TWI452481B - Priented circuit board and layout method thereof - Google Patents

Priented circuit board and layout method thereof Download PDF

Info

Publication number
TWI452481B
TWI452481B TW101110605A TW101110605A TWI452481B TW I452481 B TWI452481 B TW I452481B TW 101110605 A TW101110605 A TW 101110605A TW 101110605 A TW101110605 A TW 101110605A TW I452481 B TWI452481 B TW I452481B
Authority
TW
Taiwan
Prior art keywords
differential pair
differential
mode
end point
layer
Prior art date
Application number
TW101110605A
Other languages
Chinese (zh)
Other versions
TW201339874A (en
Inventor
Cheng Hui Chu
Original Assignee
Pegatron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pegatron Corp filed Critical Pegatron Corp
Priority to TW101110605A priority Critical patent/TWI452481B/en
Publication of TW201339874A publication Critical patent/TW201339874A/en
Application granted granted Critical
Publication of TWI452481B publication Critical patent/TWI452481B/en

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

印刷電路板及其佈線方法Printed circuit board and wiring method thereof

本發明是有關於一種印刷電路板的製造技術,且特別是有關於一種減少差動對(differential pairs)/差模傳輸線之串音(crosstalk)干擾的印刷電路板及其佈線方法。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a printed circuit board manufacturing technique, and more particularly to a printed circuit board and a wiring method thereof for reducing crosstalk interference of differential pairs/differential mode transmission lines.

隨著印刷電路板(Printed circuit board,PCB)製作技術的進步,印刷電路板本身的尺寸越來越小。且由於設計上的諸多要求,不但設置於印刷電路板上的電路組件數量越來越多,各電路組件之間的訊號傳輸速度也越來越快,因此抗干擾能力強的差模訊號也越來越被廣泛的使用於印刷電路板上的傳輸線,藉以作為高速訊號傳輸之用。With the advancement of printed circuit board (PCB) fabrication technology, the size of the printed circuit board itself is getting smaller and smaller. Due to the design requirements, not only the number of circuit components disposed on the printed circuit board is increased, but also the signal transmission speed between the circuit components is increasing. Therefore, the differential signal with strong anti-interference ability is also It has been widely used in transmission lines on printed circuit boards for high-speed signal transmission.

但是,在有限的電路板面積內對數量眾多的電路組件進行佈線(layout)的話,傳輸線之間的間距勢必更為縮短,導致這些傳輸線將會相互發生串音干擾(crosstalk),進而影響傳輸品質。若是將傳輸線間的間距擴大,實際可進行電路佈局的區域則會相應縮小。However, if a large number of circuit components are laid out within a limited board area, the spacing between the transmission lines is bound to be shortened, causing crosstalk to occur between these transmission lines, thereby affecting transmission quality. . If the spacing between the transmission lines is increased, the area in which the circuit layout can actually be performed is reduced accordingly.

藉此,在縮短電路的佈線面積以及降低傳輸線間干擾的前提下,如何有效地在印刷電路板上佈局差模傳輸線,便為本領域的重要課題之一。Therefore, under the premise of shortening the wiring area of the circuit and reducing the interference between the transmission lines, how to effectively distribute the differential mode transmission line on the printed circuit board is one of the important topics in the field.

本發明提出一種印刷電路板及其佈線方法,其可透過數學模型來計算兩個差動對之間的最佳水平距離,減少差動對相互之間的串音干擾。The invention provides a printed circuit board and a wiring method thereof, which can calculate an optimal horizontal distance between two differential pairs through a mathematical model, and reduce crosstalk interference between the differential pairs.

本發明提出一種印刷電路板的佈線方法,此佈局方法包括下列步驟。提供第一訊號層、第一介質層以及第二訊號層,其中第一介質層配置於第一訊號層與第二訊號層之間。依據第一訊號層、第一介質層、第二訊號層、第一差動對以及第二差動對的多個參數以計算水平距離。以及,設置第一差動對以及第二差動對至第一訊號層及第二訊號層,其中第一差動對至第二差動對之間的水平間距為所述水平距離。The present invention provides a wiring method for a printed circuit board, the layout method comprising the following steps. The first signal layer, the first dielectric layer, and the second signal layer are disposed, wherein the first dielectric layer is disposed between the first signal layer and the second signal layer. The horizontal distance is calculated according to a plurality of parameters of the first signal layer, the first dielectric layer, the second signal layer, the first differential pair, and the second differential pair. And a first differential pair and a second differential pair are disposed to the first signal layer and the second signal layer, wherein a horizontal interval between the first differential pair and the second differential pair is the horizontal distance.

在本發明之一實施例中,計算該水平距離包括下列步驟。依據第一訊號層、第一介質層、第二訊號層、第一差動對以及第二差動對的參數產生一串音轉移公式以及一串音時域轉移函數。以及,依據串音轉移公式及串音時域轉移函數計算所述水平距離。In an embodiment of the invention, calculating the horizontal distance comprises the following steps. And generating a crosstalk transfer formula and a crosstalk time domain transfer function according to the parameters of the first signal layer, the first medium layer, the second signal layer, the first differential pair, and the second differential pair. And calculating the horizontal distance according to the crosstalk transfer formula and the crosstalk time domain transfer function.

在本發明之一實施例中,上述之第一差動對與第二差動對分別包括兩條傳輸線,並且,產生串音轉移公式包括下列步驟。依據第一訊號層、第一介質層、第二訊號層、第一差動對以及第二差動對的參數以從這些傳輸線的任一端點之其一模擬輸入多個測試訊號,並取得這些傳輸線任一端點的多個感應訊號。依據這些測試訊號與這些感應訊號計算頻域轉移矩陣。以及,將頻域轉移矩陣從差模-共模模式轉換為混合模式,以取得從任一端點至任一端點的串音轉移公式。In an embodiment of the invention, the first differential pair and the second differential pair respectively comprise two transmission lines, and the generating the crosstalk transfer formula comprises the following steps. And inputting a plurality of test signals according to parameters of the first signal layer, the first medium layer, the second signal layer, the first differential pair, and the second differential pair to obtain an analog signal from one of the end points of the transmission lines Multiple inductive signals at either end of the transmission line. The frequency domain transfer matrix is calculated based on these test signals and these inductive signals. And, converting the frequency domain transfer matrix from the differential mode to the common mode to the mixed mode to obtain a crosstalk transfer formula from any end point to any end point.

在本發明之一實施例中,所述之第一差動對在混合模式中具有近端的第一端點以及遠端的第二端點,第二差動對在混合模式中具有近端的第三端點以及遠端的第四端點,且第一差動對在差模-共模模式中具有第一端點及第二端點的第一傳輸線、具有第三端點及第四端點的第二傳輸線,第二差動對在差模-共模模式中具有第五端點及第六端點的第三傳輸線、具有第七端點及第八端點的第四傳輸線。並且第一差動對的第1端第一端點至第二差動對的第三端點之近端的串音轉移公式為:In an embodiment of the invention, the first differential pair has a first end of the proximal end and a second end of the distal end in the hybrid mode, and the second differential pair has a proximal end in the hybrid mode a third end point and a fourth end point of the far end, and the first differential pair has a first transmission line having a first end point and a second end point in a differential mode-common mode, having a third end point and a a second transmission line of four endpoints, a second transmission line having a fifth end point and a sixth end point in the differential mode-common mode, and a fourth transmission line having a seventh end point and an eighth end point . And the crosstalk transfer formula of the first end of the first differential pair of the first differential pair to the proximal end of the third end of the second differential pair is:

其中,Kb_d3d1 為在混合模式中第一差動對的第一端點至第二差動對的第三端點於近端的串音時域轉移函數,Kbmn 為差模-共模模式中這些傳輸線之第n端點至第m端點於近端的串音時域係數,m、n為正整數。Where K b_d3d1 is a crosstalk time domain transfer function of the first end of the first differential pair to the third end of the second differential pair in the hybrid mode, and K bmn is a differential mode-common mode The crosstalk time domain coefficients of the nth end point to the mth end point of these transmission lines at the near end, m and n are positive integers.

在本發明之一實施例中,所述之差模-共模模式中這些傳輸線之第n端點至第m端點於近端的串音時域係數為:In an embodiment of the invention, the crosstalk time domain coefficients of the nth end point to the mth end point of the transmission lines in the differential mode-common mode are:

其中,LS 為第n端點至第m端點的自感、LM 為第n端點至第m端點的互感、CS 為第n端點至第m端點的自容,且LM 為第n端點至第m端點的互容。Wherein, L S is a self-inductance from the nth end to the mth end point, L M is a mutual inductance of the nth end point to the mth end point, and C S is a self-capacity of the nth end point to the mth end point, and L M is the mutual capacitance of the nth endpoint to the mth endpoint.

在本發明之一實施例中,所述之第一差動對的第一端點至第二差動對的第四端點之遠端的串音轉移公式為:In an embodiment of the invention, the crosstalk transfer formula of the first end of the first differential pair to the far end of the fourth end of the second differential pair is:

其中,Kf_d4d1 為在混合模式中第一差動對的第一端點至第二差動對的第四端點於遠端的串音時域轉移函數,Kfmn 為差模-共模模式中這些傳輸線之第n端點至第m端點於遠端的串音時域係數。Where K f_d4d1 is a crosstalk time domain transfer function of the first end of the first differential pair to the fourth end of the second differential pair in the mixed mode, and K fmn is a differential mode-common mode The crosstalk time domain coefficients of the nth to mth endpoints of these transmission lines at the far end.

在本發明之一實施例中,所述之差模-共模模式中這些傳輸線之第n端點至第m端點於遠端的串音時域係數為:In an embodiment of the invention, the crosstalk time domain coefficients of the nth end point to the mth end point of the transmission lines in the differential mode-common mode are at the far end:

在本發明之一實施例中,所述之參數包括第一介質層、第一訊號層至第一接地層之間的第二介質層以及第二訊號層至第二接地層之間的第三介質層的高度、第一介質層、第二介質層以及第三介質層的介電材料係數與介電材料衰減係數、第一差動對以及第二差動對中兩條傳輸線各自的線寬以及兩條傳輸線之間的水平間距。In an embodiment of the invention, the parameter includes a first dielectric layer, a second dielectric layer between the first signal layer and the first ground layer, and a third between the second signal layer and the second ground layer. a height of the dielectric layer, a dielectric material coefficient of the first dielectric layer, the second dielectric layer, and the third dielectric layer, and a dielectric material attenuation coefficient, a first differential pair, and a line width of each of the two differential transmission lines And the horizontal spacing between the two transmission lines.

於另一觀點而言,本發明提出一種印刷電路板,所述之印刷電路板包括第一訊號層、第二訊號層以及第一介質層,其中第一訊號層包括第一差動對。第二訊號層包括第二差動對。以及第一介質層配置於第一訊號層與第二訊號層之間,其中,第一差動對至第二差動對之間的水平間距為水平距離,且水平距離由第一訊號層、第一介質層、第二訊號層、第一差動對以及第二差動對的多個參數計算得之。In another aspect, the present invention provides a printed circuit board including a first signal layer, a second signal layer, and a first dielectric layer, wherein the first signal layer includes a first differential pair. The second signal layer includes a second differential pair. And the first dielectric layer is disposed between the first signal layer and the second signal layer, wherein a horizontal distance between the first differential pair and the second differential pair is a horizontal distance, and the horizontal distance is determined by the first signal layer, A plurality of parameters of the first dielectric layer, the second signal layer, the first differential pair, and the second differential pair are calculated.

在本發明之一實施例中,所述之印刷電路板更包括第一接地層、第二介質層、第二接地層以及第三介質層,其中第二介質層配置於第一接地層與第一訊號層之間。第三介質層配置於第二接地層與第二訊號層之間。其餘實施細節請參照上述說明,在此不加贅述。In an embodiment of the invention, the printed circuit board further includes a first ground layer, a second dielectric layer, a second ground layer, and a third dielectric layer, wherein the second dielectric layer is disposed on the first ground layer and Between the layers of a signal. The third dielectric layer is disposed between the second ground layer and the second signal layer. Please refer to the above description for the rest of the implementation details, and I will not repeat them here.

基於上述,本發明所述之印刷電路板及其佈線方法透過數學模型及印刷電路板的相關參數,來計算印刷電路板中第一差動對至第二差動對之間的水平距離,並在進行電路佈局時將這兩個差動對的水平間距設置為計算求得的數值,藉以減少差動對/差模傳輸線之之間的串音干擾。Based on the above, the printed circuit board and the wiring method thereof according to the present invention calculate the horizontal distance between the first differential pair and the second differential pair in the printed circuit board through the mathematical model and the relevant parameters of the printed circuit board, and The horizontal spacing of the two differential pairs is set to the calculated value when the circuit layout is performed, thereby reducing crosstalk interference between the differential pair/differential mode transmission lines.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

現將詳細參考本發明之示範性實施例,在附圖中說明所述示範性實施例之實例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/符號代表相同或類似部分。以及,在本發明示範性實施例中,第一至第八等形容詞為用來區別具有相類似功能或結構的多個組件或構件,而並非用以限制本發明。DETAILED DESCRIPTION OF THE INVENTION Reference will now be made in detail to the exemplary embodiments embodiments In addition, wherever possible, the elements and/ In addition, in the exemplary embodiments of the present invention, the first to eighth and the like are used to distinguish a plurality of components or components having similar functions or structures, and are not intended to limit the present invention.

一般來說,寬廣側邊緣耦合(Broad-Side Edge-Coupling)差模傳輸線主要設置於印刷電路板中,並常用來傳輸高速的差模訊號。換句話說,印刷電路板通常設計有兩個接地層與兩個訊號層,Broad-SideEdge-Coupling差模傳輸線分別設置於上述之兩個訊號層中。In general, Broad-Side Edge-Coupling differential mode transmission lines are mainly placed in printed circuit boards and are commonly used to transmit high speed differential mode signals. In other words, the printed circuit board is usually designed with two ground layers and two signal layers, and the Broad-SideEdge-Coupling differential mode transmission lines are respectively disposed in the above two signal layers.

請參照圖1,圖1是根據本發明之一實施例所繪示之印刷電路板示意圖。如圖1所示,印刷電路板10包括第一訊號層SL1、第二訊號層SL2以及第一介值層ML1。其中,第一訊號層SL1包括第一差動對DP1。其中,第一差動對DP1又包括第一傳輸線DP1a以及第二傳輸線DP1b。而第二訊號層SL2包括第二差動對DP2。其中,第二差動對DP2包括第三傳輸線DP2a與第四傳輸線DP2b。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a printed circuit board according to an embodiment of the invention. As shown in FIG. 1, the printed circuit board 10 includes a first signal layer SL1, a second signal layer SL2, and a first dielectric layer ML1. The first signal layer SL1 includes a first differential pair DP1. The first differential pair DP1 further includes a first transmission line DP1a and a second transmission line DP1b. The second signal layer SL2 includes a second differential pair DP2. The second differential pair DP2 includes a third transmission line DP2a and a fourth transmission line DP2b.

在本實施例中,第一差動對DP1以及第二差動對DP2皆用來傳輸差模訊號,然本發明不以此為限。在本發明之實施例中,第一差動對DP1以及第二差動對DP2也可以用來傳送共模訊號或混模訊號。在本發明之實施例中,第一傳輸線DP1a、第二傳輸線DP1b、第三傳輸線DP2a以及第四傳輸線DP2b為Broad-Side Edge-Coupling差模傳輸線。In this embodiment, the first differential pair DP1 and the second differential pair DP2 are both used to transmit differential mode signals, but the invention is not limited thereto. In the embodiment of the present invention, the first differential pair DP1 and the second differential pair DP2 may also be used to transmit a common mode signal or a mixed mode signal. In the embodiment of the present invention, the first transmission line DP1a, the second transmission line DP1b, the third transmission line DP2a, and the fourth transmission line DP2b are Broad-Side Edge-Coupling differential mode transmission lines.

在本發明之另一實施例中,印刷電路板10還包括第一接地層G1、第二介質層ML2、第二接地層G2以及第三介質層ML3。其中,第二介質層ML2配置於第一接地層G1與第一訊號層SL1之間,而第三介質層ML3配置於第二接地層G2與第二訊號層SL2之間。In another embodiment of the present invention, the printed circuit board 10 further includes a first ground layer G1, a second dielectric layer ML2, a second ground layer G2, and a third dielectric layer ML3. The second dielectric layer ML2 is disposed between the first ground layer G1 and the first signal layer SL1, and the third dielectric layer ML3 is disposed between the second ground layer G2 and the second signal layer SL2.

請再次參照圖1,水平距離D為在圖1中,以第一差動對DP1至第二差動對DP2之間的水平間距作為水平距離D。值得一提的是,水平距離D是影響第一差動對DP1與第二差動對DP2間的串音嚴重性的最重要因素之一,其原因如下,一般而言,於不同的水平距離D下,第一差動對DP1與第二差動對DP2間因為電磁感應產生的串音干擾訊號也會不相同,在實驗過程中,發現兩個差動對在某一特定距離下將會具有最小的串音干擾,超過此特定距離後則僅能將這兩個差動對拉遠至相當距離才得以擁有較小的干擾。Referring again to FIG. 1, the horizontal distance D is in FIG. 1, with the horizontal distance between the first differential pair DP1 and the second differential pair DP2 being the horizontal distance D. It is worth mentioning that the horizontal distance D is one of the most important factors affecting the crosstalk between the first differential pair DP1 and the second differential pair DP2. The reason is as follows, generally, at different horizontal distances. D, the crosstalk signal between the first differential pair DP1 and the second differential pair DP2 due to electromagnetic induction will also be different. During the experiment, it is found that the two differential pairs will be at a certain distance. With minimal crosstalk interference, after the specific distance is exceeded, the two differential pairs can only be pulled far to a considerable distance to have less interference.

因此,只要能找出水平距離D、第一差動對DP1、第二差動對DP2以及串音干擾訊號之間的關連,就可找出在有限的空間(印刷電路板10)中,第一差動對DP1至第二差動對DP2之間最佳的水平距離D。在本發明之實施例中,在最佳的水平距離D下,第一差動對DP1與第二差動對DP2之間的串音干擾訊號最小(趨近於零),因此其傳輸品質也最佳。Therefore, as long as the correlation between the horizontal distance D, the first differential pair DP1, the second differential pair DP2, and the crosstalk interference signal can be found, it can be found in a limited space (printed circuit board 10) An optimum horizontal distance D between the differential pair DP1 and the second differential pair DP2. In the embodiment of the present invention, under the optimal horizontal distance D, the crosstalk interference signal between the first differential pair DP1 and the second differential pair DP2 is the smallest (near zero), so the transmission quality is also optimal.

然而,以往在進行電路佈局時,水平距離D僅能以實驗方式逐步手動模擬驗證才能求得,也就是人員以自己的經驗去抓此水平距離,並無較佳的模擬或計算規則來計算出最佳的水平距離D,若人員的經驗不足,往往增加許多時間成本。於此,本發明實施例透過數學模型、電腦模擬等方式,依據第一訊號層SL1、第一介質層ML1、第二訊號層SL2、第一差動對DP1以及第二差動對DP2的多個參數來計算求得水平距離D。藉此,電路佈局時便可利用數學計算來整合歸納出最佳的水平距離D,不需耗時地進行手動模擬,提高電路設計的時效。詳言之,水平距離D可由下述的串音轉移公式以及串音時域轉移函數計算而得,詳細的計算方法流程請參照以下述的說明。However, in the past, when the circuit layout was carried out, the horizontal distance D can only be obtained by experimental manual verification, that is, the personnel can grasp the horizontal distance with their own experience, and there is no better simulation or calculation rule to calculate. The optimal horizontal distance D, if the personnel experience is insufficient, often increases the cost of time. In this manner, the embodiment of the present invention is based on a mathematical model, a computer simulation, or the like, according to the first signal layer SL1, the first dielectric layer ML1, the second signal layer SL2, the first differential pair DP1, and the second differential pair DP2. The parameters are used to calculate the horizontal distance D. In this way, the circuit layout can be integrated into the optimal horizontal distance D by using mathematical calculations, and manual simulation is not required in time, thereby improving the timeliness of circuit design. In detail, the horizontal distance D can be calculated from the following crosstalk transfer formula and crosstalk time domain transfer function. For the detailed calculation method flow, please refer to the following description.

圖2為根據本發明之一實施例所繪示之在差模-共模模式下圖1中的印刷電路板10的另一示意圖。於本實施例中所述的差模-共模模式,便是印刷電路板10以差動對的兩個傳輸線來分別考慮差模或共模訊號。需注意的是,印刷電路板10以及其中的第一差動對DP1、第一傳輸線DP1a、第二傳輸線DP1b、第二差動對DP2、第三傳輸線DP2a以及第四傳輸線DP2b分別等同於圖1的印刷電路板10及其中的第一差動對DP1、第一傳輸線DP1a、第二傳輸線DP1b、第二差動對DP2、第三傳輸線DP2a以及第四傳輸線DP2b,故在此不再贅述。此外,第一傳輸線DP1a包括第一端點P1與第二端點P2,第二傳輸線DP1b包括第三端點P3與第四端點P4,第三傳輸線DP2a包括第五端點P5與第六端點P6,而第四傳輸線DP2b則包括第七端點P7與第八端點P8。2 is another schematic diagram of the printed circuit board 10 of FIG. 1 in differential mode-common mode, in accordance with an embodiment of the present invention. In the differential mode-common mode described in this embodiment, the printed circuit board 10 considers the differential mode or the common mode signal with two transmission lines of the differential pair. It should be noted that the printed circuit board 10 and the first differential pair DP1, the first transmission line DP1a, the second transmission line DP1b, the second differential pair DP2, the third transmission line DP2a, and the fourth transmission line DP2b are respectively equivalent to FIG. The printed circuit board 10 and the first differential pair DP1, the first transmission line DP1a, the second transmission line DP1b, the second differential pair DP2, the third transmission line DP2a, and the fourth transmission line DP2b are not described herein. In addition, the first transmission line DP1a includes a first end point P1 and a second end point P2, the second transmission line DP1b includes a third end point P3 and a fourth end point P4, and the third transmission line DP2a includes a fifth end point P5 and a sixth end Point P6, and the fourth transmission line DP2b includes a seventh endpoint P7 and an eighth endpoint P8.

如圖2所示,在差模-共模模式下,假設本實施例分別給定對於印刷電路板10的八個端點P1~P8的提供測試訊號a1~a8,此時由於差動對DP1、DP2之間的串音干擾而會產生感應訊號b1~b8感應訊號b1~b8會因感應測試訊號a1~a8而產生。例如,當測試訊號a1輸入至第一端點P1時,感應訊號b1~b8可能會因應而生。As shown in FIG. 2, in the differential mode-common mode, it is assumed that the present embodiment provides test signals a1~a8 for the eight terminals P1~P8 of the printed circuit board 10, respectively, at this time due to the differential pair DP1. The crosstalk between DP2 will generate the inductive signal b1~b8 The inductive signal b1~b8 will be generated by the inductive test signals a1~a8. For example, when the test signal a1 is input to the first end point P1, the inductive signals b1 to b8 may be generated accordingly.

此外,本實施例藉由運算測試矩陣Astd以及頻域轉移矩陣Sstd以計算得到感應矩陣Bstd。測試矩陣Astd中每個元素分別由測試訊號ai(例如,a1~a8)組成,感應矩陣Bstd中每個元素則由感應訊號bj(例如,b1~b8)組成,而頻域轉移矩陣Sstd則由頻域轉移函數Sji組成,i以及j為1~8的正整數。In addition, in this embodiment, the sensing matrix Bstd is calculated by computing the test matrix Astd and the frequency domain transfer matrix Sstd. Each element in the test matrix Astd is composed of a test signal ai (for example, a1~a8), and each element in the sensing matrix Bstd is composed of an inductive signal bj (for example, b1~b8), and the frequency domain transfer matrix Sstd is composed of The frequency domain transfer function Sji is composed, and i and j are positive integers of 1-8.

具體來說,利用運算測試矩陣Astd以及頻域轉移矩陣Sstd計算得到感應矩陣Bstd可透過方程式(2-1)表示:Specifically, the calculation matrix Bstd obtained by using the operational test matrix Astd and the frequency domain transfer matrix Sstd can be expressed by equation (2-1):

Bstd=Sstd×Astd (2-1)Bstd=Sstd×Astd (2-1)

其中,among them,

然後,本實施例利用電腦軟體來模擬印刷電路板10中的傳輸線DP1a~DP2b以及測試矩陣Astd,藉以求得感應矩陣Bstd。舉例來說,本實施例利用積體電路模擬軟體(Simulation Program with Integrated Circuit Emphasis,HSPICE)來模擬具有已知的物理特性的傳輸線DP1a~DP2b,並在端點P1~P8上模擬輸入測試訊號a1~a8,即可求得感應訊號b1~b8。換言之,以包含測試訊號a1的測試矩陣Astd為例,假設測試矩陣Astd為:Then, the present embodiment uses the computer software to simulate the transmission lines DP1a to DP2b and the test matrix Astd in the printed circuit board 10, thereby obtaining the sensing matrix Bstd. For example, the present embodiment simulates a transmission line DP1a~DP2b having a known physical characteristic by using a Simulation Program with Integrated Circuit Emphasis (HSPICE), and simulates an input test signal a1 at the end points P1 to P8. ~a8, you can get the sensing signal b1~b8. In other words, taking the test matrix Astd containing the test signal a1 as an example, assume that the test matrix Astd is:

將測試矩陣Astd代入方程式(2-1)之後,可得感應矩陣Bstd為:After substituting the test matrix Astd into equation (2-1), the obtained sensing matrix Bstd is:

然後,透過HSPICE模擬,將所產生的感應訊號b1~b8代入方程式(2-2),也就是將感應訊號b1~b8代入b1=a1×S11 、b2=a1×S21 ...b8=a1×S81 中,便可求得頻域轉移函數Sj1 (假設測試訊號a1為已知),其中j=1~8。其餘的頻域轉移函數Sj2 ~Sj8 則可依此類推求得。Then, through the HSPICE simulation, the generated inductive signals b1~b8 are substituted into the equation (2-2), that is, the inductive signals b1~b8 are substituted into b1=a1×S 11 , b2=a1×S 21 ...b8= In a1×S 81 , the frequency domain transfer function S j1 can be obtained (assuming the test signal a1 is known), where j=1~8. The remaining frequency domain transfer functions S j2 ~S j8 can be derived in the same way.

綜上所述,本實施例在差模-共模模式下,透過頻域轉移函數Sji 與測試訊號ai,便可求出第j端點Pj對應產生的感應訊號bj,其中i以及j為1~8的正整數。換言之,透過測試矩陣Astd以及頻域轉移矩陣Sstd,即可得到感應矩陣Bstd。As described above, in this embodiment, the differential mode - the common mode through a frequency domain transfer function S ji with AI test signal, Pj can be determined corresponding to the j-th terminal BJ generated sensing signal, wherein i and j is A positive integer from 1 to 8. In other words, the sensing matrix Bstd can be obtained by the test matrix Astd and the frequency domain transfer matrix Sstd.

為了將頻域轉移矩陣Sstd由圖2的差模-共模模式轉換為混合模式(亦即,將每個差動對視為單一條傳輸線以同時考慮差模與共模訊號)下的頻域轉移矩陣,以下以圖3對混合模式下的印刷電路板及其頻域轉移矩陣作進一步的說明,請參照圖3。In order to convert the frequency domain transfer matrix Sstd from the differential mode to the common mode of FIG. 2 to a mixed mode (ie, treating each differential pair as a single transmission line to simultaneously consider differential and common mode signals) Transfer matrix, the printed circuit board in the mixed mode and its frequency domain transfer matrix are further described below with reference to FIG. 3, please refer to FIG.

圖3為根據本發明之一實施例所繪示之混合模式下的印刷電路板10的示意圖。如圖3所示,印刷電路板10包括第一差動對DP1以及第二差動對DP2。其中,第一差動對DP1以及第二差動對DP2分別相同於圖2中的一差動對DP1以及第二差動對DP2,故在此不再贅述。此外,在混合模式下,第一差動對DP1具有近端的第一端點CP1以及遠端的第二端點CP2,而第二差動對DP2具有近端的第三端點CP3以及遠端的第四端點CP4。3 is a schematic diagram of a printed circuit board 10 in a hybrid mode, in accordance with an embodiment of the present invention. As shown in FIG. 3, the printed circuit board 10 includes a first differential pair DP1 and a second differential pair DP2. The first differential pair DP1 and the second differential pair DP2 are respectively the same as the differential pair DP1 and the second differential pair DP2 in FIG. 2, and thus are not described herein again. In addition, in the hybrid mode, the first differential pair DP1 has a first end CP1 at the near end and a second end point CP2 at the far end, and the second differential pair DP3 has a third end CP3 at the near end and a far end. The fourth endpoint of the end is CP4.

請同時參照圖2與圖3,圖3中的第一端點CP1可視為圖2的第一端點P1與第三端點P3合併之後的端點,第二端點CP2可視為圖2的第二端點P2與第四端點P4合併之後的端點,而其餘端點CP3以及CP4以此類推。Referring to FIG. 2 and FIG. 3 simultaneously, the first endpoint CP1 in FIG. 3 can be regarded as the endpoint after the first endpoint P1 and the third endpoint P3 of FIG. 2 are merged, and the second endpoint CP2 can be regarded as FIG. 2 The endpoints after the second endpoint P2 and the fourth endpoint P4 are merged, and the remaining endpoints CP3 and CP4 and so on.

在本實施例中,在混合模式下,將圖2中的測試訊號a1~a8以及感應訊號b1~b8分別兩兩合併為差模測試訊號ad1~ad4、差模感應訊號bd1~bd4、共模測試訊號ac1~ac4以及共模感應訊號bc1~bc4。其中,第一差動對DP1可以用來傳輸差模測試訊號ad1~ad2、共模測試訊號ac1~ac2、差模感應訊號bd1~bd2以及共模感應訊號bc1~bc2。而第二差動對DP2可以用來傳輸差模測試訊號ad3~ad4、差模感應訊號bd3~bd4、共模測試訊號ac3~ac4以及共模感應訊號bc3~bc4。In this embodiment, in the hybrid mode, the test signals a1~a8 and the inductive signals b1~b8 in FIG. 2 are respectively combined into a differential mode test signal ad1~ad4, a differential mode sensing signal bd1~bd4, and a common mode. Test signals ac1~ac4 and common mode sensing signals bc1~bc4. The first differential pair DP1 can be used to transmit differential mode test signals ad1~ad2, common mode test signals ac1~ac2, differential mode sensing signals bd1~bd2, and common mode sensing signals bc1~bc2. The second differential pair DP2 can be used to transmit the differential mode test signals ad3~ad4, the differential mode sensing signals bd3~bd4, the common mode test signals ac3~ac4, and the common mode sensing signals bc3~bc4.

請同時參照圖2與圖3,以差模感應訊號ad1為例,將測試訊號a1以及a3透過線性代數基底轉換運算後,可得差模模式下的差模測試訊號ad1,且可將差模測試訊號ad1以下列數學式表示:Referring to FIG. 2 and FIG. 3 simultaneously, taking the differential mode sensing signal ad1 as an example, after the test signals a1 and a3 are converted by the linear algebra substrate, the differential mode test signal ad1 in the differential mode can be obtained, and the differential mode can be obtained. The test signal ad1 is expressed in the following mathematical formula:

其中,為線性代數基底轉換的基底。依此類推,可將其餘的差模測試訊號ad2~ad4、差模感應訊號bd1~bd4、共模測試訊號ac1~ac4以及共模感應訊號bc1~bc4表示為:among them, A substrate for linear algebra substrate conversion. And so on, the remaining differential mode test signals ad2~ad4, differential mode sensing signals bd1~bd4, common mode test signals ac1~ac4 and common mode sensing signals bc1~bc4 can be expressed as:

請再次參照圖3,在混合模式下,分別給定於印刷電路板10的端點CP1~CP4的差模測試訊號ad1~ad4以及共模測試訊號ac1~ac4,此時差模感應訊號bd1~bd4以及共模感應訊號bc1~bc4因感應差模測試訊號ad1~ad4以及共模測試訊號ac1~ac4而產生。例如,當差模測試訊號ad1輸入至第一端點CP1時,差模測試訊號ad1~ad4以及共模感應訊號bc1~bc4可能會分別因應而生。Referring again to FIG. 3, in the hybrid mode, the differential mode test signals ad1 to ad4 and the common mode test signals ac1 to ac4 are respectively given to the terminals CP1 to CP4 of the printed circuit board 10, and the differential mode sensing signals bd1 to bd4. And the common mode sensing signals bc1~bc4 are generated by the differential mode test signals ad1~ad4 and the common mode test signals ac1~ac4. For example, when the differential mode test signal ad1 is input to the first terminal CP1, the differential mode test signals ad1 to ad4 and the common mode sensing signals bc1 to bc4 may be respectively generated.

本實施例藉由運算混模測試矩陣Amm以及混合模式下的頻域轉移矩陣Smm以計算得到混模感應矩陣Bmm,其中混模測試矩陣Amm由差模測試訊號ad1~ad4以及共模測試訊號ac1~ac4組成,而混模感應矩陣Bmm由差模感應訊號bd1~bd4以及共模感應訊號bc1~bc4組成。混合模式下的頻域轉移矩陣Smm則由混合模式下的頻域轉移函數Suv 組成,其中,u以及v可以分別為d1~d4以及c1~c4。In this embodiment, the mixed mode test matrix Bmm is calculated by calculating the mixed mode test matrix Amm and the frequency domain transfer matrix Smm in the mixed mode, wherein the mixed mode test matrix Amm is measured by the differential mode test signals ad1~ad4 and the common mode test signal ac1. ~ac4 is composed, and the mixed mode sensing matrix Bmm is composed of differential mode sensing signals bd1~bd4 and common mode sensing signals bc1~bc4. The frequency domain transfer matrix Smm in the mixed mode is composed of the frequency domain transfer function S uv in the mixed mode, wherein u and v can be d1~d4 and c1~c4, respectively.

具體來說,本實施例透過運算混模測試矩陣Amm以及混合模式下的頻域轉移矩陣Smm以得到混模感應矩陣Bmm的方式,可透過下述方程式(3-1)加以表示:Specifically, in the embodiment, the method of calculating the mixed mode test matrix Amm and the frequency domain transfer matrix Smm in the mixed mode to obtain the mixed mode induction matrix Bmm can be expressed by the following equation (3-1):

Bmm=Smm×Amm -(3-1)Bmm=Smm×Amm -(3-1)

其中,Bmm、Amm以及Smm分別為:Among them, Bmm, Amm and Smm are:

同樣地,以模擬的方式透過已知的印刷電路板10中的第一差動對DP1、第二差動對DP2以及混模測試矩陣Amm,即可以輕易的求得混模感應矩陣Bmm。舉例來說,利用HSPICE模擬第一差動對DP1、第二差動對DP2以及於端點CP1~CP4的差模測試訊號ad1~ad4以及共模測試訊號ac1~ac4,即可求得差模感應訊號bd1~bd4以及共模感應訊號bc1~bc4。以包含差模測試訊號ad1的混模測試矩陣Amm為例,假設混模測試矩陣Amm為:Similarly, the mixed mode induction matrix Bmm can be easily obtained by analog transmission of the first differential pair DP1, the second differential pair DP2, and the mixed mode test matrix Amm in the known printed circuit board 10. For example, by using HSPICE to simulate the first differential pair DP1, the second differential pair DP2, and the differential mode test signals ad1~ad4 and the common mode test signals ac1~ac4 at the endpoints CP1~CP4, the differential mode can be obtained. The sensing signals bd1~bd4 and the common mode sensing signals bc1~bc4. Taking the mixed-mode test matrix Amm containing the differential mode test signal ad1 as an example, assume that the mixed-mode test matrix Amm is:

將混模測試矩陣Amm代入方程式(3-1)之後,可得混模感應矩陣Bmm為:After substituting the mixed mode test matrix Amm into equation (3-1), the mixed mode induction matrix Bmm is obtained as:

然後,將由HSPICE模擬所產生的差模感應訊號bd1~bd4以及共模感應訊號bc1~bc4代入方程式(3-2),也就是將bd1~bd4與bc1~bc4代入bd1=ad1×Sd1d1 、bd2=ad1×Sd2d1 等直到bc4=ad1×Sc4d1 中(已知ad1),就可以求得混合模式下的頻域轉移函數Sud1 (v=d1),其中u=d1~d4以及c1~c4。而其餘混合模式下的頻域轉移函數Sud2 ~Sud4 (v=d2~d4)以及Suc1 ~Suc4 (v=c1~c4)依此類推即可求得。Then, the differential mode sensing signals bd1~bd4 and the common mode sensing signals bc1~bc4 generated by the HSPICE simulation are substituted into the equation (3-2), that is, bd1~bd4 and bc1~bc4 are substituted into bd1=ad1×S d1d1 and bd2. =ad1×S d2d1 and so on until bc4=ad1×S c4d1 (known as ad1), the frequency domain transfer function S ud1 (v=d1) in the mixed mode can be obtained, where u=d1~d4 and c1~c4 . The frequency domain transfer functions S ud2 ~S ud4 (v=d2~d4) and S uc1 ~S uc4 (v=c1~c4) in the other mixed modes can be obtained by analogy.

綜上所述,在本發明之一實施例中,透過混合模式下的頻域轉移函數Suv 與差模測試訊號以及共模測試訊號av,就可以求出差模感應訊號以及共模感應訊號bu,其中u以及v可以為d1~d4以及c1~c4。換言之,透過混合測試矩陣Amm以及混合模式下的頻域轉移矩陣Smm,就可以得到混合感應矩陣Bmm。In summary, in an embodiment of the present invention, the differential mode sensing signal and the common mode sensing signal bu can be obtained by transmitting the frequency domain transfer function S uv and the differential mode test signal and the common mode test signal av in the mixed mode. , where u and v can be d1~d4 and c1~c4. In other words, the hybrid sensing matrix Bmm can be obtained by mixing the test matrix Amm and the frequency domain transfer matrix Smm in the mixed mode.

更進一步來看,為了找出混合模式下的頻域轉移矩陣Smm與差模-共模模式下的頻域轉移矩陣Sstd之間的關係,將差模測試訊號ad1~ad4、差模感應訊號bd1~bd4、共模測試訊號ac1~ac4以及共模感應訊號bc1~bc4對應至測試訊號a1~a8以及感應訊號b7~b8的數學式分別代入至混合測試矩陣Amm以及混合感應矩陣Bmm中,可得混合測試矩陣Amm為:Furthermore, in order to find the relationship between the frequency domain transfer matrix Smm in the mixed mode and the frequency domain transfer matrix Sstd in the differential mode-common mode, the differential mode test signals ad1~ad4 and the differential mode sensing signal bd1 are obtained. ~bd4, the common mode test signals ac1~ac4 and the common mode sensing signals bc1~bc4 corresponding to the test signals a1~a8 and the inductive signals b7~b8 are respectively substituted into the mixed test matrix Amm and the mixed induction matrix Bmm, which are available The hybrid test matrix Amm is:

即Amm=M×Astd。以及混合感應矩陣Bmm為:That is, Amm = M × Astd. And the hybrid induction matrix Bmm is:

即Bmm=M×Bstd。其中,M為That is, Bmm = M × Bstd. Where M is

接著,再將Amm=M×Astd以及Bmm=M×Bstd代入方程式(3-1)之後,可得混合模式下的頻域轉移矩陣Smm與差模-混模模式下的頻域轉移矩陣Sstd的關係如下:Then, after substituting Amm=M×Astd and Bmm=M×Bstd into the equation (3-1), the frequency domain transfer matrix Smm in the mixed mode and the frequency domain transfer matrix Sstd in the differential mode-mix mode are obtained. The relationship is as follows:

Smm=M×Sstd×M-1  -(3-3) Smm = M × Sstd × M -1 - (3-3)

然後,再將M以及上述之差模-混模模式下的頻域轉移矩陣Sstd代入方程式(3-3)並展開之後,可求得混合模式下的頻域轉移矩陣Smm中的各個混合模式下的頻域轉移函數Suv 對應於差模-混模模式下的頻域轉移矩陣Sstd中的各個差模-混模模式下的頻域轉移函數Sji 的關係式如下(在此需注意的是,因為本發明為針對差模訊號於差模傳輸線的串音干擾問題,故在此僅列出混合模式下的頻域轉移矩陣Smm中的差模頻域轉移函數Sd1d1 ~Sd4d4 ,其餘與共模有關的頻域轉移函數並未討論):Then, after substituting M and the frequency domain transfer matrix Sstd in the differential mode-mix mode described above into equation (3-3) and expanding, the mixed mode in the frequency domain transfer matrix Smm in the mixed mode can be obtained. The frequency domain transfer function S uv corresponds to the frequency domain transfer function S ji in each differential mode-mix mode in the frequency domain transfer matrix Sstd in the differential mode-mix mode (see below) Because the present invention is for the crosstalk interference problem of the differential mode signal on the differential mode transmission line, only the differential mode frequency domain transfer function S d1d1 ~ S d4d4 in the frequency domain transfer matrix Smm in the mixed mode is listed here , and the rest The common mode related frequency domain transfer function is not discussed):

在本發明之實施例中,差模頻域轉移函數Sd1d1 ~Sd4d4 還可分為差模近端串音(Near-End Crosstalk)頻域轉移函數以及差模遠端串音(Far-End Crosstalk)頻域轉移函數,例如,Sd3d1 為差模近端串音頻域轉移函數,而Sd4d1 為差模遠端串音頻域轉移函數。In the embodiment of the present invention, the differential mode frequency domain transfer function S d1d1 ~ S d4d4 can also be divided into a differential mode near-end crosstalk (Near-End Crosstalk) frequency domain transfer function and a differential mode far-end crosstalk (Far-End). Crosstalk) The frequency domain transfer function, for example, S d3d1 is the differential mode near-end string audio domain transfer function, and S d4d1 is the differential mode far-end string audio domain transfer function.

請再次參照圖3,因感應差模測試訊號ad1所產生的差模感應訊號bd3為近端串音,而因感應差模輸入訊號ad1所產生的差模感應訊號bd4為遠端串音。特別是,用來轉換第一差動對DP1的近端的第一端點CP1對第二差動對DP2的近端的第三端點CP3造成的串音干擾的差模近端串音頻域轉移函數Sd3d1 可以下列方程式表示:Referring to FIG. 3 again, the differential mode sensing signal bd3 generated by the differential mode test signal ad1 is a near-end crosstalk, and the differential mode sensing signal bd4 generated by the differential mode input signal ad1 is a far-end crosstalk. In particular, the differential analog near-end string audio domain used to convert the first endpoint CP1 of the first differential pair DP1 to the third endpoint CP3 of the proximal end of the second differential pair DP2 The transfer function S d3d1 can be expressed by the following equation:

而用來轉換第一差動對DP1的近端的第一端點CP1對第二差動對DP2的遠端的第四端點CP4造成的串音干擾的差模遠端串音頻域轉移函數Sd4d1 則可以下列方程式表示:And a differential mode far-end string audio domain transfer function for converting the first-end CP1 of the first differential pair DP1 to the fourth-end CP4 of the far-end of the second differential pair DP2 S d4d1 can be expressed by the following equation:

在此需注意的是,雖然在本實施例中只定義差模近端串音頻域轉移函數Sd3d1 以及差模遠端串音頻域轉移函數Sd4d1 ,然而,因為第一差動對DP1以及第二差動對DP2具有相同的物理結構,因此,第二差動對DP2對第一差動對DP1造成的串音干擾可直接比照差模近端串音頻域轉移函數Sd3d1 以及差模遠端串音頻域轉移函數Sd4d1It should be noted here that although only the differential mode near-end string audio domain transfer function S d3d1 and the differential mode far-end string audio domain transfer function S d4d1 are defined in this embodiment, because the first differential pair DP1 and the first The two differentials have the same physical structure for DP2. Therefore, the crosstalk caused by the second differential pair DP2 to the first differential pair DP1 can directly compare the difference mode near-end string audio domain transfer function S d3d1 and the differential mode far end. String audio domain transfer function S d4d1 .

此外,為了將上述之差模近端串音頻域轉移函數Sd3d1 以及差模遠端串音頻域轉移函數Sd4d1 對應至近端串音時域轉移函數以及遠端串音時域轉移函數,首先需要定義在差模-共模模式下多條傳輸線彼此間的串音干擾,因此,為了分析傳輸線的物理特性,通常會將傳輸線等效為由電阻(Resistance)、電感(inductance)、電導(Conductance)以及電容(capacitance)等電路元件組成的電阻電感電導電容(RLGC)等效電路,請接續參照圖4。In addition, in order to correspond to the differential mode near-end string audio domain transfer function S d3d1 and the differential mode far-end string audio domain transfer function S d4d1 to the near-end crosstalk time domain transfer function and the far-end crosstalk time domain transfer function, first It is necessary to define crosstalk interference between multiple transmission lines in differential mode-common mode. Therefore, in order to analyze the physical characteristics of the transmission line, the transmission line is usually equivalent to resistance, inductance, conductance (Conductance). ) and the resistor-inductance conductance capacitor (RLGC) equivalent circuit composed of circuit components such as capacitors, please refer to Figure 4.

圖4為根據本發明之一實施例所繪示之圖1中的印刷電路板10的第一差動對DP1或第二差動對DP2的RLGC等效電路圖。4 is a RLGC equivalent circuit diagram of a first differential pair DP1 or a second differential pair DP2 of the printed circuit board 10 of FIG. 1 according to an embodiment of the invention.

如圖4所示,以在差模-共模模式下的第一差動對DP1為例,第一差動對DP1包括第一傳輸線DP1a以及第二傳輸線DP1b,其中,第一傳輸線DP1a以及第二傳輸線DP1b均分別相同於圖1中的第一傳輸線DP1a以及第二傳輸線DP1b,故在此不再贅述。第一傳輸線DP1a對第二傳輸線DP1b造成的近端串音干擾訊號Vnear 可由下列方程式求得:As shown in FIG. 4, taking the first differential pair DP1 in the differential mode-common mode, the first differential pair DP1 includes a first transmission line DP1a and a second transmission line DP1b, wherein the first transmission line DP1a and the first The two transmission lines DP1b are respectively the same as the first transmission line DP1a and the second transmission line DP1b in FIG. 1, and therefore will not be described herein. The near-end crosstalk interference signal V near caused by the first transmission line DP1a to the second transmission line DP1b can be obtained by the following equation:

Vnear =Vinput ×Kb  -(4-1)V near =V input ×K b -(4-1)

其中,Kb 為第一傳輸線DP1a之第一端點至第二傳輸線DP1b之第三端點於近端的串音時域係數。在本發明之一實施例中,近端的串音時域係數為:Where K b is a crosstalk time domain coefficient of the first end of the first transmission line DP1a to the third end of the second transmission line DP1b at the near end. In an embodiment of the invention, the near-end crosstalk time domain coefficient is:

而遠端串音干擾訊號Vfar 則可由下列方程式求得:The far-end crosstalk interference signal V far can be obtained by the following equation:

其中Kf 為差模-共模模式中第一傳輸線DP1a之第一端點至第二傳輸線DP1b之第四端點於遠端的串音時域係數。在本發明之一實施例中,遠端的串音時域係數Kf 為:Where K f is the crosstalk time domain coefficient of the first end of the first transmission line DP1a to the fourth end of the second transmission line DP1b in the differential mode-common mode. In one embodiment of the present invention, the distal end of the time-domain crosstalk coefficient K f is:

其中,參數Vinput 為輸入電壓、參數Tr 為輸入電壓的上升時間、參數X為傳輸線長度、參數LS 為自感(self inductance)、參數LM 為互感(mutual inductance)、參數CS 為自容(self capacitance)、參數CM 為互容(mutual capacitance)、參數R為特徵組抗(characteristic impedance)。Wherein, the parameter V input is the input voltage, the parameter T r is the rise time of the input voltage, the parameter X is the transmission line length, the parameter L S is the self inductance, the parameter L M is the mutual inductance, and the parameter C S is Self capacitance, parameter C M is mutual capacitance, and parameter R is characteristic impedance.

為了進一步將上述之第一差動對DP1中的第一傳輸線DP1a對第二傳輸線DP1b造成的近端串音訊號Vnear 與遠端串音訊號Vfar 延伸至圖1中的第一差動對DP1以及第二差動對DP2彼此間的近端串音訊號以及遠端串音訊號干擾,以下將以圖5A與圖5B對差動對彼此間的近端以及遠端串音訊號干擾作詳細說明。To further extend the near- end crosstalk signal V near and the far-end crosstalk signal V far caused by the first transmission line DP1a in the first differential pair DP1 to the second transmission line DP1b to the first differential pair in FIG. The near-end crosstalk signal and the far-end crosstalk signal interference between the DP1 and the second differential pair DP2, the following will be detailed in FIG. 5A and FIG. 5B for the interference between the differential pair and the far-end crosstalk signal. Description.

圖5A為根據本發明之一實施例所繪示之圖1中印刷電路板10的剖面示意圖,圖5B為根據本發明之一實施例所繪示之以模擬軟體模擬圖1中的印刷電路板10產生的近端串音訊號/遠端串音訊號與差動對之間的水平距離的關係圖,請同時參照圖5A與圖5B。5A is a cross-sectional view of the printed circuit board 10 of FIG. 1 according to an embodiment of the invention, and FIG. 5B is a schematic diagram of the printed circuit board of FIG. 1 simulated by an analog software according to an embodiment of the invention. For the relationship between the generated near-end crosstalk signal/distal crosstalk signal and the horizontal distance between the differential pair, please refer to FIG. 5A and FIG. 5B simultaneously.

如圖5A所示,印刷電路板10包括第一差動對DP1以及第二差動對DP2,其中第一差動對DP1以及第二差動對DP2分別相同於圖1中的第一差動對DP1以及第二差動對DP2,故在此不再贅述。As shown in FIG. 5A, the printed circuit board 10 includes a first differential pair DP1 and a second differential pair DP2, wherein the first differential pair DP1 and the second differential pair DP2 are respectively identical to the first differential in FIG. DP1 and the second differential pair DP2 are not described here.

印刷電路板10的垂直剖面圖中包括多個參數,例如第一介質層的高度H1、第二介質層的高度H2、第三介質層的高度H3、傳輸線DP1a、DP1b、DP2a與DP2b的水平最大線寬W、傳輸線DP1a、DP1b、DP2a與DP2b的水平最大線寬與最小線寬的差值We、第一介質層介電材料係數Er1、第二介質層介電材料係數Er2、第三介質層介電材料係數Er3、第一介質層介電材料衰減係數Df1、第二介質層介電材料衰減係數Df2、第三介質層介電材料衰減係數Df3、傳輸線DP1a、DP1b、DP2a與DP2b的垂直線寬t、傳輸線DP1a與DP1b之間的水平間距S1、傳輸線DP2a與DP2b之間的水平間距S2以及第一差動對DP1與第二差動對DP2之間的水平間距D。The vertical cross-sectional view of the printed circuit board 10 includes a plurality of parameters, such as the height H1 of the first dielectric layer, the height H2 of the second dielectric layer, the height H3 of the third dielectric layer, and the maximum level of the transmission lines DP1a, DP1b, DP2a, and DP2b. Line width W, difference between horizontal maximum line width and minimum line width of transmission lines DP1a, DP1b, DP2a and DP2b We, first dielectric layer dielectric material coefficient Er1, second dielectric layer dielectric material coefficient Er2, third dielectric layer Dielectric material coefficient Er3, first dielectric layer dielectric material attenuation coefficient Df1, second dielectric layer dielectric material attenuation coefficient Df2, third dielectric layer dielectric material attenuation coefficient Df3, vertical lines of transmission lines DP1a, DP1b, DP2a and DP2b The width t, the horizontal spacing S1 between the transmission lines DP1a and DP1b, the horizontal spacing S2 between the transmission lines DP2a and DP2b, and the horizontal spacing D between the first differential pair DP1 and the second differential pair DP2.

在本實施例中,給定H1=10mil(千分之一英吋)、H2=4mil、H3=4mil、W1=W2=5mil、We=0、Er1=4.2、Er2=3.8、Er3=3.8、Df1=Df2=Df3=0.022、t=1.3mil、S1=S2=6.5mil以及d=0~20mil以作為HSPICE模擬時的環境參數,且本發明不以此為限。In the present embodiment, given H1=10 mil (thousandth of a mile), H2=4 mil, H3=4 mil, W1=W2=5 mil, We=0, Er1=4.2, Er2=3.8, Er3=3.8, Df1=Df2=Df3=0.022, t=1.3mil, S1=S2=6.5mil, and d=0~20mil are used as environmental parameters in the HSPICE simulation, and the invention is not limited thereto.

請接續參照圖5B,利用HSPICE以及圖5A中的多個參數以模擬印刷電路板10中的第一差動對DP1以及第二差動對DP2在不同的水平距離D(或水平間隔距離)下,觀察第一差動對DP1至第二差動對DP2的近端串音訊號Vd3d1_near 以及遠端串音訊號Vd4d1_far 的變化。其中,正方形圖示代表近端串音的訊號Vd3d1_near 的電壓準位,而菱形圖示代表選端串音訊號Vd4d1_far 的電壓準位。Referring to FIG. 5B, the HSPICE and the plurality of parameters in FIG. 5A are utilized to simulate the first differential pair DP1 and the second differential pair DP2 in the printed circuit board 10 at different horizontal distances D (or horizontal separation distances). Observing changes of the near-end crosstalk signal V d3d1_near and the far-end crosstalk signal V d4d1_far of the first differential pair DP1 to the second differential pair DP2. The square diagram represents the voltage level of the near-end crosstalk signal V d3d1_near , and the diamond diagram represents the voltage level of the selected end crosstalk signal V d4d1_far .

如圖5B所示,第一差動對DP1以及第二差動對DP2之間的水平距離D為零時,第一差動對DP1以及第二差動對DP2之間的近端串音訊號Vd3d1_near 以及遠端串音訊號Vd4d1_far 很大(約100mil)。當第一差動對DP1以及第二差動對DP2之間的水平距離D由零逐漸增加至10~10.1mil時,近端串音訊號Vd3d1_near 以及遠端串音訊號Vd4d1_far 逐漸變小。當第一差動對DP1以及第二差動對DP2之間的水平距離D為10~10.1mil時,近端串音訊號Vd3d1_near 以及遠端串音訊號Vd4d1_far 最小(趨近於零)。而當第一差動對DP1以及第二差動對DP2之間的水平距離D由10.1mil又逐漸增加時,近端串音訊號Vd3d1_near 以及遠端串音訊號Vd4d1_far 又逐漸變大。換言之,以圖5B來看,第一差動對DP1至第二差動對DP2之間最佳的水平距離D為10~10.1mil,因在此水平距離D下,近端串音訊號Vd3d1_near 以及遠端串音訊號Vd4d1_far 最小。As shown in FIG. 5B, when the horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is zero, the near-end crosstalk signal between the first differential pair DP1 and the second differential pair DP2 V d3d1_near and the far-end crosstalk signal V d4d1_far are large (about 100 mils ). When the horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is gradually increased from zero to 10~10.1 mil, the near-end crosstalk signal Vd3d1_near and the far-end crosstalk signal Vd4d1_far gradually become smaller. When the horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is 10~10.1 mil, the near-end crosstalk signal Vd3d1_near and the far-end crosstalk signal Vd4d1_far are the smallest (near zero). When the horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is gradually increased from 10.1 mil, the near-end crosstalk signal V d3d1_near and the far-end crosstalk signal V d4d1_far gradually become larger. In other words, as shown in FIG. 5B, the optimal horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is 10~10.1 mil, because at this horizontal distance D, the near-end crosstalk signal V d3d1_near And the far end crosstalk signal V d4d1_far is the smallest.

以下將延續上述推導之差模近端串音頻域轉移函數Sd3d1 以及差模遠端串音頻域轉移函數Sd4d1 ,繼續推導出近端串音時域轉移函數(差模近端串音時域轉移函數)以及遠端串音時域轉移函數(差模遠端串音時域轉移函數),請參照圖6A。The following derivation of the differential mode near-end string audio domain transfer function S d3d1 and the differential mode far-end string audio domain transfer function S d4d1 will continue to derive the near-end crosstalk time domain transfer function (differential mode near-end crosstalk time domain) The transfer function) and the far-end crosstalk time domain transfer function (differential mode far-end crosstalk time domain transfer function), please refer to FIG. 6A.

圖6A為根據本發明之一實施例所繪示之圖1中的印刷電路板10的第一差動對DP1與第二差動對DP2的RLGC等效電路圖。如圖6A所示,第一差動對DP1與第二差動對DP2的RLGC等效電路分別相同於圖4中的第一差動對DP1或第二差動對DP2的RLGC等效電路。FIG. 6A is a RLGC equivalent circuit diagram of a first differential pair DP1 and a second differential pair DP2 of the printed circuit board 10 of FIG. 1 according to an embodiment of the invention. As shown in FIG. 6A, the RLGC equivalent circuits of the first differential pair DP1 and the second differential pair DP2 are respectively identical to the RLGC equivalent circuit of the first differential pair DP1 or the second differential pair DP2 in FIG.

在本實施例中,首先依據圖3的實施例中用來轉換第一差動對DP1的近端的第一端點CP1對第二差動對DP2的近端的第三端點CP3造成的串音干擾的差模近端串音頻域轉移函數Sd3d1 或方程式(3-4),透過線性變換將第一差動對DP1的第一端點至第二差動對的第三端點之近端的串音轉移公式設為:In this embodiment, firstly, according to the embodiment of FIG. 3, the first endpoint CP1 for converting the near end of the first differential pair DP1 is caused by the third endpoint CP3 of the proximal end of the second differential pair DP2. The differential mode near-end string audio domain transfer function S d3d1 or equation (3-4) of the crosstalk interferes, by linear transformation, the first end of the first differential pair DP1 to the third end of the second differential pair The near-end crosstalk transfer formula is set to:

其中,Kb_d3d1 為在混合模式中第一差動對DP1的第一端點CP1至第二差動對DP2的第三端點CP3於近端的串音時域轉移函數,而Kbmn (例如,Kb51 、Kb71 、Kb53 以及Kb73 )為差模-共模模式中多條傳輸線之第n端點至第m端點於近端的串音時域係數,其中m、n為正整數。Where K b_d3d1 is the crosstalk time domain transfer function of the first end point CP1 of the first differential pair DP1 to the third end point CP3 of the second differential pair DP2 in the hybrid mode, and K bmn (for example , K b51 , K b71 , K b53 and K b73 ) are the crosstalk time domain coefficients of the nth end point to the mth end point of the plurality of transmission lines in the differential mode-common mode, wherein m and n are positive Integer.

在本發明之一實施例中,差模-共模模式中多條傳輸線之第n端點至第m端點於近端的串音時域係數Kbmn 為:In an embodiment of the present invention, the crosstalk time domain coefficient K bmn of the nth end point to the mth end point of the plurality of transmission lines in the differential mode-common mode is:

其中,參數LS 為第n端點至第m端點的自感、參數LM 為第n端點至第m端點的互感、參數CS 為第n端點至第m端點的自容以及參數CM 為第n端點至第m端點的互容,且m、n為正整數。Wherein, the parameter L S is the self-inductance of the nth end point to the mth end point, the parameter L M is the mutual inductance of the nth end point to the mth end point, and the parameter C S is the self of the nth end point to the mth end point. The capacitance and the parameter C M are mutual capacitances from the nth end to the mth end point, and m and n are positive integers.

另一方面,依據圖3的實施例中用來轉換第一差動對DP1的近端的第一端點CP1對第二差動對DP2的遠端的第四端點CP4造成的串音干擾的差模遠端串音頻域轉移函數Sd4d1 或方程式(3-5),透過線性變換將第一差動對DP1的第一端點至第二差動對DP2的第四端點之遠端的串音轉移公式設為:On the other hand, the crosstalk caused by the first endpoint CP1 for converting the near end of the first differential pair DP1 to the fourth endpoint CP4 of the far end of the second differential pair DP2 according to the embodiment of FIG. The differential mode far-end string audio domain transfer function S d4d1 or equation (3-5) transmits the first end of the first differential pair DP1 to the far end of the fourth end of the second differential pair DP2 by linear transformation The crosstalk transfer formula is set to:

其中,Kf_d4d1 為在混合模式中第一差動對DP1的第一端點CP1至第二差動對DP2的第四端點CP4於遠端的串音時域轉移函數,而Kfmn (例如,Kf61 、Kf81 、Kf63 以及Kf83 )為差模-共模模式中多條傳輸線之第n端點至第m端點於近端的串音時域係數,其中m、n為正整數。Where K f_d4d1 is a crosstalk time domain transfer function of the first end point CP1 of the first differential pair DP1 to the fourth end point CP4 of the second differential pair DP2 in the mixed mode, and K fmn (for example , K f61, K f81, K f63 and K f83) differential mode - a plurality of common mode in the n-th end of the transmission line to the m-end crosstalk at the proximal end of the time domain coefficients, where m, n are positive Integer.

在本發明之一實施例中,差模-共模模式中多條傳輸線之第n端點至第m端點於遠端的串音時域係數Kfmn 為:In an embodiment of the present invention, the crosstalk time domain coefficient K fmn of the nth end point to the mth end point of the plurality of transmission lines in the differential mode-common mode is:

請接續參照圖6B,圖6B為根據本發明之一實施例所繪示之近端串音時域轉移函數以及遠端串音時域轉移函數與圖1中印刷電路板10中的差動對之間的水平距離的關係圖,其中,正方形圖示代表近端的串音時域轉移函數Kb_d3d1 的值,而菱形圖示代表遠端的串音時域轉移函數Kf_d4d1 的值。Referring to FIG. 6B, FIG. 6B illustrates a near-end crosstalk time domain transfer function and a far-end crosstalk time domain transfer function and a differential pair in the printed circuit board 10 of FIG. 1 according to an embodiment of the invention. A horizontal distance relationship diagram in which the square representation represents the value of the near-end crosstalk time domain transfer function Kb_d3d1 and the diamond representation represents the value of the far end crosstalk time domain transfer function Kf_d4d1 .

在圖6B中,依據方程式(6-1)、(6-2)、(6-3)、(6-4)以及圖6A中第一差動對DP1與第二差動對DP2的RLGC等效電路的多個參數來計算印刷電路板10中的第一差動對DP1以及第二差動對DP2在不同的水平距離D(或水平間隔距離)下,於混合模式中第一差動對DP1的第一端點CP1至第二差動對DP2的第三端點CP3於近端的串音時域轉移函數Kb_d3d1 以及為在混合模式中第一差動對DP1的第一端點CP1至第二差動對DP2的第四端點CP4於遠端的串音時域轉移函數Kf_d4d1 的變化。In FIG. 6B, according to equations (6-1), (6-2), (6-3), (6-4), and RLGC of the first differential pair DP1 and the second differential pair DP2 in FIG. 6A, etc. The plurality of parameters of the circuit are used to calculate the first differential pair DP1 and the second differential pair DP2 in the printed circuit board 10 at different horizontal distances D (or horizontally spaced distances), the first differential pair in the hybrid mode The first end point CP1 of DP1 to the third end point CP3 of the second differential pair DP2 is at the near end of the crosstalk time domain transfer function K b_d3d1 and is the first end point CP1 of the first differential pair DP1 in the hybrid mode The change to the crosstalk time domain transfer function Kf_d4d1 at the far end of the fourth terminal CP4 of the second differential pair DP2.

請同時參照圖6A與圖6B,當第一差動對DP1以及第二差動對DP2之間的水平距離D為零時,計算出的Kb_d3d1 以及Kf_d4d1 的數值很大(Kb_d3d1 約為9×1010 ,Kf_d4d1 約為2×102 )。當第一差動對DP1以及第二差動對DP2之間的水平距離D由零逐漸增加至10~10.1mil時,計算出的Kb_d3d1 以及Kf_d4d1 則會逐漸變小。當第一差動對DP1以及第二差動對DP2之間的水平距離D為10~10.1mil時,計算出的Kb_d3d1 以及Kf_d4d1 最小(趨近於零)。而當第一差動對DP1以及第二差動對DP2之間的水平距離D由10.1mil逐漸增加時,計算出的Kb_d3d1 以及Kf_d4d1 又逐漸變大。Referring to FIG. 6A and FIG. 6B simultaneously, when the horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is zero, the calculated values of K b_d3d1 and K f_d4d1 are large (K b_d3d1 is approximately 9 × 10 10 , K f_d4d1 is about 2 × 10 2 ). When the horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is gradually increased from zero to 10 to 10.1 mil, the calculated K b_d3d1 and K f_d4d1 are gradually reduced. When the horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is 10 to 10.1 mil, the calculated K b_d3d1 and K f_d4d1 are the smallest (near zero). When the horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is gradually increased from 10.1 mil, the calculated K b_d3d1 and K f_d4d1 are gradually increased.

換言之,因為Kb_d3d1 正比於差模近端串音頻域轉移函數Sd3d1 ,且Kf_d4d1 正比於差模遠端串音頻域轉移函數Sd3d1 。亦即Kb_d3d1 越小,近端串音訊號Vd3d1_near 越小,而遠端串音訊號Vd4d1_far 越小,遠端串音訊號Vd4d1_far 同樣越小。因此,以圖6B來看,第一差動對DP1至第二差動對DP2之間最佳的水平距離D為10~10.1mil,因為D為10~10.1mil時,Kb_d3d1 以及Vd4d1_far 最小。In other words, since K b_d3d1 is proportional to the differential mode near-end string audio domain transfer function S d3d1 , and K f_d4d1 is proportional to the differential mode far-end string audio domain transfer function S d3d1 . That is, the smaller the K b_d3d1 is, the smaller the near-end crosstalk signal V d3d1_near is , and the smaller the far-end crosstalk signal V d4d1_far is, the smaller the far-end crosstalk signal V d4d1_far is. Therefore, as shown in FIG. 6B, the optimum horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is 10 to 10.1 mil, because when D is 10 to 10.1 mil, K b_d3d1 and V d4d1_far are minimum. .

請同時參照圖5B以及圖6B,值得一提的是,在圖5B以及圖6B中同時顯示,第一差動對DP1至第二差動對DP2之間最佳的水平距離D為10~10.1mil。更詳細的來看,在圖5B以及圖6B中,當第一差動對DP1以及第二差動對DP2之間的水平距離D為10mil時,遠端串音訊號Vd4d1_far 以及遠端的串音時域轉移函數Kf_d4d1 均最小;而當第一差動對DP1以及第二差動對DP2之間的水平距離D為10.1mil時,近端串音訊號Vd4d1_near 以及近端的串音時域轉移函數Kb_d4d1 均最小,故在對印刷電路板佈線的同時,可依據實際需求選擇不同的水平距離D,本發明並不以此為限。Referring to FIG. 5B and FIG. 6B at the same time, it is worth mentioning that, in FIG. 5B and FIG. 6B, the optimal horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is 10~10.1. Mil. In more detail, in FIG. 5B and FIG. 6B, when the horizontal distance D between the first differential pair DP1 and the second differential pair DP2 is 10 mil, the far-end crosstalk signal V d4d1_far and the far-end string whereas when the first differential pair DP1 and the second differential pair DP2 between the horizontal distance D is 10.1mil, near-end crosstalk and near-end signal V d4d1_near crosstalk; time-domain noise transfer function K f_d4d1 minimum average The domain transfer function K b_d4d1 is the smallest, so that different horizontal distances D can be selected according to actual needs while wiring the printed circuit board, and the invention is not limited thereto.

圖7為根據本發明之一實施例所繪示之印刷電路板的佈局方法的流程示意圖,請參照圖7。在圖7中,所述之印刷電路板的佈局方法起始於步驟S720。FIG. 7 is a schematic flow chart of a method for laying out a printed circuit board according to an embodiment of the invention. Please refer to FIG. 7. In FIG. 7, the layout method of the printed circuit board is started in step S720.

在步驟S720中,提供第一訊號層、第一介質層以及第二訊號層,其中第一介質層配置於第一訊號層與第二訊號層之間。In step S720, a first signal layer, a first dielectric layer and a second signal layer are provided, wherein the first dielectric layer is disposed between the first signal layer and the second signal layer.

在步驟S740中,依據第一訊號層、第一介質層、第二訊號層、第一差動對以及第二差動對的多個參數以計算水平距離。In step S740, a plurality of parameters of the first signal layer, the first medium layer, the second signal layer, the first differential pair, and the second differential pair are used to calculate a horizontal distance.

在步驟S760中,設置第一差動對以及第二差動對至第一訊號層及第二訊號層,其中第一差動對至第二差動對之間的水平間距為水平距離。在本發明之一實施例中,差動對之間最佳的水平距離為10~10.1mil,且本發明不以此為限。在本發明之一實施例中,差動對之間的水平距離亦可視情況需求調整。In step S760, the first differential pair and the second differential pair are disposed to the first signal layer and the second signal layer, wherein the horizontal interval between the first differential pair and the second differential pair is a horizontal distance. In an embodiment of the invention, the optimal horizontal distance between the differential pairs is 10 to 10.1 mil, and the invention is not limited thereto. In an embodiment of the invention, the horizontal distance between the differential pairs may also be adjusted as needed.

圖8為根據本發明之另一實施例所繪示之印刷電路板的佈局方法的流程示意圖。在圖8中,所述之方法印刷電路板的佈局方法起始於步驟S720。需注意的是,步驟S720以及S760分別與圖7中的步驟S720以及S760相同,故在此僅針對步驟S842以及S844作說明。FIG. 8 is a schematic flow chart of a method for laying out a printed circuit board according to another embodiment of the present invention. In FIG. 8, the method of laying out the printed circuit board of the method begins in step S720. It should be noted that steps S720 and S760 are the same as steps S720 and S760 in FIG. 7, respectively, and therefore only steps S842 and S844 are described herein.

在步驟S842中,依據第一訊號層、第一介質層、第二訊號層、第一差動對以及第二差動對的多個參數產生串音轉移公式以及串音時域轉移函數。In step S842, a crosstalk transfer formula and a crosstalk time domain transfer function are generated according to the plurality of parameters of the first signal layer, the first medium layer, the second signal layer, the first differential pair, and the second differential pair.

在本發明之一實施例中,產生串音轉移公式以及串音時域轉移函數的方法可以利用第一訊號層、第一介質層、第二訊號層、第一差動對以及第二差動對的多個參數以從多條傳輸線的任一端點之其一模擬輸入多個測試訊號,並取得這些傳輸線任一端點的多個感應訊號。依據測試訊號與感應訊號計算頻域轉移矩陣,以及將頻域轉移矩陣從差模-共模模式轉換為混合模式,以取得從任一端點至任一端點的串音轉移公式以及串音時域轉移函數。In an embodiment of the present invention, the method for generating a crosstalk transfer formula and a crosstalk time domain transfer function may utilize a first signal layer, a first medium layer, a second signal layer, a first differential pair, and a second differential The plurality of parameters of the pair inputs a plurality of test signals from one of the plurality of transmission lines, and obtains a plurality of sensing signals at either end of the transmission lines. Calculate the frequency domain transfer matrix based on the test signal and the inductive signal, and convert the frequency domain transfer matrix from the differential mode to the common mode to the mixed mode to obtain the crosstalk transfer formula from any end point to any end point and the crosstalk time domain. Transfer function.

請參照圖6,在本發明之一實施例中,第一差動對DP1的第一端點CP1至第二差動對DP2的第三端點CP3之近端的串音轉移公式為:Referring to FIG. 6, in an embodiment of the present invention, the crosstalk transfer formula of the near end of the first end point CP1 of the first differential pair DP1 to the third end point CP3 of the second differential pair DP2 is:

其中,Kb_d3d1 為在混合模式中第一差動對DP1的第一端點CP1至第二差動對DP2的第三端點CP3於近端的串音時域轉移函數,Kbmn 為差模-共模模式中多條傳輸線之第n端點至第m端點於近端的串音時域係數,m、n為正整數。而第一差動對DP1的第一端點CP1至第二差動對DP2的第四端點CP4之遠端的串音轉移公式為:Where K b_d3d1 is a crosstalk time domain transfer function of the first end point CP1 of the first differential pair DP1 to the third end point CP3 of the second differential pair DP2 in the hybrid mode, and K bmn is a differential mode - The crosstalk time domain coefficients of the nth end point to the mth end point of the plurality of transmission lines in the common mode, wherein m and n are positive integers. The crosstalk transfer formula of the first differential pair DP1 to the far end of the fourth endpoint CP4 of the second differential pair DP2 is:

其中,Kf_d4d1 為在混合模式中第一差動對DP1的第一端點CP1至第二差動對DP2的第四端點CP4於遠端的串音時域轉移函數,Kfmn 為差模-共模模式中多條傳輸線之第n端點至第m端點於遠端的串音時域係數,m、n為正整數。Where K f_d4d1 is a crosstalk time domain transfer function of the first end point CP1 of the first differential pair DP1 to the fourth end point CP4 of the second differential pair DP2 in the mixed mode, and K fmn is a differential mode - The crosstalk time domain coefficient of the nth end point to the mth end point of the plurality of transmission lines in the common mode, wherein m and n are positive integers.

在步驟S844中,依據串音轉移公式及串音時域轉移函數計算水平距離。In step S844, the horizontal distance is calculated according to the crosstalk transfer formula and the crosstalk time domain transfer function.

對於上述方法,由上述的實施例可獲得足夠的教示、建議與實施說明,在此不再贅述。For the above method, sufficient teaching, suggestion and implementation description can be obtained from the above embodiments, and details are not described herein again.

綜上所述,本發明所述之印刷電路板及其佈線方法透過數學模型及印刷電路板的相關參數,來計算印刷電路板中第一差動對至第二差動對之間的水平距離,並在進行電路佈局時將這兩個差動對的水平間距設置為計算求得的數值,藉以減少差動對/差模傳輸線之之間的串音干擾。In summary, the printed circuit board and the wiring method thereof according to the present invention calculate the horizontal distance between the first differential pair and the second differential pair in the printed circuit board through the mathematical model and the relevant parameters of the printed circuit board. And setting the horizontal spacing of the two differential pairs to the calculated value when performing circuit layout, thereby reducing crosstalk interference between the differential pair/differential mode transmission lines.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10...印刷電路板10. . . A printed circuit board

a1~a8...測試訊號A1~a8. . . Test signal

b1~b8...感應訊號B1~b8. . . Inductive signal

ac1~ac4...共模測試訊號Ac1~ac4. . . Common mode test signal

ad1~ad4...差模測試訊號Ad1~ad4. . . Differential mode test signal

bc1~bc4...共模感應訊號Bc1~bc4. . . Common mode sensing signal

bd1~bd4...差模感應訊號Bd1~bd4. . . Differential mode signal

CP1~CP4、P1~P8...端點CP1~CP4, P1~P8. . . End point

D...差動對之間的水平間距D. . . Horizontal spacing between differential pairs

Df1~Df3...介電材料衰減係數Df1~Df3. . . Dielectric material attenuation coefficient

DP1...第一差動對DP1. . . First differential pair

DP1a...第一傳輸線DP1a. . . First transmission line

DP1b...第二傳輸線DP1b. . . Second transmission line

DP2...第二差動對DP2. . . Second differential pair

DP2a...第三傳輸線DP2a. . . Third transmission line

DP2b...第四傳輸線DP2b. . . Fourth transmission line

Er1~Er3...介電材料係數Er1~Er3. . . Dielectric material coefficient

G1...第一接地層G1. . . First ground plane

G2...第二接地層G2. . . Second ground plane

H1~H3...介質層高度H1~H3. . . Dielectric layer height

ML1...第一介質層ML1. . . First dielectric layer

ML2...第二介質層ML2. . . Second dielectric layer

ML3...第三介質層ML3. . . Third dielectric layer

R...特徵組抗R. . . Characteristic group resistance

S1、S2...傳輸線之間的水平間距S1, S2. . . Horizontal spacing between transmission lines

t...傳輸線垂直高度t. . . Transmission line vertical height

Vinput ...輸入訊號V input . . . Input signal

Vnear ...近端串音訊號V near . . . Near-end crosstalk signal

Vfar ...遠端串音訊號V far . . . Far-end crosstalk signal

W1、W2...傳輸線寬度W1, W2. . . Transmission line width

We...傳輸線寬度差值We. . . Transmission line width difference

X...傳輸線長度X. . . Transmission line length

圖1是根據本發明之一實施例所繪示之印刷電路板示意圖。1 is a schematic diagram of a printed circuit board in accordance with an embodiment of the present invention.

圖2為根據本發明之一實施例所繪示之差模-共模模式下圖1中的印刷電路板的另一示意圖。2 is another schematic diagram of the printed circuit board of FIG. 1 in a differential mode-common mode according to an embodiment of the invention.

圖3為根據本發明之一實施例所繪示之混合模式下的印刷電路板的示意圖。3 is a schematic diagram of a printed circuit board in a hybrid mode according to an embodiment of the invention.

圖4為根據本發明之一實施例所繪示之圖1中的印刷電路板的第一差動對或第二差動對的RLGC等效電路圖。4 is a RLGC equivalent circuit diagram of a first differential pair or a second differential pair of the printed circuit board of FIG. 1 in accordance with an embodiment of the present invention.

圖5A為根據本發明之一實施例所繪示之圖1中印刷電路板的垂直剖面示意圖。FIG. 5A is a vertical cross-sectional view of the printed circuit board of FIG. 1 according to an embodiment of the invention.

圖5B為根據本發明之一實施例所繪示之以模擬軟體模擬圖1中的印刷電路板產生的近端串音訊號以及遠端串音訊號與差動對之間的水平距離的關係圖。FIG. 5B is a diagram showing the relationship between the near-end crosstalk signal generated by the analog circuit simulation of the printed circuit board of FIG. 1 and the horizontal distance between the far-end crosstalk signal and the differential pair, according to an embodiment of the invention. .

圖6A為根據本發明之一實施例所繪示之圖1中的印刷電路板的第一差動對與第二差動對的RLGC等效電路圖。6A is an RLGC equivalent circuit diagram of a first differential pair and a second differential pair of the printed circuit board of FIG. 1 according to an embodiment of the invention.

圖6B為根據本發明之一實施例所繪示之近端串音時域轉移函數以及遠端串音時域轉移函數與圖1中印刷電路板10中的差動對之間的水平距離的關係圖。6B illustrates the horizontal distance between the near-end crosstalk time domain transfer function and the far-end crosstalk time domain transfer function and the differential pair in the printed circuit board 10 of FIG. 1 in accordance with an embodiment of the present invention. relation chart.

圖7為根據本發明之一實施例所繪示之印刷電路板的佈局方法的流程示意圖。FIG. 7 is a schematic flow chart of a method for laying out a printed circuit board according to an embodiment of the invention.

圖8為根據本發明之另一實施例所繪示之印刷電路板的佈局方法的流程示意圖。FIG. 8 is a schematic flow chart of a method for laying out a printed circuit board according to another embodiment of the present invention.

10...印刷電路板10. . . A printed circuit board

DP1...第一差動對DP1. . . First differential pair

DP1a...第一傳輸線DP1a. . . First transmission line

DP1b...第二傳輸線DP1b. . . Second transmission line

DP2...第二差動對DP2. . . Second differential pair

DP2a...第三傳輸線DP2a. . . Third transmission line

DP2b...第四傳輸線DP2b. . . Fourth transmission line

G1...第一接地層G1. . . First ground plane

G2...第二接地層G2. . . Second ground plane

ML1...第一介質層ML1. . . First dielectric layer

ML2...第二介質層ML2. . . Second dielectric layer

ML3...第三介質層ML3. . . Third dielectric layer

D...水平距離D. . . Horizontal distance

Claims (8)

一種印刷電路板的佈局方法,包括:提供一第一訊號層、一第一介質層以及一第二訊號層,其中該第一介質層配置於該第一訊號層與該第二訊號層之間;依據該第一訊號層、該第一介質層、該第二訊號層、一第一差動對以及一第二差動對的多個參數以計算一水平距離,其中該些參數包括該第一介質層、該第一訊號層至一第一接地層之間的一第二介質層以及該第二訊號層至一第二接地層之間的一第三介質層的高度、該第一介質層、該第二介質層以及該第三介質層的介電材料係數與介電材料衰減係數、該第一差動對以及該第二差動對中兩條傳輸線各自的線寬以及兩條傳輸線之間的水平間距;以及依據該水平距離設置該第一差動對以及該第二差動對至該第一訊號層及該第二訊號層,其中該第一差動對至該第二差動對之間的水平間距為該水平距離。A method for arranging a printed circuit board includes: providing a first signal layer, a first dielectric layer, and a second signal layer, wherein the first dielectric layer is disposed between the first signal layer and the second signal layer Calculating a horizontal distance according to the plurality of parameters of the first signal layer, the first dielectric layer, the second signal layer, a first differential pair, and a second differential pair, wherein the parameters include the first a dielectric layer, a second dielectric layer between the first signal layer and a first ground layer, and a third dielectric layer between the second signal layer and a second ground layer, the first medium The dielectric material coefficient of the layer, the second dielectric layer and the third dielectric layer and the dielectric material attenuation coefficient, the first differential pair, and the respective line widths of the two transmission lines of the second differential pair and the two transmission lines a horizontal spacing therebetween; and setting the first differential pair and the second differential pair to the first signal layer and the second signal layer according to the horizontal distance, wherein the first differential pair to the second difference The horizontal distance between the moving pairs is the horizontal distance. 如申請專利範圍第1項所述之佈局方法,計算該水平距離包括下列步驟:依據該第一訊號層、該第一介質層、該第二訊號層、該第一差動對以及該第二差動對的該些參數產生一串音轉移公式以及一串音時域轉移函數;以及依據該串音轉移公式及該串音時域轉移函數計算該水平距離。The method of claim 1, wherein calculating the horizontal distance comprises: following the first signal layer, the first dielectric layer, the second signal layer, the first differential pair, and the second The parameters of the differential pair generate a crosstalk transfer formula and a crosstalk time domain transfer function; and calculate the horizontal distance according to the crosstalk transfer formula and the crosstalk time domain transfer function. 如申請專利範圍第2項所述之佈局方法,其中該第一差動對與該第二差動對分別包括兩條傳輸線,並且,產生該串音轉移公式包括下列步驟:依據該第一訊號層、該第一介質層、該第二訊號層、該第一差動對以及該第二差動對的該些參數以從該些傳輸線的任一端點之其一模擬輸入多個測試訊號,並取得該些傳輸線任一端點的多個感應訊號;依據該些測試訊號與該些感應訊號計算一頻域轉移矩陣;以及將該頻域轉移矩陣從一差模-共模模式轉換為一混合模式,以取得從任一端點至任一端點的該串音轉移公式。The layout method of claim 2, wherein the first differential pair and the second differential pair respectively comprise two transmission lines, and generating the crosstalk transfer formula comprises the following steps: according to the first signal The parameters of the layer, the first dielectric layer, the second signal layer, the first differential pair, and the second differential pair are input to a plurality of test signals from one of the endpoints of the transmission lines. And obtaining a plurality of sensing signals of any one of the end points of the transmission lines; calculating a frequency domain transfer matrix according to the test signals and the sensing signals; and converting the frequency domain transfer matrix from a differential mode to a common mode to a hybrid Pattern to get the crosstalk transfer formula from either endpoint to either endpoint. 如申請專利範圍第3項所述之佈局方法,其中該第一差動對在混合模式中具有近端的一第1端第一端點以及遠端的一第二端點,該第二差動對在混合模式中具有近端的一第三端點以及遠端的一第四端點,且該第一差動對在差模-共模模式中具有第1端第一端點及第二端點的一第一傳輸線、具有第三端點及第四端點的一第二傳輸線,該第二差動對在差模-共模模式中具有第五端點及第六端點的一第三傳輸線、具有第七端點及第八端點的一第四傳輸線,並且,該第一差動對的該第一端點至該第二差動對的該第三端點之近端的該串音轉移公式為: 其中,Kb_d3d1 為在混合模式中該第一差動對的該第一端點至該第二差動對的該第三端點於近端的串音時域轉移函數,Kbmn 為差模-共模模式中該些傳輸線之第n端點至第m端點於近端的一串音時域係數,m、n為正整數。The layout method of claim 3, wherein the first differential pair has a first end of the first end and a second end of the far end in the hybrid mode, the second difference Moving a third end point having a near end in the mixed mode and a fourth end point of the far end, and the first differential pair has the first end of the first end and the first end in the differential mode-common mode a first transmission line of the two endpoints, a second transmission line having a third end point and a fourth end point, the second differential pair having a fifth end point and a sixth end point in the differential mode-common mode a third transmission line, a fourth transmission line having a seventh end point and an eighth end point, and the first end point of the first differential pair to the third end point of the second differential pair The crosstalk transfer formula at the end is: Where K b_d3d1 is a near-end crosstalk time domain transfer function of the first end point of the first differential pair to the third end of the second differential pair in the mixed mode, and K bmn is a differential mode a cross-talk time domain coefficient of the near-end from the nth end to the mth end of the transmission line in the common mode, where m and n are positive integers. 如申請專利範圍第4項所述之佈局方法,其中差模-共模模式中該些傳輸線之第n端點至第m端點於近端的該串音時域係數為: 其中,LS 為第n端點至第m端點的自感、LM 為第n端點至第m端點的互感、CS 為第n端點至第m端點的自容,且LM 為第n端點至第m端點的互容。The layout method of claim 4, wherein the crosstalk time domain coefficients of the nth end point to the mth end point of the transmission lines in the differential mode-common mode are: Wherein, L S is a self-inductance from the nth end to the mth end point, L M is a mutual inductance of the nth end point to the mth end point, and C S is a self-capacity of the nth end point to the mth end point, and L M is the mutual capacitance of the nth endpoint to the mth endpoint. 如申請專利範圍第4項所述之佈局方法,其中該第一差動對的該第一端點至該第二差動對的該第四端點之遠端的該串音轉移公式為: 其中,Kf_d4d1 為在混合模式中該第一差動對的該第一端點至該第二差動對的該第四端點於遠端的串音時域轉移函數,Kfmn 為差模-共模模式中該些傳輸線之第n端點至第m端點於遠端的一串音時域係數。The layout method of claim 4, wherein the crosstalk transfer formula of the first end point of the first differential pair to the far end of the fourth end point of the second differential pair is: Where K f_d4d1 is a crosstalk time domain transfer function of the first end point of the first differential pair to the far end of the second differential pair in the mixed mode, K fmn is a differential mode a cross-talk time domain coefficient at the far end from the nth end to the mth end of the transmission lines in the common mode. 如申請專利範圍第6項所述之佈局方法,其中差模-共模模式中該些傳輸線之第n端點至第m端點於遠端的該串音時域係數為: The layout method according to claim 6, wherein the crosstalk time domain coefficients of the nth end point to the mth end point of the transmission lines at the far end in the differential mode-common mode are: 一種印刷電路板,包括:一第一訊號層,包括一第一差動對;一第二訊號層,包括一第二差動對;以及一第一介質層,配置於該第一訊號層與該第二訊號層之間,其中,該第一差動對至該第二差動對之間的水平間距為一水平距離,且該水平距離由該第一訊號層、該第一介質層、該第二訊號層、該第一差動對以及該第二差動對的多個參數計算得之,其中該些參數包括該第一介質層、該第一訊號層至一第一接地層之間的一第二介質層以及該第二訊號層至一第二接地層之間的一第三介質層的高度、該第一介質層、該第二介質層以及該第三介質層的介電材料係數與介電材料衰減係數、該第一差動對以及該第二差動對中兩條傳輸線各自的線寬以及兩條傳輸線之間的水平間距。A printed circuit board comprising: a first signal layer comprising a first differential pair; a second signal layer comprising a second differential pair; and a first dielectric layer disposed on the first signal layer Between the second signal layers, wherein a horizontal distance between the first differential pair and the second differential pair is a horizontal distance, and the horizontal distance is from the first signal layer, the first dielectric layer, The second signal layer, the first differential pair, and the plurality of parameters of the second differential pair are calculated, wherein the parameters include the first dielectric layer, the first signal layer, and a first ground layer a second dielectric layer and a third dielectric layer between the second signal layer and a second ground layer, a dielectric of the first dielectric layer, the second dielectric layer, and the third dielectric layer a material coefficient and a dielectric material attenuation coefficient, a first differential pair, and a line width of each of the two transmission lines in the second differential pair and a horizontal spacing between the two transmission lines.
TW101110605A 2012-03-27 2012-03-27 Priented circuit board and layout method thereof TWI452481B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101110605A TWI452481B (en) 2012-03-27 2012-03-27 Priented circuit board and layout method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101110605A TWI452481B (en) 2012-03-27 2012-03-27 Priented circuit board and layout method thereof

Publications (2)

Publication Number Publication Date
TW201339874A TW201339874A (en) 2013-10-01
TWI452481B true TWI452481B (en) 2014-09-11

Family

ID=49770919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101110605A TWI452481B (en) 2012-03-27 2012-03-27 Priented circuit board and layout method thereof

Country Status (1)

Country Link
TW (1) TWI452481B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10607951B2 (en) * 2015-12-26 2020-03-31 Intel Corporation Ground plane vertical isolation of, ground line coaxial isolation of, and impedance tuning of horizontal data signal transmission lines routed through package devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614662B2 (en) * 2000-12-14 2003-09-02 Hewlett-Packard Development Company, L.P. Printed circuit board layout
US6876836B2 (en) * 2002-07-25 2005-04-05 Integrated Programmable Communications, Inc. Layout of wireless communication circuit on a printed circuit board
TWI320297B (en) * 2005-07-01 2010-02-01 Transmission line layout configuration of printed circuit board
TW201125448A (en) * 2010-01-11 2011-07-16 Hon Hai Prec Ind Co Ltd Printed circuit board and layout method thereof
TWI351626B (en) * 2007-05-31 2011-11-01 Inventec Corp Method and system for processing layout on printed
TW201141332A (en) * 2010-05-12 2011-11-16 Hon Hai Prec Ind Co Ltd Printed circuit board and layout method thereof
TW201205323A (en) * 2010-07-22 2012-02-01 Hon Hai Prec Ind Co Ltd Printed circuit board layout system and method for of printed circuit board layout

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614662B2 (en) * 2000-12-14 2003-09-02 Hewlett-Packard Development Company, L.P. Printed circuit board layout
US6876836B2 (en) * 2002-07-25 2005-04-05 Integrated Programmable Communications, Inc. Layout of wireless communication circuit on a printed circuit board
TWI320297B (en) * 2005-07-01 2010-02-01 Transmission line layout configuration of printed circuit board
TWI351626B (en) * 2007-05-31 2011-11-01 Inventec Corp Method and system for processing layout on printed
TW201125448A (en) * 2010-01-11 2011-07-16 Hon Hai Prec Ind Co Ltd Printed circuit board and layout method thereof
TW201141332A (en) * 2010-05-12 2011-11-16 Hon Hai Prec Ind Co Ltd Printed circuit board and layout method thereof
TW201205323A (en) * 2010-07-22 2012-02-01 Hon Hai Prec Ind Co Ltd Printed circuit board layout system and method for of printed circuit board layout

Also Published As

Publication number Publication date
TW201339874A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
US8022309B2 (en) Flexible printed circuit board
JP5650974B2 (en) Ceramic package and method and computer program for reducing coupling noise in ceramic package and controlling impedance discontinuity (noise coupling reduction and impedance discontinuity control in high-speed ceramic modules)
US7781680B2 (en) Flexible printed circuit board
US20110030997A1 (en) Flexible printed circuit board
KR20140092212A (en) Printed circuit board and manufacturing method of printed circuit board
WO2013181860A1 (en) Display panel, flat-panel display device and driving method thereof
US20090260859A1 (en) Flexible printed circuit board
TWI452481B (en) Priented circuit board and layout method thereof
Chen et al. Differential crosstalk mitigation in the pin field area of serdes channel with trace routing guidance
CN104102797A (en) PCB (printed circuit board) layout design method reducing differential crosstalk
TWI520026B (en) Touch panel and manufacturing method thereof and touch display panel
US11189581B2 (en) Electronic device including semiconductor package including package ball
CN115329712A (en) PCB (printed circuit board) routing generation method, device and equipment and server board card
US7504587B2 (en) Parallel wiring and integrated circuit
CN205961559U (en) Printed circuit board , printing assembly plate and electronic equipment with differential signal line
CN211240263U (en) Rigid-flex board and electronic equipment comprising same
CN105117548A (en) Differential line layout method suitable for DUAL STRIPLINE design
TW201244577A (en) Printed circuit board
JP2005101587A (en) Parallel wiring and integrated circuit
EP1568099B1 (en) A circuit that taps a differential signal
Mnaouer et al. Modeling of microstrip and PCB traces to enhance crosstalk reduction
US20090283892A1 (en) Design method of semiconductor package substrate
JP5506584B2 (en) Printed circuit board
Xiao et al. Inter-layer crosstalk management in differential dual-striplines
Chen PCB microstrip line far-end crosstalk mitigation by surface mount capacitors

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees