TWI415316B - Memory cell access device having a pn-junction with polycrystalline and single-crystal semiconductor regions - Google Patents

Memory cell access device having a pn-junction with polycrystalline and single-crystal semiconductor regions Download PDF

Info

Publication number
TWI415316B
TWI415316B TW98114099A TW98114099A TWI415316B TW I415316 B TWI415316 B TW I415316B TW 98114099 A TW98114099 A TW 98114099A TW 98114099 A TW98114099 A TW 98114099A TW I415316 B TWI415316 B TW I415316B
Authority
TW
Taiwan
Prior art keywords
doped
region
doped semiconductor
semiconductor
semiconductor region
Prior art date
Application number
TW98114099A
Other languages
Chinese (zh)
Other versions
TW201019516A (en
Inventor
Hsiang Lan Lung
Erh Kun Lai
Yen Hao Shih
Yi Chou Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/267,453 external-priority patent/US8907316B2/en
Priority claimed from US12/267,492 external-priority patent/US8664689B2/en
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW201019516A publication Critical patent/TW201019516A/en
Application granted granted Critical
Publication of TWI415316B publication Critical patent/TWI415316B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A memory device includes a driver comprising a PN-junction in the form of a multilayer stake including a first doped semiconductor region having a first conductivity type, and a second doped semiconductor region having a second conductivity type opposite the first conductivity type, the first and second doped semiconductors defining a PN-junction therebetween, in which the first doped semiconductor region is formed in a single crystalline semiconductor, and the second doped semiconductor region includes a polycrystalline semiconductor. Also, a method for making a memory device includes forming a first doped semiconductor region of a first conductivity type in a single-crystal semiconductor, such as on a semiconductor wafer; and forming a second doped polycrystalline semiconductor region of a second conductivity type opposite the first conductivity type, defining a PN-junction between the first and second region.

Description

一記憶胞存取裝置具有多晶及單晶半導體區域的PN接面A memory cell access device has a PN junction of polycrystalline and single crystal semiconductor regions

本發明係有關於使用相變化記憶材料,像是硫屬化物與其他可程式化電阻材料之高密度記憶裝置,以及製造此等裝置的製造方法。The present invention relates to high density memory devices using phase change memory materials, such as chalcogenides and other programmable resistive materials, and methods of making such devices.

如硫屬化物及類似材料之此等相變化記憶材料,可藉由施加幅度可適用於積體電路中之電流,而致使晶相在非晶態與結晶態之間變化。一般而言非晶態之特徵係其電阻高於結晶態,此電阻值可輕易感測到而用以指示資料狀態。這種特性則引發使用可程式化電阻材料以形成非揮發性記憶體電路等興趣,其可以被隨機地存取讀寫。Such phase change memory materials, such as chalcogenides and the like, can be applied to the current in the integrated circuit by applying an amplitude such that the crystalline phase changes between an amorphous state and a crystalline state. In general, the amorphous state is characterized by a higher electrical resistance than the crystalline state, and this resistance value can be easily sensed to indicate the state of the data. This characteristic leads to the interest of using a programmable resistive material to form a non-volatile memory circuit that can be accessed and read at random.

從非晶態轉變至結晶態一般係為一低電流步驟。從結晶態轉變至非晶態(以下指稱為重置(reset))一般係為一高電流步驟,其包括一短暫的高電流密度脈衝以融化或破壞結晶結構,其後此相變化材料會快速冷卻,抑制相變化的過程,使得至少部份相變化結構得以維持在非晶態。重置所需的電流幅度可藉由降低該記憶胞中該相變化記憶元件的大小,及/或在電極及該相變化材料間的接點區域來降低,如此可以在較小絕對電流值通過該相變化材料元件的情況下而達到較高的電流密度。The transition from amorphous to crystalline is generally a low current step. The transition from a crystalline state to an amorphous state (hereinafter referred to as a reset) is generally a high current step that includes a brief high current density pulse to melt or destroy the crystalline structure, after which the phase change material is rapidly Cooling suppresses the phase change process such that at least a portion of the phase change structure is maintained in an amorphous state. The magnitude of the current required for resetting can be reduced by reducing the size of the phase change memory element in the memory cell and/or the contact area between the electrode and the phase change material, so that it can pass at a smaller absolute current value. In the case of this phase change material element, a higher current density is achieved.

由於該相變化的發生是由加熱所導致,因此需要一相對較大的電流來加熱該相變化材料並引發所需的相變化。場效電晶體存取裝置被提出用做相變化記憶胞的驅動器,但是場效電晶體(例如:MOSFET)係較弱的電流驅動器。雙極接面電晶體(BJT)比起場效電晶體可以提供較大的電流驅動能力,但是在整合雙極接面電晶體與CMOS周邊電路上有著其困難性並具有高度複雜的設計和製程上的問題。Since the occurrence of this phase change is caused by heating, a relatively large current is required to heat the phase change material and initiate the desired phase change. Field effect transistor access devices have been proposed as drivers for phase change memory cells, but field effect transistors (eg, MOSFETs) are weaker current drivers. Bipolar junction transistors (BJT) provide greater current drive capability than field-effect transistors, but have difficulties in integrating bipolar junction transistors and CMOS peripheral circuits and have highly complex designs and processes. The problem.

二極體存取裝置已被提出做為相變化記憶胞的驅動器。然而,使用摻雜多矽晶所形成之二極體兩端或許會具有難以接受的較高關閉狀態電流。而使用摻雜單矽晶所形成之二極體兩端或許可提供一較適當的較低關閉狀態電流,但是要製造具有摻雜的單晶矽所形成之二極體的兩端區域係相當複雜。已有提出在二極體結構上包含在一終端為多晶矽而並一終端為單晶矽。可參見美國專利第7,309,921號專利。然而,這樣的結構並無完全解決由多晶矽終端的較高關閉狀態電流的問題,亦無被提出做為記憶胞存取裝置之用。可參見美國專利第7,157,314號專利。A diode access device has been proposed as a driver for phase change memory cells. However, the ends of the diode formed using doped multi-twist may have an unacceptably high off-state current. The use of doped single crystals formed at both ends of the diode may permit a relatively suitable lower off-state current, but the ends of the diode formed by the doped single crystal germanium are equivalent. complex. It has been proposed to include a polycrystalline germanium in a terminal structure and a single crystal germanium in a terminal structure. See U.S. Patent No. 7,309,921. However, such a structure does not completely solve the problem of higher off-state current from the polysilicon terminal, nor is it proposed as a memory cell access device. See U.S. Patent No. 7,157,314.

因此,需要提供一種可靠的存取裝置,其在程式化相變化記憶胞時可提供充足電流,同時具有一合適地低關閉狀態電流,並且在可接受的製造成本以及相容於高效邏輯電路。Accordingly, it is desirable to provide a reliable access device that provides sufficient current when stylizing phase-changing memory cells while having a suitably low off-state current, and is at an acceptable manufacturing cost and compatible with high efficiency logic circuitry.

本發明揭露一種記憶裝置包含一存取裝置,其具有一PN接面,該PN接面係以包含一第一導電類型之一第一摻雜半導體區域,以及不同於該第一導電類型的一第二導電類型之一第二摻雜半導體區域,該第一摻雜半導體和該第二摻雜半導體之間定義一PN接面,其中該第一摻雜半導體區域係以一單晶半導體所形成,以及該第二摻雜半導體區域包含一多晶半導體。在本發明一實施例中中,該多晶矽區域的摻雜濃度高於該電晶區域的摻雜濃度。該第二摻雜半導體區域係以在一介層孔內之栓塞並穿透一絕緣層的方式來實施,或先圖案化一圖案化的半導體,再覆蓋一絕緣層。The present invention discloses a memory device including an access device having a PN junction, the PN junction being a first doped semiconductor region comprising a first conductivity type, and a different from the first conductivity type a second doped semiconductor region of a second conductivity type, a PN junction defined between the first doped semiconductor and the second doped semiconductor, wherein the first doped semiconductor region is formed by a single crystal semiconductor And the second doped semiconductor region comprises a polycrystalline semiconductor. In an embodiment of the invention, the doping concentration of the polysilicon region is higher than the doping concentration of the transistor region. The second doped semiconductor region is implemented by embedding in a via hole and penetrating an insulating layer, or patterning a patterned semiconductor and then covering an insulating layer.

在一些實施例中,該第一摻雜半導體區域包含一淡摻雜P-型半導體,以及該第二摻雜半導體區域包含一較濃摻雜N-型多晶半導體區域,且其具有一摻雜濃度高於該淡摻雜P-型半導體的摻雜濃度;在其他實施例中,該第一摻雜半導體區域包含一淡摻雜N-型半導體,以及該第二摻雜半導體區域包含一較濃摻雜P-型多晶半導體區域。在該多晶矽的該濃摻雜半導體區域具有一摻雜濃度高於該單晶半導體的該淡摻雜半導體區域的濃度,使得該電性接面為在該單晶半導體內當該接面係為關閉時,因而大大減少該二極體的關閉狀態電流。該濃摻雜多晶半導體區域可具有一摻雜濃度,其係在該淡摻雜單晶半導體區域之摻雜濃度(atom/cm3 )的10倍以上,而更佳為大於100倍至1000倍。舉例來說,該濃摻雜半導體區域大約在10+17 至10+19 /cm3 的摻雜濃度,而該淡摻雜半導體區域具有一摻雜濃度在10+14 /cm3 至10+16 /cm3 之間。In some embodiments, the first doped semiconductor region comprises a lightly doped P-type semiconductor, and the second doped semiconductor region comprises a more heavily doped N-type polycrystalline semiconductor region and has a doped The impurity concentration is higher than the doping concentration of the lightly doped P-type semiconductor; in other embodiments, the first doped semiconductor region comprises a lightly doped N-type semiconductor, and the second doped semiconductor region comprises a A more heavily doped P-type polycrystalline semiconductor region. The concentrated doped semiconductor region of the polysilicon has a doping concentration higher than a concentration of the lightly doped semiconductor region of the single crystal semiconductor such that the electrical junction is within the single crystal semiconductor when the junction is When turned off, the off-state current of the diode is thus greatly reduced. The concentrated doped polycrystalline semiconductor region may have a doping concentration which is more than 10 times the doping concentration (atom/cm 3 ) of the lightly doped single crystal semiconductor region, and more preferably greater than 100 times to 1000 Times. For example, the heavily doped semiconductor region has a doping concentration of about 10 +17 to 10 +19 /cm 3 , and the lightly doped semiconductor region has a doping concentration of 10 +14 /cm 3 to 10 +16 Between /cm 3 .

在一些實施例中,該單晶半導體係一單晶矽;在一些實施例中,該多晶半導體係一多晶矽。In some embodiments, the single crystal semiconductor is a single crystal germanium; in some embodiments, the polycrystalline semiconductor is a polycrystalline germanium.

在一些實施例中,更包含一電性導電覆蓋層在該第二摻雜半導體區域之上,以及在一些此等實施例中,該覆蓋層包含一金屬矽化物。In some embodiments, an electrically conductive cap layer is further included over the second doped semiconductor region, and in some such embodiments, the cap layer comprises a metal telluride.

在一些實施例中,該第二摻雜半導體區域係自動對準於該第一摻雜半導體區域;在一些實施例中,該第二摻雜半導體區域係形成一圓柱在該第一摻雜半導體區域之上。In some embodiments, the second doped semiconductor region is automatically aligned with the first doped semiconductor region; in some embodiments, the second doped semiconductor region forms a cylinder at the first doped semiconductor Above the area.

在一些實施例中,該記憶裝置更包含一相變化記憶元件耦接於該第二摻雜半導體區域。In some embodiments, the memory device further includes a phase change memory element coupled to the second doped semiconductor region.

另一方面,本發明揭露一記憶裝置包含第一存取線在一第一方向上延伸,以及第二存取線覆蓋該第一存取線並在一第二方向上延伸,以及複數個記憶胞,每一記憶胞包含一存取裝置及一記憶材料。該存取裝置包括第一摻雜半導體區域和第二摻雜半導體區域之間定義出一PN接面,該第一摻雜半導體區域具有該第一導電類型其中形成該第一摻雜半導體區域在一單晶半導體基板,且其中形成該第一摻雜半導體區域在一摻雜半導體第一存取線,以及該第一摻雜半導體區域係電性接面一對應的第一存取線。一第二摻雜半導體區域具有不同於該第一導電類型之一第二導電類型,第二摻雜半導體區域該包含一多晶半導體。該記憶材料與一對應的第二存取線電性接面。在一些實施例中。該記憶材料係一相變化記憶材料。In another aspect, the present invention discloses a memory device including a first access line extending in a first direction, and a second access line covering the first access line and extending in a second direction, and a plurality of memories Each cell contains an access device and a memory material. The access device includes a PN junction defined between the first doped semiconductor region and the second doped semiconductor region, the first doped semiconductor region having the first conductivity type in which the first doped semiconductor region is formed a single crystal semiconductor substrate, wherein the first doped semiconductor region is formed on a doped semiconductor first access line, and the first doped semiconductor region is electrically connected to a first access line. A second doped semiconductor region has a second conductivity type different from the first conductivity type, and the second doped semiconductor region includes a polycrystalline semiconductor. The memory material is electrically connected to a corresponding second access line. In some embodiments. The memory material is a phase change memory material.

在一些實施例中。該存取裝置更包含一電性導電覆蓋層在該第二摻雜半導體區域之上,以及在一些實施例中,該電性導電覆蓋層包含一金屬矽化物。該記憶胞可更包含一底電極接觸該電性導電覆蓋層,在此實施例中,該記憶材料接觸該底電極。該底電極在某些實施例中可以省略,像是使用一孔洞型記憶胞具有一孔洞開口至該覆蓋層,填充可程式化電阻材料。在其他實施例中,該記憶材料接觸該第二半導體區域。In some embodiments. The access device further includes an electrically conductive cap layer over the second doped semiconductor region, and in some embodiments, the electrically conductive cap layer comprises a metal telluride. The memory cell may further comprise a bottom electrode contacting the electrically conductive cover layer, in this embodiment the memory material contacts the bottom electrode. The bottom electrode can be omitted in some embodiments, such as using a hole-type memory cell having a hole opening to the cover layer to fill the programmable resistive material. In other embodiments, the memory material contacts the second semiconductor region.

在一些實施例中,該二極體更包含一薄阻障層並可以位於該PN接面。該阻障層可阻止摻雜物擴散通過該PN接面,並可強化該二極體的效能,在操作該裝置上沒有阻礙該開啟狀態電流。In some embodiments, the diode further includes a thin barrier layer and can be located on the PN junction. The barrier layer prevents dopants from diffusing through the PN junction and enhances the effectiveness of the diode without obstructing the on-state current during operation of the device.

在一些實施例中,該記憶胞更包含一頂電極,以及在本實施例中該記憶材料接觸該頂電極。在一些實施例中該頂電極構成該第一存取線。In some embodiments, the memory cell further comprises a top electrode, and in the present embodiment the memory material contacts the top electrode. In some embodiments the top electrode constitutes the first access line.

本發明另一方面揭露一種製造一記憶胞二極體驅動器的方法包含:提供一單晶半導體區域具有一第一導電類型;形成一第二導電類型(例如:N-井)一導電摻區域在該半導體基板的該上區域,其係適合用來做為一存取線;形成第一導電類型的一淡摻雜區域(在此淡摻雜係用來與下述的多晶材料的摻雜濃度相比較)在內且附近於該導電摻雜區域的該上表面;形成隔離溝槽定義出具有一露出表面的一頂二極體區域條;沈積一第二介電材料在該底二極體區域條的上方;形成一接面介層孔(或接觸開口)穿透該第二介電材料已露出該淡摻雜區域的一塊區域在該底二極體區域條的表面上;並形成該第二導電類型之一較濃摻雜多晶材料在該接觸開口內,該較濃摻雜多晶材料接觸該淡摻雜區域的該區域。可以沈積該多晶材料在該接觸開口內然後摻雜;或可以合適的摻雜方式來沈積該多晶材料。Another aspect of the invention discloses a method of fabricating a memory cell driver comprising: providing a single crystal semiconductor region having a first conductivity type; forming a second conductivity type (eg, N-well) with a conductive doped region The upper region of the semiconductor substrate is suitable for use as an access line; forming a lightly doped region of the first conductivity type (where the lightly doped system is used for doping with polycrystalline materials described below) The concentration is compared to the inner surface of the conductive doped region at and near; the isolation trench is defined to define a top diode region strip having an exposed surface; and a second dielectric material is deposited at the bottom diode Above the body region strip; forming a junction via hole (or contact opening) penetrating the second dielectric material to expose a region of the lightly doped region on the surface of the bottom diode region strip; and forming One of the second conductivity types is a more heavily doped polycrystalline material within the contact opening, the more heavily doped polycrystalline material contacting the region of the lightly doped region. The polycrystalline material may be deposited within the contact opening and then doped; or the polycrystalline material may be deposited in a suitable doping manner.

該半導體晶圓可以建構該單晶半導體區域;或形成一附-長晶單晶半導體層在該晶圓上一絕緣層之上可以建構出該單晶半導體區域。The semiconductor wafer may be constructed with the single crystal semiconductor region; or an epitaxial-single crystal single crystal semiconductor layer may be formed over the insulating layer on the wafer to form the single crystal semiconductor region.

在一些實施例中,該方法更包含形成一電性導電覆蓋層在該濃摻雜多晶材料的表面上。In some embodiments, the method further includes forming an electrically conductive cap layer on the surface of the concentrated doped polycrystalline material.

本發明另一方面揭露一種用來製造一記憶胞二極體驅動器的方法,包含:提供一單晶矽半導體基板具有一第一導電類型;形成一第二導電類型的導電摻雜區域在該半導體基板之一上表面;形成該第二導電類型的一淡摻雜區域在該淡摻雜區域在該導電摻雜區域的一上表面內或附近,該淡摻雜多晶矽材料具有低於該導電摻雜區域之摻雜濃度的一摻雜濃度;形成溝槽隔離以定義一底接面驅動器區域條具有一露出表面;沈積該第二導電類型之一較濃摻雜多晶材料在該較濃摻雜多晶材料的表面上;沈積一電性導電覆蓋材料在該濃摻雜多晶材料的表面上;圖案化該覆蓋材料及該較濃摻雜多晶材料以形成一頂接面元件在該淡摻雜區域上位在該底接面區域條的表面;沈積一第二介電材料在該第一介電材料的表面和該底接面區域條和該頂二極體元件上;以及平坦化該第二介電材料且露出該頂接面元件的表面之一區域。Another aspect of the invention discloses a method for fabricating a memory cell driver, comprising: providing a single crystal germanium semiconductor substrate having a first conductivity type; forming a second conductivity type conductive doped region in the semiconductor An upper surface of the substrate; forming a lightly doped region of the second conductivity type in the lightly doped region in or near an upper surface of the conductive doped region, the lightly doped polysilicon material having a lower than the conductive dopant a doping concentration of the doping concentration of the impurity region; forming trench isolation to define an underlying driver region strip having an exposed surface; depositing one of the second conductivity types to concentrate the polycrystalline material in the dense blend On the surface of the heteropolycrystalline material; depositing an electrically conductive covering material on the surface of the concentrated doped polycrystalline material; patterning the covering material and the densely doped polycrystalline material to form a top surface component a lightly doped region on a surface of the bottom junction region strip; a second dielectric material deposited on the surface of the first dielectric material and the bottom junction region strip and the top diode element; and planarization The Two dielectric material and one of the exposed surface area of the top surface of the element.

本發明另一方面揭露一種用來製造一記憶胞二極體驅動器的方法,包含:提供一單晶矽半導體基板具有一第一導電類型;形成該第一導電類型的一淡摻雜區域鄰近於該基板之一上表面;沈積該第二導電類型的一較濃摻雜多晶矽材料在該淡摻雜區域的一表面上,形成溝槽隔離以定義具有一露出表面的一二極體驅動條;圖案化該較濃摻雜多晶材料於另一方向,以隔離出一第二接面元件並露出鄰近該第一導電類型的淡摻雜區域;形成一間隔物鄰近於該第二接面元件的側壁;形成一電性導電覆蓋材料在該第二接面元件之上;實施該第一導電類型的一佈植步驟於該露出的該第一導電類型之淡摻雜區域,使其更濃摻雜;沈積一第二介電材料在該第一介電材料之表面和該第二二極體元件之上。Another aspect of the invention discloses a method for fabricating a memory cell driver, comprising: providing a single crystal germanium semiconductor substrate having a first conductivity type; forming a lightly doped region of the first conductivity type adjacent to An upper surface of the substrate; depositing a densely doped polysilicon material of the second conductivity type on a surface of the lightly doped region to form trench isolation to define a diode driving strip having an exposed surface; Patterning the more heavily doped polycrystalline material in another direction to isolate a second junction element and expose a lightly doped region adjacent the first conductivity type; forming a spacer adjacent to the second junction component Forming an electrically conductive covering material over the second junction member; performing an implantation step of the first conductivity type on the exposed lightly doped region of the first conductivity type to make it thicker Doping; depositing a second dielectric material over the surface of the first dielectric material and the second diode component.

在一些方法的實施例,在沈積該多晶半導體材料之前,形成一阻障材料薄層(例如:SiO2 或SiNx Oy )具有第一導電類型的該淡摻雜區域上;使得可提供一薄阻障層在該PN接面上。該阻障層可以抑制摻雜物的擴散通過該PN接面,並可強化該二極體的效能。In some embodiments of the method, a thin layer of barrier material (eg, SiO 2 or SiN x O y ) is formed on the lightly doped region of the first conductivity type prior to depositing the polycrystalline semiconductor material; A thin barrier layer is on the PN junction. The barrier layer can inhibit diffusion of dopants through the PN junction and can enhance the performance of the diode.

記憶陣列和周邊裝置一起形成具有一些優點。像是多晶材料的沈積可建構出該二極體陣列的該多晶半導體節點和在該周邊裝置的FET閘極。基本上,摻雜該記憶陣列區域之該晶體半導體材料;形成溝槽隔離;在該記憶陣列區域和該周邊裝置區域上長出一氧化物;圖案化該氧化物以形成該周邊裝置的閘極氧化物並由該記憶陣列移除該氧化物;以及沈積多晶材料並圖案化該周邊裝置區域以形成閘極以及圖案化該陣列區域以形成多晶矽、該存取裝置的較濃摻雜元件。接著,形成一界層間介電層,以及在該周邊裝置區域和該記憶陣列區域之間形成開口。該開口填充導電接觸栓塞材料像是鎢在該周邊裝置區域中,而完成記憶陣列記憶胞的元件。因此一個單獨的多晶矽製程可以同時使用在陣列中的該較濃摻雜多晶元件和周邊多晶矽結構兩者。可以節省製程上的實質開銷。在此實施例中,該裝置的周邊電路區域之電晶體閘極結構和該驅動器的該較濃摻雜多晶矽元件包含在一單獨多晶矽層的個別的特徵。Forming the memory array together with peripheral devices has several advantages. Deposition of a polycrystalline material, such as a polycrystalline semiconductor node of the diode array and a FET gate at the peripheral device. Basically, doping the crystalline semiconductor material of the memory array region; forming trench isolation; growing an oxide over the memory array region and the peripheral device region; patterning the oxide to form a gate of the peripheral device And removing the oxide from the memory array; and depositing the polycrystalline material and patterning the peripheral device region to form a gate and patterning the array region to form a polysilicon, a denser doped component of the access device. Next, an inter-layer dielectric layer is formed, and an opening is formed between the peripheral device region and the memory array region. The opening fills the conductive contact plug material like tungsten in the peripheral device region to complete the elements of the memory array memory cell. Thus a single polysilicon process can use both the more heavily doped polycrystalline element and the peripheral polycrystalline structure in the array. It can save substantial costs on the process. In this embodiment, the transistor gate structure of the peripheral circuit region of the device and the more heavily doped polysilicon device of the driver comprise individual features of a single polysilicon layer.

跟多晶材料形成具有兩個區域的二極體比較起來,形成單晶體半導體材料的該第一二極體區域可提供一記憶胞具有明顯的降低關閉電流或漏電流。依據所揭露的實施例,該第一二極體區域可以形成在該晶體半導體晶圓上,以及在該晶圓表面上定義出該PN接面。其無需蝕刻該晶圓來形成該PN接面。形成該多晶半導體材料的該第二二極體區域,而不是使用單晶半導體材料,可以簡化製程係因為一避免掉一般形成單晶材料之一附-長晶步驟。In contrast to forming a diode having two regions with a polycrystalline material, the first diode region forming a single crystalline semiconductor material can provide a memory cell with a significant reduction in turn-off current or leakage current. In accordance with the disclosed embodiments, the first diode region can be formed on the crystalline semiconductor wafer and the PN junction can be defined on the wafer surface. It does not need to etch the wafer to form the PN junction. By forming the second diode region of the polycrystalline semiconductor material, rather than using a single crystal semiconductor material, the process system can be simplified because one of the epitaxial steps of forming a single crystal material is avoided.

本發明之下述實施參考圖式一般將參照特定結構實施例及方法。該等圖式係圖像化繪示該等實施例的特徵和與其他特徵結構的關係,其並非實際結構的尺寸。為了增加表達上的清楚起見,在各圖式中繪示各種的實施例,其各圖式元件之間的對應並沒有特定的重新編號,雖然他們在各圖式間係為可辨別的。同時為了更清楚的表達目的,對於瞭解本發明目的上非為必要的某些特徵,則未標示在圖式中。將為吾人所了解的本發明創作並未受限於其詳細描述內容特別是對於所揭露的實施例及方法,同時本發明亦可使用其他特徵、元件、方法、和實施例來實施。本發明所述之較佳實施例並不侷限其範圍,而由申請專利範圍中定義。熟習此項技藝之人士亦可了解本發明實施方式中的各種等同變化。The following implementation of the present invention with reference to the drawings generally refers to specific structural embodiments and methods. The drawings depict the features of the embodiments and the relationship to other features, which are not the dimensions of the actual structure. For the sake of clarity of expression, various embodiments are illustrated in the various figures, and the correspondence between the various elements of the drawings is not specifically renumbered, although they are distinguishable between the various figures. At the same time, for the purpose of clearer expression, certain features that are not necessary for understanding the purpose of the present invention are not indicated in the drawings. The invention is not limited by the detailed description of the invention, and the embodiments and methods disclosed herein may be practiced with other features, elements, methods, and embodiments. The preferred embodiments of the invention are not limited in scope, but are defined by the scope of the claims. Those skilled in the art will also appreciate various equivalent variations in the embodiments of the invention.

第1圖係表示本發明所描述使用記憶裝置及二極體存取裝置之的一記憶陣列100的一部份之簡示圖。替代地,存取裝置除了二極體,亦包含可使用像是雙極電晶體的PN接面。該記憶陣列100之每一記憶胞包含一二極體存取裝置及一記憶體元件(以第1圖中之可變電阻器表示),記憶體元件可設定至複數個電阻狀態之一,及因而可儲存一或多個位元之資料。1 is a simplified pictorial representation of a portion of a memory array 100 using a memory device and a diode access device as described herein. Alternatively, the access device, in addition to the diode, also includes a PN junction that can be used as a bipolar transistor. Each memory cell of the memory array 100 includes a diode access device and a memory component (represented by the variable resistor in FIG. 1), and the memory component can be set to one of a plurality of resistance states, and Thus, one or more bits of data can be stored.

該記憶陣列100包含複數條字元線130包含與第一方向平行延伸之字元線130a、130b及130c,及複數條位元線120包含與第二方向平行延伸之位元線120a、120b及120c,其中該第二方向係與第一方向垂直。該字元線130及該位元線120係以一給定字元線130及一給定位元線120彼此橫跨而非實際上交叉的方式配置。The memory array 100 includes a plurality of word lines 130 including word lines 130a, 130b, and 130c extending in parallel with the first direction, and a plurality of bit lines 120 including bit lines 120a, 120b extending in parallel with the second direction. 120c, wherein the second direction is perpendicular to the first direction. The word line 130 and the bit line 120 are arranged in such a manner that a given word line 130 and a given bit line 120 straddle each other instead of actually intersecting each other.

記憶胞115係代表記憶陣列100之記憶胞。該記憶胞115包含一二極體存取裝置121及串聯配置之記憶體元件160;該二極體存取裝置121電性耦接至字元線130b,及記憶體元件160電性耦接至位元線120b(反之亦然)。The memory cell 115 represents the memory cell of the memory array 100. The memory cell 115 includes a diode access device 121 and a memory device 160 arranged in series; the diode access device 121 is electrically coupled to the word line 130b, and the memory device 160 is electrically coupled to the memory device 160. Bit line 120b (and vice versa).

記憶陣列100之記憶胞115的讀取與寫入,可藉由施加適當電壓及/或電流至對應字元線130b與位元線120b以誘發通過選取之記憶胞115的電流而達成。所施加電壓與電流的大小階級及持續時間係視進行之操作而定,該操作例如是讀取操作或寫入操作。The reading and writing of the memory cells 115 of the memory array 100 can be achieved by applying appropriate voltages and/or currents to the corresponding word lines 130b and bit lines 120b to induce current through the selected memory cells 115. The magnitude and duration of the applied voltage and current depend on the operation being performed, such as a read operation or a write operation.

於具有包含相變化材料之記憶體元件160的記憶胞115之重置(或抹除)操作中,施加一重置脈衝至對應字元線130b及位元線120b,以引起相變化材料的主動區域轉變成非晶態,藉以設定與重置狀態相關的電阻值範圍內之電阻。重置脈衝係一相當高的能量脈衝,足以使至少記憶體元件160之主動區域溫度升高至相變化材料之轉變(結晶)溫度之上,及至熔化溫度之上以使至少主動區域為液態。接著,重置脈衝快速終止,導致一相當快的冷卻時間,使主動區域快速冷卻至轉變溫度以下,以致於主動區域可穩定化至一非晶態。In a reset (or erase) operation of the memory cell 115 having the memory component 160 including the phase change material, a reset pulse is applied to the corresponding word line 130b and the bit line 120b to cause the phase change material to be active. The region is converted to an amorphous state by which the resistance within the range of resistance values associated with the reset state is set. The reset pulse is a relatively high energy pulse sufficient to raise at least the active region temperature of the memory element 160 above the transition (crystallization) temperature of the phase change material and above the melting temperature such that at least the active region is liquid. Then, the reset pulse is quickly terminated, resulting in a relatively fast cooling time, allowing the active region to rapidly cool below the transition temperature so that the active region can be stabilized to an amorphous state.

於具有包含相變化材料之記憶體元件160的記憶胞115之設定(或程式化)操作中,施加一適當大小階級及持續時間之程式化脈衝至對應字元線130b及位元線120b,足以使至少一部份主動區域之溫度升高至轉變溫度之上,及引起一部份主動區域自非晶態轉變至結晶態之轉換,此轉換可降低記憶體元件160之電阻,及設定記憶胞115至一所欲的狀態。In a set (or stylized) operation of the memory cell 115 having the memory element 160 including the phase change material, applying a stylized pulse of appropriate size and duration to the corresponding word line 130b and bit line 120b is sufficient Increasing the temperature of at least a portion of the active region above the transition temperature and causing a transition of a portion of the active region from an amorphous state to a crystalline state, the conversion reducing the resistance of the memory device 160 and setting the memory cell 115 to a desired state.

於儲存在具有包含相變化材料之記憶體元件160的記憶胞115中的資料值之一讀取(或感測)操作中,施加一適當大小階級及持續時間之讀取脈衝至對應字元線130b及位元線120b,以誘發電流流過,其不會使記憶體元件160進行電阻狀態之變化。該流過記憶胞115之電流係視記憶體元件之電阻即儲存在記憶胞115中的資料值而定。Applying a suitable size and duration read pulse to the corresponding word line for one of the data values stored in the memory cell 115 having the memory element 160 including the phase change material 160 (or sensing) operation 130b and bit line 120b induce current to flow, which does not cause memory element 160 to change in resistance state. The current flowing through the memory cell 115 depends on the resistance of the memory element, that is, the value of the data stored in the memory cell 115.

第2A圖及第2B圖顯示一記憶胞陣列100一部份之一實施例,其中該二極體的該第二多矽晶區域具有一島的形狀,如剖視圖所繪示。第2A圖係沿著一位元線120的一方向,以及第2B圖係沿著一字元線130的一方向。第2C圖繪示本發明所述形成PN接面的一種形式,其係具有一空乏區域係大部分位於具有一較低摻雜濃度的的晶體區域。這種形式在該關閉狀態時會具有較小漏電流的一二極體,其可以改善記憶體的操作。請先參閱第2C圖,其係使用與第2A圖和第2B圖相同的參考標號,所繪示的一二極體包含一使用多晶矽佈植之較濃摻雜N+區域216,以及一使用單晶矽佈植之較淡摻雜P-區域214。在該較濃摻雜N+區域216和該較淡摻雜P-區域214之間一物理邊界215定義出該PN接面。該PN接面的寬度Wj 係該空乏區域215-N及空乏區域215-P的總和,在圖是中其各自的寬度標示為WN 跟WP ,而WP 係遠大於WN 。空乏區域WN 和WP 的寬度在零偏壓下係與各自的摻雜濃度成反比,如以下已知的電荷儲存方程式:2A and 2B show an embodiment of a portion of a memory cell array 100 in which the second multi-crystal region of the diode has the shape of an island, as depicted in cross-section. 2A is a direction along a bit line 120, and 2B is a direction along a word line 130. Figure 2C illustrates a form of forming a PN junction of the present invention having a depleted region mostly located in a crystalline region having a lower doping concentration. This form will have a smaller leakage current in the off state, which can improve the operation of the memory. Please refer to FIG. 2C, which uses the same reference numerals as in FIGS. 2A and 2B, and the illustrated diode includes a dense doped N+ region 216 implanted with polysilicon, and a use list. The lighter doped P-region 214 is deposited by the wafer. A physical boundary 215 is defined between the densely doped N+ region 216 and the lighter doped P-region 214 to define the PN junction. The width W j of the PN junction is the sum of the depletion region 215-N and the depletion region 215-P. In the figure, their respective widths are denoted as W N and W P , and the W P system is much larger than W N . The widths of the depletion regions W N and W P are inversely proportional to the respective doping concentrations at zero bias, as is known below for the charge storage equation:

qNA WP =qND WN qN A W P =qN D W N

其中q係電荷,NA係受體的濃度(p-型摻雜),以及ND係施體的濃度(n-型摻雜),而ND係遠大於NA,在該p-型材料上的該空乏區域係遠大於n-型材料上的該空乏區域。Where q is the charge, the concentration of the NA receptor (p-type doping), and the concentration of the ND system (n-type doping), while the ND system is much larger than NA, on the p-type material The depletion region is much larger than the depletion region on the n-type material.

故,在實施例中在較濃摻雜N+區域216的N-型摻雜的濃度係比較淡摻雜P-區域214的P-型摻雜濃度來的高上100倍以上,WP 的寬度也會比WN 的寬度大上100倍以上。而由該空乏區域所定義的PN接面之大部份係存在於該二極體的該晶體部位214,基本上該關閉電流特性主要係由該晶體部位214之行為所決定。該濃摻雜多晶半導體區域或許可具有一摻雜濃度為該淡摻雜單晶半導體區域之摻雜濃度的10倍以上,而更佳為大於100倍至1000倍。舉例來說,該濃摻雜半導體區域大約在10+17 至10+19 /cm3 的摻雜濃度,而該淡摻雜半導體區域具有一摻雜濃度在10+14 /cm3 至10+16 /cm3 之間。Therefore, in the embodiment, the concentration of the N-type doping in the densely doped N+ region 216 is more than 100 times higher than the P-type doping concentration of the lightly doped P-region 214, and the width of the W P is wider. It will also be more than 100 times larger than the width of W N . The majority of the PN junction defined by the depletion region is present in the crystal portion 214 of the diode, and substantially the off current characteristic is primarily determined by the behavior of the crystal portion 214. The concentrated doped polycrystalline semiconductor region may be allowed to have a doping concentration of more than 10 times the doping concentration of the lightly doped single crystal semiconductor region, and more preferably greater than 100 times to 1000 times. For example, the heavily doped semiconductor region has a doping concentration of about 10 +17 to 10 +19 /cm 3 , and the lightly doped semiconductor region has a doping concentration of 10 +14 /cm 3 to 10 +16 Between /cm 3 .

第2C圖亦繪示該晶體區域214係具有一界面之一單晶體,在其上方形成該PN接面,並且與一較濃摻雜存取線212集成,其在第2A圖及第2B圖更清楚的繪示。該晶體區域214的頂部包含鄰近於該存取裝置之該單晶體的一表面上的突出體,而其深度係大於該空乏區域的深度,而該空乏區域的深度係大於在該實施例中一P-型結晶體材料的WP 。因此,形成在該晶體區域214的該空乏區域,其係被在該單晶體內鄰近於該二極體的溝槽225所隔離,其深度係大於在該晶體材料的該空乏區域的該寬度。如此將接面與相鄰接面的隔離方式可以使其安置的更緊密。此溝槽可以在圖案化該多晶矽區域216時藉由過度蝕刻以自動對準多晶區域的方式形成,或在該多晶矽區域上使用一側壁間隔物做為蝕刻罩幕,如第18B圖所繪示。當然,亦可以使用其他技術來在做為存取線和該單晶元件之該單晶體表面上進行圖案化。FIG. 2C also illustrates that the crystal region 214 has a single crystal of an interface, the PN junction is formed thereon, and integrated with a densely doped access line 212, which is further improved in FIGS. 2A and 2B. Clearly illustrated. The top of the crystal region 214 includes a protrusion on a surface of the single crystal adjacent to the access device, and the depth is greater than the depth of the depletion region, and the depth of the depletion region is greater than that in the embodiment. W P of the -type crystalline material. Thus, the depletion region formed in the crystal region 214 is isolated by the trench 225 adjacent to the diode within the single crystal body, the depth of which is greater than the width of the depletion region of the crystalline material. This way the junction of the junction and the adjacent junction can be placed closer together. The trench may be formed by over-etching to automatically align the polycrystalline region when patterning the polysilicon region 216, or using a sidewall spacer as an etch mask on the polysilicon region, as depicted in FIG. 18B Show. Of course, other techniques can be used to pattern the surface of the single crystal as the access line and the single crystal element.

因此,可達成在單晶接面上提供該較低的漏電流,或實質地完成本發明所述之該結構。然而,形成一多晶較濃摻雜區域216來提供製造上的方便,而無須在漏電流方面上增加付出實質的成本。Therefore, it is possible to achieve the lower leakage current on the single crystal junction or to substantially complete the structure of the present invention. However, forming a polycrystalline dense doped region 216 provides manufacturing convenience without the substantial cost of increasing leakage current.

參考第2A圖及第2B圖,該記憶胞115包含具有一第一導電類型之一第一摻雜半導體區域213,以及在該第一摻雜半導體區域213之上的一第二摻雜半導體區域216,該第二摻雜半導體區域216具有不同於該第一導電類型之一第二導電類型。該第一摻雜半導體區域213包含一導電摻雜區域212被一淡摻雜區域214所覆蓋。在該第一摻雜半導體區域213之該淡摻雜區域214和該第二摻雜半導體區域216之間定義出一PN接面215。如該圖示實施例所繪示,該第一摻雜半導體區域係一P-型半導體;該導電摻雜區域係標示為”P+”,以及該淡摻雜區域係標示為”P-”。如該圖示實施例所繪示,該第二摻雜半導體區域係一較濃摻雜N-型半導體標示為”N+”。Referring to FIGS. 2A and 2B, the memory cell 115 includes a first doped semiconductor region 213 having a first conductivity type, and a second doped semiconductor region over the first doped semiconductor region 213. 216. The second doped semiconductor region 216 has a second conductivity type different from the one of the first conductivity types. The first doped semiconductor region 213 includes a conductive doped region 212 covered by a lightly doped region 214. A PN junction 215 is defined between the lightly doped region 214 of the first doped semiconductor region 213 and the second doped semiconductor region 216. As shown in the illustrated embodiment, the first doped semiconductor region is a P-type semiconductor; the conductive doped region is labeled "P+", and the lightly doped region is labeled "P-". As shown in the illustrated embodiment, the second doped semiconductor region is labeled "N+" as a more heavily doped N-type semiconductor.

藉著摻雜該單晶半導體基本來形成該第一摻雜半導體區域213,據此,該第一摻雜半導體區域係一單晶半導體。該第二摻雜半導體區域係一摻雜沈積多晶矽材料。因此,該二極體係由第一及第二半導體區域所組成,並在其中定義出一PN接面;該第一半導體區域係由一單晶半導體形成,以及該第二半導體區域係由一多晶半導體形成。The first doped semiconductor region 213 is formed by doping the single crystal semiconductor substantially, whereby the first doped semiconductor region is a single crystal semiconductor. The second doped semiconductor region is a doped deposition polysilicon material. Therefore, the dipole system is composed of first and second semiconductor regions, and defines a PN junction therein; the first semiconductor region is formed by a single crystal semiconductor, and the second semiconductor region is composed of a plurality of A crystalline semiconductor is formed.

該摻雜單晶半導體區域可以是晶圓本身形成。替代地,該摻雜單晶半導體區域可以在一絕緣體上覆矽(SOI)基板(例如:矽-絕緣體-矽基板)。The doped single crystal semiconductor region may be formed by the wafer itself. Alternatively, the doped single crystal semiconductor region may be coated on a single insulator (SOI) substrate (eg, a germanium-insulator-germanium substrate).

該記憶胞115包含一導電覆蓋層218在該第二摻雜半導體區域216上,該第一及第二摻雜半導體區域213、216及該導電覆蓋層建構出一多層堆疊定義出二極體121。在所繪示的實施例中該導電覆蓋層218包含一金屬矽化物,該金屬矽化物含有像是鈦、鎢、鈷、鎳和鉭,其形成使用一自動對準金屬矽化物製程。亦可以使用圖案化金屬矽化物製程,一般實施於一矽化鎢。該導電覆蓋層218幫助維持在操作中施加在該第一及第二摻雜半導體區域213、216的一電場之一致性,並藉由提供一接觸表面,其比起該第一及第二摻雜半導體區域213、216的該半導體材料有著更高的導電性。該導電覆蓋層218亦在該二極體121和該覆蓋的記憶元件160之間提供一低電阻歐姆接觸。此外,在製造該記憶胞陣列100的過程中,該導電覆蓋層218可對該第二摻雜半導體區域216做為一保護蝕刻停止層。此外,使用該金屬矽化物來形成該導電覆蓋層,該導電覆蓋層係形成在該較濃摻雜區域212表面上的區域218a、218b和該些記憶胞之間。該區域218a、218b中該導電覆蓋層,由該較濃摻雜區域移除少數載子,並改善在該區域212形成的該字元線的導電性。同時,該區域218a、218b中該導電覆蓋層提供一低電阻歐姆接觸在該導電栓塞224和該區域212之間。The memory cell 115 includes a conductive cap layer 218 on the second doped semiconductor region 216. The first and second doped semiconductor regions 213, 216 and the conductive cap layer are constructed with a multilayer stack to define a diode. 121. In the illustrated embodiment, the conductive cap layer 218 comprises a metal telluride containing titanium, tungsten, cobalt, nickel, and niobium, which are formed using a self-aligned metal telluride process. It is also possible to use a patterned metal telluride process, generally implemented in tungsten germanium. The conductive cap layer 218 helps maintain the uniformity of an electric field applied to the first and second doped semiconductor regions 213, 216 during operation, and by providing a contact surface that is comparable to the first and second doping The semiconductor material of the hetero semiconductor regions 213, 216 has a higher conductivity. The conductive cap layer 218 also provides a low resistance ohmic contact between the diode 121 and the covered memory component 160. In addition, during the process of fabricating the memory cell array 100, the conductive cap layer 218 can serve as a protective etch stop layer for the second doped semiconductor region 216. Further, the metal halide is used to form the conductive cap layer, which is formed between the regions 218a, 218b on the surface of the denser doped region 212 and the memory cells. The conductive cap layer in the regions 218a, 218b removes a minority carrier from the denser doped region and improves the conductivity of the word line formed in the region 212. At the same time, the conductive cap layer in the region 218a, 218b provides a low resistance ohmic contact between the conductive plug 224 and the region 212.

如第2A圖及第2B圖實施例所示,在該較濃摻雜多晶半導體區域212下方的該淡摻雜單晶半導體區域214的寬度係大於該第二摻雜半導體區域216的寬度,如由形成在鄰近於該第二摻雜半導體區域216的間隔物所定義。導電栓塞224,一般係鎢及/或其他材料,接觸通過位於該第二摻雜半導體區域216側邊的該較濃摻雜半導體區域212的接點開口,並向上延伸與上方結構相接觸,如圖所示或下方的描述。在替代實施例中,該導電栓塞並不需在第2B圖的每一記憶胞間。反之,某些實施例中,可以用較不緊密的配置來提供這樣的栓塞,像是每間隔一個記憶胞、每間隔四個記憶胞、每間隔八個記憶胞,端視該上方結構或其他方面的考量來決定。As shown in the embodiments of FIGS. 2A and 2B, the width of the lightly doped single crystal semiconductor region 214 under the densely doped polycrystalline semiconductor region 212 is greater than the width of the second doped semiconductor region 216. As defined by spacers formed adjacent to the second doped semiconductor region 216. The conductive plug 224, typically tungsten and/or other material, contacts the contact opening of the densely doped semiconductor region 212 on the side of the second doped semiconductor region 216 and extends upwardly into contact with the upper structure, such as The description shown below or below. In an alternate embodiment, the conductive plug does not need to be between each of the memory cells of Figure 2B. Conversely, in some embodiments, such a plug can be provided in a less compact configuration, such as one memory cell at a time, four memory cells per interval, eight memory cells per interval, looking at the top structure or other The considerations in terms are determined.

另外,一薄阻障層(未示)可以選擇性地位於該PN接面,亦即在該淡摻雜半導體區域214和該較濃摻雜半導體區域216之間。該阻障層可阻止摻雜物擴散通過該PN接面,並可強化該二極體的效能。舉例來說,一個合適的阻障層可為二氧化矽(SiO2 )或氮氧化矽(SiNx Oy );其可具有一厚度在5至25埃之間,例如約10埃。Additionally, a thin barrier layer (not shown) may be selectively located between the PN junction, that is, between the lightly doped semiconductor region 214 and the more heavily doped semiconductor region 216. The barrier layer prevents dopants from diffusing through the PN junction and enhances the effectiveness of the diode. For example, a suitable barrier layer can be cerium oxide (SiO 2 ) or cerium oxynitride (SiN x O y ); it can have a thickness between 5 and 25 angstroms, such as about 10 angstroms.

在第2B圖的箭號219繪示該電流方向由一上方的記憶元件(未在此圖中繪示)穿越該PN接面215而通過二極體並向上及通過該接觸介層孔,最後至一上方的存取線(未在此圖中繪示),該較濃摻雜半導體區域212係在一有限長度進行一內基板字元線功能。誠如上述,在接點與內基板區域字元線間的長度,在實施例中可以使用表面上金屬矽化物區域218a、218b而延伸。如圖所繪示,由於該淡摻雜半導體區域214的寬度係大於該第二摻雜半導體區域216的寬度,該電流在要向上通過該較濃摻雜半導體區域212之前,需要先由該第二摻雜半導體區域216通過該間隔物下方的該淡摻雜半導體區域214。In Figure 2B, arrow 219 shows that the current direction is passed through the PN junction 215 through an upper memory element (not shown in the figure) through the diode and up and through the contact via, and finally Up to an upper access line (not shown in this figure), the densely doped semiconductor region 212 performs an internal substrate word line function over a finite length. As described above, the length between the contact and the inner substrate region word line can be extended in the embodiment using the metal halide regions 218a, 218b on the surface. As shown in the figure, since the width of the lightly doped semiconductor region 214 is greater than the width of the second doped semiconductor region 216, the current needs to be first passed before the relatively rich doped semiconductor region 212 is to be passed upward. The di-doped semiconductor region 216 passes through the lightly doped semiconductor region 214 under the spacer.

下面會更詳盡的討論,存取二極體具有一島型第二區域(一般如同繪示在第2A圖和第2B圖中),當該第二區域會自動對準於由該隔離溝槽310(第3圖)所定義的該第一二極體區域條313,或不必對準於被該隔離溝槽410(第4圖)所定義的該第一二極體區域條413,在各種實施例中可以用一選擇性的製程步驟達成。As will be discussed in greater detail below, the access diode has an island-shaped second region (generally shown in Figures 2A and 2B) when the second region is automatically aligned to the isolation trench. The first diode region strip 313 defined by 310 (Fig. 3) may or may not be aligned with the first diode region strip 413 defined by the isolation trench 410 (Fig. 4), in various Embodiments can be achieved with an optional process step.

參考第3圖的自動對準配置,該記憶胞包含具有一第一導電類型的一第一摻雜半導體區域313,以及一第二摻雜半導體區域316在該第一摻雜半導體區域313之上,而該第二摻雜半導體區域316具有不同於第一導電類型之一第二導電類型。該第一摻雜半導體區域313包含一較濃摻雜區域312被一淡摻雜區域314所覆蓋。在該第一摻雜半導體區域313之該淡摻雜區域314和該第二摻雜半導體區域316之間定義一PN接面315。其中該第二摻雜半導體區域316係自動對準,在該PN接面315上該第二摻雜半導體區域的寬度係與該淡摻雜半導體區域314的寬度相同。Referring to the auto-alignment configuration of FIG. 3, the memory cell includes a first doped semiconductor region 313 having a first conductivity type, and a second doped semiconductor region 316 over the first doped semiconductor region 313. And the second doped semiconductor region 316 has a second conductivity type different from one of the first conductivity types. The first doped semiconductor region 313 includes a densely doped region 312 covered by a lightly doped region 314. A PN junction 315 is defined between the lightly doped region 314 of the first doped semiconductor region 313 and the second doped semiconductor region 316. The second doped semiconductor region 316 is automatically aligned, and the width of the second doped semiconductor region on the PN junction 315 is the same as the width of the lightly doped semiconductor region 314.

參考第4圖的非自動對準配置,該記憶胞包含具有一第一導電類型的一第一摻雜半導體區域413,以及一第二摻雜半導體區域416在該第一摻雜半導體區域413之上,而該第二摻雜半導體區域416具有不同於第一導電類型之一第二導電類型。該第一摻雜半導體區域413包含一較濃摻雜區域412被一淡摻雜區域414所覆蓋。在該第一摻雜半導體區域413之該淡摻雜區域414和該第二摻雜半導體區域之間定義一PN接面415。因為在這種配置下,該第二摻雜半導體區域416不是自動對準,在該PN接面415上該第二摻雜半導體區域的寬度係大於該淡摻雜半導體區域414的寬度。Referring to the non-automatic alignment configuration of FIG. 4, the memory cell includes a first doped semiconductor region 413 having a first conductivity type, and a second doped semiconductor region 416 at the first doped semiconductor region 413. Upper, and the second doped semiconductor region 416 has a second conductivity type different from one of the first conductivity types. The first doped semiconductor region 413 includes a densely doped region 412 covered by a lightly doped region 414. A PN junction 415 is defined between the lightly doped region 414 of the first doped semiconductor region 413 and the second doped semiconductor region. Because in this configuration, the second doped semiconductor region 416 is not self-aligned, the width of the second doped semiconductor region on the PN junction 415 is greater than the width of the lightly doped semiconductor region 414.

第5A、5B、5C圖;第6A、6B圖;第7A、7B圖;第8A、8B圖以及第9A、9B圖繪示本發明之記憶胞各種實施例的圖示,該記憶胞的各種記憶元件的配置形成在存取二極體之上並具有一島型第二區域,其係自動對準於該第一二極體區域條。5A, 5B, 5C; 6A, 6B; 7A, 7B; 8A, 8B and 9A, 9B are diagrams showing various embodiments of the memory cell of the present invention, various of the memory cells The memory element is configured to be formed over the access diode and has an island-shaped second region that is automatically aligned with the first diode region strip.

參考第5A、5B圖,形成一導電栓塞320接觸該覆蓋層318,以提高記憶元件之覆蓋陣列的高度。一介電層510支援該記憶元件陣列。在本實施例中,該記憶元件160包含一底電極與該二極體的該第二區域電性接觸,一記憶材料與該底電極電性接觸,以及一頂電極在該記憶材料之上並電性耦接於上方的存取線(位元線)120b。在這樣的配置中,形成該底電極532並延伸通過該介電層的一孔洞。該底電極532接觸該下方的覆蓋層318並接觸一記憶材料530的覆蓋島,其係形成在該介電層510之上,以及每一記憶材料島係被一頂電極534所覆蓋。該頂電極係藉以導電栓塞522的方式耦接至存取線120b。在每一記憶胞相變化材料的一小塊區域會接觸該底電極532以及靠近與該底電極接觸的一主動區域533係該記憶元件的記憶材料被誘發在至少兩種固態之間轉變的區域。Referring to Figures 5A, 5B, a conductive plug 320 is formed in contact with the cover layer 318 to increase the height of the cover array of memory elements. A dielectric layer 510 supports the array of memory elements. In this embodiment, the memory element 160 includes a bottom electrode in electrical contact with the second region of the diode, a memory material in electrical contact with the bottom electrode, and a top electrode over the memory material. Electrically coupled to the upper access line (bit line) 120b. In such a configuration, the bottom electrode 532 is formed and extends through a hole in the dielectric layer. The bottom electrode 532 contacts the underlying cap layer 318 and contacts a covered island of memory material 530 formed over the dielectric layer 510, and each memory material island is covered by a top electrode 534. The top electrode is coupled to the access line 120b by means of a conductive plug 522. A bottom region of each memory cell phase change material contacts the bottom electrode 532 and an active region 533 adjacent to the bottom electrode is a region in which the memory material of the memory element is induced to transition between at least two solid states. .

舉例來說,在介電層510的孔洞可以藉由一”空孔(keyhole)”來形成,其所需的方法、材料、及製程係揭露在2007年9月14日申請的美國專利申請號11/855979號專利,”Phase Change Memory Cell in Via Array with Self-Aligned,Self-Converged Bottom Electrode and Mehtod for manufacturing”在此列為參考文獻。例如,該介電層510可以形成在存取電路的該頂表面上,接著依序形成一隔離層和一犧牲層。接著,在該犧牲層上形成具有開口接近或等於此製程中最小特徵尺寸的一罩幕,該開口係位於該栓塞320或二極體覆蓋層318的位置之上。接著,使用該罩幕選擇性蝕刻該隔離層和該犧牲層,因此在該隔離層和犧牲層形成一接點開口並露出該介電層510的一頂表面。接著,移除該罩幕,在該接觸開口處執行一選擇性下切蝕刻,使得該隔離層被蝕刻,而留下該犧牲層及介電層510。接著,在該接觸開口形成一填充材料,由於下切蝕刻製程而在該接觸開口內形成的填充材料之內產生一自動對準空孔。接著對該填充材料執行一非等向性蝕刻製程來打開該空孔,並繼續蝕刻直到露出在該空孔下該介電層510區域,因此,形成一側壁間隔物,其包含在開接觸開口內的填充材料。該側壁間隔物具有一開口尺寸實質地由該空孔的尺寸所決定,也因此可以比一微影製程的該最小特徵尺寸還來的小。接著,使用該側壁間隔物做為一蝕刻罩幕來蝕刻該介電層510,因而在該介電層內形成一開口,其具有一尺寸小於該最小特徵尺寸。接著,形成一電極層在該介電層510的該開口內。接著,實施一平坦化製程像是化學機械研磨法CMP,來移除該隔離層及該犧牲層並形成該第一電極532(或底電極),而得到所繪示的結構。For example, the holes in the dielectric layer 510 can be formed by a "keyhole", and the required methods, materials, and processes are disclosed in U.S. Patent Application Serial No. Patent No. 11/855,979, "Phase Change Memory Cell in Via Array with Self-Aligned, Self-Converged Bottom Electrode and Mehtod for Manufacturing" is incorporated herein by reference. For example, the dielectric layer 510 may be formed on the top surface of the access circuit, and then an isolation layer and a sacrificial layer are sequentially formed. Next, a mask having an opening close to or equal to the smallest feature size in the process is formed on the sacrificial layer, the opening being located above the plug 320 or the diode cap layer 318. Then, the spacer layer and the sacrificial layer are selectively etched using the mask, thereby forming a contact opening in the isolation layer and the sacrificial layer and exposing a top surface of the dielectric layer 510. Next, the mask is removed, and a selective undercut etch is performed at the contact opening such that the isolation layer is etched leaving the sacrificial layer and dielectric layer 510. Next, a fill material is formed in the contact opening, and an auto-aligned void is created within the fill material formed in the contact opening due to the undercut etching process. Then, an anisotropic etching process is performed on the filling material to open the hole, and etching is continued until the dielectric layer 510 region is exposed under the hole, thereby forming a sidewall spacer, which is included in the opening contact opening. Filling material inside. The sidewall spacer has an opening size that is substantially determined by the size of the aperture and can therefore be less than the minimum feature size of a lithography process. Next, the sidewall spacer is used as an etch mask to etch the dielectric layer 510, thereby forming an opening in the dielectric layer having a size smaller than the minimum feature size. Next, an electrode layer is formed within the opening of the dielectric layer 510. Next, a planarization process such as chemical mechanical polishing CMP is performed to remove the isolation layer and the sacrificial layer and form the first electrode 532 (or bottom electrode) to obtain the illustrated structure.

請特別參考第5B圖,該第一濃摻雜區域312(較濃的摻雜足以做為一導體,並具有矽化的表面區域)係藉著導電栓塞224、526來電性耦接至上方的字元線130b。在第5B圖所繪示的實施例中,導電栓塞320及導電栓塞224、526具有鎢。其他導電材料亦可以使用之。Referring specifically to FIG. 5B, the first heavily doped region 312 (which is richerly doped enough to be a conductor and has a deuterated surface region) is electrically coupled to the upper word by conductive plugs 224, 526. Yuan line 130b. In the embodiment illustrated in FIG. 5B, the conductive plug 320 and the conductive plugs 224, 526 have tungsten. Other conductive materials can also be used.

第5C圖繪示一替代實施例,其中該字元線130b係周期性或僅在該陣列的周邊耦接至具有一金屬矽化物表面的摻雜區域312。因此,繪示在第5B圖該導電栓塞324、526,在第5C圖的實施例中被刪除。除此之外,第5C圖與第5B圖相同。FIG. 5C illustrates an alternate embodiment in which the word line 130b is coupled to the doped region 312 having a metal halide surface periodically or only at the periphery of the array. Thus, the conductive plugs 324, 526, shown in Figure 5B, are deleted in the embodiment of Figure 5C. Except for this, the 5Cth picture is the same as the 5Bth figure.

該底電極532可包含,例如:氮化鈦或氮化鉭。氮化鈦係為較佳的,因為其與記憶材料之GST有良好的接觸(如上所述),其係為半導體製程中常用的材料,且在GST轉換的高溫(典型地介於600至700℃)下可提供良好的擴散障礙。替代地,該底電極532可為氮化鋁鈦或氮化鋁鉭或更包含例如,一個以上選自下列群組之元素:鈦、鎢、鉬、鋁、鉭、銅、鉑、銥、鑭、鎳、氧和釕及其組合。The bottom electrode 532 may comprise, for example, titanium nitride or tantalum nitride. Titanium nitride is preferred because it has good contact with the GST of the memory material (as described above), which is a commonly used material in semiconductor processes, and is at a high temperature of GST conversion (typically between 600 and 700). °C) provides good diffusion barriers. Alternatively, the bottom electrode 532 may be aluminum titanium nitride or aluminum nitride or more, for example, one or more elements selected from the group consisting of titanium, tungsten, molybdenum, aluminum, lanthanum, copper, platinum, rhodium, iridium. , nickel, oxygen and helium and combinations thereof.

在所繪示的實施例中,圍繞該底電極及位於該記憶元件下方的介電層510包含氮化矽。可以選擇該介電層510的介電材料來進行孔洞形成並藉由選擇性蝕刻穿透一臨時覆蓋材料(例如,氧化矽)內一開口。In the illustrated embodiment, the dielectric layer 510 surrounding the bottom electrode and under the memory element comprises tantalum nitride. The dielectric material of the dielectric layer 510 can be selected for hole formation and by etching through an opening in a temporary covering material (e.g., tantalum oxide).

該頂電極534和該位元線120可包含像是上述底電極532參考所使用之任何材料。The top electrode 534 and the bit line 120 can comprise any material as used in reference to the bottom electrode 532 described above.

持續填充該隔離溝槽的該介電材料可包含像是氧化矽、二氧化矽以及足以電性隔離該二極體脊部之任何材料。The dielectric material that continuously fills the isolation trench can comprise, for example, yttria, cerium oxide, and any material sufficient to electrically isolate the ridge of the diode.

在所繪示的實施例中該記憶元件530包含一相變化材料。該相變化元件530可包含像是一種或多種下列群組材料:鍺、銻、碲、硒、銦、鈦、鎵、鉍、錫、銅、鈀、鉛、銀、硫、矽、氧、磷、砷、氮及金。In the illustrated embodiment the memory element 530 comprises a phase change material. The phase change element 530 can comprise, for example, one or more of the following group materials: ruthenium, osmium, iridium, selenium, indium, titanium, gallium, antimony, tin, copper, palladium, lead, silver, sulfur, antimony, oxygen, phosphorus. , arsenic, nitrogen and gold.

本發明所述該記憶胞的實施例,包括相變化記憶材料,包含硫屬化物材料與其他材料。硫屬化物包括下列四元素之任一者:氧(O)、硫(S)、硒(Se)、以及碲(Te),形成元素週期表上第VIA族的部分。硫屬化物包括將一硫屬元素與一更為正電性之元素或自由基結合而得。硫屬化合物合金包括將硫屬化合物與其他物質如過渡金屬等結合。一硫屬化合物合金通常包括一個以上選自元素週期表第IVA族的元素,例如鍺(Ge)以及錫(Sn)。通常,硫屬化合物合金包括下列元素中一個以上的複合物:銻(Sb)、鎵(Ga)、銦(In)、以及銀(Ag)。許多以相變化為基礎之記憶材料已經被描述於技術文件中,包括下列合金:鎵/銻、銦/銻、銦/硒、銻/碲、鍺/碲、鍺/銻/碲、銦/銻/碲、鎵/硒/碲、錫/銻/碲、銦/銻/鍺、銀/銦/銻/碲、鍺/錫/銻/碲、鍺/銻/硒/碲、以及碲/鍺/銻/硫。在鍺/銻/碲合金家族中,可以嘗試大範圍的合金成分。此成分可以下列特徵式表示:Tea Geb Sb100-(a+b) ,其中a與b代表了所組成元素的原子總數為100%時,各原子的百分比。一位研究員描述了最有用的合金係為,在沈積材料中所包含之平均碲濃度係遠低於70%,典型地係低於60%,並在一般型態合金中的碲含量範圍從最低23%至最高58%,且最佳係介於48%至58%之碲含量。鍺的濃度係高於約5%,且其在材料中的平均範圍係從最低8%至最高30%,一般係低於50%。最佳地,鍺的濃度範圍係介於8%至40%。在此成分中所剩下的主要成分則為銻。(Ovshinky‘112專利,欄10~11)由另一研究者所評估的特殊合金包括Ge2 Sb2 Te5 、GeSb2 Te4 、以及GeSb4 Te7 。(Noboru Yamada,”Potential of Ge-Sb-Te Phase-change Optical Disks for High-Data-Rate Recording”,SPIE v .3109 ,pp. 28-37(1997))更一般地,過渡金屬如鉻(Cr)、鐵(Fe)、鎳(Ni)、鈮(Nb)、鈀(Pd)、鉑(Pt)、以及上述之混合物或合金,可與鍺/銻/碲結合以形成一相變化合金其包括有可程式化的電阻性質。可使用的記憶材料的特殊範例,係如Ovshinsky‘112專利中欄11-13所述,其範例在此係列入參考。An embodiment of the memory cell of the present invention comprises a phase change memory material comprising a chalcogenide material and other materials. The chalcogenide includes any of the following four elements: oxygen (O), sulfur (S), selenium (Se), and tellurium (Te), forming part of Group VIA of the Periodic Table of the Elements. Chalcogenides include the combination of a chalcogen element with a more positively charged element or radical. The chalcogenide alloy includes a combination of a chalcogen compound with other substances such as a transition metal or the like. The monochalcogenide alloy typically comprises more than one element selected from Group IVA of the Periodic Table of the Elements, such as germanium (Ge) and tin (Sn). Generally, the chalcogenide alloy includes one or more of the following elements: bismuth (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change-based memory materials have been described in the technical documentation, including the following alloys: gallium/germanium, indium/bismuth, indium/selenium, yttrium/niobium, lanthanum/niobium, lanthanum/niobium/niobium, indium/niobium /碲, gallium/selenium/bismuth, tin/bismuth/niobium, indium/bismuth/niobium, silver/indium/锑/碲, 锗/tin/锑/碲, 锗/锑/selenium/碲, and 碲/锗/锑 / sulfur. In the 锗/锑/碲 alloy family, a wide range of alloy compositions can be tried. This component can be represented by the following characteristic formula: Te a Ge b Sb 100-(a+b) , wherein a and b represent the percentage of each atom when the total number of atoms of the constituent elements is 100%. One researcher described the most useful alloys in that the average enthalpy concentration contained in the deposited material is well below 70%, typically below 60%, and the bismuth content in the general type alloy ranges from the lowest. 23% up to 58%, and the best line is between 48% and 58%. The concentration of cerium is above about 5% and its average range in the material ranges from a minimum of 8% to a maximum of 30%, typically less than 50%. Most preferably, the concentration range of lanthanum is between 8% and 40%. The main component remaining in this ingredient is hydrazine. (Ovshinky '112 patent, columns 10-11) Special alloys evaluated by another investigator include Ge 2 Sb 2 Te 5 , GeSb 2 Te 4 , and GeSb 4 Te 7 . (Noboru Yamada, "Potential of Ge-Sb-Te Phase-change Optical Disks for High-Data-Rate Recording", SPIE v . 3109 , pp. 28-37 (1997)) More generally, transition metals such as chromium (Cr ), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt), and mixtures or alloys thereof, may be combined with niobium / tantalum / niobium to form a phase change alloy including Has a programmable resistance property. A special example of a memory material that can be used is described in columns 11-13 of the Ovshinsky '112 patent, examples of which are incorporated herein by reference.

硫屬化物及其他相變化材料摻雜雜質來調整導電性、轉換溫度、熔點及使用在摻雜硫屬化物記憶元件之其他特性。使用在摻雜硫屬化物代表性的雜質包含氮、矽、氧、二氧化矽、氮化矽、銅、銀、金、鋁、氧化鋁、鉭、氧化鉭、氮化鉭、鈦、氧化鈦。可參見美國專利第6,800,504號專利及美國專利申請號第2005/0029502號專利。Chalcogenides and other phase change materials are doped with impurities to adjust conductivity, switching temperature, melting point, and other properties used in doped chalcogenide memory elements. Representative impurities used in the doped chalcogenide include nitrogen, helium, oxygen, cerium oxide, cerium nitride, copper, silver, gold, aluminum, aluminum oxide, cerium, cerium oxide, cerium nitride, titanium, titanium oxide. . See U.S. Patent No. 6,800,504 and U.S. Patent Application Serial No. 2005/0029502.

相變化合金能在此記憶胞主動通道區域內依其位置順序於材料為一般非晶狀態之第一結構狀態與為一般結晶狀態之第二結構狀態之間切換。這些材料至少為雙穩定態。此詞彙「非晶」係用以指稱一相對較無次序之結構,其較之一單晶更無次序性,而帶有可偵測之特徵如較之結晶態更高之電阻值。此詞彙「結晶態」係用以指稱一相對較有次序之結構,其較之非晶態更有次序,因此包括有可偵測的特徵例如比非晶態更低的電阻值。典型地,相變化材料可電切換至完全結晶態與完全非晶態之間所有可偵測的不同狀態。其他受到非晶態與結晶態之改變而影響之材料特中包括,原子次序、自由電子密度、以及活化能。此材料可切換成為不同的固態、或可切換成為由兩種以上固態所形成之混合物,提供從非晶態至結晶態之間的灰階部分。此材料中的電性亦可能隨之改變。The phase change alloy can be switched between the first structural state in which the material is in a generally amorphous state and the second structural state in a general crystalline state in the memory cell active channel region. These materials are at least bistable. The term "amorphous" is used to refer to a relatively unordered structure that is more unordered than one of the single crystals, with detectable features such as higher resistance values than crystalline states. The term "crystalline" is used to refer to a relatively ordered structure that is more ordered than amorphous and therefore includes detectable features such as lower resistance than amorphous. Typically, the phase change material can be electrically switched to all detectable different states between the fully crystalline state and the fully amorphous state. Other materials that are affected by changes in amorphous and crystalline states include atomic order, free electron density, and activation energy. This material can be switched to a different solid state, or can be switched to a mixture of two or more solids, providing a gray-scale portion from amorphous to crystalline. The electrical properties in this material may also change.

相變化合金可藉由施加一電脈衝而從一種相態切換至另一相態。先前觀察指出,一較短、較大幅度的脈衝傾向於將相轉換材料的相態改變成大體為非晶態。一較長、較低幅度的脈衝傾向於將相轉換材料的相態改變成大體為結晶態。在較短、較大幅度脈衝中的能量,夠大因此足以破壞結晶結構的鍵結,同時時間夠短,因此可以防止原子再次排列成結晶態。合適的曲線係取決於經驗或模擬,特別是針對一特定的相變化合金。在本文中所揭露之該相變化材料並通常被稱為GST,可理解的是亦可以使用其他類型的相變化材料。在本發明中用來所實施的相變化唯讀記憶體(PCRAM)係Ge2 Sb2 Te5The phase change alloy can be switched from one phase to another by applying an electrical pulse. Previous observations indicate that a shorter, larger amplitude pulse tends to change the phase of the phase change material to a substantially amorphous state. A longer, lower amplitude pulse tends to change the phase of the phase change material to a substantially crystalline state. The energy in the shorter, larger amplitude pulses is large enough to disrupt the bonding of the crystalline structure, while the time is short enough to prevent the atoms from realigning into a crystalline state. A suitable curve depends on experience or simulation, especially for a particular phase change alloy. The phase change material disclosed herein is also commonly referred to as GST, it being understood that other types of phase change materials may also be used. The phase change read only memory (PCRAM) used in the present invention is Ge 2 Sb 2 Te 5 .

可以用於本發明其他實施例之其他可程式化電阻記憶包含使用使用不同晶相變化來決定電阻的其他材料或使用電流脈衝可以改變其電阻狀態的其他材料,像是用在電阻隨機存取記憶體(RRAM)的材料,例如金屬氧化物包含氧化鎢(WOx )、NiO、Nb2 O5 、CuO2 、Ta2 O5 、Al2 O5 、CoO、Fe2 O3 、HfO2 、TiO2 、SrTiO3 、SrZrO3 以及(BaSr)TiO3 。另外,像是用在磁化電阻隨機存取記憶體(MRAM)的材料包含至少CoFeB、Fe、Co、Ni、Gd、Dy、CoFe、NiFe、MnAs、MnBi、MnSb、CrO2 MnOFe2 O3 、FeOFe2 O5 、NiOFe2 O3 、MgOFe2 、EuO以及Y3 Fe5 O12 之一。可參考美國專利公開號第2007/0176251”Magnetic Memory Device and Method of Fabricating the Same”,在此列為參考文獻。另外的實施例包含用來程式化金屬化記憶胞(PMC)或奈米離子記憶胞的固相電解材料像是銀摻雜硫化鍺電解質及銅摻雜硫化鍺電解質。可參見像是N.E. Gilbert等人發表在Solid-State Electronics 49(2005)第1813-1819頁”A macro model of programmable metallization cell device”,在此列為參考文獻。Other programmable resistive memories that can be used in other embodiments of the invention include other materials that use different phase changes to determine resistance or other materials that can change their resistance state using current pulses, such as in resistive random access memory. The material of the body (RRAM), such as a metal oxide, comprises tungsten oxide (WO x ), NiO, Nb 2 O 5 , CuO 2 , Ta 2 O 5 , Al 2 O 5 , CoO, Fe 2 O 3 , HfO 2 , TiO. 2 , SrTiO 3 , SrZrO 3 and (BaSr)TiO 3 . In addition, the material used in the magnetoresistive random access memory (MRAM) includes at least CoFeB, Fe, Co, Ni, Gd, Dy, CoFe, NiFe, MnAs, MnBi, MnSb, CrO 2 , MnOFe 2 O 3 , One of FeOFe 2 O 5 , NiOFe 2 O 3 , MgOFe 2 , EuO, and Y 3 Fe 5 O 12 . Reference may be made to U.S. Patent Publication No. 2007/0176251 "Magnetic Memory Device and Method of Fabricating the Same", which is incorporated herein by reference. Further embodiments include solid phase electrolytic materials used to stylize metalized memory cells (PMC) or nano-ion memory cells such as silver doped strontium sulfide electrolytes and copper doped strontium sulfide electrolytes. See, for example, NE Gilbert et al., Solid-State Electronics 49 (2005) pp. 1813-1819, "A macro model of programmable metallization cell device", which is incorporated herein by reference.

用來形成硫屬化物的一例示方法,可以利用PVD濺鍍或磁控(Magnetron)濺鍍方式,其反應氣體為氬氣、氮氣、及/或氦氣、壓力為1mTorr至100mTorr。此沈積步驟一般係於室溫下進行。一長寬比為1~5之準直器(collimater)可用以改良其填入表現。為了改善其填入表現,亦可使用數十至數百伏特之直流偏壓。另一方面,同時合併使用直流偏壓以及準直器亦是可行的。An exemplary method for forming a chalcogenide may be a PVD sputtering or a magnetron sputtering method in which the reaction gas is argon gas, nitrogen gas, and/or helium gas at a pressure of 1 mTorr to 100 mTorr. This deposition step is generally carried out at room temperature. A collimator with an aspect ratio of 1 to 5 can be used to improve its filling performance. In order to improve the filling performance, a DC bias of tens to hundreds of volts can also be used. On the other hand, it is also feasible to combine DC bias and collimator at the same time.

有時需要在真空中或氮氣環境中進行一沈積後退火處理,以改良硫屬化物材料之結晶態。此退火處理的溫度典型地係介於100℃至400℃,而退火時間則少於30分鐘。It is sometimes necessary to perform a post-deposition annealing treatment in a vacuum or in a nitrogen atmosphere to improve the crystalline state of the chalcogenide material. The temperature of this annealing treatment is typically between 100 ° C and 400 ° C and the annealing time is less than 30 minutes.

替代地,該硫屬化物材料可以由化學氣相沈積技術來形成。Alternatively, the chalcogenide material can be formed by chemical vapor deposition techniques.

第6A、6B圖繪示一記憶胞陣列之另一實施例,其中記憶元件形成在存取二極體之上具有一島型第二區域,其係對準於該第一二極體區域條。該結構類似於第5A、5B圖的結構,除了沒有導電栓塞來分開該覆蓋層318從該底電極532和圍繞該底電極及該記憶元件530下方之該介電層510。如第5A、5B圖所繪示,該底電極532係形成於並延伸通過該介電層的一孔洞中。該底電極532接觸該下方的覆蓋層318並接觸一記憶材料530的覆蓋島,其係形成在該介電層510之上,以及每一記憶材料島係被一頂電極534所覆蓋。該頂電極係藉以導電栓塞的方式耦接至存取線。在每一記憶胞相變化材料的一小塊區域會接觸該底電極532以及靠近與該底電極接觸的一主動區域533係該記憶元件的記憶材料被誘發在至少兩種固態之間轉變的區域。6A, 6B illustrate another embodiment of a memory cell array, wherein the memory element is formed on the access diode having an island-type second region aligned with the first diode region strip . The structure is similar to the structure of FIGS. 5A, 5B except that there is no conductive plug to separate the cover layer 318 from the bottom electrode 532 and the dielectric layer 510 surrounding the bottom electrode and the memory element 530. As shown in FIGS. 5A and 5B, the bottom electrode 532 is formed in and extends through a hole of the dielectric layer. The bottom electrode 532 contacts the underlying cap layer 318 and contacts a covered island of memory material 530 formed over the dielectric layer 510, and each memory material island is covered by a top electrode 534. The top electrode is coupled to the access line by means of a conductive plug. A bottom region of each memory cell phase change material contacts the bottom electrode 532 and an active region 533 adjacent to the bottom electrode is a region in which the memory material of the memory element is induced to transition between at least two solid states. .

特別參考第6B圖,該第一濃摻雜區域312係藉著區域312某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。替代地,該導電栓塞可位在第5B圖所繪示的每一記憶胞之間。With particular reference to FIG. 6B, the first heavily doped region 312 is electrically coupled to the upper word line 130b via a conductive plug (not shown) at a location of certain segments of the region 312 (not shown). Alternatively, the conductive plug can be positioned between each of the memory cells depicted in FIG. 5B.

第7A、7B圖繪示一記憶胞陣列之另一實施例,其中記憶元件形成在存取二極體之上具有一島型第二區域,其係對準於該第一二極體區域條。該結構類似於第6A、6B圖的結構,除了在此該記憶材料係為條狀物730而不是島狀;以及該頂電極,亦形成為條狀物734覆蓋在該記憶材料上,並作為一位元線。如第7A、7B圖例示中所繪示,該底電極532係形成於並延伸通過該介電層的一孔洞中。該底電極532接觸該下方的覆蓋層318並接觸一記憶材料條730,其係形成在該介電層510之上,以及每一記憶材料條係被一頂電極條734所覆蓋。在每一記憶胞相變化材料的一小塊區域會接觸該底電極532以及靠近與該底電極接觸的一主動區域533係該記憶條730的記憶材料被誘發在至少兩種固態之間轉變的區域。7A and 7B illustrate another embodiment of a memory cell array, wherein the memory element is formed on the access diode having an island-type second region aligned with the first diode region strip. . The structure is similar to the structure of FIGS. 6A, 6B except that the memory material is a strip 730 instead of an island; and the top electrode is also formed as a strip 734 overlying the memory material and serves as One yuan line. As illustrated in the illustrations of FIGS. 7A and 7B, the bottom electrode 532 is formed in and extends through a hole in the dielectric layer. The bottom electrode 532 contacts the underlying cap layer 318 and contacts a strip of memory material 730 formed over the dielectric layer 510, and each strip of memory material is covered by a top electrode strip 734. A memory region of the memory strip 730 is induced to transition between at least two solid states in a small area of each memory cell phase change material that contacts the bottom electrode 532 and an active region 533 that is in contact with the bottom electrode. region.

特別參考第7B圖,該第一濃摻雜區域312係藉著區域312某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。替代地,該導電栓塞可位在第5B圖所繪示的每一記憶胞之間。With particular reference to FIG. 7B, the first heavily doped region 312 is electrically coupled to the upper word line 130b via a conductive plug (not shown) at a location of some of the regions 312 (not shown). Alternatively, the conductive plug can be positioned between each of the memory cells depicted in FIG. 5B.

第8A、8B圖繪示一記憶胞陣列之另一實施例,其中記憶元件形成在存取二極體之上具有一島型第二區域,其係對準於該第一二極體區域條。在實施例中,該記憶材料係為條狀物830而不是島狀;以及該頂電極,亦形成為條狀物834覆蓋在該記憶材料上,並做為一位元線。更者,在本實施例中在該介電層810內具有孔洞,但並沒有分開的底電極。而是在此實施例中該記憶材料的一部位由該條狀物830延伸通過該孔洞如標號832所示,並與該覆蓋層318連接於該二極體堆疊121的該頂部位置。8A, 8B illustrate another embodiment of a memory cell array, wherein the memory element is formed on the access diode having an island-type second region aligned with the first diode region strip. . In an embodiment, the memory material is a strip 830 rather than an island; and the top electrode is also formed as a strip 834 overlying the memory material and acting as a one-dimensional line. Moreover, in the present embodiment, there is a hole in the dielectric layer 810, but there is no separate bottom electrode. Rather, in this embodiment a portion of the memory material extends from the strip 830 through the aperture as indicated by reference numeral 832 and is coupled to the cover layer 318 at the top position of the diode stack 121.

特別參考第8B圖,該第一濃摻雜區域312係藉著區域312某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。替代地,該導電栓塞可位在第5B圖所繪示的每一記憶胞之間。With particular reference to FIG. 8B, the first heavily doped region 312 is electrically coupled to the upper word line 130b via a conductive plug (not shown) at a location of certain segments of the region 312 (not shown). Alternatively, the conductive plug can be positioned between each of the memory cells depicted in FIG. 5B.

第9A、9B圖繪示一記憶胞陣列之另一實施例,其中記憶元件形成在存取二極體之上具有一島型第二區域,其係對準於該第一二極體區域條。在實施例中,在該介電層910內具有孔洞(亦如同第8A、8B圖所繪示),但並沒有分開的該底電極。但是在此沒有記憶材料條,以及該頂電極934(亦做為該位元線930)係直接覆蓋在該介電層910之上。每一記憶胞的該記憶元件係只形成在該孔洞內如標號932所示,並與該覆蓋層318連接於該二極體堆疊121的該頂部位置且在該覆蓋的頂電極934之上。9A and 9B illustrate another embodiment of a memory cell array, wherein the memory element is formed on the access diode having an island-shaped second region aligned with the first diode region strip. . In an embodiment, there are holes in the dielectric layer 910 (also as shown in Figures 8A, 8B), but there is no separate bottom electrode. However, there is no strip of memory material, and the top electrode 934 (also referred to as the bit line 930) is directly overlying the dielectric layer 910. The memory element of each memory cell is formed only within the hole as indicated by reference numeral 932 and is coupled to the cover layer 318 at the top position of the diode stack 121 and over the covered top electrode 934.

特別參考第9B圖,該第一濃摻雜區域312係藉著區域312某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。替代地,該導電栓塞可位在第5B圖所繪示的每一記憶胞之間。With particular reference to FIG. 9B, the first heavily doped region 312 is electrically coupled to the upper word line 130b via a conductive plug (not shown) at a location of certain segments of the region 312 (not shown). Alternatively, the conductive plug can be positioned between each of the memory cells depicted in FIG. 5B.

第10A、10B圖;第11A、11B圖;第12A、12B圖繪示本發明之記憶胞各種實施例的圖示,該記憶胞的各種記憶元件的配置形成在存取二極體之上並具有一島型第二區域,其係非自動對準於該第一二極體區域條。10A, 10B; 11A, 11B; 12A, 12B are diagrams showing various embodiments of the memory cell of the present invention, the memory cells of which are arranged on the access diode and There is an island-type second region that is not automatically aligned to the first diode region strip.

第10A、10B圖繪示一記憶胞陣列之另一實施例,其中記憶元件形成在存取二極體之上具有一島型第二區域,其係沒有對準於該第一二極體區域條。該結構類似於第8A、8B圖的結構,除了該介電填充層1010不只讓該記憶材料條1030形成於其上並且亦至少圍繞在該二極體堆疊121的該上島狀部位,其包含該第二摻雜半導體416及該覆蓋層418。亦如同第8A、8B圖的實施例,並沒有分開的底電極。而是在此實施例中在該介電填充層1010中具有孔洞,但是該記憶材料的一部位由該條狀物1030延伸通過該孔洞如標號1032所示,並與該覆蓋層418連接於該二極體堆疊121的該頂部位置。10A, 10B illustrate another embodiment of a memory cell array, wherein the memory element is formed on the access diode with an island-type second region that is not aligned with the first diode region. article. The structure is similar to the structure of FIGS. 8A, 8B except that the dielectric filling layer 1010 not only allows the memory material strip 1030 to be formed thereon but also surrounds at least the upper island portion of the diode stack 121, which includes the The second doped semiconductor 416 and the cap layer 418. Also like the embodiment of Figures 8A, 8B, there is no separate bottom electrode. Rather, in this embodiment, there is a hole in the dielectric fill layer 1010, but a portion of the memory material extends from the strip 1030 through the hole as indicated by reference numeral 1032 and is coupled to the cover layer 418. This top position of the diode stack 121.

特別參考第10B圖,該第一濃摻雜區域412係藉著區域312某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。替代地,該導電栓塞可位在第5B圖所繪示的每一記憶胞之間。With particular reference to FIG. 10B, the first heavily doped region 412 is electrically coupled to the upper word line 130b via a conductive plug (not shown) at a location of certain segments of the region 312 (not shown). Alternatively, the conductive plug can be positioned between each of the memory cells depicted in FIG. 5B.

第11A、11B圖繪示一記憶胞陣列之另一實施例,其中記憶元件形成在存取二極體之上具有一島型第二區域,其係沒有對準於該第一二極體區域條。在本實施例中,該介電填充層1010至少圍繞在該二極體堆疊121的該上島狀部位,其包含該第二摻雜半導體416及該覆蓋層418。該底電極1132形成並延伸通過該介電層1110的一孔洞中。該底電極532接觸該下方的覆蓋層418並接觸一覆蓋的記憶材料島1130,其係形成在該介電層1110之上,以及該列的記憶材料島係被一頂電極條1134所覆蓋,其係做為一位元線之用。在每一記憶胞相變化材料的一小塊區域會接觸該底電極1132以及靠近與該底電極接觸的一主動區域1133係該記憶元件的記憶材料島1130被誘發在至少兩種固態之間轉變的區域。11A, 11B illustrate another embodiment of a memory cell array, wherein the memory element is formed on the access diode having an island-type second region that is not aligned with the first diode region. article. In the present embodiment, the dielectric filling layer 1010 surrounds at least the upper island portion of the diode stack 121 , and includes the second doped semiconductor 416 and the cap layer 418 . The bottom electrode 1132 is formed and extends through a hole in the dielectric layer 1110. The bottom electrode 532 contacts the underlying cap layer 418 and contacts a covered memory material island 1130 formed over the dielectric layer 1110, and the column of memory material islands is covered by a top electrode strip 1134. It is used as a meta-line. The bottom electrode 1132 is contacted in a small area of each memory cell phase change material and an active region 1133 adjacent to the bottom electrode is in contact with the bottom electrode. The memory material island 1130 of the memory element is induced to transition between at least two solid states. Area.

特別參考第11B圖,該第一濃摻雜區域412係藉著區域312某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。替代地,該導電栓塞可位在第5B圖所繪示的每一記憶胞之間。With particular reference to FIG. 11B, the first heavily doped region 412 is electrically coupled to the upper word line 130b via a conductive plug (not shown) at a location of certain segments of the region 312 (not shown). Alternatively, the conductive plug can be positioned between each of the memory cells depicted in FIG. 5B.

第12A、12B圖繪示一記憶胞陣列之另一實施例,其中記憶元件形成在存取二極體之上具有一島型第二區域,其係覆蓋該第一二極體區域條。在本實施例中,其如同第11A、11B圖所示的實施例,一介電填充層1210至少圍繞在該二極體堆疊121的該上島狀部位,其包含該第二摻雜半導體416及該覆蓋層418,以及形成該記憶材料為島狀物1230而不是條狀;以及該頂電極其係亦形成為一條狀物1234覆蓋該記憶材料,做為一位元線。然而在本實施例中在該介電層1210中具有孔洞,但並沒有分開的底電極。反而在此實施例中,該記憶材料的一部位由該島狀物1230延伸通過該孔洞如標號1232所示,並與該覆蓋層418連接於該二極體堆疊121的該頂部位置。12A and 12B illustrate another embodiment of a memory cell array in which the memory element is formed on the access diode with an island-shaped second region covering the first diode region strip. In this embodiment, as in the embodiment shown in FIGS. 11A and 11B, a dielectric filling layer 1210 surrounds at least the upper island portion of the diode stack 121, and includes the second doped semiconductor 416 and The cover layer 418, and the memory material is formed as an island 1230 instead of a strip; and the top electrode is also formed as a strip 1234 covering the memory material as a one-dimensional line. In the present embodiment, however, there is a hole in the dielectric layer 1210, but there is no separate bottom electrode. Instead, in this embodiment, a portion of the memory material extends from the island 1230 through the aperture as indicated by reference numeral 1232 and is coupled to the cover layer 418 at the top position of the diode stack 121.

參考第12B圖的部分,該第一濃摻雜區域412係藉著區域312某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。替代地,該導電栓塞可位在第5B圖所繪示的每一記憶胞之間。Referring to the portion of FIG. 12B, the first heavily doped region 412 is electrically coupled to the upper word line 130b via a conductive plug (not shown) at a location of certain segments of the region 312 (not shown). Alternatively, the conductive plug can be positioned between each of the memory cells depicted in FIG. 5B.

第13圖至第20C圖繪示製造具有一島型第二區域之存取二極體,該島型第二區域係自動對準於該第一二極體條之一實施例的製程步驟。Figures 13 through 20C illustrate the fabrication of an access diode having an island-type second region that is automatically aligned to the process steps of one of the first diode strip embodiments.

提供一半導體基板(一般係一半導體晶圓形式,例如一矽晶圓)。在本實施例中,該基板係一P-型半導體,形成一N-井1310,然後摻雜該晶圓以提供一相對濃摻雜區域,其係被具有相同導電類型(在本實施例中為P-型)之一相對淡摻雜區域所覆蓋。此結果繪示於第13圖。在該圖中該相對濃摻雜區域1312係標示為”P+”及該相對淡摻雜區域1314係標示為”P-”A semiconductor substrate (typically in the form of a semiconductor wafer, such as a wafer) is provided. In this embodiment, the substrate is a P-type semiconductor, forming an N-well 1310, and then doping the wafer to provide a relatively dense doped region, which is of the same conductivity type (in this embodiment) Covered by one of the P-types relative to the lightly doped region. This result is shown in Figure 13. In the figure, the relatively densely doped region 1312 is labeled "P+" and the relatively lightly doped region 1314 is labeled "P-".

之後,一多晶半導體材料層1316形成在該淡摻雜區域1314之上,該多晶半導體材料(一般為多晶矽)比起該淡摻雜區域的該摻雜濃度係較為濃摻雜,並且具有不同於該基板下方的該淡摻雜區域的導電類型。此結果繪示於第14圖。在該圖中該相對濃摻雜多晶層1316係標示為”N+”Thereafter, a polycrystalline semiconductor material layer 1316 is formed over the lightly doped region 1314, the polycrystalline semiconductor material (typically polycrystalline germanium) being more heavily doped than the doped concentration of the lightly doped region, and having Different from the conductivity type of the lightly doped region under the substrate. This result is shown in Figure 14. In the figure, the relatively densely doped poly layer 1316 is labeled "N+"

另外,該PN接面所需之一阻障層,在形成多矽晶覆蓋層1316之前在該露出的淡摻雜矽區域1314可藉由長晶或沈積一介電層來形成該阻障層。舉例來說,一個合適的阻障層可為二氧化矽(SiO2)或氮氧化矽(SiNxOy);其可具有一厚度在5至25埃之間,例如約10埃。In addition, a barrier layer required for the PN junction may be formed by epitaxial or deposition of a dielectric layer in the exposed lightly doped germanium region 1314 prior to forming the polycrystalline cap layer 1316. . For example, a suitable barrier layer can be cerium oxide (SiO2) or cerium oxynitride (SiNxOy); it can have a thickness between 5 and 25 angstroms, such as about 10 angstroms.

接著,形成一隔離溝槽,使得被一介電層1530脊狀分隔,如第15A、15B、15C圖所繪示。每一脊狀包含一相對濃摻雜晶體半導體材料條1312(P+)覆蓋於該N-井,並且被一相對淡摻雜晶體半導體材料條1313(P-)所覆蓋。集合以上成為一第一區域113,其係被一相對濃摻雜(不同類型)多晶半導體材料條1316(N+)所覆蓋。Next, an isolation trench is formed so as to be ridge-shaped by a dielectric layer 1530, as shown in FIGS. 15A, 15B, and 15C. Each ridge comprises a strip of relatively heavily doped crystalline semiconductor material 1312 (P+) overlying the N-well and covered by a strip of relatively lightly doped crystalline semiconductor material 1313 (P-). The collection becomes a first region 113 which is covered by a relatively heavily doped (different type) polycrystalline semiconductor material strip 1316 (N+).

接著,在該脊狀之上形成一罩幕,以及該介電層在該脊狀之間,如第16圖所繪示。圖案化該罩幕為條狀物1612跨過該相對濃摻雜多晶材料條1316。Next, a mask is formed over the ridge, and the dielectric layer is between the ridges, as depicted in FIG. The mask is patterned into strips 1612 across the strip of relatively densely doped polycrystalline material 1316.

接著,執行一蝕刻過程以除去露出的相對濃摻雜多晶材料條(和露出的介電層材料),並且移除罩幕,其結果如第17A、17B、17C圖所示。蝕刻中止於相對淡摻雜區域1314(P-)的表面,以至於此構造由第一區域1313上的相對濃摻雜多晶矽島狀物1716所構成。在N+區域1716之間間隔很小的實施例中,此步驟包含過度蝕刻以至蝕刻經過淡摻雜矽區域1314的表面,並大於PN接面的深度(意即大於第2C圖中空乏區域的寬度WP ),以隔離鄰接的空乏區域,此一過度蝕刻過程如第18圖所示,但該過度蝕刻過程可應用於任一包括緊密安置細胞的實施例中,且可使用其他對準製程的實施例。Next, an etching process is performed to remove the exposed strip of relatively densely doped polycrystalline material (and the exposed dielectric layer material) and the mask is removed, the results of which are shown in Figures 17A, 17B, and 17C. The etch stops at the surface of the relatively lightly doped region 1314 (P-) such that the configuration is comprised of relatively densely doped polysilicon islands 1716 on the first region 1313. In embodiments where the spacing between the N+ regions 1716 is small, this step includes over-etching to etch the surface past the lightly doped germanium region 1314 and is greater than the depth of the PN junction (ie, greater than the width of the hollow region of the 2C pattern). W P ) to isolate adjacent depleted regions, this over-etching process is shown in FIG. 18, but the over-etching process can be applied to any embodiment including closely packed cells, and other alignment processes can be used. Example.

其後,如第18A、18B、18C圖所示,間隔物1810形成於相對濃摻雜多晶矽島狀物1716的側壁。該間隔物1810遮蔽鄰接於相對濃摻雜多晶矽島狀物1716的相對淡摻雜晶體半導體材料條1314(P-)之狹小範圍區域,該被遮蔽的區域之寬度可由間隔物1810的寬度而決定,而相對淡摻雜晶體半導體材料條1314的其餘區域1816則露出。Thereafter, as shown in FIGS. 18A, 18B, and 18C, spacers 1810 are formed on the sidewalls of the relatively densely doped polysilicon islands 1716. The spacer 1810 shields a narrow range of regions of the relatively lightly doped crystalline semiconductor material strip 1314 (P-) adjacent to the relatively densely doped polysilicon island 1716, the width of which is determined by the width of the spacer 1810. The remaining area 1816 of the relatively lightly doped crystalline semiconductor material strip 1314 is exposed.

其後,進行裸露出的淡摻雜晶體半導體材料條之濃摻雜佈植製程,其結果如第19A、19B、19C圖所示。此刻位於晶體半導體材料條1313脊部的露出表面1816之下的區域1512為濃摻雜,其導電形式與位於N型井上的相對濃摻雜晶體半導體材料條1312(P+)相同。Thereafter, a concentrated doping process of the bare strip of lightly doped crystalline semiconductor material is performed, and the results are shown in Figures 19A, 19B, and 19C. The region 1512, which is now below the exposed surface 1816 of the ridge of the strip of crystalline semiconductor material 1313, is heavily doped in the same manner as the relatively densely doped crystalline semiconductor material strip 1312 (P+) on the N-well.

接著,如同一導電覆蓋層2018,例如前述形成於相對濃摻雜多晶矽島狀物1716之上,並且形成於相對濃摻雜結晶半導體材料1512之上的金屬矽化物,其結果如第20A、20B、20C圖所示。此完成之二極體結構(也可參閱第2A、2B、3圖)此刻可以準備形成後續之記憶元件於其上,細節如以下詳述。Next, as the same conductive cap layer 2018, for example, the foregoing metal germanide formed on the relatively dense doped polysilicon island 1716 and formed on the relatively densely doped crystalline semiconductor material 1512, the result is as shown in Figs. 20A, 20B. , shown in Figure 20C. This completed diode structure (see also Figures 2A, 2B, 3) can now be prepared to form subsequent memory elements thereon, the details of which are detailed below.

第21A圖至第25C圖顯示製造一具有島型第二區域之存取二極體的方法之一實施例,該存取二極體沒有對準第一二極體區域條。21A through 25C show an embodiment of a method of fabricating an access diode having an island-type second region that is not aligned with the first diode region strip.

如同在第13圖至第20C圖實施例的之例子中,提供一半導體基板(一般為一半導體晶圓的形式,例如一矽晶圓),在本實施例中,該基板係一P-型半導體,一N型井2110形成於任一陣列區域,且N型井和P型井形成於部份週邊區域。在第21A圖中,一週邊主動區域2129於一N型井中,然後於任一陣列區域摻雜該晶圓以提供一被相同導電形式之淡摻雜區域(例如P型)所覆蓋的相對濃摻雜區域。在該些圖示中,該相對濃摻雜區域2112係標示為”P+”,而該淡摻雜區域2114係標示為”P-”。一隔離溝槽同時形成於陣列及週邊區域中,產生由介電層2130分隔之脊部,如第21A、21B、21C圖所示,於主動區域中,例如顯示於第21C圖位於斜線週邊區域中的區域2129,反之,將為吾人所了解的是,裝置上位於週邊區域中的電晶體用於邏輯和其他目的,且具有複雜的佈局,陣列中的每一脊部包括一覆蓋N型井的相對濃摻雜結晶半導體材料(2112,P+),該相對濃摻雜結晶半導體材料(2112,P+)被相對淡摻雜結晶半導體材料(2114,P-)所覆蓋。上述元件共同構成一形成整個摻雜結晶半導體材料之一第一二極體區域2113。圖中雖未顯示,但可以形成一金屬矽化物之側壁以改善脊部中由P型材料條構成的導體之傳導性,前述步驟可由類似第21A圖的實施例中,回蝕刻填充材料的一部份2130以露出區域2114和2112的側邊而達成,接著一金屬矽化物前驅物沈積於露出側邊之上,並且退火以產生矽結構。其後,位於基板上的剩餘金屬矽化物前驅物移除離開脊部側邊上自動對準的金屬矽化物元件。一般金屬矽化物前驅物包括金屬或以下金屬之結合:例如鈷、鈦、鎳、鉬、鎢、鉭以及鉑,金屬矽化物前驅物亦可以包括金屬氮化物或其他金屬合成物。因此該金屬矽化物條(未示)從P型材料移除少數載體,並且改善基板的傳導性。As in the example of the embodiment of Figures 13 to 20C, a semiconductor substrate (generally in the form of a semiconductor wafer, such as a wafer) is provided. In this embodiment, the substrate is a P-type. The semiconductor, an N-type well 2110 is formed in any of the array regions, and the N-type well and the P-type well are formed in a portion of the peripheral region. In Fig. 21A, a peripheral active region 2129 is in an N-type well, and then the wafer is doped in any of the array regions to provide a relatively thick layer covered by a lightly doped region (e.g., P-type) of the same conductive form. Doped area. In these illustrations, the relatively heavily doped region 2112 is labeled "P+" and the lightly doped region 2114 is labeled "P-." An isolation trench is simultaneously formed in the array and the peripheral region to generate a ridge separated by the dielectric layer 2130, as shown in FIGS. 21A, 21B, and 21C. In the active region, for example, it is shown in FIG. 21C in a peripheral region of the oblique line. In the region 2129, conversely, it will be understood that the transistors in the peripheral region of the device are used for logic and other purposes, and have a complex layout, each ridge in the array including a covered N-well The relatively densely doped crystalline semiconductor material (2112, P+) is covered by the relatively lightly doped crystalline semiconductor material (2114, P-). The above components collectively form a first diode region 2113 which forms one of the entire doped crystalline semiconductor material. Although not shown in the drawings, a metal halide sidewall may be formed to improve the conductivity of a conductor composed of a P-type strip of material in the ridge. The foregoing steps may be performed by etching an etch-filled material in an embodiment similar to that of FIG. 21A. Portion 2130 is achieved by exposing the sides of regions 2114 and 2112, followed by deposition of a metal telluride precursor over the exposed sides and annealing to create a germanium structure. Thereafter, the remaining metal halide precursor on the substrate is removed from the automatically aligned metal halide element on the side of the ridge. Typical metal halide precursors include metals or combinations of metals such as cobalt, titanium, nickel, molybdenum, tungsten, rhenium, and platinum. Metal halide precursors may also include metal nitrides or other metal composites. The metal telluride strip (not shown) thus removes a small number of carriers from the P-type material and improves the conductivity of the substrate.

之後,閘極介電層2128沈積於週邊區域中,其可藉由隨後將陣列區域中移除之一全面式製程,或者將陣列區域罩幕起來的製程而形成。接著,一多晶半導體材料層同時形成於陣列及週邊區域中,而該多晶半導體材料層位於淡摻雜區2114以及隔離溝槽介電層2130的表面之上。該多晶半導體材料層(典型地係為多晶矽)為相對濃摻雜,且具有與位於其下的基板之濃摻雜區域相對的傳導型態。接著,一覆蓋層形成於多晶半導體層之上,而圖案化該些層次以形成相對淡摻雜結晶半導體材料2114的相對淡摻雜區域2114,並且於週邊區域中形成適當的內連線和閘極結構,其結果顯示於第22A、22B、22C圖中。在該些圖示中,每一相對濃摻雜多晶矽的材料條2116標示為”N+”,且位於覆蓋材料條2118之下。在此一製程以及類似製程中,單一的多晶矽製程可同時由陣列中的濃摻雜多晶矽元件以及週邊多晶矽結構所分享,以省下龐大的製造成本。在此實施例中,位於裝置的周邊電路區域中的電晶體閘極結構以及二極體的濃摻雜多晶矽元件在單一多晶矽層中包括各別的特徵。其後,形成一層間介電層,在週邊裝置區域和記憶體陣列區域同時形成開口,該些開口填滿導電金屬栓塞材料,例如週邊裝置區域中的鎢,且依照實施的記憶胞實施例,與陣列區域中完成記憶胞之元件。在一替代實施例中,一金屬矽化物層(未示)同樣地也可以最好是選擇性的形成在層2412的表面(參照第24B圖)。Thereafter, a gate dielectric layer 2128 is deposited in the peripheral region, which may be formed by a process that subsequently removes one of the array regions, or masks the array region. Next, a polycrystalline semiconductor material layer is simultaneously formed in the array and the peripheral region, and the polycrystalline semiconductor material layer is over the surface of the lightly doped region 2114 and the isolation trench dielectric layer 2130. The polycrystalline semiconductor material layer (typically polycrystalline germanium) is relatively heavily doped and has a conductive profile opposite the heavily doped region of the substrate underneath. Next, a capping layer is formed over the polycrystalline semiconductor layer, and the layers are patterned to form relatively lightly doped regions 2114 of the relatively lightly doped crystalline semiconductor material 2114, and appropriate interconnects are formed in the peripheral regions and The gate structure is shown in the figures 22A, 22B, and 22C. In these illustrations, each relatively heavily doped polysilicon strip 2116 is labeled "N+" and is located below the strip of cover material 2118. In this process and similar processes, a single polysilicon process can be shared by both the heavily doped polysilicon device and the peripheral polysilicon structure in the array to save significant manufacturing costs. In this embodiment, the transistor gate structure in the peripheral circuit region of the device and the concentrated doped polysilicon device of the diode include individual features in a single polysilicon layer. Thereafter, an interlevel dielectric layer is formed, and openings are simultaneously formed in the peripheral device region and the memory array region, the openings filling the conductive metal plug material, such as tungsten in the peripheral device region, and in accordance with the implemented memory cell embodiment, Complete the components of the memory cell with the array area. In an alternate embodiment, a metal telluride layer (not shown) may equally preferably be selectively formed on the surface of layer 2412 (see Figure 24B).

在一替代實施例中,一障壁層最好是選擇性的形成於PN接面,該障壁層可藉由在形成多晶矽之覆蓋層2116之前,於露出之淡摻雜矽區域2114上長晶或沈積一介電層來形成,一合適之障壁層,例如二氧化矽(SiO2 )或者氧氮化矽物(SiNx Oy ),可具有一厚度在5埃至25埃的範圍之間,例如10埃。In an alternative embodiment, a barrier layer is preferably selectively formed on the PN junction, and the barrier layer may be grown on the exposed lightly doped germanium region 2114 prior to forming the polysilicon germanium cap layer 2116. Depositing a dielectric layer to form a suitable barrier layer, such as cerium oxide (SiO 2 ) or cerium oxynitride (SiN x O y ), may have a thickness ranging from 5 angstroms to 25 angstroms. For example 10 angstroms.

其後,專注於陣列區域,間隔物2310形成於相對濃摻雜多晶矽的材料條2116,該些間隔物2310遮蔽相對淡摻雜結晶半導體材料2114的狹小範圍區域,鄰接每一相對濃摻雜多晶矽的材料條2116,且被遮蔽區域的寬度可由間隔物2310而決定,露出的相對淡摻雜結晶半導體材料之剩餘區域標示為2316。Thereafter, focusing on the array region, the spacers 2310 are formed in a strip of material 2116 that is relatively densely doped with polysilicon, the spacers 2310 masking a narrow range of regions of the relatively lightly doped crystalline semiconductor material 2114 adjacent each relatively densely doped polysilicon. The strip of material 2116, and the width of the masked area can be determined by the spacer 2310, with the remaining area of the exposed relatively lightly doped crystalline semiconductor material labeled 2316.

其後,進行裸露出的淡摻雜晶體半導體材料條之濃摻雜佈植製程,其結果如第24A、24B、24C圖所示。Thereafter, a concentrated doping process of the bare strip of lightly doped crystalline semiconductor material is performed, and the results are shown in Figs. 24A, 24B, and 24C.

此刻位於晶體半導體材料條2113脊部的露出表面2316之下的區域2412為濃晶體半導體材料條摻雜,其導電形式與位於N型井上的相對濃摻雜晶體半導體材料條2112(P+)相同。The region 2412, now under the exposed surface 2316 of the ridge of the strip of crystalline semiconductor material 2113, is doped with a strip of concentrated crystalline semiconductor material in the same manner as the strip 2112 (P+) of relatively densely doped crystalline semiconductor material on the N-well.

其後,一罩幕形成於覆蓋材料條2118以及相對濃摻雜多晶矽的材料條2116及介電材料2130位於脊部之間的上方,圖案化以覆蓋至少一部份的覆蓋材料條2118和通常覆蓋在多晶體半導體材料條2113脊部之材料條2116。進行一蝕刻製程以移除任一露出的相對濃摻雜多晶材料,且隨後移除罩幕,其結果顯示於第25A、25B、25C圖。蝕刻中止於佈植晶體半導體材料(2412,P+)之表面,使得以至於此構造由第一區域2113脊部上且被導電覆蓋層2518所覆蓋的相對濃摻雜多晶矽島狀物2520所構成。在一替代實施例中,一金屬矽化物層(未示)同樣地也可以最好是選擇性的形成在層2412的表面。此完成之二極體結構(也可參閱第2A、2B、4圖)此刻可以準備形成後續之記憶元件於其上,細節如以下詳述。Thereafter, a mask is formed over the strip of cover material 2118 and the strip of material 2116 and the dielectric material 2130 of the relatively densely doped polysilicon are positioned between the ridges, patterned to cover at least a portion of the strip of cover material 2118 and typically A strip of material 2116 overlying the ridges of the strip of polycrystalline semiconductor material 2113. An etch process is performed to remove any exposed relatively densely doped polycrystalline material, and the mask is subsequently removed, the results of which are shown in Figures 25A, 25B, and 25C. The etching terminates at the surface of the implanted crystalline semiconductor material (2412, P+) such that the relatively densely doped polycrystalline islands 2520 overlying the ridges of the first region 2113 and covered by the conductive cap layer 2518 are constructed. In an alternate embodiment, a metal telluride layer (not shown) may equally preferably be selectively formed on the surface of layer 2412. This completed diode structure (see also Figures 2A, 2B, 4) can now be prepared to form subsequent memory elements thereon, the details of which are detailed below.

第26A及26B圖係顯示一記憶胞之實施例的一部份之概略部份視圖,其中該二極體之第二部份具有柱狀型式。第26A圖係沿著位元線120方向,第26B圖係沿著字元線130方向。26A and 26B are schematic partial views showing a portion of an embodiment of a memory cell in which the second portion of the diode has a columnar pattern. The 26A is in the direction of the bit line 120, and the 26B is in the direction of the word line 130.

參考第26A及26B圖,記憶胞115包含一具有第一導電型式之第一摻雜半導體區域2613,以及在該第一摻雜半導體區域2613上之第二摻雜半導體栓塞2616,該第二摻雜半導體栓塞2616具有一與第一導電型式相反之第二導電型式。該第一摻雜半導體區域2613包含一由一淡摻雜區域2614覆蓋之較濃摻雜區域2612。一PN接面2615定義於第一摻雜半導體區域2613之淡摻雜區域2614與第二摻雜半導體栓塞2616之間。該等圖式所示之實施例中,該第一摻雜半導體區域係一p型半導體;該導電摻雜區域被標註為「P+」,及淡摻雜區域被標註為「P-」。而且,該等圖式所示之實施例中,該第二摻雜半導體區域係一標註為「N+」之較濃摻雜n型半導體,具有一摻雜濃度較該淡摻雜區域者為高。Referring to FIGS. 26A and 26B, the memory cell 115 includes a first doped semiconductor region 2613 having a first conductivity type, and a second doped semiconductor plug 2616 on the first doped semiconductor region 2613, the second doping The hetero semiconductor plug 2616 has a second conductivity pattern that is opposite the first conductivity type. The first doped semiconductor region 2613 includes a more heavily doped region 2612 covered by a lightly doped region 2614. A PN junction 2615 is defined between the lightly doped region 2614 of the first doped semiconductor region 2613 and the second doped semiconductor plug 2616. In the embodiment illustrated in the figures, the first doped semiconductor region is a p-type semiconductor; the conductive doped region is labeled "P+", and the lightly doped region is labeled "P-". Moreover, in the embodiments shown in the figures, the second doped semiconductor region is a densely doped n-type semiconductor labeled "N+", and has a doping concentration higher than that of the lightly doped region. .

該第一摻雜半導體區域2613係藉由摻雜該(單晶)半導體基板形成,及從而該第一摻雜半導體區域係一單晶半導體。該第二摻雜半導體區域係形成於一絕緣層中(未圖示)之介層孔內的摻雜沈積多晶矽栓塞。於是,該二極體係由第一及第二半導體區域組成,定義其間之一PN接面;該第一半導體區域係由一單晶半導體形成,該第二半導體區域係由一多晶半導體形成。The first doped semiconductor region 2613 is formed by doping the (single crystal) semiconductor substrate, and thus the first doped semiconductor region is a single crystal semiconductor. The second doped semiconductor region is formed by doping deposited polysilicon plugs in via holes in an insulating layer (not shown). Thus, the dipole system consists of first and second semiconductor regions defining a PN junction therebetween; the first semiconductor region is formed by a single crystal semiconductor and the second semiconductor region is formed of a polycrystalline semiconductor.

該摻雜單晶半導體區域可形成於晶圓本身之中。或者,該摻雜單晶半導體區域可形成於絕緣層上覆矽「SOI」之基板中(諸如矽-絕緣層-矽)基板。The doped single crystal semiconductor region can be formed in the wafer itself. Alternatively, the doped single crystal semiconductor region may be formed on a substrate (such as a germanium-insulating layer-turn) substrate covered with an "SOI" on the insulating layer.

記憶胞115包含第二掺雜半導體栓塞2616之一導電覆蓋層2618。該第一及第二摻雜半導體區域2613、2616及導電覆蓋層2618構成一多層堆疊定義二極體121。在例示實施例,該導電覆蓋層2618包含一含有例如Ti、W、Co、Ni或Ta之金屬矽化物。該導電覆蓋層2618藉由提供一較該第一及第二摻雜半導體區域2613、2616之半導體材料高的導電性接觸表面,而有助於保持橫跨施加在該第一及第二摻雜半導體區域2613、2616之電場均勻性。該導電覆蓋層2618在二極體121與覆蓋記憶元件160之間也提供一低電阻歐姆。附帶地,該導電覆蓋層2618於記憶胞陣列100製造期間可當作一用於第二掺雜半導體栓塞2616之保護性蝕刻中止層。選擇性地,一些較佳實施例中,金屬矽化物層亦可形成在該較濃摻雜區域層2612之表面。Memory cell 115 includes a conductive cap layer 2618 of a second doped semiconductor plug 2616. The first and second doped semiconductor regions 2613, 2616 and the conductive cap layer 2618 form a multi-layer stack defining diode 121. In the illustrated embodiment, the conductive cap layer 2618 comprises a metal telluride containing, for example, Ti, W, Co, Ni, or Ta. The conductive cap layer 2618 helps maintain a cross across the first and second dopings by providing a higher conductive contact surface than the semiconductor material of the first and second doped semiconductor regions 2613, 2616. The electric field uniformity of the semiconductor regions 2613, 2616. The conductive cap layer 2618 also provides a low resistance ohm between the diode 121 and the cover memory element 160. Incidentally, the conductive cap layer 2618 can be used as a protective etch stop layer for the second doped semiconductor plug 2616 during fabrication of the memory cell array 100. Alternatively, in some preferred embodiments, a metal telluride layer may also be formed on the surface of the densely doped region layer 2612.

第26A及26B圖所示之實施例中,覆蓋於該較濃摻雜區域層2612上之淡摻雜區域2614的寬度大於第二掺雜半導體栓塞2616之寬度。一導電栓塞2624於第二掺雜半導體栓塞2616之側隔開或位於其側邊之陣列區域處與該較濃摻雜區域層2612連接,且其向上延伸與上方的結構接觸,如以下所示及所述。In the embodiment illustrated in FIGS. 26A and 26B, the width of the lightly doped region 2614 overlying the densely doped region layer 2612 is greater than the width of the second doped semiconductor plug 2616. A conductive plug 2624 is connected to the dense doped region layer 2612 at an array region spaced apart from or on the side of the second doped semiconductor plug 2616, and extends upwardly in contact with the upper structure, as shown below. And said.

選擇性地,最好有一阻障層位於PN接面,該層可藉由在形成一多晶矽覆蓋層2616之前生長或沈積一介電層在暴露的淡摻雜矽區域2614形成。一合適的阻障層可例如是二氧化矽(SiO2 )或氮氧化矽(SiNx Oy );及其可以厚度範圍為約5至25埃,例如約10埃。Optionally, preferably a barrier layer is on the PN junction, the layer being formed in the exposed lightly doped germanium region 2614 by growing or depositing a dielectric layer prior to forming a polysilicon cap layer 2616. A suitable barrier layer can be, for example, cerium oxide (SiO 2 ) or cerium oxynitride (SiN x O y ); and it can have a thickness in the range of about 5 to 25 angstroms, for example about 10 angstroms.

第26B圖中之箭號2619顯示一電流流動方向,來自一上方的記憶元件(未示於此圖中)橫跨PN接面2615通過二極體及流經與通過接觸介層孔2624,最後流至一上方的存取線(未示於此圖中)。如此圖所示,因為該淡摻雜矽區域2614係大於第二掺雜半導體栓塞2616之寬度,該電流在其通過該較濃摻雜區域層2612之前,必須通過自該第二掺雜半導體栓塞2616經過位於間隔物之下的該淡摻雜矽區域2614。The arrow 2619 in Fig. 26B shows a current flow direction from an upper memory element (not shown) across the PN junction 2615 through the diode and through and through the contact via hole 2624. Flow to an upper access line (not shown in this figure). As shown in the figure, since the lightly doped germanium region 2614 is larger than the width of the second doped semiconductor plug 2616, the current must pass through the second doped semiconductor plug before it passes through the densely doped region layer 2612. 2616 passes through the lightly doped germanium region 2614 below the spacer.

第27A、27B圖;第28A、28B圖;第29A、29B圖;第30A、30B圖;第31A、31B圖;第32A、32B圖及第33A和33B圖顯示記憶胞之不同實施例的範例,其中該存取二極體具有柱狀型式之第二區域。27A, 27B; 28A, 28B; 29A, 29B; 30A, 30B; 31A, 31B; 32A, 32B and 33A and 33B show examples of different embodiments of memory cells Wherein the access diode has a second region of the columnar pattern.

第27A、27B圖例示一記憶胞陣列之實施例,其中記憶元件形成在該等具有柱狀型式的第二區域之存取二極體之上。在此實施例中,介電層2710覆蓋在該導電覆蓋層2618及鄰近的介電填充物2630。在此實施例中,未有分離的底電極;一頂電極條狀物2730覆蓋介電層2710,以及在此實施例中,位元線2734覆蓋該頂電極條狀物2730直接電性接觸。介電層2710中的孔洞於介電層2710覆蓋該導電覆蓋層2618之下側較位於頂電極條狀物2730下方之介電層2710的上側窄。每一記憶胞之記憶元件僅形成在以2732表示之孔洞中,及使接點下至於二極體堆疊121頂部具有導電覆蓋層2618之較窄端,以及上至具有覆蓋頂電極2730之較寬端。27A, 27B illustrate an embodiment of a memory cell array in which memory elements are formed over the access diodes of the second region having the columnar pattern. In this embodiment, a dielectric layer 2710 overlies the conductive cap layer 2618 and an adjacent dielectric fill 2630. In this embodiment, there is no separate bottom electrode; a top electrode strip 2730 covers the dielectric layer 2710, and in this embodiment, the bit line 2734 covers the top electrode strip 2730 in direct electrical contact. The holes in the dielectric layer 2710 are narrower than the dielectric layer 2710 covering the lower side of the conductive cover layer 2618 and the upper side of the dielectric layer 2710 below the top electrode strip 2730. The memory element of each memory cell is formed only in the hole indicated by 2732, and the contact point is down to the narrow end of the conductive cover layer 2618 at the top of the diode stack 121, and up to the wider having the cover top electrode 2730. end.

特別參考第27B圖,該較濃摻雜區域層2612係藉由區域2612某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。Referring specifically to Figure 27B, the densely doped region layer 2612 is electrically coupled to the upper word line 130b by a conductive plug (not shown) at a location of certain segments of the region 2612 (not shown).

第28A、28B圖例示記憶胞陣列之另一實施例,其中記憶元件係橫跨具有柱狀型式之第二區域之存取二極體的上方形成。在此實施例,介電層2810支撐該記憶元件陣列。該記憶元件包含一與存取二極體之第二區域電性接觸之底電極、一與底電極接觸之記憶材料,以及在記憶材料上方且與上方的存取線(位元線)120b電性接觸之頂電極。在此組態中,底電極2832係形成及延伸通過介電層2810的孔洞之中。底電極2832接觸下方覆蓋層2618及接觸形成在介電層2810上之記憶材料2830的覆蓋島狀物,及每一記憶材料島狀物係藉由一頂電極2834覆蓋。頂電極係藉由導電栓塞2822耦接至存取線120b。每一記憶胞中,相變化材料之一小區域接觸底電極2832,及一鄰近具有底電極之接點的主動區域係記憶元件2830之區域,其中該記憶材料可誘發在至少兩種固態之間的轉變。28A, 28B illustrate another embodiment of a memory cell array in which a memory element is formed over an access diode having a second region of a columnar pattern. In this embodiment, dielectric layer 2810 supports the array of memory elements. The memory element includes a bottom electrode in electrical contact with the second region of the access diode, a memory material in contact with the bottom electrode, and an access line (bit line) 120b above the memory material and above The top electrode of sexual contact. In this configuration, the bottom electrode 2832 is formed and extends through the holes of the dielectric layer 2810. The bottom electrode 2832 contacts the lower cover layer 2618 and contacts the islands of the memory material 2830 formed on the dielectric layer 2810, and each memory material island is covered by a top electrode 2834. The top electrode is coupled to the access line 120b by a conductive plug 2822. In each memory cell, a small area of the phase change material contacts the bottom electrode 2832, and an active area adjacent to the contact with the bottom electrode is a region of the memory element 2830, wherein the memory material can be induced between at least two solid states The transformation.

特別參考第28B圖,該第一濃摻雜區域2612係藉由區域2612某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。而且,濃摻雜區域2612之表面可覆蓋一金屬矽化物。第29A、29B圖例示記憶胞陣列之另一實施例,其中記憶元件係橫跨具有柱狀型式之第二區域之存取二極體的上方形成。在此實施例,如同第28A、28B圖所示之實施例,一介電填充物2620包圍二極體堆疊121之至少上方島狀部份,其包含第二摻雜半導體2616及導電覆蓋層2618,以及記憶材料係形成如島狀物,而不是條狀物;以及一亦形成如島狀物2934之頂電極覆蓋該記憶材料,及藉由導電栓塞2922耦接至存取線(位元線)120b。然而,在此實施例中,在介電層2910中有孔洞,但未有分離的底電極。反而,在此實施例,記憶材料之一部份自島狀物2930延伸通過該等以2932表示之孔洞,及使得與二極體堆疊121頂部的導電覆蓋層2618接觸。Referring specifically to Figure 28B, the first heavily doped region 2612 is electrically coupled to the upper word line 130b by a conductive plug (not shown) at a location of certain segments of the region 2612 (not shown). Moreover, the surface of the heavily doped region 2612 can be covered with a metal halide. 29A, 29B illustrate another embodiment of a memory cell array in which a memory element is formed over an access diode having a second region of a columnar pattern. In this embodiment, as in the embodiment shown in FIGS. 28A and 28B, a dielectric filler 2620 surrounds at least an island portion of the diode stack 121, which includes the second doped semiconductor 2616 and the conductive cap layer 2618. And the memory material is formed as an island rather than a strip; and a top electrode, such as island 2934, is formed overlying the memory material and coupled to the access line by a conductive plug 2922 (bit line) ) 120b. However, in this embodiment, there are holes in the dielectric layer 2910, but there are no separate bottom electrodes. Instead, in this embodiment, a portion of the memory material extends from the island 2930 through the holes indicated by 2932 and is brought into contact with the conductive cover layer 2618 at the top of the diode stack 121.

特別參考第29B圖,該第一濃摻雜區域2612係藉由區域2612某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。而且,濃摻雜區域2612之表面可覆蓋一金屬矽化物。Referring specifically to Figure 29B, the first heavily doped region 2612 is electrically coupled to the upper word line 130b by a conductive plug (not shown) at a location of certain segments of the region 2612 (not shown). Moreover, the surface of the heavily doped region 2612 can be covered with a metal halide.

第30A、30B圖例示記憶胞陣列之另一實施例,其中記憶元件係橫跨具有柱狀型式之第二區域之存取二極體的上方形成。在此實施例中,在介電層3010中有孔洞,及如第29A、29B圖所示之實施例,未有分離的底電極。但是此處未有覆蓋介電層之記憶材料的條狀物或島狀物,且頂電極3034係為島狀型式且直接覆蓋在介電層3010上。每一記憶胞之記憶元件僅形成在以3032表示之孔洞中,及使得下與二極體堆疊121頂部之導電覆蓋層2618接觸及上與上方的頂電極3034接觸。30A, 30B illustrate another embodiment of a memory cell array in which a memory element is formed over an access diode having a second region of a columnar pattern. In this embodiment, there are holes in the dielectric layer 3010, and as in the embodiment shown in Figures 29A, 29B, there is no separate bottom electrode. However, there are no strips or islands covering the memory material of the dielectric layer, and the top electrode 3034 is island-shaped and directly overlies the dielectric layer 3010. The memory element of each memory cell is formed only in the hole indicated by 3032, and is brought into contact with the conductive cover layer 2618 at the top of the diode stack 121 and with the top electrode 3034 above.

特別參考第30B圖,該第一濃摻雜區域2612係藉由區域2612某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。而且,該濃摻雜區域2612之表面可覆蓋一金屬矽化物。With particular reference to FIG. 30B, the first heavily doped region 2612 is electrically coupled to the upper word line 130b by a conductive plug (not shown) at a location of certain segments of the region 2612 (not shown). Moreover, the surface of the heavily doped region 2612 can be covered with a metal halide.

第31A、31B圖例示記憶胞陣列之另一實施例,其中記憶元件係橫跨具有柱狀型式之第二區域之存取二極體的上方形成。在此實施例,一介電層3110支撐該記憶元件陣列。如第28A、28B及28C圖中,該記憶元件包含一與存取二極體之第二區域電性接觸之底電極、一與底電極接觸之記憶材料,以及在記憶材料上方且與上方的存取線(位元線)120b電性接觸之頂電極。在此組態中,底電極3132係形成及延伸通過介電層3110的孔洞中。底電極3132接觸下方的覆蓋層2618及接觸形成在介電層3110上之記憶材料3130的覆蓋條狀物,及每一記憶材料條狀物係由一頂電極條狀物3134覆蓋,其亦作為一位元線120b。每一記憶胞中,相變化材料之一小區域接觸底電極3132,及一鄰近具有底電極之接點的主動區域3133係記憶元件3130之區域,其中該記憶材料可誘發至少兩固態相之間的轉變。31A, 31B illustrate another embodiment of a memory cell array in which a memory element is formed over an access diode having a second region of a columnar pattern. In this embodiment, a dielectric layer 3110 supports the array of memory elements. As shown in Figures 28A, 28B, and 28C, the memory device includes a bottom electrode in electrical contact with the second region of the access diode, a memory material in contact with the bottom electrode, and over and above the memory material. The top line of the access line (bit line) 120b is in electrical contact. In this configuration, the bottom electrode 3132 is formed and extends through the holes of the dielectric layer 3110. The bottom electrode 3132 contacts the underlying cap layer 2618 and the cover strip contacting the memory material 3130 formed on the dielectric layer 3110, and each memory strip is covered by a top electrode strip 3134, which also serves as One bit line 120b. In each memory cell, a small area of the phase change material contacts the bottom electrode 3132, and an active area 3133 adjacent to the contact with the bottom electrode is a region of the memory element 3130, wherein the memory material induces at least two solid phases The transformation.

特別參考第31B圖,該第一濃摻雜區域2612係藉由區域2612某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。而且,該濃摻雜區域2612之表面可覆蓋一金屬矽化物。第32A、32B圖例示記憶胞陣列之另一實施例,其中記憶元件係橫跨具有柱狀型式之第二區域之存取二極體的上方形成。在此實施例,記憶材料係形成如條狀物3230,而不是島狀物;以及一亦形成如條狀物3234之頂電極覆蓋該記憶材料,作為一位元線。此外,在此實施例中,在介電層3210中有孔洞,但未有分離的底電極。反而,在此實施例,記憶材料之一部份自條狀物3230延伸通過該等以3232表示之孔洞,及使得與二極體堆疊121頂部的導電覆蓋層2618接觸。With particular reference to FIG. 31B, the first heavily doped region 2612 is electrically coupled to the upper word line 130b by a conductive plug (not shown) at a location of certain segments of the region 2612 (not shown). Moreover, the surface of the heavily doped region 2612 can be covered with a metal halide. 32A, 32B illustrate another embodiment of a memory cell array in which a memory element is formed over an access diode having a second region of a columnar pattern. In this embodiment, the memory material is formed as a strip 3230 instead of an island; and a top electrode, such as strip 3234, is formed over the memory material as a one-dimensional line. Further, in this embodiment, there are holes in the dielectric layer 3210, but there is no separate bottom electrode. Instead, in this embodiment, a portion of the memory material extends from the strip 3230 through the holes indicated by 3232 and is brought into contact with the conductive cover layer 2618 at the top of the diode stack 121.

特別參考第32B圖,該第一濃摻雜區域2612係藉由區域2612某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。而且,濃摻雜區域2612之表面可以一金屬矽化物覆蓋。Referring specifically to Figure 32B, the first heavily doped region 2612 is electrically coupled to the upper word line 130b by a conductive plug (not shown) at a location of certain segments of the region 2612 (not shown). Moreover, the surface of the heavily doped region 2612 can be covered by a metal halide.

第33A和33B圖係說明記憶胞陣列之另一實施例,其中該記憶胞係形成在具有柱狀第二區域的存取二極體之上。此實施例中,介電層3310中存在有孔洞,以及如第33A和33B圖所示之實施例中,未有分離的底電極。但是,此處亦未有記憶材料條狀物,且也作為位元線3330之頂電極3334直接設置在介電層3310之上。每一記憶胞的記憶元件僅形成在孔洞中,如元件符號3332所示,以及使得接點下接二極體堆疊121頂部之覆蓋層2618及上接其上設置之頂電極3334。Figures 33A and 33B illustrate another embodiment of a memory cell array formed over an access diode having a columnar second region. In this embodiment, there are holes in the dielectric layer 3310, and in the embodiment shown in Figs. 33A and 33B, there is no separated bottom electrode. However, there is also no strip of memory material here, and also as the top electrode 3334 of the bit line 3330 is disposed directly over the dielectric layer 3310. The memory elements of each memory cell are formed only in the holes, as indicated by symbol 3332, and the cover layer 2618 that connects the contacts to the top of the diode stack 121 and the top electrode 3334 disposed thereon.

特別參考第33B圖,該第一濃摻雜區域2612係藉由區域2612某些區段的位置上(未示)之導電栓塞(未示)來電性耦接至上方的字元線130b。而且,濃摻雜區域2612之表面可以一金屬矽化物覆蓋。Referring specifically to Figure 33B, the first heavily doped region 2612 is electrically coupled to the upper word line 130b by a conductive plug (not shown) at a location of certain segments of the region 2612 (not shown). Moreover, the surface of the heavily doped region 2612 can be covered by a metal halide.

第34A至39C圖係顯示存取二極體之製程的實施例之各階段,該存取二極體具有具有柱狀型式之第二區域。Figures 34A through 39C show stages of an embodiment of a process for accessing a diode having a second region having a columnar pattern.

在參考第13至20C圖的該等實施例中,提供一半導體基板(通常是半導體晶圓型式,例如矽晶圓)。該處,如在此實施例中,該基板為P型半導體,形成N-井2110,及接著晶圓被摻雜以提供一由相同導電性型式(此實施例為P型)之相對淡摻雜區域覆蓋之相對濃摻雜區域。圖式中,該相對濃摻雜區域2112以「P+表示」,相對淡摻雜區域2114以「P-表示」。形成一隔離溝渠,造成由介電層2130分隔之脊部,如第21A、21B、21C圖所示。每一脊部包含由相對淡摻雜結晶半導體材料(2114,P-)條狀物覆蓋之位於N-井上之相對濃摻雜結晶半導體材料(2112,P+)條狀物。這些層次一起構成一全部於摻雜結晶半導體材料中形成之一第一二極體區域2113。In the embodiments with reference to Figures 13 through 20C, a semiconductor substrate (typically a semiconductor wafer type, such as a germanium wafer) is provided. Whereas, in this embodiment, the substrate is a P-type semiconductor, an N-well 2110 is formed, and then the wafer is doped to provide a relatively lightly doped version of the same conductivity type (P-type in this embodiment) The relatively densely doped region covered by the miscellaneous region. In the drawing, the relatively densely doped region 2112 is represented by "P+", and the relatively lightly doped region 2114 is represented by "P-". An isolation trench is formed, resulting in a ridge separated by a dielectric layer 2130, as shown in Figures 21A, 21B, and 21C. Each ridge includes a relatively densely doped crystalline semiconductor material (2112, P+) strip on the N-well covered by strips of relatively lightly doped crystalline semiconductor material (2114, P-). These layers together form a first diode region 2113 formed entirely of doped crystalline semiconductor material.

該摻雜單一結晶半導體區域可形成在晶圓本身中。或者,該摻雜單一結晶半導體區域可形成在一絕緣層上覆矽「SOI」基板中(諸如,矽-絕緣層-矽)基板。The doped single crystalline semiconductor region can be formed in the wafer itself. Alternatively, the doped single crystalline semiconductor region may be formed on an insulating layer overlying a "SOI" substrate (such as a germanium-insulating layer - germanium) substrate.

之後,一介電層3410形成在第21A、21B、21C圖所示之結構上,造成第34A、34B、34C圖所示之結構。Thereafter, a dielectric layer 3410 is formed on the structures shown in Figs. 21A, 21B, and 21C, resulting in the structures shown in Figs. 34A, 34B, and 34C.

之後,開口3520之陣列係穿越第34A、34B、34C圖所示之結構的介電層3410形成,以暴露出相對淡摻雜結晶半導體材料(2114,P-)之頂表面的區域3522,造成第35A、35B及36圖所例示之結構。開口3520可藉由介層孔蝕刻技術形成。Thereafter, the array of openings 3520 is formed through a dielectric layer 3410 of the structure illustrated in Figures 34A, 34B, 34C to expose a region 3522 of the top surface of the relatively lightly doped crystalline semiconductor material (2114, P-), resulting in The structures illustrated in Figures 35A, 35B and 36. The opening 3520 can be formed by a via hole etching technique.

之後,摻雜多晶矽栓塞3716形成在第35A、35B及36圖所例示之結構的開口3520中,造成第37A、37B及37C圖所示之結構。摻雜多晶矽栓塞3716具有一與相對淡摻雜結晶半導體材料(2114,P-)之相反的導電性,及因而栓塞3716接觸一對應的淡摻雜結晶半導體材料(2114,P-),以定義其間的PN接面3715。摻雜多晶矽栓塞3716可藉由在例如第35A、35B及36圖所示結構上沈積摻雜多晶矽材料,接著進行諸如化學機械研磨(CMP)平坦化製程而形成。Thereafter, the doped polysilicon plug 3716 is formed in the opening 3520 of the structure illustrated in Figs. 35A, 35B, and 36, resulting in the structures shown in Figs. 37A, 37B, and 37C. The doped polysilicon plug 3716 has an opposite conductivity to the relatively lightly doped crystalline semiconductor material (2114, P-), and thus the plug 3716 contacts a corresponding lightly doped crystalline semiconductor material (2114, P-) to define The PN junction 3715 is in between. The doped polysilicon plug 3716 can be formed by depositing a doped polysilicon material on structures such as those shown in Figures 35A, 35B, and 36, followed by a chemical mechanical polishing (CMP) planarization process.

該處,在PN接面處希望選擇性採用一阻障層,在通過介電層3510於開口3520中形成多晶矽栓塞3716之前,該阻障層可藉由生長或沈積一介電層在相對淡摻雜區域2114之暴露區域3522上。一適合的阻障層例如二氧化矽(SiO2)或氮氧化矽(SiNxOy);以及其可形成厚度範圍約自5至25埃,例如約10埃。Here, it is desirable to selectively use a barrier layer at the PN junction. Before the polysilicon plug 3716 is formed in the opening 3520 through the dielectric layer 3510, the barrier layer can be relatively light by growing or depositing a dielectric layer. The exposed region 3522 is over the exposed region 3522. A suitable barrier layer such as hafnium oxide (SiO2) or hafnium oxynitride (SiNxOy); and it can be formed to a thickness ranging from about 5 to 25 angstroms, for example about 10 angstroms.

選擇性地,之一第二開口3820陣列係穿越第37A、37B、37C圖所示之結構的介電層3510形成,以暴露出佈植相對濃摻雜結晶半導體材料(2414,P+)之頂表面的區域3822,造成第38A、38B及38C圖所例示之結構。開口3820可藉由介層孔蝕刻技術形成。選擇性地,金屬矽化物可形成在該材料2414之頂部上。或者,如上述,接點開口3820只偶爾用於陣列中或是在陣列周邊處。Optionally, an array of second openings 3820 is formed through a dielectric layer 3510 of the structure illustrated in FIGS. 37A, 37B, 37C to expose a top of the relatively densely doped crystalline semiconductor material (2414, P+). The area 3822 of the surface results in the structure illustrated in Figures 38A, 38B and 38C. Opening 3820 can be formed by a via hole etch technique. Alternatively, a metal halide can be formed on top of the material 2414. Alternatively, as described above, the contact openings 3820 are only occasionally used in the array or at the periphery of the array.

導電栓塞3924係藉由沈積導電材料在開口3820中,作為一通過第38A、38B、38C所例示之結構中之絕緣層3510之介層孔;以及導電覆蓋層3918係形成在摻雜多晶矽栓塞3716之頂表面處,造成第39A、39B、39C圖所示之結構。所得構造係由第一二極體區域2413脊部的淡摻雜區域上的導電覆蓋層3918覆蓋之相對濃摻雜多晶矽材料(栓塞3916)之柱狀物所組成;以及在二極體構造表面至第一二極體區域2413脊部之濃摻雜區域2412提供作為電性接觸之導電栓塞3924。此完成之二極體結構(也可參閱第26A、26B圖)此刻可以準備形成後續之記憶元件於其上,如以下詳細說明。The conductive plug 3924 is formed by depositing a conductive material in the opening 3820 as a via hole of the insulating layer 3510 in the structure illustrated by the 38A, 38B, 38C; and the conductive cover layer 3918 is formed on the doped polysilicon plug 3716. At the top surface, the structure shown in Figs. 39A, 39B, and 39C is caused. The resulting structure consists of a pillar of relatively densely doped polysilicon material (plug 3916) covered by a conductive cap layer 3918 over the lightly doped region of the ridge of the first diode region 2413; and at the surface of the diode structure The heavily doped region 2412 to the ridge of the first diode region 2413 provides a conductive plug 3924 as an electrical contact. This completed diode structure (see also Figures 26A, 26B) can now be prepared to form a subsequent memory element thereon, as described in detail below.

第40A至44C圖顯示具有存取二極體之上的記憶元件之形成程序的實施例的各階段,該存取二極體具有一島狀第二區域,由圖案化多晶矽本體所組成,其係與第一摻雜區域條狀物自動對準(如同第7A、7B圖所示)。Figures 40A-44C illustrate stages of an embodiment having a forming procedure for a memory element over an access diode having an island-like second region comprised of a patterned polycrystalline body The strip is automatically aligned with the strip of the first doped region (as shown in Figures 7A, 7B).

例如由第20A、20B及20C圖所示之組態開始,介電層4010沈積在相對濃摻雜多晶矽島狀物1716之頂部的導電覆蓋層2018之上,造成第40A及40B圖所示之結構。For example, starting with the configuration shown in FIGS. 20A, 20B, and 20C, a dielectric layer 4010 is deposited over the conductive cap layer 2018 on top of the relatively heavily doped polysilicon island 1716, resulting in the 40A and 40B. structure.

之後,孔洞之陣列係形成在介電層4010中,以及該等孔洞填充電極材料以形成底電極4032,結果如第41A、41B及41C圖所示。Thereafter, an array of holes is formed in the dielectric layer 4010, and the holes fill the electrode material to form the bottom electrode 4032, as shown in Figs. 41A, 41B, and 41C.

之後,開口4220之第二陣列可通過第41A、41B及41C圖所示結構之介電層4110形成,以暴露出佈植相對濃摻雜結晶半導體材料(1512,P+)之頂表面之區域4222,造成第42A、42B及42C圖所例示之結構。開口4220可藉由例如蝕刻技術形成。Thereafter, a second array of openings 4220 can be formed through the dielectric layer 4110 of the structure shown in FIGS. 41A, 41B, and 41C to expose a region 4222 where the top surface of the relatively heavily doped crystalline semiconductor material (1512, P+) is implanted. , resulting in the structure illustrated in Figures 42A, 42B and 42C. The opening 4220 can be formed by, for example, an etching technique.

之後,導電栓塞4324係藉由沈積導電材料於第42A、42B及42C圖所例示結構之開口4220中,造成第43A、43B及43C圖所示之結構。如上述,導電栓塞4324在一些實施例中可以被省略或只偶爾使用。Thereafter, the conductive plug 4324 is formed by depositing a conductive material in the opening 4220 of the structure illustrated in FIGS. 42A, 42B, and 42C, resulting in the structures shown in FIGS. 43A, 43B, and 43C. As noted above, the conductive plug 4324 can be omitted or used only occasionally in some embodiments.

之後,由頂電極材料的條狀物4434覆蓋之記憶材料的條狀物4430係形成在如第43A、43B及43C圖所示結構之上,造成第44A、44B及44C圖所示之結構。該條狀物係被排列使得其橫切底電極4032之列,以致於記憶材料接觸下方之底電極。如此實施例所示,頂電極4434也作為位元線。Thereafter, strips 4430 of memory material covered by strips 4443 of top electrode material are formed over the structures shown in Figures 43A, 43B and 43C, resulting in the structures shown in Figures 44A, 44B and 44C. The strips are arranged such that they traverse the bottom electrode 4032 such that the memory material contacts the underlying bottom electrode. As shown in this embodiment, the top electrode 4434 also serves as a bit line.

第45A至50B圖係顯示具有存取二極體之上的記憶元件之形成程序的實施例的各階段,該存取二極體具有一島狀第二區域,其不是與第一摻雜區域條狀物自動對準。45A through 50B are diagrams showing stages of an embodiment having a forming process for a memory element over an access diode having an island-like second region that is not associated with the first doped region The strips are automatically aligned.

例如由第25A、25B及25C圖所示之組態開始,介電層4510沈積在相對濃摻雜多晶矽島狀物1316之頂部的導電覆蓋層2518之上(標示在第25A圖中),造成第45A及45B圖所示之結構。For example, starting with the configuration shown in Figures 25A, 25B, and 25C, a dielectric layer 4510 is deposited over the conductive cap layer 2518 on top of the relatively heavily doped polysilicon island 1316 (labeled in Figure 25A), resulting in The structure shown in Figures 45A and 45B.

之後,孔洞之陣列係形成在介電層4510中,以及該等孔洞填充電極材料以形成底電極4532,結果如第46A、46B及46C圖所示。如上述,該導電栓塞4724在一些實施例中可被省略或只偶爾使用。Thereafter, an array of holes is formed in the dielectric layer 4510, and the holes fill the electrode material to form the bottom electrode 4532, as shown in Figs. 46A, 46B, and 46C. As noted above, the conductive plug 4724 can be omitted or used only occasionally in some embodiments.

之後,開口4720之第二陣列可通過第46A、46B及46C圖所示結構之介電層4610形成,以暴露出佈植相對濃摻雜結晶半導體材料(1512,P+)之頂表面的區域4722,造成第47A、47B及47C圖所例示之結構。開口4720可藉由例如蝕刻技術形成。Thereafter, a second array of openings 4720 can be formed through dielectric layer 4610 of the structure shown in FIGS. 46A, 46B, and 46C to expose regions 4722 where the top surface of the relatively heavily doped crystalline semiconductor material (1512, P+) is implanted. , resulting in the structure illustrated in Figures 47A, 47B and 47C. The opening 4720 can be formed by, for example, an etching technique.

之後,導電栓塞4724係藉由沈積導電材料於第47A、47B及47C圖所例示結構之開口4720中,造成第48A、48B及48C圖所示之結構。Thereafter, the conductive plugs 4724 are formed by depositing a conductive material in the openings 4720 of the structures illustrated in Figures 47A, 47B, and 47C, resulting in the structures shown in Figs. 48A, 48B, and 48C.

之後,由頂電極材料的條狀物4934覆蓋之記憶材料的條狀物4930係形成在如第48A、48B及48C圖所示結構之上,造成第49A、49B及49C圖所示之結構。該條狀物係被排列,使得其橫切底電極4532之列,以致於記憶材料接觸下方之底電極。如此實施例所示,頂電極4934也作為位元線。Thereafter, the strips 4930 of the memory material covered by the strips 4934 of the top electrode material are formed over the structures as shown in Figs. 48A, 48B and 48C, resulting in the structures shown in Figs. 49A, 49B and 49C. The strips are arranged such that they traverse the bottom electrode 4532 so that the memory material contacts the underlying bottom electrode. As shown in this embodiment, the top electrode 4934 also serves as a bit line.

之後,一介電層填充物5010形成在第49A、49B、49C圖所示結構之上。額外的開口陣列係穿過介電層填充物5010形成,以暴露出導電栓塞4724表面,及額外的導電栓塞5024係藉由沈積導電材料在額外的開口中而形成。之後,字元線5034係形成在介電層填充物5010上。字元線5034係排列,使得其橫切額外導電栓塞5024之列,以致於字元線與下方導電栓塞電性接觸。所得結構係顯示在第50A、50B圖中。如上述,該導電栓塞5024在一些實施例中可被省略或只偶爾使用。Thereafter, a dielectric layer filler 5010 is formed over the structures shown in FIGS. 49A, 49B, and 49C. An additional array of openings is formed through dielectric fill 5010 to expose the surface of conductive plug 4724, and additional conductive plugs 5024 are formed by depositing a conductive material in additional openings. Thereafter, word line 5034 is formed over dielectric layer fill 5010. The word lines 5034 are arranged such that they cross the additional conductive plugs 5024 such that the word lines are in electrical contact with the lower conductive plugs. The resulting structure is shown in panels 50A, 50B. As noted above, the conductive plug 5024 can be omitted or used only occasionally in some embodiments.

第51A至54C圖係顯示具有存取二極體之上的記憶元件之形成程序的實施例的各階段,該存取二極體具有一柱狀型式之第二區域(如第27A、27B圖所示)。例如由第39A、39B及39C圖所示之組態開始,一介電層5110形成在相對濃摻雜多晶矽柱狀物3916之頂部的導電覆蓋層3918之上,以及錐形孔5120之陣列係通過介電層5110暴露下部導電覆蓋層3918之區域而形成。所得結構係如第51A及51B、51C圖所示之結構。51A through 54C are diagrams showing stages of an embodiment having a forming process for a memory element over an access diode having a second region of a columnar pattern (eg, 27A, 27B) Shown). For example, starting from the configuration shown in FIGS. 39A, 39B, and 39C, a dielectric layer 5110 is formed over the conductive cap layer 3918 on top of the relatively heavily doped polysilicon pillars 3916, and an array of tapered vias 5120 It is formed by exposing a region of the lower conductive cap layer 3918 to the dielectric layer 5110. The resulting structure is as shown in Figs. 51A and 51B and 51C.

之後,該孔洞係填充記憶材料5232,結果如第52A、52B、52C圖所示。Thereafter, the hole is filled with the memory material 5232, and the result is as shown in Figs. 52A, 52B, and 52C.

之後,頂電極材料之條狀物5330係形成在記憶材料元件5232之列的上方,以及位元線120b係形成在頂電極條狀物的上方。該等條狀物可藉由例如沈積-遮罩-蝕刻程序形成。所得結構係如第53A、53B、53C圖所示。Thereafter, strips 5330 of top electrode material are formed over the columns of memory material elements 5232, and bit lines 120b are formed over the top electrode strips. The strips can be formed by, for example, a deposition-mask-etch process. The resulting structure is shown in Figures 53A, 53B, and 53C.

之後,一額外介電層填充物5410係形成在第53A、53B、53C圖所示結構之上,及字元線130b係圖案化在該結構之上,如第54C圖所示,如上討論,該處之接點係偶爾製作。Thereafter, an additional dielectric layer fill 5410 is formed over the structures shown in FIGS. 53A, 53B, 53C, and the word line 130b is patterned over the structure, as shown in FIG. 54C, as discussed above, The joints here are made occasionally.

其他實施例亦被涵蓋在後附申請專利範圍之內。Other embodiments are also covered by the scope of the appended claims.

100...記憶陣列100. . . Memory array

115...記憶胞115. . . Memory cell

120、120a、120b、120c...位元線120, 120a, 120b, 120c. . . Bit line

121...二極體(二極體存取裝置)121. . . Diode (diode access device)

130、130a、130b、130c...字元線130, 130a, 130b, 130c. . . Word line

160...記憶體元件160. . . Memory component

212...較濃摻雜存取線212. . . Thicker doped access line

213...第一摻雜半導體區域213. . . First doped semiconductor region

214...較淡摻雜P-區域(晶體部位、晶體區域)214. . . Lighter doped P-region (crystal region, crystal region)

215...PN接面(邊界)215. . . PN junction (boundary)

215-N、215-P...空乏區域215-N, 215-P. . . Deficient area

216...較濃摻雜N+區域216. . . Thicker doped N+ region

225...溝槽225. . . Trench

218...導電覆蓋層218. . . Conductive coating

224、526、2922、3924、4324、4724...導電栓塞224, 526, 2922, 3924, 4324, 4724. . . Conductive plug

310...隔離溝槽310. . . Isolation trench

313、413...第一二極體區域條(第一摻雜半導體區域)313, 413. . . First diode region strip (first doped semiconductor region)

314、414、1314...淡摻雜區域314, 414, 1314. . . Lightly doped region

316、416...第二摻雜半導體區域316, 416. . . Second doped semiconductor region

510、810、910、1110...介電層510, 810, 910, 1110. . . Dielectric layer

530...記憶材料530. . . Memory material

532、1132...底電極(第一電極)532, 1132. . . Bottom electrode (first electrode)

533、1133...主動區域533, 1133. . . Active area

534、934...頂電極534,934. . . Top electrode

730、734、830、1030...條狀物(記憶條)730, 734, 830, 1030. . . Strip (memory strip)

1010、1210...介電填充層1010, 1210. . . Dielectric fill layer

1130...記憶材料島1130. . . Memory material island

1313...第一區域1313. . . First area

1314...相對淡摻雜區域1314. . . Relatively lightly doped region

1316...多晶半導體材料層1316. . . Polycrystalline semiconductor material layer

1530...介電層1530. . . Dielectric layer

1716...N+區域(相對濃摻雜多晶矽島狀物)1716. . . N+ region (relatively doped polycrystalline germanium island)

1810、2310...間隔物1810, 2310. . . Spacer

2113...晶體半導體材料條2113. . . Crystalline semiconductor material strip

2114...淡摻雜結晶半導體材料2114. . . Lightly doped crystalline semiconductor material

2116...相對濃摻雜多晶矽的材料條2116. . . Relatively doped polycrystalline germanium material strip

2128...閘極介電層層2128. . . Gate dielectric layer

2310...隔離溝槽介電層2310. . . Isolated trench dielectric layer

2412...層表面2412. . . Layer surface

2613...第一摻雜半導體區域2613. . . First doped semiconductor region

2615...PN接面2615. . . PN junction

2616...第二摻雜半導體栓塞2616. . . Second doped semiconductor plug

2618...導電覆蓋層2618. . . Conductive coating

3110、3410...介電層3110, 3410. . . Dielectric layer

3130...記憶材料3130. . . Memory material

3133...主動區域3133. . . Active area

3230、3234、4930、4934、5330...條狀物3230, 3234, 4930, 4934, 5330. . . Strip

3334、4434...頂電極3334, 4434. . . Top electrode

3520...開口3520. . . Opening

3522...暴露區域3522. . . Exposed area

3716...摻雜多晶矽栓塞3716. . . Doped polysilicon plug

3822...頂表面區域3822. . . Top surface area

3916...相對濃摻雜多晶矽柱狀物3916. . . Relatively heavily doped polycrystalline niobium

3918...導電覆蓋層3918. . . Conductive coating

4010、5010...介電層填充物4010, 5010. . . Dielectric layer filler

4032、4532...底電極4032, 4532. . . Bottom electrode

5024...額外導電栓塞5024. . . Additional conductive plug

5120...錐形孔5120. . . Conical hole

5232...填充記憶材料5232. . . Fill memory material

5410...額外介電層填充物5410. . . Additional dielectric layer filler

第1圖係表示本發明所描述使用二極體存取裝置之的一記憶陣列之簡單示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a simplified schematic diagram showing a memory array using a diode access device as described herein.

第2A、2B圖係繪示包含一圖案化多晶矽本體的一單元二極體存取裝置的剖面圖式。2A and 2B are cross-sectional views showing a unit diode access device including a patterned polysilicon body.

第2C圖係繪示本發明所述之該二極體存取裝置,而該接面係位在該二極體之該單晶部位的一特徵圖式。2C is a view showing the diode access device of the present invention, and the junction is a characteristic pattern of the single crystal portion of the diode.

第3、4圖係繪示一單元二極體存取裝置另一實施例的剖面圖式。3 and 4 are cross-sectional views showing another embodiment of a unit diode access device.

第5A-5C圖係繪示具有二極體存取裝置之記憶胞的一實施例之剖面圖式。5A-5C are cross-sectional views showing an embodiment of a memory cell having a diode access device.

第6A、6B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。6A and 6B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第7A、7B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。7A and 7B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第8A、8B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。8A and 8B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第9A、9B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。9A and 9B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第10A、10B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。10A and 10B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第11A、11B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。11A and 11B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第12A、12B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。12A and 12B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第13-20C圖係繪示製造像是第2A、2B、3圖實施例中二極體存取裝置的製程的步驟圖式。13-20C is a diagram showing the steps of manufacturing a process for a diode access device in the embodiment of Figs. 2A, 2B, and 3.

第21A-25C圖係繪示製造像是第2A、2B、4圖實施例中二極體存取裝置的製程的步驟圖式。21A-25C are diagrams showing the steps of manufacturing a process for a diode access device in the embodiment of Figs. 2A, 2B, and 4.

第26A、26B圖係繪示一單元二極體存取裝置包含一多晶矽栓塞之另一實施例的剖面圖式。26A and 26B are cross-sectional views showing another embodiment of a unit diode access device including a polysilicon plug.

第27A、27B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。27A and 27B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第28A、28B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。28A and 28B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第29A、29B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。29A and 29B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第30A、30B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。30A and 30B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第31A、31B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。31A and 31B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第32A、32B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。32A and 32B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第33A、33B圖係繪示具有二極體存取裝置之記憶胞的另一實施例之剖面圖式。33A and 33B are cross-sectional views showing another embodiment of a memory cell having a diode access device.

第34A-39C圖係繪示製造像是第26A、26B圖實施例中二極體存取裝置的製程的另一步驟圖式。34A-39C are diagrams showing another step of manufacturing a process such as the diode access device of the embodiment of Figs. 26A and 26B.

第40A-44C圖係繪示製造形成記憶元件在像是第2A、2B、3圖實施例中二極體存取裝置之上,而得到像是在第7A、7B圖繪示的記憶胞裝置的製程的一步驟圖式。40A-44C is a diagram showing the fabrication of a memory device on a diode access device such as the embodiment of FIGS. 2A, 2B, and 3, and obtaining a memory cell device as shown in FIGS. 7A and 7B. A one-step diagram of the process.

第45A-50B圖係繪示製造形成記憶元件在像是第2A、2B、4圖實施例中二極體存取裝置之上,而得到像是在第7A、7B圖繪示的記憶胞裝置的製程的一步驟圖式。45A-50B is a diagram showing the fabrication of a memory device on a diode access device such as the embodiment of FIGS. 2A, 2B, and 4, and obtaining a memory cell device as shown in FIGS. 7A and 7B. A one-step diagram of the process.

第51A-54C圖係繪示製造形成記憶元件在像是第26A、26B圖實施例中二極體存取裝置之上,而得到像是在第27A、27B圖繪示的記憶胞裝置的製程的一步驟圖式。51A-54C are diagrams showing the process of fabricating a memory device on a diode access device such as the embodiment of Figs. 26A and 26B, and obtaining a process of the memory cell device as shown in Figs. 27A and 27B. One step diagram.

在許多實例的圖式中,其對應的圖式標示為”A”和”B”,其係一般繪示彼此互相垂直的兩個剖面,即在第2A圖剖面的方位係在第2B圖的A-A’標示。以及第2B圖剖面的方位係在第2A圖的B-B’標示。當對應圖式標示為”C”係指一平面視圖。In the drawings of many examples, the corresponding drawings are labeled "A" and "B", which generally show two sections perpendicular to each other, that is, the orientation of the section in FIG. 2A is in FIG. 2B. A-A' is marked. And the orientation of the cross section of Fig. 2B is indicated by B-B' in Fig. 2A. When the corresponding drawing is labeled "C", it refers to a plan view.

121...二極體121. . . Dipole

212...較濃摻雜存取線212. . . Thicker doped access line

213...第一摻雜半導體區域213. . . First doped semiconductor region

214...較淡摻雜P-區域214. . . Lighter doped P-region

215...PN接面(邊界)215. . . PN junction (boundary)

216...較濃摻雜N+區域216. . . Thicker doped N+ region

218...導電覆蓋層218. . . Conductive coating

Claims (64)

一種記憶胞,包含一存取裝置包括:一第一摻雜半導體區域具有一第一導電類型;以及一第二摻雜半導體區域具有不同於第一導電類型之一第二導電類型,在該第一摻雜半導體區域及該第二摻雜半導體區域之間定義一PN接面;其中該第一摻雜半導體區域形成於一單晶半導體,以及該第二摻雜半導體區域包含一多晶半導體;其中該第二摻雜半導體區域的摻雜濃度係高於該第一摻雜半導體區域的摻雜濃度之10倍以上。 A memory cell comprising an access device comprising: a first doped semiconductor region having a first conductivity type; and a second doped semiconductor region having a second conductivity type different from the first conductivity type, Defining a PN junction between a doped semiconductor region and the second doped semiconductor region; wherein the first doped semiconductor region is formed in a single crystal semiconductor, and the second doped semiconductor region comprises a polycrystalline semiconductor; The doping concentration of the second doped semiconductor region is higher than 10 times of the doping concentration of the first doped semiconductor region. 如申請專利範圍第1項所述之記憶胞,更包含一可程式化電阻記憶元件耦接於該第二摻雜半導體區域。 The memory cell of claim 1, further comprising a programmable resistive memory element coupled to the second doped semiconductor region. 如申請專利範圍第1項所述之記憶胞,其中該第二摻雜半導體區域的該摻雜濃度係為該第一摻雜半導體區域的該摻雜濃度的10倍至1000倍。 The memory cell of claim 1, wherein the doping concentration of the second doped semiconductor region is 10 to 1000 times the doping concentration of the first doped semiconductor region. 如申請專利範圍第1項所述之記憶胞,其中該第一摻雜半導體區域包含一P-型半導體以及該第二摻雜半導體區域包含一N-型多晶半導體。 The memory cell of claim 1, wherein the first doped semiconductor region comprises a P-type semiconductor and the second doped semiconductor region comprises an N-type polycrystalline semiconductor. 如申請專利範圍第1項所述之記憶胞,其中該第一摻雜半導體區域包含一N-型半導體以及該第二摻雜半導體區域包含一P-型多晶半導體。 The memory cell of claim 1, wherein the first doped semiconductor region comprises an N-type semiconductor and the second doped semiconductor region comprises a P-type polycrystalline semiconductor. 如申請專利範圍第1項所述之記憶胞,更包含一電 性導電覆蓋層在該第二摻雜半導體區域之上。 For example, the memory cell described in item 1 of the patent application includes an electric A conductive conductive layer is over the second doped semiconductor region. 如申請專利範圍第6項所述之記憶胞,其中該覆蓋層包含一金屬矽化物。 The memory cell of claim 6, wherein the cover layer comprises a metal halide. 如申請專利範圍第1項所述之記憶胞,其中該第二摻雜半導體區域係自動對準於該第一摻雜半導體區域。 The memory cell of claim 1, wherein the second doped semiconductor region is automatically aligned with the first doped semiconductor region. 如申請專利範圍第1項所述之記憶胞,其中該第二摻雜半導體區域及在一周邊電路區域的電晶體閘極包含各自圖案化的多晶矽主體於一單一的多晶矽層中。 The memory cell of claim 1, wherein the second doped semiconductor region and the transistor gate of a peripheral circuit region comprise respective patterned polysilicon bodies in a single polysilicon layer. 如申請專利範圍第1項所述之記憶胞,其包含一周邊區域包含一周邊電路單晶體半導體提供一場效電晶體的一通道、在該通道上之一閘極介電材料和一閘極,以及其中該第二摻雜半導體區域與該第一摻雜半導體區域連接而沒有介於中間的閘極介電材料。 The memory cell of claim 1, comprising a peripheral region comprising a peripheral circuit, a single crystal semiconductor, a channel for providing a potent transistor, a gate dielectric material and a gate on the channel, and Wherein the second doped semiconductor region is connected to the first doped semiconductor region without an intervening gate dielectric material. 如申請專利範圍第1項所述之記憶胞,其包含一周邊區域包含一周邊電路單晶體半導體提供一場效電晶體的一通道、在該通道上之一閘極介電材料和一閘極,以及其中該第二摻雜半導體區域與該第一摻雜半導體區域連接而沒有介於中間的閘極介電材料,以及其中該第二摻雜半導體區域和在該周邊區域的該閘極包含各自圖案化的多晶矽主體於一單一的多晶矽層中。 The memory cell of claim 1, comprising a peripheral region comprising a peripheral circuit, a single crystal semiconductor, a channel for providing a potent transistor, a gate dielectric material and a gate on the channel, and Wherein the second doped semiconductor region is connected to the first doped semiconductor region without an intervening gate dielectric material, and wherein the second doped semiconductor region and the gate in the peripheral region comprise respective patterns The polycrystalline germanium is hosted in a single polycrystalline germanium layer. 如申請專利範圍第1項所述之記憶胞,更包含一阻障層介於該第一摻雜半導體區域和該第二摻雜半導體區 域之間。 The memory cell of claim 1, further comprising a barrier layer between the first doped semiconductor region and the second doped semiconductor region Between domains. 如申請專利範圍第12項所述之記憶胞,其中該阻障層包含二氧化矽。 The memory cell of claim 12, wherein the barrier layer comprises cerium oxide. 如申請專利範圍第12項所述之記憶胞,其中該阻障層包含SiNx OyThe memory cell of claim 12, wherein the barrier layer comprises SiN x O y . 如申請專利範圍第12項所述之記憶胞,其中該阻障層具有一厚度在5埃至25埃的範圍之間。 The memory cell of claim 12, wherein the barrier layer has a thickness between 5 angstroms and 25 angstroms. 一種記憶裝置包含:複數條第一存取線,包含摻雜、單晶體的半導體主體具有一第一導電類型在一第一方向上延伸;複數條第二存取線,在一第二方向上延伸;複數個記憶胞,每一記憶胞包含一存取裝置,包括一第一摻雜半導體區域具有該第一導電類型在該摻雜、單晶體的半導體主體中,其中該第一摻雜半導體區域耦接至該複數條第一存取線之一對應的第一存取線,一第二摻雜半導體區域具有不同於該第一導電類型之一第二導電類型,該第二摻雜半導體區域該包含一多晶半導體,在第一摻雜半導體區域和第二摻雜半導體區域之間定義出一PN接面,以及一電性導電覆蓋層在該第二摻雜半導體區域上;以及一記憶材料與該電性導電覆蓋層電性連接,該記憶材料位於一對應的第二存取線下方且與其電性連接, 其中該第二摻雜半導體區域的摻雜濃度係高於該第一摻雜半導體區域的摻雜濃度。 A memory device includes: a plurality of first access lines, a semiconductor body comprising a doped, single crystal having a first conductivity type extending in a first direction; and a plurality of second access lines extending in a second direction a plurality of memory cells each comprising an access device comprising a first doped semiconductor region having the first conductivity type in the doped, single crystal semiconductor body, wherein the first doped semiconductor region is coupled Connecting to a first access line corresponding to one of the plurality of first access lines, a second doped semiconductor region having a second conductivity type different from the first conductivity type, the second doped semiconductor region Including a polycrystalline semiconductor, defining a PN junction between the first doped semiconductor region and the second doped semiconductor region, and an electrically conductive cap layer on the second doped semiconductor region; and a memory material Electrically connected to the electrically conductive cover layer, the memory material is located below and electrically connected to a corresponding second access line. The doping concentration of the second doped semiconductor region is higher than the doping concentration of the first doped semiconductor region. 如申請專利範圍第16項所述之記憶裝置,其中該第二摻雜半導體區域的摻雜濃度係高於該第一摻雜半導體區域的摻雜濃度的10倍以上。 The memory device of claim 16, wherein the doping concentration of the second doped semiconductor region is higher than 10 times the doping concentration of the first doped semiconductor region. 如申請專利範圍第16項所述之記憶裝置,其中在該PN接面的該第一摻雜半導體區域和該第二摻雜半導體區域形成空乏區域,該第一摻雜半導體區域的該空乏區域具有一深度比該第二摻雜半導體區域的該空乏區域深度的10倍還來的大,以及其中該第一摻雜半導體區域在鄰近於該存取裝置的該摻雜、單晶體的半導體主體一表面上包含一突出體,該突出體之高度係大於該第一摻雜半導體區域的該空乏區域的該深度。 The memory device of claim 16, wherein the first doped semiconductor region and the second doped semiconductor region of the PN junction form a depletion region, the depletion region of the first doped semiconductor region Having a depth greater than 10 times the depth of the depletion region of the second doped semiconductor region, and wherein the first doped semiconductor region is adjacent to the doped, single crystal semiconductor body of the access device The surface includes a protrusion having a height greater than the depth of the depletion region of the first doped semiconductor region. 如申請專利範圍第16項所述之記憶裝置,其中該第一摻雜半導體區域包含一P-型半導體以及第二摻雜半導體區域包含一N-型多晶半導體,以及該覆蓋層包含一金屬矽化物。 The memory device of claim 16, wherein the first doped semiconductor region comprises a P-type semiconductor and the second doped semiconductor region comprises an N-type polycrystalline semiconductor, and the cap layer comprises a metal Telluride. 如申請專利範圍第19項所述之記憶裝置,其中該第一存取線包含一導電摻雜P-型半導體在該摻雜、單晶體的半導體主體。 The memory device of claim 19, wherein the first access line comprises a conductively doped P-type semiconductor in the doped, single crystal semiconductor body. 如申請專利範圍第19項所述之記憶裝置,其中該第一存取線包含一導電摻雜P-型半導體在該摻雜、單晶體的半導體主體,以及包含一導電覆蓋層在該導電摻雜P- 型半導體該的表面部位之上。 The memory device of claim 19, wherein the first access line comprises a conductive doped P-type semiconductor in the doped, single crystal semiconductor body, and a conductive cap layer is included in the conductive doping P- The surface of the semiconductor is above the surface. 如申請專利範圍第16項所述之記憶裝置,其中該第一摻雜半導體區域包含一N-型半導體在該摻雜、單晶體的半導體主體,以及第二摻雜半導體區域包含一P-型多晶半導體。 The memory device of claim 16, wherein the first doped semiconductor region comprises an N-type semiconductor in the doped, single crystal semiconductor body, and the second doped semiconductor region comprises a P-type Crystal semiconductor. 如申請專利範圍第22項所述之記憶裝置,其中該第一存取線包含一導電摻雜N-型半導體在該摻雜、單晶體的半導體主體。 The memory device of claim 22, wherein the first access line comprises a conductive doped N-type semiconductor in the doped, single crystal semiconductor body. 如申請專利範圍第22項所述之記憶裝置,其中該第一存取線包含一導電摻雜N-型半導體在該摻雜、單晶體的半導體主體,以及包含一導電覆蓋層在該導電摻雜N-型半導體該的表面部位上。 The memory device of claim 22, wherein the first access line comprises a conductive doped N-type semiconductor in the doped, single crystal semiconductor body, and a conductive cap layer is included in the conductive doping The surface portion of the N-type semiconductor. 如申請專利範圍第16項所述之記憶裝置,更包含一底電極在該覆蓋層和該記憶材料之間。 The memory device of claim 16, further comprising a bottom electrode between the cover layer and the memory material. 如申請專利範圍第16項所述之記憶裝置,其中該第二摻雜半導體區域係自動對準於該第一摻雜半導體區域。 The memory device of claim 16, wherein the second doped semiconductor region is automatically aligned with the first doped semiconductor region. 如申請專利範圍第16項所述之記憶裝置,其中該第二摻雜半導體區域及在一周邊電路區域的電晶體閘極包含各自圖案化的多晶矽主體於一單一的多晶矽層中。 The memory device of claim 16, wherein the second doped semiconductor region and the transistor gate in a peripheral circuit region comprise respective patterned polysilicon bodies in a single polysilicon layer. 如申請專利範圍第16項所述之記憶裝置,更包含 一阻障層介於該第一摻雜半導體區域和該第二摻雜半導體區域。 The memory device described in claim 16 of the patent application further includes A barrier layer is interposed between the first doped semiconductor region and the second doped semiconductor region. 如申請專利範圍第28項所述之記憶裝置,其中該阻障層包含二氧化矽。 The memory device of claim 28, wherein the barrier layer comprises cerium oxide. 如申請專利範圍第28項所述之記憶裝置,其中該阻障層包含SiNx OyThe memory device of claim 28, wherein the barrier layer comprises SiN x O y . 如申請專利範圍第28項所述之記憶裝置,其中該阻障層具有一厚度在5埃至25埃的範圍之間。 The memory device of claim 28, wherein the barrier layer has a thickness ranging from 5 angstroms to 25 angstroms. 一種記憶胞包含:一儲存元件,以及一PN接面,其做為一存取裝置耦接至該儲存元件,包含在一第一導電類型的一多晶矽節點與一第二導電類型的一單晶矽節點之間的一介面;該單晶矽節點位於該第一導電類型的一多晶矽本體之內的該第二導電類型的一第二矽節點之上,其中該多晶矽節點的摻雜濃度係高於該單晶矽節點的摻雜濃度且鄰近於該介面之空乏區域具有各自的深度,以及該單晶矽節點包含一元件突出於該多晶矽本體之一表面,該元件的突出高度係大於該單晶矽節點之該空乏區域深度。 A memory cell includes: a storage element, and a PN junction coupled to the storage element as an access device, comprising a polysilicon node of a first conductivity type and a single crystal of a second conductivity type An interface between the germanium nodes; the single crystal germanium node is located above a second germanium node of the second conductivity type within a polysilicon body of the first conductivity type, wherein the doping concentration of the poly germanium node is high The doping concentration of the single crystal germanium node and the depletion region adjacent to the interface have respective depths, and the single crystal germanium node includes a component protruding from a surface of the polycrystalline germanium body, the protruding height of the component being greater than the single The depth of the depletion region of the wafer node. 一種記憶胞,包含:一儲存元件,以及一二極體,其做為一存取裝置耦接至該儲存元件,包含一第一導電類型的一多晶矽節點、一第二導電類型的 一第一單晶矽節點;一介電層在該二極體之該多晶矽節點之上;一電極,延伸通過該介電層以連接該二極體之該多矽晶節點至該儲存元件,以及一金屬栓塞通過該相同的該介電層,該電極具有一頂表面與該儲存元件連接,而該電極之該頂表面係小於該金屬栓塞的一頂表面。 A memory cell comprising: a storage element, and a diode coupled as an access device to the storage element, comprising a polysilicon node of a first conductivity type, a second conductivity type a first single crystal germanium node; a dielectric layer over the poly germanium node of the diode; an electrode extending through the dielectric layer to connect the plurality of germanium nodes of the diode to the storage element, And a metal plug passes through the same dielectric layer, the electrode having a top surface connected to the storage element, and the top surface of the electrode is smaller than a top surface of the metal plug. 一種用來製造一記憶胞二極體驅動器的方法,包含:提供一單晶矽半導體基板具有一第一導電類型;形成該第一導電類型的一淡摻雜區域於該基板之內且鄰近於該基板一上表面;沈積一第二導電類型的一較濃摻雜多晶矽材料在該淡摻雜區域的一表面上,該較濃摻雜多晶矽材料具有高於該淡摻雜區域摻雜濃度的一摻雜濃度;形成溝槽隔離以定義安置於一方向之一驅動條;沈積一第一介電材料以填充該溝槽隔離並覆蓋該驅動條;進行平坦化以露出該驅動條之一表面;於另一方向圖案化該較濃摻雜多晶材料,以隔離出一第二驅動元件並露出鄰近該第一導電類型的淡摻雜區域;形成一間隔物鄰近於該第二驅動元件的側壁;進行該第一導電類型的一佈植步驟於該露出的該第一導電類型之淡摻雜區域,使其更為濃摻雜;形成一電性導電覆蓋材料在該第二驅動元件和至少該驅動條之一部分之上;以及沈積一第二介電材料在該第一介電材料和該第二 驅動元件之一表面上。 A method for fabricating a memory cell driver, comprising: providing a single crystal germanium semiconductor substrate having a first conductivity type; forming a lightly doped region of the first conductivity type within the substrate and adjacent to An upper surface of the substrate; a dense doped polysilicon material of a second conductivity type deposited on a surface of the lightly doped region, the dense doped polysilicon material having a higher doping concentration than the lightly doped region a doping concentration; forming trench isolation to define a driving strip disposed in one direction; depositing a first dielectric material to fill the trench to isolate and cover the driving strip; planarizing to expose one surface of the driving strip Patterning the more heavily doped polycrystalline material in another direction to isolate a second driving element and exposing a lightly doped region adjacent the first conductivity type; forming a spacer adjacent to the second driving element a step of performing the implanting of the first conductivity type on the exposed lightly doped region of the first conductivity type to make it more heavily doped; forming an electrically conductive covering material in the second driving element And drives at least over a portion of the article; and depositing a second dielectric material on the first and the second dielectric material One of the drive elements is on the surface. 一種記憶胞,包含具有一多層堆疊之存取裝置,其包含:一第一摻雜半導體區域包含一第一導電類型在一單晶基板內;一絕緣層在該基板之上包含一介層孔;以及一第二摻雜半導體栓塞在該介層孔內以及接觸該第一摻雜半導體區域,該第二摻雜半導體栓塞具有不同於該第一導電類型的一第二導電類型,使得該第一摻雜半導體區域和該第二摻雜半導體栓塞定義一PN接面;其中該第二摻雜半導體栓塞包含一多晶半導體,以及該第二摻雜半導體栓塞的摻雜濃度係高於該第一摻雜半導體區域的摻雜濃度之10倍以上。 A memory cell comprising an access device having a multi-layer stack, the method comprising: a first doped semiconductor region comprising a first conductivity type in a single crystal substrate; and an insulating layer comprising a via hole on the substrate And a second doped semiconductor plug in the via hole and contacting the first doped semiconductor region, the second doped semiconductor plug having a second conductivity type different from the first conductivity type, such that the second a doped semiconductor region and the second doped semiconductor plug define a PN junction; wherein the second doped semiconductor plug comprises a polycrystalline semiconductor, and the doping concentration of the second doped semiconductor plug is higher than the first The doping concentration of a doped semiconductor region is more than 10 times. 如申請專利範圍第35項所述之記憶胞,更包含一可程式化電阻記憶元件在該絕緣層之上並耦接於該第二摻雜半導體栓塞。 The memory cell of claim 35, further comprising a programmable resistive memory element over the insulating layer and coupled to the second doped semiconductor plug. 如申請專利範圍第35項所述之記憶胞,其中該第二摻雜半導體栓塞的該摻雜濃度係為該第一摻雜半導體區域的該摻雜濃度的10倍至1000倍。 The memory cell of claim 35, wherein the doping concentration of the second doped semiconductor plug is 10 to 1000 times the doping concentration of the first doped semiconductor region. 如申請專利範圍第35項所述之記憶胞,其中該第一摻雜半導體區域包含一P-型半導體以及第二摻雜半導體栓塞包含一N-型多晶半導體。 The memory cell of claim 35, wherein the first doped semiconductor region comprises a P-type semiconductor and the second doped semiconductor plug comprises an N-type polycrystalline semiconductor. 如申請專利範圍第35項所述之記憶胞,其中該第 一摻雜半導體區域包含一N-型半導體以及第二摻雜半導體栓塞包含一P-型多晶半導體。 Such as the memory cell described in claim 35, wherein the A doped semiconductor region comprises an N-type semiconductor and the second doped semiconductor plug comprises a P-type polycrystalline semiconductor. 如申請專利範圍第35項所述之記憶胞,更包含一電性導電覆蓋層在該第二摻雜半導體栓塞之上。 The memory cell of claim 35, further comprising an electrically conductive cover layer over the second doped semiconductor plug. 如申請專利範圍第40項所述之記憶胞,其中該覆蓋層包含一金屬矽化物。 The memory cell of claim 40, wherein the cover layer comprises a metal halide. 如申請專利範圍第35項所述之記憶胞,更包含一阻障層介於該第一摻雜半導體區域和該第二摻雜半導體栓塞之間。 The memory cell of claim 35, further comprising a barrier layer between the first doped semiconductor region and the second doped semiconductor plug. 如申請專利範圍第42項所述之記憶胞,其中該阻障層包含二氧化矽。 The memory cell of claim 42, wherein the barrier layer comprises cerium oxide. 如申請專利範圍第42項所述之記憶胞,其中該阻障層包含SiNx OyThe memory cell of claim 42, wherein the barrier layer comprises SiN x O y . 如申請專利範圍第42項所述之記憶胞,其中該阻障層具有一厚度在5埃至25埃的範圍之間。 The memory cell of claim 42, wherein the barrier layer has a thickness ranging from 5 angstroms to 25 angstroms. 一種記憶裝置包含:複數條摻雜半導體第一存取線在一第一方向上延伸;複數條第二存取線在一第二方向上延伸;複數個記憶胞,每一記憶胞包含一存取裝置,包括一第一摻雜半導體區域具有該第一導電類型,其 中該第一摻雜半導體區域形成於一單晶半導體基板內,且其中該第一摻雜半導體區域形成在一摻雜半導體第一存取線,一絕緣層在該基板之上包含一介層孔;一第二摻雜半導體栓塞具有不同於該第一導電類型之一第二導電類型,該第二摻雜半導體栓塞包含一多晶半導體,在該第一摻雜半導體區域和該第二摻雜半導體栓塞之間定義出一PN接面,以及一電性導電覆蓋層在該第二摻雜半導體栓塞上;以及一記憶材料與該導電覆蓋層電性連接,該記憶材料位於一對應的第二存取線下方並與其電性連接,其中該第二摻雜半導體栓塞的摻雜濃度係高於該第一摻雜半導體區域的摻雜濃度。 A memory device includes: a plurality of doped semiconductor first access lines extending in a first direction; a plurality of second access lines extending in a second direction; a plurality of memory cells, each memory cell comprising a memory The device includes a first doped semiconductor region having the first conductivity type, The first doped semiconductor region is formed in a single crystal semiconductor substrate, and wherein the first doped semiconductor region is formed on a doped semiconductor first access line, and an insulating layer includes a via hole on the substrate a second doped semiconductor plug having a second conductivity type different from the first conductivity type, the second doped semiconductor plug comprising a polycrystalline semiconductor, the first doped semiconductor region and the second doping A PN junction is defined between the semiconductor plugs, and an electrically conductive cover layer is disposed on the second doped semiconductor plug; and a memory material is electrically connected to the conductive cover layer, the memory material is located in a corresponding second And electrically connected to the access line, wherein the doping concentration of the second doped semiconductor plug is higher than the doping concentration of the first doped semiconductor region. 如申請專利範圍第46項所述之記憶裝置,其中鄰近的半導體第一存取線之間被一溝槽隔離所分隔。 The memory device of claim 46, wherein adjacent semiconductor first access lines are separated by a trench isolation. 如申請專利範圍第46項所述之記憶裝置,其中該第一摻雜半導體區域包含一淡摻雜P-型半導體以及第二摻雜半導體栓塞包含一較濃摻雜N-型多晶半導體,其摻雜濃度係高於該淡摻雜P-型半導體的摻雜濃度,以及該覆蓋層包含一金屬矽化物。 The memory device of claim 46, wherein the first doped semiconductor region comprises a lightly doped P-type semiconductor and the second doped semiconductor plug comprises a more heavily doped N-type polycrystalline semiconductor, The doping concentration is higher than the doping concentration of the lightly doped P-type semiconductor, and the cap layer comprises a metal halide. 如申請專利範圍第48項所述之記憶裝置,其中該第一存取線包含一導電摻雜P-型半導體。 The memory device of claim 48, wherein the first access line comprises a conductively doped P-type semiconductor. 如申請專利範圍第48項所述之記憶裝置,其中該 第一存取線包含一導電摻雜P-型半導體,以及包含一導電覆蓋層在該導電摻雜P-型半導體的表面部位上。 The memory device of claim 48, wherein the The first access line includes a conductively doped P-type semiconductor and includes a conductive cap layer on a surface portion of the conductive doped P-type semiconductor. 如申請專利範圍第46項所述之記憶裝置,其中該第一摻雜半導體區域包含一淡摻雜N-型半導體,以及第二摻雜半導體栓塞包含一較濃摻雜P-型多晶半導體,其摻雜濃度係高於該淡摻雜N-型半導體的摻雜濃度。 The memory device of claim 46, wherein the first doped semiconductor region comprises a lightly doped N-type semiconductor, and the second doped semiconductor plug comprises a more heavily doped P-type polycrystalline semiconductor The doping concentration is higher than the doping concentration of the lightly doped N-type semiconductor. 如申請專利範圍第51項所述之記憶裝置,其中該第一存取線包含一導電摻雜N-型半導體。 The memory device of claim 51, wherein the first access line comprises a conductive doped N-type semiconductor. 如申請專利範圍第51項所述之記憶裝置,其中該第一存取線包含一導電摻雜N-型半導體,以及包含一導電覆蓋層在該導電摻雜N-型半導體的表面部位上。 The memory device of claim 51, wherein the first access line comprises a conductive doped N-type semiconductor and a conductive cap layer is disposed on a surface portion of the conductive doped N-type semiconductor. 如申請專利範圍第50項所述之記憶裝置,更包含一底電極在該覆蓋層和該記憶材料之間。 The memory device of claim 50, further comprising a bottom electrode between the cover layer and the memory material. 如申請專利範圍第50項所述之記憶裝置,更包含一阻障層介於該第一摻雜半導體區域和該第二摻雜半導體栓塞之間。 The memory device of claim 50, further comprising a barrier layer interposed between the first doped semiconductor region and the second doped semiconductor plug. 如申請專利範圍第55項所述之記憶裝置,其中該阻障層包含二氧化矽。 The memory device of claim 55, wherein the barrier layer comprises cerium oxide. 如申請專利範圍第55項所述之記憶裝置,其中該阻障層包含SiNx OyThe memory device of claim 55, wherein the barrier layer comprises SiN x O y . 如申請專利範圍第55項所述之記憶裝置,其中該阻障層具有一厚度在5埃至25埃的範圍之間。 The memory device of claim 55, wherein the barrier layer has a thickness ranging from 5 angstroms to 25 angstroms. 一種記憶胞,包含一存取裝置,其包含:一第一摻雜半導體區域具有一第一導電類型;以及一第二摻雜半導體栓塞具有不同於第一導電類型之一第二導電類型,在該第一摻雜半導體及該第二摻雜半導體栓塞之間定義一PN接面;其中該第一摻雜半導體區域形成於一單晶半導體,以及該第二摻雜半導體栓塞包含一多晶半導體;其中該第二摻雜半導體栓塞的摻雜濃度係高於該第一摻雜半導體區域的摻雜濃度,以及該記憶胞更包含一可程式化電阻記憶元件耦接於該第二摻雜半導體栓塞。 A memory cell comprising an access device comprising: a first doped semiconductor region having a first conductivity type; and a second doped semiconductor plug having a second conductivity type different from the first conductivity type Defining a PN junction between the first doped semiconductor and the second doped semiconductor plug; wherein the first doped semiconductor region is formed in a single crystal semiconductor, and the second doped semiconductor plug comprises a polycrystalline semiconductor The doping concentration of the second doped semiconductor plug is higher than the doping concentration of the first doped semiconductor region, and the memory cell further includes a programmable resistive memory device coupled to the second doped semiconductor embolism. 一種記憶胞包含:一儲存元件,以及一二極體,做為一存取裝置耦接至該儲存元件,包含一第一導電類型的一多晶矽節點、一第二導電類型的一單晶矽節點,該多晶矽節點包含一多晶矽栓塞在一接觸開口中並穿過一特定的介電層,且包含一金屬栓塞在另一接觸開口中並穿過該相同的特定介電層,其中該多晶矽節點的摻雜濃度係高於該單晶矽節點的摻雜濃度。 A memory cell includes: a storage element, and a diode coupled to the storage element as an access device, comprising a polysilicon node of a first conductivity type and a single crystal germanium node of a second conductivity type The polysilicon node includes a polysilicon plug embedded in a contact opening and passing through a specific dielectric layer, and includes a metal plug in the other contact opening and passing through the same specific dielectric layer, wherein the polysilicon node The doping concentration is higher than the doping concentration of the single crystal germanium node. 一種用來製造一記憶胞二極體驅動器的方法,包含:提供一單晶矽半導體基板具有一第一導電類型; 形成一第二導電類型的導電摻雜區域在該半導體基板之一上方區域;形成該第二導電類型的一淡摻雜區域在該導電摻雜區域的一上表面附近之內,該淡摻雜區域具有低於該導電摻雜區域之摻雜濃度的一摻雜濃度;形成溝槽隔離以定義一底驅動器區域條;沈積一第一介電材料以填充該溝槽隔離並覆蓋底驅動器區域條;進行平坦化以露出該第一介電材料和該底電極驅動區域條之一表面;沈積一第二介電材料在該在該第一介電材料和該底驅動器區域條的該表面之上;形成一接觸開口穿透該二介電材料材料以露出在該底驅動器區域條表面的該淡摻雜區域之一區域;形成第一導電類型之一較濃摻雜多晶材料在該接觸開口,該較濃摻雜多晶材料在該淡摻雜區域的該露出區域建立一PN接面,且該較濃摻雜多晶材料的摻雜濃度係高於該淡摻雜區域的摻雜濃度;以及形成一電性導電覆蓋層在該較濃摻雜多晶材料之一表面之上。 A method for fabricating a memory cell driver includes: providing a single crystal germanium semiconductor substrate having a first conductivity type; Forming a conductive doped region of a second conductivity type over a region of the semiconductor substrate; forming a lightly doped region of the second conductivity type within a vicinity of an upper surface of the conductive doped region, the light doping The region has a doping concentration lower than a doping concentration of the conductive doped region; trench isolation is formed to define a bottom driver region strip; a first dielectric material is deposited to fill the trench isolation and cover the bottom driver region strip Flattening to expose a surface of the first dielectric material and the bottom electrode driving region strip; depositing a second dielectric material over the surface of the first dielectric material and the bottom driver region strip Forming a contact opening penetrating the two dielectric material to expose a region of the lightly doped region on the surface of the bottom driver region strip; forming one of the first conductivity types of the more heavily doped polycrystalline material at the contact opening The densely doped polycrystalline material establishes a PN junction in the exposed region of the lightly doped region, and the doping concentration of the densely doped polycrystalline material is higher than the doping concentration of the lightly doped region ;as well as Into an electrically conductive coating layer on one surface of the doped poly thicker polycrystalline material. 如申請專利範圍第61項所述之方法,其中形成第一導電類型之該較濃摻雜多晶材料在該接觸開口包含藉著化學氣相沈積法來沈積該多晶材料以填充該接觸開口,接著以一化學機械沈積法來進行平坦化。 The method of claim 61, wherein the densely doped polycrystalline material forming the first conductivity type comprises depositing the polycrystalline material by chemical vapor deposition to fill the contact opening in the contact opening Then, planarization is performed by a chemical mechanical deposition method. 如申請專利範圍第61項所述之方法,其中形成該電性導電覆蓋層包含在該接觸開口內的該多晶材料上成 長一金屬矽化物。 The method of claim 61, wherein the electrically conductive cover layer is formed on the polycrystalline material in the contact opening. Long one metal halide. 如申請專利範圍第61項所述之方法,更包含形成一阻障層在該較濃摻雜多晶材料和該淡摻雜區域的該露出區域之間。The method of claim 61, further comprising forming a barrier layer between the more heavily doped polycrystalline material and the exposed region of the lightly doped region.
TW98114099A 2008-11-07 2009-04-28 Memory cell access device having a pn-junction with polycrystalline and single-crystal semiconductor regions TWI415316B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/267,453 US8907316B2 (en) 2008-11-07 2008-11-07 Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US12/267,492 US8664689B2 (en) 2008-11-07 2008-11-07 Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions

Publications (2)

Publication Number Publication Date
TW201019516A TW201019516A (en) 2010-05-16
TWI415316B true TWI415316B (en) 2013-11-11

Family

ID=42463778

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98114099A TWI415316B (en) 2008-11-07 2009-04-28 Memory cell access device having a pn-junction with polycrystalline and single-crystal semiconductor regions

Country Status (2)

Country Link
CN (1) CN101740602A (en)
TW (1) TWI415316B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386058B (en) * 2010-09-03 2013-12-11 中芯国际集成电路制造(上海)有限公司 Method for forming monocrystalline silicon layer
US20150028280A1 (en) 2013-07-26 2015-01-29 Micron Technology, Inc. Memory cell with independently-sized elements
TWI575666B (en) * 2015-10-26 2017-03-21 旺宏電子股份有限公司 Three dimensional memory device and method for fabricating the same
US20230037696A1 (en) * 2021-08-06 2023-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. High-density & high-voltage-tolerable pure core memory cell
CN116682844A (en) * 2022-02-22 2023-09-01 长鑫存储技术有限公司 Semiconductor device and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841150A (en) * 1995-06-07 1998-11-24 Micron Technology, Inc. Stack/trench diode for use with a muti-state material in a non-volatile memory cell
US20010054727A1 (en) * 1998-12-03 2001-12-27 Franz Hofmann Integrated circuit configuration and method for manufacturing it
US6521973B2 (en) * 2000-02-15 2003-02-18 Koninklijke Philips Electronics N.V. Semiconductor device with integrated power transistor and suppression diode
US6625057B2 (en) * 2000-11-17 2003-09-23 Kabushiki Kaisha Toshiba Magnetoresistive memory device
US20030211732A1 (en) * 2000-12-20 2003-11-13 Chien Chiang High-resistivity metal in a phase-change memory cell
US20050077631A1 (en) * 2003-10-10 2005-04-14 Taketo Fukuro Semiconductor device
US20060237756A1 (en) * 2005-04-20 2006-10-26 Jae-Hyun Park Phase change memory devices and their methods of fabrication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030048655A1 (en) * 2001-09-10 2003-03-13 El-Sharawy El-Badawy Amien Semiconductor memory cell with leakage current compensation using a tunnel diode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841150A (en) * 1995-06-07 1998-11-24 Micron Technology, Inc. Stack/trench diode for use with a muti-state material in a non-volatile memory cell
US20010054727A1 (en) * 1998-12-03 2001-12-27 Franz Hofmann Integrated circuit configuration and method for manufacturing it
US6521973B2 (en) * 2000-02-15 2003-02-18 Koninklijke Philips Electronics N.V. Semiconductor device with integrated power transistor and suppression diode
US6625057B2 (en) * 2000-11-17 2003-09-23 Kabushiki Kaisha Toshiba Magnetoresistive memory device
US20030211732A1 (en) * 2000-12-20 2003-11-13 Chien Chiang High-resistivity metal in a phase-change memory cell
US20050077631A1 (en) * 2003-10-10 2005-04-14 Taketo Fukuro Semiconductor device
US20060237756A1 (en) * 2005-04-20 2006-10-26 Jae-Hyun Park Phase change memory devices and their methods of fabrication

Also Published As

Publication number Publication date
TW201019516A (en) 2010-05-16
CN101740602A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US8907316B2 (en) Memory cell access device having a pn-junction with polycrystalline and single crystal semiconductor regions
US8313979B2 (en) Phase change memory cell having vertical channel access transistor
US8350316B2 (en) Phase change memory cells having vertical channel access transistor and memory plane
US8525290B2 (en) Method of forming memory cell access device
US8089137B2 (en) Integrated circuit memory with single crystal silicon on silicide driver and manufacturing method
US8664689B2 (en) Memory cell access device having a pn-junction with polycrystalline plug and single-crystal semiconductor regions
US8168538B2 (en) Buried silicide structure and method for making
US8933536B2 (en) Polysilicon pillar bipolar transistor with self-aligned memory element
TWI387103B (en) Fully self-aligned pore-type memory cell having diode access device
US8310864B2 (en) Self-aligned bit line under word line memory array
US8415651B2 (en) Phase change memory cell having top and bottom sidewall contacts
TWI497706B (en) Mushroom type memory cell having self-aligned bottom electrode and diode access device
US9236568B2 (en) Sidewall thin film electrode with self-aligned top electrode and programmable resistance memory
US8237144B2 (en) Polysilicon plug bipolar transistor for phase change memory
US8779408B2 (en) Phase change memory cell structure
TWI415316B (en) Memory cell access device having a pn-junction with polycrystalline and single-crystal semiconductor regions
TWI398974B (en) Integrated circuit device with single crystal silicon on silicide and manufacturing method