述先前技術之缺失,提出一種非揮發性半導體記憶體裝置,以有效克服上述之該等問題。In view of the above, the present invention has been directed to the absence of the prior art described above, and proposes a non-volatile semiconductor memory device to effectively overcome the above problems.

本發明之主要目的在提供一種非揮發性半導體記憶體裝置,其有效改善短通道效應(Short Channel Effect),有利於元件的微縮,亦可有效的消除讀取干擾(read-pass disturb)的問題。The main object of the present invention is to provide a non-volatile semiconductor memory device which can effectively improve the short channel effect, facilitate the miniaturization of components, and effectively eliminate the problem of read-pass disturb. .

本發明之次要目的在提供一種非揮發性半導體記憶體裝置,可將雙閘極記憶元件利用堆疊方式增加儲存容量,可因應市場需求,極具產業競爭優勢。A secondary object of the present invention is to provide a non-volatile semiconductor memory device that can increase the storage capacity by using a double-gate memory element in a stacked manner, which is highly competitive in the industry in response to market demands.

本發明之另一目的在提供一種非揮發性半導體記憶體裝置,可藉著施加寫入或抹除導通電壓於共用閘,可以有效提升電荷穿隧進電荷存取層的效率,進而提升非揮發性記憶體的寫入/移除效率。Another object of the present invention is to provide a non-volatile semiconductor memory device which can effectively increase the efficiency of charge tunneling into the charge access layer by applying write or erase conduction voltage to the common gate, thereby improving non-volatile Write/removal efficiency of sexual memory.

本發明之再一目的在提供一種非揮發性半導體記憶體裝置,使用低溫多晶矽薄膜電晶體(poly-Si TFT)製程製造,可有效應用於三維製程整合(monolithic 3-D integration)之上,可大量提升非揮發性記憶體的元件密度。Still another object of the present invention is to provide a non-volatile semiconductor memory device fabricated using a low-temperature polysilicon film (poly-Si TFT) process, which can be effectively applied to monolithic 3-D integration. A large increase in component density of non-volatile memory.

本發明之又一目的在提供一種非揮發性半導體記憶體裝置,使用共用背閘極的獨立雙閘極,可解決先前獨立雙閘極元件結構技術對準不易的問題。It is still another object of the present invention to provide a non-volatile semiconductor memory device that uses a separate dual gate that shares a back gate to solve the problem of poor alignment of prior independent dual gate devices.

為達上述之目的,本發明提供一種非揮發性半導體記憶體裝置,適用於製作具有獨立雙閘極的反及閘(NAND)矽-氧化矽-氮化矽-氧化矽-矽(Silicon-Oxide-Nitride-Oxide Silicon,SONOS)記憶體元件或反及閘金屬-氧化層-氮化層-氧化層-矽(Metal Oxide Nitride Oxide Silicon,MONOS)記憶體元件的結構,非揮發性半導體記憶體裝置包括一第一半導體通道層,包含相對之一第一表面及一第二表面,於第一表面上沈積一具有儲存電荷的第一介面層;將複數個第一閘極間隔設置於第一介面層上;再將不具電荷存取之一第二介面層設置於第二表面上;一第二閘極位於第二介面層上,作為此些第一閘極之共用閘,故不需要考慮製作第二閘極時要對準每一個第一閘極的問題,又可作為獨立雙閘極使用;其中,上述元件係設置於一具有絕緣層的基板上。To achieve the above object, the present invention provides a non-volatile semiconductor memory device suitable for fabricating a NAND 矽-矽 矽-矽 矽-矽 矽-矽 (Silicon-Oxide) having an independent double gate. -Nitride-Oxide Silicon,SONOS) Memory Element or Structure of Metal Oxide Nitride Oxide Silicon (MONOS) Memory Element, Non-volatile Semiconductor Memory Device The first semiconductor channel layer includes a first surface and a second surface, and a first interface layer having a stored charge is deposited on the first surface; and the plurality of first gates are spaced apart from the first interface a second interface layer having no charge access is disposed on the second surface; a second gate is located on the second interface layer as a common gate of the first gates, so no need to consider making The second gate is aligned with each of the first gates and can be used as a separate double gate; wherein the components are disposed on a substrate having an insulating layer.

本發明提供另一種非揮發性半導體記憶體裝置,適用於製作三維結構之非揮發性半導體記憶體裝置,包括一呈管狀之第一半導體通道層,其包含外側的第一表面及內側的第二表面,將具有儲存電荷能力之一第一介面層形成於第一表面上,一第二介面層係形成於第二表面上,即可形成一中空體;接續將複數個第一閘極係間隔設置於第一介面層上,使此些第一閘極位於中空體的外側;一第二閘極係位於第二介面層上,使第二閘極位於中空體的內側,並作為此些第一閘極之共用閘,如此一來,即可製作出三維結構之非揮發性半導體記憶體裝置。The present invention provides another non-volatile semiconductor memory device suitable for fabricating a three-dimensional structure of a non-volatile semiconductor memory device, comprising a tubular first semiconductor channel layer comprising a first outer surface and a second inner side a surface, a first interface layer having a charge storage capability is formed on the first surface, and a second interface layer is formed on the second surface to form a hollow body; and the plurality of first gate lines are successively spaced Provided on the first interface layer such that the first gates are located outside the hollow body; a second gate is located on the second interface layer, such that the second gate is located inside the hollow body, and as such A common gate of a gate, in this way, a three-dimensional structure of the non-volatile semiconductor memory device can be fabricated.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。The purpose, technical content, features and effects achieved by the present invention will be more readily understood by the detailed description of the embodiments.

近年來,非揮發性記憶體之半導體記憶體元件的發展與應用上,所扮演的角色是越來越重要,因具有非揮發性、高積集度、快速寫入/讀取/抹除及低消耗功率等優點,隨著可攜式產品例如筆記型電腦、數位相機、手機、隨身碟、數位電子產品的記憶卡或固態硬碟等的普及化,逐漸成為市場應用的主流,但是目前非揮發性記憶體於製程仍有一些無法克服之困難度,因此,本發明提供一種新穎的非揮發性半導體記憶體裝置,除了可因應市場需求,又可克服先前技術之製程缺失。In recent years, the role of the development and application of non-volatile memory semiconductor memory components has become increasingly important due to non-volatility, high integration, fast write/read/erase and The advantages of low power consumption, etc., with the popularization of portable products such as notebook computers, digital cameras, mobile phones, flash drives, digital electronic memory cards or solid state drives, have gradually become the mainstream of market applications, but currently non- Volatile memory still has some insurmountable difficulties in the process. Therefore, the present invention provides a novel non-volatile semiconductor memory device, which can overcome the prior art process defects in addition to the market demand.

如第2圖所示,為本發明之第一實施例示意圖,非揮發性半導體記憶體裝置包括一第一半導體通道層20,例如單晶矽層或多晶矽層,包含相對之一第一表面22及一第二表面24。於第一表面22上設置一第一介面層26,第一介面層26可由一氧化矽28、一氮化矽30、一氧化矽32(Oxide-Nitride-Oxide,ONO)依序堆疊而成之電荷儲存介電層,由於氮化矽具有較深層的陷阱能階,而使得穿隧氧化層具有微縮的可能性,故有利於元件的微縮以及有效改善短通道效應,因此本發明使用的第一介面層26以ONO電荷儲存介電層為例說明,當然,亦可使用由一氧化矽、一多晶矽、一氧化矽(Oxide-Poly Silcon-Oxide)依序堆疊而成之電荷儲存介電層。複數個第一閘極34係間隔設置於第一介面層26上。於第一半導體通道層20之第二表面24設置一第二介面層36,例如氧化矽層,再於第二介面層36設置一第二閘極38,作為此複數個第一閘極34之共用閘。As shown in FIG. 2, a schematic view of a first embodiment of the present invention, the non-volatile semiconductor memory device includes a first semiconductor channel layer 20, such as a single crystal germanium layer or a polysilicon layer, including a first one of the first surfaces 22 And a second surface 24. A first interface layer 26 is disposed on the first surface 22, and the first interface layer 26 is sequentially stacked by using a hafnium oxide 28, a tantalum nitride 30, and an Oxide-Nitride-Oxide (ONO) layer. The charge storage dielectric layer, since the tantalum nitride has a deeper trap level, so that the tunneling oxide layer has a possibility of miniaturization, thereby facilitating the miniaturization of the element and effectively improving the short channel effect, so the first use of the present invention The interface layer 26 is exemplified by an ONO charge storage dielectric layer. Of course, a charge storage dielectric layer formed by sequentially stacking yttrium oxide, polycrystalline germanium, or osmium oxide (Oxide-Poly Silcon-Oxide) may also be used. A plurality of first gates 34 are spaced apart from each other on the first interface layer 26. A second interface layer 36 is disposed on the second surface 24 of the first semiconductor channel layer 20, such as a ruthenium oxide layer, and a second gate 38 is disposed on the second interface layer 36 as the plurality of first gates 34. Shared gate.

