TWI418018B - Electronic device and fabrication method thereof and memory device - Google Patents

Electronic device and fabrication method thereof and memory device Download PDF

Info

Publication number
TWI418018B
TWI418018B TW98137190A TW98137190A TWI418018B TW I418018 B TWI418018 B TW I418018B TW 98137190 A TW98137190 A TW 98137190A TW 98137190 A TW98137190 A TW 98137190A TW I418018 B TWI418018 B TW I418018B
Authority
TW
Taiwan
Prior art keywords
layer
trench
electronic device
conductive
sidewall
Prior art date
Application number
TW98137190A
Other languages
Chinese (zh)
Other versions
TW201117358A (en
Inventor
Chih Hao Lin
Yung Chang Lin
Original Assignee
Taiwan Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Memory Corp filed Critical Taiwan Memory Corp
Priority to TW98137190A priority Critical patent/TWI418018B/en
Publication of TW201117358A publication Critical patent/TW201117358A/en
Application granted granted Critical
Publication of TWI418018B publication Critical patent/TWI418018B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

電子裝置及其製造方法、記憶體裝置Electronic device, manufacturing method thereof, and memory device

本發明係有關於一種電子裝置及其製造方法,特別是有關於一種動態隨機存取記憶體晶胞的位元線及其製造方法。The present invention relates to an electronic device and a method of fabricating the same, and more particularly to a bit line of a dynamic random access memory cell and a method of fabricating the same.

動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)屬於一種揮發性記憶體(volatile memory),主要的作用原理是利用電容內儲存電荷的多寡來代表一個二進位位元(bit)是1還是0,以儲存資料。為達到高密度的要求,目前最有效的方法是透過縮小製造製程和採用單元設計技術來減小晶片的尺寸。減小晶片尺寸的另一種方法是實現更為有效的陣列架構,在連續幾代發展後,儲存技術通常會變成某種單元佈局的限制,單元尺寸的每一次改善都需要進行大量的工作來減少蝕刻的最小尺寸。Dynamic Random Access Memory (DRAM) belongs to a kind of volatile memory. The main principle of operation is to use the amount of charge stored in the capacitor to represent whether a binary bit is 1 or 0 to store data. To achieve high density requirements, the most effective method at present is to reduce the size of the wafer by reducing the manufacturing process and using cell design techniques. Another way to reduce the size of the wafer is to implement a more efficient array architecture. After several generations of development, storage techniques often become a limitation of a certain cell layout. Every improvement in cell size requires a lot of work to reduce etching. The smallest size.

因此,亟需一種具有新穎結構的動態隨機存取記憶體及其製造方法。Therefore, there is a need for a dynamic random access memory having a novel structure and a method of fabricating the same.

有鑑於此,本發明之一實施例係提供一種電子裝置,包括一基板;一溝槽,形成於上述基板中;一擴散區,形成於鄰接上述溝槽側壁的部分上述基板中;一導電結構,設置於上述溝槽中,包括一導電層,覆蓋上述溝槽的底面,上述導電層具有一凹陷,以使上述擴散區從上述凹陷暴露出來;一導電插塞,填入上述凹陷,並覆蓋上述擴散區的側壁,其中上述導電插塞與上述導電層之間設有一阻障層。In view of the above, an embodiment of the present invention provides an electronic device including a substrate; a trench formed in the substrate; a diffusion region formed in a portion of the substrate adjacent to the sidewall of the trench; a conductive structure Provided in the trench, comprising a conductive layer covering the bottom surface of the trench, the conductive layer having a recess to expose the diffusion region from the recess; a conductive plug filling the recess and covering a sidewall of the diffusion region, wherein a barrier layer is disposed between the conductive plug and the conductive layer.

本發明之另一實施例係提供一種記憶體裝置,包括一基板;至少一垂直電晶體,形成於上述基板中,其具有一垂直側壁;至少一字元線,沿一第一方向形成於上述基板中,上述字元線設於上述對垂直電晶體的上述垂直側壁上;至少一位元線,沿不同於上述第一方向的一第二方向形成於上述基板中的至少一溝槽中,且位於上述對垂直電晶體的下方,並藉由形成於鄰接上述溝槽側壁的部分上述基板中的一擴散區電性接觸上述垂直電晶體的一汲極區,其中上述位元線包括一導電層,覆蓋上述溝槽的底面,上述導電層具有一凹陷,以使上述擴散區從上述凹陷暴露出來;一導電插塞,填入上述凹陷,並覆蓋上述擴散區的側壁,其中上述導電插塞與上述導電層之間設有一阻障層。Another embodiment of the present invention provides a memory device including a substrate; at least one vertical transistor formed in the substrate and having a vertical sidewall; at least one word line formed along the first direction In the substrate, the word line is disposed on the vertical sidewall of the pair of vertical transistors; at least one bit line is formed in at least one of the substrates in a second direction different from the first direction, And being located below the pair of vertical transistors, and electrically contacting a drain region of the vertical transistor by a diffusion region formed in a portion of the substrate adjacent to the sidewall of the trench, wherein the bit line comprises a conductive a layer covering the bottom surface of the trench, the conductive layer having a recess to expose the diffusion region from the recess; a conductive plug filling the recess and covering a sidewall of the diffusion region, wherein the conductive plug A barrier layer is disposed between the conductive layer and the conductive layer.

本發明之又另一實施例係提供一種電子裝置的製造方法,包括提供一基板;於上述基板中形成一溝槽;於上述溝槽中形成一導電層,覆蓋上述溝槽的底面和部分側面,上述導電層具有鄰接上述溝槽側壁的一凹陷;於鄰接上述凹陷的部分上述基板中形成一擴散區;順應性於上述溝槽中形成一阻障層,覆蓋上述導電層;於上述溝槽中形成一導電插塞,填入上述凹陷,且覆蓋上述擴散區的側壁。Still another embodiment of the present invention provides a method of fabricating an electronic device, including providing a substrate; forming a trench in the substrate; forming a conductive layer in the trench to cover a bottom surface and a portion of a side surface of the trench The conductive layer has a recess adjacent to the sidewall of the trench; a diffusion region is formed in the portion of the substrate adjacent to the recess; a barrier layer is formed in the trench to cover the conductive layer; A conductive plug is formed in the recess to fill the sidewall of the diffusion region.

以下以各實施例詳細說明並伴隨著圖式說明之範例,做為本發明之參考依據。在圖式或說明書描述中,相似或相同之部分皆使用相同之圖號。且在圖式中,實施例之形狀或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,另外,特定之實施例僅為揭示本發明使用之特定方式,其並非用以限定本發明。The following is a detailed description of the embodiments and examples accompanying the drawings, which are the basis of the present invention. In the drawings or the description of the specification, the same drawing numbers are used for similar or identical parts. In the drawings, the shape or thickness of the embodiment may be expanded and simplified or conveniently indicated. In addition, the components of the drawings will be described separately, and it is noted that the components not shown or described in the drawings are known to those of ordinary skill in the art, and in particular, The examples are merely illustrative of specific ways of using the invention and are not intended to limit the invention.

第1圖係顯示本發明一實施例之電子裝置600的透視圖。在本發明一實施例中,電子裝置600可例如為一記憶體裝置,特別為晶胞尺寸為4F2 (其中F為最小微影製程尺寸,或稱單元尺寸)的一動態隨機存取記憶體晶胞(DRAM cell)600。如第1圖所示,上述動態隨機存取記憶體晶胞600的一垂直電晶體300、例如為位元線(bit line,BL)500的一導電結構500和一字元線(word line,WL)308皆設於一基板200中。如第1圖所示,電子裝置600包括一基板200。一垂直電晶體300,形成於基板200中。垂直電晶體300係具有垂直堆疊的一下層汲極區314、一中間層通道區316和一上層之源極區318。另外,垂直電晶體300係具有至少一垂直側壁302。一字元線308,沿一第一方向322形成於基板200中,其中字元線308係設於垂直電晶體300的垂直側壁302上,並做為垂直電晶體300的閘極。字元線308與垂直電晶體300之間係設有一絕緣層306,以做為垂直電晶體300的閘極絕緣層。如第1圖所示,電子裝置600更包括一位元線500,沿不同於第一方向322的一第二方向320形成於基板200中的一溝槽202中,且位於垂直電晶體300的下方,並藉由形成於鄰接溝槽202側壁的部分基板200中的一擴散區230電性接觸該對垂直電晶體300的汲極區314。另外,電子裝置600更包括一電容312,電性接觸垂直電晶體300的源極區318。1 is a perspective view showing an electronic device 600 according to an embodiment of the present invention. In an embodiment of the invention, the electronic device 600 can be, for example, a memory device, particularly a dynamic random access memory having a cell size of 4F 2 (where F is the minimum lithography process size, or cell size). DRAM cell 600. As shown in FIG. 1, a vertical transistor 300 of the above-described dynamic random access memory cell 600, for example, a conductive structure 500 of a bit line (BL) 500, and a word line (word line, WL) 308 are all disposed in a substrate 200. As shown in FIG. 1, the electronic device 600 includes a substrate 200. A vertical transistor 300 is formed in the substrate 200. The vertical transistor 300 has a vertically stacked lower layer drain region 314, an intermediate layer channel region 316, and an upper layer source region 318. Additionally, vertical transistor 300 has at least one vertical sidewall 302. A word line 308 is formed in the substrate 200 along a first direction 322, wherein the word line 308 is disposed on the vertical sidewall 302 of the vertical transistor 300 and serves as a gate of the vertical transistor 300. An insulating layer 306 is disposed between the word line 308 and the vertical transistor 300 to serve as a gate insulating layer of the vertical transistor 300. As shown in FIG. 1 , the electronic device 600 further includes a bit line 500 formed in a trench 202 in the substrate 200 along a second direction 320 different from the first direction 322 and located in the vertical transistor 300 . Bottom, and electrically contacting the drain region 314 of the pair of vertical transistors 300 by a diffusion region 230 formed in a portion of the substrate 200 adjacent to the sidewall of the trench 202. In addition, the electronic device 600 further includes a capacitor 312 electrically contacting the source region 318 of the vertical transistor 300.

第2a~2e圖為沿第1圖的A-A’切線的剖面圖,其顯示本發明不同實施例之電子裝置之例如位元線的導電結構500a~500e(也可視為位元線500a~500e)的剖面圖。另外,第2a~2e圖更顯示鄰接位元線500a~500e的擴散區230。如第2a圖所示,本發明一實施例之位元線500a包括一導電層214,覆蓋溝槽202的底面,導電層214具有一凹陷247,以使擴散區230從凹陷247暴露出來;一導電插塞220a,填入凹陷247,並覆蓋擴散區230的側壁,其中導電插塞220a與導電層214之間設有一阻障層218,其中導電插塞220a的材質為鎢。如第2b圖所示,本發明另一實施例之位元線500b,其與位元線500a的不同處為,位元線500b更包括一矽化物層232,形成於溝槽202之未被絕緣墊層208覆蓋的側壁上,且鄰接擴散區230。如第2c圖所示,本發明又另一實施例之位元線500c,其與位元線500a的不同處為,位元線500c更包括一擴散源層228和形成於擴散源層228側壁上的一矽化物層232,其中擴散源層228形成於溝槽202之未被絕緣墊層208覆蓋的側壁上,且介於矽化物層232和擴散區230之間。如第2d圖所示,本發明又另一實施例之位元線500d,其與位元線500a的不同處為,位元線500d的導電插塞220a的材質為多晶矽。如第2e圖所示,本發明又另一實施例之位元線500e,其與位元線500a的不同處為,位元線500d的導電插塞220a的材質為多晶矽,且位元線500b更包括一矽化物層232,形成於溝槽202之未被絕緣墊層208覆蓋的側壁上,且鄰接擴散區230。2a-2e are cross-sectional views taken along line A-A' of FIG. 1 and show conductive structures 500a-500e of, for example, bit lines of an electronic device according to various embodiments of the present invention (also referred to as bit lines 500a~). Sectional view of 500e). Further, the 2a to 2e maps further show the diffusion regions 230 adjacent to the bit lines 500a to 500e. As shown in FIG. 2a, the bit line 500a according to an embodiment of the present invention includes a conductive layer 214 covering the bottom surface of the trench 202. The conductive layer 214 has a recess 247 to expose the diffusion region 230 from the recess 247. The conductive plug 220a is filled with the recess 247 and covers the sidewall of the diffusion region 230. A barrier layer 218 is disposed between the conductive plug 220a and the conductive layer 214. The conductive plug 220a is made of tungsten. As shown in FIG. 2b, the bit line 500b of another embodiment of the present invention differs from the bit line 500a in that the bit line 500b further includes a germanide layer 232 formed in the trench 202. The sidewalls covered by the insulating blanket 208 are adjacent to the diffusion region 230. As shown in FIG. 2c, in another embodiment of the present invention, the bit line 500c is different from the bit line 500a. The bit line 500c further includes a diffusion source layer 228 and a sidewall formed on the diffusion source layer 228. A germanide layer 232 is formed, wherein the diffusion source layer 228 is formed on sidewalls of the trench 202 that are not covered by the insulating pad layer 208 and between the germanide layer 232 and the diffusion region 230. As shown in FIG. 2d, the bit line 500d of still another embodiment of the present invention differs from the bit line 500a in that the material of the conductive plug 220a of the bit line 500d is polysilicon. As shown in FIG. 2e, in another embodiment of the present invention, the bit line 500e is different from the bit line 500a. The conductive plug 220a of the bit line 500d is made of polysilicon, and the bit line 500b. A germanide layer 232 is further formed on the sidewall of trench 202 that is not covered by insulating spacer 208 and is adjacent to diffusion region 230.

第3~10圖係顯示如第2a圖所示之本發明一實施例之電子裝置600的導電結構500a的製造方法的剖面示意圖,其特別顯示動態隨機存取記憶體晶胞的位元線500a的製造方法。如第3圖所示,首先,提供一基板200。在本發明一實施例中,基板200可為矽基板。在其他實施例中,可利用鍺化矽(SiGe)、塊狀半導體(bulk semiconductor)、應變半導體(strained semiconductor)、化合物半導體(compound semiconductor)、絶緣層上覆矽(silicon on insulator,SOI),或其他常用之半導體基板做為基板200。基板200可植入p型或n型摻質,以針對設計需要改變其導電類型。在本發明一實施例中,基板200可植入p型摻質。3 to 10 are schematic cross-sectional views showing a method of manufacturing the conductive structure 500a of the electronic device 600 according to an embodiment of the present invention as shown in FIG. 2a, particularly showing the bit line 500a of the dynamic random access memory cell. Manufacturing method. As shown in FIG. 3, first, a substrate 200 is provided. In an embodiment of the invention, the substrate 200 can be a germanium substrate. In other embodiments, silicon germanium (SiGe), bulk semiconductor, strained semiconductor, compound semiconductor, silicon on insulator (SOI), Or other commonly used semiconductor substrates are used as the substrate 200. The substrate 200 can be implanted with a p-type or n-type dopant to change its conductivity type for design needs. In an embodiment of the invention, the substrate 200 can be implanted with a p-type dopant.

然後,可利用沉積和圖案化製程,於基板200上形成一圖案化硬遮罩層201,並定義出溝槽202的形成位置。在本發明一實施例中,圖案化硬遮罩層201可包括由下層的一氧化矽墊層201a和上層的一氮化矽層201b形成的疊層結構。接著,可利用圖案化硬遮罩層201做為蝕刻硬遮罩層(etch hard mask layer),進行一非等向性蝕刻製程,移除未被圖案化硬遮罩層201覆蓋的部分基板200,以於基板200中形成一溝槽202。Then, a patterned hard mask layer 201 is formed on the substrate 200 by a deposition and patterning process, and the formation position of the trenches 202 is defined. In an embodiment of the invention, the patterned hard mask layer 201 may include a stacked structure formed of a lower layer of a hafnium oxide pad layer 201a and an upper layer of a tantalum nitride layer 201b. Then, the patterned hard mask layer 201 can be used as an etch hard mask layer to perform an anisotropic etching process to remove a portion of the substrate 200 that is not covered by the patterned hard mask layer 201. A trench 202 is formed in the substrate 200.

之後,可利用例如化學氣相沉積(CVD)法、低壓化學氣相沉積(LPCVD)法或高溫氧化沉積(HTP)法等沉積方式,順應性於溝槽202的側壁206和底面204上形成一絕緣墊層208。在本發明一實施例中,絕緣墊層208可包括一氧化層、一氮化物層或其組合。在本實施例中,絕緣墊層208可為四乙基正矽酸鹽二氧化矽層(TEOS oxide)。Thereafter, a deposition method such as a chemical vapor deposition (CVD) method, a low pressure chemical vapor deposition (LPCVD) method, or a high temperature oxidation deposition (HTP) method may be used to form a conformance on the sidewall 206 and the bottom surface 204 of the trench 202. Insulating mat 208. In an embodiment of the invention, the insulating pad layer 208 may include an oxide layer, a nitride layer, or a combination thereof. In this embodiment, the insulating underlayer 208 can be a tetraethyl orthosilicate layer of TEOS oxide.

接著,請參考第4圖,可利用原子層沉積法(ALD)之沉積方式,順應性於溝槽202中形成一阻障層212,並覆蓋絕緣墊層208。在本發明一實施例中,阻障層212可包括鈦、氮化鈦或其組合。在本實施例中,阻障層212可為鈦和氮化鈦組成的疊層結構。然後,可利用化學氣相沉積(CVD)法之沉積方式,全面性形成一導電材料211,並填入溝槽202。在本發明一實施例中,導電材料211可包括例如鎢之金屬。Next, referring to FIG. 4, a barrier layer 212 may be formed in the trench 202 by the deposition method of atomic layer deposition (ALD), and the insulating pad layer 208 may be covered. In an embodiment of the invention, the barrier layer 212 may comprise titanium, titanium nitride, or a combination thereof. In this embodiment, the barrier layer 212 may be a stacked structure composed of titanium and titanium nitride. Then, a conductive material 211 is formed in a comprehensive manner by a chemical vapor deposition (CVD) deposition method, and the trench 202 is filled. In an embodiment of the invention, the electrically conductive material 211 may comprise a metal such as tungsten.

之後,請參考第5圖,可利用回蝕刻(etching back)製程,移除基板200上方和部分位於溝槽202中的導電材料211,其中導電材料211的頂面係低於基板200的表面。Thereafter, referring to FIG. 5, the conductive material 211 above the substrate 200 and partially located in the trench 202 may be removed by an etching back process, wherein the top surface of the conductive material 211 is lower than the surface of the substrate 200.

接著,請參考第6圖,可利用原子層沉積法(ALD)之沉積方式,順應性於溝槽202中形成一第一介電層240,並覆蓋導電材料211。在本發明一實施例中,第一介電層240可包括氧化層或氮化層。本實施例中,襯於溝槽202側壁的第一介電層240可為例如氧化鋁(Al2 O3 )之高介電常數(high-k)介電層(高介電常數是指介電常數大於二氧化矽的介電常數4.2稱之),其擁有較佳之緻密度,因此,可於後續利用氣相摻雜方式於鄰近溝槽202部分側壁的基板200中形成摻雜區時,避免摻質氣體擴散進入其他不想要的區域,並可利於後續蝕刻製程做為蝕刻硬遮罩而不損傷位於其下的導電材料211。在本發明一實施例中,在形成第一介電層240之後,可進行一退火製程,以使第一介電層240的結構更為緻密。然後,可利用化學氣相沉積(CVD)法之沉積方式,順應性於溝槽202中形成一第二介電層242,並覆蓋第一介電層240。在本發明一實施例中,第二介電層242和第一介電層240為不同的材質,第二介電層242例如為未摻雜非晶矽(undoped amorphous silicon)。Next, referring to FIG. 6, a first dielectric layer 240 may be formed in the trench 202 by a deposition method using atomic layer deposition (ALD), and the conductive material 211 may be covered. In an embodiment of the invention, the first dielectric layer 240 may include an oxide layer or a nitride layer. In this embodiment, the first dielectric layer 240 lining the sidewalls of the trench 202 may be a high-k dielectric layer such as aluminum oxide (Al 2 O 3 ) (high dielectric constant refers to The electrical constant is greater than the dielectric constant of the germanium dioxide (referred to as 4.2), which has a better density. Therefore, when a doped region is formed in the substrate 200 adjacent to the sidewall of the trench 202 by subsequent vapor phase doping, The dopant gas is prevented from diffusing into other undesired regions, and the subsequent etching process can be facilitated as etching the hard mask without damaging the conductive material 211 located thereunder. In an embodiment of the invention, after the first dielectric layer 240 is formed, an annealing process may be performed to make the structure of the first dielectric layer 240 more dense. Then, a second dielectric layer 242 is formed in the trench 202 by the deposition method of the chemical vapor deposition (CVD) method, and covers the first dielectric layer 240. In an embodiment of the invention, the second dielectric layer 242 and the first dielectric layer 240 are made of different materials, and the second dielectric layer 242 is, for example, undoped amorphous silicon.

然後,請參考第7圖,可沿一方向(即為元件符號262箭頭的方向)對第二介電層242進行一離子植入步驟262。如第7圖所示,由於離子植入步驟262的方向(即為元件符號262箭頭的方向)與基板200表面具有一夾角a,其值可由後續擴散區的形成位置或尺寸而定,例如可介於10°至80°之間,而上述擴散區的形成位置或尺寸可利用元件模擬(Device simulation)方式決定。因此離子植入步驟262可於第二介電層242形成一摻雜區242a和一非摻雜區242b。在本發明一實施例中,離子植入步驟262的摻質可為二氟化硼(BF2 )。Then, referring to FIG. 7, the second dielectric layer 242 can be subjected to an ion implantation step 262 in one direction (ie, the direction of the arrow of the symbol 262). As shown in Fig. 7, since the direction of the ion implantation step 262 (i.e., the direction of the arrow of the symbol 262) has an angle a with the surface of the substrate 200, the value may be determined by the position or size of the subsequent diffusion region, for example, It is between 10° and 80°, and the formation position or size of the above diffusion region can be determined by means of device simulation. Therefore, the ion implantation step 262 can form a doped region 242a and an undoped region 242b in the second dielectric layer 242. In an embodiment of the invention, the dopant of ion implantation step 262 can be boron difluoride (BF 2 ).

接著,請參考第8圖,可對第二介電層242進行一濕蝕刻製程,移除部分的摻雜區242a和非摻雜區242b,直到暴露出部分第一介電層240為止。在濕蝕刻製程期間,如第7圖所示的具有摻質的摻雜區242a的蝕刻速率會小於不具有摻質的非摻雜區242b,兩者彼此間具有蝕刻選擇比,因此當非摻雜區242b完全被移除時,仍會殘留部分的摻雜區242a。Next, referring to FIG. 8, a second wet etching process may be performed on the second dielectric layer 242 to remove portions of the doped region 242a and the undoped region 242b until a portion of the first dielectric layer 240 is exposed. During the wet etching process, the doping region 242a having the dopant as shown in FIG. 7 may have an etching rate lower than that of the non-doping region 242b having no dopant, and the two have an etching selectivity ratio with each other, so when non-doped When the impurity region 242b is completely removed, a portion of the doped region 242a remains.

然後,可利用殘留摻雜區242a做為蝕刻硬遮罩層,進行例如乾蝕刻之一非等向蝕刻製程,移除未被摻雜區242a覆蓋的第一介電層240,以形成硬遮罩結構243。在本發明一實施例中,因為由第二介電層242形成的摻雜區242a與第一介電層240為不同的材質,例如,第一介電層240為氧化鋁(Al2 O3 ),而摻雜區242a為多晶矽,因此,可以選用適當的蝕刻劑,以使第一介電層240具有較摻雜區242a高的蝕刻率(具有良好的蝕刻選擇比)。經過非等向蝕刻製程之後,係形成硬遮罩結構243,其具有一開口246,並暴露出部分導電材料211。在本發明一實施例中,硬遮罩結構243的開口246的位置及尺寸可決定後續形成擴散區的位置或尺寸。Then, the residual doping region 242a can be used as an etch hard mask layer, and one of the non-isotropic etching processes such as dry etching can be performed to remove the first dielectric layer 240 covered by the undoped region 242a to form a hard mask. Cover structure 243. In an embodiment of the invention, since the doped region 242a formed by the second dielectric layer 242 and the first dielectric layer 240 are made of different materials, for example, the first dielectric layer 240 is aluminum oxide (Al 2 O 3 ). The doped region 242a is polysilicon, and therefore, an appropriate etchant may be selected to provide the first dielectric layer 240 with a higher etch rate (with a good etch selectivity) than the doped region 242a. After the non-isotropic etching process, a hard mask structure 243 is formed which has an opening 246 and exposes a portion of the conductive material 211. In one embodiment of the invention, the location and size of the opening 246 of the hard mask structure 243 may determine the location or size of the subsequent formation of the diffusion region.

之後,再利用硬遮罩結構243做為蝕刻硬遮罩層,進行例如乾蝕刻之一非等向蝕刻製程,移除從開口246暴露出的部分導電材料211和阻障層212,以形成具有凹陷247的導電層214。上述具有凹陷247的導電層214可於後續製程中定義出擴散區230的形成位置。Thereafter, the hard mask structure 243 is used as an etch hard mask layer, and an anisotropic etching process such as dry etching is performed to remove a portion of the conductive material 211 and the barrier layer 212 exposed from the opening 246 to form Conductive layer 214 of recess 247. The conductive layer 214 having the recess 247 described above can define the formation location of the diffusion region 230 in a subsequent process.

接著,再利用硬遮罩結構243和導電層214做為蝕刻硬遮罩層,進行例如濕蝕刻之一等向蝕刻製程,移除從凹陷247暴露出的部分絕緣墊層208,以暴露出溝槽202的部分側壁226。在本發明一實施例中,由於硬遮罩結構243、導電層214與絕緣墊層208分別為不同的材質,例如,硬遮罩結構243為氧化鋁(Al2 O3 )和多晶矽組成的疊層結構,導電層214為例如鎢的金屬,而絕緣墊層208為氧化物,因此,可以選用適當的蝕刻劑,以使絕緣墊層208為具有較硬遮罩結構243和導電層214高的蝕刻率(具有良好的蝕刻選擇比)。經過等向蝕刻製程之後,係暴露出溝槽210的部分側壁226,。Then, using the hard mask structure 243 and the conductive layer 214 as an etch hard mask layer, an isotropic etching process such as wet etching is performed to remove a portion of the insulating underlayer 208 exposed from the recess 247 to expose the trench. A portion of the side wall 226 of the slot 202. In an embodiment of the present invention, since the hard mask structure 243, the conductive layer 214 and the insulating pad layer 208 are respectively made of different materials, for example, the hard mask structure 243 is a stack of aluminum oxide (Al 2 O 3 ) and polycrystalline germanium. The layer structure, the conductive layer 214 is a metal such as tungsten, and the insulating pad layer 208 is an oxide. Therefore, a suitable etchant may be selected to make the insulating pad layer 208 have a higher hardness of the hard mask structure 243 and the conductive layer 214. Etch rate (with good etch selectivity ratio). After the isotropic etch process, portions of sidewalls 226 of trench 210 are exposed.

然後,於鄰接凹陷247的部分基板200中形成一擴散區230。可利用氣相摻雜(gas phase doping)方式,將摻質氣體從溝槽202暴露的側壁226注入其鄰接的部分基板200中,以形成擴散區230。在本發明一實施例中,氣相摻雜(gas phase doping)方式可包括高溫快速氣相摻雜(RVD)、室溫氣相摻雜、氣體沉浸雷射摻雜(GILD)等。在本發明一實施例中,擴散區230可做為位元線與垂直電晶體之汲極的擴散接面(diffusion junction)。在基板200的導電類型為p型之一實施例中,擴散區230的導電類型可為n型。擴散區230的導電類型係依據氣體摻質的導電類型而定,但非限定本實施例。在本發明一實施例中,硬遮罩結構243中的例如為氧化鋁(Al2 O3 )的第一介電層240以及導電層214可做為進行氣相摻雜製程的阻擋層,避免摻質氣體從第一介電層240以及導電層214覆蓋的溝槽202的側壁擴散進入基板200中不想要的區域而影響位元線的性能。Then, a diffusion region 230 is formed in a portion of the substrate 200 adjacent to the recess 247. The dopant gas can be injected into the adjacent portion of the substrate 200 from the exposed sidewalls 226 of the trench 202 by gas phase doping to form the diffusion region 230. In an embodiment of the invention, the gas phase doping method may include high temperature rapid gas phase doping (RVD), room temperature gas phase doping, gas immersion laser doping (GILD), and the like. In an embodiment of the invention, the diffusion region 230 can serve as a diffusion junction of the bit line and the drain of the vertical transistor. In an embodiment in which the conductivity type of the substrate 200 is a p-type, the conductivity type of the diffusion region 230 may be an n-type. The conductivity type of the diffusion region 230 depends on the conductivity type of the gas dopant, but is not limited to the embodiment. In an embodiment of the present invention, the first dielectric layer 240, such as aluminum oxide (Al 2 O 3 ), and the conductive layer 214 in the hard mask structure 243 can be used as a barrier layer for performing a gas phase doping process, avoiding The dopant gas diffuses from the sidewalls of the trenches 202 covered by the first dielectric layer 240 and the conductive layer 214 into unwanted regions of the substrate 200 to affect the performance of the bit lines.

然後,請參考第9圖,可利用濕蝕刻方式,移除如第8圖所示的硬遮罩結構243。接著,可進行一預清潔步驟(pre-clean),以移除位於溝槽202的側壁226上的例如原生氧化物(native oxide)。之後,可利用原子層沉積法(ALD)之沉積方式,順應性於溝槽202中形成一阻障層218,並覆蓋絕緣墊層208、導電層214和擴散區230的側壁。在本發明一實施例中,阻障層218可包括鈦、氮化鈦或其組合。在本實施例中,阻障層218可為鈦和氮化鈦組成的疊層結構。然後,可利用化學氣相沉積(CVD)法之沉積方式,全面性形成一導電材料220,並填入溝槽202。在本實施例中,導電材料220可包括例如鎢之金屬。如第9圖所示,導電材料220填入凹陷247,且覆蓋擴散區230的側壁。Then, referring to Fig. 9, the hard mask structure 243 as shown in Fig. 8 can be removed by wet etching. Next, a pre-cleaning step can be performed to remove, for example, native oxide on sidewall 226 of trench 202. Thereafter, a barrier layer 218 can be formed in the trench 202 by a deposition method using atomic layer deposition (ALD), and cover the sidewalls of the insulating pad layer 208, the conductive layer 214, and the diffusion region 230. In an embodiment of the invention, the barrier layer 218 can comprise titanium, titanium nitride, or a combination thereof. In the present embodiment, the barrier layer 218 may be a stacked structure composed of titanium and titanium nitride. Then, a conductive material 220 can be formed in a comprehensive manner by a chemical vapor deposition (CVD) deposition method and filled in the trenches 202. In the present embodiment, the conductive material 220 may include a metal such as tungsten. As shown in FIG. 9, the conductive material 220 fills the recess 247 and covers the sidewall of the diffusion region 230.

之後,請參考第10圖,可利用回蝕刻(etching back)製程,移除基板200上方和部分位於溝槽202中的導電材料220,以形成導電插塞220a,其中導電插塞220a的頂面係低於基板200的表面。之後,可利用例如化學氣相沉積法(CVD)及後續之例如回蝕刻(etching back)製程,於溝槽202中形成覆蓋層258,且覆蓋導電插塞220a。在本發明一實施例中,覆蓋層258的材質可例如為二氧化矽之絕緣材料。再經過後續之例如化學機械研磨(CMP)之平坦化製程,係形成如第2a圖所示之本發明一實施例之導電結構500a。Thereafter, referring to FIG. 10, the conductive material 220 above the substrate 200 and partially located in the trench 202 may be removed by an etching back process to form a conductive plug 220a, wherein the top surface of the conductive plug 220a It is lower than the surface of the substrate 200. Thereafter, a capping layer 258 can be formed in trench 202 and covered by conductive plug 220a using, for example, chemical vapor deposition (CVD) followed by, for example, an etching back process. In an embodiment of the invention, the material of the cover layer 258 may be, for example, an insulating material of cerium oxide. Further, through a subsequent planarization process such as chemical mechanical polishing (CMP), a conductive structure 500a according to an embodiment of the present invention as shown in Fig. 2a is formed.

如第2a圖所示之本發明一實施例之導電結構500a,係利用自對準(self-aligned)方式於溝槽202中形成蝕刻選擇比彼此不同的複數層硬遮罩結構,以形成具有凹陷247的導電層214。再藉由後續的蝕刻製程定義出擴散區230的形成位置。並且,擴散區230直接藉由例如金屬材料的阻障層電性接觸至導電插塞,可避免界面因素影響位元線的導電特性。另外,硬遮罩結構可包括例如為氧化鋁(Al2 O3 )的高介電常數第一介電層240,其擁有較佳之緻密度,因而可做為用以形成擴散區之氣相摻雜製程的阻擋層,避免摻質氣體從第一介電層240覆蓋的溝槽202的側壁擴散進入基板200中不想要的區域而影響位元線的性能。The conductive structure 500a of an embodiment of the present invention, as shown in FIG. 2a, is formed in a self-aligned manner by forming a plurality of layers of hard mask structures having different etching options than each other in a self-aligned manner to form Conductive layer 214 of recess 247. The formation position of the diffusion region 230 is defined by a subsequent etching process. Moreover, the diffusion region 230 is directly electrically contacted to the conductive plug by a barrier layer such as a metal material, and the interface factor can be prevented from affecting the conductive property of the bit line. In addition, the hard mask structure may include a high dielectric constant first dielectric layer 240, such as aluminum oxide (Al 2 O 3 ), which has a preferred density and thus can be used as a vapor phase dopant for forming a diffusion region. The barrier layer of the miscellaneous process prevents the dopant gas from diffusing from the sidewalls of the trench 202 covered by the first dielectric layer 240 into the undesired regions of the substrate 200 to affect the performance of the bit line.

第11圖係顯示如第2b圖所示之本發明另一實施例之電子裝置600的導電結構500b的製造方法的剖面示意圖,其與導電結構500a的不同處為導電結構500b更包括覆蓋擴散區230側壁的矽化物層232,上述圖式中的各元件如有與第1~10圖所示相同或相似的部分,則可參考前面的相關敘述,在此不做重複說明。請參考第11圖,可於形成擴散區230以及移除如第8圖所示的硬遮罩結構243之後,進行一矽化製程,於溝槽202的側壁226上形成矽化物層232,且覆蓋擴散區230的側壁。在本發明一實施例中,矽化物層232可包括鈦矽化物或鈷矽化物,其用以降低擴散區230與後續形成的導電插塞220a之間的電阻。再經過後續之例如化學機械研磨(CMP)之平坦化製程,係形成如第2b圖所示之本發明一實施例之導電結構500b。11 is a cross-sectional view showing a method of fabricating the conductive structure 500b of the electronic device 600 according to another embodiment of the present invention as shown in FIG. 2b, which differs from the conductive structure 500a in that the conductive structure 500b further includes a covered diffusion region. For the vaporization layer 232 of the side wall of the 230, if the components in the above-mentioned drawings have the same or similar parts as those shown in the first to the tenth drawings, reference may be made to the above related description, and the description thereof will not be repeated. Referring to FIG. 11 , after the diffusion region 230 is formed and the hard mask structure 243 as shown in FIG. 8 is removed, a deuteration process is performed to form a germanide layer 232 on the sidewall 226 of the trench 202 and covered. The sidewall of the diffusion region 230. In an embodiment of the invention, the germanide layer 232 can include a titanium germanide or cobalt germanide to reduce the electrical resistance between the diffusion region 230 and the subsequently formed conductive plug 220a. Further, through a subsequent planarization process such as chemical mechanical polishing (CMP), a conductive structure 500b according to an embodiment of the present invention as shown in Fig. 2b is formed.

第12~13圖係顯示如第2c圖所示之本發明又另一實施例之電子裝置600的導電結構500c的製造方法的剖面示意圖,其與導電結構500a的不同處為導電結構500c的擴散區230係利用於溝槽202暴露的側壁226上形成的擴散源層228進行摻質擴散而形成,上述圖式中的各元件如有與第1~11圖所示相同或相似的部分,則可參考前面的相關敘述,在此不做重複說明。12 to 13 are schematic cross-sectional views showing a method of manufacturing the conductive structure 500c of the electronic device 600 according to still another embodiment of the present invention as shown in Fig. 2c, the difference from the conductive structure 500a being the diffusion of the conductive structure 500c. The region 230 is formed by diffusion diffusion of the diffusion source layer 228 formed on the exposed sidewall 226 of the trench 202. If each element in the above figure has the same or similar portion as shown in FIGS. 1-11, Please refer to the previous related description, and no repeated explanation is given here.

請參考第12圖,可於第8圖說明之移除從凹陷247暴露出的部分絕緣墊層208,以暴露出溝槽202的部分側壁226的步驟之後。利用例如化學氣相沉積法(CVD)之薄膜沉積方式以及後續的回蝕刻步驟,以於溝槽202暴露的側壁226上形成擴散源層228,且移除由第二介電層242形成的摻雜區242a。在本發明一實施例中,擴散源層228可為摻雜多晶矽層之導電層,例如為摻雜砷的多晶矽層(As-doped poly)。然後,可利用例如退火製程,將擴散源層228的摻質擴散進入鄰接的基板200中,以於鄰接擴散源層228的部分基板200中形成一擴散區230。Referring to FIG. 12, a portion of the insulating underlayer 208 exposed from the recess 247 may be removed after the step of exposing a portion of the sidewall 226 of the trench 202 as illustrated in FIG. A diffusion source layer 228 is formed on the exposed sidewalls 226 of the trench 202 by a thin film deposition method such as chemical vapor deposition (CVD) and a subsequent etch back step, and the addition formed by the second dielectric layer 242 is removed. Miscellaneous area 242a. In an embodiment of the invention, the diffusion source layer 228 may be a conductive layer doped with a polysilicon layer, such as an arsenic doped poly layer (As-doped poly). Then, the dopant of the diffusion source layer 228 can be diffused into the adjacent substrate 200 by, for example, an annealing process to form a diffusion region 230 in a portion of the substrate 200 adjacent to the diffusion source layer 228.

然後,請參考第13圖,可利用濕蝕刻方式,移除如第12圖所示的第一介電層240。之後,可進行矽化製程,於溝槽202形成矽化物層232,且覆蓋擴散源層228的側壁。在本發明一實施例中,矽化物層232可包括鈦矽化物或鈷矽化物,其用以降低擴散源層228與後續形成的導電插塞220a之間的電阻。再經過後續之例如化學機械研磨(CMP)之平坦化製程,係形成如第2c圖所示之本發明一實施例之導電結構500c。Then, referring to FIG. 13, the first dielectric layer 240 as shown in FIG. 12 can be removed by wet etching. Thereafter, a deuteration process can be performed to form a germanide layer 232 in the trench 202 and to cover the sidewalls of the diffusion source layer 228. In an embodiment of the invention, the germanide layer 232 can include a titanium germanide or cobalt germanide to reduce the electrical resistance between the diffusion source layer 228 and the subsequently formed conductive plug 220a. Further, through a subsequent planarization process such as chemical mechanical polishing (CMP), a conductive structure 500c according to an embodiment of the present invention as shown in Fig. 2c is formed.

第14圖係顯示如第2d圖所示之本發明又另一實施例之電子裝置600的導電結構500d的製造方法的剖面示意圖,其與導電結構500a的不同處為導電結構500d的導電插塞的材質為摻雜多晶矽(doped poly),上述圖式中的各元件如有與第1~13圖所示相同或相似的部分,則可參考前面的相關敘述,在此不做重複說明。請參考第14圖,可利用氣相擴散方式於形成擴散區230以及形成阻障層218之後,利用例如化學氣相沉積法(CVD)之薄膜沉積方式以及後續的回蝕刻步驟,形成材質為摻雜多晶矽的導電插塞220b。在本實施例中,導電插塞220b可例如為摻雜砷的多晶矽層(As-doped poly)。再經過後續之例如化學機械研磨(CMP)之平坦化製程,係形成如第2d圖所示之本發明一實施例之導電結構500d。Figure 14 is a cross-sectional view showing a method of fabricating the conductive structure 500d of the electronic device 600 according to still another embodiment of the present invention as shown in Fig. 2d, which is different from the conductive structure 500a as a conductive plug of the conductive structure 500d. The material is a doped poly. If the components in the above figures have the same or similar parts as those shown in FIGS. 1 to 13, reference may be made to the above related description, and the description thereof will not be repeated. Referring to FIG. 14, after the diffusion region 230 is formed and the barrier layer 218 is formed by a vapor phase diffusion method, a thin film deposition method such as chemical vapor deposition (CVD) and a subsequent etch back step are used to form a material doped. Conductive plug 220b of the heteropolysilicon. In this embodiment, the conductive plug 220b may be, for example, an arsenic doped poly-layer (As-doped poly). Further, through a subsequent planarization process such as chemical mechanical polishing (CMP), a conductive structure 500d according to an embodiment of the present invention as shown in Fig. 2d is formed.

第15圖係顯示如第2e圖所示之本發明又另一實施例之電子裝置600的導電結構500e的製造方法的剖面示意圖,其與導電結構500a的不同處為導電結構500e更包括覆蓋擴散區230側壁的矽化物層232,且其導電插塞的材質為摻雜多晶矽(doped poly),上述圖式中的各元件如有與第1~14圖所示相同或相似的部分,則可參考前面的相關敘述,在此不做重複說明。請參考第15圖,可於形成擴散區230以及移除如第8圖所示的硬遮罩結構243之後,進行一矽化製程,於溝槽202的側壁226上形成矽化物層232,且覆蓋擴散區230的側壁。在本發明一實施例中,矽化物層232可包括鈦矽化物或鈷矽化物,其用以降低擴散區230與後續形成的導電插塞220a之間的電阻。之後,可於形成阻障層218之後,利用例如化學氣相沉積法(CVD)之薄膜沉積方式以及後續的回蝕刻步驟,形成材質為摻雜多晶矽的導電插塞220b。在本實施例中,導電插塞220b可例如為摻雜砷的多晶矽層(As-doped poly)。再經過後續之例如化學機械研磨(CMP)之平坦化製程,係形成如第2e圖所示之本發明一實施例之導電結構500e。Figure 15 is a cross-sectional view showing a method of fabricating the conductive structure 500e of the electronic device 600 according to still another embodiment of the present invention, as shown in Fig. 2e, which differs from the conductive structure 500a in that the conductive structure 500e further includes a cover diffusion. The germanide layer 232 of the sidewall of the region 230, and the material of the conductive plug is doped poly, and the components in the above figures may have the same or similar parts as those shown in FIGS. Referring to the previous related description, no repeated explanation is given here. Referring to FIG. 15, after the diffusion region 230 is formed and the hard mask structure 243 as shown in FIG. 8 is removed, a deuteration process is performed to form a germanide layer 232 on the sidewall 226 of the trench 202 and covered. The sidewall of the diffusion region 230. In an embodiment of the invention, the germanide layer 232 can include a titanium germanide or cobalt germanide to reduce the electrical resistance between the diffusion region 230 and the subsequently formed conductive plug 220a. Thereafter, after the barrier layer 218 is formed, a conductive plug 220b made of doped polysilicon is formed by a thin film deposition method such as chemical vapor deposition (CVD) and a subsequent etch back step. In this embodiment, the conductive plug 220b may be, for example, an arsenic doped poly-layer (As-doped poly). Further, through a subsequent planarization process such as chemical mechanical polishing (CMP), a conductive structure 500e according to an embodiment of the present invention as shown in Fig. 2e is formed.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope is defined as defined in the scope of the patent application.

200...基板200. . . Substrate

201...圖案化硬遮罩層201. . . Patterned hard mask layer

201a...氧化矽墊層201a. . . Cerium oxide cushion

201b...氮化矽層201b. . . Tantalum nitride layer

202...溝槽202. . . Trench

204、212...底面204, 212. . . Bottom

206...側壁206. . . Side wall

208...絕緣墊層208. . . Insulating mat

211、220...導電材料211, 220. . . Conductive material

212、218...阻障層212, 218. . . Barrier layer

214...導電層214. . . Conductive layer

228...擴散源層228. . . Diffusion source layer

230...擴散區230. . . Diffusion zone

232...矽化物層232. . . Telluride layer

240...第一介電層240. . . First dielectric layer

242...第二介電層242. . . Second dielectric layer

242a...摻雜區242a. . . Doped region

242b...非摻雜區242b. . . Undoped area

243...硬遮罩結構243. . . Hard mask structure

246...開口246. . . Opening

247...凹陷247. . . Depression

262...離子植入步驟262. . . Ion implantation step

220a、220b...導電插塞220a, 220b. . . Conductive plug

258...覆蓋層258. . . Cover layer

300...垂直電晶體300. . . Vertical transistor

302...垂直側壁302. . . Vertical side wall

306...絕緣層306. . . Insulation

308...字元線308. . . Word line

312...電容312. . . capacitance

314...汲極區314. . . Bungee area

316...通道區316. . . Channel area

318...源極區318. . . Source area

320...第一方向320. . . First direction

322...第二方向322. . . Second direction

500、500a、500b、500c、500d、500e...導電結構500, 500a, 500b, 500c, 500d, 500e. . . Conductive structure

600...電子裝置600. . . Electronic device

a...角度a. . . angle

第1圖係顯示本發明一實施例之電子裝置的透視圖。Fig. 1 is a perspective view showing an electronic device according to an embodiment of the present invention.

第2a~2e圖為沿第1圖的A-A’切線的剖面圖,其顯示本發明不同實施例之電子裝置之例如位元線的導電結構。2a-2e are cross-sectional views taken along line A-A' of Fig. 1 showing conductive structures such as bit lines of an electronic device of various embodiments of the present invention.

第3~10圖係顯示如第2a圖所示之本發明一實施例之電子裝置的導電結構的製造方法的剖面示意圖。3 to 10 are schematic cross-sectional views showing a method of manufacturing a conductive structure of an electronic device according to an embodiment of the present invention as shown in Fig. 2a.

第11圖係顯示如第2b圖所示之本發明另一實施例之電子裝置的導電結構的製造方法的剖面示意圖。Figure 11 is a cross-sectional view showing a method of manufacturing a conductive structure of an electronic device according to another embodiment of the present invention as shown in Figure 2b.

第12~13圖係顯示如第2c圖所示之本發明又另一實施例之電子裝置的導電結構的製造方法的剖面示意圖。12 to 13 are schematic cross-sectional views showing a method of manufacturing a conductive structure of an electronic device according to still another embodiment of the present invention as shown in Fig. 2c.

第14圖係顯示如第2d圖所示之本發明又另一實施例之電子裝置的導電結構的製造方法的剖面示意圖。Figure 14 is a cross-sectional view showing a method of manufacturing a conductive structure of an electronic device according to still another embodiment of the present invention as shown in Figure 2d.

第15圖係顯示如第2e圖所示之本發明又另一實施例之電子裝置的導電結構的製造方法的剖面示意圖。Figure 15 is a cross-sectional view showing a method of manufacturing a conductive structure of an electronic device according to still another embodiment of the present invention as shown in Figure 2e.

200...基板200. . . Substrate

202...溝槽202. . . Trench

208...絕緣墊層208. . . Insulating mat

212、218...阻障層212, 218. . . Barrier layer

230...擴散區230. . . Diffusion zone

214...導電層214. . . Conductive layer

220a...導電插塞220a. . . Conductive plug

258...覆蓋層258. . . Cover layer

500a...導電結構500a. . . Conductive structure

Claims (42)

一種電子裝置,包括:一基板;一溝槽,形成於該基板中;一擴散區,形成於鄰接該溝槽側壁的部分該基板中;以及一導電結構,設置於該溝槽中,包括:一導電層,覆蓋該溝槽的底面,該導電層具有一凹陷,以使該擴散區從該凹陷暴露出來;以及一導電插塞,填入該凹陷,並覆蓋該擴散區的側壁,其中該導電插塞與該導電層之間設有一阻障層。An electronic device comprising: a substrate; a trench formed in the substrate; a diffusion region formed in a portion of the substrate adjacent to the sidewall of the trench; and a conductive structure disposed in the trench, comprising: a conductive layer covering a bottom surface of the trench, the conductive layer having a recess to expose the diffusion region from the recess; and a conductive plug filling the recess and covering a sidewall of the diffusion region, wherein the conductive layer A barrier layer is disposed between the conductive plug and the conductive layer. 如申請專利範圍第1項所述之電子裝置,更包括一絕緣墊層,覆蓋該溝槽的側壁和底面,其中該擴散區鄰接該溝槽之未被絕緣墊層覆蓋的側壁。The electronic device of claim 1, further comprising an insulating pad covering a sidewall and a bottom surface of the trench, wherein the diffusion region abuts a sidewall of the trench not covered by the insulating pad. 如申請專利範圍第2項所述之電子裝置,其中該阻障層覆蓋該擴散區的側壁。The electronic device of claim 2, wherein the barrier layer covers a sidewall of the diffusion region. 如申請專利範圍第1項所述之電子裝置,其中該導電結構更包括一矽化物層,形成於該溝槽之未被該絕緣墊層覆蓋的側壁上,且鄰接該擴散區。The electronic device of claim 1, wherein the conductive structure further comprises a germanide layer formed on a sidewall of the trench not covered by the insulating pad and adjacent to the diffusion region. 申請專利範圍第4項所述之電子裝置,其中該導電結構更包括一擴散源層,形成於該溝槽之未被該絕緣墊層覆蓋的側壁上,且介於該矽化物層和該擴散區之間。The electronic device of claim 4, wherein the conductive structure further comprises a diffusion source layer formed on a sidewall of the trench not covered by the insulating pad, and interposed between the germanide layer and the diffusion Between the districts. 如申請專利範圍第1項所述之電子裝置,其中該導電插塞包括金屬或多晶矽。The electronic device of claim 1, wherein the conductive plug comprises a metal or polysilicon. 如申請專利範圍第1項所述之電子裝置,其中該導電層為金屬。The electronic device of claim 1, wherein the conductive layer is a metal. 如申請專利範圍第1項所述之電子裝置,其中該阻障層包括鈦、氮化鈦或其組合。The electronic device of claim 1, wherein the barrier layer comprises titanium, titanium nitride or a combination thereof. 如申請專利範圍第1項所述之電子裝置,更包括一覆蓋層,形成於該溝槽中,且覆蓋該導電插塞。The electronic device of claim 1, further comprising a cover layer formed in the trench and covering the conductive plug. 如申請專利範圍第3項所述之電子裝置,其中該絕緣墊層包括一氧化層、一氮化物層或其組合。The electronic device of claim 3, wherein the insulating layer comprises an oxide layer, a nitride layer or a combination thereof. 如申請專利範圍第5項所述之電子裝置,其中該擴散源層包括摻雜多晶矽。The electronic device of claim 5, wherein the diffusion source layer comprises doped polysilicon. 如申請專利範圍第1項所述之電子裝置,其中該導電層與該溝槽之間設有另一阻障層。The electronic device of claim 1, wherein another conductive layer is disposed between the conductive layer and the trench. 如申請專利範圍第1項所述之電子裝置,其中該導電結構為一位元線。The electronic device of claim 1, wherein the conductive structure is a one-dimensional line. 如申請專利範圍第1項所述之電子裝置為一動態隨機存取記記憶體裝置。The electronic device according to claim 1 is a dynamic random access memory device. 一種記憶體裝置,包括:一基板;至少一垂直電晶體,形成於該基板中,其具有一垂直側壁;至少一字元線,沿一第一方向形成於該基板中,該字元線設於該對垂直電晶體的該垂直側壁上;以及至少一位元線,沿不同於該第一方向的一第二方向形成於該基板中的至少一溝槽中,且位於該對垂直電晶體的下方,並藉由形成於鄰接該溝槽側壁的部分該基板中的一擴散區電性接觸該垂直電晶體的一汲極區,其中該位元線包括:一導電層,覆蓋該溝槽的底面,該導電層具有一凹陷,以使該擴散區從該凹陷暴露出來;以及一導電插塞,填入該凹陷,並覆蓋該擴散區的側壁,其中該導電插塞與該導電層之間設有一阻障層。A memory device includes: a substrate; at least one vertical transistor formed in the substrate, having a vertical sidewall; at least one word line formed in the substrate along a first direction, the word line is set And on the vertical sidewall of the pair of vertical transistors; and at least one bit line formed in at least one of the trenches in a second direction different from the first direction, and located in the pair of vertical transistors Bottom, and electrically contacting a drain region of the vertical transistor by a diffusion region formed in a portion of the substrate adjacent to the sidewall of the trench, wherein the bit line includes: a conductive layer covering the trench a bottom surface, the conductive layer has a recess to expose the diffusion region from the recess; and a conductive plug fills the recess and covers a sidewall of the diffusion region, wherein the conductive plug and the conductive layer There is a barrier layer between them. 如申請專利範圍第15項所述之記憶體裝置,更包括至少一電容,電性接觸該垂直電晶體的一源極區。The memory device of claim 15 further comprising at least one capacitor electrically contacting a source region of the vertical transistor. 如申請專利範圍第15項所述之記憶體裝置,其中該位元線更包括更包括一絕緣墊層,覆蓋該溝槽的側壁和底面,其中該擴散區鄰接該溝槽之未被絕緣墊層覆蓋的側壁。The memory device of claim 15, wherein the bit line further comprises an insulating pad covering a sidewall and a bottom surface of the trench, wherein the diffusion region is adjacent to the trench without an insulating pad The side walls covered by the layer. 如申請專利範圍第17項所述之記憶體裝置,其中該阻障層覆蓋該擴散區的側壁。The memory device of claim 17, wherein the barrier layer covers a sidewall of the diffusion region. 如申請專利範圍第15項所述之記憶體裝置,其中該位元線更包括一矽化物層,形成於該溝槽之未被該絕緣墊層覆蓋的側壁上,且鄰接該擴散區。The memory device of claim 15, wherein the bit line further comprises a germanide layer formed on a sidewall of the trench not covered by the insulating pad and adjacent to the diffusion region. 如申請專利範圍第19項所述之記憶體裝置,其中該位元線更包括一擴散源層,形成於該溝槽之未被該絕緣墊層覆蓋的側壁上,且介於該矽化物層和該擴散區之間。The memory device of claim 19, wherein the bit line further comprises a diffusion source layer formed on a sidewall of the trench not covered by the insulating pad and interposed between the germanide layer Between this diffusion zone. 如申請專利範圍第15項所述之記憶體裝置,其中該導電插塞包括金屬或多晶矽。The memory device of claim 15, wherein the conductive plug comprises a metal or polysilicon. 如申請專利範圍第15項所述之記憶體裝置,其中該導電層為金屬。The memory device of claim 15, wherein the conductive layer is a metal. 如申請專利範圍第15項所述之記憶體裝置,其中該阻障層包括鈦、氮化鈦或其組合。The memory device of claim 15, wherein the barrier layer comprises titanium, titanium nitride or a combination thereof. 如申請專利範圍第15項所述之記憶體裝置,更包括一覆蓋層,形成於該溝槽中,且覆蓋該導電插塞。The memory device of claim 15 further comprising a cover layer formed in the trench and covering the conductive plug. 如申請專利範圍第17項所述之記憶體裝置,其中該絕緣墊層包括一氧化層、一氮化物層或其組合。The memory device of claim 17, wherein the insulating underlayer comprises an oxide layer, a nitride layer or a combination thereof. 如申請專利範圍第20項所述之記憶體裝置,其中該擴散源層包括摻雜多晶矽。The memory device of claim 20, wherein the diffusion source layer comprises doped polysilicon. 如申請專利範圍第15項所述之記憶體裝置,其中該導電層與該溝槽之間設有另一阻障層。The memory device of claim 15, wherein another barrier layer is disposed between the conductive layer and the trench. 一種電子裝置的製造方法,包括下列步驟:提供一基板;於該基板中形成一溝槽;於該溝槽中形成一導電層,覆蓋該溝槽的底面和部分側面,該導電層具有鄰接該溝槽側壁的一凹陷;於鄰接該凹陷的部分該基板中形成一擴散區;順應性於該溝槽中形成一阻障層,覆蓋該導電層;以及於該溝槽中形成一導電插塞,填入該凹陷,且覆蓋該擴散區的側壁。A method of manufacturing an electronic device, comprising the steps of: providing a substrate; forming a trench in the substrate; forming a conductive layer in the trench covering a bottom surface and a portion of a side surface of the trench, the conductive layer having the adjacent layer a recess of the sidewall of the trench; a diffusion region is formed in the substrate adjacent to the recess; a barrier layer is formed in the trench to cover the conductive layer; and a conductive plug is formed in the trench Filling the recess and covering the sidewall of the diffusion region. 如申請專利範圍第28項所述之電子裝置的製造方法,其中形成該導電層的步驟之前更包括順應性於該溝槽的側壁和底面上形成一絕緣墊層。The method of manufacturing an electronic device according to claim 28, wherein the step of forming the conductive layer further comprises forming an insulating underlayer on the sidewalls and the bottom surface of the trench. 如申請專利範圍第29項所述之電子裝置的製造方法,其中形成該導電層的步驟更包括:全面性形成一導電材料,並填入該溝槽;以及進行一回蝕刻製程,移除該基板上方和部分位於該溝槽中的導電材料;順應性於該溝槽中形成一硬遮罩結構,其具有一開口,以暴露出部分該導電材料;以及移除未被該硬遮罩結構覆蓋的部分該導電材料,以形成具有該凹陷的該導電層。The method of manufacturing the electronic device of claim 29, wherein the step of forming the conductive layer further comprises: forming a conductive material in a comprehensive manner and filling the trench; and performing an etching process to remove the a conductive material over the substrate and partially located in the trench; compliance forming a hard mask structure in the trench having an opening to expose a portion of the conductive material; and removing the hard mask structure A portion of the conductive material is covered to form the conductive layer having the recess. 如申請專利範圍第30項所述之電子裝置的製造方法,其中形成該擴散區的步驟之前更包括:移除從凹陷暴露出來的該部分該絕緣墊層,以暴露出該溝槽的部分側壁;以及移除該硬遮罩結構。The method of manufacturing the electronic device of claim 30, wherein the step of forming the diffusion region further comprises: removing the portion of the insulating spacer exposed from the recess to expose a portion of the sidewall of the trench ; and remove the hard mask structure. 如申請專利範圍第30項所述之電子裝置的製造方法,其中形成該導電層的步驟之前更包括順應性於該溝槽的側壁和底面上形成另一阻障層。The method of manufacturing an electronic device according to claim 30, wherein the step of forming the conductive layer further comprises forming another barrier layer on the sidewalls and the bottom surface of the trench. 如申請專利範圍第30項所述之電子裝置的製造方法,其中形成該硬遮罩結構的步驟更包括:順應性於該溝槽中形成一下層之第一介電層和一上層之第二介電層;沿一方向對該第二介電層進行一離子植入步驟,以於該第二介電層形成一摻雜區和一非摻雜區;進行一濕蝕刻製程,移除該非摻雜區,直到暴露出部分該第一介電層為止;以及進行一乾蝕刻製程,移除未被蝕刻後的該第二介電層覆蓋的該第一介電層,以形成硬遮罩結構。The method of manufacturing the electronic device of claim 30, wherein the step of forming the hard mask structure further comprises: conforming to the first dielectric layer of the lower layer and the second layer of the upper layer in the trench a dielectric layer; performing an ion implantation step on the second dielectric layer in a direction to form a doped region and an undoped region in the second dielectric layer; performing a wet etching process to remove the non-doped layer Doping the region until a portion of the first dielectric layer is exposed; and performing a dry etching process to remove the first dielectric layer that is not covered by the second dielectric layer to form a hard mask structure . 如申請專利範圍第28項所述之電子裝置的製造方法,其中形成該擴散區的步驟更包括:利用氣相摻雜方式,將含有摻質的一氣體從該溝槽暴露的側壁注入部分該基板中,以形成該擴散區。The method for manufacturing an electronic device according to claim 28, wherein the step of forming the diffusion region further comprises: injecting a gas containing a dopant from a sidewall of the trench exposed by a gas phase doping method; In the substrate, the diffusion region is formed. 如申請專利範圍第28項所述之電子裝置的製造方法,其中形成該擴散區的步驟之前更包括於該溝槽的側壁上形成一擴散源層。The method of manufacturing an electronic device according to claim 28, wherein the step of forming the diffusion region further comprises forming a diffusion source layer on a sidewall of the trench. 如申請專利範圍第35項所述之電子裝置的製造方法,其中該擴散區鄰接該擴散源層。The method of manufacturing an electronic device according to claim 35, wherein the diffusion region is adjacent to the diffusion source layer. 如申請專利範圍第36項所述之電子裝置的製造方法,其中形成該阻障層的步驟之前更包括於該溝槽中形成一矽化物層,且覆蓋該擴散源層的側壁。The method of manufacturing an electronic device according to claim 36, wherein the step of forming the barrier layer further comprises forming a germanide layer in the trench and covering a sidewall of the diffusion source layer. 如申請專利範圍第33項所述之電子裝置的製造方法,其中該第一介電層和該第二介電層為不同的材質。The method of manufacturing an electronic device according to claim 33, wherein the first dielectric layer and the second dielectric layer are made of different materials. 如申請專利範圍第38項所述之電子裝置的製造方法,其中該第一介電層包括氧化層或氮化層,該第二介電層為未摻雜非晶矽。The method of manufacturing an electronic device according to claim 38, wherein the first dielectric layer comprises an oxide layer or a nitride layer, and the second dielectric layer is an undoped amorphous germanium. 如申請專利範圍第28項所述之電子裝置的製造方法,其中該導電插塞包括金屬或多晶矽。The method of manufacturing an electronic device according to claim 28, wherein the conductive plug comprises a metal or a polysilicon. 如申請專利範圍第28項所述之電子裝置的製造方法,其中該導電層為金屬。The method of manufacturing an electronic device according to claim 28, wherein the conductive layer is a metal. 如申請專利範圍第28項所述之電子裝置的製造方法,其中該電子裝置為一動態隨機存取記憶體晶胞的一位元線。The method of manufacturing an electronic device according to claim 28, wherein the electronic device is a one-dimensional line of a dynamic random access memory cell.
TW98137190A 2009-11-03 2009-11-03 Electronic device and fabrication method thereof and memory device TWI418018B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98137190A TWI418018B (en) 2009-11-03 2009-11-03 Electronic device and fabrication method thereof and memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98137190A TWI418018B (en) 2009-11-03 2009-11-03 Electronic device and fabrication method thereof and memory device

Publications (2)

Publication Number Publication Date
TW201117358A TW201117358A (en) 2011-05-16
TWI418018B true TWI418018B (en) 2013-12-01

Family

ID=44935211

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98137190A TWI418018B (en) 2009-11-03 2009-11-03 Electronic device and fabrication method thereof and memory device

Country Status (1)

Country Link
TW (1) TWI418018B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456699B (en) * 2011-06-08 2014-10-11 Winbond Electronics Corp Bit line structure and method for manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012678A (en) * 1998-06-22 2000-01-14 Mitsubishi Electric Corp Structure of semiconductor device and manufacture thereof
TW388877B (en) * 1997-04-23 2000-05-01 Toshiba Corp Semiconductor device and its manufacturing process
TW587305B (en) * 2003-05-30 2004-05-11 Nanya Technology Corp A method for controlling the upper width of a trench
US20050167721A1 (en) * 2004-01-30 2005-08-04 Nanya Technology Corporation Memory cell with a vertical transistor and fabrication method thereof
JP2006186185A (en) * 2004-12-28 2006-07-13 Renesas Technology Corp Semiconductor memory device
TW200644257A (en) * 2005-04-25 2006-12-16 Spansion Llc Self-aligned STI SONOS
JP2007055754A (en) * 2005-08-25 2007-03-08 Toyota Industries Corp Cargo handling control device for industrial vehicle
US7256440B2 (en) * 2002-02-07 2007-08-14 Infineon Technologies Ag Semiconductor memory cell having a trench and a planar selection transistor and method for producing the same
JP2008103689A (en) * 2006-09-22 2008-05-01 Elpida Memory Inc Semiconductor device and method of manufacturing same
US7399673B2 (en) * 2005-07-08 2008-07-15 Infineon Technologies Ag Method of forming a charge-trapping memory device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW388877B (en) * 1997-04-23 2000-05-01 Toshiba Corp Semiconductor device and its manufacturing process
JP2000012678A (en) * 1998-06-22 2000-01-14 Mitsubishi Electric Corp Structure of semiconductor device and manufacture thereof
US7256440B2 (en) * 2002-02-07 2007-08-14 Infineon Technologies Ag Semiconductor memory cell having a trench and a planar selection transistor and method for producing the same
TW587305B (en) * 2003-05-30 2004-05-11 Nanya Technology Corp A method for controlling the upper width of a trench
US20050167721A1 (en) * 2004-01-30 2005-08-04 Nanya Technology Corporation Memory cell with a vertical transistor and fabrication method thereof
JP2006186185A (en) * 2004-12-28 2006-07-13 Renesas Technology Corp Semiconductor memory device
TW200644257A (en) * 2005-04-25 2006-12-16 Spansion Llc Self-aligned STI SONOS
US7399673B2 (en) * 2005-07-08 2008-07-15 Infineon Technologies Ag Method of forming a charge-trapping memory device
JP2007055754A (en) * 2005-08-25 2007-03-08 Toyota Industries Corp Cargo handling control device for industrial vehicle
JP2008103689A (en) * 2006-09-22 2008-05-01 Elpida Memory Inc Semiconductor device and method of manufacturing same

Also Published As

Publication number Publication date
TW201117358A (en) 2011-05-16

Similar Documents

Publication Publication Date Title
KR100660881B1 (en) Semiconductor devices comprising transistors having vertical channel and method of manufacturing the same
US7564084B2 (en) Dual-gate dynamic random access memory device having vertical channel transistors and method of fabricating the same
US7388244B2 (en) Trench metal-insulator-metal (MIM) capacitors and method of fabricating same
CN108257919B (en) Method for forming random dynamic processing memory element
US7750388B2 (en) Trench metal-insulator metal (MIM) capacitors
US9153654B2 (en) Semiconductor device with buried bit line and method for fabricating the same
TW201740510A (en) Semiconductor memory device having coplanar digit line contacts and storage node contacts in memory array and method for fabricating the same
US20150111360A1 (en) Method of manufacturing a semiconductor device
TWI517222B (en) Method for fabricating transistor gate and semiconductor device comprising transistor gate
US6853025B2 (en) Trench capacitor with buried strap
TWI402972B (en) Buried bit line process and scheme
US9960168B2 (en) Capacitor strap connection structure and fabrication method
US20110121388A1 (en) Semiconductor device and method for fabricating the same
US9768176B2 (en) Semiconductor device and method for forming the same
US8518772B2 (en) Fabricating method of semiconductor device
TWI418018B (en) Electronic device and fabrication method thereof and memory device
WO2022077940A1 (en) Semiconductor device and manufacturing method therefor
EP0905783B1 (en) Vertical transistor implemented in a memory cell comprising a trench capacitor
CN110875391A (en) Transistor, forming method thereof and integrated circuit memory
TWI469299B (en) Buried bit line process and scheme
KR20210032906A (en) Semiconductor device
KR100944356B1 (en) Semiconductor device and method of fabricating the same
TWI452677B (en) Buried bit line process and scheme
TWI425521B (en) Method of forming bit line
US8866261B2 (en) Self-aligned silicide bottom plate for eDRAM applications by self-diffusing metal in CVD/ALD metal process