TWI404136B - 製作底切蝕刻微結構的製程方法 - Google Patents

製作底切蝕刻微結構的製程方法 Download PDF

Info

Publication number
TWI404136B
TWI404136B TW099111450A TW99111450A TWI404136B TW I404136 B TWI404136 B TW I404136B TW 099111450 A TW099111450 A TW 099111450A TW 99111450 A TW99111450 A TW 99111450A TW I404136 B TWI404136 B TW I404136B
Authority
TW
Taiwan
Prior art keywords
mask
microstructure
substrate
etching
undercut
Prior art date
Application number
TW099111450A
Other languages
English (en)
Other versions
TW201135829A (en
Inventor
Tzyy Jiann Wang
Yueh Hsun Tsou
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW099111450A priority Critical patent/TWI404136B/zh
Priority to US12/842,334 priority patent/US8377320B2/en
Publication of TW201135829A publication Critical patent/TW201135829A/zh
Application granted granted Critical
Publication of TWI404136B publication Critical patent/TWI404136B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00103Structures having a predefined profile, e.g. sloped or rounded grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00563Avoid or control over-etching
    • B81C1/00571Avoid or control under-cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0369Static structures characterized by their profile
    • B81B2203/0384Static structures characterized by their profile sloped profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0135Controlling etch progression
    • B81C2201/0136Controlling etch progression by doping limited material regions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/1204Lithium niobate (LiNbO3)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12045Lithium tantalate (LiTaO3)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Description