其中,每一第一閘極34可獨立施加一偏壓,第二閘極38之導通電壓係提供此些第一閘極34之共用輔助電壓。舉例來說,於寫入或抹除時,施加負偏壓於選擇寫入或抹除的第一閘極34上,此時其他第一閘極34是保持浮動或低電壓狀態,再施加一適當的導通電壓於第二閘極38上,協助加速半導體通道層20中的電荷在量子穿隧機制下進入氮化矽30中,而氧化矽28、32可將電荷包覆於氮化矽30中,如此即可完成二位元的操作。換言之,本發明只要施加寫入或抹除導通電壓於第二閘極38(共用閘),再加上使用具較低的寫入/抹除電壓特性的ONO之電荷儲存介電層,故可有效提升電荷穿隧進電荷存取層的效率,進而提升非揮發性記憶體的寫入或抹移除效率。於讀取時,可施加正偏壓於選擇讀取的第一閘極34上,此時其他第一閘極34是保持浮動或低電壓狀態,再施加導通電壓於第二閘極38上,藉由判斷導通電壓的位準以讀取資料。因此,可改善單個閘極記憶體元件之讀取干擾問題。Each of the first gates 34 can independently apply a bias voltage, and the turn-on voltage of the second gates 38 provides a common auxiliary voltage of the first gates 34. For example, during writing or erasing, a negative bias voltage is applied to the first gate 34 for selective writing or erasing, and at this time, the other first gates 34 are kept in a floating or low voltage state, and then one is applied. A suitable turn-on voltage is applied to the second gate 38 to assist in accelerating charge in the semiconductor channel layer 20 into the tantalum nitride 30 under a quantum tunneling mechanism, and the tantalum oxide 28, 32 can coat the charge on the tantalum nitride 30. In this way, the two-bit operation can be completed. In other words, the present invention only needs to apply a write or erase conduction voltage to the second gate 38 (common gate), and a charge storage dielectric layer using an ONO having a lower write/erase voltage characteristic. Effectively increase the efficiency of charge tunneling into the charge access layer, thereby improving the write or erase removal efficiency of the non-volatile memory. During reading, a positive bias may be applied to the first gate 34 that is selectively read. At this time, the other first gates 34 are maintained in a floating or low voltage state, and then a turn-on voltage is applied to the second gate 38. The data is read by judging the level of the turn-on voltage. Therefore, the read disturb problem of a single gate memory element can be improved.

其中,特別要說明的是,先前技術製作的獨立雙閘極(控制閘極與背閘極)記憶體元件,存在微影時互相對準的問題,造成製程上的困難度,在實際量產時相當不易達成,且價格相當的昂貴;而本發明是將先前技術使用複數個背閘極全部相連接,也就是說製作一整層第二閘極38作為複數個第一閘極34的共用閘,如此即可解決獨立雙閘極互相對準之困難度。此外,非揮發性半導體記憶體裝置之製作方法,可由下而上依序沈積第二閘極38、第二介面層36、第一半導體通道層20、第一介面層26及複數個第一閘極34而成。上述的實施例中,未提及對半導體通道層所進行的摻雜(doping)步驟,但是若有需要,可摻雜該半導體通道層使之達到一最佳的摻質濃度;或更可執行一進行自我對準離子佈植之步驟,將摻質以離子型態植入第一半導體通道層20的特定區域上,例如源極與汲極,以獲得精確 的電子特性。由於製作非揮發性半導體記憶體裝置之方法多如繁星,故本發明不侷限於製作方法,在此僅舉例說明本發明的結構於製程上較佳的製作流程。Among them, it is particularly important to note that the independent dual gate (control gate and back gate) memory components fabricated by the prior art have problems of mutual alignment in the presence of lithography, which causes difficulty in the process and is actually mass-produced. The time is quite difficult to achieve, and the price is quite expensive; and the present invention connects the prior art using a plurality of back gates, that is, a whole layer of the second gate 38 is used as a common to the plurality of first gates 34. The gate can solve the difficulty of the mutual alignment of the independent double gates. In addition, the non-volatile semiconductor memory device can be formed by sequentially depositing the second gate 38, the second interface layer 36, the first semiconductor channel layer 20, the first interface layer 26, and the plurality of first gates from bottom to top. Extremely 34. In the above embodiments, the doping step performed on the semiconductor channel layer is not mentioned, but if necessary, the semiconductor channel layer may be doped to achieve an optimum dopant concentration; or more executable A step of self-aligning ion implantation is performed to implant the dopant into a specific region of the first semiconductor channel layer 20, such as a source and a drain, in an ionic state to obtain an accurate Electronic characteristics. Since the method of fabricating the non-volatile semiconductor memory device is much like a star, the present invention is not limited to the fabrication method, and only the preferred fabrication process of the structure of the present invention in the process is exemplified herein.

本發明除了具有高密度及高資料保存能力之外,更可製作增加儲存資料容量之結構,假設第一實施例之結構可製作出64G容量的記憶體,只要再堆疊至少一層相同結構及容量的記憶體元件,即可製作出128G容量的記憶體晶片,甚至更大容量的記憶體晶片。舉例來說,請同時參閱第2圖及第3圖,第3圖為本發明之第二實施例示意圖,只要在此些第一閘極34上設有至少一第三介電層40,例如氧化矽層,再利用化學機械研磨(Chemical-Mechanical Polishing,CMP)進行研磨第三介電層40於微影製程中所產生的高低差,達到全面性的平坦化。後續再將第三介電層40上設置至少一第一堆疊記憶體單元42,其中第一堆疊記憶體單元42係包含由下至上依序沈積的第三閘極44、第四介面層(如氧化矽層)46、第二半導體通道層48、第五介面層(如ONO的電荷儲存介電層)50及間隔設置於第五介面層50上之複數個第四閘極52,第三閘極44連接第三介電層40;其中,第三閘極44作為此些第四閘極52之共用閘。值得注意的是,第一堆疊記憶體單元42之組成結構與第一實施例之結構相同,因此將相同的記憶體結構如上述方式以此類推的堆疊,即可獲得大容量的非揮發性半導體記憶體裝置,進而能克服目前無法製作大容量非揮發性記憶體元件的困難度,使本發明之進步性得以突顯。In addition to having high density and high data retention capability, the present invention can also be configured to increase the storage data capacity. It is assumed that the structure of the first embodiment can produce a memory of 64 G capacity, as long as at least one layer of the same structure and capacity is stacked. With memory components, you can create 128G-capacity memory chips and even larger-capacity memory chips. For example, please refer to FIG. 2 and FIG. 3 at the same time. FIG. 3 is a schematic view of a second embodiment of the present invention, as long as at least one third dielectric layer 40 is disposed on the first gates 34, for example. The ruthenium oxide layer is further subjected to chemical-mechanical polishing (CMP) to polish the height difference generated by the third dielectric layer 40 in the lithography process to achieve comprehensive planarization. Subsequently, at least one first stacked memory unit 42 is disposed on the third dielectric layer 40, wherein the first stacked memory unit 42 includes a third gate 44 and a fourth interface layer sequentially deposited from bottom to top (eg, a yttrium oxide layer 46, a second semiconductor channel layer 48, a fifth interface layer (such as a charge storage dielectric layer of the ONO) 50, and a plurality of fourth gates 52 disposed on the fifth interface layer 50, the third gate The pole 44 is connected to the third dielectric layer 40; wherein the third gate 44 serves as a common gate of the fourth gates 52. It should be noted that the structure of the first stacked memory unit 42 is the same as that of the first embodiment, so that the same memory structure can be stacked in the same manner as described above to obtain a large-capacity non-volatile semiconductor. The memory device, in turn, overcomes the difficulty of making large-capacity non-volatile memory components at present, and the progress of the present invention is highlighted.

除了上述製作增加儲存資料容量之結構方式之外,請同時參閱第3圖及第4圖,第4圖為本發明之第三實施例示意圖,非揮發性半導體記憶體裝置更包括一基板54及位於基板54上之一第六介電層56,於第六介電層56上依序設有複數個第一閘極34、第一介面層(如ONO的電荷儲存介電層)26、第一半導體通道層20、第二介面層36及第二閘極38;再於第二閘極38上依序設有第七介電層(如氧化矽層)58、第三半導體通道層60、第八介電層(如ONO的電荷儲存介電層)62、間隔設置於第八介電層62上之複數個第五閘極64,以在基板54上形成一第二記憶體堆疊單元66。值得注意的是,第二閘極38是作為此些第一閘極34及此些第五閘極64之共用閘,相較於第二實施例,可省略一層共用閘,不僅能利用堆疊方式製作倍增的記憶體容量,又可達到簡化製程的優點。再者,第二記憶體堆疊單元66上可再堆疊至少另一第二記憶體堆疊單元,堆疊的數量可依需求而決定。In addition to the above-mentioned structure for increasing the storage capacity, please refer to FIG. 3 and FIG. 4 simultaneously. FIG. 4 is a schematic view of a third embodiment of the present invention. The non-volatile semiconductor memory device further includes a substrate 54 and A sixth dielectric layer 56 is disposed on the substrate 54 , and a plurality of first gates 34 and a first interface layer (eg, a charge storage dielectric layer of the ONO) are sequentially disposed on the sixth dielectric layer 56 . a semiconductor channel layer 20, a second interface layer 36 and a second gate 38; and a second dielectric layer (such as a hafnium oxide layer) 58 and a third semiconductor channel layer 60 are sequentially disposed on the second gate 38. An eighth dielectric layer (such as a charge storage dielectric layer of the ONO) 62, and a plurality of fifth gates 64 spaced apart from the eighth dielectric layer 62 to form a second memory stacking unit 66 on the substrate 54. . It should be noted that the second gate 38 is a common gate of the first gates 34 and the fifth gates 64. Compared with the second embodiment, a common gate can be omitted, and not only the stacking manner can be utilized. By making double the memory capacity, the advantages of the simplified process can be achieved. Furthermore, at least another second memory stacking unit can be stacked on the second memory stacking unit 66, and the number of stacks can be determined according to requirements.

此外,本發明更可製作三維結構之非揮發性半導體記憶體裝置,請同時參閱第2圖及第5圖,第5圖為本發明之第四實施例示意圖。非揮發性半導體記憶體裝置包括由外至內依序沈積第一介面層(如ONO的電荷儲存介電層)26、第一半導體通道層20及第二介面層36形成一中空體68,例如圓柱體,將複數個第一閘極以串列方式上下間隔設置於第一介面層26之外側;第二閘極38係位於中空體68之內側,據以形成一三維結構之非揮發性半導體記憶體裝置。其中,第二閘極38是作為此些第一閘極34之共用閘,因此可改善先前技術製作獨立雙閘極元件的製程複雜度,又可提升三維結構量產的可行性,故極具應用潛力。In addition, the present invention can also produce a non-volatile semiconductor memory device having a three-dimensional structure. Please refer to FIG. 2 and FIG. 5 at the same time. FIG. 5 is a schematic view of a fourth embodiment of the present invention. The non-volatile semiconductor memory device includes a first interface layer (such as a charge storage dielectric layer of ONO) 26, a first semiconductor channel layer 20 and a second interface layer 36 formed in a hollow body 68, for example, from outside to inside. In the cylinder, a plurality of first gates are arranged in a series on the outer side of the first interface layer 26; the second gate 38 is located on the inner side of the hollow body 68 to form a three-dimensional structure of the non-volatile semiconductor. Memory device. Wherein, the second gate 38 is a common gate of the first gates 34, thereby improving the process complexity of the prior art fabrication of the independent double gate components, and improving the feasibility of mass production of the three-dimensional structure. Application potential.

唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Therefore, any changes or modifications of the features and spirits of the present invention should be included in the scope of the present invention.

10...快閃記憶體單元10. . . Flash memory unit

12...控制閘極12. . . Control gate

14...半導體層14. . . Semiconductor layer

16...電荷儲存層16. . . Charge storage layer

18...背閘極18. . . Back gate

20...第一半導體通道層20. . . First semiconductor channel layer

22...第一表面twenty two. . . First surface

24...第二表面twenty four. . . Second surface

26...第一介面層26. . . First interface layer

28...氧化矽28. . . Yttrium oxide

30...氮化矽30. . . Tantalum nitride

32...氧化矽32. . . Yttrium oxide

34...第一閘極34. . . First gate

36...第二介面層36. . . Second interface layer

38‧‧‧第二閘極38‧‧‧second gate

40‧‧‧第三介電層40‧‧‧ Third dielectric layer

42‧‧‧第一堆疊記憶體單元42‧‧‧First stacked memory unit

44‧‧‧第三閘極44‧‧‧third gate

46‧‧‧第四介面層46‧‧‧Fourth interface layer

48‧‧‧第二半導體通道層48‧‧‧Second semiconductor channel layer

50‧‧‧第五介面層50‧‧‧ fifth interface layer

52‧‧‧第四閘極52‧‧‧fourth gate

54‧‧‧基板54‧‧‧Substrate

56‧‧‧第六介電層56‧‧‧ sixth dielectric layer

58‧‧‧第七介電層58‧‧‧ seventh dielectric layer

60‧‧‧第三半導體通道層60‧‧‧ third semiconductor channel layer

62‧‧‧第八介電層62‧‧‧ eighth dielectric layer

64‧‧‧第五閘極64‧‧‧ fifth gate

66‧‧‧第二記憶體堆疊單元66‧‧‧Second memory stacking unit

68‧‧‧中空體68‧‧‧ hollow body

第1圖為先前技術之快閃記憶體裝置示意圖。Figure 1 is a schematic diagram of a prior art flash memory device.

第2圖為本發明之第一實施例之結構示意圖。Figure 2 is a schematic view showing the structure of the first embodiment of the present invention.

第3圖為本發明之第二實施例之結構示意圖。Figure 3 is a schematic view showing the structure of a second embodiment of the present invention.

第4圖為本發明之第三實施例之結構示意圖。Figure 4 is a schematic view showing the structure of a third embodiment of the present invention.

第5圖為本發明之第四實施例之三維立體示意圖。Fig. 5 is a three-dimensional perspective view showing a fourth embodiment of the present invention.

20...第一半導體通道層20. . . First semiconductor channel layer

22...第一表面twenty two. . . First surface

24...第二表面twenty four. . . Second surface

26...第一介面層26. . . First interface layer

28...氧化矽28. . . Yttrium oxide

30...氮化矽30. . . Tantalum nitride

32...氧化矽32. . . Yttrium oxide

34...第一閘極34. . . First gate

36...第二介面層36. . . Second interface layer

38...第二閘極38. . . Second gate

Claims (16)

一種非揮發性半導體記憶體裝置,包括:一第一半導體通道層,包含相對之一第一表面及一第二表面;一第一介面層,係位於該第一表面上;複數個第一閘極,係間隔設置於該第一介面層上;一第二介面層,係位於該第二表面上;及一第二閘極,係位於該第二介面層上,作為該些第一閘極之共用閘。 A non-volatile semiconductor memory device includes: a first semiconductor channel layer including a first surface and a second surface; a first interface layer on the first surface; a plurality of first gates a second interface layer is disposed on the second surface; and a second gate is disposed on the second interface layer as the first gate Shared brake. 如請求項1所述非揮發性半導體記憶體裝置,其中該每一該第一閘極可獨立施加一偏壓,該第二閘極之導通電壓係提供該些第一閘極之共用輔助電壓。 The non-volatile semiconductor memory device of claim 1, wherein each of the first gates can independently apply a bias voltage, and the turn-on voltage of the second gate provides a common auxiliary voltage of the first gates. . 如請求項1所述非揮發性半導體記憶體裝置,其中該第一半導體通道層為一單晶矽層或一多晶矽層。 The non-volatile semiconductor memory device of claim 1, wherein the first semiconductor channel layer is a single crystal germanium layer or a poly germanium layer. 如請求項1所述非揮發性半導體記憶體裝置,其中該第一介面層係由一氧化矽、一氮化矽、一氧化矽依序堆疊而成之電荷儲存介電層。 The non-volatile semiconductor memory device of claim 1, wherein the first interface layer is a charge storage dielectric layer formed by sequentially stacking germanium oxide, germanium nitride, and germanium oxide. 如請求項1所述非揮發性半導體記憶體裝置,其中該第一介面層係由一氧化矽、一多晶矽、一氧化矽依序堆疊而成之電荷儲存介電層。 The non-volatile semiconductor memory device of claim 1, wherein the first interface layer is a charge storage dielectric layer formed by sequentially stacking germanium oxide, polycrystalline germanium, and germanium oxide. 如請求項1所述非揮發性半導體記憶體裝置,其中該第二介面層為一氧化矽層。 The non-volatile semiconductor memory device of claim 1, wherein the second interface layer is a hafnium oxide layer. 如請求項1所述之非揮發性半導體記憶體裝置,其中該些第一閘極上更設有至少一第三介電層,其上設置至少一第一記憶體堆疊單元。 The non-volatile semiconductor memory device of claim 1, wherein the first gates further comprise at least one third dielectric layer on which at least one first memory stacking unit is disposed. 如請求項7所述之非揮發性半導體記憶體裝置,其中該第一記憶體堆疊單元係包含由下至上依序沈積的第三閘極、第四介面層、第二半導體通 道層、具有儲存電荷能力之第五介面層及複數個第四閘極,該第三閘極連接該第三介電層。 The non-volatile semiconductor memory device of claim 7, wherein the first memory stacking unit comprises a third gate, a fourth interface layer, and a second semiconductor pass sequentially deposited from bottom to top. a track layer, a fifth interface layer having a charge storage capability, and a plurality of fourth gates connected to the third dielectric layer. 如請求項1所述之非揮發性半導體記憶體裝置,更包括一基板及位於該基板上之一第六介電層,該第一閘極位於該第六介電層上,該第一閘極上依序設有一第七介電層、一第三半導體通道層、一第八介電層及間隔設置於該第八介電層上之複數個第五閘極,以在該基板上形成一第二記憶體堆疊單元。 The non-volatile semiconductor memory device of claim 1, further comprising a substrate and a sixth dielectric layer on the substrate, the first gate being located on the sixth dielectric layer, the first gate Forming a seventh dielectric layer, a third semiconductor channel layer, an eighth dielectric layer, and a plurality of fifth gates spaced apart from the eighth dielectric layer to form a The second memory stacking unit. 如請求項9所述之非揮發性半導體記憶體裝置,其中該第二記憶體堆疊單元上可設置至少另一該第二記憶體堆疊單元。 The non-volatile semiconductor memory device of claim 9, wherein at least the other of the second memory stacking units is disposed on the second memory stacking unit. 一種非揮發性半導體記憶體裝置,包括:一呈管狀之第一半導體通道層,包含外側的第一表面及內側的第二表面;一第一介面層,係位於該第一表面上;複數個第一閘極,係間隔設置於該第一介面層上,一第二介面層,係位於該第二表面上;及一第二閘極,係位於該第二介面層上,作為該些第一閘極之共用閘。 A non-volatile semiconductor memory device comprising: a tubular first semiconductor channel layer comprising a first outer surface and a second inner surface; a first interface layer on the first surface; a first gate is disposed on the first interface layer, a second interface layer is disposed on the second surface; and a second gate is disposed on the second interface layer as the first gate A common gate of a gate. 如請求項11所述非揮發性半導體記憶體裝置,其中該每一該第一閘極可獨立施加一偏壓,該第二閘極之導通電壓係提供該些第一閘極之共用輔助電壓。 The non-volatile semiconductor memory device of claim 11, wherein each of the first gates can independently apply a bias voltage, and the turn-on voltage of the second gate provides a common auxiliary voltage of the first gates . 如請求項11所述非揮發性半導體記憶體裝置,其中該第一半導體通道層為一單晶矽層或一多晶矽層。 The non-volatile semiconductor memory device of claim 11, wherein the first semiconductor channel layer is a single crystal germanium layer or a poly germanium layer. 如請求項11所述非揮發性半導體記憶體裝置,其中該第一介面層係由一氧化矽、一氮化矽、一氧化矽依序堆疊而成之電荷儲存介電層。 The non-volatile semiconductor memory device of claim 11, wherein the first interface layer is a charge storage dielectric layer formed by sequentially stacking hafnium oxide, hafnium nitride, and hafnium oxide. 如請求項11所述非揮發性半導體記憶體裝置,其中該第一介面層係由一氧化矽、一多晶矽、一氧化矽依序堆疊而成之電荷儲存介電層。 The non-volatile semiconductor memory device of claim 11, wherein the first interface layer is a charge storage dielectric layer formed by sequentially stacking germanium oxide, polysilicon germanium, and germanium oxide. 如請求項11所述非揮發性半導體記憶體裝置,其中該第二介面層為一氧化矽層。 The non-volatile semiconductor memory device of claim 11, wherein the second interface layer is a hafnium oxide layer.
TW100120717A 2011-06-14 2011-06-14 Nonvolatile semiconductor memory device TWI455138B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100120717A TWI455138B (en) 2011-06-14 2011-06-14 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100120717A TWI455138B (en) 2011-06-14 2011-06-14 Nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
TW201250694A TW201250694A (en) 2012-12-16
TWI455138B true TWI455138B (en) 2014-10-01

Family

ID=48139340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120717A TWI455138B (en) 2011-06-14 2011-06-14 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
TW (1) TWI455138B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934435A (en) * 2015-04-22 2015-09-23 上海华力微电子有限公司 SONOS double-grid flash memory device and programming and erasing methods thereof
CN104851887B (en) * 2015-04-22 2018-01-26 上海华力微电子有限公司 A kind of SONOS double grids flush memory device and its Compilation Method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050280061A1 (en) * 2004-06-21 2005-12-22 Sang-Yun Lee Vertical memory device structures
TWI288929B (en) * 2002-02-28 2007-10-21 Hitachi Ltd Non-volatile memory, IC card, and data processing apparatus
US20070252201A1 (en) * 2006-03-27 2007-11-01 Masaru Kito Nonvolatile semiconductor memory device and manufacturing method thereof
US20090184360A1 (en) * 2008-01-18 2009-07-23 Samsung Electronics Co., Ltd. Non-volatile memory device and method of fabricating the same
US20100020617A1 (en) * 2008-07-24 2010-01-28 Dong-Yean Oh Nonvolatile semiconductor device and memory system including the same
TWI325605B (en) * 2004-03-31 2010-06-01 Intel Corp Memory with split gate devices and method of fabrication
US20100140685A1 (en) * 2008-12-10 2010-06-10 Pil-Kyu Kang Nonvolatile Memory Devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI288929B (en) * 2002-02-28 2007-10-21 Hitachi Ltd Non-volatile memory, IC card, and data processing apparatus
TWI325605B (en) * 2004-03-31 2010-06-01 Intel Corp Memory with split gate devices and method of fabrication
US20050280061A1 (en) * 2004-06-21 2005-12-22 Sang-Yun Lee Vertical memory device structures
US20070252201A1 (en) * 2006-03-27 2007-11-01 Masaru Kito Nonvolatile semiconductor memory device and manufacturing method thereof
US20090184360A1 (en) * 2008-01-18 2009-07-23 Samsung Electronics Co., Ltd. Non-volatile memory device and method of fabricating the same
US20100020617A1 (en) * 2008-07-24 2010-01-28 Dong-Yean Oh Nonvolatile semiconductor device and memory system including the same
US20100140685A1 (en) * 2008-12-10 2010-06-10 Pil-Kyu Kang Nonvolatile Memory Devices

Also Published As

Publication number Publication date
TW201250694A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
US9281318B2 (en) Three dimensional memory structure
US9412821B2 (en) Stacked thin channels for boost and leakage improvement
CN105431944B (en) Logic FINFET high-K/conductive gate embedded multi-time programmable flash memory
US7304343B2 (en) Semiconductor memory device and manufacturing method for the same
US8780625B2 (en) Memory array
US7759715B2 (en) Memory cell comprising dynamic random access memory (DRAM) nanoparticles and nonvolatile memory (NVM) nanoparticle
US20150194440A1 (en) Nonvolatile Memory Devices And Methods Of Fabricating The Same
US20140151782A1 (en) Methods and Apparatus for Non-Volatile Memory Cells with Increased Programming Efficiency
US20060273370A1 (en) NROM flash memory with vertical transistors and surrounding gates
CN111373477B (en) Content addressable memory using threshold-adjustable vertical transistors and method of forming the same
US20150372121A1 (en) Asymmetric formation approach for a floating gate of a split gate flash memory structure
US9773796B2 (en) Non-volatile memory device
TW200837887A (en) Trench memory structures and operation
US7563676B2 (en) NOR-type flash memory cell array and method for manufacturing the same
US20130056819A1 (en) Nonvolatile semiconductor memory
US9054175B2 (en) Nonvolatile memory device including select gate and memory gate
US20240107754A1 (en) Methods of forming integrated circuit structures
US9252150B1 (en) High endurance non-volatile memory cell
TW586221B (en) Flash memory with selective gate within a substrate and method of fabricating the same
TWI455138B (en) Nonvolatile semiconductor memory device
CN108155190B (en) Nonvolatile memory device and method of manufacturing the same
US20150124521A1 (en) Semiconductor Devices Including Buried Channels
US20160079363A1 (en) Transistor, electronic device having the transistor, and method for fabricating the same
KR100577018B1 (en) Method for manufacturing of flash memory device
US7718491B2 (en) Method for making a NAND Memory device with inversion bit lines

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees