TWI452282B - A molecule carrier used for single molecule detection - Google Patents

A molecule carrier used for single molecule detection Download PDF

Info

Publication number
TWI452282B
TWI452282B TW100100547A TW100100547A TWI452282B TW I452282 B TWI452282 B TW I452282B TW 100100547 A TW100100547 A TW 100100547A TW 100100547 A TW100100547 A TW 100100547A TW I452282 B TWI452282 B TW I452282B
Authority
TW
Taiwan
Prior art keywords
molecular carrier
substrate
single molecule
molecule detection
dimensional
Prior art date
Application number
TW100100547A
Other languages
Chinese (zh)
Other versions
TW201229490A (en
Inventor
Zheng-Dong Zhu
Qun-Qing Li
li-hui Zhang
Mo Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW100100547A priority Critical patent/TWI452282B/en
Publication of TW201229490A publication Critical patent/TW201229490A/en
Application granted granted Critical
Publication of TWI452282B publication Critical patent/TWI452282B/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

用於單分子檢測的分子載體 Molecular carrier for single molecule detection

本發明涉及一種用於單分子檢測的分子載體。 The present invention relates to a molecular carrier for single molecule detection.

單分子檢測(Single Molecule Detection,SMD)技術有別於一般之常規檢測技術,觀測到的為單個分子之個體行為,單分子檢測技術在環境安全、生物技術、感測器、食品安全等領域應用廣泛。單分子檢測達到分子探測之極限,為人們長期以來追求之目標。與傳統的分析方法相比,單分子檢測法研究體系處於非平衡狀態下的個體行為或平衡狀態下之波動行為因此特別適合研究化學及生化反應動力學、生物分子之相互作用、結構與功能資訊、重大疾病早期診斷、病理研究及高通量藥物篩選等。 Single Molecule Detection (SMD) technology is different from general conventional detection technology, and the individual behavior of single molecules is observed. Single molecule detection technology is applied in the fields of environmental safety, biotechnology, sensors, food safety, etc. widely. Single molecule detection has reached the limit of molecular detection and has long been the goal pursued by people. Compared with the traditional analytical methods, the single-molecule detection system is in a non-equilibrium state of individual behavior or fluctuation behavior under equilibrium. Therefore, it is particularly suitable for studying chemical and biochemical reaction kinetics, biomolecular interaction, structure and function information. Early diagnosis of major diseases, pathological research and high-throughput drug screening.

目前,已知有許多方法用於單分子檢測,而分子載體之結構對單分子檢測技術發展及檢測結果起著十分重要之影響作用。先前技術中之複數種單分子檢測方法中,分子載體結構係將膠體銀塗覆在玻璃表面,銀顆粒通過膠體黏附於玻璃表面,然後將所述黏附有銀顆粒的玻璃經過超聲波洗滌,在玻璃表面形成分散的銀顆粒,形成分子載體。然後將待測物分子設置於分子載體表面,通過拉曼檢測系統向其分子載體上的待測物分子提供鐳射光輻射。鐳射光中的光子與待測物分子發生碰撞,從而改變光子的方向,產 生拉曼散射。另外,光子與待測物分子發生能量交換,改變了光子的能量和頻率,使該光子具有待測物分子的結構資訊。通過感測器接收來自待測物分子的輻射訊號,形成拉曼圖譜,利用電腦對所述待測物分子進行分析。 At present, many methods are known for single molecule detection, and the structure of molecular carriers plays an important role in the development of single molecule detection technology and detection results. In the plurality of single molecule detection methods in the prior art, the molecular carrier structure coats the colloidal silver on the surface of the glass, the silver particles adhere to the surface of the glass through the colloid, and then the glass to which the silver particles are adhered is ultrasonically washed in the glass. The surface forms dispersed silver particles to form a molecular carrier. The analyte molecule is then placed on the surface of the molecular carrier to provide laser light radiation to the analyte molecule on its molecular support by a Raman detection system. The photons in the laser light collide with the molecules of the analyte, thereby changing the direction of the photons. Raw Raman scattering. In addition, the energy exchange between the photon and the molecule of the analyte changes the energy and frequency of the photon, so that the photon has structural information of the molecule of the analyte. The radiation signal from the molecule of the analyte is received by the sensor to form a Raman spectrum, and the molecule of the analyte is analyzed by a computer.

然而,先前技術中,由於所述玻璃的表面為一平整的平面結構,產生的拉曼散射訊號不夠強,從而使所述單分子檢測的解析度低,不適用於低濃度及微量樣品的檢測,從而應用範圍受到限制。 However, in the prior art, since the surface of the glass is a flat planar structure, the generated Raman scattering signal is not strong enough, so that the resolution of the single molecule detection is low, and is not suitable for detection of low concentration and micro sample. Therefore, the scope of application is limited.

有鑒於此,提供一種能提高單分子檢測解析度的分子載體實為必要。 In view of this, it is necessary to provide a molecular carrier capable of improving the resolution of single molecule detection.

一種用於單分子檢測的分子載體,其包括一基底,其中,所述基底一表面設置有複數三維奈米結構及一金屬層包覆於三維奈米結構表面及相鄰三維奈米結構之間基底的表面。 A molecular carrier for single molecule detection, comprising a substrate, wherein a surface of the substrate is provided with a plurality of three-dimensional nanostructures and a metal layer is coated between the surface of the three-dimensional nanostructure and the adjacent three-dimensional nanostructure The surface of the substrate.

相較於先前技術,本發明通過設置金屬層,在外界入射光電磁場的激發下,金屬表面電漿發生共振,而由於金屬層設置在三維奈米結構表面,可起到表面增強拉曼散射(SERS)的作用,使得輻射訊號增強,從而可以提高單分子檢測的解析度及準確度。 Compared with the prior art, the present invention resonates the metal surface plasma by the metal layer under the excitation of the external incident photoelectric field, and the surface layer enhances the Raman scattering because the metal layer is disposed on the surface of the three-dimensional nanostructure ( The role of SERS) is to enhance the radiation signal, which can improve the resolution and accuracy of single molecule detection.

10,20,30,40,50‧‧‧分子載體 10,20,30,40,50‧‧‧Molecular carrier

100,200,300,400,500‧‧‧基底 100,200,300,400,500‧‧‧Base

101,201,301,401,501‧‧‧金屬層 101,201,301,401,501‧‧‧metal layer

1001‧‧‧母板 1001‧‧ Motherboard

102,202,302,402,502‧‧‧三維奈米結構 102,202,302,402,502‧‧‧Three-dimensional nanostructure

108‧‧‧掩膜層 108‧‧‧ mask layer

110‧‧‧反應性蝕刻氣體 110‧‧‧Reactive etching gas

404‧‧‧第一圓柱 404‧‧‧First cylinder

406‧‧‧第二圓柱 406‧‧‧second cylinder

504‧‧‧第一圓柱空間 504‧‧‧First cylindrical space

506‧‧‧第二圓柱空間 506‧‧‧Second cylindrical space

圖1為本發明第一實施例提供的分子載體的結構示意圖。 FIG. 1 is a schematic structural view of a molecular carrier according to a first embodiment of the present invention.

圖2為本發明第一實施例提供的分子載體沿Ⅱ-Ⅱ方向的剖視圖。 2 is a cross-sectional view of the molecular carrier according to the first embodiment of the present invention taken along the line II-II.

圖3為本發明第一實施例提供的半球狀三維奈米結構陣列的掃描電鏡照片。 3 is a scanning electron micrograph of a hemispherical three-dimensional nanostructure array according to a first embodiment of the present invention.

圖4為本發明第一實施例提供的分子載體中包括複數圖案的三維 奈米結構陣列的結構示意圖。 4 is a three-dimensional diagram including a plurality of patterns in a molecular carrier according to a first embodiment of the present invention; Schematic diagram of the structure of the nanostructure array.

圖5為本發明應用分子載體的單分子檢測方法的流程圖。 Figure 5 is a flow chart of a single molecule detection method using a molecular carrier of the present invention.

圖6為本發明第一實施例提供的分子載體中三維奈米結構的製備流程示意圖。 FIG. 6 is a schematic diagram showing the preparation process of a three-dimensional nanostructure in a molecular carrier according to a first embodiment of the present invention.

圖7為在基底表面六角形密堆排布之單層奈米微球的掃描電鏡照片。 Figure 7 is a scanning electron micrograph of a single layer of nanospheres arranged in a hexagonal close-packed surface on the surface of the substrate.

圖8為本發明第二實施例提供的半橢球狀三維奈米結構陣列的掃描電鏡照片。 FIG. 8 is a scanning electron micrograph of a semi-ellipsoidal three-dimensional nanostructure array according to a second embodiment of the present invention.

圖9為本發明第二實施例提供的半橢球狀三維奈米結構陣列的剖面示意圖。 FIG. 9 is a cross-sectional view showing a semi-ellipsoidal three-dimensional nanostructure array according to a second embodiment of the present invention.

圖10為本發明第三實施例提供的倒金字塔狀三維奈米結構陣列的掃描電鏡照片。 FIG. 10 is a scanning electron micrograph of an inverted pyramidal three-dimensional nanostructure array according to a third embodiment of the present invention.

圖11為本發明第三實施例提供的倒金字塔狀三維奈米結構陣列的剖面示意圖。 FIG. 11 is a cross-sectional view showing an inverted pyramidal three-dimensional nanostructure array according to a third embodiment of the present invention.

圖12為本發明分子載體中不同三維奈米結構用於檢測若丹明分子時得到的拉曼光譜。 Figure 12 is a diagram showing the Raman spectrum obtained when different three-dimensional nanostructures are used for the detection of rhodamine molecules in the molecular carrier of the present invention.

圖13為本發明第四實施例提供的雙層圓柱狀三維奈米結構陣列的掃描電鏡照片。 FIG. 13 is a scanning electron micrograph of a double-layered cylindrical three-dimensional nanostructure array according to a fourth embodiment of the present invention.

圖14為本發明第四實施例提供的分子載體的結構示意圖。 FIG. 14 is a schematic structural view of a molecular carrier according to a fourth embodiment of the present invention.

圖15為本發明第四實施例提供的分子載體沿ⅩⅤ-ⅩⅤ方向的剖視圖。 Figure 15 is a cross-sectional view of the molecular carrier in the XV-XV direction according to a fourth embodiment of the present invention.

圖16為本發明第五實施例提供的分子載體的結構示意圖。 Figure 16 is a schematic view showing the structure of a molecular carrier according to a fifth embodiment of the present invention.

圖17為本發明第五實施例提供的分子載體沿ⅩⅦ-ⅩⅦ的剖視圖。 Figure 17 is a cross-sectional view of the molecular carrier according to a fifth embodiment of the present invention taken along XVII-XVII.

下面將結合附圖及具體實施例對本發明作進一步的詳細說明。 The invention will be further described in detail below with reference to the drawings and specific embodiments.

請參閱圖1、圖2及圖3,本發明第一實施例提供一種用於單分子檢測的分子載體10,所述分子載體10包括一基底100、形成於基底100表面的複數三維奈米結構102及設置於所述三維奈米結構102表面及相鄰三維奈米結構102之間的基底100表面的金屬層101。 Referring to FIG. 1 , FIG. 2 and FIG. 3 , a first embodiment of the present invention provides a molecular carrier 10 for single molecule detection, the molecular carrier 10 comprising a substrate 100 and a plurality of three-dimensional nanostructures formed on the surface of the substrate 100 . 102 and a metal layer 101 disposed on a surface of the substrate 100 between the surface of the three-dimensional nanostructure 102 and the adjacent three-dimensional nanostructures 102.

所述基底100可為絕緣基底或半導體基底。具體地,所述基底100的材料可為矽、二氧化矽、氮化矽、石英、玻璃、氮化鎵、砷化鎵、藍寶石、氧化鋁或氧化鎂等。所述基底100的形狀不限,只需具有兩個相對設置的平面即可,本實施例中,所述基底100的形狀為一平板狀。所述基底100的大小、厚度不限,可根據實際單分子檢測的需要選擇。本實施例中,所述基底100的材料為二氧化矽。 The substrate 100 can be an insulating substrate or a semiconductor substrate. Specifically, the material of the substrate 100 may be tantalum, cerium oxide, tantalum nitride, quartz, glass, gallium nitride, gallium arsenide, sapphire, aluminum oxide or magnesium oxide. The shape of the substrate 100 is not limited, and only needs to have two oppositely disposed planes. In the embodiment, the shape of the substrate 100 is a flat shape. The size and thickness of the substrate 100 are not limited and can be selected according to the needs of actual single molecule detection. In this embodiment, the material of the substrate 100 is cerium oxide.

所述三維奈米結構102設置於所述基底100的一表面。該三維奈米結構102與基底100為一體成型結構。所述三維奈米結構102的結構類型不限,可為凸起結構或凹陷結構。所述凸起結構為從所述基底100的表面向外延伸出的突起的實體,所述凹陷結構為從所述基底100的表面向內凹入形成凹進的空間。所述三維奈米結構102的結構類型可根據實際需求及實驗條件控制。如圖3所示,本 實施例中,所述三維奈米結構102為一半球狀的凸起結構,所述半球狀三維奈米結構102的直徑為30奈米~1000奈米,高度為50奈米~1000奈米。優選地,所述半球狀凸起結構的底面直徑為50奈米~200奈米,高度為100奈米~500奈米。所述相鄰的每兩個半球狀凸起結構之間的距離相等,可為0奈米~50奈米。所述兩個半球狀凸起結構之間的距離係指所述半球狀凸起結構的底面之間的距離,所述半球狀凸起結構之間的距離為零奈米係指所述兩個半球狀凸起結構相切,其底面緊密相連,中間沒有間隔。本實施例中,所述半球狀三維奈米結構102之間的距離為10奈米。 The three-dimensional nanostructure 102 is disposed on a surface of the substrate 100. The three-dimensional nanostructure 102 and the substrate 100 are integrally formed. The structure of the three-dimensional nanostructure 102 is not limited and may be a convex structure or a concave structure. The raised structure is a solid of protrusions extending outward from a surface of the substrate 100, the recessed structure being recessed inwardly from a surface of the substrate 100 to form a recessed space. The structure type of the three-dimensional nanostructure 102 can be controlled according to actual needs and experimental conditions. As shown in Figure 3, this In the embodiment, the three-dimensional nanostructure 102 is a semi-spherical convex structure having a diameter of 30 nm to 1000 nm and a height of 50 nm to 1000 nm. Preferably, the hemispherical convex structure has a bottom surface diameter of 50 nm to 200 nm and a height of 100 nm to 500 nm. The distance between each adjacent two hemispherical convex structures is equal, and may be 0 nm to 50 nm. The distance between the two hemispherical convex structures refers to the distance between the bottom surfaces of the hemispherical convex structures, and the distance between the hemispherical convex structures is zero nanometer refers to the two The hemispherical convex structure is tangent, and the bottom surfaces thereof are closely connected with no spaces in between. In this embodiment, the distance between the hemispherical three-dimensional nanostructures 102 is 10 nm.

所述複數三維奈米結構102在基底100一表面以陣列形式設置。所述陣列形式設置指所述複數三維奈米結構102可以按照等間距行列式排布、同心圓環排布或六角形密堆排布等方式排列。而且,所述複數三維奈米結構102以陣列形式排布形成一或複數相互間隔的單一圖案。所述單一圖案可為三角形、平行四邊形、體形、菱形、方形、矩形或圓形等。如圖4所示,所述三維奈米結構102以陣列形式形成四個不同的圖案。 The plurality of three-dimensional nanostructures 102 are disposed in an array on a surface of the substrate 100. The array form arrangement means that the plurality of three-dimensional nanostructures 102 can be arranged in an equidistant determinant arrangement, a concentric annular arrangement or a hexagonal dense arrangement. Moreover, the plurality of three-dimensional nanostructures 102 are arranged in an array to form a single pattern or a plurality of spaced apart patterns. The single pattern may be a triangle, a parallelogram, a body, a diamond, a square, a rectangle, or a circle. As shown in FIG. 4, the three-dimensional nanostructures 102 form four different patterns in an array.

所述金屬層101包覆於所述三維奈米結構102的表面及相鄰的三維奈米結構102之間基底100的表面。具體的,所述金屬層101為金屬材料形成的一連續的層狀結構,可為單層層狀結構或複數層層狀結構。所述金屬層101基本均勻沈積於所述複數三維奈米結構102表面及相鄰的三維奈米結構102之間的基底100的表面。所述相鄰的三維奈米結構102之間形成一間隙(Gap),此處金屬層101的表面存在表面電漿共振,從而產生拉曼散射增強。所述金屬層101可通過電子束蒸發、離子束濺鍍等方法沈積於所述三維 奈米結構102的表面及相鄰的三維奈米結構102之間的基底100的表面。所述金屬層101的厚度為2奈米~200奈米,優選的,所述金屬層101的厚度均一。所述金屬層101的材料不限,可為金、銀、銅、鐵或鋁等金屬。可以理解,本實施例中所述金屬層101的材料並不限於以上幾種,任何常溫下為固態的金屬材料都可以。本實施例中所述金屬層101優選為厚度為20奈米的銀。 The metal layer 101 covers the surface of the substrate 100 between the surface of the three-dimensional nanostructure 102 and the adjacent three-dimensional nanostructures 102. Specifically, the metal layer 101 is a continuous layered structure formed of a metal material, and may be a single layer layer structure or a plurality of layer structure. The metal layer 101 is deposited substantially uniformly on the surface of the substrate 100 between the surface of the plurality of three-dimensional nanostructures 102 and the adjacent three-dimensional nanostructures 102. A gap (Gap) is formed between the adjacent three-dimensional nanostructures 102, where surface plasma resonance exists on the surface of the metal layer 101, thereby generating Raman scattering enhancement. The metal layer 101 may be deposited on the three-dimensional layer by electron beam evaporation, ion beam sputtering, or the like. The surface of the nanostructure 102 and the surface of the substrate 100 between adjacent three-dimensional nanostructures 102. The metal layer 101 has a thickness of 2 nm to 200 nm. Preferably, the metal layer 101 has a uniform thickness. The material of the metal layer 101 is not limited and may be a metal such as gold, silver, copper, iron or aluminum. It can be understood that the material of the metal layer 101 in the embodiment is not limited to the above, and any metal material which is solid at normal temperature may be used. The metal layer 101 in this embodiment is preferably silver having a thickness of 20 nm.

由於所述基底100具有複數三維奈米結構102,主要有以下幾個優點:第一,由於分子載體10中金屬層102直接形成在基底100的表面,無須額外的黏接層或其他結構,因此,金屬層可以很容易通過腐蝕等方式去除,然後根據單分子檢測的需要而沈積不同材料的金屬層,所述基底100可以重複使用,而所述金屬層101可以根據實際檢測單分子的需要而自由進行更換,不會對基底100表面的三維奈米結構102產生影響,即為一“自由平臺”;其次,所述金屬層101直接包覆於所述三維奈米結構102的表面,所述三維奈米結構102具有較大的表面積,使所述金屬層101中的奈米金屬顆粒可以不需要黏接層,就能牢固的附著在所述三維奈米結構102的表面及相鄰的三維奈米結構102之間基底100的表面,當所述分子載體10用於檢測單分子時,可以減少黏接層等其他化學因素在檢測過程中產生的干擾,避免黏接層導電性介質對表面電漿共振分佈產生影響;再次,由於金屬層101設置在三維奈米結構102的表面,在外界入射光電磁場的激發下,金屬表面電漿發生共振吸收,而三維奈米結構起到表面增強拉曼散射的作用,可提高SERS增強因數,增強拉曼散射。所述SERS增強因數與三維奈米結構102之間的間距相關,所述三維奈米結構102之間的距離越小,SERS增強因數越大。所述SERS增強因數理論值可為105~1015, 從而可以得到更好的單分子檢測結果。本實施例中所述分子載體10的SERS增強因數大於1010Since the substrate 100 has a plurality of three-dimensional nanostructures 102, there are mainly several advantages. First, since the metal layer 102 in the molecular carrier 10 is directly formed on the surface of the substrate 100, no additional adhesive layer or other structure is required. The metal layer can be easily removed by etching or the like, and then a metal layer of different materials is deposited according to the needs of single molecule detection. The substrate 100 can be reused, and the metal layer 101 can be used according to the actual needs of detecting a single molecule. Freely replacing, does not affect the three-dimensional nanostructure 102 on the surface of the substrate 100, that is, a "free platform"; secondly, the metal layer 101 directly covers the surface of the three-dimensional nanostructure 102, The three-dimensional nanostructure 102 has a large surface area, so that the nano metal particles in the metal layer 101 can be firmly adhered to the surface of the three-dimensional nanostructure 102 and adjacent three-dimensional layers without an adhesive layer. The surface of the substrate 100 between the nanostructures 102, when the molecular carrier 10 is used to detect a single molecule, can reduce other chemical factors such as adhesion layers during the detection process The interference of the raw layer prevents the conductive medium of the adhesive layer from affecting the resonance distribution of the surface plasma; again, since the metal layer 101 is disposed on the surface of the three-dimensional nanostructure 102, the metal surface plasma is generated under the excitation of the external incident photoelectric magnetic field. Resonance absorption, while the three-dimensional nanostructure acts as a surface-enhanced Raman scattering, which increases the SERS enhancement factor and enhances Raman scattering. The SERS enhancement factor is related to the spacing between the three-dimensional nanostructures 102, the smaller the distance between the three-dimensional nanostructures 102, the greater the SERS enhancement factor. The theoretical value of the SERS enhancement factor can be from 10 5 to 10 15 , so that a better single molecule detection result can be obtained. The molecular carrier 10 of the present embodiment has a SERS enhancement factor greater than 10 10 .

請一併參閱圖5及圖6,本發明進一步提供一種應用所述分子載體10的單分子檢測方法,所述檢測方法主要包括以下步驟:步驟(S11),提供一分子載體,所述分子載體包括一基底,所述基底一表面設置有複數三維奈米結構,在所述三維奈米結構表面及相鄰三維奈米結構之間的基底的表面形成有金屬層,所述金屬層附著於所述基底的表面;步驟(S12),在所述金屬層遠離基底的表面組裝待測物分子;步驟(S13),利用檢測器對組裝在基底上的所述待測物分子進行檢測。 Referring to FIG. 5 and FIG. 6 together, the present invention further provides a single molecule detection method using the molecular carrier 10, the detection method mainly includes the following steps: Step (S11), providing a molecular carrier, the molecular carrier a substrate comprising a plurality of three-dimensional nanostructures on a surface thereof, a metal layer formed on a surface of the substrate between the surface of the three-dimensional nanostructure and the adjacent three-dimensional nanostructure, the metal layer being attached to the substrate The surface of the substrate; step (S12), assembling the analyte molecules on the surface of the metal layer away from the substrate; and (S13), detecting the molecules of the analyte assembled on the substrate by using a detector.

具體的,步驟(S11),提供一分子載體10。 Specifically, in step (S11), a molecular carrier 10 is provided.

所述分子載體10的製備方法主要包括:步驟(S111),提供一母板1001;步驟(S112),在所述母板1001表面形成三維奈米結構102,形成所述基底100;步驟(S113),在所述基底100的表面形成一金屬層101,形成所述分子載體10。 The preparation method of the molecular carrier 10 mainly includes: a step (S111), providing a mother board 1001; a step (S112), forming a three-dimensional nanostructure 102 on the surface of the mother board 1001 to form the substrate 100; and step (S113) A metal layer 101 is formed on the surface of the substrate 100 to form the molecular carrier 10.

在步驟(S111)中,該母板1001可為絕緣材料或半導體材料。本實施例中所述母板1001的材料為二氧化矽。所述母板1001的厚度為200微米~300微米。所述母板1001的大小、厚度和形狀不限,可根據實際需要選擇。 In the step (S111), the mother board 1001 may be an insulating material or a semiconductor material. The material of the mother board 1001 in this embodiment is cerium oxide. The mother board 1001 has a thickness of 200 micrometers to 300 micrometers. The size, thickness, and shape of the motherboard 1001 are not limited, and may be selected according to actual needs.

進一步,可以對所述母板1001的一表面進行親水處理。 Further, a surface of the mother board 1001 may be subjected to a hydrophilic treatment.

首先,清洗所述母板1001的表面,清洗時採用超淨間標準工藝清 洗。然後,在溫度為30℃~100℃,體積比為NH3‧H2O:H2O2:H2O=x:y:z的溶液中溫浴30分鐘~60分鐘,對所述母板1001的表面進行親水處理,之後用去離子水沖洗2次~3次。其中,x的取值為0.2~2,y的取值為0.2~2,z的取值為1~20。最後,用氮氣對所述母板1001表面進行吹乾。 First, the surface of the mother board 1001 is cleaned and cleaned using a clean room standard process. Then, in a solution having a temperature of 30 ° C to 100 ° C and a volume ratio of NH 3 ‧H 2 O:H 2 O 2 :H 2 O=x:y:z, the bath is warmed for 30 minutes to 60 minutes for the mother The surface of the plate 1001 was subjected to a hydrophilic treatment, followed by rinsing with deionized water 2 to 3 times. Where x is 0.2 to 2, y is 0.2 to 2, and z is 1 to 20. Finally, the surface of the mother board 1001 was blown dry with nitrogen.

進一步,還可以對所述母板1001的表面進行二次親水處理,其具體包括以下步驟:將親水處理過後的所述母板1001在2wt%~5wt%的十二烷基硫酸鈉溶液(SDS)中浸泡2小時~24小時。可以理解,在SDS中浸泡過後的所述母板1001的表面有利於後續奈米微球的鋪展並形成有序排列的大面積奈米微球。 Further, the surface of the mother board 1001 may be subjected to a second hydrophilic treatment, which specifically includes the following steps: the hydrophilically treated mother board 1001 is in a 2 wt% to 5 wt% sodium lauryl sulfate solution (SDS). Soak for 2 hours to 24 hours. It will be appreciated that the surface of the mother substrate 1001 after soaking in the SDS facilitates the spreading of subsequent nanospheres and forms an ordered array of large area nanospheres.

在步驟(S112)中,在所述母板1001表面形成三維奈米結構102,形成所述基底100的方法具體包括以下步驟:步驟(S1121),在所述母板1001的任一表面形成掩膜層108。 In the step (S112), a three-dimensional nanostructure 102 is formed on the surface of the mother board 1001. The method of forming the substrate 100 specifically includes the following steps: step (S1121), forming a mask on any surface of the motherboard 1001. Film layer 108.

母板1001所述掩膜層108為一單層奈米微球形成的層狀結構。可以理解,採用單層奈米微球作為掩膜層108,可以在奈米微球對應的位置製備得到凸起結構。 The mask layer 108 of the mother board 1001 is a layered structure formed by a single layer of nanospheres. It can be understood that by using a single layer of nanospheres as the mask layer 108, a convex structure can be prepared at a position corresponding to the nanospheres.

所述在母板1001的表面形成一單層奈米微球作為掩膜層108具體包括以下步驟:首先,製備一含有奈米微球的混合液。 The forming of a single layer of nanospheres as the mask layer 108 on the surface of the mother board 1001 specifically includes the following steps: First, preparing a mixed liquid containing nano microspheres.

本實施例中,在直徑為15厘米的表面皿中依次加入150毫升的純水、3微升~5微升的0.01wt%~10wt%的奈米微球、及當量的0.1wt%~3wt%的SDS後形成混合物,將上述混合物靜置分鐘30~60分鐘。待奈米微球充分分散於混合物中後,再加入1微升~3微升 的4wt%的SDS,以調節奈米微球的表面張力,有利於形成單層奈米微球陣列。其中,奈米微球的直徑可為60奈米~500奈米,具體地,奈米微球的直徑可為100奈米、200奈米、300奈米或400奈米,上述直徑偏差為3奈米~5奈米。優選的奈米微球的直徑為200奈米或400奈米。所述奈米微球可為聚合物奈米微球或矽奈米微球等。所述聚合物奈米微球的材料可為聚苯乙烯(PS)或聚甲基丙烯酸甲酯(PMMA)。可以理解,所述表面皿中的混合物可依實際需求而按比例調製。 In this embodiment, 150 ml of pure water, 3 μl to 5 μl of 0.01 wt% to 10 wt% of nanospheres, and an equivalent weight of 0.1 wt% to 3 wt are sequentially added to a 15 cm diameter watch glass. After the % SDS was formed, the mixture was allowed to stand for 30 to 60 minutes. After the nanospheres are fully dispersed in the mixture, add 1 microliter to 3 microliters. The 4 wt% SDS is used to adjust the surface tension of the nanospheres to facilitate the formation of a single layer of nanosphere arrays. Wherein, the diameter of the nano microspheres may be from 60 nm to 500 nm, and specifically, the diameter of the nanospheres may be 100 nm, 200 nm, 300 nm or 400 nm, and the diameter deviation is 3 Nano ~ 5 nm. Preferred nanospheres have a diameter of 200 nm or 400 nm. The nanospheres may be polymer nanospheres or nanobelt microspheres or the like. The material of the polymer nanospheres may be polystyrene (PS) or polymethyl methacrylate (PMMA). It will be appreciated that the mixture in the watch glass can be scaled as desired.

其次,在所述母板1001的一表面形成一單層奈米微球混合液,並使所述單層奈米微球以陣列形式設置於所述母板1001的表面。 Next, a single layer of nanosphere mixture is formed on one surface of the mother board 1001, and the single layer of nanospheres is disposed in an array on the surface of the mother board 1001.

本實施例中採用提拉法或旋塗法在所述母板1001的表面形成一單層奈米微球溶液。通過控制提拉法的提速或旋塗法的轉速,所述單層奈米微球可以呈六角密堆排布、簡單立方排布或同心圓環排布等。 In the present embodiment, a single-layer nanosphere solution is formed on the surface of the mother substrate 1001 by a pulling or spin coating method. The single-layer nano microspheres may be arranged in a hexagonal close-packed arrangement, a simple cubic arrangement or a concentric annular arrangement by controlling the speed of the pulling method or the rotational speed of the spin coating method.

所述採用提拉法在母板1001的表面形成單層奈米微球溶液的方法包括以下步驟:首先,將經親水處理後的所述母板1001緩慢的傾斜的沿著表面皿的側壁滑入表面皿的混合物中,所述母板1001的傾斜角度為9°至15°。然後,將所述母板1001由表面皿的混合物中緩慢的提起。其中,上述滑下和提起速度相當,均為5毫米/小時~10毫米/小時。該過程中,所述奈米微球的溶液中的奈米微球通過自組裝形成呈六角密堆排布的單層奈米微球。 The method for forming a single-layer nano microsphere solution on the surface of the mother substrate 1001 by the pulling method comprises the following steps: First, the hydrophilically treated mother substrate 1001 is slowly inclined along the side wall of the surface dish. In the mixture into the watch glass, the mother board 1001 is inclined at an angle of 9 to 15 . Then, the mother board 1001 is slowly lifted from the mixture of the watch glass. Among them, the above-mentioned sliding down and lifting speed are equivalent, both are 5 mm / hour ~ 10 mm / hour. In the process, the nanospheres in the solution of the nanospheres are self-assembled to form a single layer of nanospheres arranged in a hexagonal close-pack.

本實施例中,採用旋塗法在母板1001的表面形成單層奈米微球溶液,其包括以下步驟:首先,將親水處理過後的母板1001在2wt%的十二烷基硫酸鈉溶液中浸泡2小時~24小時,取出後在所述母板 1001的表面上塗覆3微升~5微升的聚苯乙烯。其次,以旋塗轉速為400轉/分鐘~500轉/分鐘的速度旋塗5秒~30秒。然後,以旋塗轉速為800轉/分鐘~1000轉/分鐘的速度旋塗30秒~2分鐘後。再次,將旋塗轉速提高至1400轉/分鐘~1500轉/分鐘,旋塗10秒~20秒,除去邊緣多餘的微球。最後,將分佈有奈米微球的母板1001的表面進行乾燥後即可在所述母板1001的表面上形成呈六角密堆排布的單層奈米微球,進而形成所述掩膜層108。此外,在形成所述掩膜層108之後還可以進一步對母板1001的表面進行烘烤。所述烘烤的溫度為50℃~100℃,烘烤的時間為1分鐘~5分鐘。 In this embodiment, a single layer of nanosphere solution is formed on the surface of the mother board 1001 by spin coating, which comprises the following steps: First, the hydrophilically treated mother board 1001 is in a 2 wt% sodium lauryl sulfate solution. Soak for 2 hours to 24 hours, remove the mother board after removal The surface of 1001 is coated with 3 microliters to 5 microliters of polystyrene. Next, spin-coat at a speed of 400 rpm to 500 rpm for 5 seconds to 30 seconds. Then, spin coating at a speed of 800 rpm to 1000 rpm for 30 seconds to 2 minutes. Again, the spin coating speed is increased to 1400 rpm to 1500 rpm, and spin coating is applied for 10 seconds to 20 seconds to remove excess microspheres at the edges. Finally, after drying the surface of the mother substrate 1001 on which the nanospheres are distributed, a single layer of nanospheres arranged in a hexagonal close-packed layer can be formed on the surface of the mother board 1001 to form the mask. Layer 108. Further, the surface of the mother board 1001 may be further baked after the mask layer 108 is formed. The baking temperature is 50 ° C to 100 ° C, and the baking time is 1 minute to 5 minutes.

本實施例中,所述奈米微球的直徑可為400奈米。請參閱圖7,所述單層奈米微球中的奈米微球以能量最低的排布方式排布,即六角密堆排布。所述單層奈米微球排布最密集,佔空比最大。所述單層奈米微球中任意三個相鄰的奈米微球呈一等邊三角形。可以理解,通過控制奈米微球溶液的表面張力,可以使單層奈米微球中的奈米微球呈簡單立方排布。 In this embodiment, the diameter of the nanospheres may be 400 nm. Referring to FIG. 7, the nanospheres in the single-layer nano microspheres are arranged in the lowest energy arrangement, that is, the hexagonal close-packed arrangement. The single-layer nanospheres are densely packed and have the largest duty ratio. Any three adjacent nanospheres in the single-layer nanospheres are in an equilateral triangle. It can be understood that by controlling the surface tension of the nanosphere solution, the nanospheres in the single layer of nanospheres can be arranged in a simple cubic shape.

步驟(S1122),採用反應性蝕刻氣體110對所述母板1001的表面進行蝕刻,在所述母板1001的表面形成複數三維奈米結構102。 In step (S1122), the surface of the mother board 1001 is etched by the reactive etching gas 110, and a plurality of three-dimensional nanostructures 102 are formed on the surface of the mother board 1001.

所述採用反應性蝕刻氣體110對母板1001的表面進行蝕刻的步驟在一微波電漿系統中進行。所述微波電漿系統為反應離子蝕刻(Reaction-Ion-Etching,RIE)模式。所述反應性蝕刻氣體110基本不與所述奈米微球發生反應,但所述反應性蝕刻氣體110對母板1001的表面進行蝕刻,形成複數三維奈米結構102,得到所述基底100。 The step of etching the surface of the mother substrate 1001 using the reactive etching gas 110 is performed in a microwave plasma system. The microwave plasma system is a Reaction-Ion-Etching (RIE) mode. The reactive etching gas 110 does not substantially react with the nanospheres, but the reactive etching gas 110 etches the surface of the mother substrate 1001 to form a plurality of three-dimensional nanostructures 102 to obtain the substrate 100.

本實施例中,將形成有單層奈米微球的母板1001的表面放置於微 波電漿系統中,且該微波電漿系統的一感應功率源產生反應性蝕刻氣體110。該反應性蝕刻氣體110以較低的離子能量從產生區域擴散並漂移至所述母板1001的表面。所述反應性蝕刻氣體對所述單層奈米微球之間的母板1001的表面進行蝕刻,而不與所述奈米微球進行反應,從而形成所述三維奈米結構102。可以理解,通過控制反應性蝕刻氣體110的蝕刻時間可以控制三維奈米結構102間的間距及三維奈米結構102的高度。 In this embodiment, the surface of the mother substrate 1001 on which the single-layered nanospheres are formed is placed on the micro In the wave plasma system, an inductive power source of the microwave plasma system produces a reactive etching gas 110. The reactive etching gas 110 diffuses from the generation region and drifts to the surface of the mother board 1001 with a lower ion energy. The reactive etching gas etches the surface of the mother substrate 1001 between the single-layer nanospheres without reacting with the nanospheres to form the three-dimensional nanostructure 102. It can be understood that the spacing between the three-dimensional nanostructures 102 and the height of the three-dimensional nanostructures 102 can be controlled by controlling the etching time of the reactive etching gas 110.

本實施例中,所述微波電漿系統的工作氣體包括六氟化硫(SF6)和氬氣(Ar)或六氟化硫(SF6)和氧氣(O2)。其中,六氟化硫的通入速率為10標況毫升每分~60標況毫升每分,氬氣或氧氣的通入速率為4標況毫升每分~20標況毫升每分。所述工作氣體形成的氣壓為2帕~10帕。所述電漿系統的功率為40瓦~70瓦。所述採用反應性蝕刻氣體110蝕刻時間為1分鐘~2.5分鐘。優選地,所述微波電漿系統的功率與微波電漿系統的工作氣體的氣壓的數值比小於20:1。 In this embodiment, the working gas of the microwave plasma system includes sulfur hexafluoride (SF 6 ) and argon (Ar) or sulfur hexafluoride (SF 6 ) and oxygen (O 2 ). Among them, the rate of sulphur hexafluoride is 10 standard milliliters per minute ~ 60 standard conditions per minute, the access rate of argon or oxygen is 4 standard milliliters per minute ~ 20 standard conditions per minute. The working gas forms a gas pressure of 2 Pa to 10 Pa. The plasma system has a power of 40 watts to 70 watts. The etching time using the reactive etching gas 110 is 1 minute to 2.5 minutes. Preferably, the ratio of the power of the microwave plasma system to the gas pressure of the working gas of the microwave plasma system is less than 20:1.

進一步,所述反應性蝕刻氣體110中還可以加入三氟甲烷(CHF3)、四氟甲烷(CF4)或其混合氣體等其他氣體以調節蝕刻速率。所述三氟甲烷(CHF3)、四氟甲烷(CF4)或其混合氣體的流量可為20標況毫升每分~40標況毫升每分的。 Further, other gases such as trifluoromethane (CHF 3 ), tetrafluoromethane (CF 4 ), or a mixed gas thereof may be added to the reactive etching gas 110 to adjust the etching rate. The flow rate of the trifluoromethane (CHF 3 ), tetrafluoromethane (CF 4 ) or a mixed gas thereof may be 20 standard milliliters per minute to ~40 standard milliliters per minute.

可以理解,通過控制所述蝕刻的條件及蝕刻氣氛,可以得到不同的凸起的三維奈米結構102,如半橢球狀凸起結構等。如果所述掩膜層108為一具有複數開孔的連續膜,則可以得到凹陷的三維奈米結構102,如半球狀凹陷結構、半橢球狀凹陷結構、倒金字塔狀凹陷結構等。 It can be understood that by controlling the etching conditions and the etching atmosphere, different convex three-dimensional nanostructures 102, such as semi-ellipsoidal convex structures, and the like can be obtained. If the mask layer 108 is a continuous film having a plurality of openings, a recessed three-dimensional nanostructure 102 such as a hemispherical recessed structure, a semi-ellipsoidal recessed structure, an inverted pyramidal recessed structure, or the like can be obtained.

步驟(S1123),去除所述掩膜層108,得到所述基底100。 In step (S1123), the mask layer 108 is removed to obtain the substrate 100.

採用四氫呋喃(THF)、丙酮、丁酮、環己烷、正己烷、甲醇或無水乙醇等無毒或低毒環保容劑作為剝離劑,溶解奈米微球,可以去除奈米微球殘餘,保留形成在母板1001表面的三維奈米結構102。 Using a non-toxic or low-toxic environmentally friendly agent such as tetrahydrofuran (THF), acetone, methyl ethyl ketone, cyclohexane, n-hexane, methanol or absolute ethanol as a stripping agent to dissolve the nanospheres, the residual of the nanospheres can be removed and retained. A three-dimensional nanostructure 102 on the surface of the mother board 1001.

本實施例中,通過在丁酮中超聲清洗去除聚苯乙烯奈米微球。 In this example, the polystyrene nanospheres were removed by ultrasonic cleaning in methyl ethyl ketone.

步驟S113,在所述三維奈米結構102表面及相鄰三維奈米結構102之間的基底100的表面形成一金屬層101,形成所述分子載體10。 In step S113, a metal layer 101 is formed on the surface of the substrate 100 between the surface of the three-dimensional nanostructure 102 and the adjacent three-dimensional nanostructure 102 to form the molecular carrier 10.

所述金屬層101可採用電子束蒸發、離子束濺射等方式,在所述基底100表面垂直蒸鍍金屬薄膜。由於所述基底100表面形成有三維奈米結構102,從而,在三維奈米結構102及相鄰三維奈米結構102之間的間隙中的基底100表面形成金屬薄膜,進而形成所述分子載體10。所述金屬層101的厚度為2奈米~200奈米,所述金屬層101的材料不限,可為金、銀、銅、鐵或鋁等金屬。本實施例中所述金屬層101厚度優選為20奈米。 The metal layer 101 may be vertically vapor-deposited on the surface of the substrate 100 by means of electron beam evaporation, ion beam sputtering or the like. Since the three-dimensional nanostructure 102 is formed on the surface of the substrate 100, a metal thin film is formed on the surface of the substrate 100 in the gap between the three-dimensional nanostructure 102 and the adjacent three-dimensional nanostructure 102, thereby forming the molecular carrier 10 . The metal layer 101 has a thickness of 2 nm to 200 nm, and the material of the metal layer 101 is not limited, and may be metal such as gold, silver, copper, iron or aluminum. The thickness of the metal layer 101 in this embodiment is preferably 20 nm.

步驟S12,在所述金屬層101遠離基底的表面組裝待測物分子。 In step S12, the analyte molecules are assembled on the surface of the metal layer 101 away from the substrate.

所述組裝待測物分子主要包括一下步驟:首先,提供一待測物分子的溶液,所述待測物溶液的分子濃度可為10-7mmol/L~10-12mmol/L可根據實際需要製備,本實施例中所述分子濃度為10-10mmol/L;其次,將所述形成有金屬層101的分子載體10浸入待測物溶液中,浸泡時間可為2min~60min,優選的為10min,使所述待測物分 子均勻的分散於所述金屬層101的表面;最後,將所述分子載體10取出,用水或乙醇對所述分子載體進行沖洗5~15次,然後利用乾燥裝置如吹風機等將所述分子載體10吹乾,使殘留的水或乙醇蒸發,將所述待測物分子組裝在金屬層101的表面。 The assembling the analyte molecule mainly comprises the following steps: first, providing a solution of the analyte molecule, wherein the molecular concentration of the analyte solution may be 10 -7 mmol/L to 10 -12 mmol/L, which may be according to actual conditions. The preparation has a molecular concentration of 10 -10 mmol/L; in the second embodiment, the molecular carrier 10 formed with the metal layer 101 is immersed in the solution to be tested, and the soaking time can be 2 min to 60 min, preferably 10 min, the analyte molecules are uniformly dispersed on the surface of the metal layer 101; finally, the molecular carrier 10 is taken out, and the molecular carrier is washed 5 to 15 times with water or ethanol, and then dried. The molecular carrier 10 is blown dry by a device such as a hair dryer or the like to evaporate residual water or ethanol, and the molecules of the analyte are assembled on the surface of the metal layer 101.

步驟S13,利用檢測器對所述待測物分子進行檢測。 Step S13, detecting the molecules of the analyte by using a detector.

將所述組裝有待測物分子的分子載體10置於檢測裝置中,利用檢測器如拉曼光譜儀對所述待測物分子進行檢測。本實施例中,所述拉曼光譜儀的檢測參數為He-Ne:激發波長633奈米,激發時間10sec,設備功率為9.0mW,工作功率為9.0mW×0.05×1。 The molecular carrier 10 assembled with the analyte molecule is placed in a detecting device, and the molecule of the analyte is detected by a detector such as a Raman spectrometer. In this embodiment, the detection parameter of the Raman spectrometer is He-Ne: the excitation wavelength is 633 nm, the excitation time is 10 sec, the device power is 9.0 mW, and the operating power is 9.0 mW×0.05×1.

本發明提供的單分子檢測方法,具有以下優點:首先,先前技術的單分子檢測方法為在基底上沈積黏接層,然後在黏接層上形成金屬奈米結構作為分子載體,因此所述黏接層對單分子檢測產生一定的影響,而本發明所述三維奈米結構通過反應離子蝕刻的方法直接形成於基底之上,金屬層直接沈積於基底的表面,因此可以防止黏接層等化學因素對檢測結果產生影響;其次,本發明所述單分子檢測方法中的分子載體具有三維奈米結構,分子載體中的金屬層直接沈積於基底表面,而先前技術中金屬奈米結構必須通過黏接層固定於基底表面,從而使得單分子檢測的結果受到影響;再次,所述三維奈米結構的形狀、大小、間距等可以通過控制製備條件等方便的進行控制,即可操作性高;第四,通過在三維奈米結構表面設置金屬層,可以提高單分子檢測的解析度,尤其為對於染料、生物分子、螢光材料及六代聯苯等不能用常規檢測方法檢測的物質,也均可以利用本方法進行檢測。 The single molecule detection method provided by the invention has the following advantages: First, the prior art single molecule detection method is to deposit an adhesive layer on a substrate, and then form a metal nanostructure as a molecular carrier on the adhesive layer, so the adhesive The layer has a certain influence on the single molecule detection, and the three-dimensional nanostructure of the present invention is directly formed on the substrate by reactive ion etching, and the metal layer is directly deposited on the surface of the substrate, thereby preventing the chemical such as the adhesion layer. The factor has an influence on the detection result. Secondly, the molecular carrier in the single molecule detection method of the present invention has a three-dimensional nanostructure, and the metal layer in the molecular carrier is directly deposited on the surface of the substrate, whereas in the prior art, the metal nanostructure must pass through the adhesion. The layer is fixed on the surface of the substrate, so that the result of the single molecule detection is affected; again, the shape, size, spacing, etc. of the three-dimensional nanostructure can be conveniently controlled by controlling the preparation conditions, etc., and the operability is high; Fourth, by providing a metal layer on the surface of the three-dimensional nanostructure, the analysis of single molecule detection can be improved. , For particular dyes, biological molecules, fluorescent materials and other substances biphenyl six generations can not be detected by conventional detection methods also can be detected using the present methods.

請一併參閱圖8至圖9,本發明第二實施例提供一種分子載體20,所述分子載體20包括一基底200、形成於基底200表面的複數三維奈米結構202及設置於所述三維奈米結構202表面及相鄰三維奈米結構202之間的基底200表面的金屬層201。所述分子載體20的結構與第一實施例中所述分子載體20的結構基本相同,其不同在於,所述分子載體20中的三維奈米結構202為凸起的半橢球狀結構。 Referring to FIG. 8 to FIG. 9 together, a second embodiment of the present invention provides a molecular carrier 20 including a substrate 200, a plurality of three-dimensional nanostructures 202 formed on the surface of the substrate 200, and the three-dimensional nanostructures 202 disposed on the surface of the substrate 200. The metal layer 201 on the surface of the substrate 200 between the surface of the nanostructure 202 and the adjacent three-dimensional nanostructure 202. The structure of the molecular carrier 20 is substantially the same as that of the molecular carrier 20 described in the first embodiment, except that the three-dimensional nanostructure 202 in the molecular carrier 20 is a convex semi-ellipsoidal structure.

所述半橢球狀三維奈米結構202的底面為圓形,其直徑為50奈米~1000奈米,高度為50奈米~1000奈米。優選地,所述半橢球狀凸起結構的底面直徑為50奈米~200奈米,高度為100奈米~500奈米。所述相鄰的每兩個半橢球狀凸起結構之間的距離相等,所述兩個半橢球狀凸起結構之間的距離係指所述半橢球狀凸起結構的底面之間的距離,可為0奈米~50奈米。本實施例中,所述半球狀三維奈米結構202之間的距離為40奈米。 The bottom surface of the semi-ellipsoidal three-dimensional nanostructure 202 is circular, and has a diameter of 50 nm to 1000 nm and a height of 50 nm to 1000 nm. Preferably, the semi-ellipsoidal convex structure has a bottom surface diameter of 50 nm to 200 nm and a height of 100 nm to 500 nm. The distance between each adjacent two semi-ellipsoidal convex structures is equal, and the distance between the two semi-ellipsoidal convex structures refers to the bottom surface of the semi-ellipsoidal convex structure The distance between 0 nm and 50 nm. In this embodiment, the distance between the hemispherical three-dimensional nanostructures 202 is 40 nm.

所述金屬層201沈積於所述三維奈米結構202的表面及相鄰的三維奈米結構202之間基底200的表面。具體的,所述金屬層201為單層層狀結構或複數層層狀結構。所述金屬層201基本均勻沈積於所述複數三維奈米結構202表面及相鄰的三維奈米結構202之間的基底200的表面。所述分子載體20的SERS增強因數理論值可為105~1015,本實施例中所述分子載體20的SERS增強因數約為106The metal layer 201 is deposited on the surface of the three-dimensional nanostructure 202 and the surface of the substrate 200 between adjacent three-dimensional nanostructures 202. Specifically, the metal layer 201 is a single layered layer structure or a plurality of layered structures. The metal layer 201 is deposited substantially uniformly on the surface of the substrate 200 between the surface of the plurality of three-dimensional nanostructures 202 and the adjacent three-dimensional nanostructures 202. The theoretical value of the SERS enhancement factor of the molecular carrier 20 may be 10 5 to 10 15 , and the molecular carrier 20 of the present embodiment has a SERS enhancement factor of about 10 6 .

請一併參閱圖10至圖11,本發明第三實施例提供一種分子載體30,所述分子載體30包括一基底300、形成於基底300表面的複數三維奈米結構302及設置於所述三維奈米結構302表面及相鄰三維奈米結構302之間的基底300表面的金屬層301。所述分子載體30的 結構與第一實施例中所述分子載體30的結構基本相同,其不同在於,所述分子載體30中的三維奈米結構202為凹陷的倒金字塔結構。 Referring to FIG. 10 to FIG. 11 together, a third embodiment of the present invention provides a molecular carrier 30. The molecular carrier 30 includes a substrate 300, a plurality of three-dimensional nanostructures 302 formed on the surface of the substrate 300, and the three-dimensional nanostructures 302 disposed on the surface of the substrate 300. A metal layer 301 on the surface of the substrate 300 between the surface of the nanostructure 302 and the adjacent three-dimensional nanostructure 302. Molecular carrier 30 The structure is substantially the same as that of the molecular carrier 30 described in the first embodiment, except that the three-dimensional nanostructure 202 in the molecular carrier 30 is a depressed inverted pyramid structure.

所述凹陷的倒金字塔結構係指所述基底300的表面向內凹入形成凹進的空間呈倒金字塔形。所述倒金字塔形三維奈米結構302的底面的形狀不限,可為三角形、矩形及正方形等其他幾何形狀。所述三維奈米結構302凹入基底300表面的高度為50奈米~1000奈米,所述倒金字塔三維奈米結構302的頂端形成的夾角α可為15度~70度。本實施例中,所述三維奈米結構302的底面為一正三角形,所述正三角形的邊長為50奈米~1000奈米。優選的,所述倒金字塔形三維奈米結構302的底面邊長為50奈米~200奈米,凹入基底表面的高度為100奈米~500奈米,所述頂端形成的夾角α為30度。所述相鄰的每兩個倒金字塔三維奈米結構302之間的距離相等,所述每兩個倒金字塔三維奈米結構302之間的距離係指所述倒金字塔三維奈米結構的底面之間的距離,可為0奈米~50奈米。 The inverted inverted pyramid structure means that the surface of the substrate 300 is recessed inwardly to form a recessed space in an inverted pyramid shape. The shape of the bottom surface of the inverted pyramid-shaped three-dimensional nanostructure 302 is not limited, and may be other geometric shapes such as a triangle, a rectangle, and a square. The height of the surface of the three-dimensional nanostructure 302 recessed into the substrate 300 is 50 nm to 1000 nm, and the angle α formed by the top end of the inverted pyramid three-dimensional nanostructure 302 may be 15 to 70 degrees. In this embodiment, the bottom surface of the three-dimensional nanostructure 302 is an equilateral triangle, and the side length of the equilateral triangle is 50 nm to 1000 nm. Preferably, the inverted pyramidal three-dimensional nanostructure 302 has a bottom side length of 50 nm to 200 nm, a height of the recessed base surface of 100 nm to 500 nm, and an angle α formed by the tip end is 30. degree. The distance between each adjacent two inverted pyramid three-dimensional nanostructures 302 is equal, and the distance between each two inverted pyramid three-dimensional nanostructures 302 refers to the bottom surface of the inverted pyramid three-dimensional nanostructure The distance between 0 nm and 50 nm.

所述金屬層301沈積於所述倒金字塔形三維奈米結構302的表面及相鄰的三維奈米結構302之間基底300的表面。具體的,所述金屬層301為單層層狀結構或複數層層狀結構。所述金屬層301基本均勻沈積於所述複數三維奈米結構302表面及相鄰的三維奈米結構302之間的基底300的表面。所述分子載體30的SERS增強因數理論值可為105~1015,本實施例中所述分子載體30的SERS增強因數約為108The metal layer 301 is deposited on the surface of the inverted pyramidal three-dimensional nanostructure 302 and the surface of the substrate 300 between adjacent three-dimensional nanostructures 302. Specifically, the metal layer 301 is a single layer layer structure or a plurality of layer structure. The metal layer 301 is deposited substantially uniformly on the surface of the substrate 300 between the surface of the plurality of three-dimensional nanostructures 302 and the adjacent three-dimensional nanostructures 302. The theoretical value of the SERS enhancement factor of the molecular carrier 30 may be 10 5 to 10 15 , and the molecular carrier 30 of the present embodiment has a SERS enhancement factor of about 10 8 .

請參閱圖12,圖12為本實施例中所述分子載體的三維奈米結構分 別為半球狀、倒金字塔狀及半橢球狀結構時,用於檢測若丹明分子的拉曼光譜。 Please refer to FIG. 12, which is a three-dimensional nanostructure of the molecular carrier in the embodiment. It is used to detect the Raman spectrum of rhodamine molecules when it is a hemispherical, inverted pyramidal or semi-ellipsoidal structure.

請參閱圖13、圖14及圖15,本發明第四實施例提供一種用於單分子檢測的分子載體40,所述分子載體40包括一基底400、設置於基底400上的複數三維奈米結構402,及設置於所述三維奈米結構402表面及相鄰三維奈米結構402之間的基底400的金屬層401。所述金屬層401附著於所述三維奈米結構402及三維奈米結構402之間基底400的表面。本發明第二實施例所述的分子載體40與第一實施例中所述分子載體10的結構基本相同,其不同在於,所述分子載體40中的三維奈米結構402為一階梯狀結構。 Referring to FIG. 13 , FIG. 14 and FIG. 15 , a fourth embodiment of the present invention provides a molecular carrier 40 for single molecule detection, the molecular carrier 40 comprising a substrate 400 and a plurality of three-dimensional nanostructures disposed on the substrate 400 . 402, and a metal layer 401 of the substrate 400 disposed between the surface of the three-dimensional nanostructure 402 and the adjacent three-dimensional nanostructure 402. The metal layer 401 is attached to the surface of the substrate 400 between the three-dimensional nanostructure 402 and the three-dimensional nanostructure 402. The molecular carrier 40 of the second embodiment of the present invention has substantially the same structure as the molecular carrier 10 of the first embodiment, except that the three-dimensional nanostructure 402 in the molecular carrier 40 is a stepped structure.

所述階梯狀結構設置在所述基底400表面。所述階梯狀結構為階梯狀凸起結構。所述階梯狀凸起結構為從所述基底400表面向外延伸出的階梯狀突起的實體。所述階梯狀凸起結構可為一複數層台狀結構,如複數層三棱臺、複數層四棱臺、複數層六棱臺或複數層圓柱等。優選地,所述階梯狀凸起結構為複數層圓柱結構。所述階梯狀凸起結構的最大尺度為小於等於1000奈米,即其長度、寬度和高度均小於等於1000奈米。優選地,所述階梯狀凸起結構結構長度、寬度和高度範圍為10奈米~500奈米。 The stepped structure is disposed on a surface of the substrate 400. The stepped structure is a stepped convex structure. The stepped raised structure is an entity of stepped protrusions that extend outwardly from the surface of the substrate 400. The stepped convex structure may be a plurality of layered structures, such as a plurality of triangular prisms, a plurality of quadrangular pyramids, a plurality of layers of hexagonal prisms or a plurality of layers of cylinders. Preferably, the stepped convex structure is a plurality of layered cylindrical structures. The maximum dimension of the stepped convex structure is 1000 nm or less, that is, its length, width and height are less than or equal to 1000 nm. Preferably, the stepped raised structure has a length, a width and a height ranging from 10 nm to 500 nm.

本實施例中,所述三維奈米結構402為一階梯狀凸起的雙層圓柱結構。具體地,所述三維奈米結構402包括一第一圓柱404及一設置於該第一圓柱404表面的第二圓柱406。所述第一圓柱404靠近基底400設置。所述第一圓柱404的側面垂直於基底400的表面。所述第二圓柱406的側面垂直於第一圓柱404的上表面,所述上表面係指所述第二圓柱406遠離基底400的表面。所述第一圓柱404 與第二圓柱406形成一階梯狀凸起結構,所述第二圓柱406設置在所述第一圓柱404的範圍內。優選地,所述第一圓柱404與第二圓柱406同軸設置。所述第一圓柱404與第二圓柱406為一體結構,即所述第二圓柱406為第一圓柱404的頂面延伸出的圓柱狀結構。 In this embodiment, the three-dimensional nanostructure 402 is a double-layered cylindrical structure with a stepped protrusion. Specifically, the three-dimensional nanostructure 402 includes a first cylinder 404 and a second cylinder 406 disposed on a surface of the first cylinder 404. The first cylinder 404 is disposed adjacent to the substrate 400. The side of the first cylinder 404 is perpendicular to the surface of the substrate 400. The side of the second cylinder 406 is perpendicular to the upper surface of the first cylinder 404, which refers to the surface of the second cylinder 406 away from the substrate 400. The first cylinder 404 A stepped raised structure is formed with the second cylinder 406, and the second cylinder 406 is disposed within the range of the first cylinder 404. Preferably, the first cylinder 404 is disposed coaxially with the second cylinder 406. The first cylinder 404 and the second cylinder 406 are of a unitary structure, that is, the second cylinder 406 is a cylindrical structure extending from the top surface of the first cylinder 404.

所述第一圓柱404的底面直徑大於第二圓柱406的底面直徑。所述第一圓柱404的底面直徑為30奈米~1000奈米,高度為50奈米~1000奈米。優選地,所述第一圓柱404的底面直徑為50奈米~200奈米,高度為100奈米~500奈米。所述第二圓柱406的底面直徑為10奈米~500奈米,高度為20奈米~500奈米。優選地,所述第二圓柱406的底面直徑為20奈米~200奈米,高度為100奈米~300奈米。所述第一圓柱404及第二圓柱406的尺寸可以根據實際需要製備。本實施例中,所述第一圓柱404與第二圓柱406同軸設置。所述第一圓柱404的底面直徑為380奈米,高度為105奈米。所述第二圓柱406的底面直徑為280奈米,高度為55奈米。所述相鄰的第一圓柱404之間的距離為可為0奈米~50奈米;所述相鄰兩第二圓柱406之間的距離為10奈米~100奈米。 The diameter of the bottom surface of the first cylinder 404 is larger than the diameter of the bottom surface of the second cylinder 406. The bottom surface of the first cylinder 404 has a diameter of 30 nm to 1000 nm and a height of 50 nm to 1000 nm. Preferably, the first cylinder 404 has a bottom surface diameter of 50 nm to 200 nm and a height of 100 nm to 500 nm. The bottom surface of the second cylinder 406 has a diameter of 10 nm to 500 nm and a height of 20 nm to 500 nm. Preferably, the second cylinder 406 has a bottom surface diameter of 20 nm to 200 nm and a height of 100 nm to 300 nm. The dimensions of the first cylinder 404 and the second cylinder 406 can be prepared according to actual needs. In this embodiment, the first cylinder 404 is disposed coaxially with the second cylinder 406. The bottom surface of the first cylinder 404 has a diameter of 380 nm and a height of 105 nm. The bottom surface of the second cylinder 406 has a diameter of 280 nm and a height of 55 nm. The distance between the adjacent first cylinders 404 may be 0 nm to 50 nm; the distance between the adjacent two second cylinders 406 is 10 nm to 100 nm.

所述雙層圓柱的三維奈米結構402的製備方法與第一實施例中所述三維奈米結構102的製備方法基本相同,其不同在於,採用反應性蝕刻氣體對母板的表面進行蝕刻的同時,對所述掩膜層進行腐蝕。通過控制蝕刻時間與蝕刻方向,一方面,所述反應性蝕刻氣體對所述單層奈米微球之間的所述母板的表面進行蝕刻,從而形成第一圓柱404;另一方面,所述反應性蝕刻氣體同時對所述母板的表面上的單層奈米微球進行腐蝕,形成更小直徑的奈米微球,即單層奈米微球中的每一奈米微球被蝕刻削減為比所述第一 圓柱404直徑更小的奈米微球,使所述反應性蝕刻氣體可以對所述第一圓柱404進行進一步蝕刻,從而形成所述第二圓柱406,進而形成所述複數階梯狀的三維奈米結構402。 The preparation method of the double-layered cylindrical three-dimensional nanostructure 402 is basically the same as the preparation method of the three-dimensional nanostructure 102 in the first embodiment, except that the surface of the mother board is etched by using a reactive etching gas. At the same time, the mask layer is etched. By controlling the etching time and the etching direction, on the one hand, the reactive etching gas etches the surface of the mother board between the single-layer nano microspheres to form a first cylinder 404; The reactive etching gas simultaneously etches a single layer of nanospheres on the surface of the mother board to form smaller diameter nanospheres, that is, each nanosphere in the single layer of nanospheres is Etching reduction to the first a cylindrical microsphere 404 having a smaller diameter, wherein the reactive etching gas can further etch the first cylinder 404 to form the second cylinder 406, thereby forming the plurality of stepped three-dimensional nanoparticles Structure 402.

所述金屬層401沈積於所述三維奈米結構402的表面及相鄰的三維奈米結構402之間基底400的表面。具體的,所述金屬層401為由複數分散的奈米金屬顆粒鋪展形成的單層層狀結構或複數層層狀結構。所述奈米金屬顆粒分散於所述複數三維奈米結構402表面及相鄰的三維奈米結構402之間的基底400的表面。 The metal layer 401 is deposited on the surface of the substrate 400 between the surface of the three-dimensional nanostructure 402 and the adjacent three-dimensional nanostructure 402. Specifically, the metal layer 401 is a single layer layer structure or a plurality of layer structure formed by spreading a plurality of dispersed nano metal particles. The nano metal particles are dispersed on the surface of the substrate 400 between the surface of the plurality of three-dimensional nanostructures 402 and the adjacent three-dimensional nanostructures 402.

相對於第一實施例,本發明第二實施例提供的分子載體40,由於所述三維奈米結構402為一凸起的雙層圓柱結構,相鄰的雙層圓柱結構之間形成兩個距離不同的間隙(Gap),即相鄰的第一圓柱404之間形成一間隙,相鄰的第二圓柱406之間形成另一間隙。因此,當所述分子載體用於單分子檢測時,在檢測器發出的鐳射的激發下,相鄰的第一圓柱404之間間隙處的金屬層401產生表面電磁耦子共振,同時第二圓柱406之間間隙處的金屬層401產生電磁耦子共振,增強了金屬層表面的拉曼散射,因此可以進一步的提高SERS增強因數,增強拉曼光譜,提高所述單分子檢測的解析度,使得單分子檢測結果更加的準確。 With respect to the first embodiment, the molecular carrier 40 provided by the second embodiment of the present invention has two distances between adjacent double-layered cylindrical structures because the three-dimensional nanostructure 402 is a convex double-layered cylindrical structure. Different gaps (Gap), that is, a gap is formed between adjacent first cylinders 404, and another gap is formed between adjacent second cylinders 406. Therefore, when the molecular carrier is used for single molecule detection, under the excitation of the laser emitted by the detector, the metal layer 401 at the gap between the adjacent first cylinders 404 generates surface electromagnetic coupling resonance while the second cylinder The metal layer 401 at the gap between 406 generates electromagnetic coupling resonance, which enhances the Raman scattering of the surface of the metal layer, thereby further improving the SERS enhancement factor, enhancing the Raman spectrum, and improving the resolution of the single molecule detection, Single molecule detection results are more accurate.

請參閱圖16及圖17,本發明第五實施例提供一種用於單分子檢測的分子載體50,所述分子載體50包括一基底500、設置於基底500上的複數三維奈米結構502及設置於所述三維奈米結構502表面及相鄰三維奈米結構502之間的基底500的金屬層501。本發明第五實施例所述的分子載體50與第四實施例中所述分子載體50的結構基本相同,其不同在於,所述分子載體50中的三維奈米結構502 為一階梯狀凹陷結構。 Referring to FIG. 16 and FIG. 17, a fifth embodiment of the present invention provides a molecular carrier 50 for single molecule detection, the molecular carrier 50 comprising a substrate 500, a plurality of three-dimensional nanostructures 502 disposed on the substrate 500, and a setting A metal layer 501 of the substrate 500 between the surface of the three-dimensional nanostructure 502 and the adjacent three-dimensional nanostructure 502. The molecular carrier 50 according to the fifth embodiment of the present invention has substantially the same structure as the molecular carrier 50 of the fourth embodiment, except that the three-dimensional nanostructure 502 in the molecular carrier 50 is 502. It is a stepped recessed structure.

所述階梯狀凹陷結構為從基底500表面向基底500內凹陷形成的階梯狀凹陷的空間。所述階梯狀凹陷結構可為一複數層台狀結構,如複數層三棱臺、複數層四棱臺、複數層六棱臺或複數層圓柱等。優選地,所述階梯狀凹陷結構為複數層圓柱結構。所謂階梯狀凹陷結構為複數層圓柱結構係指所述階梯狀凹陷的空間為複數層圓柱形狀。所述階梯狀凹陷結構的最大尺度為小於等於1000奈米,即其長度、寬度和高度均小於等於1000奈米。優選地,所述階梯狀凹陷結構結構長度、寬度和高度範圍為10奈米~500奈米。 The stepped recessed structure is a space of a stepped recess formed by recessing from the surface of the substrate 500 into the base 500. The stepped recess structure may be a plurality of layered structures, such as a plurality of layers of triangular prisms, a plurality of layers of quadrangular prisms, a plurality of layers of hexagonal prisms or a plurality of layers of cylinders. Preferably, the stepped recessed structure is a plurality of layered cylindrical structures. The stepped recessed structure is a plurality of layers of cylindrical structures, which means that the space of the stepped recesses is a plurality of layers of cylindrical shapes. The maximum dimension of the stepped recessed structure is 1000 nm or less, that is, its length, width and height are less than or equal to 1000 nm. Preferably, the stepped recess structure has a length, a width and a height ranging from 10 nm to 500 nm.

本實施例中,所述三維奈米結構502的形狀為一雙層圓柱結構,所述圓柱結構為一圓柱狀結構空間,具體包括一第一圓柱空間504,及一與所述第一圓柱空間504連通的第二圓柱空間506。所述第一圓柱空間504與第二圓柱空間506同軸設置。所述第一圓柱空間504靠近基底500的表面設置。所述第一圓柱空間504的直徑大於第二圓柱空間506的直徑。所述第一圓柱空間504的直徑為30奈米~1000奈米,高度為50奈米~1000奈米。所述第二圓柱空間506的直徑為10奈米~500奈米,高度為20奈米~500奈米。所述第二圓柱空間506及第二圓柱空間506的尺寸可以根據實際需要製備。 In this embodiment, the shape of the three-dimensional nanostructure 502 is a double-layered cylindrical structure, and the cylindrical structure is a cylindrical structure space, specifically including a first cylindrical space 504, and a first cylindrical space 504 is connected to the second cylindrical space 506. The first cylindrical space 504 is disposed coaxially with the second cylindrical space 506. The first cylindrical space 504 is disposed adjacent to a surface of the substrate 500. The diameter of the first cylindrical space 504 is greater than the diameter of the second cylindrical space 506. The first cylindrical space 504 has a diameter of 30 nm to 1000 nm and a height of 50 nm to 1000 nm. The second cylindrical space 506 has a diameter of 10 nm to 500 nm and a height of 20 nm to 500 nm. The dimensions of the second cylindrical space 506 and the second cylindrical space 506 can be prepared according to actual needs.

所述複數三維奈米結構502在所述基底500上的表面以陣列形式設置。所述以陣列形式設置指所述複數三維奈米結構502可以按照簡單立方排布、同心圓環排布或六角形密堆排布等方式排列,而且所述以陣列形式設置的複數三維奈米結構502可以形成一單一圖案或複數圖案。所述相鄰的兩個三維奈米結構502之間的距離 相等。具體的,所述相鄰的第一圓柱空間504之間的距離為可為1奈米~1000奈米,優選為10奈米~50奈米;所述相鄰兩第二圓柱空間506之間的距離為15奈米~900奈米,優選的為20奈米~100奈米。所述複數三維奈米結構502在所述基底500上的表面設置的形式及相鄰的兩個三維奈米結構502之間的距離可以根據實際需要製備。本實施例中,所述複數三維奈米結構502呈六角形密堆排布形成一單一正方形圖案。 The surfaces of the plurality of three-dimensional nanostructures 502 on the substrate 500 are arranged in an array. The arrangement in the form of an array means that the plurality of three-dimensional nanostructures 502 can be arranged in a simple cubic arrangement, a concentric annular arrangement or a hexagonal dense arrangement, and the plurality of three-dimensional nanometers arranged in an array form. Structure 502 can form a single pattern or a plurality of patterns. The distance between the adjacent two three-dimensional nanostructures 502 equal. Specifically, the distance between the adjacent first cylindrical spaces 504 may be from 1 nm to 1000 nm, preferably from 10 nm to 50 nm; between the adjacent two second cylindrical spaces 506 The distance is from 15 nm to 900 nm, preferably from 20 nm to 100 nm. The form of the surface of the plurality of three-dimensional nanostructures 502 on the substrate 500 and the distance between the adjacent two three-dimensional nanostructures 502 can be prepared according to actual needs. In this embodiment, the plurality of three-dimensional nanostructures 502 are arranged in a hexagonal close-packed form to form a single square pattern.

所述雙層圓柱狀空間的三維奈米結構502的製備方法與第四實施例中所述三維奈米結構402的製備方法基本相同,其不同在於,所述掩膜層為一具有複數開孔的連續膜。所述反應性蝕刻氣體對開孔中的基板的表面進行蝕刻的同時,對所述掩膜層進行腐蝕。一方面,所述反應性蝕刻氣體對所述開孔的所述基板的表面進行蝕刻,從而形成第一圓柱空間504;另一方面,所述反應性蝕刻氣體同時對所述基板的表面上的掩膜層進行腐蝕,使所述開孔變大,使所述反應性蝕刻氣體對所述基板蝕刻範圍更大,從而形成所述第一圓柱空間504,最後在開孔對應的位置製備得到階梯狀凹陷結構。可以理解,通過控制反應性蝕刻氣體的蝕刻時間可以控制三維奈米結構502間的間距,也可以控制三維奈米結構502中所述第一圓柱空間504及第二圓柱空間506的尺寸。所述具有複數開孔的連續膜可以通過奈米壓印、模板沈積等方式製備。 The method for preparing the three-dimensional nanostructure 502 of the double-layered cylindrical space is substantially the same as the method for preparing the three-dimensional nanostructure 402 of the fourth embodiment, except that the mask layer has a plurality of openings. Continuous film. The reactive etching gas etches the surface of the substrate in the opening while etching the mask layer. In one aspect, the reactive etching gas etches a surface of the substrate of the opening to form a first cylindrical space 504; on the other hand, the reactive etching gas simultaneously faces a surface of the substrate The mask layer is etched to make the opening larger, so that the reactive etching gas etches a larger range to the substrate, thereby forming the first cylindrical space 504, and finally preparing a step at a position corresponding to the opening. a concave structure. It can be understood that the spacing between the three-dimensional nanostructures 502 can be controlled by controlling the etching time of the reactive etching gas, and the dimensions of the first cylindrical space 504 and the second cylindrical space 506 in the three-dimensional nanostructure 502 can also be controlled. The continuous film having a plurality of openings can be prepared by nanoimprinting, template deposition, or the like.

本發明第五實施例提供的分子載體50與第四實施例所提供的分子載體40所起的作用基本相同。由於所述三維奈米結構502為一雙層圓柱狀空間,因此所述雙層圓柱狀空間具有兩個不同的間隙,即第一圓柱空間504形成一間隙,第二圓柱空間506形成另一間隙 。因此,當所述分子載體用於單分子檢測時,在外界入射光電磁場的激發下,第一圓柱空間504中的金屬層產生表面電磁耦子共振,同時第二圓柱空間506的金屬層產生電磁耦子共振,增強拉曼散射,因此可以進一步的提高SERS增強因數,提高所述單分子檢測的解析度,使得單分子檢測結果更加的準確。 The molecular carrier 50 provided by the fifth embodiment of the present invention functions substantially the same as the molecular carrier 40 provided by the fourth embodiment. Since the three-dimensional nanostructure 502 is a double-layered cylindrical space, the double-layered cylindrical space has two different gaps, that is, the first cylindrical space 504 forms a gap, and the second cylindrical space 506 forms another gap. . Therefore, when the molecular carrier is used for single molecule detection, the metal layer in the first cylindrical space 504 generates surface electromagnetic coupling resonance under the excitation of the external incident photoelectric magnetic field, and the metal layer of the second cylindrical space 506 generates electromagnetic The coupler resonance enhances the Raman scattering, so the SERS enhancement factor can be further improved, the resolution of the single molecule detection is improved, and the single molecule detection result is more accurate.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之請求項。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下請求項內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and the claim of the present invention cannot be limited thereby. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included in the following claims.

10‧‧‧分子載體 10‧‧‧Molecular carrier

100‧‧‧基底 100‧‧‧Base

101‧‧‧金屬層 101‧‧‧metal layer

102‧‧‧三維奈米結構 102‧‧‧Three-dimensional nanostructure

Claims (16)

一種用於單分子檢測的分子載體,其包括一基底,其改良在於,所述基底一表面設置有複數三維奈米結構及一金屬層包覆於三維奈米結構表面及相鄰三維奈米結構之間基底的表面,所述複數三維奈米結構形成一陣列,且與基底為一體成型結構。 A molecular carrier for single molecule detection, comprising a substrate, wherein the substrate is provided with a plurality of three-dimensional nanostructures on one surface and a metal layer coated on the surface of the three-dimensional nanostructure and adjacent three-dimensional nanostructures The plurality of three-dimensional nanostructures form an array between the surfaces of the substrate and are integrally formed with the substrate. 如請求項第1項所述用於單分子檢測的分子載體,其中,所述三維奈米結構為凸起結構或凹陷結構。 The molecular carrier for single molecule detection according to Item 1, wherein the three-dimensional nanostructure is a convex structure or a concave structure. 如請求項第2項所述用於單分子檢測的分子載體,其中,所述相鄰的三維奈米結構之間的距離為0奈米~50奈米。 The molecular carrier for single molecule detection according to claim 2, wherein the distance between the adjacent three-dimensional nanostructures is from 0 nm to 50 nm. 如請求項第2項所述用於單分子檢測的分子載體,其中,所述三維奈米結構為半球狀結構、半橢球狀結構或倒金字塔狀結構。 The molecular carrier for single molecule detection according to claim 2, wherein the three-dimensional nanostructure is a hemispherical structure, a semi-ellipsoidal structure or an inverted pyramidal structure. 如請求項第2項所述用於單分子檢測的分子載體,其中,所述三維奈米結構為階梯狀結構。 The molecular carrier for single molecule detection according to claim 2, wherein the three-dimensional nanostructure is a stepped structure. 如請求項第5項所述用於單分子檢測的分子載體,其中,所述階梯狀結構的最大尺寸小於等於1000奈米。 The molecular carrier for single molecule detection according to claim 5, wherein the stepped structure has a maximum size of 1000 nm or less. 如請求項第5項所述用於單分子檢測的分子載體,其中,所述階梯狀結構為複數層三棱臺、複數層四棱臺、複數層六棱臺或複數層圓柱。 The molecular carrier for single molecule detection according to claim 5, wherein the stepped structure is a plurality of triangular prisms, a plurality of quadrangular pyramids, a plurality of layers of hexagonal prisms or a plurality of layers of cylinders. 如請求項第5項所述用於單分子檢測的分子載體,其中,所述三維奈米結構包括一第一圓柱及一設置於該第一圓柱上表面的第二圓柱,且第一圓柱的直徑大於第二圓柱的直徑,所述第一圓柱與第二圓柱為一體結構且同軸設置。 The molecular carrier for single molecule detection according to Item 5, wherein the three-dimensional nanostructure comprises a first cylinder and a second cylinder disposed on the upper surface of the first cylinder, and the first cylinder The diameter is larger than the diameter of the second cylinder, and the first cylinder and the second cylinder are integrally formed and coaxially disposed. 如請求項第5項所述用於單分子檢測的分子載體,其中,所述三維奈米結構包括一第一圓柱空間,及一與所述第一圓柱空間連通的第二圓柱空間 ,所述第一圓柱空間與第二圓柱空間同軸設置,所述第一圓柱空間靠近基底的表面設置且所述第一圓柱空間的直徑大於第二圓柱空間的直徑。 The molecular carrier for single molecule detection according to claim 5, wherein the three-dimensional nanostructure comprises a first cylindrical space, and a second cylindrical space communicating with the first cylindrical space The first cylindrical space is disposed coaxially with the second cylindrical space, the first cylindrical space is disposed near a surface of the substrate and the diameter of the first cylindrical space is larger than the diameter of the second cylindrical space. 如請求項第1項所述用於單分子檢測的分子載體,其中,所述複數三維奈米結構按照簡單立方排布、同心圓環排布或六角形密堆排布的方式設置在所述基底的表面。 The molecular carrier for single molecule detection according to Item 1, wherein the plurality of three-dimensional nanostructures are arranged in a simple cubic arrangement, a concentric annular arrangement or a hexagonal dense arrangement. The surface of the substrate. 如請求項第1項所述用於單分子檢測的分子載體,其中,所述複數三維奈米結構形成一單一圖案或複數圖案。 The molecular carrier for single molecule detection according to claim 1, wherein the plurality of three-dimensional nanostructures form a single pattern or a plurality of patterns. 如請求項第1項所述用於單分子檢測的分子載體,其中,所述金屬層為單層層狀結構或複數層層狀結構。 The molecular carrier for single molecule detection according to Item 1, wherein the metal layer is a single layered layer structure or a plurality of layered structures. 如請求項第1項所述的分子載體,其中,所述金屬層為金屬材料形成的一連續的層狀結構。 The molecular carrier according to claim 1, wherein the metal layer is a continuous layered structure formed of a metal material. 如請求項第13項所述用於單分子檢測的分子載體,其中,所述金屬層沈積於所述三維奈米結構的表面及相鄰的三維奈米結構之間基底的表面。 The molecular carrier for single molecule detection according to claim 13, wherein the metal layer is deposited on a surface of the three-dimensional nanostructure and a surface of the substrate between adjacent three-dimensional nanostructures. 如請求項第1項所述用於單分子檢測的分子載體,其中,所述金屬層的厚度為2奈米~200奈米。 The molecular carrier for single molecule detection according to the above item 1, wherein the metal layer has a thickness of from 2 nm to 200 nm. 如請求項第1項所述用於單分子檢測的分子載體,其中,所述分子載體表面增強拉曼散射之增強因數為105至1015The molecular carrier for single molecule detection according to claim 1, wherein the molecular carrier surface enhanced Raman scattering has an enhancement factor of 10 5 to 10 15 .
TW100100547A 2011-01-07 2011-01-07 A molecule carrier used for single molecule detection TWI452282B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100100547A TWI452282B (en) 2011-01-07 2011-01-07 A molecule carrier used for single molecule detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100547A TWI452282B (en) 2011-01-07 2011-01-07 A molecule carrier used for single molecule detection

Publications (2)

Publication Number Publication Date
TW201229490A TW201229490A (en) 2012-07-16
TWI452282B true TWI452282B (en) 2014-09-11

Family

ID=46933966

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100547A TWI452282B (en) 2011-01-07 2011-01-07 A molecule carrier used for single molecule detection

Country Status (1)

Country Link
TW (1) TWI452282B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639820B (en) * 2016-11-14 2018-11-01 鴻海精密工業股份有限公司 A single molecule detection apparatus and method using the same
CN109470679A (en) * 2017-09-08 2019-03-15 清华大学 Molecular vehicle for Molecular Detection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520694B (en) * 2012-08-10 2018-05-15 浜松光子学株式会社 Surface enhanced Raman scattering unit and its application method
CN104508465B (en) 2012-08-10 2018-12-21 浜松光子学株式会社 Surface enhanced raman scattering unit
CN107561051A (en) 2016-07-01 2018-01-09 清华大学 A kind of molecular vehicle for Single Molecule Detection
CN107561052B (en) 2016-07-01 2020-04-28 清华大学 Preparation method of molecular carrier for single-molecule detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1511980B1 (en) * 2002-06-12 2007-09-05 Intel Corporation Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy (sers) substrate
TW200823447A (en) * 2006-11-21 2008-06-01 Optotrace Technologies Inc Arrays of nano structures for surface-enhanced raman scattering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1511980B1 (en) * 2002-06-12 2007-09-05 Intel Corporation Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy (sers) substrate
TW200823447A (en) * 2006-11-21 2008-06-01 Optotrace Technologies Inc Arrays of nano structures for surface-enhanced raman scattering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639820B (en) * 2016-11-14 2018-11-01 鴻海精密工業股份有限公司 A single molecule detection apparatus and method using the same
US10151704B2 (en) 2016-11-14 2018-12-11 Tsinghua University Device for single molecule detection
CN109470679A (en) * 2017-09-08 2019-03-15 清华大学 Molecular vehicle for Molecular Detection

Also Published As

Publication number Publication date
TW201229490A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
CN102169086B (en) Molecular carrier for single molecule detection
CN102169088B (en) Monomolecular detection method
Fang et al. Hierarchically ordered silicon metastructures from improved self-assembly-based nanosphere lithography
Yao et al. Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition
TWI452282B (en) A molecule carrier used for single molecule detection
Luo et al. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review
KR101448111B1 (en) A substrate for surface-enhanced Raman scattering spectroscopy and a preparing method thereof
De Jesus et al. Nanofabrication of densely packed metal–polymer arrays for surface-enhanced Raman spectrometry
US20110250464A1 (en) Directly fabricated nanoparticles for Raman scattering
Li et al. Well-designed metal nanostructured arrays for label-free plasmonic biosensing
Wendisch et al. Confined etching within 2D and 3D colloidal crystals for tunable nanostructured templates: local environment matters
TWI621847B (en) A carrier for single molecule detection
CN104949957A (en) Embedded type nano dot array surface enhanced Raman active substrate and preparation method thereof
CN112499581A (en) Preparation method of surface-enhanced Raman scattering substrate
Zuo et al. Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering
Liu et al. Real-time Raman detection by the cavity mode enhanced Raman scattering
CN112014375A (en) Metal circular ring inner hexagram trimer nano array and preparation method and application thereof
CN102928387B (en) Molecular vector for single molecule detection
Deng et al. Rapid fabrication and characterization of SERS substrates
Kumar et al. Sculptured thin films: overcoming the limitations of surface-enhanced Raman scattering substrates
Wang et al. Surface-enhanced Raman scattering on a hierarchical structural Ag nano-crown array in different detection ways
Zhang et al. Plasmonic structure with nanocavity cavities for SERS detection of pesticide thiram
Ma et al. Rapidly fabricating a large area nanotip microstructure for high-sensitivity SERS applications
Li et al. The cascade structure of periodic micro/nanoscale Au nano-islands@ Ag-frustum arrays as effective SERS substrates
RU2543691C2 (en) Renewable carrier for surface-enhanced raman scattering detection