製作底切蝕刻微結構的製程方法
本發明係有關於一種製作底切蝕刻微結構的製程方法,可在基板上形成一以微小支柱與基板連結的微結構,以應用於製作各種光波導、光電元件與電子元件,如:高折射率差異之光波導、高品質因數的光共振腔、低電容的光偵測器與微電子元件等,用以提昇元件操作的效能。應用於光波導上,可提昇光場侷限能力,降低光場於波導彎曲處的傳輸損耗,以製作高密度光積體電路;應用於光共振腔上,可降低光場傳播的整圈損耗,提高共振腔品質;應用於光偵測器與微電子元件上,可降低電子元件之電容,提高操作頻率。
以往製作底切蝕刻微結構的製程方法,主要可分成兩種:一是先以遮罩保護基板之局部區域,然後使用非等向性蝕刻技術對基板表面進行第一次蝕刻,使其向下蝕刻到某個預定深度以形成一脊形結構,接下來以等向性蝕刻技術進行第二次蝕刻,可將第一次蝕刻所形成的脊形結構下方與基板連結處之局部區域蝕刻掉,使其與基板分離,以構成底切蝕刻的微結構。但由於此方法受限於等向性蝕刻特性,所能製作的底切蝕刻範圍並不大。
另一種製程方法,是先在基板表面以化學氣相沈積法或分子束磊晶法形成上下二層介電質薄膜,上層薄膜與下層薄膜分別具有不同的蝕刻特性。接下來先以遮罩保護上層薄膜之局部區域,以乾式或濕式蝕刻技術進行蝕刻,先蝕刻上層的介電質薄膜,以構成脊形結構,然後使用具有材料蝕刻選擇性的乾式或濕式蝕刻技術進行蝕刻。此蝕刻技術對上層介電質薄膜不會產生蝕刻作用,但是會蝕刻下層介電質薄膜,藉由控制蝕刻時間,可將脊形結構下方之部份下層薄膜蝕刻掉,如此可以使脊形結構與基板分離,以構成底切蝕刻的微結構。此方法雖可產生較大的底切蝕刻範圍,但製作過程複雜,需先沈積兩層具有不同蝕刻特性的薄膜,且需精確控制蝕刻時間。若蝕刻時間太長,將完全蝕刻掉連接微結構與基板的支柱部份,導致整個微結構脫離基板。而且此種作法不適用於無法用薄膜沈積技術製作的材料,如鈮酸鋰、鉭酸鋰等電光或非線性光學晶體上,或是直接使用基板材料製作元件結構的狀況下。
上述的底切蝕刻微結構可應用於製作各式光積體電路元件或電子元件,以下以高折射率差異之光波導為例,說明此微結構的應用。以往的高折射率差異之光波導製程方法,通常是以乾式或濕式蝕刻技術蝕刻一基板表面,形成一脊形結構。藉由脊形結構與左右兩側空氣的高折射率差異,可將光場在橫向上侷限於脊形結構內,再以其他製程方式來增加垂直方向之折射率差異,以在垂直方向上侷限光場。如此可在水平與垂直方向上侷限光場,可作為一光波導。
然而,如第一圖所示的鈮酸鋰基板上之鈦擴散脊形光波導,脊形結構11內為鈦擴散所產生的折射率增加之等高線13,由於脊形結構11與其下方所連接之基板12之間不具有高折射率差異,當脊形結構11在基板12表面上呈環形或弧狀延伸以構成光波導時,光波導中的傳播光場14(光場輪廓分佈位於脊形結構11右側)容易在脊形結構11之彎曲處外側朝下方的基板12輻射,因而造成光場能量的損失。
為了要減少上述光場損失,需進一步在脊形結構11下方製作出具有高折射率差異之結構,即本發明提出的底切蝕刻微結構。此結構可防止光場往基板12方向輻射,所造成的嚴重光場傳播損失。然而上述兩種底切蝕刻方法都無法在鈮酸鋰、鉭酸鋰等電光或非線性光學晶體上製作出此一結構,必須使用本發明才可達成此一目的。
本發明之目的,是在基板上製作一底切蝕刻之微結構,其大部分與基板分離,僅以一橫截面遠較微結構小的支柱與基板作連結,此底切蝕刻的微結構可應用於製作各種元件結構,如:高折射率差異之光波導、高品質因數的光共振腔、低電容的光偵測器與電子元件等,以提昇元件操作的效能。
為達此目的,本發明提出一創新的製程方法,可製作出上述的底切蝕刻微結構,該微結構製程方法包含:首先在該基板上形成一圓形、或條狀、或其他圖樣之蝕刻遮罩層,以作為乾式蝕刻或是濕式蝕刻的遮罩。接下來在該蝕刻遮罩上方,形成一具有圖樣為 支柱橫截面形狀、範圍較蝕刻遮罩小的離子佈植遮罩。然後對該基板表面進行離子佈植,在無離子佈植遮罩保護的區域,佈植離子會在基板表面下方特定深度位置形成材料結構破壞區;而在離子佈植遮罩保護的區域,佈植離子會完全被阻擋住,不會在基板造成結構破壞。最後,使用乾式蝕刻或是濕式蝕刻技術,對該基板進行蝕刻,在有蝕刻遮罩保護的區域,不會產生蝕刻的現象,但在無蝕刻遮罩保護的區域,蝕刻會往基板深度方向進行,當向下蝕刻至離子佈植造成的材料結構破壞區時,蝕刻會沿著材料結構破壞區橫向進行,蝕刻掉所形成之微結構的下方區域,構成一與基板分離、僅以支柱與基板連結支撐的微結構。
100~300‧‧‧步驟
20‧‧‧基板
21‧‧‧上表面
22‧‧‧材料結構破壞區
31‧‧‧蝕刻遮罩
32‧‧‧離子佈植遮罩
L1‧‧‧第一寬度
L2‧‧‧第二寬度
d1、d2‧‧‧佈植深度
h‧‧‧預定厚度
41‧‧‧微結構
42‧‧‧支柱
50‧‧‧碟形共振腔
第一圖為習知之鈮酸鋰基板上脊形光波導之一示意圖;第二圖為本發明之製作底切蝕刻微結構的製程方法之流程圖;第三圖至第七圖為本發明之製作底切蝕刻微結構的製程方法之各步驟示意圖;以及第八圖為以本發明之製作底切蝕刻微結構的製程方法所製得之具有底切蝕刻微結構的碟形共振腔。
本發明所提出的製作底切蝕刻微結構的製程方法,可應用於鐵電晶體(如鈮酸鋰、鉭酸鋰等)、半導體(如矽、砷化鎵、磷化銦等)、及其他晶體或介電質材料上。在以下的實施例的說明中,將以鈮酸鋰基板上製作具有底切蝕刻微結構之高折射率差異光波導為例,配合圖式,說明本發明之技術內容。
本發明提出的製作底切蝕刻微結構的製程方法之流程圖,如第二圖所示,其製程方法包含有下列步驟:首先,在步驟100中,配合第三圖所示,使用薄膜沈積技術,結合光學微影或電子束微影技術,在一基板20之上表面21上,以半導體製程形成一圓形、或條狀、或其他圖樣之蝕刻遮罩31,以作為乾式蝕刻或濕式蝕刻的遮罩,此蝕刻遮罩31可以是由介電質、金屬等其他材料所構成。然後使用薄膜沈積技術,結合光學微影或電子束微影技術,在該蝕刻遮罩31上方,形成一具有圖樣為支柱橫截面形狀、範圍較蝕刻遮罩31小的離子佈植遮罩32,以作為離子佈植的遮罩。構成此離子佈植遮罩的材料,可以是光阻、介電質、金屬等其他材料。
蝕刻遮罩31具有一第一寬度。在本實施例中,係採用鉻(Cr)作為蝕刻遮罩31的材料,其製作是以射頻磁控濺鍍法與光學微影法形成在基板20之上表面21,其厚度為120nm,其寬度L1為8μm,實際實施時則不以此限,蝕刻遮罩31的材料可為各種有機或無機材料,其製作亦可以其他薄膜沉積方式為之。離子佈植遮罩32具有一第二寬度L2,且第二寬度L2小於第一寬度L1,其寬度L2為3μm,實際實施時不以此限。在本實施例中,該離子佈植遮罩32係利用光阻材料經過塗佈、曝光及顯影等微影製程而形成,其厚度為2 μm,實際實施時亦不以此限,可為各種有機或無機材料。
接下來,在步驟200中,配合第四圖所示,對具有上述兩遮罩層之該基板20之上表面21進行離子佈植。在沒有離子佈植遮罩32保護的區域,所佈植之離子會進入到基板20表面下方之一特定深度 位置,形成一材料結構破壞區22。本實施例所選用的佈植離子為氦離子,佈植能量為1.3MeV,實際實施時則不以此限,可為氫離子或其他離子,視基板20種類予以變化。當離子佈植能量愈大時,離子進入基板的深度愈深,材料結構破壞區22的深度也隨之增加;當離子佈植劑量愈大時,材料結構破壞區22的破壞程度亦隨之增加。
在有離子佈植遮罩32保護的區域,由於受到離子佈植遮罩32的阻擋,在其正下方的佈植離子到達的位置,會與沒有離子佈植遮罩32部份的佈植離子有所不同。
在離子佈植遮罩32保護的區域,需使離子佈植遮罩32厚度達到可完全抵擋佈植離子之程度,以使佈植離子完全不會進入基板20中,而造成基板20材料結構的破壞。當離子佈植遮罩32之厚度大於一預定厚度h,使佈植的離子可停留在離子佈植遮罩32中,使得離子佈植遮罩32正下方之基板20內不具有佈植之離子,亦無材料結構的破壞。
若離子佈植遮罩32厚度不足時,將會有佈植離子進入到基板20中,在較小深度的位置形成破壞區。在這種情況下需注意,勿使離子佈植遮罩32下方之保護區的材料結構破壞範圍,與沒有遮罩保護之區域的材料結構破壞範圍有重疊的狀況,否則蝕刻後將會使整個微結構脫離基板。
此外,蝕刻遮罩31亦會對離子佈植深度產生較小的深度變化。如第四圖中基板20內之虛線所示,未受蝕刻遮罩31阻擋的佈植深度 d1會略大於受到蝕刻遮罩31阻擋的佈植深度d2。
接著,在步驟300中,先如第五圖所示,在完成離子佈植後,將離子佈植遮罩32移除,使用乾式蝕刻或濕式蝕刻技術,對基板20表面沒有蝕刻遮罩31保護的區域進行蝕刻,本實施例選用濕式蝕刻技術,以氫氟酸作為蝕刻溶液。蝕刻主要是往基板20深度方向進行,並向下蝕刻至基板20之離子佈植處。當向下蝕刻至離子佈植所造成的材料結構破壞區22時,由於材料結構破壞區22的蝕刻速度較快,此時蝕刻會橫向地沿著材料結構破壞區22進行。配合對照第四圖所示,由於離子佈植遮罩32範圍較蝕刻遮罩31範圍小,此時蝕刻會往所形成之微結構41下方的材料結構破壞區22進行,使得微結構41的底部被蝕刻掉,僅留下離子佈植遮罩32範圍的下方投影區域沒有被蝕刻,構成一底切蝕刻之微結構41。此微結構41與基板20僅以支柱42所連接。和一般的懸浮式結構相比較,本發明所製作的底切蝕刻之微結構41顯然具有更佳的結構強度。
在本實施例中,蝕刻所採用之蝕刻液為稀釋氫氟酸,實際實施不受此限,可視基板20種類加以變化。此外,本實施例中係採用濕式蝕刻該基板20進行等向性蝕刻,實際實施時,亦可採用其他如反應式離子蝕刻法(RIE;Reactive Ion Etch)等乾式之等向性離子蝕刻方法。
最後,如第七圖所示,在蝕刻完成後,使用鉻蝕刻液將蝕刻遮罩31移除,即完成本發明之微結構41的製作。
當所使用的離子佈植遮罩32與蝕刻遮罩31為條形時,形成的微結構可應用於製作高折射率差異之光波導,使得傳播之模態光場可在上下左右四個方向,皆能高度侷限於底切蝕刻微結構之光波導中。當光波導路徑為曲線時,由於光場侷限能力增強,可降低光場在小曲率半徑光波導中之傳播損耗,有效減少曲率半徑值,如此可有效減少元件面積,提高光積體電路之元件密度,對於提昇光積體電路之效能,降低製作成本將有很大的助益。當光波導路徑為環形時,底切蝕刻微結構所構成的環形波導共振腔,具有較小的全圈光場傳播損失,將可有效提高共振腔的品質因數。當所使用的離子佈植遮罩與蝕刻遮罩為圓形時,將可製作出如第八圖所示之具有底切蝕刻微結構的碟形共振腔50,有效提昇共振腔的共振特性。除此之外,當應用於電子元件上,由於將微結構與基板藉由底切蝕刻來分離,因此可降低元件的內部電容值,可提昇其操作的頻率。
上述本發明所提出之製作底切蝕刻微結構的製程方法,可應用在鐵電晶體(如鈮酸鋰、鉭酸鋰等)、半導體(如矽、砷化鎵、磷化銦等)、及其他晶體或介電質材料上。應用本發明之製程方法於光積體電路元件上,可製作小半徑環形共振元件、各式電光調制與非線性光學元件,並可大幅縮短元件所佔之面積,提高光積體電路之元件密度。應用本發明之製程方法於光偵測器與電子元件上,可製作低電容之高頻元件,以提昇元件之操作頻率,使元件具備良好的高頻操作特性。
惟以上所述者僅為本發明之較佳實施例,並非用以限定本發明之 實施範圍。凡依本發明申請專利範圍所作之等效變化與修飾,皆仍屬本發明專利所涵蓋範圍之內。
100-300‧‧‧步驟編號

Claims (9)

  1. 一種製作底切蝕刻微結構的製程方法,用以在一基板上製作一微結構,該微結構大部份與該基板分離,僅以一橫截面較該微結構小的支柱與該基板連結,該製作底切蝕刻的微結構製程方法包含:(a)在該基板上形成一圓形、或條狀、或其他圖樣之蝕刻遮罩,以作為乾式蝕刻或是濕式蝕刻的遮罩;(b)在該蝕刻遮罩上方,形成一圖樣為支柱橫截面形狀、範圍較該蝕刻遮罩小之離子佈植遮罩,以作為離子佈植的遮罩;(c)對具有該蝕刻遮罩及該離子佈植遮罩的基板表面進行離子佈植,在沒有該離子佈植遮罩的區域,使其在該基板表面下方特定深度位置,形成一材料結構破壞區;以及(d)對該基板表面進行蝕刻,使其向下蝕刻至該基板之材料結構破壞區,接下來蝕刻會沿著材料結構破壞區橫向進行蝕刻,蝕刻掉所形成之微結構的下方區域,構成一與該基板分離、僅以支柱與該基板連結和支撐的微結構。
  2. 如申請專利範圍第1項所述之製作底切蝕刻微結構的製程方法,其中,構成該蝕刻遮罩的材料為光阻、介電質、金屬等可作為蝕刻遮罩的材料。
  3. 如申請專利範圍第1項所述之製作底切蝕刻微結構的製程方法,其中,構成該離子佈植遮罩的材料為光阻、介電質、金屬等可作為離子佈植遮罩的材料。
  4. 如申請專利範圍第1項所述之製作底切蝕刻微結構的製程方法,其中,該蝕刻遮罩係以薄膜沈積技術,結合光學微影或電子束微影技術所形成。
  5. 如申請專利範圍第1項所述之製作底切蝕刻微結構的製程方法,其中,該離子佈植遮罩係以薄膜沈積技術,結合光學微影或電子束微影技術所形成。
  6. 如申請專利範圍第1項所述之製作底切蝕刻微結構的製程方法,其中,步驟(d)中之蝕刻使用濕式蝕刻法或乾式蝕刻法。
  7. 如申請專利範圍第1項所述之製作底切蝕刻微結構的製程方法,其中,在完成步驟(c)中之離子佈植後,將該離子佈植遮罩移除。
  8. 如申請專利範圍第1項所述之製作底切蝕刻微結構的製程方法,其中,包含在步驟(d)之後將該蝕刻遮罩移除。
  9. 如申請專利範圍第1項所述之製作底切蝕刻微結構的製程方法,該方法可應用於製作光波導、光電元件和電子元件。
TW099111450A 2010-04-13 2010-04-13 製作底切蝕刻微結構的製程方法 TWI404136B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099111450A TWI404136B (zh) 2010-04-13 2010-04-13 製作底切蝕刻微結構的製程方法
US12/842,334 US8377320B2 (en) 2010-04-13 2010-07-23 Method of forming an undercut microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099111450A TWI404136B (zh) 2010-04-13 2010-04-13 製作底切蝕刻微結構的製程方法

Publications (2)

Publication Number Publication Date
TW201135829A TW201135829A (en) 2011-10-16
TWI404136B true TWI404136B (zh) 2013-08-01

Family

ID=44761126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099111450A TWI404136B (zh) 2010-04-13 2010-04-13 製作底切蝕刻微結構的製程方法

Country Status (2)

Country Link
US (1) US8377320B2 (zh)
TW (1) TWI404136B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818146B2 (en) * 2011-06-13 2014-08-26 California Institute Of Technology Silica-on-silicon waveguides and related fabrication methods
US9293887B2 (en) 2011-06-17 2016-03-22 California Institute Of Technology Chip-based laser resonator device for highly coherent laser generation
US8917444B2 (en) 2011-06-17 2014-12-23 California Institute Of Technology Chip-based frequency comb generator with microwave repetition rate
US10281648B2 (en) * 2013-07-30 2019-05-07 President And Fellows Of Harvard College Device support structures from bulk substrates
CN107124910B (zh) 2014-01-24 2019-08-23 加州理工学院 稳定的微波频率源
US9595918B2 (en) 2014-03-06 2017-03-14 California Institute Of Technology Stable microwave-frequency source based on cascaded brillouin lasers
US9525398B1 (en) 2014-05-27 2016-12-20 Sandia Corporation Single crystal micromechanical resonator and fabrication methods thereof
WO2016138291A1 (en) 2015-02-26 2016-09-01 California Institute Of Technology Optical frequency divider based on an electro-optical-modulator frequency comb

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662768A (en) * 1995-09-21 1997-09-02 Lsi Logic Corporation High surface area trenches for an integrated ciruit device
US20070281488A1 (en) * 2006-06-02 2007-12-06 Wells David H Methods of fabricating intermediate semiconductor structures by selectively etching pockets of implanted silicon
TW200809952A (en) * 2006-06-02 2008-02-16 Micron Technology Inc Wet etch suitable for creating square cuts in SI and resulting structures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1090006A (en) * 1976-12-27 1980-11-18 Wolfgang M. Feist Semiconductor structures and methods for manufacturing such structures
JPH0249416A (ja) * 1988-08-10 1990-02-19 Sanyo Electric Co Ltd 微細パターンの形成方法
US20020096496A1 (en) * 2000-11-29 2002-07-25 Bela Molnar Patterning of GaN crystal films with ion beams and subsequent wet etching
DE10144337B4 (de) * 2001-09-10 2007-04-19 Siemens Ag Adaptives Regelverfahren
US6784076B2 (en) * 2002-04-08 2004-08-31 Micron Technology, Inc. Process for making a silicon-on-insulator ledge by implanting ions from silicon source
US8278164B2 (en) * 2010-02-04 2012-10-02 International Business Machines Corporation Semiconductor structures and methods of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662768A (en) * 1995-09-21 1997-09-02 Lsi Logic Corporation High surface area trenches for an integrated ciruit device
US20070281488A1 (en) * 2006-06-02 2007-12-06 Wells David H Methods of fabricating intermediate semiconductor structures by selectively etching pockets of implanted silicon
TW200809952A (en) * 2006-06-02 2008-02-16 Micron Technology Inc Wet etch suitable for creating square cuts in SI and resulting structures

Also Published As

Publication number Publication date
US8377320B2 (en) 2013-02-19
TW201135829A (en) 2011-10-16
US20110250397A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
TWI404136B (zh) 製作底切蝕刻微結構的製程方法
CN109541745B (zh) 一种耦合区改进型的微环谐振器及其制作方法
CN110989076B (zh) 一种薄膜铌酸锂单偏振波导及其制备方法
JP4637071B2 (ja) 3次元フォトニック結晶及びそれを用いた機能素子
CN109412020A (zh) 一种倒台型高速半导体激光器芯片及其制备方法
CN111175904B (zh) 一种可调法诺谐振集成器件及其制备方法
CN114608632A (zh) 一种多层多波长多模式多参量微环传感器及制备方法
CN110764185A (zh) 一种低损耗铌酸锂薄膜光波导的制备方法
CN102478685A (zh) 一种soi光子晶体器件
JP2000235128A (ja) スポットサイズ変換光導波路の製法
CN115685598B (zh) 具有包芯电光材料层的波导结构、制备方法及应用
JP4653391B2 (ja) 光制御素子の製造方法
CN104242052A (zh) 环形腔器件及其制作方法
Qin et al. Unidirectional single-mode lasing realization and temperature-induced mode switching in asymmetric GaN coupled cavities
JP5867016B2 (ja) 導波路型光デバイス及びその製造方法
US20230014644A1 (en) Vertically tapered spot size converter and method for fabricating the same
CN110471141B (zh) 光波单向高透射传输的复合格点光子晶体异质结构
TW201344265A (zh) 脊型y分支光波導結構的製作方法
CN110133800B (zh) 可实现宽频带单向高透射的波导型光子晶体异质结构
KR101011681B1 (ko) 습식공정을 이용한 광결정 수동소자의 제조방법
US8506829B2 (en) Semiconductor hollow-core waveguide using photonic crystal gratings
CN100468090C (zh) 吸收型增益耦合分布反馈激光器的制作方法
KR100361097B1 (ko) 유도결합형 플라즈마 식각장치를 이용한 광도파로 제조방법
KR101196727B1 (ko) 습식공정으로 제작된 그리드 구조를 포함한 광결정 공진기 및 그 제조방법
CN117741860A (zh) 选择性外延硅基脊型光波导及制作方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees