TWI439702B - Current sensing circuit - Google Patents

Current sensing circuit Download PDF

Info

Publication number
TWI439702B
TWI439702B TW99144949A TW99144949A TWI439702B TW I439702 B TWI439702 B TW I439702B TW 99144949 A TW99144949 A TW 99144949A TW 99144949 A TW99144949 A TW 99144949A TW I439702 B TWI439702 B TW I439702B
Authority
TW
Taiwan
Prior art keywords
current sensing
coupled
signal
capacitor
current
Prior art date
Application number
TW99144949A
Other languages
Chinese (zh)
Other versions
TW201226921A (en
Inventor
Chen Ming Hsu
Original Assignee
Himax Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Tech Ltd filed Critical Himax Tech Ltd
Priority to TW99144949A priority Critical patent/TWI439702B/en
Publication of TW201226921A publication Critical patent/TW201226921A/en
Application granted granted Critical
Publication of TWI439702B publication Critical patent/TWI439702B/en

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

電流感測電路Current sensing circuit

本發明是有關於一種感測電路,且特別是有關於一種電流感測電路。This invention relates to a sensing circuit and, more particularly, to a current sensing circuit.

為了節省顯示器消耗功率或是呈現較佳的影像品質,環境光感測器廣泛地應用在行動電話、手持式裝置以及影像顯示器等電子裝置中。絕大部分的環境光感測器是採用感光二極體(photodiode)架構,此架構需要一電壓電源動作。光感測器會依據不同的感測光強度,產生不同的電流,進而藉由其內部的電流感測電路提供一數位的讀取結果。In order to save power consumption of the display or to present better image quality, ambient light sensors are widely used in electronic devices such as mobile phones, handheld devices, and image displays. The vast majority of ambient light sensors use a photodiode architecture that requires a voltage source action. The light sensor generates different currents according to different sensing light intensities, and then provides a digital reading result by its internal current sensing circuit.

環境光感測器應用的感測範圍相當大,從數個勒克斯(Lux)到數萬個Lux。一般而言,環境光感測器的電流感測電路需要16位元以上的類比數位轉換器才可符合其需求。然而,在實際的應用上,雖然環境光感測器的感測範圍很廣,但是其電流感測電路所需的精確度(precision)卻依據所感測的光源強度而有所不同。舉例而言,在光源較暗時(1000 Lux以下),環境光感測器所需的精確度約為1Lux,其對應之電流感測電路的精確度較高;在光源較亮時(10000 Lux以上),環境光感測器所需的精確度約為20~30Lux,其對應之電流感測電路的精確度較低。The range of sensing for ambient light sensor applications is quite large, from several lux to tens of thousands of Lux. In general, the current sensing circuit of the ambient light sensor requires an analog digital converter of more than 16 bits to meet its needs. However, in practical applications, although the ambient light sensor has a wide sensing range, the precision required for the current sensing circuit varies depending on the intensity of the sensed light source. For example, when the light source is dark (below 1000 lux), the ambient light sensor requires an accuracy of about 1 Lux, which corresponds to a higher accuracy of the current sensing circuit; when the light source is brighter (10000 Lux Above), the accuracy required for the ambient light sensor is about 20~30 Lux, and the accuracy of the corresponding current sensing circuit is low.

因此,提供一個可依據不同的電流感測範圍,有不同精確度的電流感測電路實有其必要性。Therefore, it is necessary to provide a current sensing circuit with different accuracy depending on different current sensing ranges.

本發明提供一種電流感測電路,其可依據不同的電流感測範圍,提供不同的精確度。The present invention provides a current sensing circuit that provides different accuracy depending on different current sensing ranges.

本發明提供一種電流感測電路,包括一電流感測單元、一回授控制單元以及一數位輸出單元。電流感測單元感測一電流,並依據至少一參考訊號以及至少一回授訊號,產生一脈衝訊號。電流感測單元包括一第一電容組以及一第二電容組。電流感測單元依據電流之大小,選擇第一電容組中至少一電容以及第二電容組中至少一電容,以調整電流感測電路之精確度。回授控制單元耦接電流感測單元,並依據一時脈訊號以及脈衝訊號,產生至少一回授訊號。數位輸出單元耦接電流感測單元,並依據脈衝訊號輸出一數位訊號。The invention provides a current sensing circuit comprising a current sensing unit, a feedback control unit and a digital output unit. The current sensing unit senses a current and generates a pulse signal according to the at least one reference signal and the at least one feedback signal. The current sensing unit includes a first capacitor group and a second capacitor group. The current sensing unit selects at least one capacitor in the first capacitor group and at least one capacitor in the second capacitor group according to the magnitude of the current to adjust the accuracy of the current sensing circuit. The feedback control unit is coupled to the current sensing unit and generates at least one feedback signal according to a clock signal and a pulse signal. The digital output unit is coupled to the current sensing unit and outputs a digital signal according to the pulse signal.

在本發明一實施例中,上述之電流感測單元包括一感測單元以及一比較單元。感測單元感測電流,依據一第一參考訊號以及至少一回授訊號,產生一感測電壓。感測單元包括第一電容組以及第二電容組。比較單元耦接感測單元,並比較感測電壓與一第二參考訊號之準位,輸出脈衝訊號。In an embodiment of the invention, the current sensing unit includes a sensing unit and a comparing unit. The sensing unit senses the current, and generates a sensing voltage according to a first reference signal and at least one feedback signal. The sensing unit includes a first capacitor group and a second capacitor group. The comparison unit is coupled to the sensing unit and compares the sensing voltage with a level of a second reference signal to output a pulse signal.

在本發明一實施例中,上述之感測單元更包括一運算放大器。運算放大器包括一第一端、一第二端以及一輸出端。電流依據一第一回授訊號流出第一端,第二端耦接第一參考訊號,輸出端輸出感測電壓。In an embodiment of the invention, the sensing unit further includes an operational amplifier. The operational amplifier includes a first end, a second end, and an output. The current flows out of the first end according to a first feedback signal, the second end is coupled to the first reference signal, and the output end outputs the sensing voltage.

在本發明一實施例中,上述之第一電容組包括一第一端及一第二端。第一電容組之第一端耦接運算放大器之輸出端,第一電容組之第二端耦接至運算放大器之第一端。In an embodiment of the invention, the first capacitor group includes a first end and a second end. The first end of the first capacitor group is coupled to the output end of the operational amplifier, and the second end of the first capacitor group is coupled to the first end of the operational amplifier.

在本發明一實施例中,上述之第一電容組包括多個電容。所述電容在第一電容組之第一端及第一電容組之第二端之間並聯耦接。In an embodiment of the invention, the first capacitor group includes a plurality of capacitors. The capacitor is coupled in parallel between the first end of the first capacitor group and the second end of the first capacitor group.

在本發明一實施例中,上述之第二電容組包括一第一端及一第二端。第二電容組之第一端依據一第二回授訊號以及一第三回授訊號耦接至第一參考訊號或一第一電壓。第二電容組之第二端依據第二回授訊號以及第三回授訊號耦接運算放大器之第一端或一第二電壓。In an embodiment of the invention, the second capacitor group includes a first end and a second end. The first end of the second capacitor group is coupled to the first reference signal or a first voltage according to a second feedback signal and a third feedback signal. The second end of the second capacitor group is coupled to the first end of the operational amplifier or a second voltage according to the second feedback signal and the third feedback signal.

在本發明一實施例中,上述之第二電容組包括多個電容。所述電容在第二電容組之第一端及第二電容組之第二端之間並聯耦接。In an embodiment of the invention, the second capacitor group includes a plurality of capacitors. The capacitor is coupled in parallel between the first end of the second capacitor group and the second end of the second capacitor group.

在本發明一實施例中,上述之電流感測單元選擇第一電容組之一第一電容以及第二電容組中之一第二電容。第一電容之一端耦接運算放大器之輸出端。第一電容之另一端耦接至運算放大器之第一端。第二電容之一端依據一第二回授訊號以及一第三回授訊號耦接至第一參考訊號或一第一電壓。第二電容之另一端依據第二回授訊號以及第三回授訊號耦接運算放大器之第一端或一第二電壓。In an embodiment of the invention, the current sensing unit selects one of the first capacitor group and the second capacitor of the second capacitor group. One end of the first capacitor is coupled to the output of the operational amplifier. The other end of the first capacitor is coupled to the first end of the operational amplifier. One end of the second capacitor is coupled to the first reference signal or a first voltage according to a second feedback signal and a third feedback signal. The other end of the second capacitor is coupled to the first end of the operational amplifier or a second voltage according to the second feedback signal and the third feedback signal.

在本發明一實施例中,上述之比較單元包括一比較器。比較器包括一第一端、一第二端以及一輸出端。比較器之第一端耦接一第二參考訊號,比較器之第二端耦接運算放大器之輸出端,以接收感測電壓。比較器比較感測電壓及第二參考訊號,以於比較器之輸出端輸出脈衝訊號。In an embodiment of the invention, the comparing unit comprises a comparator. The comparator includes a first end, a second end, and an output. The first end of the comparator is coupled to a second reference signal, and the second end of the comparator is coupled to the output of the operational amplifier to receive the sensing voltage. The comparator compares the sense voltage with the second reference signal to output a pulse signal at the output of the comparator.

在本發明一實施例中,上述之回授控制單元包括一第一反相器、一及閘以及一第二反相器。第一反相器耦接電流感測單元,反相脈衝訊號,以產生一第一回授訊號。及閘包括一第一端、一第二端以及一輸出端。及閘之第一端耦接電流感測單元,以接收脈衝訊號,及閘之第二端接收時脈訊號。及閘依據脈衝訊號以及時脈訊號,於及閘之輸出端輸出一第二回授訊號。第二反相器耦接及閘,反相第二回授訊號,以產生一第三回授訊號。In an embodiment of the invention, the feedback control unit includes a first inverter, a gate, and a second inverter. The first inverter is coupled to the current sensing unit and inverts the pulse signal to generate a first feedback signal. The gate includes a first end, a second end, and an output end. The first end of the gate is coupled to the current sensing unit to receive the pulse signal, and the second end of the gate receives the clock signal. The gate outputs a second feedback signal at the output of the gate according to the pulse signal and the clock signal. The second inverter is coupled to the gate and inverts the second feedback signal to generate a third feedback signal.

在本發明一實施例中,上述之數位輸出單元包括一N位元計數器。N位元計數器耦接電流感測單元。N位元計數器在一預定時間區間內計數脈衝訊號之脈衝數量,以輸出數位訊號,其中脈衝數量與電流的大小成正相關。In an embodiment of the invention, the digital output unit includes an N-bit counter. The N-bit counter is coupled to the current sensing unit. The N-bit counter counts the number of pulses of the pulse signal for a predetermined time interval to output a digital signal, wherein the number of pulses is positively correlated with the magnitude of the current.

在本發明一實施例中,上述之電流感測電路更包括一控制器。控制器耦接數位輸出單元,依據數位訊號選擇第一電容組中至少一電容以及第二電容組中至少一電容,以調整電流感測電路之精確度。In an embodiment of the invention, the current sensing circuit further includes a controller. The controller is coupled to the digital output unit, and selects at least one capacitor in the first capacitor group and at least one capacitor in the second capacitor group according to the digital signal to adjust the accuracy of the current sensing circuit.

在本發明一實施例中,上述之控制器依據數位訊號,調整第二電壓之大小,以調整電流感測電路之精確度。In an embodiment of the invention, the controller adjusts the magnitude of the second voltage according to the digital signal to adjust the accuracy of the current sensing circuit.

在本發明一實施例中,上述之電流感測電路,更包括一感光二極體。感光二極體耦接電流感測單元,適於感測一光源,以產生電流。In an embodiment of the invention, the current sensing circuit further includes a photodiode. The photodiode is coupled to the current sensing unit and is adapted to sense a light source to generate a current.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

在本發明之範例實施例中,電流感測電路一適於環境光感測器,其可依據不同的電流感測範圍,提供不同的精確度,但本發明不限於此。另外,電流感測電路可提供感光二極體電壓電源,且可將感測到之電流值直接以數位形式輸出,毋需使用習知電壓式的類比數位轉換器。因此,使用該環境光感測器的電子裝置可讀取其數位值,以了解環境光的狀況,進而控制其系統達到低功耗、高效能的綠能顯示。In an exemplary embodiment of the present invention, the current sensing circuit is adapted to an ambient light sensor that provides different degrees of accuracy depending on different current sensing ranges, but the invention is not limited thereto. In addition, the current sensing circuit can provide a photodiode voltage power supply, and can directly output the sensed current value in digital form, without using a conventional analog analog digital converter. Therefore, the electronic device using the ambient light sensor can read its digital value to understand the condition of the ambient light, thereby controlling its system to achieve a low power consumption, high performance green energy display.

圖1為本發明一實施例之電流感測電路的示意圖。圖2為本發明一實施例之電流感測電路的部份示意圖。請參考圖1及圖2,在本實施例中,電流感測電路100包括一電流感測單元110、一回授控制單元120、一數位輸出單元130以及一感光二極體PD。1 is a schematic diagram of a current sensing circuit in accordance with an embodiment of the present invention. 2 is a partial schematic view of a current sensing circuit in accordance with an embodiment of the present invention. Referring to FIG. 1 and FIG. 2 , in the embodiment, the current sensing circuit 100 includes a current sensing unit 110 , a feedback control unit 120 , a digital output unit 130 , and a photodiode PD .

電流感測單元110感測感光二極體PD因環境光而產生的電流Is,並依據參考訊號Vref、Vr1以及回授訊號Sp_B、Sw1、Sw2,產生一脈衝訊號Sp。在本實施例中,電流感測單元110包括一第一電容組Ci以及一第二電容組Cc。在此,第一電容組Ci包括多個並聯耦接之電容Ci1、Ci2、...、Cin,以及第二電容組Cc包括多個並聯耦接之電容Cc1、Cc2、...、Ccn,如圖2所示。電流感測單元110依據電流Is之大小,選擇第一電容組Ci中至少一電容以及第二電容組Cc中至少一電容,以調整電流感測電路之精確度。換句話說,在本實施例中,電流感測電路100可依據不同的電流感測範圍,提供不同的精確度。The current sensing unit 110 senses the current Is generated by the photodiode PD due to ambient light, and generates a pulse signal Sp according to the reference signals Vref, Vr1 and the feedback signals Sp_B, Sw1, Sw2. In this embodiment, the current sensing unit 110 includes a first capacitor group Ci and a second capacitor group Cc. Here, the first capacitor group Ci includes a plurality of capacitors Ci1, Ci2, . . . , Cin coupled in parallel, and the second capacitor group Cc includes a plurality of capacitors Cc1, Cc2, . . . , Ccn coupled in parallel. as shown in picture 2. The current sensing unit 110 selects at least one of the first capacitor group Ci and at least one of the second capacitor group Cc according to the magnitude of the current Is to adjust the accuracy of the current sensing circuit. In other words, in the present embodiment, the current sensing circuit 100 can provide different accuracy depending on different current sensing ranges.

回授控制單元120耦接電流感測單元110,並依據一時脈訊號CLK以及脈衝訊號Sp,產生回授訊號Sp_B、Sw1、Sw2。數位輸出單元130耦接電流感測單元110,並依據脈衝訊號Sp輸出一數位訊號Sd。換句話說,在本實施例中,電流感測電路100可直接把電流Is轉換成數位訊號Sd,毋需使用習知電壓式的類比數位轉換器。The feedback control unit 120 is coupled to the current sensing unit 110 and generates feedback signals Sp_B, Sw1, and Sw2 according to a clock signal CLK and a pulse signal Sp. The digital output unit 130 is coupled to the current sensing unit 110 and outputs a digital signal Sd according to the pulse signal Sp. In other words, in the present embodiment, the current sensing circuit 100 can directly convert the current Is into the digital signal Sd without using a conventional analog analog digital converter.

具體而言,電流感測單元110包括一感測單元112以及一比較單元114。感測單元112感測電流Is,依據第一參考訊號Vref以及回授訊號Sp_B、Sw1、Sw2,產生一感測電壓Vx。比較單元114耦接感測單元112,並比較感測電壓Vx與第二參考訊號Vr1之準位,以輸出脈衝訊號Sp。Specifically, the current sensing unit 110 includes a sensing unit 112 and a comparing unit 114. The sensing unit 112 senses the current Is, and generates a sensing voltage Vx according to the first reference signal Vref and the feedback signals Sp_B, Sw1, Sw2. The comparison unit 114 is coupled to the sensing unit 112 and compares the levels of the sensing voltage Vx and the second reference signal Vr1 to output the pulse signal Sp.

在本實施例中,感測單元112包括一運算放大器OP、第一電容組Ci以及第二電容組Cc。電流Is依據第一回授訊號Sp_B由節點A流至感光二極體PD,其中節點A與運算放大器OP之反向端(即第一端)耦接。運算放大器OP之非反向端(即第二端)耦接第一參考訊號Vref。運算放大器OP之輸出端輸出感測電壓Vx。在此,電流Is流動的路徑上配置一開關T1,而開關T1之導通狀態受控於第一回授訊號Sp_B。感光二極體PD之陰極耦接節點A,感光二極體PD之陽極耦接一第一電壓VSSA。當開關T1導通時,利用運算放大器之虛短路原理,節點A的電壓等於第一參考訊號Vref,因此第一參考訊號Vref作為感光二極體PD之電壓電源。In this embodiment, the sensing unit 112 includes an operational amplifier OP, a first capacitor group Ci, and a second capacitor group Cc. The current Is flows from the node A to the photodiode PD according to the first feedback signal Sp_B, wherein the node A is coupled to the opposite end (ie, the first end) of the operational amplifier OP. The non-inverting terminal (ie, the second end) of the operational amplifier OP is coupled to the first reference signal Vref. The output terminal of the operational amplifier OP outputs a sensing voltage Vx. Here, a switch T1 is disposed on the path through which the current Is flows, and the conduction state of the switch T1 is controlled by the first feedback signal Sp_B. The cathode of the photodiode PD is coupled to the node A, and the anode of the photodiode PD is coupled to a first voltage VSSA. When the switch T1 is turned on, the voltage of the node A is equal to the first reference signal Vref by the virtual short circuit principle of the operational amplifier, so the first reference signal Vref is used as the voltage source of the photodiode PD.

第一電容組Ci包括一第一端及一第二端。第一電容組Ci之第一端耦接運算放大器OP之輸出端,第一電容組Ci之第二端耦接至運算放大器OP之反向端(即節點A)。第二電容組Cc包括一第一端及一第二端。第二電容組Cc之第一端依據第二回授訊號Sw1以及第三回授訊號Sw2耦接至第一參考訊號Vref或第一電壓VSSA。第二電容組Cc之第二端依據第二回授訊號Sw1以及第三回授訊號Sw2耦接運算放大器OP之反向端或一第二電壓Vx1。在此,第二電容組Cc、開關T2a、T2b、T3a、T3b及其對應的回授訊號Sw1、Sw2之電路組態為一標準型切換電容,其形成一等效正電阻。因此,感測單元112之作用猶如一積分器。The first capacitor group Ci includes a first end and a second end. The first end of the first capacitor group Ci is coupled to the output end of the operational amplifier OP, and the second end of the first capacitor group Ci is coupled to the opposite end of the operational amplifier OP (ie, node A). The second capacitor group Cc includes a first end and a second end. The first end of the second capacitor group Cc is coupled to the first reference signal Vref or the first voltage VSSA according to the second feedback signal Sw1 and the third feedback signal Sw2. The second end of the second capacitor group Cc is coupled to the inverting terminal of the operational amplifier OP or a second voltage Vx1 according to the second feedback signal Sw1 and the third feedback signal Sw2. Here, the circuits of the second capacitor group Cc, the switches T2a, T2b, T3a, T3b and their corresponding feedback signals Sw1, Sw2 are configured as a standard type switching capacitor, which forms an equivalent positive resistance. Therefore, the sensing unit 112 functions as an integrator.

在本實施例中,比較單元114包括一比較器comp。比較器comp之反向端(即第一端)耦接第二參考訊號Vr1。比較器comp之非反向端(即第二端)耦接運算放大器OP之輸出端,以接收感測電壓Vx。比較器comp比較感測電壓Vx及第二參考訊號Vr1,以於其輸出端輸出脈衝訊號Sp。In the present embodiment, the comparison unit 114 includes a comparator comp. The opposite end (ie, the first end) of the comparator comp is coupled to the second reference signal Vr1. The non-inverting terminal (ie, the second terminal) of the comparator comp is coupled to the output of the operational amplifier OP to receive the sensing voltage Vx. The comparator comp compares the sensing voltage Vx and the second reference signal Vr1 to output a pulse signal Sp at its output.

在本實施例中,回授控制單元120包括一第一反相器122、一及閘124以及一第二反相器126。第一反相器122耦接電流感測單元110,以反相脈衝訊號Sp,進而產生一第一回授訊號Sp_B。及閘124之一輸入端(即第一端)耦接電流感測單元110,以接收脈衝訊號Sp。及閘124之另一輸入端(即第二端)接收時脈訊號CLK。及閘124依據脈衝訊號Sp以及時脈訊號CLK,於其輸出端輸出第二回授訊號Sw1。第二反相器126耦接及閘124,以反相第二回授訊號Sw1,進而產生第三回授訊號Sw2。In this embodiment, the feedback control unit 120 includes a first inverter 122, a gate 124, and a second inverter 126. The first inverter 122 is coupled to the current sensing unit 110 to invert the pulse signal Sp to generate a first feedback signal Sp_B. The input terminal (ie, the first end) of one of the gates 124 is coupled to the current sensing unit 110 to receive the pulse signal Sp. The other input (ie, the second end) of the AND gate 124 receives the clock signal CLK. The gate 124 outputs a second feedback signal Sw1 at its output according to the pulse signal Sp and the clock signal CLK. The second inverter 126 is coupled to the gate 124 to invert the second feedback signal Sw1 to generate a third feedback signal Sw2.

在本實施例中,數位輸出單元130包括一N位元計數器132。N位元計數器132耦接電流感測單元110。N位元計數器在一預定時間區間內計數脈衝訊號Sp之脈衝數量,以輸出數位訊號Sd。在此,脈衝訊號Sp之脈衝數量與電流Is的大小成正相關。換句話說,N位元計數器在預定時間區間內計數脈衝訊號Sp之脈衝數量愈多,即代表電流感測單元110所感測的電流值Is愈大。In the present embodiment, the digital output unit 130 includes an N-bit counter 132. The N-bit counter 132 is coupled to the current sensing unit 110. The N-bit counter counts the number of pulses of the pulse signal Sp for a predetermined time interval to output the digital signal Sd. Here, the number of pulses of the pulse signal Sp is positively correlated with the magnitude of the current Is. In other words, the more the number of pulses of the N-bit counter counting the pulse signal Sp in the predetermined time interval, that is, the greater the current value Is sensed by the current sensing unit 110.

詳細而言,圖3繪示圖1之電流感測電路的示意圖。圖4分別繪示感測電壓及脈衝訊號的訊號波形圖。請參考圖3及圖4,在本實施例中,電流感測單元110依據電流Is之大小,例如選擇第一電容組Ci中的電容Cij(即第一電容)以及第二電容組Cc中的電容Ccj(即第二電容),以調整電流感測電路100之精確度。其中,電容Cij之一端耦接運算放大器OP之輸出端,電容Cij之另一端耦接至運算放大器之反向端。電容Ccj之一端依據回授訊號Sw1、Sw2耦接至第一參考訊號Vref或第一電壓VSSA。電容Ccj之另一端依據回授訊號Sw1、Sw2耦接運算放大器OP之反向端或第二電壓Vx1。In detail, FIG. 3 is a schematic diagram of the current sensing circuit of FIG. 1. FIG. 4 is a diagram showing signal waveforms of the sensing voltage and the pulse signal, respectively. Referring to FIG. 3 and FIG. 4 , in the embodiment, the current sensing unit 110 selects, for example, the capacitance Cij (ie, the first capacitance) in the first capacitor group Ci and the second capacitor group Cc according to the magnitude of the current Is. The capacitor Ccj (ie, the second capacitor) is used to adjust the accuracy of the current sensing circuit 100. The one end of the capacitor Cij is coupled to the output end of the operational amplifier OP, and the other end of the capacitor Cij is coupled to the opposite end of the operational amplifier. One end of the capacitor Ccj is coupled to the first reference signal Vref or the first voltage VSSA according to the feedback signals Sw1 and Sw2. The other end of the capacitor Ccj is coupled to the inverting terminal of the operational amplifier OP or the second voltage Vx1 according to the feedback signals Sw1 and Sw2.

利用運算放大器之虛短路原理,節點A的電壓等於第一參考訊號Vref。當開關T1導通時,第一參考訊號Vref可作為感光二極體PD之電壓電源,進而使感光二極體PD可感測環境光源產生電流Is,其中電流Is之大小與光源強度成正比,即光源強度愈強,電流Is愈大。Using the virtual short circuit principle of the operational amplifier, the voltage of node A is equal to the first reference signal Vref. When the switch T1 is turned on, the first reference signal Vref can be used as the voltage source of the photodiode PD, so that the photodiode PD can sense the ambient light source to generate a current Is, wherein the magnitude of the current Is is proportional to the intensity of the light source, that is, The stronger the intensity of the light source, the larger the current Is.

在本實施例中,電流Is係由運算放大器OP輸出之感測電壓Vx所提供。依據電荷原理,電流Is=dQ/dt,以及電容Cij兩端的電壓差V=Q×Cij,則可推導出感測電壓Vx之上升斜率為dVx/dt=Is/Ci。當感測電壓Vx大於第二參考訊號Vr1時,比較器comp輸出高準位Hi的脈衝訊號Sp。因此,N位元計數器132會加1。In the present embodiment, the current Is is provided by the sensing voltage Vx output from the operational amplifier OP. According to the charge principle, the current Is=dQ/dt, and the voltage difference V=Q×Cij across the capacitor Cij, it can be inferred that the rising slope of the sensing voltage Vx is dVx/dt=Is/Ci. When the sensing voltage Vx is greater than the second reference signal Vr1, the comparator comp outputs the pulse signal Sp of the high level Hi. Therefore, the N-bit counter 132 is incremented by one.

另一方面,由於比較器comp所輸出的脈衝訊號Sp為高準位Hi,因此第一回授訊號Sp_B會關閉開關T1,切斷供應給感光二極體PD之電壓電源,即第一參考訊號Vref。同時,電容Ccj的充放電機制亦被啟動,進入充電狀態。亦即,當時脈訊號CLK為高準位,以及脈衝訊號Sp為高準位時,回授訊號Sw1、Sw2分別高準位、低準位,進而使開關T2a、T2b為導通狀態,開關T3a、T3b為關閉狀態,因此電容Ccj被充電,其充電電壓為第二電壓Vx1。On the other hand, since the pulse signal Sp output by the comparator comp is at the high level Hi, the first feedback signal Sp_B turns off the switch T1, and cuts off the voltage source supplied to the photodiode PD, that is, the first reference signal. Vref. At the same time, the charging and discharging mechanism of the capacitor Ccj is also activated to enter the charging state. That is, when the pulse signal CLK is at a high level and the pulse signal Sp is at a high level, the feedback signals Sw1 and Sw2 are respectively at a high level and a low level, thereby making the switches T2a and T2b conductive, and the switch T3a, T3b is in a closed state, so the capacitor Ccj is charged, and its charging voltage is the second voltage Vx1.

進一步而言,首先,開關T2a、T2b因時脈訊號CLK為高準位Hi而被驅動,處於開啟狀態,因此第二電壓Vx1會被存入電容Ccj。之後,當開關T3a、T3b開啟時,開關T2a、T2b被關閉,儲存於電容Ccj之電荷被釋放而出,造成感測電壓Vx下降,其下降前後的電壓差值為Vdif=Vx1×Ccj/Cij。接著,在感測電壓Vx下降後,比較器comp恢復輸出低準位Lo的脈衝訊號Sp,進而第一參考訊號Vref恢復供應給感光二極體PD,以作為電壓電源。是以,電流Is會繼續使感測電壓Vx上升,直到感測電壓Vx又大於第二參考訊號Vr1,再次啟動電容Ccj的充放電機制。此時,N位元計數器132再加1。Further, first, the switches T2a and T2b are driven by the clock signal CLK being at the high level Hi, and are turned on, so the second voltage Vx1 is stored in the capacitor Ccj. Thereafter, when the switches T3a, T3b are turned on, the switches T2a, T2b are turned off, and the charge stored in the capacitor Ccj is released, causing the sensing voltage Vx to drop, and the voltage difference before and after the falling is Vdif = Vx1 × Ccj / Cij . Then, after the sense voltage Vx falls, the comparator comp resumes the pulse signal Sp outputting the low level Lo, and the first reference signal Vref is restored to be supplied to the photodiode PD as a voltage source. Therefore, the current Is will continue to increase the sensing voltage Vx until the sensing voltage Vx is greater than the second reference signal Vr1, again starting the charging and discharging mechanism of the capacitor Ccj. At this time, the N-bit counter 132 is incremented by one.

因此,在操作一預定時間區間後,N位元計數器132將其所計數之值輸出,此值即代表電流Is的大小。由於感測電壓Vx之上升斜率dVx/dt為Is/Ci,因此當電壓差值Vdif固定時,斜率愈大,代表比較器comp啟動次數愈多,則N位元計數器132之數位輸出愈大,由此代表電流Is的大小。Therefore, after operating for a predetermined time interval, the N-bit counter 132 outputs the value it counts, which represents the magnitude of the current Is. Since the rising slope dVx/dt of the sensing voltage Vx is Is/Ci, when the voltage difference Vdif is fixed, the larger the slope, the more the comparator comp starts, the larger the digital output of the N-bit counter 132 is. This represents the magnitude of the current Is.

圖5繪示圖1之電流感測電路的方塊示意圖。請參考圖5,在本實施例中,電流感測電路100更包括一控制器140。控制器140耦接數位輸出單元130,依據數位訊號Sd,選擇第一電容組Ci中至少一電容(第一電容)以及第二電容組Cc中至少一電容(第二電容),並調整第二電壓Vx1之大小,以調整電流感測電路100之精確度。FIG. 5 is a block diagram showing the current sensing circuit of FIG. 1. Referring to FIG. 5, in the embodiment, the current sensing circuit 100 further includes a controller 140. The controller 140 is coupled to the digital output unit 130, and selects at least one capacitor (first capacitor) of the first capacitor group Ci and at least one capacitor (second capacitor) of the second capacitor group Cc according to the digital signal Sd, and adjusts the second The voltage Vx1 is sized to adjust the accuracy of the current sensing circuit 100.

一般而言,若電流感測電路之第一電容、第二電容及第二電壓無法調整,欲使用圖1之電路架構達到高解析度(resolution),類比數位轉換時間會很長。舉例而言,若需要10位元解析度的數位訊號,則電流感測電路之時脈訊號至少需要1024個時脈(1024 CLK)才可達到。如此,在電流速度變化的應用上,電流感測電路的使用將會受到限制。In general, if the first capacitor, the second capacitor, and the second voltage of the current sensing circuit cannot be adjusted, the analog circuit of FIG. 1 is used to achieve high resolution, and the analog digital conversion time is long. For example, if a 10-bit resolution digital signal is required, the clock signal of the current sensing circuit needs to be at least 1024 clocks (1024 CLK). As such, the use of current sensing circuits will be limited in applications where current speed changes.

另一方面,若轉換時間固定,即解析度固定,則電流感測電路之最大可偵測電流可由第一電容、第二電容及第二電壓決定。亦即,在圖1之電路架構下,電流感測電路100之最大可感測電流Is與第一電容Cij、第二電容Ccj及第二電壓Vx1成正比。On the other hand, if the conversion time is fixed, that is, the resolution is fixed, the maximum detectable current of the current sensing circuit can be determined by the first capacitor, the second capacitor, and the second voltage. That is, under the circuit architecture of FIG. 1, the maximum sensible current Is of the current sensing circuit 100 is proportional to the first capacitance Cij, the second capacitance Ccj, and the second voltage Vx1.

因此,為了提升類比數位轉換速度,並達到較廣的感測範圍,本實施例之電流感測電路會依據不同的電流,選擇不同的第一電容Cij、第二電容Ccj及第二電壓Vx1,以將所需量測的範圍分區塊感測,如圖6所示。圖6繪示電流感測電路將所需量測的範圍分區塊感測之示意圖。在圖6中,電流感測電路100將所需量測的範圍分為2n 個範圍,即0~Ismax、0~2×Ismax、0~4×Ismax、...、0~2n-2 ×Ismax、0~2n-1 ×Ismax,且每個範圍的最大感測值呈兩倍成長,即2×Ismax為Ismax的兩倍,4×Ismax為2×Ismax的兩倍,...,2n-1 ×Ismax為2n-2 ×Ismax的兩倍。在本實施例中,每個感測範圍的解析度皆為N位元,因此電流感測電路整體的感測範圍可達(n+N)位元。Therefore, in order to improve the analog-to-digital conversion speed and achieve a wider sensing range, the current sensing circuit of the embodiment selects different first capacitors Cij, second capacitors Ccj, and second voltages Vx1 according to different currents. The range partition block sensing of the required measurement is as shown in FIG. 6. FIG. 6 is a schematic diagram showing the range partition block sensing of the required measurement by the current sensing circuit. In FIG. 6, the current sensing circuit 100 divides the range of the required measurement into 2 n ranges, that is, 0~Ismax, 0~2×Ismax, 0~4×Ismax, ..., 0~2 n- 2 × Ismax, 0~2 n-1 × Ismax, and the maximum sensed value of each range is doubled, that is, 2 × Ismax is twice that of Ismax, and 4 × Ismax is twice that of 2 × Ismax. . 2 n-1 × Ismax is twice the value of 2 n-2 × Ismax. In this embodiment, the resolution of each sensing range is N bits, so the sensing range of the current sensing circuit as a whole can reach (n+N) bits.

另一方面,由於每個感測範圍的解析度皆為N位元,所以感測範圍愈大,精準度就會愈低。舉例而言,感測範圍為0~Ismax時,其精確度為Ismax/2N ;感測範圍為0~2×Ismax時,其精確度為Ismax/2N-1 ;感測範圍為0~4×Ismax時,其精確度為Ismax/2N-2 ;感測範圍為0~2n-2 ×Ismax時,其精確度為Ismax/2N-n+2 ;感測範圍為0~2n-1 ×Ismax時,其精確度為Ismax/2N-n+1 。換句話說,電流感測電路之感測範圍愈大,精準度就會愈低。反之,在最小範圍內準確度是最高的。因此,電流感測電路之精準度與其感測範圍愈大成反比。若要得到最佳的精確度,則量測時需要選用最小感測範圍,且其量測值必須小於此感測範圍的最大值。On the other hand, since the resolution of each sensing range is N bits, the larger the sensing range, the lower the accuracy. For example, when the sensing range is 0~Ismax, the accuracy is Ismax/2 N ; when the sensing range is 0~2×Ismax, the accuracy is Ismax/2 N-1 ; the sensing range is 0~ When 4×Ismax, the accuracy is Ismax/2 N-2 ; when the sensing range is 0~2 n-2 ×Ismax, the accuracy is Ismax/2 N-n+2 ; the sensing range is 0~2 When n-1 × Ismax, the accuracy is Ismax/2 N-n+1 . In other words, the larger the sensing range of the current sensing circuit, the lower the accuracy. Conversely, accuracy is highest in the smallest range. Therefore, the accuracy of the current sensing circuit is inversely proportional to the larger the sensing range. For best accuracy, the minimum sensing range is required for measurement and its measurement must be less than the maximum of this sensing range.

在底下的範例實施例中,將例示一種電流感測電路之操作方式,可快速選擇適合的感測範圍,得到較佳的精確度。In the following exemplary embodiment, an operation mode of the current sensing circuit will be exemplified, and a suitable sensing range can be quickly selected to obtain better accuracy.

圖7為本發明一實施例之電路操作的方法流程圖。圖8繪示依據圖7之電路操作方法,電流感測電路之待測電流Im與其數位輸出之示意圖。請參考圖5、圖7及圖8,在本實施例中,在步驟S700中,電流感測電路100一開始會被設定至一最大的第一感測範圍R1,以感測待測電流Im,進而得到訊號Sd之數位輸出OutputA。接著,由數位輸出OutputA換算至一最接近的第二範圍R2而得到數位輸出OutputB,如步驟S701。7 is a flow chart of a method of operating a circuit in accordance with an embodiment of the present invention. FIG. 8 is a schematic diagram showing the current to be measured Im and the digital output of the current sensing circuit according to the circuit operation method of FIG. 7. Referring to FIG. 5, FIG. 7 and FIG. 8, in the embodiment, in step S700, the current sensing circuit 100 is initially set to a maximum first sensing range R1 to sense the current to be measured Im. And then obtain the digital output OutputA of the signal Sd. Next, the digital output OutputB is converted from the digital output OutputA to a closest second range R2, as by step S701.

之後,在步驟S702中,判斷數位輸出OutputB大於或小於第二範圍R2之數位值的一半。若數位輸出OutputB大於該數位值的一半,則電流感測電路100會被設定至一大於第二範圍R2的第三範圍R3,並得到對應的數位輸出OutputC,如步驟S703。反之,若數位輸出OutputB小於該數位值的一半,則電流感測電路100會被設定至一小於第二範圍R2的第四範圍R4(未繪示),如步驟S704。藉此,電流感測電路100可得到一數位輸出OutputC。圖8所繪示者,係數位輸出OutputB大於第二範圍R2之數位值的一半之情形。Thereafter, in step S702, it is determined that the digital output OutputB is larger or smaller than half of the digital value of the second range R2. If the digital output OutputB is greater than half of the digital value, the current sensing circuit 100 is set to a third range R3 that is greater than the second range R2, and the corresponding digital output OutputC is obtained, as by step S703. On the other hand, if the digital output OutputB is less than half of the digital value, the current sensing circuit 100 is set to a fourth range R4 (not shown) that is smaller than the second range R2, as by step S704. Thereby, the current sensing circuit 100 can obtain a digital output OutputC. As shown in FIG. 8, the coefficient bit output OutputB is larger than half of the digital value of the second range R2.

繼之,在步驟S705中,判斷數位輸出OutputC大於或小於第三範圍R3或第四範圍R4之數位值的一半。若數位輸出OutputC大於該數位值的一半,則電流感測電路100會被設定至一大於第三範圍R3或第四範圍R4的第五範圍R5(未繪示),如步驟S706。反之,若數位輸出OutputC小於該數位值的一半,則電流感測電路100會被設定至一小於第三範圍R3或第四範圍R4的第六範圍R6,並得到對應的數位輸出OutputD,如步驟S707。藉此,電流感測電路100可得到一數位輸出OutputD。圖8所繪示者,係數位輸出OutputC小於第三範圍R3之數位值的一半之情形。Next, in step S705, it is judged that the digital output OutputC is larger or smaller than half of the digital value of the third range R3 or the fourth range R4. If the digital output OutputC is greater than half of the digital value, the current sensing circuit 100 is set to a fifth range R5 (not shown) that is greater than the third range R3 or the fourth range R4, as by step S706. On the contrary, if the digital output OutputC is less than half of the digital value, the current sensing circuit 100 is set to a sixth range R6 that is smaller than the third range R3 or the fourth range R4, and the corresponding digital output OutputD is obtained, as steps S707. Thereby, the current sensing circuit 100 can obtain a digital output OutputD. As shown in FIG. 8, the coefficient bit output OutputC is smaller than half of the digital value of the third range R3.

最後,在步驟S708中,判斷數位輸出OutputB與OutputD是否在一定誤差範圍內。若是,則輸出數位輸出OutputD,如步驟S709;若否,則回到步驟S700。Finally, in step S708, it is determined whether the digital output OutputB and OutputD are within a certain error range. If yes, the digital output OutputD is output, as in step S709; if not, the process returns to step S700.

依據上述方式,電流感測電路100最快可於四次資料轉換時間後得到訊號Sd之數位輸出。假設以不區分電流感測範圍的方式,一個16位元解析度的電流數位轉換器至少需要65535個時脈(65535CLK)才可得到與本實施例相同的數位輸出。相反地,本實施例之電流感測電路100若採用10位元解析度,並區分64個電流感測範圍來實現,則電流感測電路100可在1024×4=4096個時脈(4096CLK)下將資料轉換完成,大幅減少轉換時間,可應用在頻率變化較快的電流轉換。According to the above manner, the current sensing circuit 100 can obtain the digital output of the signal Sd at the fastest after four data conversion times. It is assumed that a 16-bit resolution current digital converter requires at least 65535 clocks (65535 CLK) in a manner that does not distinguish the current sensing range to obtain the same digital output as in this embodiment. Conversely, if the current sensing circuit 100 of the embodiment is implemented by using 10-bit resolution and distinguishing 64 current sensing ranges, the current sensing circuit 100 can be at 1024×4=4096 clocks (4096CLK). The data conversion is completed, and the conversion time is greatly reduced, and the current conversion with faster frequency change can be applied.

綜上所述,在本發明之範例實施例中,電流感測電路可依據不同的電流感測範圍,提供不同的精確度,進而控制其系統達到低功耗、高效能的綠能顯示。In summary, in an exemplary embodiment of the present invention, the current sensing circuit can provide different precision according to different current sensing ranges, thereby controlling the system to achieve low power consumption and high performance green energy display.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...電流感測電路100. . . Current sensing circuit

110...電流感測單元110. . . Current sensing unit

112...感測單元112. . . Sensing unit

114...比較單元114. . . Comparison unit

120...回授控制單元120. . . Feedback control unit

122...第一反相器122. . . First inverter

124...及閘124. . . Gate

126...第二反相器126. . . Second inverter

130...數位輸出單元130. . . Digital output unit

132...N位元計數器132. . . N-bit counter

140...控制器140. . . Controller

Ci...第一電容組Ci. . . First capacitor group

Cc...第二電容組Cc. . . Second capacitor group

Cij...第一電容Cij. . . First capacitor

Ccj...第二電容Ccj. . . Second capacitor

Ci1、Ci2、Cin、Cc1、Cc2、Ccn...電容Ci1, Ci2, Cin, Cc1, Cc2, Ccn. . . capacitance

PD...感光二極體PD. . . Photosensitive diode

A...節點A. . . node

CLK...時脈訊號CLK. . . Clock signal

Vref...第一參考訊號Vref. . . First reference signal

Vr1...第二參考訊號Vr1. . . Second reference signal

Sp_B...第一回授訊號Sp_B. . . First feedback signal

Sw1...第二回授訊號Sw1. . . Second feedback signal

Sw2...第三回授訊號Sw2. . . Third feedback signal

Vx...感測電壓Vx. . . Sense voltage

Sp...脈衝訊號Sp. . . Pulse signal

Sd...數位訊號Sd. . . Digital signal

T1、T2a、T2b、T3a、T3b‧‧‧開關T1, T2a, T2b, T3a, T3b‧‧‧ switch

Is‧‧‧電流Is‧‧‧ Current

Im‧‧‧待測電流Im‧‧‧current to be measured

OP‧‧‧運算放大器OP‧‧‧Operational Amplifier

comp‧‧‧比較器Comp‧‧‧ comparator

VSSA‧‧‧第一電壓VSSA‧‧‧First voltage

Vx1‧‧‧第二電壓Vx1‧‧‧second voltage

Vdif‧‧‧電壓差值Vdif‧‧‧voltage difference

Lo‧‧‧低準位Lo‧‧‧low level

Hi‧‧‧高準位Hi‧‧‧ high level

OutputA、OutputB、OutputC、OutputD‧‧‧數位輸出OutputA, OutputB, OutputC, OutputD‧‧‧ digital output

R1~R6‧‧‧感測範圍R1~R6‧‧‧Sensing range

S700~S709‧‧‧電路操作方法的步驟S700~S709‧‧‧ steps of circuit operation method

圖1為本發明一實施例之電流感測電路的示意圖。1 is a schematic diagram of a current sensing circuit in accordance with an embodiment of the present invention.

圖2為本發明一實施例之電流感測電路的部份示意圖。2 is a partial schematic view of a current sensing circuit in accordance with an embodiment of the present invention.

圖3繪示圖1之電流感測電路的示意圖。3 is a schematic diagram of the current sensing circuit of FIG. 1.

圖4分別繪示感測電壓及脈衝訊號的訊號波形圖。FIG. 4 is a diagram showing signal waveforms of the sensing voltage and the pulse signal, respectively.

圖5繪示圖1之電流感測電路的方塊示意圖。FIG. 5 is a block diagram showing the current sensing circuit of FIG. 1.

圖6繪示電流感測電路將所需量測的範圍分區塊感測之示意圖。FIG. 6 is a schematic diagram showing the range partition block sensing of the required measurement by the current sensing circuit.

圖7為本發明一實施例之電路操作的方法流程圖。7 is a flow chart of a method of operating a circuit in accordance with an embodiment of the present invention.

圖8繪示依據圖7之電路操作方法,電流感測電路之待測電流與其數位輸出之示意圖。FIG. 8 is a schematic diagram showing the current to be measured and the digital output of the current sensing circuit according to the circuit operation method of FIG. 7.

100...電流感測電路100. . . Current sensing circuit

110...電流感測單元110. . . Current sensing unit

112...感測單元112. . . Sensing unit

114...比較單元114. . . Comparison unit

120...回授控制單元120. . . Feedback control unit

122...第一反相器122. . . First inverter

124...及閘124. . . Gate

126...第二反相器126. . . Second inverter

130...數位輸出單元130. . . Digital output unit

132...N位元計數器132. . . N-bit counter

Ci...第一電容組Ci. . . First capacitor group

Cc...第二電容組Cc. . . Second capacitor group

PD...感光二極體PD. . . Photosensitive diode

A...節點A. . . node

CLK...時脈訊號CLK. . . Clock signal

Vref...第一參考訊號Vref. . . First reference signal

Vr1...第二參考訊號Vr1. . . Second reference signal

Sp_B...第一回授訊號Sp_B. . . First feedback signal

Sw1...第二回授訊號Sw1. . . Second feedback signal

Sw2...第三回授訊號Sw2. . . Third feedback signal

Vx...感測電壓Vx. . . Sense voltage

Sp...脈衝訊號Sp. . . Pulse signal

Sd...數位訊號Sd. . . Digital signal

T1、T2a、T2b、T3a、T3b...開關T1, T2a, T2b, T3a, T3b. . . switch

Is...電流Is. . . Current

OP...運算放大器OP. . . Operational Amplifier

comp...比較器Comp. . . Comparators

VSSA...第一電壓VSSA. . . First voltage

Vx1...第二電壓Vx1. . . Second voltage

Claims (14)

一種電流感測電路,包括:一電流感測單元,感測一電流,依據至少一參考訊號以及至少一回授訊號,產生一脈衝訊號,其中該電流感測單元包括一第一電容組以及一第二電容組,該電流感測單元依據該電流之大小,選擇該第一電容組中至少一電容以及該第二電容組中至少一電容;一回授控制單元,耦接該電流感測單元,依據一時脈訊號以及該脈衝訊號,產生該至少一回授訊號;以及一數位輸出單元,耦接該電流感測單元,依據該脈衝訊號,輸出一數位訊號,其中該電流感測單元依據一第一參考訊號以及該至少一回授訊號,產生一感測電壓,並且比較該感測電壓與一第二參考訊號之準位,輸出該脈衝訊號。 A current sensing circuit includes: a current sensing unit that senses a current, generates a pulse signal according to at least one reference signal and at least one feedback signal, wherein the current sensing unit includes a first capacitor group and a a second capacitor group, the current sensing unit selects at least one capacitor in the first capacitor group and at least one capacitor in the second capacitor group according to the magnitude of the current; a feedback control unit coupled to the current sensing unit The at least one feedback signal is generated according to the one pulse signal and the pulse signal; and the digital output unit is coupled to the current sensing unit, and outputs a digital signal according to the pulse signal, wherein the current sensing unit is configured according to the first The first reference signal and the at least one feedback signal generate a sensing voltage, and compare the sensing voltage with a second reference signal to output the pulse signal. 如申請專利範圍第1項所述之電流感測電路,其中該電流感測單元包括:一感測單元,感測該電流,依據該第一參考訊號以及該至少一回授訊號,產生該感測電壓,其中該感測單元包括該第一電容組以及該第二電容組;以及一比較單元,耦接該感測單元,比較該感測電壓與該第二參考訊號之準位,輸出該脈衝訊號。 The current sensing circuit of claim 1, wherein the current sensing unit comprises: a sensing unit that senses the current, and generates the sense according to the first reference signal and the at least one feedback signal Measuring the voltage, wherein the sensing unit includes the first capacitor group and the second capacitor group; and a comparing unit coupled to the sensing unit, comparing the sensing voltage with a level of the second reference signal, and outputting the Pulse signal. 如申請專利範圍第2項所述之電流感測電路,其中該感測單元更包括:一運算放大器,包括一第一端、一第二端以及一輸出 端,該電流依據一第一回授訊號流出該第一端,該第二端耦接該第一參考訊號,該輸出端輸出該感測電壓。 The current sensing circuit of claim 2, wherein the sensing unit further comprises: an operational amplifier comprising a first end, a second end, and an output The current is discharged from the first end according to a first feedback signal, and the second end is coupled to the first reference signal, and the output end outputs the sensing voltage. 如申請專利範圍第3項所述之電流感測電路,其中該第一電容組包括一第一端及一第二端,該第一電容組之該第一端耦接該運算放大器之該輸出端,該第一電容組之該第二端耦接至該運算放大器之該第一端。 The current sensing circuit of claim 3, wherein the first capacitor group includes a first end and a second end, the first end of the first capacitor group is coupled to the output of the operational amplifier The second end of the first capacitor group is coupled to the first end of the operational amplifier. 如申請專利範圍第4項所述之電流感測電路,其中該第一電容組包括多個電容,該些電容在該第一電容組之該第一端及該第一電容組之該第二端之間並聯耦接。 The current sensing circuit of claim 4, wherein the first capacitor group comprises a plurality of capacitors, the capacitors being at the first end of the first capacitor group and the second portion of the first capacitor group The ends are coupled in parallel. 如申請專利範圍第4項所述之電流感測電路,其中該第二電容組包括一第一端及一第二端,該第二電容組之該第一端依據一第二回授訊號以及一第三回授訊號耦接至該第一參考訊號或一第一電壓,該第二電容組之該第二端依據該第二回授訊號以及該第三回授訊號耦接該運算放大器之該第一端或一第二電壓。 The current sensing circuit of claim 4, wherein the second capacitor group includes a first end and a second end, and the first end of the second capacitor group is based on a second feedback signal and The second feedback signal is coupled to the first reference signal or a first voltage, and the second end of the second capacitor group is coupled to the operational amplifier according to the second feedback signal and the third feedback signal. The first end or a second voltage. 如申請專利範圍第6項所述之電流感測電路,其中該第二電容組包括多個電容,該些電容在該第二電容組之該第一端及該第二電容組之該第二端之間並聯耦接。 The current sensing circuit of claim 6, wherein the second capacitor group comprises a plurality of capacitors, the capacitors being at the first end of the second capacitor group and the second portion of the second capacitor group The ends are coupled in parallel. 如申請專利範圍第7項所述之電流感測電路,其中該電流感測單元選擇該第一電容組之一第一電容以及該第二電容組中之一第二電容,該第一電容之一端耦接該運算放大器之該輸出端,該第一電容之另一端耦接至該運算放大器之該第一端,以及該第二電容之一端依據該第二回授訊號以及該第三回授訊號耦接至該第一參考訊號或該第一 電壓,該第二電容之另一端依據該第二回授訊號以及該第三回授訊號耦接該運算放大器之該第一端或該第二電壓。 The current sensing circuit of claim 7, wherein the current sensing unit selects a first capacitor of the first capacitor group and a second capacitor of the second capacitor group, the first capacitor The other end of the first capacitor is coupled to the first end of the operational amplifier, and the second end of the second capacitor is coupled to the second feedback signal and the third feedback The signal is coupled to the first reference signal or the first The second end of the second capacitor is coupled to the first end or the second voltage of the operational amplifier according to the second feedback signal and the third feedback signal. 如申請專利範圍第4項所述之電流感測電路,其中該比較單元包括:一比較器,包括一第一端、一第二端以及一輸出端,該比較器之該第一端耦接一第二參考訊號,該比較器之該第二端耦接該運算放大器之該輸出端,以接收該感測電壓,該比較器比較該感測電壓及該第二參考訊號,以於該比較器之該輸出端輸出該脈衝訊號。 The current sensing circuit of claim 4, wherein the comparing unit comprises: a comparator comprising a first end, a second end, and an output, the first end of the comparator being coupled a second reference signal, the second end of the comparator is coupled to the output end of the operational amplifier to receive the sensing voltage, and the comparator compares the sensing voltage and the second reference signal for the comparison The output of the device outputs the pulse signal. 如申請專利範圍第1項所述之電流感測電路,其中該回授控制單元包括:一第一反相器,耦接該電流感測單元,反相該脈衝訊號,以產生一第一回授訊號;一及閘,包括一第一端、一第二端以及一輸出端,該及閘之該第一端耦接該電流感測單元,以接收該脈衝訊號,該及閘之該第二端接收該時脈訊號,該及閘依據該脈衝訊號以及該時脈訊號,於該及閘之該輸出端輸出一第二回授訊號;以及一第二反相器,耦接該及閘,反相該第二回授訊號,以產生一第三回授訊號。 The current sensing circuit of claim 1, wherein the feedback control unit comprises: a first inverter coupled to the current sensing unit, inverting the pulse signal to generate a first back And a first end, a second end, and an output end, the first end of the gate is coupled to the current sensing unit to receive the pulse signal, and the gate The second end receives the clock signal, and the gate outputs a second feedback signal at the output end of the gate according to the pulse signal and the clock signal; and a second inverter coupled to the gate And inverting the second feedback signal to generate a third feedback signal. 如申請專利範圍第1項所述之電流感測電路,其中該數位輸出單元包括:一N位元計數器,耦接該電流感測單元,在一預定時間區間內計數該脈衝訊號之一脈衝數量,以輸出該數位訊 號,其中該脈衝數量與該電流的大小成正相關。 The current sensing circuit of claim 1, wherein the digital output unit comprises: an N-bit counter coupled to the current sensing unit to count the number of pulses of the pulse signal in a predetermined time interval. To output the digital signal Number, where the number of pulses is positively correlated with the magnitude of the current. 如申請專利範圍第1項所述之電流感測電路,更包括:一控制器,耦接該數位輸出單元,依據該數位訊號,選擇該第一電容組中該至少一電容以及該第二電容組中該至少一電容。 The current sensing circuit of claim 1, further comprising: a controller coupled to the digital output unit, and selecting the at least one capacitor and the second capacitor in the first capacitor group according to the digital signal The at least one capacitor in the group. 如申請專利範圍第12項所述之電流感測電路,其中該控制器依據該數位訊號,調整一第二電壓之大小,其中該第二電壓依據該至少一回授訊號耦接該第二電容組之一端。 The current sensing circuit of claim 12, wherein the controller adjusts a second voltage according to the digital signal, wherein the second voltage is coupled to the second capacitor according to the at least one feedback signal One end of the group. 如申請專利範圍第1項所述之電流感測電路,更包括:一感光二極體,耦接該電流感測單元,適於感測一光源,以產生該電流。The current sensing circuit of claim 1, further comprising: a photodiode coupled to the current sensing unit for sensing a light source to generate the current.
TW99144949A 2010-12-21 2010-12-21 Current sensing circuit TWI439702B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99144949A TWI439702B (en) 2010-12-21 2010-12-21 Current sensing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99144949A TWI439702B (en) 2010-12-21 2010-12-21 Current sensing circuit

Publications (2)

Publication Number Publication Date
TW201226921A TW201226921A (en) 2012-07-01
TWI439702B true TWI439702B (en) 2014-06-01

Family

ID=46933039

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99144949A TWI439702B (en) 2010-12-21 2010-12-21 Current sensing circuit

Country Status (1)

Country Link
TW (1) TWI439702B (en)

Also Published As

Publication number Publication date
TW201226921A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
KR100939465B1 (en) Constant current source, ramp voltage generating circuit, and a/d converter
US7911185B2 (en) Battery voltage detection circuit
TWI402492B (en) Current mode dual-slope temperature-to-digital conversion device
US9285465B2 (en) Analog-digital conversion circuit, sensor apparatus, cellular phone, and digital camera
KR100760134B1 (en) Voltage-frequency converter
TW201017184A (en) Capacitance measurement circuit and capacitance measurement method thereof
TW201908700A (en) Optical sensor configuration and method for light sensing
US8604774B2 (en) Current sensing circuit with feedback control and dual capacitor set range setting
JP2003198372A (en) A/d converter
TWI439702B (en) Current sensing circuit
JP2010268387A (en) Reference voltage generation circuit, a/d converter and d/a converter
TWI428609B (en) Current sensing circuit
JP5082952B2 (en) Coulomb counter and dynamic range adjustment method
US8253615B2 (en) Current sensing circuit
JP5528942B2 (en) Analog-digital conversion circuit, illuminance sensor, proximity sensor, distance sensor, mobile phone, and digital camera
KR100283658B1 (en) Temperature Detection Compensation Circuit and Compensation Method
US10892773B2 (en) Analog-to-digital converter and sensor arrangement including the same
JP2009229165A (en) Coulomb counter, and its internal power supply control method
WO2021106177A1 (en) Voltage hold circuit, voltage monitoring circuit, and semiconductor integrated circuit
JP2023075782A (en) Analog-to-digital converter
JPH104353A (en) A/d converter
JP2005229257A (en) Analog/digital converter and microcomputer mounted with it
JP2001308709A (en) Integration type ad conversion circuit
CN116626384A (en) Clock frequency detection circuit
CN114978178A (en) Detection range adjusting and full-scale range detecting and adjusting circuit for ADC (analog to digital converter)