TWI433559B - A method and a mobile station for providing an interference measurement result, a method for configuring radio resource allocation ,a method for scheduling a mobile station, and a cellular orthogonal frequency division multiple access system - Google Patents

A method and a mobile station for providing an interference measurement result, a method for configuring radio resource allocation ,a method for scheduling a mobile station, and a cellular orthogonal frequency division multiple access system Download PDF

Info

Publication number
TWI433559B
TWI433559B TW097139705A TW97139705A TWI433559B TW I433559 B TWI433559 B TW I433559B TW 097139705 A TW097139705 A TW 097139705A TW 97139705 A TW97139705 A TW 97139705A TW I433559 B TWI433559 B TW I433559B
Authority
TW
Taiwan
Prior art keywords
interference
interference measurement
base station
mobile station
measurement result
Prior art date
Application number
TW097139705A
Other languages
Chinese (zh)
Other versions
TW200934262A (en
Inventor
I Kang Fu
Original Assignee
Mediatek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/287,990 external-priority patent/US8351949B2/en
Application filed by Mediatek Inc filed Critical Mediatek Inc
Publication of TW200934262A publication Critical patent/TW200934262A/en
Application granted granted Critical
Publication of TWI433559B publication Critical patent/TWI433559B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

用來提供干擾量測結果的方法和行動台、配置無線電資源的方法、資料傳輸排程的方法、以及蜂巢式正交分頻多重接取系統Method and mobile station for providing interference measurement results, method for configuring radio resources, method for data transmission scheduling, and honeycomb orthogonal frequency division multiple access system

本發明係有關於蜂巢式正交分頻多重接取(Orthogonal Frequency Division Multiple Access,以下簡稱OFDMA)系統,且特別係有關於適應性頻率複用(adaptive frequency reuse)之干擾量測機制。The present invention relates to a Orthogonal Frequency Division Multiple Access (OFDMA) system, and in particular to an interference measurement mechanism for adaptive frequency reuse.

在無線行動系統中,頻率複用是一個重要的技術,它藉由重複使用稀有的無線電頻譜資源(radio spectrum resource)來增進整個系統的容量。然而,系統容量的增進因伴隨的干擾強度上升卻會導致連線品質惡化。在蜂巢式OFDMA系統下,因為不同使用者之訊號在傳輸時會維持正交,因而沒有單元內部的干擾(intra-cell interference)。然而,因為相同的頻帶也會被鄰近單元的基地台所重複使用,重複使用無線電頻譜(亦即:頻率複用)將會造成單元之間的干擾(inter-cell interference)。In wireless mobile systems, frequency reuse is an important technology that increases the capacity of the entire system by reusing rare radio spectrum resources. However, the increase in system capacity is accompanied by an increase in the intensity of the interference, which may result in deterioration of the connection quality. In the cellular OFDMA system, since the signals of different users are maintained orthogonal during transmission, there is no intra-cell interference. However, since the same frequency band is also reused by the base station of the neighboring unit, repeated use of the radio spectrum (i.e., frequency reuse) will cause inter-cell interference.

第1圖為習知技術之蜂巢式OFDMA系統1的單元架構示意圖。蜂巢式OFDMA系統1包含一個單元結構,此單元結構的頻率複用因子(frequency reuse factor)1/K等於1/4。頻率複用因子1/K代表傳輸時不能分享相同頻帶的單元數目。在第1圖所示的例子中,整個許可的頻譜被劃分為四個頻帶,而每四個相鄰的單元組成一個群集(cluster),因此群集中的每一個單元可由不同的頻帶來服務。在一個例子當中,基地台BS4與基地台BS5共用相同的頻帶#1,分別服務位於單元2內的行動台MS6與位於單元3內的行動台MS7。結果,當BS4傳輸一個數據信號以與MS6通信時,BS5也同時傳輸了一個數據信號給MS7,由於BS4所傳輸給MS6的信號並非MS7所期望收到的訊號但卻又傳送在相同的頻帶中,因此該信號會對MS7造成干擾。這個干擾信號降低了行動台MS7的信號與干擾加雜訊比(Signal to interference-plus-noise ratio,以下簡稱SINR),因此降低了整體的服務品質。此問題雖然可透過設定一個較小的頻率複用因子1/K以將干擾源及接收端之距離拉遠(例如,sqrt(3K)*R,其中,R是單元半徑)來改善,但每一個單元中可使用的無線電資源卻會因而下降(例如,1/K的許可頻譜)而導致系統容量的降低。FIG. 1 is a schematic diagram of a unit architecture of a cellular OFDMA system 1 of the prior art. The cellular OFDMA system 1 includes a unit structure in which the frequency reuse factor 1/K is equal to 1/4. The frequency reuse factor 1/K represents the number of cells that cannot share the same frequency band when transmitting. In the example shown in Figure 1, the entire licensed spectrum is divided into four bands, and every four adjacent units make up a cluster, so each unit in the cluster can be served by a different frequency band. In one example, the base station BS4 shares the same frequency band #1 with the base station BS5, serving the mobile station MS6 located in the unit 2 and the mobile station MS7 located in the unit 3, respectively. As a result, when BS4 transmits a data signal to communicate with MS6, BS5 also transmits a data signal to MS7 at the same time. Since the signal transmitted by BS4 to MS6 is not the signal that MS7 expects to receive but is transmitted in the same frequency band. Therefore, this signal will cause interference to MS7. This interference signal reduces the signal to interference-plus-noise ratio (SINR) of the mobile station MS7, thus reducing the overall quality of service. This problem can be improved by setting a smaller frequency reuse factor of 1/K to extend the distance between the interferer and the receiver (for example, sqrt(3K)*R, where R is the cell radius), but each The radio resources available in one unit are thus degraded (for example, 1/K licensed spectrum) resulting in a reduction in system capacity.

相較於傳統之頻率複用方法,分頻複用(Fractional frequency reuse,以下簡稱FFR)已經被提出用於蜂巢式OFDMA系統以在系統容量與服務品質間達成更良好的平衡(tradeoff)。第2A圖與第2B圖為習知技術之顯示使用於蜂巢式OFDMA系統10之FFR的示意圖。蜂巢式OFDMA系統10包含單元11,而單元11被分割為第1區及第2區。第1區位於較接近服務基地台BS12的地理位置,而第2區則位於較遠離服務基地台BS12的地理位置。除此之外,蜂巢式OFDMA系統10的無線電頻譜在時域上被分割為訊框區(frame zone)#1與訊框區#2。於適應性頻率複用技術下,不同的訊框區與不同的頻率複用因子被應用以服務位於不同區的行動台。於第2A圖與第2B圖的例子中,第一訊框區使用較高的頻率複用因子(即:1/K等於1),來服務第1區,而第二訊框區則使用較低的頻率複用因子(即:1/K等於1/3),來服務第2區。因此,位於第1區的行動台MS17由基地台BS12使用頻率複用因子1/K等於1的第一訊框區來服務(如9A),而位於第2區的行動台MS18由基地台BS12使用頻率複用因子1/K等於1/3的第二訊框區來服務(如9B)。因為行動台MS17位於較接近單元11中心的位置,可假設它接收來自BS12較強的數據信號及來自鄰近干擾源的相對較弱的干擾信號。另一方面,因為行動台MS18位於較接近單元11邊界的位置,可假設它接收來自BS12相對較弱的數據信號與來自鄰近干擾源相對較強的干擾信號。因此藉由使用較高的重複因子(1/K)來服務MS1與使用較低的重複因子(1/K)來服務MS2,系統容量與服務品質之間就可以達到良好的平衡。Compared with the traditional frequency reuse method, Fractional Frequency Reuse (FFR) has been proposed for the cellular OFDMA system to achieve a better tradeoff between system capacity and service quality. 2A and 2B are schematic diagrams showing the FFR used in the cellular OFDMA system 10 for the display of the prior art. The cellular OFDMA system 10 includes a unit 11, and the unit 11 is divided into a first area and a second area. The first zone is located closer to the geographic location of the service base station BS12, while the second zone is located closer to the geographic base station BS12. In addition, the radio spectrum of the cellular OFDMA system 10 is divided into a frame zone #1 and a frame zone #2 in the time domain. Under the adaptive frequency reuse technique, different frame zones and different frequency reuse factors are applied to serve mobile stations located in different zones. In the examples of FIG. 2A and FIG. 2B, the first frame area uses a higher frequency reuse factor (ie, 1/K is equal to 1) to serve the first area, and the second frame area is used. A low frequency reuse factor (ie: 1/K equals 1/3) to service the second zone. Therefore, the mobile station MS17 located in the first area is served by the base station BS12 using the first frame area having the frequency reuse factor 1/K equal to 1 (e.g., 9A), and the mobile station MS18 located in the second area is served by the base station BS12. Serve (eg, 9B) using a second frame area with a frequency reuse factor of 1/K equal to 1/3. Since the mobile station MS17 is located closer to the center of the unit 11, it can be assumed that it receives a stronger data signal from the BS 12 and a relatively weaker interference signal from a neighboring interference source. On the other hand, since the mobile station MS 18 is located closer to the boundary of the unit 11, it can be assumed that it receives a relatively weak data signal from the BS 12 and a relatively strong interference signal from a neighboring interference source. Therefore, by using a higher repetition factor (1/K) to serve MS1 and a lower repetition factor (1/K) to serve MS2, a good balance between system capacity and service quality can be achieved.

不幸的是,基於地理位置的FFR技術並非總是有效的。如第2A圖與第2B圖所示,實體結構(physical structure)14阻隔於行動台MS18與干擾基地台BS13之間。因此,干擾基地台BS13傳送相對較強的干擾信號15給MS17並傳送相對較弱的干擾信號16給MS18。如上所示,在存在基於單元區域的頻率複用模式的狀況下,位於第1區的MS17受到來自BS13的較強干擾卻使用較高的1/K等於1,而位於第2區的MS18享受較佳的服務品質卻使用較低1/K等於1/3。因此,基於地理位置的FFR技術並不適用於動態網路的狀況下。無線電通信系統中,要能維持連線品質與系統容量的良好平衡必須做動態量測干擾,並根據干擾量測之結果以決定頻率複用模式與無線電資源配置等動作,這些都仍然存在著相當大的挑戰。Unfortunately, location-based FFR technology is not always effective. As shown in FIGS. 2A and 2B, a physical structure 14 is blocked between the mobile station MS 18 and the interfering base station BS 13. Therefore, the interfering base station BS13 transmits a relatively strong interference signal 15 to the MS 17 and transmits a relatively weak interference signal 16 to the MS 18. As described above, in the case where there is a frequency reuse mode based on the cell region, the MS 17 located in the first region is subjected to strong interference from the BS 13 but uses a higher 1/K equal to 1, and the MS 18 located in the second region enjoys The better service quality is lower than 1/K equal to 1/3. Therefore, location-based FFR technology is not suitable for dynamic network conditions. In a radio communication system, dynamic measurement interference must be performed to maintain a good balance between connection quality and system capacity, and the frequency reuse mode and radio resource allocation are determined according to the results of the interference measurement. Big challenge.

干擾量測機制曾被應用於傳統之無線通信系統上。例如:傳統的蜂巢式分頻多重接取(如GSM)或分碼多重接取系統,由收發器傳送與接收窄的波段信號。因為窄頻(narrowband)特性,分頻多重接取系統只能在給定時間中的單一時間-頻率區域上量測信號功率或是干擾。分頻多工系統並無法自由地在不同的時間-頻率區域量測,這是因為分頻多工系統的射頻中心頻率必須相應地調整方能進行量測。相對地,於正交分頻多重接取系統中,藉由具備快速傅立葉轉換(Fast Fourier Transfer)功能的收發器來傳送與接收寬頻的信號。這種OFDMA系統可以在較寬的通道頻寬下輕易地讓信號傳送與接收於任意指定的時間-頻率區域。因此,OFDMA系統的收發器可在不改變射頻中心頻率的情況下,於不同於接收數據的時間-頻率區域的時間-頻率區域內自由地量測信號功率或干擾。這是OFDMA系統與其他傳統蜂巢式分頻多重接取分頻多重接取系統或分碼多重接取系統最大不同之處。The interference measurement mechanism has been applied to conventional wireless communication systems. For example, a traditional cellular split multiple access (such as GSM) or a code division multiple access system transmits and receives narrow band signals by the transceiver. Because of the narrowband nature, the crossover multiple access system can only measure signal power or interference over a single time-frequency region in a given time. The frequency division multiplexing system is not free to measure in different time-frequency regions because the RF center frequency of the frequency division multiplexing system must be adjusted accordingly to be able to measure. In contrast, in the orthogonal frequency division multiple access system, a wideband signal is transmitted and received by a transceiver having a Fast Fourier Transfer function. Such an OFDMA system can easily transmit and receive signals to any given time-frequency region over a wide channel bandwidth. Therefore, the transceiver of the OFDMA system can freely measure signal power or interference in a time-frequency region different from the time-frequency region of the received data without changing the radio frequency center frequency. This is the biggest difference between the OFDMA system and other traditional cellular multi-frequency multi-access multi-access systems or code-multiple access systems.

為了解決以上的技術問題,本發明提供了一種用來提供干擾量測結果的方法和行動台、一種配置無線電資源的方法、一種資料傳輸排程的方法、以及一種蜂巢式正交分頻多重接取系統。In order to solve the above technical problems, the present invention provides a method and a mobile station for providing interference measurement results, a method for configuring radio resources, a data transmission scheduling method, and a cellular orthogonal frequency division multiple connection Take the system.

本發明提供了一種用來提供干擾量測結果的方法使用至少一台行動台來輔助OFDMA系統以致能支援分頻複用,該方法包含:使用該至少一台行動台在時間-頻率區域上量測干擾統計量,以據此獲得該蜂巢式正交分頻多重接取系統內的干擾量測結果,其中,該行動台位於服務基地台所服務的單元內;以及報告該干擾量測結果給該服務基地台。The present invention provides a method for providing interference measurement results using at least one mobile station to assist an OFDMA system to support frequency division multiplexing, the method comprising: using the at least one mobile station to measure on a time-frequency region Measuring interference statistics to obtain interference measurement results in the cellular orthogonal frequency division multiple access system, wherein the mobile station is located in a unit served by the service base station; and reporting the interference measurement result to the Service base station.

本發明提供了一種用來提供干擾量測結果的行動台,輔助蜂巢式正交分頻多重接取系統以致能頻率複用,該行動台包含:量測模組,該量測模組於該蜂巢式正交分頻多重接取系統中量測干擾統計量,並據此獲得該干擾量測結果,其中,該行動台報告該干擾量測結果給網路單元。The present invention provides a mobile station for providing interference measurement results, and an auxiliary honeycomb orthogonal frequency division multiple access system for enabling frequency multiplexing, the mobile station comprising: a measurement module, wherein the measurement module is The interference statistic is measured in the cellular orthogonal frequency division multiple access system, and the interference measurement result is obtained according to the data, wherein the mobile station reports the interference measurement result to the network unit.

本發明提供了一種行動台,包含:收發器;以及量測裝置,該量測裝置於蜂巢式正交分頻多重接取系統中量測干擾統計量,並據此獲得干擾量測結果,其中,該量測裝置報告該干擾量測結果給該蜂巢式正交分頻多重接取系統的網路單元。The invention provides a mobile station, comprising: a transceiver; and a measuring device, wherein the measuring device measures the interference statistic in the honeycomb orthogonal frequency division multiple access system, and obtains the interference measurement result according to the method, wherein The measuring device reports the interference measurement result to the network unit of the cellular orthogonal frequency division multiple access system.

本發明提供了一種配置無線電資源的方法,包含:獲得位於蜂巢式正交分頻多重接取系統的單元內的行動台的多個干擾量測結果;以及根據至少一部分該多個干擾量測結果決定頻率複用模式,以及配置對應的無線電資源分配。The present invention provides a method for configuring a radio resource, comprising: obtaining a plurality of interference measurement results of a mobile station located in a unit of a cellular orthogonal frequency division multiple access system; and obtaining a plurality of interference measurement results according to at least a portion Determine the frequency reuse mode and configure the corresponding radio resource allocation.

本發明提供了一種蜂巢式正交分頻多重接取系統,包含:多個行動台,量測多個干擾統計量並據此獲得多個干擾統計量結果;以及網路單元,接收該多個干擾量測結果,其中,該網路單元根據至少一部分接收的該多個干擾量測結果來決定多個分頻複用模式與配置相應的無線電資源分配。The present invention provides a cellular orthogonal frequency division multiple access system, comprising: a plurality of mobile stations, measuring a plurality of interference statistics and obtaining a plurality of interference statistic results therefrom; and a network unit receiving the plurality of The interference measurement result, wherein the network unit determines the multiple frequency division multiplexing mode and the corresponding radio resource allocation according to the at least a part of the received interference measurement results.

本發明提供了一種資料傳輸排程的方法,包含:藉由蜂巢式正交分頻多重接取系統內的基地台獲得干擾量測結果;以及根據獲得的該干擾量測結果的至少一部分,排程一行動台以由一無線電資源區域來服務。The present invention provides a method for data transmission scheduling, comprising: obtaining an interference measurement result by a base station in a cellular orthogonal frequency division multiple access system; and arranging according to at least a part of the obtained interference measurement result The Chengyi Mobile Station is served by a radio resource area.

本發明提供了一種蜂巢式正交分頻多重接取系統,包含:行動台;以及服務基地台,獲得干擾量測結果,並基於該干擾量測結果的至少一部分,來排程服務該行動台以由一無線電資源區域服務。The present invention provides a cellular orthogonal frequency division multiple access system, comprising: a mobile station; and a service base station, obtaining interference measurement results, and scheduling the mobile station based on at least a part of the interference measurement result To serve by a radio resource area.

本發明所提供之用來提供干擾量測結果的方法和行動台、配置無線電資源的方法、資料傳輸排程的方法、以及蜂巢式OFDMA系統,於適應性頻率複用技術下,服務於適合的頻率複用模式於不同的無線電資源區域,藉此減小單元之間的干擾與增進系統容量。除此之外,適應性頻率複用更進一步協調了無線電資源分配排程、功率分配、天線配置、以及通道化格式,最佳化了系統表現。The method and the mobile station for providing interference measurement results, the method for configuring radio resources, the method for data transmission scheduling, and the cellular OFDMA system provided by the present invention are suitable for adaptive frequency reuse technology The frequency reuse pattern is in different radio resource regions, thereby reducing interference between units and increasing system capacity. In addition, adaptive frequency reuse further coordinates radio resource allocation scheduling, power allocation, antenna configuration, and channelized formats to optimize system performance.

第3A圖與第3B圖顯示根據本發明之一實施例的蜂巢OFDMA系統20之示意圖,其中19A、19B為行動台動作內容;19C為基地台動作內容。蜂巢OFDMA系統20包含單元21、服務基地台BS22及位於單元21內多個行動台MS23、MS24、MS25。每一個行動台包含收發器26、量測模組27、類比基頻電路28、數位基頻電路29與記憶體30。蜂巢式OFDMA系統20使用適應性頻率複用(也被稱為FFR)技術來減低單元間的干擾。於第3A圖與第3B圖的例子中,蜂巢式OFDMA系統20內所有可獲得的頻率通道被切割為3個不同的無線電資源區域#1、#2與#3。無線電資源區域被切割在時間域、或在頻率域、或是時間域與頻率域之結合。每一個無線電頻率區域採用一個相對應的頻率複用因子來服務位於單元21內的行動台。根據本發明第一方面,每一個位於單元21內的行動台基於本身得到的干擾量測結果而由適當的頻率複用因子來服務。如同第3A圖與第3B圖所示,對於下行FFR控制而言,每一個行動台首先在給定的時間-頻率區域上量測它的干擾統計量(interference statistic)並獲得干擾量測結果(如19A)。干擾量測統計量可由干擾功率、信號與干擾比(signal to interference ratio,以下簡稱SIR)、信號與干擾加雜訊比(signal to interference-plus-noise ratio,以下簡稱SINR)、或一些其他的干擾資訊來表示。干擾量測結果可由干擾統計量直接獲得或間接由干擾統計量計算得出。舉例來說,干擾量測統計量結果可以由干擾功率、SIR、SINR、表示干擾台的指標(index indicative)、表示優選(preferred)與非優選(non-preferred)的無線電資源區域指標或其他SIR/SINR推導的形式來表示。每一個行動台接著報告干擾量測結果給服務的基地台BS22(如19B)。基於收到的干擾量測結果,服務台BS22排程(schedule)每一個行動台以由對應的無線電資源區域與適合的無線電資源區域來服務(如19C),藉此最佳化連線的表現及最大化系統容量。3A and 3B are diagrams showing a cellular OFDMA system 20 in accordance with an embodiment of the present invention, wherein 19A, 19B are mobile station action content; 19C is base station action content. The cellular OFDMA system 20 includes a unit 21, a serving base station BS22, and a plurality of mobile stations MS23, MS24, MS25 located in the unit 21. Each mobile station includes a transceiver 26, a measurement module 27, an analog baseband circuit 28, a digital baseband circuit 29, and a memory 30. The cellular OFDMA system 20 uses adaptive frequency reuse (also known as FFR) techniques to reduce inter-cell interference. In the examples of Figures 3A and 3B, all available frequency channels within the cellular OFDMA system 20 are sliced into three different radio resource regions #1, #2, and #3. The radio resource region is cut in the time domain, or in the frequency domain, or a combination of the time domain and the frequency domain. Each radio frequency region employs a corresponding frequency reuse factor to service the mobile stations located within unit 21. According to a first aspect of the invention, each of the mobile stations located within unit 21 is served by an appropriate frequency reuse factor based on the interference measurement results obtained by itself. As shown in Figures 3A and 3B, for downlink FFR control, each mobile station first measures its interference statistic over a given time-frequency region and obtains interference measurements ( Such as 19A). The interference measurement statistic may be interference power, signal to interference ratio (SIR), signal to interference-plus-noise ratio (SINR), or some other Interfere with information to indicate. Interference measurement results can be obtained directly from interference statistics or indirectly from interference statistics. For example, the interference measurement statistic result may be represented by interference power, SIR, SINR, index indication, and preferred and non-preferred radio resource area indicators or other SIRs. /SINR derived form to represent. Each mobile station then reports the interference measurement results to the serving base station BS22 (e.g., 19B). Based on the received interference measurement results, the service station BS22 schedules each mobile station to serve (e.g., 19C) by the corresponding radio resource area and the appropriate radio resource area, thereby optimizing the performance of the connection. And maximize system capacity.

第4圖是蜂巢式OFDMA系統量測干擾統計量與報告干擾統計量結果的流程圖。其中有不同的干擾量測機制(interference measurement mechanism)。在被請求的干擾量測機制當中,行動台首先發出干擾量測的請求給服務中的基地台(步驟31)。請求之後,行動台從服務的基地台接收干擾量測的指示(步驟32)。在步驟34中,行動台在給定的時間-頻率區域量測它的干擾統計量,並隨後獲得干擾量測結果。給定的時間-頻率區域則是由干擾量測指示所提供。在最後的步驟35中,行動台報告干擾量測結果給服務的基地台。在不被請求的干擾量測機制當中,行動台不傳送干擾量測請求。相反的,服務基地台直接指示行動台執行干擾量測。行動台接著執行同樣的步驟34與步驟35,來量測干擾統計量並報告干擾統計量結果給服務基地台。在自發的干擾量測機制(autonomous interference measurementmechanism)當中,沒有干擾量測請求,也沒有行動台與基地台通信的干擾量測指示。相反的,行動台接收由服務基地台所廣播的資源分配訊息(步驟33)。藉由對資源分配訊息解碼,行動台獲得可以使用來做干擾量測的給定時間-頻率區域。行動台接著按照相同的步驟34與步驟35來量測它的干擾統計量,並報告干擾量測結果給服務基地台。Figure 4 is a flow chart of the measurement of interference statistics and reported interference statistics for a cellular OFDMA system. There are different interference measurement mechanisms. Among the requested interference measurement mechanisms, the mobile station first issues a request for interference measurement to the base station in service (step 31). After the request, the mobile station receives an indication of the interference measurement from the serving base station (step 32). In step 34, the mobile station measures its interference statistics for a given time-frequency region and then obtains the interference measurement results. The given time-frequency region is provided by the interference measurement indication. In the final step 35, the mobile station reports the interference measurement results to the serving base station. In the unsolicited interference measurement mechanism, the mobile station does not transmit the interference measurement request. Instead, the service base station directly instructs the mobile station to perform interference measurements. The mobile station then performs the same steps 34 and 35 to measure the interference statistics and report the interference statistics results to the serving base station. In the autonomous interference measurement mechanism, there is no interference measurement request, and there is no interference measurement indication that the mobile station communicates with the base station. Instead, the mobile station receives the resource allocation message broadcast by the serving base station (step 33). By decoding the resource allocation message, the mobile station obtains a given time-frequency region that can be used for interference measurement. The mobile station then measures its interference statistics according to the same steps 34 and 35, and reports the interference measurement results to the serving base station.

第5A圖與第5B圖顯示使用於蜂巢式OFDMA系統的單元40中的被請求的干擾量測機制與不被請求的干擾量測機制,其中39A為行動台動作內容;39B為基地台動作內容;39C為給定的時間-頻率區域。行動台MS42、MS43、與MS44位於單元40內,並由基地台BS41來服務。在第5B圖中,單元40的下行訊框在時間域分為N個不同的訊框區(訊框區#1-#N)。在被請求的干擾量測機制下,行動台MS42、MS43與MS44首先請求服務基地台BS41指示行動台來量測它們的干擾統計量(如39A)。服務基地台接到請求後,指示每一個行動台在每一個訊框區內的給定的時間-頻率區域(如39C)上執行干擾量測(如39B)。在不被請求的干擾量測機制下,服務基地台BS41直接發起干擾量測而不需接收來自於行動台的請求。5A and 5B show the requested interference measurement mechanism and the unsolicited interference measurement mechanism used in the unit 40 of the cellular OFDMA system, where 39A is the action content of the mobile station; 39B is the action content of the base station ; 39C is the given time-frequency region. The mobile stations MS42, MS43, and MS44 are located in the unit 40 and are served by the base station BS41. In Figure 5B, the downlink frame of unit 40 is divided into N different frame regions (frame regions #1-#N) in the time domain. Under the requested interference measurement mechanism, the mobile stations MS42, MS43 and MS44 first request the serving base station BS41 to instruct the mobile station to measure their interference statistics (e.g., 39A). Upon receiving the request, the service base station instructs each mobile station to perform interference measurements (such as 39B) on a given time-frequency region (such as 39C) in each frame area. Under the unsolicited interference measurement mechanism, the serving base station BS41 directly initiates interference measurement without receiving a request from the mobile station.

在一個實施例中,行動台無法分辨接收到的信號是來自於服務基地台還是其他的干擾站台。為了使行動台的干擾量測更便於實行,服務基地台BS41不在給定的時間-頻率區域上傳送數據信號。結果,每個行動台在給定的時間-頻率區域上所接收的總信號功率等於總接收干擾功率,因此可以輕易地量測。在另一實施例,行動台可以分辨干擾信號與數據信號,因此可以量測與計算總接收干擾功率、SIR、或SINR。舉例來說,在無線通訊系統中如全球互通微波存取(WiMAX)系統中,由每個基地台所發出的前導信號(pilot signal)被譯成獨特的編碼。因此,行動台可以利用從服務基地台收到的前導信號功率來推導出從干擾基地台收到的干擾功率。In one embodiment, the mobile station cannot distinguish whether the received signal is from a serving base station or another interfering station. In order to make the interference measurement of the mobile station more convenient, the serving base station BS41 does not transmit data signals on a given time-frequency region. As a result, the total signal power received by each mobile station over a given time-frequency region is equal to the total received interference power and can therefore be easily measured. In another embodiment, the mobile station can resolve the interference signal and the data signal, so the total received interference power, SIR, or SINR can be measured and calculated. For example, in a wireless communication system, such as a Worldwide Interoperable Microwave Access (WiMAX) system, the pilot signal emitted by each base station is translated into a unique code. Therefore, the mobile station can use the preamble signal power received from the serving base station to derive the interference power received from the interfering base station.

第6A圖與第6B圖顯示使用於蜂巢式OFDMA系統的單元40中的自發的干擾量測機制的示意圖,其中48A、48B為行動台動作內容。服務基地台BS41周期性地廣播資源分配訊息給所有位於單元40內的行動台。在一個實施例中,行動台MS42、MS43與MS44對資源分配訊息解碼,以獲得服務基地台BS41每一訊框區內沒有傳輸信號的時間頻率區域(如48A)。接著,每一個行動台分配每一個訊框區內的給定時間-頻率區域來自發地進行干擾量測(如48B)。舉例來說,給定的時間-頻率區域是一個服務基地台BS41沒有傳送信號的解碼時間-頻率區域的子集合。在另一個實施例(未示於第6A圖與第6B圖),每一個行動台將建議服務基地台BS41哪一個時間-頻率區域應該被指定來執行干擾量測。Figures 6A and 6B show schematic diagrams of the spontaneous interference measurement mechanism used in unit 40 of a cellular OFDMA system, where 48A, 48B are mobile station action content. The serving base station BS41 periodically broadcasts resource allocation messages to all mobile stations located within unit 40. In one embodiment, the mobile stations MS42, MS43, and MS44 decode the resource allocation message to obtain a time-frequency region (e.g., 48A) in which no signal is transmitted in each of the frame areas of the serving base station BS41. Next, each mobile station allocates a given time-frequency region within each frame region from the ground to perform interference measurements (eg, 48B). For example, a given time-frequency region is a subset of the decoding time-frequency region in which a serving base station BS41 does not transmit a signal. In another embodiment (not shown in Figures 6A and 6B), each mobile station will suggest which time-frequency region the serving base station BS 41 should be designated to perform interference measurements.

在蜂巢式OFDMA系統中,有許多不同利用量測模組來量測行動台的干擾統計量的方法。在本發明中,用來量測干擾統計量的量測模組(例如,第3A圖中的量測模組27)可以是可程式化或不可程式化的硬體,或嵌入行動台當中的軟體。In a cellular OFDMA system, there are many different methods of measuring the interference statistics of a mobile station using a measurement module. In the present invention, the measurement module for measuring interference statistics (for example, the measurement module 27 in FIG. 3A) may be a programmable or non-programmable hardware or embedded in a mobile station. software.

第7A圖顯示位於蜂巢式OFDMA系統單元40的行動台MS42量測干擾統計量的各種例子的示意圖。在第7A圖的例子中行動台MS42由服務基地台BS41所服務,並且在鄰近的干擾基地台BS45可到達的範圍內。如第7A圖所示,如果行動台能夠分辨數據信號與干擾信號,那麼干擾基地台BS45傳送一干擾信號46給行動台MS42的同時,服務基地台BS41也可傳送數據信號47給行動台MS42。在第一個例子當中,行動台MS42藉由量測每一個基地台的參考信號功率(例如,前導信號功率)來獲得干擾功率,且參考信號功率與總接收功率成比例。在第二個例子當中,行動台MS42接收干擾信號46並識別干擾基地台BS45所使用的預編碼矩陣指標(precoding matrix index)。在第三個例子中,行動台MS42分辨出數據信號47與數據信號46,並量測出行動台MS42所接收的SIR或SINR。第7B圖為信號之載波示意圖。信號包含資料載波(data carrier)與前導載波(pilot carrier)。Figure 7A shows a schematic diagram of various examples of measuring interference statistics at the mobile station MS42 of the cellular OFDMA system unit 40. In the example of Fig. 7A, the mobile station MS 42 is served by the serving base station BS 41 and is within reach of the adjacent interfering base station BS 45. As shown in Fig. 7A, if the mobile station can resolve the data signal and the interference signal, the interfering base station BS45 transmits an interference signal 46 to the mobile station MS42, and the serving base station BS41 can also transmit the data signal 47 to the mobile station MS42. In the first example, the mobile station MS42 obtains the interference power by measuring the reference signal power (e.g., the preamble power) of each base station, and the reference signal power is proportional to the total received power. In the second example, the mobile station MS 42 receives the interference signal 46 and identifies the precoding matrix index used by the interfering base station BS45. In the third example, the mobile station MS 42 resolves the data signal 47 and the data signal 46 and measures the SIR or SINR received by the mobile station MS 42. Figure 7B is a schematic diagram of the carrier of the signal. The signal includes a data carrier and a pilot carrier.

在行動台量測了干擾訊號之統計量後,接著會得到相對應的干擾量測結果。干擾量測結果可與量測的干擾統計量相同。干擾量測結果也可間接地由干擾統計量計算出。在一實施例中,干擾量測結果由識別干擾基地台的指標來表示。如果行動台可以從總接收的干擾信號中識別特定干擾基地台的信號,則其接著報告一指標,此指標與至少一造成最顯著干擾的基地台相關。舉例來說,此指標關係著最低的SINR、最強干擾功率、或其他干擾資訊。特定的干擾基地台由行動台從全部的干擾基地台中(除了服務基地台)選出。一般來說,特定的干擾基地台是由行動台所選出並回報。但在某些情況下,服務基地台可以指示行動台報告特定的干擾基地台。After the statistic of the interference signal is measured at the mobile station, the corresponding interference measurement result is obtained. The interference measurement results can be the same as the measured interference statistics. Interference measurements can also be calculated indirectly from interference statistics. In an embodiment, the interference measurement result is represented by an indicator identifying the interfering base station. If the mobile station can identify the signal of a particular interfering base station from the total received interfering signal, it then reports an indicator associated with at least one base station that caused the most significant interference. For example, this indicator relates to the lowest SINR, the strongest interference power, or other interference information. The specific interfering base station is selected by the mobile station from all interfering base stations (except the service base station). In general, a particular interfering base station is selected and rewarded by the mobile station. However, in some cases, the service base station may instruct the mobile station to report a particular interfering base station.

在另一個實施例當中,干擾量測結果由可識別優選與非優選的無線電資源區域的指標來表示,其中無線電資源區域是基於量測干擾統計量計算出來的。因為行動台在不同時間-頻率區域的干擾統計量可能也會有相當大的不同,所以行動台可以藉由重複不同時間-頻率區域的干擾量測來收集不同的干擾統計量。在不同時間-頻率區域收集干擾統計量之後,行動台可以選擇識別優選或非優選無線電區域的指標。例如,優選的無線電區域可以由最高的SINR或最低的干擾功率識別,非優選的無線電區域可由最低的SINR或最高的干擾功率識別。In another embodiment, the interference measurement results are represented by an indicator that identifies a preferred and non-preferred radio resource region, wherein the radio resource region is calculated based on the measured interference statistics. Because the interference statistics of the mobile station in different time-frequency regions may also vary considerably, the mobile station can collect different interference statistics by repeating the interference measurements in different time-frequency regions. After collecting interference statistics at different time-frequency regions, the mobile station may select an indicator that identifies the preferred or non-preferred radio region. For example, a preferred radio zone may be identified by the highest SINR or lowest interference power, and a non-preferred radio zone may be identified by the lowest SINR or the highest interference power.

由行動台的實際干擾量測而得的干擾量測結果可以反映出動態網路情況,並且,與由地理位置所估計或由前文所量測的干擾功率相比更為準確。因此,基於準確的干擾量測結果,服務基地台或其他網路單元(如網路運算子、網路控制器或其他相似的單元)更有效地應用適應頻率複用,藉此來達成下一代4G無線通訊系統所要求的更高的系統容量。The interference measurement results from the actual interference measurements of the mobile station may reflect the dynamic network conditions and are more accurate than the interference power estimated by the geographic location or measured by the foregoing. Therefore, based on accurate interference measurement results, the service base station or other network elements (such as network operators, network controllers, or other similar units) can more effectively apply adaptive frequency reuse to achieve the next generation. Higher system capacity required by 4G wireless communication systems.

本發明的無線通訊系統使用適應性頻率複用技術並基於干擾量測結果來最佳化連線品質與改善系統容量。適應性頻率複用特別適合於蜂巢式OFDMA系統,因為它在分配時間-頻率資源給不同單元上具有更多彈性。在適應性頻率複用技術下,行動台被排程於由不同的無線電資源區域及適當的頻率複用模式來服務。除此之外,適應性頻率複用更進一步協調無線電資源分配、排程、功率分配、天線配置、與使用通道化格式來進一步利用系統資源連帶改善系統性能。在蜂巢式OFDMA系統中,適應性頻率複用可以由集中的網路控制單元或是基地台間的協調來達成。The wireless communication system of the present invention uses adaptive frequency reuse techniques and optimizes connection quality and system capacity based on interference measurement results. Adaptive frequency reuse is particularly suitable for cellular OFDMA systems because it has more flexibility in allocating time-frequency resources to different units. Under adaptive frequency reuse techniques, mobile stations are scheduled to be served by different radio resource regions and appropriate frequency reuse modes. In addition, adaptive frequency reuse further coordinates radio resource allocation, scheduling, power allocation, antenna configuration, and the use of channelized formats to further leverage system resources to improve system performance. In a cellular OFDMA system, adaptive frequency reuse can be achieved by centralized network control units or coordination between base stations.

第8圖為本發明一實施例之蜂巢式OFDMA系統50之示意圖,其中49A、49B為集中式無線電資源控制單元51的動作內容。蜂巢式OFDMA系統50包含集中式無線電資源控制單元51、多個單元52-55、多個服務基地台BS56-59、與多個行動台。在第8圖例子中,集中式無線電資源控制單元51首先自基地台BS56-59(或直接自行動台)接收干擾量測結果(如49A)。隨後,集中式無線電資源控制單元51依據收到的干擾量測結果及其他網路配置指標來決定頻率複用模式(如49B)並配置無線電資源分配(如49C)。FIG. 8 is a schematic diagram of a cellular OFDMA system 50 according to an embodiment of the present invention, wherein 49A and 49B are action contents of the centralized radio resource control unit 51. The cellular OFDMA system 50 includes a centralized radio resource control unit 51, a plurality of units 52-55, a plurality of serving base stations BS 56-59, and a plurality of mobile stations. In the example of Fig. 8, the centralized radio resource control unit 51 first receives interference measurement results (e.g., 49A) from the base stations BS56-59 (or directly from the mobile station). Then, the centralized radio resource control unit 51 determines the frequency reuse mode (such as 49B) and configures the radio resource allocation (such as 49C) according to the received interference measurement result and other network configuration indicators.

第9A圖與第9B圖為本發明一實施例之蜂巢式OFDMA系統50的示意圖,其中60A、60B為服務基地台BS56-59的動作內容。在第9A圖的例子中,服務基地台BS56-59先從行動台收到干擾量測結果(如60A)。服務基地台BS56-59隨後依據收到的干擾量測結果及其他網路配置參數相互通信以決定頻率複用模式(如60B)。在第9B圖例子中,單元54的下行訊框被分割為三個無線電資源區域,其頻率複用因子1/K分別等於1、1/2及1/4,以此來服務單元54內的三個行動台。9A and 9B are schematic diagrams of a cellular OFDMA system 50 according to an embodiment of the present invention, wherein 60A and 60B are action contents of the serving base station BS56-59. In the example of Figure 9A, the serving base station BS56-59 first receives interference measurement results (e.g., 60A) from the mobile station. The service base station BS56-59 then communicates with each other based on the received interference measurement results and other network configuration parameters to determine the frequency reuse mode (e.g., 60B). In the example of FIG. 9B, the downlink frame of unit 54 is divided into three radio resource regions, and the frequency reuse factor 1/K is equal to 1, 1/2, and 1/4, respectively, to serve in the service unit 54. Three mobile stations.

第10圖是本發明一實施例之蜂巢式OFDMA系統的適應性頻率複用的應用流程圖。如果蜂巢式OFDMA系統有集中式無線電資源控制單元,那麼集中式無線電資源控制單元自服務基地台接收干擾量測結果(步驟61)。相反的,如果沒有集中式無線電資源控制單元,那麼服務基地台自行動台接收干擾量測結果(步驟62)。在步驟63中,集中式無線電資源控制單元或服務基地台依據收到的干擾量測結果決定頻率複用模式。更明確地說,以下的項目會被決定:分給每個單元的無線電資源區域數目、使用於每個無線電資源區域的頻率複用因子,以及用於每一個無線電資源區域的時間-頻率區域。在步驟64中,集中式無線電資源控制單元或服務基地台依據已決定的頻率複用模式配置無線電資源分配。更明確地說,以下的項目會被決定:每個無線電資源區域的傳輸功率、每一個無線電資源區域的天線的配置(如波束場型(beam pattern)、預碼向量)、以及每一個無線電資源區域的通道化格式(如多個單元的排列規則)。Figure 10 is a flow chart showing the application of adaptive frequency reuse of a cellular OFDMA system according to an embodiment of the present invention. If the cellular OFDMA system has a centralized radio resource control unit, the centralized radio resource control unit receives interference measurement results from the serving base station (step 61). Conversely, if there is no centralized radio resource control unit, the serving base station receives interference measurement results from the mobile station (step 62). In step 63, the centralized radio resource control unit or the serving base station determines the frequency reuse mode according to the received interference measurement result. More specifically, the following items are determined: the number of radio resource regions assigned to each unit, the frequency reuse factor used for each radio resource region, and the time-frequency region for each radio resource region. In step 64, the centralized radio resource control unit or the serving base station configures the radio resource allocation in accordance with the determined frequency reuse pattern. More specifically, the following items are determined: the transmission power of each radio resource region, the configuration of the antenna for each radio resource region (such as beam pattern, precoding vector), and each radio resource. The channelized format of the region (such as the alignment rules for multiple cells).

第8圖至第10圖所示的蜂巢式OFDMA系統示意圖及其適應性頻率複用的應用流程圖中,是由集中式無線電資源控制單元或服務基地台來決定頻率複用模式,並依據已決定的頻率複用模式配置無線電資源分配(步驟63以及步驟64),而此實施方式僅僅為本發明之舉例說明,並不應成為本發明之範圍之限制。由於同一個蜂巢式OFDMA系統中可以具有多個服務基地台,並且由於各種原因,在蜂巢式OFDMA系統存在集中式無線電資源控制單元的情況下,也並不是所有的服務基地台都能將干擾量測結果傳送給集中式無線電資源控制單元,因此,就會存在一部分的無線電資源分配是由集中式無線電資源控制單元來控制,而另一部分的無線電資源分配是由服務基地台間的協調來執行的情形。也就是說,決定頻率複用模式,並依據已決定的頻率複用模式配置無線電資源分配的步驟可通過集中式無線電資源控制單元的控制以及鄰近服務基地台間的協調來共同執行。於參閱本發明前述內容的情況下,其具體的運作情況應為熟悉此項技藝者所知悉,故不在此贅述其細節。The schematic diagram of the cellular OFDMA system shown in FIG. 8 to FIG. 10 and the application flow chart of the adaptive frequency reuse method are determined by the centralized radio resource control unit or the service base station, and the frequency reuse mode is determined according to The determined frequency reuse mode configures the radio resource allocation (steps 63 and 64), and this embodiment is merely illustrative of the invention and should not be construed as limiting the scope of the invention. Since there may be multiple service base stations in the same cellular OFDMA system, and for various reasons, in the case of a centralized radio resource control unit in the cellular OFDMA system, not all service base stations can interfere. The measurement result is transmitted to the centralized radio resource control unit. Therefore, there is a part of the radio resource allocation controlled by the centralized radio resource control unit, and another part of the radio resource allocation is performed by the coordination between the service base stations. situation. That is to say, the step of determining the frequency reuse mode and configuring the radio resource allocation according to the determined frequency reuse mode can be jointly performed by the control of the centralized radio resource control unit and the coordination between the adjacent service base stations. In the case of the foregoing description of the present invention, the specific operation of the present invention will be known to those skilled in the art, and the details thereof will not be described herein.

為了使頻率複用模式的決定更便利,行動台在不同的無線電資源區域配合著相應的頻率複用因子來量測它們的干擾統計量。在一個實施例中,每一個行動台量測它在不同無線電資源區域上接收的干擾功率或SINR,且接著報告量測的干擾功率或SINR給其服務基地台。集中式無線電資源控制單元收到量測到的干擾功率或SINR,隨後根據每個單元內行動台數量及每個行動台在不同無線電資源區域的干擾頻率或SINR來決定頻率複用模式。在一個例子中,決定頻率複用模式,以使平均干擾功率最小化,或將每一行動台的干擾功率與預定的門限值相比(例如:每一行動台的干擾功率小於預定的門限值)。在另一個例子中,決定頻率複用模式,以使平均SINR最大化,或將每一個行動台的SINR與預定的門限值相比(例如:每一個行動台的SINR高於預定的門限值)。In order to make the decision of the frequency reuse mode more convenient, the mobile station measures the interference statistics in different radio resource regions in accordance with the corresponding frequency reuse factors. In one embodiment, each mobile station measures the interference power or SINR it receives on different radio resource regions, and then reports the measured interference power or SINR to its serving base station. The centralized radio resource control unit receives the measured interference power or SINR, and then determines the frequency reuse pattern according to the number of mobile stations in each unit and the interference frequency or SINR of each mobile station in different radio resource regions. In one example, the frequency reuse mode is determined to minimize the average interference power, or the interference power of each mobile station is compared to a predetermined threshold (eg, the interference power of each mobile station is less than a predetermined threshold) ). In another example, the frequency reuse mode is determined to maximize the average SINR or to compare the SINR of each mobile station to a predetermined threshold (eg, the SINR of each mobile station is above a predetermined threshold) .

第11A圖、第11B圖與第11C圖顯示蜂巢式OFDMA系統50根據收到的干擾量測結果來決定天線配置的一個實施例,其中70A、70B為基地台動作內容;70C為行動台動作內容;70D為集中式無線電資源控制單元動作內容。在第11A圖、第11B圖及第11C圖所示的例子當中,基地台BS56初始使用預編碼矩陣指標#K來服務行動台MS68(如70A)。在適應性頻率複用技術下,行動台MS69執行服務基地台BS57請求的干擾量測(如70B)並報告干擾量測結果(例如干擾基地台BS56所使用的預編碼矩陣指標#K)(如70C)。基地台BS57隨後與集中式無線電資源控制單元51通信干擾量測結果。因為行動台MS69很接近MS68,所以,MS69受到干擾基地台BS56所使用的預編碼矩陣指標#K強烈的干擾。結果,基地台BS57透過集中式無線電資源控制單元51來請求基地台BS56更改它的波束場型來降低強烈的干擾(如70D)。11A, 11B and 11C show an embodiment in which the cellular OFDMA system 50 determines the antenna configuration based on the received interference measurement results, wherein 70A and 70B are base station action contents; 70C is mobile station action content. ; 70D is the action content of the centralized radio resource control unit. In the examples shown in Figs. 11A, 11B, and 11C, the base station BS56 initially uses the precoding matrix indicator #K to serve the mobile station MS 68 (e.g., 70A). Under the adaptive frequency reuse technique, the mobile station MS69 performs the interference measurement (such as 70B) requested by the serving base station BS57 and reports the interference measurement result (for example, the precoding matrix indicator #K used by the interference base station BS56) (e.g., 70C). The base station BS 57 then communicates with the centralized radio resource control unit 51 the interference measurement result. Since the mobile station MS69 is very close to the MS 68, the MS 69 is strongly interfered by the precoding matrix indicator #K used by the interfering base station BS56. As a result, the base station BS 57 requests the base station BS 56 to change its beam pattern through the centralized radio resource control unit 51 to reduce strong interference (e.g., 70D).

第12圖顯示於蜂巢式OFDMA系統50中根據收到的干擾量測結果來決定通道化格式的實施例,其中,71為局部的實體次載波;72為固定的排列;73為交錯的實體次載波;74為隨機排列;75為單元間協調;以及76為干擾隨機化。在一個局部通道化程序(localized channelization procedure)中,每一個邏輯通道的實體次載波分佈在頻率域中的局部區域。不同單元中通道化的次載波排列保持相同。結果,來自於特定的干擾源的干擾可能非常顯著。在交錯的通道化程序,每一個邏輯通道的實體次載波交錯於頻率域中。不同單元的通道化的實體次載波排列隨著似隨機方法而不同。因此,來自特定干擾源的干擾被隨機化。一般來說,集中式無線電資源控制單元51利用局部通道化方法能夠協調單元之間的干擾。然而,如果干擾太過動態而難以協調,則接著服務基地台簡單地隨機化傳輸在特定無線電資源區域的所有信號,以利用交錯通道化方法來達成干擾隨機化的效應。干擾量測結果有助於蜂巢式OFDMA系統利用不同的通道化方法或混合的通道化方法來控制或減輕單元間的干擾。Figure 12 shows an embodiment in a cellular OFDMA system 50 that determines a channelized format based on received interference measurements, where 71 is a local physical subcarrier; 72 is a fixed permutation; 73 is an interlaced entity Carriers; 74 are randomly arranged; 75 is inter-unit coordination; and 76 is interference randomization. In a localized channelization procedure, the physical subcarriers of each logical channel are distributed in local regions in the frequency domain. The channelized subcarrier arrangement in the different units remains the same. As a result, interference from a particular source of interference can be very significant. In an interleaved channelization procedure, the physical subcarriers of each logical channel are interleaved in the frequency domain. The channelized physical subcarrier arrangement of different units differs with a random-like approach. Therefore, interference from a particular source of interference is randomized. In general, the centralized radio resource control unit 51 can coordinate interference between units using a local channelization method. However, if the interference is too dynamic and difficult to coordinate, then the serving base station simply randomizes all signals in the particular radio resource region to exploit the interleaved channelization method to achieve the effect of interference randomization. The interference measurement results help the cellular OFDMA system to control or mitigate inter-cell interference using different channelization methods or mixed channelization methods.

第13圖為本發明一實施例之蜂巢式OFDMA系統80的示意圖,其中89A為下行控制;89B為上行控制;90為基地台的動作內容。蜂巢式OFDMA系統80包含單元81、服務於單元81的服務基地台BS82、位於單元81內的行動台MS83及MS84。服務基地台BS82會在下行FFR控制中接收行動台的干擾量測結果(如89A)或是在上行FFR控制中自己量測干擾統計量(如89B)。服務基地台BS82接著會以干擾量測的結果排程行動台以由適當的無線電頻率區域服務(如90)。FIG. 13 is a schematic diagram of a cellular OFDMA system 80 according to an embodiment of the present invention, wherein 89A is downlink control; 89B is uplink control; and 90 is action content of the base station. The cellular OFDMA system 80 includes a unit 81, a serving base station BS82 serving the unit 81, and mobile stations MS83 and MS84 located in the unit 81. The service base station BS82 will receive the interference measurement result of the mobile station (such as 89A) in the downlink FFR control or the interference statistics (such as 89B) in the uplink FFR control. The serving base station BS82 will then schedule the mobile station with the results of the interference measurements to service the appropriate radio frequency region (e.g., 90).

第14圖是基於干擾量測的結果排程行動台以由適當的無線電頻率區域服務的流程圖。在下行FFR控制中,服務基地台指示每一個行動台在不同的無線電資源區域下對給定的時間-頻率區域量測它的干擾統計量(步驟91)。在步驟92中,服務基地台接收每一個行動台回傳的干擾量測結果。在步驟93中,服務基地台排程每一個行動台由使用對應的頻率複用因子的適當的無線電資源區域來服務,以使網路性能達到最佳化。在上行FFR控制中,服務基地台量測本身的干擾統計量(步驟94)。在步驟95中,服務基地台與其它基地台或是集中網路控制單元通信干擾量測結果。在步驟96,基於干擾量測結果,適應性頻率複用模式由服務基地台本身或由基地台之間協調決定。Figure 14 is a flow chart of the scheduling of the mobile station based on the results of the interference measurement to be served by the appropriate radio frequency region. In downlink FFR control, the serving base station instructs each mobile station to measure its interference statistics for a given time-frequency region under different radio resource regions (step 91). In step 92, the serving base station receives the interference measurement results returned by each mobile station. In step 93, the serving base station schedules each mobile station to be served by an appropriate radio resource region using a corresponding frequency reuse factor to optimize network performance. In the uplink FFR control, the serving base station measures its own interference statistics (step 94). In step 95, the serving base station communicates interference measurement results with other base stations or centralized network control units. At step 96, based on the interference measurement results, the adaptive frequency reuse pattern is determined by the coordination between the serving base station itself or by the base station.

第15A圖、第15B圖與第15C圖為蜂巢式OFDMA系統80內基於干擾量測結果所做的資料傳輸排程的示意圖,其中第15B圖為用於服務基地台BS82的無線電資源圖;第15C圖為用於干擾基地台BS85的無線電資源圖;97為行動台的動作內容;98為基地台的動作內容。蜂巢式OFDMA系統80包含服務於鄰近單元81的干擾基地台BS85。在第15A圖例子當中,實體結構86位於行動台MS84與干擾基地台BS85之間。如果行動台MS83使用高的頻率複用因子(1/K等於1),而行動台MS84使用低的頻率複用因子(1/K等於1/3),則行動台MS83將收到來自干擾基地台BS85的強干擾信號87,而行動台MS84沒收到干擾信號。相反的,如果行動台MS83使用低的頻率複用因子(1/K等於1/3),行動台MS84使用高的頻率複用因子(1/K等於1),則行動台MS83沒有收到干擾基地台BS85的干擾信號,而行動台MS84也只收到經過實體結構86阻隔後較弱的干擾信號88。因此,基於行動台MS83以及行動台MS84報告到服務基地台BS82的干擾量測結果(如97),BS82排程行動台MS83以服務於頻率複用因子1/K等於1/3的無線電資源區域,而排程行動台MS84以服務於頻率複用因子1/K等於1的無線電資源區域(如98)。依據每個行動台的干擾量測結果決定動態頻率複用,無線電資源可以經過有效的分配來達成高系統容量與良好服務品質之間的平衡。15A, 15B, and 15C are schematic diagrams of data transmission schedules based on interference measurement results in the cellular OFDMA system 80, wherein FIG. 15B is a radio resource map for the serving base station BS82; 15C is a radio resource map for interfering with the base station BS85; 97 is the action content of the mobile station; and 98 is the action content of the base station. The cellular OFDMA system 80 includes an interfering base station BS85 that serves adjacent units 81. In the example of Fig. 15A, the physical structure 86 is located between the mobile station MS84 and the interfering base station BS85. If the mobile station MS83 uses a high frequency reuse factor (1/K equals 1) and the mobile station MS84 uses a low frequency reuse factor (1/K equals 1/3), the mobile station MS83 will receive the interference base. The station BS85 has a strong interference signal 87, and the mobile station MS84 does not receive an interference signal. Conversely, if the mobile station MS83 uses a low frequency reuse factor (1/K equals 1/3) and the mobile station MS84 uses a high frequency reuse factor (1/K equals 1), the mobile station MS83 does not receive interference. The interference signal of the base station BS85, and the mobile station MS84 also receives only the weak interference signal 88 after being blocked by the physical structure 86. Therefore, based on the interference measurement result (such as 97) reported by the mobile station MS83 and the mobile station MS84 to the serving base station BS82, the BS82 schedules the mobile station MS83 to serve the radio resource region with the frequency reuse factor 1/K equal to 1/3. And the scheduling mobile station MS84 serves a radio resource region (such as 98) whose frequency reuse factor 1/K is equal to 1. The dynamic frequency reuse is determined according to the interference measurement result of each mobile station, and the radio resources can be effectively allocated to achieve a balance between high system capacity and good service quality.

第16A圖為基於干擾量測結果同時應用適應性頻率複用與透過基地台間協調進行上行功率控制的示意圖。如果其他單元的無線電資源區域的目標干擾雜訊比(Interference over Thermal,IoT)等級是低的,則被分配到這個無線電資源區域的行動台會被指示以較低的功率傳輸,以避免影響其他單元的使用者。另一方面,如果其他單元的個無線電資源區域的目標干擾雜訊比等級是高的,則被分配到這個無線電資源區域的行動台可以允許以較高的功率傳輸。為了控制全系統的干擾,服務基地台會與其他基地台協調,調整資源分割的比例與相對應的目標干擾雜訊比等級。相似地,第16B圖顯示基於上行功率控制的SINR的示意圖,其中不同的目標SINR等級指定不同的無線電資源區域。Figure 16A is a schematic diagram of simultaneous application of adaptive frequency reuse and uplink power control through base station coordination based on interference measurement results. If the target interference-to-interference (IoT) level of the radio resource area of other units is low, the mobile station assigned to this radio resource area will be instructed to transmit at a lower power to avoid affecting other The user of the unit. On the other hand, if the target interference noise ratio level of the radio resource regions of other units is high, the mobile station allocated to this radio resource region may allow transmission at a higher power. In order to control the interference of the whole system, the service base station will coordinate with other base stations to adjust the proportion of resource division and the corresponding target interference noise ratio level. Similarly, Figure 16B shows a schematic diagram of SINR based on uplink power control, where different target SINR levels specify different radio resource regions.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

1...蜂巢式OFDMA系統1. . . Honeycomb type OFDMA system

2...單元2. . . unit

3...單元3. . . unit

4...服務基地台4. . . Service base station

5...服務基地台5. . . Service base station

6...行動台6. . . Mobile station

7...行動台7. . . Mobile station

8A...基地台動作內容8A. . . Base station action content

8B...基地台動作內容8B. . . Base station action content

9A...基地台動作內容9A. . . Base station action content

9B...基地台動作內容9B. . . Base station action content

10...蜂巢式OFDMA系統10. . . Honeycomb type OFDMA system

11...單元11. . . unit

12...服務基地台12. . . Service base station

13...干擾基地台13. . . Interference base station

14...實體結構14. . . Physical structure

15...相對較強的干擾信號15. . . Relatively strong interference signal

16...相對較弱的干擾信號16. . . Relatively weak interference signal

17...行動台17. . . Mobile station

18...行動台18. . . Mobile station

19A...行動台動作內容19A. . . Mobile action content

19B...行動台動作內容19B. . . Mobile action content

19C...基地台動作內容19C. . . Base station action content

20...蜂巢式OFDMA系統20. . . Honeycomb type OFDMA system

21...單元twenty one. . . unit

22...服務基地台twenty two. . . Service base station

23...行動台twenty three. . . Mobile station

24...行動台twenty four. . . Mobile station

25...行動台25. . . Mobile station

26...收發器26. . . transceiver

27...量測模組27. . . Measurement module

28...類比基頻電路28. . . Analogous fundamental frequency circuit

29...數位基頻電路29. . . Digital baseband circuit

30...記憶體30. . . Memory

31...步驟31. . . step

32...步驟32. . . step

33...步驟33. . . step

34...步驟34. . . step

35...步驟35. . . step

39A...行動台動作內容39A. . . Mobile action content

39B...基地台動作內容39B. . . Base station action content

39C...給定的時間-頻率區域39C. . . Given time-frequency region

40...單元40. . . unit

41...服務基地台41. . . Service base station

42...行動台42. . . Mobile station

43...行動台43. . . Mobile station

44...行動台44. . . Mobile station

45...干擾基地台45. . . Interference base station

46...干擾信號46. . . Interference signal

47...數據信號47. . . Data signal

48A...行動台動作內容48A. . . Mobile action content

48B...行動台動作內容48B. . . Mobile action content

49A...集中式無線電資源控制單元動作內容49A. . . Centralized radio resource control unit action content

49B...集中式無線電資源控制單元動作內容49B. . . Centralized radio resource control unit action content

50...蜂巢式OFDMA系統50. . . Honeycomb type OFDMA system

51...集中式無線電資源控制單元51. . . Centralized radio resource control unit

52...單元52. . . unit

53...單元53. . . unit

54‧‧‧單元54‧‧‧ unit

55‧‧‧單元55‧‧ units

56‧‧‧服務基地台56‧‧‧Service base station

57‧‧‧服務基地台57‧‧‧Service base station

58‧‧‧服務基地台58‧‧‧Service base station

59‧‧‧服務基地台59‧‧‧Service base station

60A‧‧‧服務基地台動作內容60A‧‧‧Service Base Station Action Content

60B‧‧‧服務基地台動作內容60B‧‧‧Service Base Station Action Content

61‧‧‧步驟61‧‧‧Steps

62‧‧‧步驟62‧‧‧Steps

63‧‧‧步驟63‧‧‧Steps

64‧‧‧步驟64‧‧‧Steps

68‧‧‧行動台68‧‧‧Mobile

69‧‧‧行動台69‧‧‧ mobile station

70A‧‧‧基地台動作內容70A‧‧‧Base station action content

70B‧‧‧基地台動作內容70B‧‧‧Base station action content

70C‧‧‧行動台動作內容70C‧‧‧ action table action content

70D‧‧‧集中式無線電資源控制單元動作內容70D‧‧‧Centralized Radio Resource Control Unit Action Content

71‧‧‧局部的實體次載波71‧‧‧Local physical subcarriers

72‧‧‧固定的排列72‧‧‧Fixed arrangement

73‧‧‧交錯的實體次載波73‧‧‧Interlaced physical subcarriers

74‧‧‧隨機排列74‧‧‧ Randomly arranged

75‧‧‧隨機化75‧‧‧ Randomization

76‧‧‧單元間協調76‧‧‧Inter-unit coordination

80‧‧‧蜂巢式OFDMA系統80‧‧‧Hive-type OFDMA system

81‧‧‧單元81‧‧‧ unit

82‧‧‧基地台82‧‧‧Base station

83‧‧‧行動台83‧‧‧ mobile station

84‧‧‧行動台84‧‧‧Mobile

85‧‧‧基地台85‧‧‧Base station

86‧‧‧實體結構86‧‧‧ entity structure

87‧‧‧強干擾信號87‧‧‧ Strong interference signal

88‧‧‧弱干擾信號88‧‧‧Weak interference signals

89A‧‧‧下行控制89A‧‧‧Downlink control

89B‧‧‧上行控制89B‧‧‧Upstream control

90‧‧‧基地台動作內容90‧‧‧Base station action content

91‧‧‧步驟91‧‧‧Steps

92‧‧‧步驟92‧‧‧Steps

93‧‧‧步驟93‧‧‧Steps

94‧‧‧步驟94‧‧‧Steps

95‧‧‧步驟95‧‧‧Steps

96‧‧‧步驟96‧‧‧Steps

97‧‧‧行動台動作內容97‧‧‧ action table action content

98‧‧‧基地台動作內容98‧‧‧Base station action content

第1圖為習知技術之蜂巢式OFDMA系統的單元架構示意圖。FIG. 1 is a schematic diagram of a cell structure of a cellular OFDMA system of the prior art.

第2A圖與第2B圖為習知技術之使用於蜂巢式OFDMA系統之FFR的示意圖。2A and 2B are schematic diagrams of FFR used in a cellular OFDMA system by the prior art.

第3A圖與第3B圖為根據本發明之一實施例的蜂巢OFDMA系統之示意圖。3A and 3B are schematic diagrams of a cellular OFDMA system in accordance with an embodiment of the present invention.

第4圖為蜂巢式OFDMA系統中量測干擾統計量與報告干擾結果的流程圖。Figure 4 is a flow chart of measuring interference statistics and reporting interference results in a cellular OFDMA system.

第5A圖與第5B圖為使用於蜂巢式OFDMA系統的單元中的被請求的干擾量測機制與不被請求的干擾量測機制的示意圖。5A and 5B are schematic diagrams of the requested interference measurement mechanism and the unsolicited interference measurement mechanism used in the unit of the cellular OFDMA system.

第6A圖與第6B圖為使用於蜂巢式OFDMA系統的單元中的自發的干擾量測機制的示意圖。6A and 6B are schematic diagrams of a spontaneous interference measurement mechanism used in a unit of a cellular OFDMA system.

第7A圖為位於蜂巢式OFDMA系統單元的行動台的示意圖。Figure 7A is a schematic diagram of a mobile station located in a cellular OFDMA system unit.

第7B圖為信號之載波示意圖。Figure 7B is a schematic diagram of the carrier of the signal.

第8圖為本發明一實施例之蜂巢式OFDMA系統之示意圖。FIG. 8 is a schematic diagram of a cellular OFDMA system according to an embodiment of the present invention.

第9A圖與第9B圖為本發明一實施例之蜂巢式OFDMA系統的示意圖。9A and 9B are schematic diagrams of a cellular OFDMA system according to an embodiment of the present invention.

第10圖為本發明一實施例之蜂巢式OFDMA系統的適應頻率複用的應用流程圖。FIG. 10 is a flow chart showing an application of adaptive frequency reuse of a cellular OFDMA system according to an embodiment of the present invention.

第11A圖、第11B圖與第11C圖為蜂巢式OFDMA系統中根據收到的干擾量測結果來決定天線配置的實施例示意圖。11A, 11B, and 11C are diagrams showing an embodiment of determining an antenna configuration based on received interference measurement results in a cellular OFDMA system.

第12圖為蜂巢式OFDMA系統中根據收到的干擾量測結果來決定通道化格式的實施例示意圖。Figure 12 is a diagram showing an embodiment of a channelized format based on received interference measurement results in a cellular OFDMA system.

第13圖為本發明一實施例之蜂巢式OFDMA系統80的示意圖。Figure 13 is a schematic diagram of a cellular OFDMA system 80 in accordance with one embodiment of the present invention.

第14圖為基於干擾量測的結果排程行動台以由適當的無線電頻率區域服務的流程圖。Figure 14 is a flow chart of the scheduling of the mobile station based on the results of the interference measurement to be served by the appropriate radio frequency region.

第15A圖、第15B圖與第15C圖為蜂巢式OFDMA系統80內基於干擾量測結果排程行動台的示意圖。15A, 15B, and 15C are schematic diagrams of a scheduler based on interference measurement results in a cellular OFDMA system 80.

第16A圖為基於干擾量測結果同時應用適應性頻率複用與透過基地台間協調進行上行功率控制的示意圖。Figure 16A is a schematic diagram of simultaneous application of adaptive frequency reuse and uplink power control through base station coordination based on interference measurement results.

第16B圖顯示基於上行功率控制的SINR的示意圖。Figure 16B shows a schematic diagram of SINR based on uplink power control.

19A...行動台動作內容19A. . . Mobile action content

19B...行動台動作內容19B. . . Mobile action content

19C...基地台動作內容19C. . . Base station action content

20...蜂巢式OFDMA系統20. . . Honeycomb type OFDMA system

21...單元twenty one. . . unit

22...基地台twenty two. . . Base station

23...行動台twenty three. . . Mobile station

24...行動台twenty four. . . Mobile station

25...行動台25. . . Mobile station

26...收發器26. . . transceiver

27...量測模組27. . . Measurement module

28...類比基頻電路28. . . Analogous fundamental frequency circuit

29...數位基頻電路29. . . Digital baseband circuit

30...記憶體30. . . Memory

Claims (22)

一種用來提供干擾量測結果的方法,使用至少一行動台來輔助一蜂巢式正交分頻多重接取系統以致能頻率複用,該方法包含:(a)由一行動台傳送一干擾量測請求給一服務基地台以及因此接收一干擾量測指示,其中,該干擾量測指示提供一給定時間-頻率區域;(b)使用該行動台在該時間-頻率區域上實施一干擾量測,以據此獲得該蜂巢式正交分頻多重接取系統內的一干擾量測結果,其中,該行動台位於該服務基地台所服務的一單元內;以及(c)報告該干擾量測結果給該服務基地台。 A method for providing interference measurement results, using at least one mobile station to assist a cellular orthogonal frequency division multiple access system to enable frequency reuse, the method comprising: (a) transmitting a interference amount by a mobile station Requesting a request to a serving base station and thus receiving an interference measurement indication, wherein the interference measurement indication provides a given time-frequency region; (b) using the mobile station to implement an interference amount over the time-frequency region Measured to obtain an interference measurement result in the cellular orthogonal frequency division multiple access system, wherein the mobile station is located in a unit served by the service base station; and (c) report the interference measurement The result is given to the service base station. 如申請專利範圍第1項所述之用來提供干擾量測結果的方法,其中該干擾量測結果由該干擾量測計算的一干擾統計量推導而來,以及其中該干擾量測結果包含一干擾功率、一信號與干擾比、一信號與干擾加雜訊比、表示一干擾基地台的一第一指標、或表示一無線電資源區域的一第二指標。 The method for providing an interference measurement result according to claim 1, wherein the interference measurement result is derived from an interference statistic calculated by the interference measurement, and wherein the interference measurement result includes a Interference power, a signal to interference ratio, a signal to interference plus noise ratio, a first indicator indicating an interfering base station, or a second indicator indicating a radio resource region. 一種提供干擾量測結果的方法,使用至少一行動台來輔助一蜂巢式正交分頻多重接取系統以致能頻率複用,該方法包含:由該至少一行動台在一時間-頻率區域上實施一干量測,以據此獲得該蜂巢式正交分頻多重接取系統內的一干擾量測結果,其中,該行動台位於一服務基地台所服務的一單元內; 其中,(a)中的該量測包含:量測在該時間-頻率區域上從一個或多個干擾基地台接收到的信號功率,其中,行動台沒有在該時間-頻率區域上接收到來自該服務基地台之信號;以及(b)報告該干擾量測結果給該服務基地台。 A method for providing interference measurement results, using at least one mobile station to assist a cellular orthogonal frequency division multiple access system to enable frequency multiplexing, the method comprising: by the at least one mobile station on a time-frequency region Performing a dry measurement to obtain an interference measurement result in the cellular orthogonal frequency division multiple access system, wherein the mobile station is located in a unit served by a service base station; Wherein the measurement in (a) comprises: measuring signal power received from the one or more interfering base stations over the time-frequency region, wherein the mobile station does not receive the signal from the time-frequency region The signal of the service base station; and (b) reporting the interference measurement result to the service base station. 如申請專利範圍第1項所述之用來提供干擾量測結果的方法,其中,(b)中的該量測包含:量測一個或多個干擾基地台的參考信號功率,其中,該服務基地台在該時間-頻率區域上傳輸信號。 The method for providing an interference measurement result according to claim 1, wherein the measurement in (b) comprises: measuring a reference signal power of one or more interference base stations, wherein the service The base station transmits signals on the time-frequency region. 如申請專利範圍第1項所述之用來提供干擾量測結果的方法,其中(b)中的該量測包含:該行動台分辨來自該服務基地台的信號及來自一個或多個干擾基地台的信號,其中,該服務基地台在該時間-頻率區域上傳輸信號。 The method for providing interference measurement results according to claim 1, wherein the measurement in (b) comprises: the mobile station distinguishing signals from the service base station and from one or more interference bases. The signal of the station, wherein the service base station transmits signals on the time-frequency region. 如申請專利範圍第2項所述之用來提供干擾量測結果的方法,其中該第一指標包含一個或多個指標值,該一個或該多個指標值與該干擾基地台的一個或多個預碼向量相關。 The method for providing an interference measurement result according to claim 2, wherein the first indicator includes one or more indicator values, and the one or more indicator values are one or more of the interference base station Pre-code vector correlation. 如申請專利範圍第2項所述之用來提供干擾量測結果的方法,其中,該第二指標包含:用以表示一優選無線電資源區域的一指標值及用以表示一非優選無線電區域的一指標值中的至少一個,其中,該優選無線電區域由最高的信號與干擾加雜訊比或是最低的干擾功率來定義,且其中該非優選無線電資源區域則由最低的信號與干擾加雜訊比或是最高的干擾功率來定義。 The method for providing an interference measurement result according to claim 2, wherein the second indicator comprises: an index value indicating a preferred radio resource region and a non-preferred radio region; At least one of an indicator value, wherein the preferred radio zone is defined by a highest signal to interference plus noise ratio or a lowest interference power, and wherein the non-preferred radio resource region is caused by the lowest signal and interference plus noise Defined than the highest interference power. 如申請專利範圍第1項所述之用來提供干擾量測結 果的方法,其中,該時間-頻率區域根據來自該服務基地台所廣播的無線電資源分配資訊獲得。 Used to provide interference measurement as described in item 1 of the patent application. The method of the present invention, wherein the time-frequency region is obtained based on radio resource allocation information broadcasted by the serving base station. 如申請專利範圍第1項所述之用來提供干擾量測結果的方法,更進一步包含:(d)接收來自該服務基地台的一干擾量測指示,其中,該干擾量測指示指出該時間-頻率區域。 The method for providing an interference measurement result according to claim 1, further comprising: (d) receiving an interference measurement indication from the service base station, wherein the interference measurement indication indicates the time - Frequency area. 一種用來提供干擾量測結果的行動台,輔助一蜂巢式正交分頻多重接取系統以致能頻率複用,該行動台包含:一收發器,用於傳送一干擾量測請求給一網路單元,以據此接收一干擾量測指示,其中,該干擾量測指示提供一給定時間-頻率區域;以及一量測模組,該量測模組於該蜂巢式正交分頻多重接取系統中實施一干擾量測,並據此獲得一干擾量測結果,其中,該行動台報告該干擾量測結果給該網路單元。 A mobile station for providing interference measurement results, assisting a cellular orthogonal frequency division multiple access system to enable frequency multiplexing, the mobile station comprising: a transceiver for transmitting an interference measurement request to a network a channel unit for receiving an interference measurement indication, wherein the interference measurement indication provides a given time-frequency region; and a measurement module, the measurement module is configured by the honeycomb orthogonal division frequency An interference measurement is implemented in the access system, and an interference measurement result is obtained according to which the mobile station reports the interference measurement result to the network unit. 如申請專利範圍第10項所述之用來提供干擾量測結果的行動台,其中,該干擾量測結果由該干擾量測計算得到一干擾統計量推導而得,其中,該干擾量測結果包含一干擾功率、一信號與干擾比、一信號與干擾加雜訊比、表示一干擾基地台的一第一指標、或表示一無線電資源區域的一第二指標。 The mobile station for providing interference measurement result according to claim 10, wherein the interference measurement result is obtained by calculating an interference statistic calculated by the interference measurement, wherein the interference measurement result is obtained. The method includes an interference power, a signal to interference ratio, a signal to interference plus noise ratio, a first indicator indicating an interference base station, or a second indicator indicating a radio resource area. 如申請專利範圍第10項所述之用來提供干擾量測結果的行動台,其中,該網路單元是服務該行動台的一服務基地台。 The mobile station for providing interference measurement results according to claim 10, wherein the network unit is a service base station serving the mobile station. 如申請專利範圍第12項所述之用來提供干擾量測結果的行動台,其中,該量測模組在一給定的時間-頻率區 域上實施該干擾量測,且其中,該服務基地台不在該時間-頻率區域上傳輸信號。 The mobile station for providing interference measurement results according to claim 12, wherein the measurement module is in a given time-frequency region The interference measurement is performed on the domain, and wherein the serving base station does not transmit signals on the time-frequency region. 如申請專利範圍第12項所述之用來提供干擾量測結果的行動台,其中,該量測模組在一給定的時間-頻率區域上實施該干擾量測,且其中,在該服務基地台於該給定的時間-頻率區域上傳送信號時,該量測模組更識別來自一特定干擾基地台的至少一干擾信號。 The mobile station for providing interference measurement results according to claim 12, wherein the measurement module performs the interference measurement on a given time-frequency region, and wherein the service is When the base station transmits a signal on the given time-frequency region, the measurement module further identifies at least one interference signal from a particular interfering base station. 如申請專利範圍第10項所述之用來提供干擾量測結果的行動台,其中,該量測結果進一步包含一干擾基地台的一第一指標。 The mobile station for providing interference measurement result according to claim 10, wherein the measurement result further comprises a first indicator of the interference base station. 如申請專利範圍第3項所述之提供干擾量測結果的方法,其中該干擾量測結果從干擾量測計算得到的該干擾統計中獲得,其中,該干擾量測結果包含一干擾功率、一信號與干擾比、一信號與干擾加雜訊比、表示一干擾基地台的一第一指標、或表示一無線電資源區域的一第二指標。 The method for providing an interference measurement result according to claim 3, wherein the interference measurement result is obtained from the interference statistics calculated by the interference measurement, wherein the interference measurement result includes an interference power, and Signal to interference ratio, a signal to interference plus noise ratio, a first indicator indicating an interfering base station, or a second indicator indicating a radio resource area. 如申請專利範圍第3項所述之提供干擾量測結果的方法,其中,該時間-頻率區域由來自該服務基地台之一干擾量測指示所提供。 A method of providing an interference measurement result as described in claim 3, wherein the time-frequency region is provided by an interference measurement indication from the service base station. 如申請專利範圍第3項所述之提供干擾量測結果的方法,其中,從該服務基地台沒有接收到任何干擾量測指示時,該時頻區由基於該服務基地台所廣播之無線電資源分配訊息而獲得。 The method for providing an interference measurement result according to claim 3, wherein when the service base station does not receive any interference measurement indication, the time-frequency zone is allocated by the radio resource broadcasted by the service base station. Obtained by the message. 一種經由一行動台提供干擾量測結果以幫助一蜂巢式正交頻分多存取系統之致能頻率複用之方法,該方法包含: 從該服務基地台接收一干擾量測指示;由該行動台在一時間-頻率區域上量測一干擾量測,以及獲得該蜂巢式正交分頻多工存取系統之該干擾量測結果,其中,該行動台位於該服務基地台服務之一單元中;以及將該干擾量測結果報告給該服務基地台用於致能該頻率複用,其中,該干擾量測結果從該干擾量測中獲得,以及該干擾量測由一干擾統計量計算得到,以及其中,該干擾量測結果包含該時間-頻率區域上一干擾功率。 A method for providing an interference measurement result via a mobile station to assist in enabling frequency multiplexing of a cellular orthogonal frequency division multiple access system, the method comprising: Receiving an interference measurement indication from the service base station; measuring, by the mobile station, a interference measurement on a time-frequency region, and obtaining the interference measurement result of the cellular orthogonal frequency division multiplexing access system Wherein the mobile station is located in a unit of the service base station service; and reporting the interference measurement result to the service base station for enabling the frequency reuse, wherein the interference measurement result is from the interference amount Obtained in the measurement, and the interference measurement is calculated by an interference statistic, and wherein the interference measurement result includes an interference power in the time-frequency region. 如申請專利範圍第19項所述之方法,其中,該干擾量測結果進一步包含一干擾基地台之一指標,以及其中,該指標與該干擾基地台之一個或者多個預碼向量相關。 The method of claim 19, wherein the interference measurement result further comprises an indicator of an interfering base station, and wherein the indicator is related to one or more precoding vectors of the interfering base station. 如申請專利範圍第19項所述之方法,其中該干擾量測結果用於適應頻率複用,以及其中,該頻率複用模式由將該干擾功率與一門限值做比較而得到。 The method of claim 19, wherein the interference measurement result is used to adapt to frequency reuse, and wherein the frequency reuse mode is obtained by comparing the interference power with a threshold value. 如申請專利範圍第19項所述之方法,進一步包含:由該行動台傳輸一干擾量測請求給該服務基地台;以及從該服務基地台接收一干擾量測指示,其中,該干擾量測指示提供一給定時間-頻率區域。 The method of claim 19, further comprising: transmitting, by the mobile station, an interference measurement request to the serving base station; and receiving an interference measurement indication from the service base station, wherein the interference measurement The indication provides a given time-frequency region.
TW097139705A 2007-10-16 2008-10-16 A method and a mobile station for providing an interference measurement result, a method for configuring radio resource allocation ,a method for scheduling a mobile station, and a cellular orthogonal frequency division multiple access system TWI433559B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US98043107P 2007-10-16 2007-10-16
US12/287,990 US8351949B2 (en) 2007-10-16 2008-10-15 Configuring radio resource allocation and scheduling mobile station mechanism for frequency reuse in cellular OFDMA systems
US12/287,925 US8259601B2 (en) 2007-10-16 2008-10-15 Interference measurement mechanism for frequency reuse in cellular OFDMA systems

Publications (2)

Publication Number Publication Date
TW200934262A TW200934262A (en) 2009-08-01
TWI433559B true TWI433559B (en) 2014-04-01

Family

ID=40579092

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103106204A TWI535306B (en) 2007-10-16 2008-10-16 Method for configuring radio resource allocation
TW097139705A TWI433559B (en) 2007-10-16 2008-10-16 A method and a mobile station for providing an interference measurement result, a method for configuring radio resource allocation ,a method for scheduling a mobile station, and a cellular orthogonal frequency division multiple access system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW103106204A TWI535306B (en) 2007-10-16 2008-10-16 Method for configuring radio resource allocation

Country Status (5)

Country Link
EP (1) EP2204058A4 (en)
JP (1) JP2011502380A (en)
CN (1) CN102783165B (en)
TW (2) TWI535306B (en)
WO (1) WO2009052754A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8504091B2 (en) 2008-02-01 2013-08-06 Qualcomm Incorporated Interference mitigation for control channels in a wireless communication network
US8599705B2 (en) 2008-02-01 2013-12-03 Qualcomm Incorporated Interference management based on enhanced pilot measurement reports
JP5284459B2 (en) * 2008-03-28 2013-09-11 エルジー エレクトロニクス インコーポレイティド Inter-cell interference avoidance method in multi-cell environment
US8543149B2 (en) * 2008-04-04 2013-09-24 Samsung Electronics Co., Ltd Message-based approach for improved interference power estimation
US9210586B2 (en) 2009-05-08 2015-12-08 Qualcomm Incorporated Method and apparatus for generating and exchanging information for coverage optimization in wireless networks
US20100309876A1 (en) * 2009-06-04 2010-12-09 Qualcomm Incorporated Partitioning of control resources for communication in a dominant interference scenario
US9565011B2 (en) 2009-06-04 2017-02-07 Qualcomm Incorporated Data transmission with cross-subframe control in a wireless network
US8238323B2 (en) * 2009-06-11 2012-08-07 Intel Corporation OFDMA cellular network and method for mitigating interference
JP5198383B2 (en) * 2009-08-13 2013-05-15 日本電信電話株式会社 Wireless communication system, base station apparatus, and scheduling method
JP5504753B2 (en) * 2009-08-26 2014-05-28 富士通株式会社 Base station, communication system and communication method
CN102006603B (en) * 2009-08-28 2015-05-13 中兴通讯股份有限公司 Transmission power obtaining method and channel quality/interference intensity measuring method and system
CN102026335B (en) * 2009-09-11 2014-12-10 中兴通讯股份有限公司 Transmission method of control information and base station
EP2515569A4 (en) * 2009-12-18 2014-12-24 Fujitsu Ltd Mobile communication system, base station apparatus and radio frequency changing method
JP5340226B2 (en) * 2010-06-16 2013-11-13 三菱電機株式会社 Inter-cell interference avoidance communication method and communication system
CN102300320B (en) 2010-06-22 2014-04-30 上海贝尔股份有限公司 Inter-cell interference coordination method and device
US9585024B2 (en) 2010-07-27 2017-02-28 Huawei Technologies Co., Ltd. System and method for self-organized inter-cell interference coordination
JP5431269B2 (en) * 2010-08-12 2014-03-05 日本電信電話株式会社 Wireless communication system and wireless communication method
EP2708055B1 (en) * 2011-05-10 2017-08-30 BlackBerry Limited System and method for mobile station-assisted interference mitigation
CN103563433B (en) 2011-06-06 2018-04-13 瑞典爱立信有限公司 UE in the subset of radio resource unit is signal quality measured
US9037179B2 (en) 2011-06-17 2015-05-19 Telefonaktiebolaget L M Ericsson (Publ) Method and network node in a wireless communication system
CN103108341B (en) * 2011-11-09 2016-03-02 中国移动通信集团四川有限公司 Method and the device of network uplink interference matrix is built based on measurement report data
CN103139796B (en) * 2011-11-29 2018-08-21 华为技术有限公司 The method and apparatus of interference management
KR101615988B1 (en) * 2011-12-16 2016-05-11 엘지전자 주식회사 Method for measuring channel state information in a wireless access system and apparatus for same
JP5498538B2 (en) * 2012-07-09 2014-05-21 株式会社東芝 Wireless communication method, system and apparatus
US8937969B2 (en) * 2012-09-13 2015-01-20 Alcatel Lucent Enhanced inter-cell interference control
US10085154B2 (en) 2012-10-17 2018-09-25 Huawei Technologies Co., Ltd. System and method for dynamic inter-cell interference coordination
EP3113560B1 (en) * 2014-03-21 2022-04-20 Huawei Technologies Co., Ltd. Apparatus for configuring position of frequency resource
KR102187855B1 (en) * 2014-07-31 2020-12-07 삼성전자 주식회사 Apparatus and method for cell measuring in a beam formed system
JP5784203B2 (en) * 2014-09-17 2015-09-24 株式会社東芝 Wireless communication system, management apparatus, and base station management method
WO2017059922A1 (en) 2015-10-09 2017-04-13 Sony Mobile Communications Inc. Signal quality measurement in different frequency bands of cellular networks
JP7339348B2 (en) 2019-02-03 2023-09-05 オッポ広東移動通信有限公司 Wireless communication method, terminal device and network device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042856B2 (en) * 2001-05-03 2006-05-09 Qualcomm, Incorporation Method and apparatus for controlling uplink transmissions of a wireless communication system
US8477592B2 (en) * 2003-05-14 2013-07-02 Qualcomm Incorporated Interference and noise estimation in an OFDM system
JP3958270B2 (en) * 2003-09-19 2007-08-15 株式会社東芝 Multi-carrier communication method, multi-carrier communication system, and communication apparatus used in this system
US8526963B2 (en) * 2003-10-30 2013-09-03 Qualcomm Incorporated Restrictive reuse for a wireless communication system
KR100943572B1 (en) * 2003-12-23 2010-02-24 삼성전자주식회사 Apparatus for allocating subchannel adaptively considering frequency reuse in orthogonal frequency division multiple access system and method thereof
KR100617729B1 (en) * 2004-03-05 2006-08-28 삼성전자주식회사 Frequency resource allocation method and system based on multiple frequency reuse factors in a cellular communication system
EP1589776A1 (en) * 2004-04-19 2005-10-26 Telefonaktiebolaget LM Ericsson (publ) Dynamic allocation of radio resources
US7548752B2 (en) * 2004-12-22 2009-06-16 Qualcomm Incorporated Feedback to support restrictive reuse
JP4627801B2 (en) * 2006-03-17 2011-02-09 富士通株式会社 Base station apparatus, mobile station apparatus, and subcarrier allocation method
EP3094123B1 (en) * 2006-03-21 2019-10-16 Telefonaktiebolaget LM Ericsson (publ) Measurement-assisted dynamic frequency-reuse in cellular telecommuncations networks

Also Published As

Publication number Publication date
CN102783165B (en) 2016-02-24
EP2204058A4 (en) 2013-11-13
EP2204058A1 (en) 2010-07-07
TW201424414A (en) 2014-06-16
TWI535306B (en) 2016-05-21
CN102783165A (en) 2012-11-14
WO2009052754A1 (en) 2009-04-30
TW200934262A (en) 2009-08-01
JP2011502380A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
TWI433559B (en) A method and a mobile station for providing an interference measurement result, a method for configuring radio resource allocation ,a method for scheduling a mobile station, and a cellular orthogonal frequency division multiple access system
US8259601B2 (en) Interference measurement mechanism for frequency reuse in cellular OFDMA systems
US8982846B2 (en) Proactive scheduling methods and apparatus to enable peer-to-peer communication links in a wireless OFDMA system
US8879479B2 (en) Reactive scheduling methods and apparatus to enable peer-to-peer communication links in a wireless OFDMA system
US8660568B2 (en) Method and apparatus for interference control in a wireless communication system with hierarchical cell layout
EP1757151B1 (en) Intra-cell common reuse for a wireless communication system
TWI388226B (en) Dynamic allocation of radio resources
EP2630729B1 (en) Methods and apparatus for inter-cell interference coordination self-organized network
US8238959B2 (en) Method and apparatus for controlling transmission power in mobile communication system based on fractional frequency reuse
US10425822B2 (en) Radio resource reuse method, base station device, terminal device and radio communication system
AU2014203883A1 (en) IEEE 802.11 communication utilizing carrier specific interference mitigation
Wamser et al. Soft frequency reuse in the uplink of an OFDMA network
KR20090026586A (en) Method and apparatus for estimating estimating carrier to interference and noise ratio in mobile communication system based fractional frequency reuse
Hunukumbure et al. Simulation study of fractional frequency reuse in WiMAX networks
US20220338066A1 (en) An access point and a communication method for facilitating scheduling of communication for communication apparatuses susceptible to interference
KR101532227B1 (en) A method of scheduling in a wireless communication system
KR101371504B1 (en) Apparatus and method for dynamic channel allocation in multi-cell downlink system
JP2004364035A (en) Communication apparatus and communication method
KR20100094961A (en) The method of transmitting and receiving feedback information, and mobile station and base station apparatus using the same method
Naranjo et al. Interference protection mechanism for LTE-Advanced radio access networks supporting dynamic spectrum access