TWI403861B - Calculation method, generation method, program, exposure method, and mask fabrication method - Google Patents

Calculation method, generation method, program, exposure method, and mask fabrication method Download PDF

Info

Publication number
TWI403861B
TWI403861B TW097137749A TW97137749A TWI403861B TW I403861 B TWI403861 B TW I403861B TW 097137749 A TW097137749 A TW 097137749A TW 97137749 A TW97137749 A TW 97137749A TW I403861 B TWI403861 B TW I403861B
Authority
TW
Taiwan
Prior art keywords
mask
pattern
optical system
projection optical
generating
Prior art date
Application number
TW097137749A
Other languages
Chinese (zh)
Other versions
TW200931191A (en
Inventor
Kenji Yamazoe
Original Assignee
Canon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kk filed Critical Canon Kk
Publication of TW200931191A publication Critical patent/TW200931191A/en
Application granted granted Critical
Publication of TWI403861B publication Critical patent/TWI403861B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70653Metrology techniques
    • G03F7/70666Aerial image, i.e. measuring the image of the patterned exposure light at the image plane of the projection system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

The present invention provides a calculation method of calculating, by a computer, a light intensity distribution formed on an image plane of a projection optical system, comprising a step of dividing an effective light source formed on a pupil plane of the projection optical system into a plurality of point sources, a step of shifting a pupil function describing a pupil of the projection optical system for each of the plurality of point sources in accordance with positions thereof, thereby generating a plurality of shifted pupil functions, a step of defining a matrix including the plurality of pupil functions, a step of performing singular value decomposition of the matrix, thereby calculating an eigenvalue and an eigenfunction, and a step of calculating the light intensity distribution, based on a distribution of the light diffracted by the pattern of the mask, and the eigenvalue and the eigenfunction.

Description

計算方法、產生方法、程式、曝光方法及遮罩製造方法Calculation method, generation method, program, exposure method, and mask manufacturing method

本發明關於一種計算方法、產生方法、程式、曝光方法以及遮罩製造方法。The present invention relates to a calculation method, a production method, a program, an exposure method, and a mask manufacturing method.

藉由使用光微影術,採用經由投射光學系統將形成於遮罩(或光罩)上的電路圖案投射及轉移至諸如晶圓的基板上之投射曝光設備以製造半導體裝置。隨著近年來之半導體裝置的微圖案化進展,希望投射曝光設備進一步改進解析力(達到更高的解析度)。A semiconductor device is manufactured by using a photolithography method by projecting and transferring a circuit pattern formed on a mask (or a photomask) onto a substrate such as a wafer via a projection optical system. With the recent progress in micropatterning of semiconductor devices, it is desirable for the projection exposure apparatus to further improve the resolution (to achieve higher resolution).

作為用於達到投射光學系統之更高解析度的手段,一般實施較高NA之投射光學系統(增加投射光學系統的數值孔徑(NA)),及縮短曝光的光線。以及,藉由降低k1因子(亦稱為“製程常數”)而改進投射光學系統的解析度之RET(解析度增進技術)亦受到許多關注。As means for achieving higher resolution of the projection optical system, a higher NA projection optical system (increasing the numerical aperture (NA) of the projection optical system) and shortening the exposed light are generally implemented. And RET (resolution enhancement technique) which improves the resolution of the projection optical system by lowering the k1 factor (also referred to as "process constant") has also received much attention.

k1因子越小,則曝光難度越高。習知地,已測得藉由重複試驗多次可忠實地投射電路圖案的曝光條件。亦即,藉此已最佳化曝光(如曝光條件及曝光方法)。然而,目前隨曝光難度增加,基於試驗之曝光條件的偵測需要長時間及高成本。目前為解決此問題,例如藉由電腦而重複曝光模擬以最佳化曝光條件成為主流。模擬技術的主流係所謂的模型為基RET,其基於光學實體模型執行模擬。The smaller the k1 factor, the higher the exposure difficulty. Conventionally, it has been measured that the exposure conditions of the circuit pattern can be faithfully projected by repeating the test a plurality of times. That is, exposure (such as exposure conditions and exposure methods) has been optimized. However, with the increasing difficulty of exposure, the detection of exposure conditions based on experiments requires long time and high cost. To solve this problem, for example, repeated exposure simulation by computer to optimize exposure conditions has become mainstream. The mainstream of analog technology is the so-called model-based RET, which performs simulations based on optical solid models.

模型為基RET大致上使用部分同調影像計算。部分同調影像計算之改進的速度可縮短模型為基RET花費的時間。目前,隨電腦環境進步,藉使用複數個電腦形成平行處理系統而改進計算速度。亦已經提出藉由執行部分同調影像計算之改進的演算法,而較使用電腦形成平行處理系統更有效之改進計算速度的技術。The model-based RET is roughly calculated using partial homology images. The improved speed of partial coherent image calculations can reduce the time it takes for the model to be based on RET. At present, with the advancement of the computer environment, the calculation speed is improved by using a plurality of computers to form a parallel processing system. Techniques for improving computational speeds that are more efficient than using a computer to form a parallel processing system have also been proposed by performing an improved algorithm for partial coherent image computation.

例如,於cris Spence之“Full-chip Lithography Simulation and Design Analysis-How OPC is changing IC Design”,Proceedings of SPIE,U.S.A.,SPIE Press,2005 Vol. 5751,pp.1-14中指出名為SOCS的演算法增加計算的速度(模擬速度)至先前的10000倍。而且,Alfred Kwok-Kit Wong之“Optical Imaging in Projection Microlithography”,U.S.A.,SPIE press,2005,pp. 151-163中說明部分同調成像計算,但未提及計算速度高於使用SOCS演算法所得計算速度之演算法。要注意的是,Alfred Kwok-Kit Wong之“Optical Imaging in Projection Microlithography”,U.S.A.,SPIE press,2005,pp. 151-163視SOCS為同調分解(coherent decomposition)。For example, the calculation of the name SOCS is indicated in "Full-chip Lithography Simulation and Design Analysis-How OPC is changing IC Design" by Cris Spence, Proceedings of SPIE, USA, SPIE Press, 2005 Vol. 5751, pp. 1-14. The method increases the speed of the calculation (simulation speed) to 10,000 times the previous one. Moreover, Alfred Kwok-Kit Wong's "Optical Imaging in Projection Microlithography", USA, SPIE press, 2005, pp. 151-163, illustrates partial homomorphic imaging calculations, but does not mention that the calculation speed is higher than the calculation speed obtained using the SOCS algorithm. Algorithm. It is to be noted that Alfred Kwok-Kit Wong, "Optical Imaging in Projection Microlithography", U.S.A., SPIE press, 2005, pp. 151-163, regards SOCS as coherent decomposition.

遺憾地,SOCS需要許多時間來計算TCC(透射相交技術)及將其分解為本徵值與本徵函數。Unfortunately, SOCS requires a lot of time to calculate the TCC (Transmission Intersection Technique) and decompose it into an eigenvalue and an eigenfunction.

本發明提供一種計算方法,其可計算曝光設備於短時間時期中之TCC。本發明提供一種計算方法,其可計算於短時間時期中形成於投射光學系統之影像平面上的光強度分佈。本發明提供一種產生方法,其可於短時間時期中產生遮罩之圖案資料。The present invention provides a calculation method that can calculate the TCC of an exposure apparatus in a short period of time. The present invention provides a calculation method that calculates a light intensity distribution formed on an image plane of a projection optical system in a short period of time. The present invention provides a method of generating a pattern material of a mask in a short period of time.

根據本發明之第一面向,提供一種計算方法,於使用照射光學系統照射遮罩且經由透射光學系統投射遮罩之圖案的影像時,由電腦計算形成於投射光學系統之影像平面上的光強度分佈,其包含分割步驟,分割形成於投射光學系統之光瞳平面上的有效光源成為複數個點光源、產生步驟,針對各複數個點光源並根據彼等的位置而移動描述投射光學系統之光瞳的光瞳函數,藉此產生複數個移動的光瞳函數、定義步驟,定義於產生步驟中所產生之包括複數個光瞳函數的矩陣,第一計算步驟,執行矩陣的奇異值分解,藉此計算本徵值及本徵函數,以及第二計算步驟,基於由遮罩之圖案所繞射的光強度分佈以及本徵值及本徵函數,計算形成於投射光學系統之影像平面上的光強度分佈。According to a first aspect of the present invention, there is provided a calculation method for calculating a light intensity formed on an image plane of a projection optical system by a computer when an illumination optical system is used to illuminate a mask and an image of a pattern of a mask is projected through the transmission optical system a distribution comprising a dividing step of dividing an effective light source formed on a pupil plane of the projection optical system into a plurality of point light sources, generating a step of moving light describing the projection optical system for each of the plurality of point light sources and according to their positions a pupil function of the pupil, thereby generating a plurality of moving pupil functions, defining steps, defining a matrix comprising a plurality of pupil functions generated in the generating step, the first calculating step, performing singular value decomposition of the matrix, borrowing The calculating the eigenvalue and the eigenfunction, and the second calculating step, calculating the light formed on the image plane of the projection optical system based on the light intensity distribution and the eigenvalue and the eigenfunction diffracted by the pattern of the mask Intensity distribution.

根據本發明之第二面向,提供一種藉由電腦產生用於包括投射光學系統之曝光設備的遮罩之圖案的資料之產生方法,其包含分割步驟,分割形成於投射光學系統之光瞳平面上的有效光源成為複數個點光源、產生步驟,根據該等點光源的位置而針對各複數個點光源移動描述投射光學系統之光瞳的光瞳函數,藉此產生複數個移動的光瞳函數、定義步驟,定義包括於產生步驟中所產生之複數個光瞳函數之矩陣、第一計算步驟,執行定義步驟中所定義之矩陣的奇異值分解,藉此計算本徵值及本徵函數、第二計算步驟,當插入目標圖案的元素至投射光學系統的物件平面上時,基於藉由目標圖案所繞射的光之分佈以及第一計算步驟中所計算的本徵值及本徵函數,計算表示元素彼此影響的一映像,以及資料產生步驟,基於第二計算步驟中所計算的映像,產生遮罩之圖案的資料。According to a second aspect of the present invention, there is provided a method of generating a material for generating a pattern of a mask for an exposure apparatus including a projection optical system by a computer, comprising a dividing step formed on a pupil plane of the projection optical system The effective light source becomes a plurality of point light sources, and the generating step moves a pupil function describing the pupil of the projection optical system for each of the plurality of point light sources according to the position of the point light sources, thereby generating a plurality of moving pupil functions, a defining step of defining a matrix comprising a plurality of pupil functions generated in the generating step, a first calculating step, performing a singular value decomposition of the matrix defined in the defining step, thereby calculating an eigenvalue and an eigenfunction, a second calculating step of calculating, based on the distribution of light diffracted by the target pattern and the eigenvalues and eigenfunctions calculated in the first calculation step, when the elements of the target pattern are inserted onto the object plane of the projection optical system An image indicating that elements interact with each other, and a data generation step that generates a mask based on the image calculated in the second calculation step Data pattern.

根據本發明之第三面向,提供一種儲存程式之儲存媒體,當使用照明光學系統照明遮罩並且經由投射光學系統投射遮罩的圖案之影像至基板上時,程式係用於令電腦執行計算形成於投射光學系統之影像平面上的光強度分佈,程式令電腦執行分割步驟,分割形成於投射光學系統之光瞳平面上的有效光源成為複數個點光源、產生步驟,根據點光源的位置而針對各複數個點光源移動描述投射光學系統之光瞳的光瞳函數,藉此產生複數個移動的光瞳函數、定義步驟,定義包括產生步驟中所產生之複數個光瞳函數之矩陣、第一計算步驟,執行該定義步驟中所定義之矩陣的奇異值分解,藉此計算本徵值及本徵函數,以及第二計算步驟,基於由遮罩之圖案所繞射的光之分佈,以及第一計算步驟中所計算的本徵值及本徵函數,計算投射光學系統之影像平面上所形成的光強度分佈。According to a third aspect of the present invention, there is provided a storage medium for storing a program for causing a computer to perform calculation when an illumination optical system is used to illuminate a mask and project an image of the mask pattern onto the substrate via the projection optical system. The light intensity distribution on the image plane of the projection optical system causes the computer to perform the dividing step, and divides the effective light source formed on the pupil plane of the projection optical system into a plurality of point light sources, and generates steps according to the position of the point light source. Each of the plurality of point sources moves a pupil function describing the pupil of the projection optical system, thereby generating a plurality of moving pupil functions, defining steps, defining a matrix including a plurality of pupil functions generated in the generating step, first a calculating step of performing a singular value decomposition of the matrix defined in the defining step, thereby calculating an eigenvalue and an eigenfunction, and a second calculating step, based on the distribution of light diffracted by the pattern of the mask, and An eigenvalue and an eigenfunction calculated in a calculation step are calculated on the image plane of the projection optical system The light intensity distribution.

根據本發明之第四面向,提供一種儲存程式之儲存媒體,程式令電腦執行產生供包括投射光學系統之曝光設備的遮罩之圖案的資料之處理,程式令電腦執行分割步驟,分割形成於投射光學系統之光瞳平面上的有效光源成為複數個點光源、產生步驟,根據點光源的位置而針對各複數個點光源移動描述投射光學系統之光瞳的光瞳函數,藉此產生複數個移動的光瞳函數、定義步驟,定義包括產生步驟中所產生之複數個光瞳函數之矩陣、第一計算步驟,執行定義步驟中所定義之矩陣的奇異值分解,藉此計算本徵值及本徵函數、第二計算步驟,當插入目標圖案的元素至投射光學系統的物件平面上時,基於藉由目標圖案所繞射的光之分佈以及第一計算步驟中所計算的本徵值及本徵函數,計算表示元素彼此影響的映像,以及資料產生步驟,基於第二計算步驟中所計算的映像,產生遮罩之圖案的資料。According to a fourth aspect of the present invention, a storage medium storing a program for causing a computer to execute processing for generating a pattern of a mask for an exposure device including a projection optical system, the program causing a computer to perform a segmentation step, and dividing into a projection The effective light source on the pupil plane of the optical system becomes a plurality of point light sources, and the generating step moves the pupil function describing the pupil of the projection optical system for each of the plurality of point light sources according to the position of the point light source, thereby generating a plurality of movements a pupil function, a defining step, defining a matrix comprising a plurality of pupil functions generated in the generating step, a first calculating step, performing a singular value decomposition of the matrix defined in the defining step, thereby calculating the eigenvalue and the present a sign function, a second calculating step, when inserting an element of the target pattern onto the object plane of the projection optical system, based on a distribution of light diffracted by the target pattern and an eigenvalue and a value calculated in the first calculating step a function, an image representing the influence of elements on each other, and a data generation step based on the second calculation step Count of image data to generate the mask pattern.

根據本發明之第五面向,提供一種曝光方法,其包含計算步驟,當使用照明光學系統照明遮罩並且經由投射光學系統投射遮罩的圖案之影像至基板上時,計算形成於投射光學系統之影像平面上的光強度分佈、調整步驟,基於計算步驟中所計算的光強度分佈而調整曝光條件,以及曝光步驟,於調整步驟後,投射遮罩之圖案的影像至基板上;計算步驟包括分割步驟,分割形成於投射光學系統之光瞳平面上的有效光源成為複數個點光源、產生步驟,根據點光源的位置而針對各複數個點光源移動描述投射光學系統之光瞳的光瞳函數,藉此產生複數個移動的光瞳函數、定義步驟,定義包括產生步驟中所產生之複數個光瞳函數之矩陣、第一計算步驟,執行定義步驟中所定義之矩陣的奇異值分解,藉此計算本徵值及本徵函數,以及第二計算步驟,基於由遮罩之圖案所繞射的光之分佈,以及第一計算步驟中所計算的本徵值及本徵函數,計算投射光學系統之影像平面上所形成的光強度分佈。According to a fifth aspect of the present invention, there is provided an exposure method comprising a calculation step of calculating a projection optical system when an illumination optical system is used to illuminate a mask and project an image of the pattern of the mask onto the substrate via the projection optical system The light intensity distribution on the image plane, the adjusting step, adjusting the exposure condition based on the calculated light intensity distribution in the calculating step, and the exposing step, after the adjusting step, projecting the image of the mask pattern onto the substrate; the calculating step includes dividing a step of dividing the effective light source formed on the pupil plane of the projection optical system into a plurality of point light sources, and generating a step of moving a pupil function describing the pupil of the projection optical system for each of the plurality of point light sources according to the position of the point light source, Thereby generating a plurality of moving pupil functions, defining steps, defining a matrix comprising a plurality of pupil functions generated in the generating step, a first calculating step, performing singular value decomposition of the matrix defined in the defining step, thereby Calculating the eigenvalue and the eigenfunction, and the second calculation step, based on the mask by the mask The distribution of the diffracted light, and a first step in calculating the eigenvalues and the eigenfunctions calculated in calculating the projected light intensity of the image formed plane of the optical distribution system.

根據本發明之第六面向,提供一種遮罩製造方法,其包含藉由上述產生方法而產生供遮罩的圖案之資料,以及使用所產生的資料製造遮罩。According to a sixth aspect of the present invention, there is provided a mask manufacturing method comprising: generating data of a pattern for a mask by the above-described generating method, and fabricating a mask using the generated data.

根據本發明之第七面向,提供一種曝光方法,其包含以下步驟:藉由上述遮罩製造方法而製造遮罩、照明所製造的遮罩,以及經由投射光學系統將遮罩之圖案的影像投射至基板之上。According to a seventh aspect of the present invention, there is provided an exposure method comprising the steps of: manufacturing a mask made by a mask, illumination by the mask manufacturing method, and projecting an image of a pattern of a mask via a projection optical system Above the substrate.

根據本發明之第八面向,提供一種藉由電腦計算於曝光設備中之透射相交係數之計算方法,曝光設備使用照明光學系統照明遮罩,以及經由投射光學系統投射遮罩之圖案的影像至基板上,計算方法包含分割步驟,分割形成於投射光學系統之光瞳平面上的有效光源成為複數個點光源、產生步驟,根據點光源的位置而針對各複數個點光源移動描述投射光學系統之光瞳的光瞳函數,藉此產生複數個移動的光瞳函數、定義步驟,定義包括產生步驟中所產生之複數個光瞳函數之矩陣,以及計算步驟,基於定義步驟中所定義之矩陣而計算透射相交係數。According to an eighth aspect of the present invention, there is provided a method for calculating a transmission intersection coefficient calculated by a computer in an exposure apparatus, the exposure apparatus illuminating the mask using the illumination optical system, and projecting an image of the pattern of the mask to the substrate via the projection optical system The calculation method includes a dividing step of dividing the effective light source formed on the pupil plane of the projection optical system into a plurality of point light sources, and generating a step of moving the light describing the projection optical system for each of the plurality of point light sources according to the position of the point light source a pupil function, thereby generating a plurality of moving pupil functions, defining steps, defining a matrix comprising a plurality of pupil functions generated in the generating step, and calculating steps based on the matrix defined in the defining step Transmission intersection coefficient.

由以下之例示性實施例之說明配合隨附圖式,本發明之另外的特徵將為顯而易見者。Further features of the present invention will be apparent from the description of the accompanying drawings.

參考隨附圖式,以下將說明本發明之較佳實施例。於全篇圖式中,相同的參考數值代表相同元件,並且不對彼等進行重複說明。The preferred embodiments of the present invention are described below with reference to the accompanying drawings. Throughout the drawings, the same reference numerals are used to refer to the same elements and are not repeated.

舉例來說,本發明可應用至例如曝光設備及顯微鏡中之基於部分同調成像(部分同調成像計算)的光學系統成像計算。本發明亦可應用至用於微機械及用於製造各種裝置之遮罩資料的產生,其中各種裝置係例如半導體晶片諸如IC及LSI、顯示裝置諸如液晶面板、偵測裝置諸如磁頭,以及影像感測裝置諸如CCD。此處的微機械意指藉由應用半導體積體電路製造技術至微結構之製造或機械系統本身之製造微米級複雜機械系統的技術。For example, the present invention is applicable to optical system imaging calculations based on partial homology imaging (partial coherence imaging calculation) in, for example, an exposure apparatus and a microscope. The present invention is also applicable to the generation of mask materials for micromachines and for manufacturing various devices such as semiconductor wafers such as ICs and LSIs, display devices such as liquid crystal panels, detecting devices such as magnetic heads, and image senses. Measuring device such as CCD. Micromechanical herein refers to a technique of manufacturing a micro-scale complex mechanical system by applying a semiconductor integrated circuit manufacturing technique to the fabrication of a microstructure or a mechanical system itself.

本發明中所揭露的觀念可經數學地模化。因此,可實施本發明作為電腦系統之軟體函數。於此實施例中,電腦系統的軟體函數包括具有可執行軟體編碼之程式化,並且執行部分同調成像計算。軟體編碼係經由電腦系統的處理器而執行。於軟體編碼操作期間,儲存編碼或相關資料記錄於電腦平台中。然而,軟體編碼係經常儲存於其他位置或負載於適當的電腦系統之中。可固持軟體編碼於至少一個電腦可讀取媒體,作為一或複數模組。可以上述說明之編碼形式說明本發明的內容,其可用作一或複數軟體產品。The concepts disclosed in the present invention can be mathematically modeled. Thus, the present invention can be implemented as a software function of a computer system. In this embodiment, the software functions of the computer system include stylization with executable software encoding and performing partial homology imaging calculations. The software coding is performed by a processor of the computer system. During the software encoding operation, the stored code or related data is recorded in the computer platform. However, software coding systems are often stored in other locations or loaded into appropriate computer systems. The retentive software is encoded in at least one computer readable medium as one or more modules. The content of the invention may be described in the form of a code as described above, which may be used as one or a plurality of software products.

首先將說明根據此實施例之曝光設備的座標系統。於此實施例中,概略地將曝光設備中的座標系統分為兩類。First, the coordinate system of the exposure apparatus according to this embodiment will be explained. In this embodiment, the coordinate systems in the exposure apparatus are roughly classified into two categories.

第一座標系統定義於遮罩表面(投射光學系統之物件平面)及晶圓表面(投射光學系統之影像平面)上的座標,於此實施例中以(x,y)表示。由投射光學系統之放大率,遮罩表面上的圖案尺寸異於晶圓表面上的圖案尺寸。為簡便說明之故,藉由相乘遮罩表面上的圖案尺寸與下述說明中之投射光學系統的放大率,設定遮罩表面上之圖案尺寸與晶圓表面上之圖案尺寸間的比例為1:1。因為此設定,遮罩表面上的座標系統與晶圓表面上的座標系統間之比例亦變成1:1。The first landmark system is defined on the surface of the mask (the object plane of the projection optical system) and the coordinates of the wafer surface (the image plane of the projection optical system), which is represented by (x, y) in this embodiment. By the magnification of the projection optics, the pattern size on the mask surface is different from the pattern size on the wafer surface. For the sake of simplicity, the ratio between the pattern size on the mask surface and the pattern size on the wafer surface is set by multiplying the pattern size on the surface of the mask and the magnification of the projection optical system in the following description. 1:1. Because of this setting, the ratio between the coordinate system on the surface of the mask and the coordinate system on the surface of the wafer also becomes 1:1.

第二座標系統定義投射光學系統之光瞳平面上的座標,於此實施例中以(f,g)表示。假設投射光學系統之光瞳尺寸為1,藉由正規化的座標系統而定義投射光學系統之光瞳平面上的座標(f,g)。The second coordinate system defines the coordinates on the pupil plane of the projection optical system, which is denoted by (f, g) in this embodiment. Assuming that the pupil size of the projection optical system is 1, the coordinates (f, g) on the pupil plane of the projection optical system are defined by a normalized coordinate system.

於曝光設備中,當沒有遮罩被插入投射光學系統之物件平面上時,稱於投射光學系統之光瞳平面上所形成的光強度分佈為有效光源,於本實施例中以S(f,g)表示。於此實施例中藉由光瞳函數P(f,g)表示投射光學系統之光瞳。一般而言,光瞳函數可包括像差影響(資訊件)及光瞳特性之極化。即便於此實施例中,光瞳函數P(f,g)可包括像差影響及光瞳特性之極化。In the exposure apparatus, when no mask is inserted into the plane of the object of the projection optical system, the light intensity distribution formed on the pupil plane of the projection optical system is an effective light source, in this embodiment, S(f, g) indicates. In this embodiment, the pupil of the projection optical system is represented by the pupil function P(f, g). In general, the pupil function can include polarization effects (information) and polarization of the pupil characteristics. Even in this embodiment, the pupil function P(f, g) may include aberration effects and polarization of the pupil characteristics.

曝光設備藉由部分同調照明而照明遮罩,並將遮罩的圖案(遮罩圖案)投射至晶圓之上。於此實施例中,遮罩圖案包括有關透射的資訊件及由o(x,y)定義相,以及由I(x,y)定義形成於晶圓表面上之光強度分佈(空間影像)。藉由投射光學系統定義由遮罩圖案所繞射之光的振幅,及於此實施例中以a(x,y)表示。The exposure device illuminates the mask by partially coherent illumination and projects the mask pattern (mask pattern) onto the wafer. In this embodiment, the mask pattern includes information about the transmission and a phase defined by o(x, y), and a light intensity distribution (spatial image) formed on the surface of the wafer by I(x, y). The amplitude of the light diffracted by the mask pattern is defined by the projection optical system, and is represented by a(x, y) in this embodiment.

現在說明習知的部分同調成像計算。可粗略地將習知的部分同調成像計算(計算投射光學系統之影像平面上的光強度分佈)分為三類。A conventional partial homology imaging calculation will now be described. The conventional partial homomorphic imaging calculations (calculating the light intensity distribution on the image plane of the projection optical system) can be roughly classified into three categories.

第一種計算方式係所謂的阿貝法(Abbe method)。更明確地,阿貝法藉由下式計算光強度I(x,y):The first calculation is the so-called Abbe method. More specifically, Abbey calculates the light intensity I(x, y) by:

其中N1 為供數值計算之點源數,及F為傅立葉轉換。Where N 1 is the number of point sources for numerical calculation, and F is Fourier transform.

第二種計算方法計算無本徵值分解的TCC。TCC係藉由下式所定義:The second calculation method calculates the TCC without eigenvalue decomposition. TCC is defined by the following formula:

參照式(2),由四維函數提供TCC。使用TCC,可藉由下式計算光強度分佈I(x,y):Referring to equation (2), the TCC is provided by a four-dimensional function. Using TCC, the light intensity distribution I(x, y) can be calculated by:

其中,N2 為i、j、k及1可用數值,且其係取決於供數值計算之光瞳分割數。Where N 2 is a usable value of i, j, k and 1, and it depends on the number of pupil divisions for numerical calculation.

第三種計算方法係所謂的SOCS,其將式(2)所表示之TCC分解為複數個本徵值及本徵函數。藉由下式計算光強度分佈I(x,y):The third calculation method is a so-called SOCS that decomposes the TCC represented by the equation (2) into a plurality of eigenvalues and an eigenfunction. The light intensity distribution I(x, y) is calculated by the following formula:

其中λi 為第i個本徵值、Ψi 為第i個本徵函數,以及N3 為供數值計算之點源數。Where λ i is the ith eigenvalue, Ψ i is the ith eigenfunction, and N 3 is the number of point sources for the numerical calculation.

阿貝法適用於小規模計算(小規模模擬)。更具體地,阿貝法適用於相關部分遮罩的模擬,及當改變光學設定(如有效光源、像差及極化)時供檢驗成像表現性的改變。Abefa is suitable for small-scale calculations (small-scale simulation). More specifically, the Abbe method is applicable to the simulation of the relevant partial mask and to the change in the performance of the test image when changing optical settings such as effective light source, aberrations and polarization.

使用TCC之計算方法,亦即使用式(3)的計算方法,使計算速度低於阿貝法及SOCS的計算速度,因為於式(3)中必須執行四極積分。為於式(3)中不使用四極積分而計算光強度分佈,可採用SOCS。SOCS適用於大規模計算(大規模模擬)。Using the calculation method of TCC, that is, using the calculation method of equation (3), the calculation speed is lower than the calculation speed of Abbe and SOCS, because quadrupole integration must be performed in equation (3). To calculate the light intensity distribution without using quadrupole integration in equation (3), SOCS can be used. SOCS is suitable for large-scale computing (large-scale simulation).

於大規模計算中,藉由將遮罩分割成數個區域而執行部分同調成像計算。若沒有改變光學設定,由式(2)所示之TCC不會改變且式(4)中之本徵函數Ψi 亦不會改變,僅需於隨後重複簡單計算,因此SOCS適用於大規模計算。然而,SOCS不適用於小規模計算。In large scale calculations, partial homomorphic imaging calculations are performed by dividing the mask into several regions. If the optical setting is not changed, the TCC shown by equation (2) will not change and the eigenfunction Ψ i in equation (4) will not change. It is only necessary to repeat the simple calculation later, so SOCS is suitable for large-scale calculation. . However, SOCS is not suitable for small-scale calculations.

如同由式(2)所了解者,因為必須進行二次積分以計算TCC(即由四維函數提供TCC),SOCS需要更多時間以計算TCC並且需要大容量的電腦記憶體。SOCS亦需要許多時間以計算本徵值λi 及本徵函數Ψi 。另外,若改變光學設定,於SOCS中必須再次計算TCC。綜上所述,SOCS係不適用於檢驗因改變光學設定之成像表現改變。As understood by equation (2), because quadratic integration must be performed to calculate the TCC (ie, the TCC is provided by a four-dimensional function), the SOCS requires more time to calculate the TCC and requires a large amount of computer memory. SOCS also requires a lot of time to calculate the eigenvalue λ i and the eigenfunction Ψ i . In addition, if the optical setting is changed, the TCC must be calculated again in the SOCS. In summary, the SOCS system is not suitable for testing changes in imaging performance due to changing optical settings.

如上述,習知的計算方法需要大量模擬時間。此外,於先前技術中,必需根據計算目標(亦即所執行的為小規模計算或大規模計算)而選擇性地使用阿貝法及SOCS。As mentioned above, conventional calculation methods require a large amount of simulation time. Further, in the prior art, it is necessary to selectively use the Abbe method and the SOCS according to the calculation target (that is, the small-scale calculation or the large-scale calculation performed).

圖1係根據本發明一面向之顯示執行計算方法的處理設備1之組態的示意方塊圖。1 is a schematic block diagram showing the configuration of a processing device 1 that performs a calculation method in accordance with the present invention.

如圖1所示,處理設備1係由例如通用電腦所形成,以及包括匯流排線10、控制單元20、顯示單元30、儲存單元40、輸入單元50,及媒體介面60。As shown in FIG. 1, the processing device 1 is formed by, for example, a general-purpose computer, and includes a bus bar 10, a control unit 20, a display unit 30, a storage unit 40, an input unit 50, and a media interface 60.

匯流排線10互連控制單元20、顯示單元30、儲存單元40、輸入單元50及媒體介面60。The bus bar 10 interconnects the control unit 20, the display unit 30, the storage unit 40, the input unit 50, and the media interface 60.

控制單元20係由CPU、GPU、DSP或微電腦所形成,以及包括供暫時儲存之快取記憶體。The control unit 20 is formed by a CPU, a GPU, a DSP, or a microcomputer, and includes a cache memory for temporary storage.

顯示單元30係由例如顯示裝置諸如CRT顯示器或液晶顯示器所形成。The display unit 30 is formed of, for example, a display device such as a CRT display or a liquid crystal display.

儲存單元40係由例如記憶體或硬碟所形成。於此實施例中,儲存單元40儲存圖案資料401、有效光源資訊402、NA資訊403、λ資訊404、像差資訊405、極化資訊406,以及光阻資訊407。儲存單元40亦儲存P運算子408、空間影像409、遮罩資料410,及空間影像計算程式411。The storage unit 40 is formed of, for example, a memory or a hard disk. In this embodiment, the storage unit 40 stores the pattern data 401, the effective light source information 402, the NA information 403, the lambda information 404, the aberration information 405, the polarization information 406, and the photoresist information 407. The storage unit 40 also stores a P operator 408, a spatial image 409, a mask data 410, and a spatial image calculation program 411.

圖案資料401係例如設計積體電路中之佈局的圖案之資料(佈局圖案或目標圖案)。The pattern material 401 is, for example, a material (a layout pattern or a target pattern) for designing a pattern of a layout in an integrated circuit.

有效光源資訊402係相關於曝光設備之投射光學系統的光瞳平面上所形成之光強度分佈(有效光源)。The effective light source information 402 is a light intensity distribution (effective light source) formed on the pupil plane of the projection optical system of the exposure apparatus.

NA資訊403係相關於曝光設備之投射光學系統於影像側的數值孔徑。The NA information 403 is related to the numerical aperture of the projection optical system of the exposure device on the image side.

λ資訊404係相關於由曝光設備之光源所發射的光(曝光用光)之波長。The lambda information 404 is related to the wavelength of light (exposure light) emitted by the light source of the exposure device.

像差資訊405係相關於曝光設備之投影光學系統的像差。The aberration information 405 is related to the aberration of the projection optical system of the exposure device.

極化資訊406係相關於由曝光設備之照明設備(照明光學系統)所形成的極化光(照明光的極化狀態)。The polarization information 406 is related to the polarized light (polarization state of the illumination light) formed by the illumination device (illumination optical system) of the exposure device.

光阻資訊407係相關於施加至晶圓的光阻。Photoresist information 407 is related to the photoresist applied to the wafer.

P運算子408係計算空間影像作為晶圓表面上所形成的光強度分佈之方法中的必要矩陣(亦即用於空間影像計算程式411),將於以下詳述之。The P operator 408 is a necessary matrix for calculating a spatial image as a light intensity distribution formed on the surface of the wafer (i.e., for the spatial image calculation program 411), which will be described in detail below.

空間影像409係藉由空間影像計算程式411之計算空間影像(光強度分佈)的結果。The spatial image 409 is a result of calculating a spatial image (light intensity distribution) by the spatial image calculation program 411.

遮罩資料410係實際遮罩(光罩)之資料。遮罩資料410大致上異於圖案資料401。The mask data 410 is the material of the actual mask (mask). The mask data 410 is substantially different from the pattern data 401.

空間影像計算程式411係用於計算空間影像(光強度分佈)的程式。The spatial image calculation program 411 is a program for calculating a spatial image (light intensity distribution).

輸入單元50包括例如鍵盤或滑鼠。The input unit 50 includes, for example, a keyboard or a mouse.

媒體介面60包括例如軟碟驅動器、CD-ROM驅動器及USB介面,且可連接至儲存媒體70。儲存媒體70包括例如軟碟、CD-ROM及USB記憶體。The media interface 60 includes, for example, a floppy disk drive, a CD-ROM drive, and a USB interface, and is connectable to the storage medium 70. The storage medium 70 includes, for example, a floppy disk, a CD-ROM, and a USB memory.

藉由特別說明P運算子408而將於以下闡明如何藉由空間影像計算程式411而計算空間影像409。於此實施例中要注意的是,由λ表示曝光用光之波長,以及由NA表示投射光學系統於影像測上的數值孔徑。亦要注意的是,由σ表示自照明光學系統被導引至遮罩表面之照明光的數值孔徑與投射光學系統之物件測上的數值孔徑間之比值。The spatial image 409 is calculated by the spatial image calculation program 411 by specifically explaining the P operator 408. It is to be noted in this embodiment that λ represents the wavelength of the light for exposure, and NA represents the numerical aperture of the projection optical system for image measurement. It is also noted that σ represents the ratio of the numerical aperture of the illumination light that is directed from the illumination optics to the surface of the mask to the numerical aperture of the object of the projection optics.

曝光設備中之遮罩圖案及空間影像具有部分同調成像關係。如上述,部分同調成像計算係概略地分為三類(見式(1)、(3)及(4))。因為於式(1)及(4)中使用傅立葉轉換F,就傅立葉光學的觀點而言,平面波的總和形成空間影像。以指數[-i2π(fx+gy)]表示各平面波。雖式(3)未清楚顯示傅立葉轉換F,平面波的總和類似地形成空間影像,因為指數[-i2π(fx+gy)]係包括於其中。The mask pattern and the spatial image in the exposure device have a partial coherent imaging relationship. As described above, the partial homology imaging calculation system is roughly classified into three categories (see equations (1), (3), and (4)). Since the Fourier transform F is used in the equations (1) and (4), the sum of the plane waves forms a spatial image from the viewpoint of Fourier optics. Each plane wave is represented by an index [-i2π(fx+gy)]. Although the Fourier transform F is not clearly shown in the equation (3), the sum of the plane waves similarly forms a spatial image because the index [-i2π(fx+gy)] is included therein.

藉此,就光學觀點而言,部分同調成像係基於平面波指數[-i2π(fx+gy)]。另一方面,就數學觀點而言,由正交函數系統定義指數[-i2π(fx+gy)]。於此實施例中,藉由正交函數系統定義平面波,藉此得以計算較短時間時期中的空間影像409。Thus, from an optical point of view, the partial homology imaging is based on the plane wave index [-i2π(fx+gy)]. On the other hand, from a mathematical point of view, the exponent [-i2π(fx+gy)] is defined by an orthogonal function system. In this embodiment, the plane wave is defined by the orthogonal function system, whereby the spatial image 409 in the shorter time period can be calculated.

首先說明計算一維空間影像(光強度分佈)的情況。於此情況中,可以指數(-i2π fx)表示平面波。以下式向量定義正交函數系統:First, the case of calculating a one-dimensional space image (light intensity distribution) will be described. In this case, a plane wave can be expressed by an index (-i2π fx). The following equation vector defines the orthogonal function system:

其中當時,M係f的分割數。Which When M is the number of divisions of f.

現在將說明P運算子408。因為於此實施例中假設式(5)中之M為7,f1 =-2、f2 =-4/3、f3 =-2/3、f4 =0、f5 =2/3、f6 =4/3及f7 =2,如圖2中所示。圖2係概略顯示一維平面波(正交函數系統)之圖表。The P operator 408 will now be explained. Since it is assumed in this embodiment that M in the formula (5) is 7, f 1 = -2, f 2 = -4/3, f 3 = -2/3, f 4 =0, f 5 = 2/3 , f 6 = 4/3 and f 7 = 2, as shown in FIG. 2. Fig. 2 is a diagram schematically showing a one-dimensional plane wave (orthogonal function system).

可藉由(fi )指數(-i2πfi x)表示由遮罩圖案所繞射的光分佈(繞射光分佈)。接著,可以下式表示繞射光分佈的向量∣Φ'>:The light distribution (diffracted light distribution) diffracted by the mask pattern can be expressed by the (f i ) index (-i2πf i x). Then, the vector ∣Φ'> of the diffracted light distribution can be expressed as follows:

其中A 係對角矩陣,其具有繞射光之振幅a(fi )作為對角元素。Wherein A is a diagonal matrix having an amplitude a(f i ) of diffracted light as a diagonal element.

當投射光學系統不具像差時,於之完整範圍中其光瞳具有通過繞射光分量的功能,並且在∣f∣>1的範圍中屏蔽繞射光分量。目有效光源上之一點f'之輸出光相當於藉由f'之投射光學系統之光瞳移動。因此,當自有效光源上之一點f'發出的光係經遮罩圖案繞射時,於範圍中的繞射光分量通過投射光學系統的光瞳,而於∣f-f'∣>1之範圍中投射光學系統的光瞳屏蔽繞射光分量。When the projection optical system is not aberrational, In its complete range its aperture has the function of passing a diffracted light component and shielding the diffracted light component in the range of ∣f∣>1. The output light at one point f' on the effective light source corresponds to the pupil movement of the projection optical system by f'. Therefore, when the light emitted from a point f' on the effective light source is diffracted by the mask pattern, The diffracted light component in the range passes through the pupil of the projection optical system, and the pupil of the projection optical system shields the diffracted light component in the range of ∣f-f'∣>1.

舉例而言,若自有效光源上f=f4 =0發出之光經由遮罩圖案所繞射並由投射光學系統的光瞳所止擋,可以下式表示透射通過投射光學系統之光瞳的繞射光之振幅∣Φ1 >:For example, if the light emitted by f=f 4 =0 from the effective light source is diffracted by the mask pattern and blocked by the diaphragm of the projection optical system, the following equation can be used to indicate the aperture transmitted through the projection optical system. The amplitude of the diffracted light ∣Φ 1 >:

∣Φ1 〉=(0011100)A ∣Φ〉 ...(7)∣Φ 1 〉=(0011100) A ∣Φ> ...(7)

訐算透射通過透射光學系統之光瞳的繞射光之振幅的絕對值平方得到晶圓表面上之光強度分佈。因此,藉由點源f=f4 =0而形成於晶圓表面上的光強度分佈I1 (x)可以下式表示:The light intensity distribution on the surface of the wafer is obtained by calculating the square of the absolute value of the amplitude of the diffracted light transmitted through the pupil of the transmission optical system. Therefore, the light intensity distribution I 1 (x) formed on the surface of the wafer by the point source f=f 4 =0 can be expressed by the following formula:

I1 (x)=〈Φ1 ∣Φ1 〉 ...(8)I 1 (x)=<Φ 1 ∣Φ 1 〉 ...(8)

其中<Φ1 ∣係∣Φ1 >之轉置共軛(伴隨)矩陣。Wherein <Φ 1 | based |Φ 1> conjugate transpose of (with) a matrix.

同樣地,若自有效光源上f=f3 發出之光經由遮罩圖案所繞射並由投射光學系統的光瞳所止擋,可以下式表示透射通過投射光學系統之光瞳的繞射光之振幅∣Φ2 >:Similarly, if the light emitted from f=f 3 on the effective light source is diffracted by the mask pattern and stopped by the pupil of the projection optical system, the following formula represents the diffracted light transmitted through the pupil of the projection optical system. Amplitude ∣Φ 2 >:

∣Φ2 〉=(0001110)A ∣Φ〉 ...(9)∣Φ 2 〉=(0001110) A ∣Φ> ...(9)

因此,藉由點源f=f3 而形成於晶圓表面上的光強度分佈I2 (x)可以下式表示:Therefore, the light intensity distribution I 2 (x) formed on the surface of the wafer by the point source f=f 3 can be expressed by the following formula:

I2 (x)=〈Φ2 ∣Φ2 〉 ...(10)I 2 (x)=<Φ 2 ∣Φ 2 〉 (10)

以及,可視部分同調照明為一組不同調點源。例如,假設有效光源上存在兩個點源,及這些點源的座標為f=0及f=f3 。因為這兩個點源不同調,可以式I1 (x)+I2 (x)(亦即晶圓表面上之光強度的總和)表示由此二點源於晶圓表面上所形成的光強度分佈。And, the visual part of the coherent illumination is a set of different point sources. For example, suppose there are two point sources on the effective source, and the coordinates of these point sources are f=0 and f=f 3 . Since the two point sources are different, the equation I 1 (x) + I 2 (x) (that is, the sum of the light intensities on the surface of the wafer) indicates that the two points originate from the light formed on the surface of the wafer. Intensity distribution.

以下式定義P運算子P 1D The following formula defines the P operator P 1D :

參照式(11),P 運算子P 1D 的各列係根據有效光源平面上各點源的位置而移動投射光學系統之光瞳的向量。更具體地,投射光學系統之光瞳僅需藉由投射光學系統之光瞳平面上的中央位置與各點源的位置間之差異所移動。使用P運算子P 1D ,可以下式表示晶圓表面上所形成的光強度分佈I(x):Referring to equation (11), each column of the P operator P 1D moves the vector of the pupil of the projection optical system in accordance with the position of each point source on the effective light source plane. More specifically, the pupil of the projection optical system only needs to be moved by the difference between the central position on the pupil plane of the projection optical system and the position of each point source. Using the P operator P 1D , the light intensity distribution I(x) formed on the surface of the wafer can be expressed as follows:

要注意的是,符號“+”表示某矩陣之轉置共軛矩陣。參照式(12),光強度分佈I(x)係I1 (x)+I2 (x)。換句諸說,使用P運算子P 1D 得以簡化表示晶圓表面上所形成之作為光強度分佈的空間影像。It should be noted that the symbol "+" represents the transposed conjugate matrix of a matrix. Referring to the formula (12), the light intensity distribution I(x) is I 1 (x) + I 2 (x). In other words, the use of the P operator P 1D simplifies the representation of a spatial image formed on the surface of the wafer as a distribution of light intensity.

可將式(12)重寫成下式:The formula (12) can be rewritten into the following formula:

I(x)=〈Φ'|T 1D |Φ'〉 ...(13)I(x)=<Φ'| T 1D |Φ'〉 ...(13)

T 1D 係由下式所定義之矩陣: T 1D is a matrix defined by the following formula:

由式(14)所定義之矩陣T 1D 說明TCC。為計算P 1D ,僅需移動投射光學系統之光瞳而不需乘法及加法。此使得能夠於較短時間時期中計算P 1D 。又較佳者,因為可藉由相乘P 1D 與其轉置共軛而計算TCC,使用P運算子408得以較使用式(2)更快速地計算TCC。The matrix T 1D defined by the equation (14) illustrates the TCC. To calculate P 1D , it is only necessary to move the pupil of the projection optics without multiplication and addition. This makes it possible to calculate P 1D in a shorter period of time. Still preferably, since the TCC can be calculated by multiplying P 1D and its transposed conjugate, the P operator 408 is used to calculate the TCC faster than using Equation (2).

要注意的是,P 1D 不是正方形矩陣。使用奇異值分解,將P 1D 重寫為下式:It should be noted that P 1D is not a square matrix. Rewrite P 1D to the following using singular value decomposition:

P 1D =WSV  ...(15) P 1D = WSV ...(15)

其中S 為對角矩陣,以及WV 為單式矩陣。將式(15)代入式(12),並使用W + W 為單位矩陣的奇異值分解定理求解得到下式:Where S is a diagonal matrix, and W and V are a single matrix. Substituting equation (15) into equation (12) and solving the singular value decomposition theorem using W + W as the identity matrix yields the following equation:

作為一習知部分同調成像計算方法之SOCS將TCC分解成本徵值及本徵函數,如上所述。因TCC為非常大的矩陣,需要大量時間及大容量記憶體以計算TCC。另外,亦需要大量時間以將TCC分解成本徵值及本徵函數。The SOCS, which is a conventional partial homomorphic imaging calculation method, decomposes the TCC into a cost eigenvalue and an eigenfunction, as described above. Because TCC is a very large matrix, a lot of time and large memory is required to calculate the TCC. In addition, a large amount of time is required to decompose the TCC into a levy value and an eigenfunction.

於此實施例中,執行奇異值分解以用於P運算子408。參照式(14),因P運算子408之元素顯然少於TCC之元素,P運算子408較TCC少的時間來進行奇異值分解。此外,因計算P運算子不需要乘法及加法,可於較短時間時期中計算P運算子408。換句話說,與SOCS相較,使用P運算子408得以用較小量的計算及較小的記憶體容量計算本徵值及本徵函數。此使得可於較短時間期間中計算晶圓表面上所形成之作為光強度分佈的空間影像409。並且,使用式(14)得以於較短時間時期中計算TCC。In this embodiment, singular value decomposition is performed for P operator 408. Referring to equation (14), since the elements of the P operator 408 are obviously less than the elements of the TCC, the P operator 408 performs less singular value decomposition than the TCC. In addition, since the calculation of the P operator does not require multiplication and addition, the P operator 408 can be calculated in a relatively short period of time. In other words, the P operator 408 is used to calculate the eigenvalue and eigenfunction with a smaller amount of computation and a smaller memory capacity than the SOCS. This makes it possible to calculate a spatial image 409 as a light intensity distribution formed on the surface of the wafer in a shorter period of time. Also, the formula (14) is used to calculate the TCC in a shorter period of time.

以上已說明計算一維空間影像(光強度分佈)的情況,以下將說明計算二維空間影像(光強度分佈)的情況。The case of calculating a one-dimensional space image (light intensity distribution) has been described above, and the case of calculating a two-dimensional space image (light intensity distribution) will be described below.

令(fi ,gj )為離散投射光學系統之光瞳平面上的座標。要注意的是i及j的範圍係由1至M。藉由下式之元素的一維矩陣表示繞射光分佈之向量∣Φ'2D >:Let (f i , g j ) be the coordinates on the pupil plane of the discrete projection optical system. It should be noted that the range of i and j is from 1 to M. The vector ∣Φ' 2D > of the diffracted light distribution is represented by a one-dimensional matrix of elements of the following formula:

為了詳細說明∣Φ'2D >,“底面”表示省略小數點後的分數。第n列之∣Φ'2D >係a(fi ,gj )指數[-i2π(fi x+gj y)]假設j=底面[(n-1)/M]+1及i=n-(j-1)×M。以此方式得到二維正交函數系統。To specify ∣Φ' 2D >, "bottom" means the fraction after omitting the decimal point.第's Φ' 2D > system a(f i , g j ) index [-i2π(f i x+g j y)] assumes j = bottom surface [(n-1)/M]+1 and i= N-(j-1)×M. In this way, a two-dimensional orthogonal function system is obtained.

令(f1 ,g1 )為有效光源上之第一點源的座標,自第一點源之輸出光相當於描述藉由(f1 ,g1 )之投射光學系統的光瞳之移動光瞳函數P(f,g)。以P(f+f1 ,g+g1 )表示作用於繞射光上的光瞳函數P1 (f,g)。光瞳函數P1 (f,g)的元素係一維地排列,如式(17)所示者。因此,可以下式一維向量表示光瞳函數P1 (f,g):Let (f 1 , g 1 ) be the coordinate of the first point source on the effective light source, and the output light from the first point source is equivalent to the moving light describing the pupil of the projection optical system by (f 1 , g 1 ) The function P(f, g). The pupil function P 1 (f, g) acting on the diffracted light is represented by P(f + f 1 , g + g 1 ). The elements of the pupil function P 1 (f, g) are arranged one-dimensionally, as shown in the equation (17). Therefore, the pupil function P 1 (f, g) can be expressed as a one-dimensional vector:

P 1 =(P1 (f1 ,g1 )P1 (f2 ,g1 )…P1 (fM ,g1 )P1 (f1 ,g2 )…p1 (fM ,gM )) ...(18) P 1 = (P 1 (f 1, g 1) P 1 (f 2, g 1) ... P 1 (f M, g 1) P 1 (f 1, g 2) ... p 1 (f M, g M )))(18)

為了詳細說明P l ,“底面”表示省略小數點後的分數。P 的第n行為P1 (fi ,gj )假設j=底面[(n-1)/M]+1及i=n-(j-1)×M。以此方式得到二維正交函數系統。In order to explain P l in detail, "bottom surface" means a fraction after omitting the decimal point. The first n lines P 1 P 1 (f i, g j ) a bottom surface assuming j = [(n-1) / M ] +1 and i = n- (j-1) × M. In this way, a two-dimensional orthogonal function system is obtained.

令(f2 ,g2 )為有效光源上之第二點源的座標,以由(f2 ,g2 )移動P(f,g)所得的P(f+f2 ,g+g2 )表示作用於自第二點源所發出光之光瞳函數P2 (f,g)。如同光瞳函數P1 (f,g),可以下式一維向量表示光瞳函數P2 (f,g):So that (f 2, g 2) is a coordinate of the second point source on the effective light source, in the (f 2, g 2) Mobile P (f, g) of the resulting P (f + f 2, g + g 2) Indicates the pupil function P 2 (f, g) acting on the light emitted from the second point source. Like the pupil function P 1 (f, g), may be the one-dimensional vector represents the pupil function P 2 (f, g):

P 2 =(P2 (f1 ,g1 )P2 (f2 ,g1 )…P2 (fM ,g1 )P2 (f1 ,g2 )…P2 (fM ,gM ))...(19) P 2 =(P 2 (f 1 ,g 1 )P 2 (f 2 ,g 1 )...P 2 (f M ,g 1 )P 2 (f 1 ,g 2 )...P 2 (f M ,g M ))...(19)

若有效光源上存在N個點光源,可以下式定義二維P運算子408:If there are N point sources on the effective light source, the two-dimensional P operator 408 can be defined as follows:

使用∣Φ'2DP 2D ,可藉由下式計算晶圓表面上所形成之二維光強度分佈I(x,y):Using ∣Φ' 2D and P 2D , the two-dimensional light intensity distribution I(x, y) formed on the wafer surface can be calculated by:

於式(21)中,P 2D 之奇異值分解得到下式:In equation (21), the singular value decomposition of P 2D yields the following equation:

以此方式,即便於計算二維空間影像(光強度分佈)時,P運算子408的元素少於TCC的元素,且P運算子408不需要複雜的計算。此使得可於較短時間時期中計算晶圓表面上所形成之作為光強度分佈的空間影像409。In this way, even when calculating a two-dimensional spatial image (light intensity distribution), the elements of the P operator 408 are less than the elements of the TCC, and the P operator 408 does not require complicated calculations. This makes it possible to calculate a spatial image 409 as a light intensity distribution formed on the surface of the wafer in a relatively short period of time.

可藉由下式表示由遮罩圖案所繞射之光分量的二維向量組:A two-dimensional vector group of light components diffracted by the mask pattern can be represented by:

參照式(23),Ψ2D 為M列×M行的矩陣,其包括M2 個元素。根據於此介紹之預定規則,運算子(堆疊運算子)Y 將M列×M行矩陣轉換成1列×M2 行(亦即重新排列Ψ2D 的元素)。藉由導入運算子Y ,藉由下式表示二維繞射光分佈之向量∣Φ'2DReferring to the formula (23), Ψ 2D is a matrix of M columns × M rows, which includes M 2 elements. According to the predetermined rule introduced herein, the operator (stacking operator) Y converts the M column x M row matrix into 1 column × M 2 rows (i.e., elements rearranged Ψ 2D ). By introducing the operator Y , the vector ∣Φ' 2D of the two-dimensional diffracted light distribution is represented by the following equation:

∣Φ'2D 〉=Y2D ]T  ...(24)∣Φ' 2D 〉= Y2D ] T ...(24)

令(f1 ,g1 )為有效光源上之第一點源的座標,自第一點源之輸出光相當於投射光學系統的光瞳之移動。以P(f+f1 ,g+g1 )表示作用於繞射光上的光瞳函數P1 (f,g)。因此,可藉由下式表示光瞳函數P1 (f,g):Let (f 1 , g 1 ) be the coordinate of the first point source on the effective light source, and the output light from the first point source corresponds to the movement of the pupil of the projection optical system. The pupil function P 1 (f, g) acting on the diffracted light is represented by P(f + f 1 , g + g 1 ). Therefore, the pupil function P 1 (f, g) can be expressed by the following formula:

同樣地,令(f2 ,g2 )為有效光源上之第二光源的座標,以P(f+f2 ,g+g2 )表示作用於自第二點源所發出光之光瞳函數P2 (f,g)。如同光瞳函數P1 (f,g),可藉由下式表示光瞳函數P2 (f,g):Similarly, let (f 2 , g 2 ) be the coordinate of the second light source on the effective light source, and denote the pupil function of the light emitted from the second point source with P(f+f 2 , g+g 2 ) P 2 (f, g). Like the pupil function P 1 (f, g), the pupil function P 2 (f, g) can be expressed by:

假設有效光源上存有N個點源。使用堆疊運算子Y ,可藉由下式表示二維P運算子408:Assume that there are N point sources on the effective light source. Using the stacking operator Y , the two-dimensional P operator 408 can be represented by:

當由式(24)及(27)計算晶圓表面上所形成之作為光強度分佈的空間影像時,僅需使用式(21)或(22)。When the spatial image formed on the surface of the wafer as the light intensity distribution is calculated by the equations (24) and (27), only the equation (21) or (22) is used.

當計算TCC時,僅需使用下式:When calculating TCC, you only need to use the following formula:

如式(20)及(27)中所指出者,已於上述說明根據P運算子408移動投射光學系統之光瞳以沿列方向形成點源。然而,藉由下式指明之根據P運算子408移動投射光學系統之光瞳以沿列方向形成點源:As indicated in the equations (20) and (27), the pupil of the projection optical system is moved according to the P operator 408 to form a point source in the column direction in the above description. However, the aperture of the projection optical system is moved according to the P operator 408 as indicated by the following equation to form a point source in the column direction:

P 2D =(Y[P ' 1 ] T Y[P ' 2 ] T Y[P ' N ] T )  ...(29) P 2D =(Y[P ' 1 ] T Y[P ' 2 ] T ... Y[P ' N ] T ) (29)

可產生基本上相同的效果。因此,即便以式(29)表示P運算子408時,僅需依此調整正交函數系統之描述。Can produce substantially the same effect. Therefore, even if the P operator 408 is represented by the equation (29), only the description of the orthogonal function system needs to be adjusted accordingly.

圖3係用於詳細解釋藉由空間影像計算程式411之計算空間影像409之方法的流程圖。要注意的是,空間影像計算程式411係由連接至媒體介面60之儲存媒體70所安裝,並且係經由控制單元20而儲存於儲存單元40中。以及,空間影像計算程式411係響應由使用者經輸入單元50之起始命令輸入而啟動,並且係由控制單元20所執行。3 is a flow chart for explaining in detail a method of calculating a spatial image 409 by the spatial image calculation program 411. It is to be noted that the spatial image calculation program 411 is installed by the storage medium 70 connected to the media interface 60 and stored in the storage unit 40 via the control unit 20. And, the spatial image calculation program 411 is activated in response to the user's initial command input via the input unit 50, and is executed by the control unit 20.

於步驟S1002中,控制單元20決定空間影像計算資訊件,其包括有效光源資訊402、NA資訊403、λ資訊404、像差資訊405、極化資訊406、光阻資訊407,及遮罩資料410。更具體地,使用者經由輸入單元50而對處理設備1輸入(選擇)“四極照明”之有效光源資訊、“0.73”之NA資訊、“248nm”之λ資訊、“無像差”之像差資訊、“非極化”之極化資訊、“不考慮”之光阻資訊,及“接觸窗”之遮罩資料。接著,控制單元20於顯示單元30上顯示由使用者輸入之(選擇的)空間影像計算資訊件,並決定彼等。此實施例將例示使用者輸入(選擇)之空間影像計算資訊件係儲存於儲存單元40中的情況。然而,使用者可輸入並非儲存於儲存單元40中之空間影像計算資訊件。In step S1002, the control unit 20 determines a spatial image calculation information piece, which includes effective light source information 402, NA information 403, λ information 404, aberration information 405, polarization information 406, photoresist information 407, and mask data 410. . More specifically, the user inputs (selects) the effective light source information of "quadrupole illumination", the NA information of "0.73", the λ information of "248 nm", and the aberration of "no aberration" to the processing device 1 via the input unit 50. Information, "non-polarized" polarized information, "don't consider" photoresist information, and "contact window" mask data. Next, the control unit 20 displays the (selected) spatial image calculation information input by the user on the display unit 30, and determines them. This embodiment exemplifies a case where the spatial image calculation information piece input (selected) by the user is stored in the storage unit 40. However, the user can input spatial image calculation information that is not stored in the storage unit 40.

於步驟S1004中,控制單元20計算P運算子408。更具體地,控制單元20接收由使用者自儲存單元40所輸入的(選擇的)空間影像計算資訊件。基於空間影像計算資訊件,控制單元20例如由式(20)或(27)計算P運算子408。以及,控制單元20將計算的P運算子408儲存於儲存單元40中。In step S1004, the control unit 20 calculates the P operator 408. More specifically, the control unit 20 receives the (selected) spatial image calculation information input by the user from the storage unit 40. Based on the spatial image computing information, the control unit 20 calculates the P operator 408, for example, by equation (20) or (27). And, the control unit 20 stores the calculated P operator 408 in the storage unit 40.

於步驟S1006中,控制單元20計算空間影像409。更具體地,控制單元20由例如式(21)或(22)使用P運算子408及由使用者輸入的(選擇的)空間影像計算資訊件來計算空間影像409。以及,控制單元20於顯示單元上顯示空間影像409,並將其儲存於儲存單元40中。In step S1006, the control unit 20 calculates the spatial image 409. More specifically, the control unit 20 calculates the spatial image 409 by, for example, the equation (21) or (22) using the P operator 408 and the (selected) spatial image calculation information input by the user. And, the control unit 20 displays the spatial image 409 on the display unit and stores it in the storage unit 40.

以此方式,藉由空間影像計算程式411之計算空間影像409的方法可使用P運算子408計算空間影像409。換句話說,藉由空間影像計算程式411之計算空間影像409的方法可計算空間影像409兒不需要計算SOCS必要的TCC。此使得整體計算可簡化,因此縮短計算空間影像409所需時間。In this manner, the spatial image 409 can be calculated using the P operator 408 by the method of computing the spatial image 409 of the spatial image calculation program 411. In other words, the method of calculating the spatial image 409 by the spatial image calculation program 411 can calculate the TCC necessary for the spatial image 409 without calculating the SOCS. This allows the overall calculation to be simplified, thus reducing the time required to calculate the spatial image 409.

視需要而分析藉由空間影像計算程式411所得之空間影像409的計算結果。空間影像的分析包括例如NILS(正規化強度對數斜率)、對比、失焦特性(DOF特性),以及空間影像與圖案資料401的匹配度。亦可確認空間影像409對光阻的作用。熟此技藝者可採用任何已知的空間影像分析。The calculation result of the spatial image 409 obtained by the spatial image calculation program 411 is analyzed as needed. Analysis of the spatial image includes, for example, NILS (normalized intensity log slope), contrast, out-of-focus characteristics (DOF characteristics), and the matching of the spatial image to the pattern data 401. The effect of the spatial image 409 on the photoresist can also be confirmed. Those skilled in the art can employ any known spatial image analysis.

可應用經由空間影像計算程式411之計算空間影像的方法至各種形式的模型為基RET。The method of calculating a spatial image via the spatial image calculation program 411 can be applied to various forms of the model as the base RET.

於以下實施例中將詳細說明藉由空間影像計算程式411之計算空間影像409的方法之效果、應用此計算方法至模型為基RET,及類似者中之每一者。The effect of the method of computing the spatial image 409 by the spatial image calculation program 411, the application of the calculation method to the model-based RET, and the like will be described in detail in the following embodiments.

<第一實施例><First Embodiment>

將於第一實施例中說明藉由空間影像計算程式411之計算空間影像409的方法之效果。於第一實施例中,使用64位元的Opteron作為CPU,其包括處理設備1的控制單元20,以及使用約10十億位元組作為儲存單元40。使用MATLAB並相較於先前技術(SOCS)計算空間影像409(計算時間)所花時間而產生空間影像計算程式411。The effect of the method of calculating the spatial image 409 by the spatial image calculation program 411 will be explained in the first embodiment. In the first embodiment, a 64-bit Opteron is used. As the CPU, it includes the control unit 20 of the processing device 1, and uses about 10 billion bytes as the storage unit 40. Using MATLAB The spatial image calculation program 411 is generated in comparison with the time taken by the prior art (SOCS) to calculate the spatial image 409 (calculation time).

第一實施例假設之情況為曝光設備使用NA為0.73(對應於NA資訊403)的投射光學系統,以及波長為248nm(對應於λ資訊404)的曝光用光。此外,假設投射光學系統不具象差(對應於像差資訊405)、假設照明光未極化(對應於極化資訊406),以及不考量施加於晶圓上的光阻(對應於光阻資訊407)。假設使用四極照明有效光源,如圖4A所示。假設圖案資料(目標圖案)包括兩個接觸窗圖案。此外,假設各接觸窗圖案的直徑為120nm,及假設各別接觸窗圖案的中心為(-120nm,0nm)及(120nm,0nm)。於此假設之下,遮罩資料410係如圖4B中所示。此外,假設在正常狀態中之投射光學系統之光瞳的分割數為31,及假設執行傅立葉轉換時之投射光學系統之光瞳的分割數為1024。The first embodiment assumes that the exposure apparatus uses a projection optical system having an NA of 0.73 (corresponding to NA information 403) and exposure light having a wavelength of 248 nm (corresponding to λ information 404). In addition, it is assumed that the projection optical system has no aberration (corresponding to the aberration information 405), that the illumination light is not polarized (corresponding to the polarization information 406), and that the photoresist applied to the wafer is not considered (corresponding to the photoresist information) 407). Assume that a four-pole illumination effective source is used, as shown in Figure 4A. It is assumed that the pattern material (target pattern) includes two contact window patterns. Further, it is assumed that the diameter of each contact window pattern is 120 nm, and the centers of the respective contact window patterns are assumed to be (-120 nm, 0 nm) and (120 nm, 0 nm). Under this assumption, the mask data 410 is as shown in FIG. 4B. Further, it is assumed that the number of divisions of the pupil of the projection optical system in the normal state is 31, and the number of divisions of the pupil of the projection optical system when the Fourier transform is performed is assumed to be 1024.

基於上述的空間影像計算資訊件,控制單元20計算P運算子408。此時,計算P運算子408所花的時間係等於或小於0.1杪。以及,控制單元20執行P運算子408的奇異值分解(亦即將其分解為本徵值及本徵函數)。此時,P運算子408之奇異值分解所花的時間為0.4秒。當藉由加入所有的本徵函數而計算完整的空間影像時,得到如圖4C中所示的空間影像409。計算空間影像409所花的時間為約33.0秒。要注意的是,圖4C中所示之空間影像409係假設其最大值為1而正規化。Based on the spatial image calculation information described above, the control unit 20 calculates the P operator 408. At this time, the time taken to calculate the P operator 408 is equal to or less than 0.1 杪. And, the control unit 20 performs singular value decomposition of the P operator 408 (i.e., decomposes it into an eigenvalue and an eigenfunction). At this time, the time taken for the singular value decomposition of the P operator 408 is 0.4 seconds. When a complete spatial image is computed by adding all of the eigenfunctions, a spatial image 409 as shown in Figure 4C is obtained. The time taken to calculate the spatial image 409 is about 33.0 seconds. It is to be noted that the spatial image 409 shown in FIG. 4C is normalized assuming that its maximum value is 1.

接下來使用SOCS計算空間影像。控制單元20基於式(2)而計算TCC。此時,計算TCC所花時間係約1152秒。以及,控制單元20基於式(4)而將TCC分解為本徵值及本徵函數(第一計算步驟)。此時,將TCC分解為本徵值及本徵函數所花時間係約4.9秒。當藉由加入所有的本徵函數而計算完整的空間影像時(第二計算步驟),得到如圖4D中所示之空間影像。計算空間影像所花時間係約1209秒。要注意的是,圖4D中所示之空間影像係假設其最大值為1而正規化。Next, use SOCS to calculate the spatial image. The control unit 20 calculates the TCC based on the equation (2). At this time, the time taken to calculate the TCC is about 1152 seconds. And, the control unit 20 decomposes the TCC into an eigenvalue and an eigenfunction based on the equation (4) (first calculation step). At this time, the time taken to decompose the TCC into the eigenvalue and the eigenfunction is about 4.9 seconds. When a complete spatial image is calculated by adding all of the eigenfunctions (second calculation step), a spatial image as shown in Fig. 4D is obtained. The time taken to calculate the spatial image is approximately 1209 seconds. It is to be noted that the spatial image shown in Fig. 4D is normalized assuming that its maximum value is 1.

以此方式,相較於習知的SOCS,藉由空間影像計算程式411計算空間影像409之方法可於較短時間期間中計算空間影像。當比較圖4c中所示之空間影像409與圖4D中所示之空間影像時,彼等於1.0×10-15 級互相匹配,及因此得到正確的模擬結果。In this manner, the method of calculating the spatial image 409 by the spatial image calculation program 411 can calculate the spatial image in a shorter time period than the conventional SOCS. When the spatial image 409 shown in FIG. 4c is compared with the spatial image shown in FIG. 4D, they are equal to 1.0×10 -15 stages, and thus the correct simulation result is obtained.

並且,空間影像計算程式411可於較短時間期間中計算TCC。如前述,SOCS花約1152秒計算TCC。相反的,於計算P運算子408之後且基於式(28),控制單元20僅花約0.9秒計算TCC。Also, the spatial image calculation program 411 can calculate the TCC in a short period of time. As mentioned above, the SOCS takes about 1152 seconds to calculate the TCC. In contrast, after calculating the P operator 408 and based on equation (28), the control unit 20 calculates the TCC only for about 0.9 seconds.

<第二實施例><Second embodiment>

於第二實施例中將說明考量投射光學系統的像差之時或照明光經極化之時,計算空間影像409的方法。亦將於第二實施例中說明當有效光源具有光強度變異(發光部分的光強度不均勻)時或當藉由遮罩圖案之繞射光的繞射率改變時,計算空間影像409的方法。In the second embodiment, a method of calculating the spatial image 409 when the aberration of the projection optical system is considered or when the illumination light is polarized will be described. The method of calculating the spatial image 409 when the effective light source has a light intensity variation (the light intensity of the light-emitting portion is not uniform) or when the diffraction rate of the diffracted light by the mask pattern is changed will also be described in the second embodiment.

當考量投射光學系統的像差時,僅必須於光瞳函數中包括像差且使用式(27)計算P運算子408。於此情況中,P運算子408的各元素包括對應於投射光學系統的像差之共軛元素。投射光學系統的像差藉此係可包括於式(27)之P'i 中。When considering the aberration of the projection optical system, it is only necessary to include aberrations in the pupil function and calculate the P operator 408 using equation (27). In this case, each element of the P operator 408 includes a conjugate element corresponding to the aberration of the projection optical system. Whereby the aberration of the projection optical system may include a P based on the formula (27) of 'i in.

假設除像差資訊405外之空間影像計算資訊係與第一實施例相同。將50mλ的像差代入弗林吉‧册尼克(Fringe Zernike)多項式之第七項(低級彗星像差)作為像差資訊405。圖5顯示,根據空間影像計算程式411,使用供圖4B中所示之遮罩資料410的P運算子408而計算空間影像409的結果。參照圖5,顯現空間影像的兩個接觸窗具有不同尺寸,即左邊的接觸窗圖案顯現較大空間影像元素。此係因為設定低級彗星像差作為投射光學系統的像差。It is assumed that the spatial image calculation information other than the aberration information 405 is the same as that of the first embodiment. The aberration of 50 mλ is substituted into the seventh item of the Fringe Zernike polynomial (lower coma aberration) as the aberration information 405. 5 shows the result of calculating the spatial image 409 using the P operator 408 for the mask data 410 shown in FIG. 4B according to the spatial image calculation program 411. Referring to Figure 5, the two contact windows that visualize the aerial image have different sizes, i.e., the left contact window pattern exhibits a larger spatial image element. This is because the low-order comet aberration is set as the aberration of the projection optical system.

因失焦為波前像差的一種,其可被包括於藉由空間影像計算程式411之計算空間影像409的方法中。假設施加於晶圓上的光阻為平行板時,可視光阻產生圓形像差。因此可於藉由空間影像計算程式411之計算空間影像409的方法中包括光阻相關的像差。Since the out-of-focus is a type of wavefront aberration, it can be included in the method of calculating the spatial image 409 by the spatial image calculation program 411. Assuming that the photoresist applied to the wafer is a parallel plate, the visible photoresist produces a circular aberration. Therefore, the photoresist-related aberration can be included in the method of calculating the spatial image 409 by the spatial image calculation program 411.

當照明光被極化時,僅必須藉由使對應於投射光學系統的NA之供有效光源的σ為1以三維地表示極化。更具體地,光瞳函數僅需與極化相關之因子相乘。與極化相關的因子包括產生使x極化光維持x極化之效果的因子、產生使x極化光轉為y極化光之效果的因子、產生使x極化光轉為z極化光之效果的因子、產生使y極化光轉為x極化光之效果的因子、產生使y極化光維持y極化之效果的因子,以及產生使y極化光轉為z極化光之效果的因子。因此得到供x極化、y極化,及z極化的三種P運算子。When the illumination light is polarized, it is only necessary to express the polarization three-dimensionally by making the σ of the effective light source corresponding to the NA of the projection optical system 1 . More specifically, the pupil function only needs to be multiplied by the polarization related factor. The factors related to polarization include factors that produce the effect of maintaining x-polarized light for x-polarization, factors that produce the effect of converting x-polarized light into y-polarized light, and generation of x-polarized light into z-polarization. a factor of the effect of light, a factor that produces the effect of converting y-polarized light into x-polarized light, a factor that produces the effect of maintaining y-polarized light for y-polarization, and a generation of y-polarized light for z-polarization The factor of the effect of light. Thus three P operators for x polarization, y polarization, and z polarization are obtained.

可藉由下式計算晶圓表面上所形成的光強度分佈I(x,y):The light intensity distribution I(x, y) formed on the surface of the wafer can be calculated by the following formula:

其中P x P y P z 分別為供x極化、y極化,及z極化的P運算子。Wherein P x , P y and P z are P operators for x polarization, y polarization, and z polarization, respectively.

假設除極化資訊406以外之空間影像計算資訊件係相同於第一實施例。設定所有點源均沿x方向極化以作為極化資訊406。圖6顯示,根據空間影像計算程式411,使用分別為供x極化、y極化,及z極化的P運算子P x P y P z 之計算空間影像的結果。當比較圖6與圖4C時,照明光經極化時的空間影像409較照明光未極化時的空間影像模糊。It is assumed that the spatial image calculation information pieces other than the polarization information 406 are the same as the first embodiment. All point sources are set to be polarized in the x direction as polarization information 406. 6 shows the results of calculating a spatial image using the P operators P x , P y , and P z for x polarization, y polarization, and z polarization, respectively, according to the spatial image calculation program 411. When comparing FIG. 6 with FIG. 4C, the spatial image 409 when the illumination light is polarized is blurred than the spatial image when the illumination light is not polarized.

藉由下式定義P運算子:The P operator is defined by:

其中P pol 係P運算子,其包括極化效果。因P pol 的元素較TCC的元素少,相較於SOCS,使用P pol 得以在較短時間期間中計算空間影像409。Where P pol is a P operator, which includes a polarization effect. Since P pol has fewer elements than TCC, P pol is used to calculate spatial image 409 in a shorter time period than SOCS.

於此得到一個重要的結論。即習知以一個矩陣定義一個P運算子,但根據本發明可以不同矩陣定義複數的P運算子。例如,於第二實施例中藉由考量極化而定義一個P運算子P pol ,但可針對分別極化光分量定義三個P運算子。亦可藉由將有效光源分割成複數個區域而定義複數個P運算子。This is an important conclusion. That is, a P operator is defined by a matrix, but a complex P operator can be defined by different matrices according to the present invention. For example, in the second embodiment, a P operator P pol is defined by considering polarization, but three P operators can be defined for separately polarized light components. A plurality of P operators can also be defined by dividing the effective light source into a plurality of regions.

若有效光源具有變異的光強度(發光部分的光強度不均勻),僅需於P運算子中包括各點源的強度。例如,當第i個點源為Si ,藉由下式定義P運算子:If the effective light source has a variable light intensity (the light intensity of the light-emitting portion is not uniform), it is only necessary to include the intensity of each point source in the P operator. For example, when the i-th point source is S i , the P operator is defined by:

隨遮罩圖案化之微圖案化進展,正常入射時之繞射光分佈經常不同於傾斜入射時之繞射光(亦即繞射率經常改變)。於此情況中,僅需重寫式(27)為下式:As the micropatterning of the mask pattern progresses, the diffracted light distribution at normal incidence is often different from the diffracted light at oblique incidence (ie, the diffraction rate often changes). In this case, it is only necessary to rewrite equation (27) as follows:

要注意的是,式(33)中的P'' i 包括當自第i個點源發出之光傾斜地進入晶圓表面時的繞射率。It is to be noted that P'' i in the equation (33) includes a diffraction rate when light emitted from the i-th point source obliquely enters the surface of the wafer.

<第三實施例><Third embodiment>

第三實施例將說明藉由應用空間影像計算程式411至模型為基RET以計算空間影像之方法的情況。已知OPC(光學鄰近修正)為RET的簡單方法。The third embodiment will explain a case where a method of calculating a spatial image by applying the spatial image calculation program 411 to the model RET is explained. A simple method of OPC (optical proximity correction) is known as RET.

假設除了遮罩資料410以外之空間影像計算資訊相同於第一實施例。於第三實施例中,假設如圖7A中所示之各具有120nm的寬度及840nm的長度之五條桿係作為遮罩資料410。圖7B顯示於此情況中由空間影像計算程式411所計算之空間影像409。當比較圖7A與7B時,遮罩資料410不同於藉由空間影像計算程式411所計算之空間影像409。為解決此問題,基於OPC,改變遮罩資料410以使藉由空間影像計算程式411所計算之空間影像409(亦即由曝光所轉移的圖案)成為近似圖案資料401。It is assumed that the spatial image calculation information other than the mask data 410 is the same as the first embodiment. In the third embodiment, five bar systems each having a width of 120 nm and a length of 840 nm as shown in FIG. 7A are assumed as the mask data 410. FIG. 7B shows the spatial image 409 calculated by the spatial image calculation program 411 in this case. When comparing FIGS. 7A and 7B, the mask data 410 is different from the spatial image 409 calculated by the spatial image calculation program 411. To solve this problem, the mask data 410 is changed based on the OPC so that the spatial image 409 (that is, the pattern transferred by the exposure) calculated by the spatial image calculation program 411 becomes the approximate pattern data 401.

為於OPC中決定光學遮罩資料410,必須重複藉由改變遮罩資料410之供計算空間影像409的迴圈直到空間影像409與圖案資料401間之差異充分地降低為止。為此緣故,當花長時間計算空間影像409時,則花長時間決定光學遮罩資料410。然而,因空間影像計算程式411可於較短時間時期中計算空間影像409,其適用於OPC。In order to determine the optical mask data 410 in the OPC, it is necessary to repeat the loop for calculating the spatial image 409 by changing the mask data 410 until the difference between the spatial image 409 and the pattern data 401 is sufficiently reduced. For this reason, when the spatial image 409 is calculated for a long time, the optical mask data 410 is determined for a long time. However, since the spatial image calculation program 411 can calculate the spatial image 409 in a short period of time, it is suitable for OPC.

更具體地,為了決定光學遮罩資料410,控制單元20重複供上述的五條桿之藉由空間影像計算程式411之計算空間影像409的方法,藉此改變遮罩資料410。以此操作,獲得最終遮罩資料410,其中最左及最右桿各具有134nm的寬度及968nm的長度,左及右起算的第二條桿各具有127nm的寬度及930nm的長度,以及中央桿具有120nm的寬度及929nm的長度。圖7C顯示使用遮罩資料410藉由空間影像計算程式411所計算之空間影像409。當比較圖7B與7C時,圖7C中所示空間影像409較圖7B中所示空間影像409更近似圖案資料401。More specifically, in order to determine the optical mask data 410, the control unit 20 repeats the method of calculating the spatial image 409 by the spatial image calculation program 411 for the above five bars, thereby changing the mask data 410. In this operation, a final mask data 410 is obtained, wherein the leftmost and rightmost rods each have a width of 134 nm and a length of 968 nm, and the left and right second rods each have a width of 127 nm and a length of 930 nm, and a center rod. It has a width of 120 nm and a length of 929 nm. FIG. 7C shows a spatial image 409 calculated by the spatial image calculation program 411 using the mask data 410. When comparing FIGS. 7B and 7C, the spatial image 409 shown in FIG. 7C is more similar to the pattern material 401 than the spatial image 409 shown in FIG. 7B.

以此方式,應用藉由空間影像計算程式411之計算空間影像409的方法至OPC,使可能於較短時間期間中產生遮罩圖案410。In this manner, the method of computing the spatial image 409 by the spatial image calculation program 411 to the OPC is applied, making it possible to generate the mask pattern 410 in a shorter period of time.

<第四實施例><Fourth embodiment>

於第四實施例中將說明,以較先前實施例中之藉由空間影像計算程式411之計算空間影像409的方法更短的時間時期,計算空間影像409的方法。In the fourth embodiment, a method of calculating the spatial image 409 in a shorter time period than the method of calculating the spatial image 409 by the spatial image calculation program 411 in the previous embodiment will be described.

當計算二維空間影像409時,如前述者,可由式(27)表示P運算子408。令L為光瞳分割數,及N為點源數,藉由N列與(2L)2 行的矩陣定義P運算子。因為P運算子之列相互獨立,P運算子的順序為N。換句話說,P運算子之奇異值分解產生N本徵值及N本徵函數。因而N本徵值及N本徵函數對計算完整空間影像409係必要者。然而,實際上,如以下之說明,不需使用N本徵值及N本徵函數。When the two-dimensional space image 409 is calculated, as described above, the P operator 408 can be represented by the equation (27). Let L be the number of pupil divisions, and N be the number of point sources, and define the P operator by a matrix of N columns and (2L) 2 rows. Since the columns of the P operators are independent of each other, the order of the P operators is N. In other words, the singular value decomposition of the P operator produces an N eigenvalue and an N eigenfunction. Therefore, the N eigenvalue and the N eigenfunction are necessary for calculating the complete spatial image 409. However, in practice, as explained below, it is not necessary to use the N eigenvalue and the N eigenfunction.

假設除了遮罩資料410以外之空間影像計算資訊件係相同於第一實施例。於第四實施例中,假設如圖7A中所示之各具有120 nm的寬度及840 nm的長度之五條桿係作為遮罩資料410。It is assumed that the spatial image calculation information piece other than the mask data 410 is the same as the first embodiment. In the fourth embodiment, five bar systems each having a width of 120 nm and a length of 840 nm as shown in FIG. 7A are assumed as the mask data 410.

圖4A中所示之有效光源具有92個點源以供數值計算。此代表有92個本徵值及92個本徵函數。依本徵值平方之遞減順序重排對應於本徵值的本徵函數。The effective source shown in Figure 4A has 92 point sources for numerical calculations. This represents 92 eigenvalues and 92 eigenfunctions. The eigenfunctions corresponding to the eigenvalues are rearranged in descending order of the eigenvalue squared.

圖8A係繪製本徵值平方所得的圖表,假設最大本徵值平方為1而將其正規化。如上述,有92個本徵值。令i為本徵值數,即第i個本徵值,若i為10或以上則第i個本徵值的平方為0.01或以下,如圖8A中所示者。以及,若i為49或以上則第i個本徵值的平方為0.001或以下。以此方式,隨本徵值數i增加,第i本徵值的平方大幅下降。Figure 8A is a plot of the eigenvalue squared, which is normalized assuming that the largest eigenvalue is squared to one. As mentioned above, there are 92 eigenvalues. Let i be the eigenvalue, that is, the i-th eigenvalue, and if i is 10 or more, the square of the i-th eigenvalue is 0.01 or less, as shown in FIG. 8A. And, if i is 49 or more, the square of the i-th eigenvalue is 0.001 or less. In this way, as the eigenvalue i increases, the square of the ith eigenvalue decreases significantly.

令E為所有本徵值之平方的總和,及Ei 為此處之第一至第i個本徵值之平方的總和。當Ei /E=1時,可計算完整的空間影像409。當於完整空間影像409中設定光強度,使中央桿於y=0部分中之線寬為120nm時,最左桿之線寬為98.44nm。Let E be the sum of the squares of all eigenvalues, and E i be the sum of the squares of the first to ith eigenvalues here. When E i /E=1, a complete spatial image 409 can be calculated. When the light intensity is set in the full-space image 409 such that the line width of the center rod in the y=0 portion is 120 nm, the line width of the leftmost rod is 98.44 nm.

隨本徵值數i增加,本徵值的平方大幅下降,以及隨本徵值數i增加,本徵函數之特殊頻率增加。根據此原則,隨本徵值數i增加,用以形成空間影像的第i個本徵值之影響減少。圖8B係顯示完整空間影像與約略空間影像(亦即由一些本徵值及本徵函數所計算之空間影像)之間的差異。於圖8B中,橫座標指示本徵值數i,及縱座標指示當時用第一至第i本徵含數與本徵值計算空間影像時之最左桿之線寬。參照第8B圖,當Ei /E=0.96或以上時(亦即本徵值數i為14或以上),完整空間影像與約略空間影像間之差係0.1nm或以下。因此,不使用92個本徵值及92個本徵函數但使用14個本徵值及14個本徵函數可計算幾乎等於完整空間影像的空間影像。此使得可縮短計算約85%之空間影像所花的時間。As the eigenvalue i increases, the square of the eigenvalue decreases significantly, and as the eigenvalue i increases, the special frequency of the eigenfunction increases. According to this principle, as the number of eigenvalues i increases, the influence of the i-th eigenvalue used to form the spatial image decreases. Figure 8B shows the difference between a full-space image and an approximate spatial image (i.e., a spatial image calculated from some eigenvalues and eigenfunctions). In Fig. 8B, the abscissa indicates the eigenvalue i, and the ordinate indicates the line width of the leftmost stick when the spatial image is calculated using the first to ith eigenvectors and the eigenvalue. Referring to Fig. 8B, when E i /E = 0.96 or more (i.e., the eigenvalue i is 14 or more), the difference between the full-space image and the approximate spatial image is 0.1 nm or less. Therefore, instead of using 92 eigenvalues and 92 eigenfunctions but using 14 eigenvalues and 14 eigenfunctions, a spatial image that is almost equal to a full-space image can be calculated. This makes it possible to shorten the time taken to calculate about 85% of the spatial image.

空間影像所需之準確度視評估目標而不同。經由檢視各種情況,本發明之發明人發現當Ei /E為0.96或以上時,就實際應用觀點而言沒有問題。另外,本發明之發明人發現當Ei /E為0.96或以上時,幾乎所有評估目標均沒有問題。The accuracy required for spatial imaging varies depending on the target of the assessment. By examining various cases, the inventors of the present invention found that when E i /E is 0.96 or more, there is no problem in terms of practical application. Further, the inventors of the present invention found that when E i /E is 0.96 or more, almost all evaluation targets have no problem.

以此方式,根據藉由空間影像計算程式411之計算空間影像409的方法中之評估目標而調整Ei /E,相較於先前實施例可於較短時間時期中計算空間影像409。In this manner, E i /E is adjusted according to the evaluation target in the method of calculating the spatial image 409 by the spatial image calculation program 411, and the spatial image 409 can be calculated in a shorter time period than the previous embodiment.

相較於先前實施例可於較短時間時期中計算空間影像409的另一方法包括壓縮P運算子408的方法。例如,考量一維成像。若P運算子408之第j行之分量皆為0,則第j行之分量根本為非必要者。接著,藉由刪除P運算子408中之所有分量為0的各行,可壓縮P運算子408為下式所示者:Another method of computing a spatial image 409 in a shorter time period than in the previous embodiment includes a method of compressing the P operator 408. For example, consider one-dimensional imaging. If the components of the jth row of the P operator 408 are both 0, the component of the jth row is not necessary at all. Next, by deleting each row of the P operator 408 whose components are 0, the P operator 408 can be compressed as shown in the following equation:

參照式(34),壓縮兩列及七行的P運算子408成為兩列及四行。Referring to the equation (34), the P operator 408 that compresses two columns and seven rows becomes two columns and four rows.

相同地,即便於二維成像中可壓縮P運算子408。更具體地,藉由刪除P運算子408中之所有分量為0的各行可壓縮P運算子408。藉此而使用壓縮的P運算子408使得於較先前實施例更短的時間時期中進行奇異值分解。相較於先前實施例,此使得可於較短時間時期中計算空間影像409。Similarly, the P operator 408 can be compressed even in two-dimensional imaging. More specifically, the P operator 408 can be compressed by deleting each row of the P operator 408 that has a component of zero. The use of the compressed P operator 408 thereby enables singular value decomposition in a shorter time period than in the prior embodiments. This makes it possible to calculate the spatial image 409 in a shorter period of time than in the previous embodiment.

現在詳細說明P運算子408經壓縮的情況。假設使用四極照明的有效光源且有效光源包括712個點源,如圖9A中所示者。圖9B顯示一般根據空間影像計算程式411計算的P運算子408(亦即未經壓縮)。圖9B中所示之P運算子408為712列及16129行的矩陣,其中白部分對應於1,及黑部分對應於0。圖9C顯示經預定方法壓縮的P運算子408。圖9C中所示P運算子408為712列及10641行的矩陣,其中白部分對應於1,及黑部分對應於0。The case where the P operator 408 is compressed will now be described in detail. Assume that an effective source of four-pole illumination is used and that the effective source includes 712 point sources, as shown in Figure 9A. FIG. 9B shows the P operator 408 (ie, uncompressed) that is generally calculated based on the spatial image calculation program 411. The P operator 408 shown in FIG. 9B is a matrix of 712 columns and 16129 rows, in which the white portion corresponds to 1, and the black portion corresponds to 0. Figure 9C shows P operator 408 compressed by a predetermined method. The P operator 408 shown in Figure 9C is a matrix of 712 columns and 10641 rows, where the white portion corresponds to 1, and the black portion corresponds to zero.

圖9B中所示之P運算子408的奇異值分解所花時間為約34.0秒。相對的,圖9C中所示之P運算子408的奇異值分解所花時間為約24.3秒。以此方式,壓縮P運算子408改進了執行P運算子408之奇異值分解的速度。The singular value decomposition of the P operator 408 shown in Figure 9B takes about 34.0 seconds. In contrast, the singular value decomposition of the P operator 408 shown in Figure 9C takes about 24.3 seconds. In this manner, the compression P operator 408 improves the speed at which the singular value decomposition of the P operator 408 is performed.

<第五實施例><Fifth Embodiment>

於第五實施例中將說明一種使用採用P運算子408之模型為基RET以產生遮罩資料410的方法,特別是藉由空間影像計算程式411之計算空間影像409的方法者。此方法藉由於待藉由曝光以轉移的圖案中插入(輔助)圖案以產生遮罩資料410。In the fifth embodiment, a method of using the model of the P operator 408 as the base RET to generate the mask data 410, particularly the method of calculating the spatial image 409 by the spatial image calculation program 411 will be described. This method produces mask material 410 by inserting (auxiliary) patterns into the pattern to be transferred by exposure.

圖10係顯示根據本發明之第五實施例的處理設備1之組態的示意方塊圖。圖10中所示之處理設備1基本上具有與圖1中所示之處理設備1相同的組態,但是儲存單元40另外地儲存遮罩函數412、P映像413,及遮罩產生程式414。此後將統稱有效光源資訊402、NA資訊403、λ資訊404、像差資訊405、極化資訊406、光阻資訊407,遮罩資料410,及遮罩函數412為P映像計算資訊件。Figure 10 is a schematic block diagram showing the configuration of a processing apparatus 1 according to a fifth embodiment of the present invention. The processing apparatus 1 shown in FIG. 10 basically has the same configuration as the processing apparatus 1 shown in FIG. 1, but the storage unit 40 additionally stores a mask function 412, a P map 413, and a mask generating program 414. Hereinafter, the effective light source information 402, NA information 403, λ information 404, aberration information 405, polarization information 406, photoresist information 407, mask data 410, and mask function 412 will be collectively referred to as P image calculation information.

遮罩函數412為用於P映像413(將於以下說明)的參數,並且為自身的圖案資料401或是根據預定規則藉由轉換圖案資料401所獲得者。The mask function 412 is a parameter for the P map 413 (which will be described below), and is the pattern material 401 of its own or obtained by converting the pattern material 401 according to a predetermined rule.

P映像413係藉由使P運算子408的本徵函數乘上繞射光分佈及傅立葉轉換或加上所得的積而獲得之部份同調映像。The P map 413 is a partial homomorphic map obtained by multiplying the eigenfunction of the P operator 408 by the diffracted light distribution and the Fourier transform or adding the resulting product.

現在說明計算P映像413的方法與計算空間影像409間的差異。計算空間影像409的方法係使P運算子408的本徵函數乘上遮罩資料410上之繞射光分佈、傅立葉轉換所得的積,以及計算傅立葉轉換之絕對值平方。接著將絕對值的平方乘上彼等對應本徵值的平方並加上所得的積。以此操作而計算空間影像409。相反的,藉由使P運算子408的本徵函數乘上遮罩資料410上之繞射光分佈、傅立葉轉換所得的積、使傅立葉轉換乘上彼等對應本徵值,及加上所得的積以計算P映像413。因此,空間影像409總是為正值,但P映像413並不一定為正值。P映像413意指表示當於投射光學系統之物件平面上插入複數個圖案元素時彼此相互影響的映像(函數)。The difference between the method of calculating the P map 413 and the calculation of the spatial image 409 will now be described. The method of computing the spatial image 409 is such that the eigenfunction of the P operator 408 is multiplied by the diffracted light distribution on the mask data 410, the product resulting from the Fourier transform, and the square of the absolute value of the Fourier transform. The square of the absolute value is then multiplied by the square of their corresponding eigenvalues and the resulting product is added. The spatial image 409 is calculated in this operation. Conversely, by multiplying the eigenfunction of the P operator 408 by the diffracted light distribution on the mask data 410, the product of the Fourier transform, multiplying the Fourier transform by their corresponding eigenvalues, and adding the resulting product To calculate the P image 413. Therefore, the spatial image 409 is always a positive value, but the P map 413 is not necessarily a positive value. The P map 413 is intended to mean an image (function) that affects each other when a plurality of pattern elements are inserted on the object plane of the projection optical system.

遮罩產生程式414係基於P映像413之用於產生遮罩資料410的程式。The mask generation program 414 is based on the P image 413 for generating a mask data 410.

於以下將說明插入輔助圖案而藉由遮罩產生程式414而產生遮罩資料410的方法。A method of inserting an auxiliary pattern to generate a mask data 410 by mask generation of a program 414 will be described below.

第五實施例假設曝光設備使用NA為0.73之投射光學系統(對應於NA資訊403),以及曝光用光之波長為248nm(對應於λ資訊404)的情況。此外,假設投射光學系統不具像差(對應於像差資訊405)、假設照明光非極化(對應於極化資訊406),以及不考量施加於晶圓上的光阻(對應於光阻資訊407)。假設有效光源(對應於有效光源資訊402)使用四極照明,如圖11A中所示者。假設圖案資料(目標圖案)401係側邊長度為120nm之隔絕的接觸窗圖案,如圖11B中所示者。The fifth embodiment assumes that the exposure apparatus uses a projection optical system having an NA of 0.73 (corresponding to NA information 403) and a case where the wavelength of exposure light is 248 nm (corresponding to λ information 404). Furthermore, it is assumed that the projection optical system has no aberration (corresponding to the aberration information 405), that the illumination light is non-polarized (corresponding to the polarization information 406), and that the photoresist applied to the wafer is not considered (corresponding to the photoresist information) 407). It is assumed that the effective light source (corresponding to the effective light source information 402) uses quadrupole illumination, as shown in Figure 11A. It is assumed that the pattern material (target pattern) 401 is a contact window pattern having a side length of 120 nm, as shown in FIG. 11B.

亦假設第五實施例有具清楚孔徑的暗視野。於此情況中,圖案係形成於受曝光用光照射的光阻部分上。It is also assumed that the fifth embodiment has a dark field of view with a clear aperture. In this case, the pattern is formed on the photoresist portion irradiated with the light for exposure.

因可設定各種值為曝光用光的波長λ以及曝光設備中之投射光學系統的數值孔徑NA,較佳藉由(λ/NA)正規化遮罩圖案的尺寸。例如,若λ=248nm且NA=0.73,藉由上述方法使尺寸為100nm之圖案正規化為0.29。此後稱此正規化為k1轉換。Since the various values can be set to the wavelength λ of the exposure light and the numerical aperture NA of the projection optical system in the exposure apparatus, it is preferable to normalize the size of the mask pattern by (λ/NA). For example, if λ = 248 nm and NA = 0.73, the pattern having a size of 100 nm is normalized to 0.29 by the above method. This is usually referred to as the k1 conversion.

直徑為120nm之隔離的接觸窗圖案之k1轉換值為0.35。若k1轉換值為0.5或以下,得到正弦空間影像。為最佳使用正弦波特性,習知地於隔離的接觸窗圖案之直徑的1/2週期處插入輔助圖案。例如,若作為所欲圖案之隔離的接觸窗圖案之中心位於(0,0),於八個位置插入有輔助圖案,即(±240,0)、(0,±240)、(240,±240)及(-240,±240)。The isolated contact window pattern having a diameter of 120 nm has a k1 conversion value of 0.35. If the k1 conversion value is 0.5 or less, a sinusoidal space image is obtained. To best use the sinusoidal characteristics, an auxiliary pattern is conventionally inserted at a half cycle of the diameter of the isolated contact window pattern. For example, if the center of the contact window pattern as the desired pattern is located at (0, 0), an auxiliary pattern is inserted at eight positions, namely (±240, 0), (0, ±240), (240, ± 240) and (-240, ±240).

於遮罩產生程式414中,首先設定遮罩函數412為目標圖案本身,即隔離的接觸窗圖案之直徑為120nm。In the mask generation program 414, the mask function 412 is first set to the target pattern itself, that is, the diameter of the isolated contact window pattern is 120 nm.

如第四實施例中已說明者,隨P運算子408之本徵值增加,用以形成空間影像409之P運算子408的本徵函數之影響增加。為達此狀態,依本徵值平方的遞減順序重排P運算子408的本徵值。此後稱以此方式重排之對應於第i個本徵值之本徵函數為第i個本徵函數。As explained in the fourth embodiment, as the eigenvalue of the P operator 408 increases, the effect of the eigenfunction of the P operator 408 used to form the spatial image 409 increases. To achieve this state, the eigenvalues of the P operator 408 are rearranged in descending order of the eigenvalue squared. Hereinafter, the eigenfunction corresponding to the i-th eigenvalue rearranged in this manner is referred to as the i-th eigenfunction.

P運算子408之第一本徵函數對形成空間影像409的影響最大。為此緣故,僅需考量P運算子408的第一本徵函數。使P運算子408的第一本徵函數乘上遮罩函數412之繞射光分佈,並使所得的積經傅立葉轉換。圖11C顯示以此方式計算的P映像413。The first eigenfunction of P operator 408 has the greatest impact on forming spatial image 409. For this reason, only the first eigenfunction of the P operator 408 needs to be considered. The first eigenfunction of P operator 408 is multiplied by the diffracted light distribution of mask function 412 and the resulting product is Fourier transformed. Figure 11C shows the P image 413 calculated in this manner.

於圖11C中,由白色虛線環繞之AR1至AR8區域中的值相當大。換句話說,經由AR1至AR8區域所繞射的光分量干擾經由目標圖案所繞射的光分量,藉此改進影像強度。因此,當於白色虛線環繞之AR1至AR8區域插入開放性圖案時,於位置(0,0)之影像強度增加。In Fig. 11C, the values in the AR1 to AR8 regions surrounded by white dotted lines are quite large. In other words, the light component diffracted via the AR1 to AR8 regions interferes with the light component that is diffracted via the target pattern, thereby improving the image intensity. Therefore, when an open pattern is inserted in the AR1 to AR8 area surrounded by a white dotted line, the image intensity at the position (0, 0) increases.

將輔助圖案HP1至HP8插入由白色虛線環繞之AR1至AR8區域中,如圖11D中所示者。如上述,此原意係藉由曝光而轉移中心位於(0,0)之隔離的接觸窗圖案至晶圓表面上。當分析P映像413時,P映像413具峰值的位置為(0,0)。設定輔助圖案HP1至HP8使得與圖案資料401具相同尺寸之主要圖案SP的中心成為(0,0)。接著藉使用圖11D中所示之遮罩圖案製造遮罩作為遮罩資料410。以此操作,由輔助圖案HP1至HP8所繞射的光分量作用於由主要圖案SP所繞射的光分量上。此使得可轉移隔離的接觸窗圖案作為具高準確度的目標圖案,因此改進解析表現性。The auxiliary patterns HP1 to HP8 are inserted into the AR1 to AR8 areas surrounded by white dotted lines as shown in Fig. 11D. As described above, the original intention is to transfer the isolated contact window pattern centered at (0, 0) onto the wafer surface by exposure. When the P map 413 is analyzed, the position of the P map 413 having a peak is (0, 0). The auxiliary patterns HP1 to HP8 are set such that the center of the main pattern SP having the same size as the pattern material 401 becomes (0, 0). A mask is then fabricated as the mask material 410 by using the mask pattern shown in FIG. 11D. In this operation, the light component diffracted by the auxiliary patterns HP1 to HP8 acts on the light component diffracted by the main pattern SP. This allows the transferable isolated contact window pattern to be a target pattern with high accuracy, thus improving analytical performance.

圖12顯示不具輔助圖案之遮罩的成像表現性、根據先前技術插入輔助圖案之遮罩的成像表現性,以及根據第五實施例插入輔助圖案(亦即藉由遮罩產生程式414)之遮罩的成像表現性之比較結果。於圖12中,橫座標指示失焦量以及縱座標指示接觸窗圖案的直徑(CD)。各遮罩的成像表現性係基於隔離的接觸窗之直徑(CD)的改變相對於失焦的改變而評估。先前技術中各輔助圖案的尺寸為90nm×90nm。將於以下說明第五實施例中各輔助圖案的尺寸。Figure 12 shows the imaging performance of a mask without an auxiliary pattern, the imaging representation of a mask inserted according to the prior art, and the masking of the auxiliary pattern (i.e., by the mask generating program 414) according to the fifth embodiment. The comparison of the imaging performance of the hood. In Fig. 12, the abscissa indicates the amount of defocus and the ordinate indicates the diameter (CD) of the contact window pattern. The imaging performance of each mask is evaluated based on the change in diameter (CD) of the isolated contact window relative to the change in out-of-focus. The size of each auxiliary pattern in the prior art is 90 nm x 90 nm. The size of each auxiliary pattern in the fifth embodiment will be described below.

參照圖12比較不具輔助圖案之遮罩的成像表現與根據先前技術插入輔助圖案之遮罩的成像表現。於此情況中,根據先前技術插入輔助圖案之遮罩的相對於遮罩失焦改變之隔離的接觸窗圖案之半徑的改變係明顯小於不具輔助圖案之遮罩者。換句話說,根據先前技術插入輔助圖案之遮罩顯現較不具輔助圖案之遮罩為佳的成像特徵。Referring to Figure 12, the imaging representation of a mask without an auxiliary pattern is compared to the imaging representation of a mask inserted with an auxiliary pattern according to the prior art. In this case, the change in the radius of the contact window pattern of the mask inserted into the auxiliary pattern according to the prior art with respect to the mask out of focus change is significantly smaller than that of the mask without the auxiliary pattern. In other words, a mask that inserts an auxiliary pattern according to the prior art exhibits a better imaging feature than a mask with no auxiliary pattern.

同樣地,比較根據先前技術插入輔助圖案之遮罩的成像表現與根據第五實施例插入輔助圖案之遮罩的成像表現。參照圖12,根據第五實施例插入輔助圖案之遮罩顯現較根據先前技術插入輔助圖案之遮罩為佳的成像特徵。Similarly, the imaging performance of the mask in which the auxiliary pattern is inserted according to the prior art is compared with the imaging performance of the mask in which the auxiliary pattern is inserted according to the fifth embodiment. Referring to Fig. 12, the mask in which the auxiliary pattern is inserted according to the fifth embodiment exhibits an imaging feature superior to the mask in which the auxiliary pattern is inserted according to the prior art.

現在詳細說明圖11C中所示之P映像413。於圖11c所示之P映像413上,偵測顯現高於預定臨限值之值且具峰值的第一位置。具峰值的位置表示相對於0位置藉由微分P映像413所得到之值。第一位置係向量,其包括距離及方向資訊。於第五實施例中,第一位置為八個位置,即(±285,0)、(0,±285)、(±320,320)及(±320,-320)。要注意的是,圖11C之P映像413係假設其最大值為1而正規化,及臨限值為0.03。當計算第一位置時,盡可能忠實地於P映像413之光強度分佈上插入輔助圖案。於第五實施例中,於八個位置插入(配置)尺寸各為70nm×120nm之旋轉對稱矩形的輔助圖案。The P map 413 shown in Fig. 11C will now be described in detail. On the P map 413 shown in Fig. 11c, a first position having a peak value higher than a predetermined threshold value is detected. The position with the peak indicates the value obtained by the differential P map 413 with respect to the 0 position. The first position is a vector that includes distance and direction information. In the fifth embodiment, the first position is eight positions, namely (±285, 0), (0, ±285), (±320,320), and (±320, -320). It is to be noted that the P map 413 of Fig. 11C is assumed to have a maximum value of 1 and normalized, and a threshold value of 0.03. When the first position is calculated, the auxiliary pattern is inserted as faithfully as possible on the light intensity distribution of the P image 413. In the fifth embodiment, an auxiliary pattern of a rotationally symmetric rectangle each having a size of 70 nm × 120 nm is inserted (arranged) at eight positions.

藉由數值計算難以計算峰值位置。使用峰值位置與重心位置近乎相同的事實,可計算顯現高於P映像413上的預定臨限值之值的區域重心及設定彼為第一位置。It is difficult to calculate the peak position by numerical calculation. Using the fact that the peak position is nearly identical to the position of the center of gravity, the center of gravity of the region that appears above the value of the predetermined threshold on the P map 413 can be calculated and set to the first position.

例如,圖11E顯示,於圖11C中所示之P映像413上,藉由設定顯現等於或高於0.03的臨限值之值的各區域為1,及藉由設定顯現低於0.03的臨限值之值的各區域為0所得到的映像。於圖11E中,對應於主要圖案SP之區域SR係作為隔離的接觸窗圖案(所欲圖案)。區域HR1至HR8對應於區域(亦即區域AR1至AR8)以插入(配置)輔助圖案。因此,僅需藉由計算區域HR1至HR8的重心而設定輔助圖案。For example, FIG. 11E shows that on the P map 413 shown in FIG. 11C, each region that sets a value of a threshold value equal to or higher than 0.03 is set to 1, and a threshold of less than 0.03 is set by setting. The area obtained by the value of each value is 0. In FIG. 11E, the region SR corresponding to the main pattern SP serves as an isolated contact window pattern (desired pattern). The areas HR1 to HR8 correspond to areas (i.e., areas AR1 to AR8) to insert (configure) an auxiliary pattern. Therefore, it is only necessary to set the auxiliary pattern by calculating the centers of gravity of the areas HR1 to HR8.

<第六實施例><Sixth embodiment>

於第六實施例中將說明一種當圖案資料(目標資料)401係由n接觸窗圖案所形成的圖案時之產生遮罩資料410的方法。In the sixth embodiment, a method of generating the mask data 410 when the pattern material (target material) 401 is a pattern formed by the n contact window pattern will be described.

如第五實施例中所述者,使用P映像413產生遮罩資料410改進了具有隔離的接觸窗圖案之遮罩的成像表現。同樣地,使用P映像413產生遮罩資料410亦可改進具有由n接觸窗圖案所形成的圖案之遮罩的成像表現。As described in the fifth embodiment, the use of the P map 413 to create the mask data 410 improves the imaging performance of the mask with the isolated contact window pattern. Likewise, the use of P-map 413 to create mask data 410 can also improve the imaging performance of a mask having a pattern formed by the n-contact window pattern.

假設除遮罩函數412以外之P映像計算資訊件係相同於第五實施例。假設圖案資料(目標圖案)401為包括三個120nm平方之接觸窗圖案的圖案,如圖13A中所示者。三個接觸窗的中心為(0,0)、(320,320)及(640,-350)。遮罩函數412為目標圖案本身,即如第五實施例,圖案包括三個直徑各為120nm的接觸窗圖案。It is assumed that the P-picture calculation information piece other than the mask function 412 is the same as the fifth embodiment. It is assumed that the pattern material (target pattern) 401 is a pattern including three 120 nm square contact window patterns as shown in FIG. 13A. The centers of the three contact windows are (0,0), (320,320) and (640,-350). The mask function 412 is the target pattern itself, that is, as in the fifth embodiment, the pattern includes three contact window patterns each having a diameter of 120 nm.

P運算子408之第一本徵函數對形成空間影像409的貢獻最大。為此緣故,僅考慮P運算子408之第一本徵函數。將P運算子408之第一本徵函數乘上遮罩函數412的繞射光分佈,並傅立葉轉換所得的積。圖13B顯示以此方法計算之P映像413。The first eigenfunction of P operator 408 has the greatest contribution to forming spatial image 409. For this reason, only the first eigenfunction of the P operator 408 is considered. The first eigenfunction of the P operator 408 is multiplied by the diffracted light distribution of the mask function 412 and the resulting product is Fourier transformed. Figure 13B shows the P image 413 calculated in this way.

於圖13B中,由各白色虛線所環繞的區域顯現等於或大於特定臨限值(於第五實施例中為0.025)且對應於峰值位置於之值。僅須於圖13B中所示之由白色虛線所環繞的區域中插入(配置)輔助圖案。In Fig. 13B, the area surrounded by the respective white dotted lines appears to be equal to or larger than a specific threshold (0.025 in the fifth embodiment) and corresponds to the value of the peak position. It is only necessary to insert (configure) the auxiliary pattern in the area surrounded by the white dotted line shown in FIG. 13B.

接下來將說明如何決定對應於圖案資料401之主要圖案。首先看到圖案資料的中心係於位置(0,0)。當分析P映像413時,其峰值係於自(0,0)移動(δx,δy)的位置。當配置120nm方形主要圖案中心之位置於(0,0)時,於因光學接近效應而經由(δx,δy)移動時,係藉由曝光而轉移。Next, how to determine the main pattern corresponding to the pattern material 401 will be explained. First, the center of the pattern data is seen at the position (0, 0). When the P map 413 is analyzed, its peak is at a position shifted from (0, 0) (δx, δy). When the position of the 120 nm square main pattern center is at (0, 0), it is transferred by exposure when moving by (δx, δy) due to the optical proximity effect.

藉由配置主要圖案之中心於位置(-δx,-δy),可取消未置移動。同樣地,當主要圖案為接觸窗且彼等的中心位於(320,320)及(640,-350)時,纇似地插入(配置)彼等至不同於圖案資料401的位置。By arranging the center of the main pattern at the position (-δx, -δy), the unmoved movement can be canceled. Similarly, when the main patterns are contact windows and their centers are located at (320, 320) and (640, -350), they are similarly inserted (configured) to a position different from the pattern material 401.

P映像413的分析亦使得可預測主要圖案的變形角度。因此基於其變形可決定主要圖案的形狀。The analysis of the P map 413 also makes it possible to predict the deformation angle of the main pattern. Therefore, the shape of the main pattern can be determined based on the deformation thereof.

基於P映像413而決定主要圖案作為由圖案資料401自身所表示的圖案之後,藉採用OPC可校正主要圖案的位置移動及形狀。After the main pattern is determined as the pattern represented by the pattern material 401 itself based on the P map 413, the positional movement and shape of the main pattern can be corrected by using the OPC.

視接觸窗圖案的配置而定,輔助圖案係經常配置為太靠近彼此。於此情況中,僅需插入(配置)一個圖案於接近相鄰輔助圖案。若某輔助圖案靠近所欲圖案,則應將彼移除。Depending on the configuration of the contact window pattern, the auxiliary patterns are often configured too close to each other. In this case, it is only necessary to insert (configure) one pattern to approach the adjacent auxiliary pattern. If an auxiliary pattern is close to the desired pattern, it should be removed.

<第七實施例><Seventh embodiment>

遮罩產生程式414之應用目標並不特別受限於具方形接觸窗圖案的遮罩,且其可應用於具矩形接觸窗圖案或線圖案的遮罩。第七實施例將說明使用遮罩產生程式414產生具隔離的線圖案之遮罩資料410的情況。The application target of the mask generation program 414 is not particularly limited to a mask having a square contact window pattern, and it can be applied to a mask having a rectangular contact window pattern or a line pattern. The seventh embodiment will explain the case where the mask generation program 414 is used to generate the mask material 410 having an isolated line pattern.

假設除了有效光源資訊402及遮罩函數412以外的P映像計算資訊件與第五實施例相同。假設有效光源(對應於有效光源資訊402)使用偶極照明,如圖14A中所示。假設圖案資料(目標圖案)401為寬度係120nm之隔離的線圖案。It is assumed that the P-picture calculation information pieces other than the effective light source information 402 and the mask function 412 are the same as the fifth embodiment. It is assumed that the effective light source (corresponding to the effective light source information 402) uses dipole illumination as shown in Figure 14A. It is assumed that the pattern data (target pattern) 401 is an isolated line pattern having a width of 120 nm.

第七實施例亦假設所謂的亮場(clear field)具不透明特徵,其中於經曝光用光照射的光阻部分上形成有圖案,並顯現等於或小於特定臨限值之值。The seventh embodiment also assumes that a so-called clear field has an opaque feature in which a pattern is formed on a photoresist portion irradiated with light for exposure, and a value equal to or smaller than a specific threshold value appears.

首先設定遮罩函數412為目標圖案自身,即120nm之隔離的線圖案。大致上,當藉由曝光轉移線圖案時,僅於線部分中留下未經移除的光阻。因此,遮罩函數412表示遮罩顯現100%的背景透射率及遮罩具有由120nm之隔離的線圖案所形成的光遮蔽部分。First, the mask function 412 is set to the target pattern itself, that is, an isolated line pattern of 120 nm. In general, when the transfer line pattern is exposed by exposure, only the unremoved photoresist is left in the line portion. Thus, the mask function 412 indicates that the mask exhibits a background transmittance of 100% and that the mask has a light-shielding portion formed by a line pattern of 120 nm isolation.

圖14B顯示由上述P映像計算資訊件所計算的P映像413。當插入(配置)輔助圖案至各顯示小於預定臨限值之值的區域中且對應於圖14B中所示之P映像413的峰值位置時,遮罩的成像表現改進。Fig. 14B shows a P map 413 calculated by the above P image calculation information. The imaging performance of the mask is improved when the auxiliary pattern is inserted (configured) into an area where each display value is less than the predetermined threshold value and corresponds to the peak position of the P map 413 shown in FIG. 14B.

圖14B中所示之P映像413於距離隔離的線圖案之中心約290nm的位置具有峰值。使用其中輔助圖案係配置於距離隔離的線圖案之中心約290nm的位置之遮罩,改進成像表現,如圖14C中所示者。於圖14C中,參考符號d指示距離隔離的線圖案之中心的距離,於第七實施例中其係290nm。The P map 413 shown in Fig. 14B has a peak at a position of about 290 nm from the center of the isolated line pattern. The imaging performance is improved using a mask in which the auxiliary pattern is disposed at a position of about 290 nm from the center of the isolated line pattern, as shown in Fig. 14C. In Fig. 14C, reference symbol d indicates the distance from the center of the isolated line pattern, which is 290 nm in the seventh embodiment.

即便以下述方式插入(配置)輔助圖案,亦可產生具隔離的線圖案之遮罩的遮罩資料410。Even if the auxiliary pattern is inserted (arranged) in the following manner, the mask material 410 having the mask of the isolated line pattern can be produced.

首先,計算作為具清晰孔徑的暗場之P映像413係設定為PM1 (x,y)。要注意的是,假設PM1 (x,y)的最大值為1而使P映像413正規化。接下來藉由設定PM2 (x,y)=1-PM1 (x,y)而計算新的P映像413。插入(配置)輔助圖案至各顯現小於預定臨限值之值的區域中且對應於以此方式計算之PM2 (x,y)上的峰值位置(或重心位置),藉此產生遮罩資料410。可插入(配置)用以形成具不透明特徵之亮場的輔助圖案至各顯現大於預定臨限值之值的區域中且對應於峰值位置(或重心位置)。First, the P map 413 which is a dark field having a clear aperture is calculated to be set to PM 1 (x, y). It is to be noted that the P map 413 is normalized assuming that the maximum value of PM 1 (x, y) is 1. Next, a new P map 413 is calculated by setting PM 2 (x, y) = 1 - PM 1 (x, y). Inserting (arranging) an auxiliary pattern into a region each exhibiting a value less than a predetermined threshold and corresponding to a peak position (or a center of gravity position) on PM 2 (x, y) calculated in this manner, thereby generating mask data 410. An auxiliary pattern for forming a bright field having opaque features can be inserted (configured) into regions each exhibiting a value greater than a predetermined threshold and corresponding to a peak position (or center of gravity position).

<第八實施例><Eighth Embodiment>

於第八實施例中將詳細說明遮罩函數412。The mask function 412 will be described in detail in the eighth embodiment.

假設P映像計算資訊件皆相同於第五實施例。假設圖案資料(目標圖案)401為120nm方形之隔離的接觸窗圖案。It is assumed that the P-image calculation information pieces are identical to the fifth embodiment. It is assumed that the pattern data (target pattern) 401 is a 120 nm square isolated contact window pattern.

圖15A及15B顯示藉由設定遮罩函數412作為目標圖案自身所計算的P映像413。圖15A顯示P映像413自身。圖15B顯示藉由設定各位置之正值為1,且設定圖15A中所示P映像413上各位置之負值為-1而得到的映像。15A and 15B show a P map 413 calculated by setting the mask function 412 as the target pattern itself. Fig. 15A shows the P map 413 itself. Fig. 15B shows an image obtained by setting a positive value of each position to 1, and setting a negative value of -1 at each position on the P map 413 shown in Fig. 15A.

圖15C及15D顯示藉由設定遮罩函數412為60nm方形之隔離的接觸窗圖案所計算的P映像413。圖15C顯示P映像413自身。圖15D顯示藉由設定各位置之正值為1,且設定圖15C中所示P映像413上各位置之負值為-1而得到的映像。Figures 15C and 15D show a P-map 413 calculated by setting the mask function 412 to a 60 nm square isolated contact window pattern. Figure 15C shows the P map 413 itself. Fig. 15D shows an image obtained by setting a positive value of each position to 1, and setting a negative value of -1 at each position on the P map 413 shown in Fig. 15C.

圖15E及15F顯示藉由設定遮罩函數412為1nm方形之隔離的接觸窗圖案所計算的P映像413。圖15E顯示P映像413自身。圖15E顯示藉由設定各位置之正值為1,且設定圖15F中所示P映像413上各位置之負值為-1而得到的映像。Figures 15E and 15F show a P-map 413 calculated by setting the mask function 412 to a 1 nm square isolated contact window pattern. Figure 15E shows the P image 413 itself. Fig. 15E shows an image obtained by setting a positive value of each position to 1, and setting a negative value of -1 at each position on the P map 413 shown in Fig. 15F.

當設定相當小的圖案作為遮罩函數412時,插入(配置)輔助圖案使得光會聚於小圖案上,造成曝光餘裕增加。然而,如由圖15A至15F可瞭解,於此情況中遮罩形狀複雜。相反的,當數訂相當大圖案作為遮罩函數412時,遮罩形狀簡單。根據本發明之發明人試驗的各種情況,設定尺寸等於或小於目標圖案之尺寸者作為遮罩函數412係所欲者。When a relatively small pattern is set as the mask function 412, the auxiliary pattern is inserted (arranged) so that light is concentrated on the small pattern, resulting in an increase in exposure margin. However, as can be understood from FIGS. 15A to 15F, the mask shape is complicated in this case. Conversely, when a relatively large pattern is ordered as the mask function 412, the mask shape is simple. According to various cases tested by the inventors of the present invention, a size equal to or smaller than the size of the target pattern is set as the mask function 412.

為簡化P映像413的計算,僅需藉由以點趨近接觸窗圖案(如1nm接觸窗圖案)及以線趨近線圖案(如寬度為1nm的圖案)而設定遮罩函數412。若使用矩形接觸窗,僅需設定沿縱向延伸的線(如長度等於沿縱向之矩形接觸窗圖案的長度且寬度為1nm之圖案)作為遮罩函數412。To simplify the calculation of the P-map 413, the mask function 412 is only required to be set by approaching the contact window pattern (eg, a 1 nm contact window pattern) and a line-to-line pattern (eg, a pattern having a width of 1 nm). If a rectangular contact window is used, it is only necessary to set a line extending in the longitudinal direction (such as a pattern having a length equal to the length of the rectangular contact window pattern in the longitudinal direction and having a width of 1 nm) as the mask function 412.

例如,於第五實施例中,僅需設定1nm之隔離的接觸窗圖案作為遮罩函數412。於第六實施例中,僅需定包括三個1nm之接觸窗圖案的圖案作為遮罩函數412。於第七實施例中,僅需設定寬度為1nm之線圖案作為遮罩函數412。For example, in the fifth embodiment, only a 1 nm isolated contact window pattern needs to be set as the mask function 412. In the sixth embodiment, only a pattern including three 1 nm contact window patterns is required as the mask function 412. In the seventh embodiment, it is only necessary to set a line pattern having a width of 1 nm as the mask function 412.

如上述,所欲的遮罩函數412係尺寸等於或小於目標圖案之圖案。因此,可重設縮小放大率為0(不包括)至1(包括),以及可設定縮小放大率與目標圖案之原尺寸的積作為遮罩函數412。As described above, the desired mask function 412 is a pattern having a size equal to or smaller than the target pattern. Therefore, the reduction magnification can be reset from 0 (not included) to 1 (inclusive), and the product of the reduction magnification and the original size of the target pattern can be set as the mask function 412.

例如,設定縮小放大率為0.75,僅需設定90nm(120nm×0.75)之隔離的接觸窗圖案作為第五實施例中的遮罩函數412。僅需設定寬度為90nm的線圖案作為第七實施例中的遮罩函數412。要注意的是,第五至第七實施例各例示設定縮小放大率為1的情況。For example, to set the reduction magnification to 0.75, it is only necessary to set a 90 nm (120 nm × 0.75) isolated contact window pattern as the mask function 412 in the fifth embodiment. It is only necessary to set a line pattern having a width of 90 nm as the mask function 412 in the seventh embodiment. It is to be noted that each of the fifth to seventh embodiments exemplifies a case where the reduction magnification is set to 1.

一般上難以解析於橫向中的線圖案及矩形圖案,因而關注圖案之橫向解析度。為此緣故,可藉由設定縮小放大率與目標圖案於橫向中的原尺寸而計算P映像413作為遮罩函數412。Generally, it is difficult to analyze the line pattern and the rectangular pattern in the lateral direction, and thus the lateral resolution of the pattern is concerned. For this reason, the P map 413 can be calculated as the mask function 412 by setting the reduction magnification and the original size of the target pattern in the lateral direction.

<第九實施例><Ninth embodiment>

於第九實施例中將說明插入(配置)輔助圖案至於P映像413上各具有負值的區域(位置)中。The insertion (configuration) of the auxiliary patterns in the ninth embodiment will be explained in the regions (positions) each having a negative value on the P map 413.

P映像413包括具有負值的區域。此表示區域中取消於P映像413上之空間影像的形成。The P map 413 includes an area having a negative value. This indicates that the formation of the spatial image on the P map 413 is canceled in the area.

可將取消空間影像形成之效應解釋為令光反相(亦即設定光為180°異相)。因此,藉由插入(配置)輔助圖案至P映像413上具負值的各區域使得穿透所欲圖案的光與穿透輔助圖案的光呈180°異相,可改進遮罩的成像表現。The effect of canceling the spatial image formation can be interpreted as inverting the light (ie, setting the light to be 180° out of phase). Therefore, by inserting (arranging) the auxiliary pattern to each region having a negative value on the P map 413 such that the light penetrating the desired pattern is 180° out of phase with the light penetrating the auxiliary pattern, the imaging performance of the mask can be improved.

假設P映像計算資訊件與第五實施例相同。假設圖案資料(目標圖案)401為直徑係120nm的隔離之接觸窗圖案。It is assumed that the P-image calculation information piece is the same as the fifth embodiment. It is assumed that the pattern data (target pattern) 401 is an isolated contact window pattern having a diameter of 120 nm.

如上述第五實施例中所說明者,圖11C中所示之P映像413係由上述P映像計算資訊件所計算。當插入(配置)與所欲圖案同相(0°異相)之輔助圖案於圖11C中之經白色虛線所環繞的區域AR1至AR8中時,改進遮罩的成像表現。要注意的是,圖11C中所示之P映像413上由白色虛線所環繞的區域AR1至AR12具有相當大之負峰值,如圖16A中所示者。於圖16A中所示之P映像413上,由白色虛線所環繞的區域AR9至AR12的中心位於四個位置,即(±225,225)及(±225,-225)。圖16B中所示之遮罩資料410係藉由插入(配置)輔助圖案AP1至AP4至由白色虛線所環繞的區域AR9至AR12中而產生,彼等與所欲圖案呈180°異相。於圖16B中,輔助圖案AP1至AP4各與所欲圖案呈180°異相,以及每一者的尺寸為90nm×90nm。As explained in the fifth embodiment above, the P map 413 shown in Fig. 11C is calculated by the above P map calculation information. The imaging performance of the mask is improved when the auxiliary pattern inserted (configured) in phase with the desired pattern (0° out of phase) is in the areas AR1 to AR8 surrounded by the white dotted line in FIG. 11C. It is to be noted that the areas AR1 to AR12 surrounded by the white dotted line on the P map 413 shown in Fig. 11C have considerably large negative peaks as shown in Fig. 16A. On the P map 413 shown in Fig. 16A, the centers of the areas AR9 to AR12 surrounded by the white dotted line are located at four positions, namely (±225, 225) and (±225, -225). The mask data 410 shown in Fig. 16B is produced by inserting (arranging) the auxiliary patterns AP1 to AP4 into the areas AR9 to AR12 surrounded by the white dotted lines, which are 180 out of phase with the desired pattern. In FIG. 16B, the auxiliary patterns AP1 to AP4 are each 180° out of phase with the desired pattern, and each has a size of 90 nm×90 nm.

圖17係顯示依據圖11D所示的遮罩資料410之遮罩的成像表現(亦即根據第五實施例)與依據圖16B所示的遮罩資料410之遮罩的成像表現(亦即根據第九實施例)之比較結果的圖表。於圖17中,橫座標指示失焦量,及縱座標指示隔離之接觸窗圖案(CD)的直徑。基於隔離之接觸窗圖案(CD)的直徑改變相對失焦改變而評估各遮罩的成像表現。參照圖17,基於圖16B中所示之遮罩資料410的遮罩顯現較基於圖11D中所示之遮罩資料410的遮罩為佳之成像表現。Figure 17 is a diagram showing the imaging performance of the mask according to the mask data 410 shown in Figure 11D (i.e., according to the fifth embodiment) and the mask of the mask data 410 shown in Figure 16B (i.e., according to A chart of the comparison result of the ninth embodiment). In Fig. 17, the abscissa indicates the amount of out-of-focus, and the ordinate indicates the diameter of the isolated contact window pattern (CD). The imaging performance of each mask was evaluated based on the change in diameter of the isolated contact window pattern (CD) relative to the out-of-focus change. Referring to Figure 17, a mask based on the mask data 410 shown in Figure 16B exhibits a better imaging performance than a mask based on the mask data 410 shown in Figure 11D.

以此方式,藉由插入(配置)與所欲圖案呈180°異相之輔助圖案於P映像413上具有負值的區域中,可改進遮罩成像表現。因此,僅需插入與所欲圖案呈同相的輔助圖案於顯現大於正臨限值之值且對應於峰值位置的各區域中,以及插入與所欲圖案呈180°異相的輔助圖案於顯現小於負臨限值之值且對應於峰值位置的各區域中。於第九實施例中,正臨限值為0.03,及負臨限值-0.018。In this manner, the mask imaging performance can be improved by inserting (arranging) an auxiliary pattern having a 180° out of phase with the desired pattern in a region having a negative value on the P map 413. Therefore, it is only necessary to insert an auxiliary pattern in phase with the desired pattern in each region that exhibits a value greater than the positive threshold and corresponds to the peak position, and inserts an auxiliary pattern that is 180° out of phase with the desired pattern to appear less than negative. The value of the threshold value and corresponds to each region of the peak position. In the ninth embodiment, the positive threshold is 0.03, and the negative threshold is -0.018.

<第十實施例><Tenth embodiment>

如已於第五及第九實施例中所說明者,藉由基於P映像413而產生遮罩資料410可改進遮罩成像表現。然而當忠實地插入(配置)輔助圖案至P映像413時,遮罩形狀複雜。現有遮罩製造技術可基於圖11D中所示之遮罩資料410及基於圖16B中所示之遮罩資料410而製造遮罩。即便如此,降低施加於遮罩製造的負載係非常有用者。As has been explained in the fifth and ninth embodiments, mask imaging performance can be improved by generating mask data 410 based on P-map 413. However, when the auxiliary pattern is faithfully inserted (configured) to the P image 413, the shape of the mask is complicated. Existing mask manufacturing techniques can produce a mask based on the mask data 410 shown in Figure 11D and based on the mask data 410 shown in Figure 16B. Even so, it is very useful to reduce the load applied to the mask manufacturing.

為了降低施加於遮罩製造的負載,僅需插入近似待藉由曝光轉移之圖案的輔助圖案至顯現大於預定臨限值之值且對應於P映像413上的峰值位置之各區域。因為P映像413於指定位置具有最明顯特徵以插入(配置)輔助圖案,各輔助圖案之形狀改變對於遮罩成像表現的影響小。In order to reduce the load applied to the mask fabrication, it is only necessary to insert an auxiliary pattern approximating the pattern to be transferred by exposure to a region exhibiting a value greater than a predetermined threshold and corresponding to a peak position on the P map 413. Since the P map 413 has the most obvious features at the specified position to insert (configure) the auxiliary pattern, the shape change of each auxiliary pattern has little effect on the mask imaging performance.

假設P映像計算資訊件相同於第五實施例。假設圖案資料(目標資料)401為直徑係120nm的隔離之接觸窗圖案。It is assumed that the P-image calculation information piece is identical to the fifth embodiment. It is assumed that the pattern data (target data) 401 is an isolated contact window pattern having a diameter of 120 nm.

如已於第五實施例中所說明者,顯現等於或大於正臨限值之值且對應於經由上述P映像計算資訊件所計算之P映像413上的峰值位置的各區域位於八個位置,即(±285,0)、(0,±285)、(±320,320)及(±320,-320)。於這八個位置插入與待藉由曝光而轉移的圖案呈同相之輔助圖案。要注意的是,假設各輔助圖案近似於作為所欲圖案的隔離之接觸圖案,且尺寸為90nm×90nm。As has been explained in the fifth embodiment, the regions appearing equal to or larger than the value of the positive threshold and corresponding to the peak position on the P map 413 calculated via the P map calculation information are located at eight positions, That is (±285,0), (0, ±285), (±320,320) and (±320,-320). An auxiliary pattern in phase with the pattern to be transferred by exposure is inserted at these eight positions. It is to be noted that each of the auxiliary patterns is assumed to be an isolated contact pattern as a desired pattern and has a size of 90 nm × 90 nm.

如已於第九實施例中所說明者,於四個位置,即(±225,225)及(±225,-225),插入與由待藉由曝光而轉移之圖案所繞射的光呈180°異相之輔助圖案。要注意的是,假設各輔助圖案近似於作為待藉由曝光而轉移之所欲圖案的隔離之接觸圖案,且尺寸為90nm×90nm。As explained in the ninth embodiment, at four positions, namely (±225, 225) and (±225, -225), the insertion is 180° with the light diffracted by the pattern to be transferred by exposure. Auxiliary pattern of out of phase. It is to be noted that each of the auxiliary patterns is assumed to be approximately an isolated contact pattern as a desired pattern to be transferred by exposure, and has a size of 90 nm × 90 nm.

圖18顯示以此方式產生的遮罩資料410。於圖18中,輔助圖案AP5至AP12與待藉由曝光而轉移之圖案呈同相,以及將彼等插入(配置)至(±285,0)、(0,±285)、(±320,320)及(±320,-320)。輔助圖案AP13至AP16與待藉由曝光而轉移之圖案呈180°異相,以及將彼等插入至(±225,225)及(±225,-225)。因為輔助圖案AP13至AP16於基於圖18中所示之遮罩資料410的遮罩上各具有方形形狀(亦即近似於所欲圖案),此遮罩之製造可較基於圖16B中所示之遮罩資料410的遮罩之製造簡單。Figure 18 shows the mask data 410 generated in this manner. In FIG. 18, the auxiliary patterns AP5 to AP12 are in phase with the pattern to be transferred by exposure, and are inserted (configured) to (±285, 0), (0, ±285), (±320, 320), and (±320, -320). The auxiliary patterns AP13 to AP16 are 180° out of phase with the pattern to be transferred by exposure, and are inserted into (±225, 225) and (±225, -225). Since the auxiliary patterns AP13 to AP16 each have a square shape (that is, approximate a desired pattern) on the mask based on the mask material 410 shown in FIG. 18, the mask can be manufactured based on the one shown in FIG. 16B. The mask of the mask data 410 is simple to manufacture.

圖19係顯示依據圖16B所示的遮罩資料410之遮罩的成像表現(亦即根據第九實施例)與依據圖18所示的遮罩資料之遮罩的成像表現(亦即根據第十實施例)之比較結果的圖表。參照圖19,基於圖16B所示的遮罩資料410之遮罩的成像表現與基於依據圖18所示的遮罩資料410之遮罩的成像表現間有些許不同。以此方式,藉由插入(配置)近似於待藉由曝光而轉移之圖案的輔助圖案於顯現大於預定臨限值之值且對應於峰值位置的各區域中,可降低施加於遮罩製造的負載。此外,與根據先前技術所製造的遮罩相比較,以此方式製造的遮罩可改進成像表現。各輔助圖案並不特別受限於幾乎與所欲圖案相同者,以及可採用任何形式只要彼促進遮罩製造即可。Figure 19 is a view showing the imaging performance of the mask according to the mask data 410 shown in Figure 16B (i.e., according to the ninth embodiment) and the mask according to the mask data shown in Figure 18 (i.e., according to the A chart of the comparison results of the tenth embodiment). Referring to Fig. 19, the imaging performance of the mask based on the mask data 410 shown in Fig. 16B is slightly different from that of the mask based on the mask data 410 shown in Fig. 18. In this way, by inserting (arranging) an auxiliary pattern approximating the pattern to be transferred by exposure to each region exhibiting a value greater than a predetermined threshold and corresponding to the peak position, the application to the mask manufacturing can be reduced. load. Furthermore, masks made in this manner can improve imaging performance as compared to masks made according to the prior art. Each of the auxiliary patterns is not particularly limited to almost the same as the desired pattern, and any form may be employed as long as it promotes the manufacture of the mask.

當各輔助圖案近乎待藉由曝光轉移之圖案時,其較佳具有待藉由曝光而轉移之接觸窗圖案之約75%的尺寸。於此尺寸不代表面積但為圖案一個側邊的長度。例如,當形成方形圖案120nm之一個側邊於遮罩上以藉由曝光轉移120nm的接觸窗時,各輔助圖案之一個側邊的長度僅需為約90nm。因為P映像413適當地指明插入(配置)輔助圖案的位置,插入(配置)輔助圖案使解析力具相當程度的改進。因此不需固定各輔助圖案之尺寸為待藉由曝光而轉移之接觸窗圖案之尺寸的75%。根據本發明之發明人的各種試驗,即便各輔助圖案的尺寸為待藉由曝光而轉移之接觸窗圖案的尺寸之50%至85%,可得到插入輔助圖案之充分的效果。When each of the auxiliary patterns is nearly to be transferred by the exposure, it preferably has a size of about 75% of the contact pattern to be transferred by exposure. This size does not represent the area but is the length of one side of the pattern. For example, when one side of a square pattern of 120 nm is formed on the mask to transfer a contact window of 120 nm by exposure, the length of one side of each auxiliary pattern need only be about 90 nm. Since the P map 413 appropriately indicates the position of the insertion (configuration) of the auxiliary pattern, the insertion (configuration) of the auxiliary pattern gives a considerable improvement in the resolution. Therefore, it is not necessary to fix the size of each auxiliary pattern to 75% of the size of the contact window pattern to be transferred by exposure. According to various tests by the inventors of the present invention, even if the size of each auxiliary pattern is 50% to 85% of the size of the contact window pattern to be transferred by exposure, a sufficient effect of inserting the auxiliary pattern can be obtained.

若接觸窗圖案為矩形形狀,僅需插入(配置)矩形輔助圖案。這些輔助圖案之短側的長度僅需為待藉由曝光而轉移之接觸窗圖案之短側的長度的50%至80%。If the contact window pattern has a rectangular shape, it is only necessary to insert (configure) a rectangular auxiliary pattern. The length of the short side of these auxiliary patterns need only be 50% to 80% of the length of the short side of the contact window pattern to be transferred by exposure.

若待藉由曝光而轉移之圖案為線圖案,僅需插入線性輔助圖案。因線性圖案易於解析,各輔助圖案之寬度較佳為待藉由曝光而轉移的線圖案之寬度的35%至70%。If the pattern to be transferred by exposure is a line pattern, only the linear auxiliary pattern needs to be inserted. Since the linear pattern is easy to be resolved, the width of each auxiliary pattern is preferably from 35% to 70% of the width of the line pattern to be transferred by exposure.

<第十一實施例><Eleventh Embodiment>

於第十一實施例中將說明使用P映像413之多重曝光。廣義的認為多重曝光為一種微圖案曝光方法。廣義的多重曝光包括狹義的多重曝光及複數次曝光。於狹義的多重曝光中,添加潛像圖案而不需要顯影過程。例如,於代表性的雙重曝光中,將遮罩圖案分成兩種類型,即緻密圖案及稀疏圖案,藉此表現雙重曝光。另一種雙重曝光中,將線圖案分為縱向及橫向中的圖案,且彼等獨立地藉由曝光而轉移,藉此形成所欲線圖案。相反的,於複數次曝光中,藉由顯影過程添加潛像圖案。這些曝光架構為降低k1因子的方法,以及於以下將僅稱之為“多重曝光”,此術語包括狹義的多重曝光及複數次曝光。Multiple exposure using the P map 413 will be explained in the eleventh embodiment. In the broad sense, multiple exposure is considered to be a micropattern exposure method. Generalized multiple exposures include narrow multiple exposures and multiple exposures. In the narrow multiple exposure, the latent image pattern is added without the need for a development process. For example, in a representative double exposure, the mask pattern is divided into two types, a dense pattern and a sparse pattern, thereby exhibiting double exposure. In another double exposure, the line pattern is divided into patterns in the longitudinal and lateral directions, and they are independently transferred by exposure, thereby forming a desired line pattern. Conversely, in a plurality of exposures, a latent image pattern is added by a developing process. These exposure architectures are methods for reducing the k1 factor, and will be referred to hereinafter simply as "multiple exposures", which term includes narrow multiple exposures and multiple exposures.

如前述,P映像413包括具負值的區域,以及具有取消成像(亦即形成空間影像)函數。As previously mentioned, the P-map 413 includes regions of negative values and has a function of canceling imaging (ie, forming a spatial image).

假設P映像計算資訊件相同於第五實施例。圖20顯示當插入(配置)與待藉由曝光而轉移的所欲圖案呈同相之輔助圖案至具有正值的區域時之失焦特徵,以及當插入與所欲圖案呈同相之輔助圖案至由P映像計算資訊件所計算之P映像413上的具有負值的位置時之失焦特徵。圖20亦顯示無輔助圖案時之失焦特徵。於圖20中,橫座標指示失焦量,以及縱座標指示接觸窗圖案的直徑(CD)。It is assumed that the P-image calculation information piece is identical to the fifth embodiment. Figure 20 shows the out-of-focus feature when inserting (arranging) an auxiliary pattern in phase with a desired pattern to be transferred by exposure to a region having a positive value, and when inserting an auxiliary pattern in phase with the desired pattern The P image calculates the out-of-focus feature when the position on the P map 413 calculated by the information piece has a negative value. Figure 20 also shows the out-of-focus feature when there is no auxiliary pattern. In Fig. 20, the abscissa indicates the amount of defocus, and the ordinate indicates the diameter (CD) of the contact window pattern.

參照圖20,於具正值位置插入(配置)輔助圖案時之失焦特徵較P映像413上不具輔助圖案時之失焦特徵為佳。然而,於具負值位置插入(配置)輔助圖案時之失焦特徵較P映像413上不具輔助圖案時之失焦特徵為劣。以此方式,圖20顯示增加配置於待藉由曝光而轉移的圖案周圍之輔助圖案的數目並非總是有益者,此與習知觀念不同。Referring to Fig. 20, the out-of-focus feature when the auxiliary pattern is inserted (arranged) with a positive position is better than the out-of-focus feature when the auxiliary image is not provided on the P map 413. However, the out-of-focus feature when inserting (arranging) the auxiliary pattern at a negative position is inferior to that of the P-image 413 when there is no auxiliary pattern. In this manner, FIG. 20 shows that it is not always advantageous to increase the number of auxiliary patterns disposed around the pattern to be transferred by exposure, which is different from the conventional concept.

於P映像413上具負值的位置表示禁用間距。於P映像413上具負值的位置係向量,其取決於距離及方向。於此情況中,四個向量,即(±225,225)及(±225,-225)表示禁用間距。這些向量各指向由原點至顯現等於或小於P映像413上臨限值的同調性之區域的方向。A position with a negative value on the P map 413 indicates a disabled pitch. A position vector having a negative value on the P map 413 depends on the distance and direction. In this case, the four vectors, (±225, 225) and (±225, -225), indicate the disabled spacing. These vectors each point in the direction from the origin to the region of the homology that appears equal to or less than the threshold value on the P map 413.

當分割圖案資料401以避免禁用間距(假設表示禁用間距的向量作為參考向量)時,可產生沒有任何禁用間距的最終圖案資料401。When the pattern data 401 is divided to avoid disabling the pitch (assuming a vector indicating the pitch is disabled as a reference vector), the final pattern material 401 without any prohibited pitch can be generated.

參考圖21將詳細說明藉由遮罩產生程式414產生不具任何禁用間距之產生圖案資料401的方法。假設使用者事先經由輸入單元50而輸入P映像計算資訊件且P映像計算資訊件係儲存於儲存單元40中。以及,假設經由控制單元20,遮罩產生程式414待由連接至媒體介面60的儲存媒體70安裝,以及儲存於儲存單元40中。遮罩產生程式414響應藉由使用者經輸入單元50輸入的啟始指令而啟動,及由控制單元20所執行。A method of generating the pattern material 401 without any prohibited pitch by the mask generating program 414 will be described in detail with reference to FIG. It is assumed that the user inputs the P image calculation information piece via the input unit 50 in advance and the P image calculation information piece is stored in the storage unit 40. And, assume that via the control unit 20, the mask generation program 414 is to be installed by the storage medium 70 connected to the media interface 60 and stored in the storage unit 40. The mask generation program 414 is activated in response to a start command input by the user via the input unit 50, and is executed by the control unit 20.

於步驟S1102中,控制單元20基於P映像計算資訊件而計算P映像413。要注意的是,並非基於整體圖案資料(目標圖案)401而是基於彼之一個元素而設定遮罩函數412。更具體地,藉由執行供目標圖案之一個元素的預定方法(如藉由縮小放大率而將彼放大)設定遮罩函數412。In step S1102, the control unit 20 calculates the P map 413 based on the P map calculation information. It is to be noted that the mask function 412 is not set based on the overall pattern data (target pattern) 401 but based on one of the elements. More specifically, the mask function 412 is set by performing a predetermined method for one element of the target pattern (eg, by amplifying the magnification).

於步驟S1104中,控制單元20由步驟S1102中所計算之P映像413指定代表禁用間距的參考向量。更具體地,藉由擷取各從原點至顯現等於或小於P映像413上臨限值的同調性並對應於P映像413上負峰值之區域的向量數量而指定參考向量。In step S1104, the control unit 20 specifies the reference vector representing the disabled pitch from the P map 413 calculated in step S1102. More specifically, the reference vector is specified by capturing the number of vectors from the origin to the appearance of a region equal to or smaller than the threshold value on the P map 413 and corresponding to the region of the negative peak on the P map 413.

於步驟S1106中,控制單元20設定圖案資料401之參考數i(於下述步驟中產生)的初始值為“1”。此後,將具有參考數i的圖案資料視為第i個圖案資料。In step S1106, the control unit 20 sets the initial value of the reference number i of the pattern data 401 (generated in the following steps) to "1". Thereafter, the pattern material having the reference number i is regarded as the i-th pattern material.

於步驟S1108中,控制單元20查驗圖案資料401是否具有禁用間距。更具體地,當自圖案資料401的複數個元素選擇關注的元素且假設所選擇之關注的元素的中新作為開始點而設定參考向量時,控制單元20查驗存在參考向量之任何端點附近的元素。若控制單元20決定元素存在參考向量之任何端點附近,其決定圖案資料401具有禁用間距。若控制單元20決定沒有元素存在參考向量之任何端點附近,其決定圖案資料401不具有禁用間距。In step S1108, the control unit 20 checks whether the pattern material 401 has a disable pitch. More specifically, when a plurality of elements of the pattern material 401 select an element of interest and assume a new reference as a starting point for the selected element of interest, the control unit 20 checks for the vicinity of any end point of the presence reference vector. element. If control unit 20 determines that an element exists near any end of the reference vector, it determines that pattern data 401 has a disabled spacing. If control unit 20 decides that there is no element near the vicinity of any of the reference vectors, it determines that pattern data 401 does not have a disabled spacing.

若控制單元20決定決定圖案資料401具有禁用間距,前進至步驟S1110;否則,前進至步驟S1112。If the control unit 20 decides that the decision pattern data 401 has a prohibited pitch, it proceeds to step S1110; otherwise, it proceeds to step S1112.

於步驟S1110中,控制單元20自圖案資料401移除參考向量之任何端點附近的元素,以及暫時地儲存移除的元素上的資訊於快取記憶體中。In step S1110, the control unit 20 removes elements near any end of the reference vector from the pattern material 401, and temporarily stores the information on the removed elements in the cache memory.

於步驟S1112中,控制單元20是否已於所有的元素(未於步驟S1110中被移除之圖案資料401的複數個元素)執行步驟S1108之決定。In step S1112, the control unit 20 performs the decision of step S1108 on all the elements (a plurality of elements of the pattern material 401 that have not been removed in step S1110).

若控制單元20決定已於所有的元素執行步驟S1108之決定,前進至步驟S1114;否則,返回步驟S1108的程序。If the control unit 20 decides that the decision of step S1108 has been performed on all elements, the process proceeds to step S1114; otherwise, the process returns to step S1108.

於步驟S1114中,控制單元20產生第i個圖案資料(第i個資料產生步驟)。更具體地,若i=1,控制單元20決定藉由自圖案資料401移除所有參考向量之端點附近的元素而得到的圖案資料作為第i個圖案資料。若,控制單元20決定藉由自第(i-1)個圖案資料移除所有參考向量之端點附近的元素而得到的圖案資料作為第i個圖案資料。In step S1114, the control unit 20 generates the i-th pattern material (the i-th data generating step). More specifically, if i=1, the control unit 20 determines the pattern material obtained by removing the elements near the end points of all the reference vectors from the pattern material 401 as the i-th pattern material. If The control unit 20 determines the pattern data obtained by removing the elements near the end points of all the reference vectors from the (i-1)th pattern data as the i-th pattern material.

於步驟S1116中,控制單元20新設定藉由增加1至圖案資料之參考數i所得到的值為i。In step S1116, the control unit 20 newly sets the value i obtained by adding 1 to the reference number i of the pattern data.

於步驟S1118中,控制單元20計算P映像413。更具體地,控制單元20計算P映像413作為於圖案資料401中插入(配置)輔助圖案的預備步驟。於步驟S1118中,基於第i個圖案資料中之所有的元素設定函數412。換句話說,藉由執行用於第i個圖案資料中之所有的元素的預定方法(如藉由縮小放大率而放大彼等)而設定函數412,藉此計算P映像413。因為得自步驟S1102之遮罩函數與得自步驟S1118之遮罩函數不同,於步驟S1102及S1118中必需計算不同的P映像413。In step S1118, the control unit 20 calculates the P map 413. More specifically, the control unit 20 calculates the P map 413 as a preliminary step of inserting (configuring) the auxiliary pattern in the pattern material 401. In step S1118, the function 412 is set based on all of the elements in the i-th pattern material. In other words, the function 412 is set by performing a predetermined method for all of the elements in the i-th pattern material (e.g., by magnifying the magnification), thereby calculating the P map 413. Since the mask function obtained from step S1102 is different from the mask function obtained from step S1118, it is necessary to calculate different P maps 413 in steps S1102 and S1118.

於步驟S1120中,控制單元20藉由插入(配置)輔助圖案而產生遮罩資料410。更具體地,基於步驟S1118中所計算的P映像413,插入(配置)輔助圖案於顯現高於預定臨限值之值並對應於峰值位置的各區域中。控制單元20接著決定作為新遮罩資料410之包括遮罩資料410中的輔助圖案上之資訊而得到的資料。此時,控制單元20可於顯示單元30上顯示遮罩資料410而非圖案資料401。In step S1120, the control unit 20 generates the mask data 410 by inserting (configuring) the auxiliary pattern. More specifically, based on the P map 413 calculated in step S1118, the auxiliary pattern is inserted (configured) in regions that appear to be higher than the predetermined threshold value and correspond to the peak position. The control unit 20 then determines the information obtained as information on the auxiliary pattern in the mask data 410 as the new mask data 410. At this time, the control unit 20 can display the mask material 410 instead of the pattern material 401 on the display unit 30.

於步驟S1122中,控制單元20藉參照快取記憶體而查驗是否有自圖案資料401所移除的元素。In step S1122, the control unit 20 checks whether there is an element removed from the pattern material 401 by referring to the cache memory.

若控制單元20決定有自圖案資料401所移除的元素,前進至步驟S1124;否則,結束方法。If the control unit 20 determines that there is an element removed from the pattern material 401, it proceeds to step S1124; otherwise, the method ends.

於步驟S1124中,控制單元20產生圖案資料401,其包括於產生第i個圖案資料時移除的元素,作為新製程目標(第二資料產生步驟)。In step S1124, the control unit 20 generates a pattern material 401 including an element removed when the i-th pattern material is generated as a new process target (second data generating step).

將說明使用P映像413分割圖案資料401的實例。假設P映像計算資訊件相同於第五實施例。考量圖22A所示之圖案資料401為製程目標的情況。圖22A中所示之圖案資料401具有三個接觸窗CP1至CP3。接觸窗CP1至CP3各者的尺寸(直徑)為120nm。An example of dividing the pattern material 401 using the P image 413 will be explained. It is assumed that the P-image calculation information piece is identical to the fifth embodiment. The case where the pattern data 401 shown in Fig. 22A is a process target is considered. The pattern material 401 shown in Fig. 22A has three contact windows CP1 to CP3. The size (diameter) of each of the contact windows CP1 to CP3 is 120 nm.

於y方向中接觸窗CP2與接觸窗CP1分開相聚-280nm。於x方向中接觸窗CP3與接觸窗CP2分開相聚225nm,及於y方向中接觸窗CP3與接觸窗CP2分開相聚-225nm。The contact window CP2 is separated from the contact window CP1 by -280 nm in the y direction. The contact window CP3 is separated from the contact window CP2 by 225 nm in the x direction, and the contact window CP3 is separated from the contact window CP2 by -225 nm in the y direction.

藉由設定一個元素(亦即三個接觸窗CP1至CP3中之一者)作為遮罩函數412,控制單元20計算P映像413。於此實施例中,設定接觸窗CP1作為遮罩函數412。於遮罩上之位置(±280,0)及(0,±280)處,P映像413具有正峰值。以及於遮罩上之位置(±225,225)及(±225,-225)處,P映像413具有負峰值。The control unit 20 calculates the P map 413 by setting one element (i.e., one of the three contact windows CP1 to CP3) as the mask function 412. In this embodiment, the contact window CP1 is set as the mask function 412. At the position (±280, 0) and (0, ±280) on the mask, the P map 413 has a positive peak. And at positions (±225, 225) and (±225, -225) on the mask, the P map 413 has a negative peak.

控制單元20指明表示例如P映像413之禁用間距的參考向量。此時,四個參考向量為(225,225)、(225,-225)、(-225,225)及(-225,-225)。Control unit 20 indicates a reference vector that represents, for example, the disable spacing of P-map 413. At this time, the four reference vectors are (225, 225), (225, -225), (-225, 225), and (-225, -225).

控制單元20選擇接觸窗(元素)CP2作為關注的元素,假設圖22A中所示之圖案資料401作為製程目標。於此情況中,假設所選擇的接觸窗CP2的位置作為關注元素而設定參考向量為起始點,接觸窗(元素)CP3存在於接近參考向量的一個端點處。因此,接觸窗CP2及CP3具有禁用間距關係。The control unit 20 selects the contact window (element) CP2 as the element of interest, assuming that the pattern material 401 shown in Fig. 22A is used as the process target. In this case, assuming that the position of the selected contact window CP2 is set as the attention element as the attention element as the starting point, the contact window (element) CP3 exists at one end point close to the reference vector. Therefore, the contact windows CP2 and CP3 have a disabled pitch relationship.

為取消此狀態,控制單元20自圖22A中所示之圖案資料401移除接近參考向量之一端點的接觸窗(元素)CP3,以產生圓22B中所示之第一圖案資料。藉此操作,使圖22C中所示之圖案資料401分割成圖22B中所示之第一圖案資料以及圖22C中所示之第二圖案資料。此分割可產生不具任何禁用間距之兩個遮罩的遮罩資料。To cancel this state, the control unit 20 removes the contact window (element) CP3 close to one of the end points of the reference vector from the pattern material 401 shown in Fig. 22A to generate the first pattern material shown in the circle 22B. By this operation, the pattern material 401 shown in Fig. 22C is divided into the first pattern material shown in Fig. 22B and the second pattern material shown in Fig. 22C. This split produces mask data for two masks without any disabled spacing.

如第五及第九實施例中所說明者,基於P映像413插入(配置)輔助圖案改進遮罩的成像表現。因此,與簡單雙重曝光相較,藉由於圖22B中所示之第一圖案資料以及圖22C中所示之第二圖案資料中插入(配置)最適輔助圖案已產生圖22D及22E中所示之圖案資料,可改進成像表現。As explained in the fifth and ninth embodiments, the auxiliary pattern is inserted (configured) based on the P map 413 to improve the imaging performance of the mask. Therefore, compared with the simple double exposure, the insertion (configuration) of the optimum auxiliary pattern in the first pattern data shown in FIG. 22B and the second pattern data shown in FIG. 22C has been produced as shown in FIGS. 22D and 22E. Pattern data to improve imaging performance.

當輸入圖22D及22E中所示之遮罩資料至EB描繪裝置時,基於彼等製造兩個遮罩。當使用此二遮罩執行雙重曝光時,相較使用與圖22A中所示之圖案資料相同的遮罩而執行曝光,可形成較高精確度的接觸窗CP1至CP3。When the mask data shown in Figs. 22D and 22E is input to the EB drawing device, two masks are fabricated based on them. When the double exposure is performed using the two masks, the exposure is performed using the same mask as that of the pattern shown in Fig. 22A, and the contact windows CP1 to CP3 of higher precision can be formed.

<第十二實施例><Twelfth Embodiment>

於第十二實施例中將說明有效光源之最佳化。於最佳化有效光源時,僅需判斷P映像413上的峰值(顯現等於或大於預定臨限值之值的各區域)匹配圖案資料401之元素的位置。The optimization of the effective light source will be explained in the twelfth embodiment. In optimizing the effective light source, it is only necessary to judge the position of the element on the P map 413 (the area appearing to be equal to or greater than the value of the predetermined threshold) to match the element of the pattern data 401.

假設除有效光源資訊402以外的P映像計算資訊件均相同於第五實施例。如圖23A中所示,考量具有三個接觸窗CP11至CP13的供圖案資料(目標圖案)401之有效光源最佳化。以間距dd為300nm的方式配製三個接觸窗CP11至CP13。接觸窗CP11至CP13各者的尺寸為120It is assumed that the P-image calculation information pieces other than the effective light source information 402 are identical to the fifth embodiment. As shown in FIG. 23A, the effective light source for pattern data (target pattern) 401 having three contact windows CP11 to CP13 is considered to be optimized. Three contact windows CP11 to CP13 are prepared in such a manner that the pitch dd is 300 nm. The size of each of the contact windows CP11 to CP13 is 120.

圖23B為顯示有效光源初始值(有效光源資訊402)的圖表。於圖23B中,白色圓形線表示σ=1,及白色區域表示光照射部分。光瞳座標系統係經正規化,使得自圓形中心至各極(光照射部分)中心的距離於x方向係設為0.45,及於y方向係設為0.45,且設定各極(光照射部分)的直徑為0.3。Figure 23B is a graph showing the effective source initial value (effective source information 402). In Fig. 23B, a white circular line indicates σ = 1, and a white area indicates a light irradiation portion. The aperture coordinate system is normalized so that the distance from the center of the circle to the center of each pole (light-irradiating portion) is set to 0.45 in the x direction, and is set to 0.45 in the y direction, and the respective poles are set (light-irradiating portion) The diameter of 0.3 is 0.3.

基於圖23B中所示之有效光源的初始值,控制單元20計算圖23c中所示之P映像413。圖23c中所示之P映像413於位置(0,±300)及(±300,0)具有正峰值。圖23C中所示之P映像413適於基於圖23A中所示之圖案資料的遮罩。此因於基於圖23A中所示之圖案資料401的遮罩上之相鄰接觸窗之間的間距dd為300nm。Based on the initial value of the effective light source shown in Fig. 23B, the control unit 20 calculates the P map 413 shown in Fig. 23c. The P map 413 shown in Fig. 23c has a positive peak at positions (0, ±300) and (±300, 0). The P map 413 shown in Fig. 23C is adapted to be based on the mask of the pattern material shown in Fig. 23A. This is because the pitch dd between adjacent contact windows on the mask based on the pattern material 401 shown in FIG. 23A is 300 nm.

藉由重設遮罩函數412(如藉由設定遮罩函數412作為目標圖案自身),控制單元20計算新的P映像413。當於顯現等於或大於預定臨限值之值且對應於P映像413上之峰值位置的各區域插入(配置)輔助圖案時,可得到如圖23D中所示之遮罩資料810。使用基於圖23D中所示之遮罩410之遮罩,使得以高精確度形成接觸窗CP11至CP13。The control unit 20 calculates a new P map 413 by resetting the mask function 412 (eg, by setting the mask function 412 as the target pattern itself). When the auxiliary pattern is inserted (configured) in a region which is equal to or larger than the predetermined threshold value and corresponds to the peak position on the P map 413, the mask material 810 as shown in FIG. 23D can be obtained. The masks based on the mask 410 shown in Fig. 23D are used, so that the contact windows CP11 to CP13 are formed with high precision.

圖24為用於解釋藉由遮罩產生程式414以產生遮罩資料410之製程的流程圖。24 is a flow chart for explaining a process for generating a mask 410 by mask generation of a program 414.

於步驟S1202中,控制單元20設定有效光源資訊402。In step S1202, the control unit 20 sets the effective light source information 402.

於步驟S1204中,控制單元20設定遮罩函數412。要注意的是,遮罩函數並非基於整體目標圖案而是基於目標圖案的一個元素而設定。藉由執行供一個元素的預定製程(如以縮小放大率將彼放大)而設定遮罩函數412。In step S1204, the control unit 20 sets the mask function 412. It is to be noted that the mask function is not set based on the overall target pattern but based on one element of the target pattern. The mask function 412 is set by executing a predetermined process for one element (e.g., magnifying the magnification at a reduced magnification).

於步驟S1206中,控制單元20基於步驟S1204中之遮罩函數412而計算遮罩函數412。In step S1206, the control unit 20 calculates the mask function 412 based on the mask function 412 in step S1204.

於步驟S1208中,控制單元20匹配P映像413與接觸窗CP11至CP13,作為待藉由曝光而轉移之所欲圖案。In step S1208, the control unit 20 matches the P map 413 and the contact windows CP11 to CP13 as a desired pattern to be transferred by exposure.

於步驟S1210中,控制單元20決定接觸窗CP11至CP13適否作為匹配P映像413上之峰值(顯現等於或大於預定臨限值之值的各區域)的所欲圖案。若控制單元20決定接觸窗CP11至CP13作為匹配峰值之所欲圖案,前進制步驟S1212。若控制單元20決定作為所欲圖案之接觸窗CP11至CP13不匹配P映像413上的峰值,返回步驟S1202。In step S1210, the control unit 20 determines whether the contact windows CP11 to CP13 are suitable as a desired pattern that matches the peak on the P map 413 (each region that appears equal to or greater than the value of the predetermined threshold). If the control unit 20 determines the contact windows CP11 to CP13 as the desired pattern of the matching peaks, the process proceeds to step S1212. If the control unit 20 determines that the contact windows CP11 to CP13 as the desired pattern do not match the peak on the P map 413, the flow returns to step S1202.

於步驟S1212中,控制單元20改變遮罩函數412。雖然是藉由關注步驟S1204中的目標圖案之一個元素而設定遮罩函數412,但目標圖案的所有元素均被設為遮罩函數412。為此緣故,藉由執行供目標圖案之所有元素的預定製程(如以縮小放大率將彼等放大)而設定遮罩函數412。In step S1212, the control unit 20 changes the mask function 412. Although the mask function 412 is set by focusing on one element of the target pattern in step S1204, all elements of the target pattern are set as the mask function 412. For this reason, the mask function 412 is set by performing a predetermined process for all elements of the target pattern, such as magnifying them at a reduced magnification.

於步驟S1214中,控制單元20基於步驟S1212中所設定之遮罩函數412,計算P映像413。In step S1214, the control unit 20 calculates the P map 413 based on the mask function 412 set in step S1212.

於步驟S1216中,控制單元20基於步驟S1214中所計算的P映像413而插入(配置)輔助圖案以產生遮罩資料,並於此結束方法。In step S1216, the control unit 20 inserts (configures) the auxiliary pattern based on the P map 413 calculated in step S1214 to generate mask material, and ends the method there.

為最佳化有效光源,必須重複(亦即迴圈)圖24中所示之步驟S1202至S1210。有效光源(有效光源資訊402)之初始設定對迅速完成步驟S1201至S1210的迴圈係重要的。將於以下說明簡單計算初始設定有效光源的方法,其可在短時間期間內計迅速地完成步驟S1201至S1210的迴圈。In order to optimize the effective light source, steps S1202 to S1210 shown in Fig. 24 must be repeated (i.e., looped). The initial setting of the effective light source (effective light source information 402) is important to quickly complete the loop of steps S1201 to S1210. A method of simply calculating the initial setting effective light source, which can quickly complete the loop of steps S1201 to S1210 in a short period of time, will be explained below.

藉由遮罩圖案所繞射的光形成投射光學系統之光瞳平面上的繞射光分佈。如前述,令(f,g)為繞射光的振幅。如前述,投射光學系統之光瞳平面上的座標(f,g)亦因假設投射光學系統之光瞳尺寸(光瞳直徑)為1而經正規化。令環形(f-f',g-g')為函數,其令落入半徑為1的圓形之內的位置與(f',g')的中心為1,及另其他位置為0。令w(f,g)為繞射光的加權函數。The light diffracted by the mask pattern forms a diffracted light distribution on the pupil plane of the projection optical system. As described above, let (f, g) be the amplitude of the diffracted light. As described above, the coordinates (f, g) on the pupil plane of the projection optical system are also normalized by assuming that the pupil size (the pupil diameter) of the projection optical system is 1. Let the ring (f-f', g-g') be a function that makes the position within the circle of radius 1 and the center of (f', g') be 1, and the other positions are zero. Let w(f, g) be the weighting function of the diffracted light.

首先,控制單元20計算下式重積分:First, the control unit 20 calculates the following formula:

Sraw (f,g)=∫∫w(f,g)a(f,g)circ(f-f',q-g')df'dg'…(35)S raw (f,g)=∫∫w(f,g)a(f,g)circ(f-f',q-g')df'dg'...(35)

其中∣f∣2且∣g'∣2。Where ∣f∣ 2 and ∣g'∣ 2.

接下來,控制單元20計算下式:Next, the control unit 20 calculates the following formula:

S(f,q)=Sraw (f,g)circ(f,g) ...(36)S(f,q)=S raw (f,g)circ(f,g) ...(36)

最後,控制單元20決定由式(36)所計算之S(f,g)作為有效光源的設定值。Finally, the control unit 20 determines S(f, g) calculated by the equation (36) as the set value of the effective light source.

例如,考量如圖25A中所示之圖案資料401,其中5列與5行的接觸窗圖案係二維地配置於300nm的圓形。於圖25A中,縱座標指示遮罩錶面上的y座標(單位:nm),以及橫座標指示遮罩錶面上的y座標(單位:nm)。第12實施例亦假設使用NA為0.73(對應於NA資訊403)及曝光波長為248nm(對應於λ資訊404)之投射光學系統的情況。For example, consider the pattern material 401 as shown in FIG. 25A, in which the five-column and five-row contact window patterns are two-dimensionally arranged in a circular shape of 300 nm. In Fig. 25A, the ordinate indicates the y coordinate (unit: nm) on the surface of the mask, and the abscissa indicates the y coordinate (unit: nm) on the surface of the mask. The twelfth embodiment also assumes a case where a projection optical system having an NA of 0.73 (corresponding to NA information 403) and an exposure wavelength of 248 nm (corresponding to λ information 404) is used.

基於式(35)及(36),控制單元20計算描述有效光源的函數S(f,g)。圖25B顯示由控制單元20所計算的經函數S(f,g)描述之有效光源。於此實施例中,假設加權函數w(f,g)為四次函數,其滿足(0,0)=0.1且w(2,2)=1。於圖25B中,縱坐標指示x方向中的同調因子σ,以及橫坐標指示y方向中的同調因子σ。Based on equations (35) and (36), control unit 20 calculates a function S(f, g) that describes the effective source. Figure 25B shows the effective light source as described by the control unit 20 as described by the function S(f, g). In this embodiment, it is assumed that the weighting function w(f, g) is a quartic function which satisfies (0, 0) = 0.1 and w(2, 2) = 1. In FIG. 25B, the ordinate indicates the coherence factor σ in the x direction, and the abscissa indicates the coherence factor σ in the y direction.

參照圖25B,連續改變由函數S(f,g)所描述的有效光源。於圖25B中所示之有效光源接近圖23B中所示之有效光源。因此,圖25B中所示的有效光源適用作為步驟S1202至S1210之回圈中之於步驟S1202所設定的有效光源資訊402之初始值(有效光源的設定值)。Referring to Figure 25B, the effective light source described by the function S(f, g) is continuously changed. The effective light source shown in Figure 25B is close to the effective light source shown in Figure 23B. Therefore, the effective light source shown in FIG. 25B is applied as the initial value (set value of the effective light source) of the effective light source information 402 set in step S1202 in the loop of steps S1202 to S1210.

<第十三實施例><Thirteenth Embodiment>

於第十三實施例中將說明使用基於上述實施例之一者中所產生的遮罩資料410而製造遮罩130以執行曝光方法的曝光設備100。要注意的是圖26係顯示曝光設備100之配置的示意方塊圖。An exposure apparatus 100 that manufactures the mask 130 to perform an exposure method using the mask material 410 generated based on one of the above embodiments will be described in the thirteenth embodiment. It is to be noted that FIG. 26 is a schematic block diagram showing the configuration of the exposure apparatus 100.

曝光設備100為浸潤式曝光設備,其經由投射光學系統140與晶圓150之間所供應的液體LW藉使用步階及掃描方法而轉移遮罩130之圖案至晶圓150上。然而,曝光設備100可採用步階及掃描方法或其他曝光方法。The exposure apparatus 100 is an immersion exposure apparatus that transfers a pattern of the mask 130 onto the wafer 150 by using a step and scanning method via the liquid LW supplied between the projection optical system 140 and the wafer 150. However, the exposure apparatus 100 may employ a step and scan method or other exposure method.

如圖26中所示,曝光設備100包括光源110、照明光學系統120、供設置遮罩130之遮罩台135、投射光學系統140、供設置晶圓150之晶圓台155、液體供應/回收單元160,以及主要控制系統170。光源110與照明光學系統120組成照明設備,其照明其上形成有待經轉移的電路圖案之遮罩130。As shown in FIG. 26, the exposure apparatus 100 includes a light source 110, an illumination optical system 120, a mask stage 135 for providing a mask 130, a projection optical system 140, a wafer stage 155 for setting a wafer 150, and a liquid supply/recycling. Unit 160, as well as primary control system 170. The light source 110 and the illumination optical system 120 constitute a lighting device that illuminates a mask 130 on which a circuit pattern to be transferred is formed.

光源110為準分子雷射,諸如波長為約193nm之ArF準分子雷射或波長為約248nm之KrF準分子雷射。然而,並不特別限定光源110之種類及數目。例如,亦可使用波長為約157nm的F2 雷射作為光源110。Light source 110 is an excimer laser such as an ArF excimer laser having a wavelength of about 193 nm or a KrF excimer laser having a wavelength of about 248 nm. However, the kind and number of the light sources 110 are not particularly limited. For example, an F 2 laser having a wavelength of about 157 nm can also be used as the light source 110.

照明光學系統120以來自光源110的光照明遮罩130。於此實施例中,照明光學系統120包括光束成形光學系統121、聚焦光學系統122、極化控制單元123、光學積分器124,以及孔徑光闌125。照明光學系統120亦包括聚光透鏡126、彎曲鏡127、遮罩葉片128,以及成像透鏡129。照明光學系統120可實施各種照明模式,諸如圖4A及14A中所示之習知的照明及修飾的照明(如四極照明及偶極照明)。Illumination optics 120 illuminates mask 130 with light from light source 110. In this embodiment, the illumination optical system 120 includes a beam shaping optical system 121, a focusing optical system 122, a polarization control unit 123, an optical integrator 124, and an aperture stop 125. The illumination optical system 120 also includes a concentrating lens 126, a curved mirror 127, a mask vane 128, and an imaging lens 129. Illumination optics 120 can implement various illumination modes, such as the conventional illumination and modified illumination (such as quadrupole illumination and dipole illumination) shown in Figures 4A and 14A.

例如,光束成形光學系統121為包括複數個圓柱透鏡的光束放大器。光束成形光學系統121將來自光源110之準直光的截面形狀之水平對垂直比轉換成預定值(如將截面形狀由矩形轉換成正方形)。於此實施例中,光束成形光學系統121使來自光源110的光成形為照明光學積分器124所需之尺寸及發散角度。For example, the beam shaping optical system 121 is a beam amplifier including a plurality of cylindrical lenses. The beam shaping optical system 121 converts the horizontal-to-vertical ratio of the cross-sectional shape of the collimated light from the light source 110 into a predetermined value (e.g., converts the cross-sectional shape from a rectangle to a square). In this embodiment, beam shaping optics 121 shapes the light from source 110 to the desired size and divergence angle of illumination optical integrator 124.

聚焦光學系統122包括複數個光元件,且有效地導引由光束成形光學系統121所成形之光至光學積分器124。聚焦光學系統122包括例如變焦透鏡系統,且調整進入光學積分器124之光的形狀及角度。Focusing optics 122 includes a plurality of optical elements and effectively directs light shaped by beam shaping optics 121 to optical integrator 124. Focusing optics 122 includes, for example, a zoom lens system and adjusts the shape and angle of light entering optical integrator 124.

極化控制單元123包括例如極化元件,且其係設定於接近投射光學系統140之光瞳平面142的共軛位置。極化控制單元123控制投射光學系統140之光瞳平面142所形成的有效光源之預定區域的極化狀態。The polarization control unit 123 includes, for example, a polarization element, and is set at a conjugate position close to the pupil plane 142 of the projection optical system 140. The polarization control unit 123 controls the polarization state of a predetermined region of the effective light source formed by the pupil plane 142 of the projection optical system 140.

光學積分器124具有均勻照明光的函數,其照明遮罩130、轉換其入射光的角分佈成為位置分佈,以及輸出所得的光。光學積分器124係例如具有其入射表面與射出表面維持傅立葉轉換關係的蒼蠅眼透鏡。蒼蠅眼透鏡係藉由結合複數個桿透鏡(亦即微透鏡元件)所形成。然而,光學積分器124並不特別受限於蒼蠅眼透鏡,且可能為例如圓柱透鏡陣列板,其中光學桿及繞射光柵彼此正交排列。The optical integrator 124 has a function of uniformly illuminating light that illuminates the mask 130, converts the angular distribution of its incident light into a positional distribution, and outputs the resulting light. The optical integrator 124 is, for example, a fly-eye lens having a Fourier-converted relationship between its incident surface and the exit surface. The fly eye lens is formed by combining a plurality of rod lenses (i.e., microlens elements). However, the optical integrator 124 is not particularly limited to a fly-eye lens, and may be, for example, a cylindrical lens array plate in which the optical rod and the diffraction grating are orthogonally arranged to each other.

設定孔徑光闌125於緊接光學積分器124之射出表面之後且接近投射光學系統140之光瞳平面142上所形成的有效光源共軛的位置。孔徑光闌125的孔徑形狀對應於投射光學系統之光瞳平面上所形成之光強度分佈(亦即有效光源)。換句話說,孔徑光闌125控制有效光源。根據照明模式可切換孔徑光闌125。無孔徑光闌,在光學積分器124的先前階段,可藉由設定繞射光學元件(如CGH(電腦產生的全像))及稜鏡(如角錐稜鏡)可形成有效光源。The aperture stop 125 is positioned adjacent the exit surface of the optical integrator 124 and near the conjugate of the effective source formed on the pupil plane 142 of the projection optical system 140. The aperture shape of the aperture stop 125 corresponds to the light intensity distribution (i.e., the effective light source) formed on the pupil plane of the projection optical system. In other words, aperture stop 125 controls the effective source. The aperture stop 125 can be switched according to the illumination mode. Without aperture stop, in the previous stage of optical integrator 124, an effective source can be formed by setting diffractive optical elements (such as CGH (computer generated hologram)) and 稜鏡 (such as pyramid).

聚光透鏡126會聚形成接近光學積分器124之射出表面並通過孔徑光闌125之由第二光源發出之光束,以及使彼經由彎曲鏡127均勻地照明遮罩葉片128。The concentrating lens 126 converges to form an exiting surface proximate to the exit surface of the optical integrator 124 and through the aperture stop 125, and to uniformly illuminate the shroud blade 128 via the curved mirror 127.

設定遮罩葉片128於接近遮罩130之共軛位置,以及遮罩葉片128係由複數個可移動的遮光板所形成。遮罩葉片128形成對應於投射光學系統140之有效區域的近似矩形開口。使用通過遮罩葉片128的光束做為照明遮罩130的照明光。The mask vanes 128 are positioned adjacent the conjugate position of the mask 130, and the shroud blades 128 are formed from a plurality of movable visors. The mask vanes 128 form an approximately rectangular opening that corresponds to the active area of the projection optics 140. The light beam passing through the mask vane 128 is used as illumination light for the illumination mask 130.

於遮罩130上,成像透鏡129形成通過遮罩葉片128之光束的影像。On the mask 130, the imaging lens 129 forms an image of the light beam that passes through the mask vanes 128.

藉由諸如EB描繪裝置之製造裝置,基於藉前述處理設備1(遮罩產生程式)所產生的遮罩資料來製造遮罩130,且遮罩130具有待轉移的電路圖案及輔助圖案。遮罩130的圖案可包括不同於藉上述遮罩產生程式所產生之遮罩圖案的圖案。由遮罩台135支持並驅動遮罩130。藉由遮罩130所產生的繞射光係經由投射光學系統140投射至晶圓150之上。設定遮罩130及晶圓150以具有光學共軛關係。因曝光設備100採步階及掃瞄方法,其藉由同步地掃瞄彼等而將遮罩130之待轉移的電路圖案轉移至晶圓150之上。當曝光設備100採步階及重覆方法時,其於遮罩130與晶圓150靜止時執行曝光。The mask 130 is manufactured based on the mask data generated by the processing device 1 (mask generation program) by a manufacturing device such as an EB drawing device, and the mask 130 has a circuit pattern to be transferred and an auxiliary pattern. The pattern of the mask 130 may include a pattern different from the mask pattern produced by the mask generating program. The mask 130 is supported and driven by the mask table 135. The diffracted light generated by the mask 130 is projected onto the wafer 150 via the projection optical system 140. The mask 130 and the wafer 150 are set to have an optically conjugated relationship. Due to the stepping and scanning method of the exposure apparatus 100, the circuit pattern to be transferred of the mask 130 is transferred onto the wafer 150 by synchronously scanning them. When the exposure apparatus 100 takes the step and repeat method, it performs exposure when the mask 130 and the wafer 150 are stationary.

遮罩台135經由遮罩夾盤而支持遮罩130,以及遮罩台係連接至驅動機制(未顯示)。驅動機制(未顯示)係例如由線性馬達所形成,以及沿X-、Y-及Z-軸方向以及個別軸之旋轉方向驅動遮罩台135。要注意的是,定義遮罩130或晶圓150於彼表面上之掃瞄方向為Y軸方向,定義垂直於彼之方向為X軸方向,以及定義垂直於遮罩130或晶圓150之表面的方向為Z軸方向。The mask station 135 supports the mask 130 via the mask chuck, and the mask station is coupled to a drive mechanism (not shown). The driving mechanism (not shown) is formed, for example, by a linear motor, and drives the mask table 135 in the X-, Y-, and Z-axis directions and in the direction of rotation of the individual axes. It is to be noted that the scanning direction of the mask 130 or the wafer 150 on the surface is defined as the Y-axis direction, the X-axis direction is defined perpendicular to the direction, and the surface perpendicular to the mask 130 or the wafer 150 is defined. The direction is the Z-axis direction.

投射光學系統140投射遮罩130的電路圖案至晶圓150之上。投射光學系統140可為折射系統、反射曲光系統或反射系統。以塗層塗覆投射光學系統140的最終透鏡(最終表面),以降低由液體供應/回收單元160(用於保護)所提供的液體LW所產生的影響。Projection optics 140 projects the circuit pattern of mask 130 onto wafer 150. Projection optics 140 can be a refractive system, a reflective curved light system, or a reflective system. The final lens (final surface) of the projection optical system 140 is coated with a coating to reduce the effect of the liquid LW provided by the liquid supply/recovery unit 160 (for protection).

晶圓150為基板,其上投射(轉移)有遮罩130的電路圖案。然而,可用玻璃板或其他基板取代晶圓150。以光阻塗覆晶圓150。The wafer 150 is a substrate on which a circuit pattern of the mask 130 is projected (transferred). However, the wafer 150 may be replaced with a glass plate or other substrate. The wafer 150 is coated with a photoresist.

如同遮罩台135,晶圓台155支持晶圓150,以及使用線性馬達於X-、Y-及Z-軸方向以及繞個別軸之旋轉方向移動。Like the mask stage 135, the wafer stage 155 supports the wafer 150 and moves in the X-, Y-, and Z-axis directions and in the direction of rotation about the individual axes using a linear motor.

液體供應/回收單元160具有供應液體LW至晶圓150與投射光學系統140的最終透鏡(最終表面)之間的空間之功能。液體供應/回收單元160亦具有回收已供應至晶圓150與投射光學系統140的最終透鏡間的空間之液體LW的功能。選擇相對曝光用光為高透射率、預防雜垢附著於投射光學系統140(於彼之最終透鏡上),以及匹配光阻方法的物質作為液體LW。The liquid supply/recovery unit 160 has a function of supplying a space between the liquid LW and the final lens (final surface) of the wafer 150 and the projection optical system 140. The liquid supply/recovery unit 160 also has a function of recovering the liquid LW that has been supplied to the space between the wafer 150 and the final lens of the projection optical system 140. A material having a high transmittance for relative exposure, a scale to prevent adhesion of the scale to the projection optical system 140 (on the final lens), and a method of matching the photoresist is selected as the liquid LW.

主要控制系統170包括CPU及記憶體,以及控制曝光設備100的操作。例如,主要控制系統170電性連接至遮罩台135、晶圓台155,以及液體供應/回收單元160,並且控制遮罩台135與晶圓台155之間的同步掃瞄。例如基於曝光時晶圓台155之掃描方向及速度,主要控制系統170亦控制液體之供應、回收,以及停止供應/回收之間的切換。於上述實施例之一中,主要控制系統170接收有效光源資訊,以及控制孔徑光闌、繞射光學元件,以及稜鏡以形成有效光源。藉由使用者輸入或藉由連接處理設備1與曝光設備100而自處理設備1發射有效光源至曝光設備100可輸入有效光源資訊至主要控制系統170,以允許資料於彼等間通訊。若連接處理設備1與曝光設備100以允許資料於彼等間通訊,曝光設備100包括已知資料接收單元並且處理設備1包括已知資料發射單元。The primary control system 170 includes a CPU and memory, and controls the operation of the exposure device 100. For example, primary control system 170 is electrically coupled to mask station 135, wafer table 155, and liquid supply/recovery unit 160, and controls simultaneous scanning between mask table 135 and wafer table 155. For example, based on the scanning direction and speed of wafer table 155 during exposure, primary control system 170 also controls the supply of liquid, recovery, and switching between supply/recovery. In one of the above embodiments, primary control system 170 receives valid light source information, as well as controlling aperture stop, diffractive optical elements, and chirp to form an effective light source. The effective light source is transmitted from the processing device 1 to the exposure device 100 by user input or by connecting the processing device 1 to the exposure device 100 to input valid light source information to the primary control system 170 to allow data to communicate with each other. If the processing device 1 and the exposure device 100 are connected to allow data to communicate with each other, the exposure device 100 includes a known data receiving unit and the processing device 1 includes a known data transmitting unit.

雖然上述之處理設備1可為配置於曝光設備100外部的電腦,取而代之的,主要控制系統170可具有上述處理設備1之功能。於此情況中,主要控制系統170使用P運算子於短時間期間內可計算形成於晶圓表面上的光強度分佈(空間影像)。換句話說,主要控制系統170可改進部分同調成像計算的速度,因此縮短基於模型之RET所花時間。因此,曝光設備100可於短時間期間內最佳化曝光條件(如最佳化用於遮罩130之有效光源),因此改進產出量。主要控制系統170亦可產生較使用P映像之先前技術更優異的成像表現之遮罩資料。Although the processing device 1 described above may be a computer disposed outside the exposure device 100, the primary control system 170 may have the function of the processing device 1 described above. In this case, the primary control system 170 can calculate the light intensity distribution (spatial image) formed on the surface of the wafer using the P operator for a short period of time. In other words, primary control system 170 can improve the speed of partial coherent imaging calculations, thus reducing the time spent on model-based RET. Therefore, the exposure apparatus 100 can optimize the exposure conditions (e.g., optimize the effective light source for the mask 130) for a short period of time, thus improving the throughput. The primary control system 170 can also produce masking material that is superior to the imaging performance using prior art of the P-image.

於曝光時,由光源110發出的光束藉由照明光學系統120而照明遮罩130。正被傳輸通過遮罩130之光束反射遮罩130的電路圖案,經由液體LW藉投射光學系統140而於晶圓150上形成影像。曝光設備100具有優異的成像表現以及可以提供高產出量及好的經濟效益予裝置(如半導體裝置、LCD裝置、影像感應裝置(如CCD),及薄膜磁頭)。藉由使用曝光設備100曝光塗覆有光阻(感光劑)的基板(如晶圓或玻璃板)之步驟、顯影經曝光基板的步驟,及其他已知步驟而製造這些裝置。At the time of exposure, the light beam emitted by the light source 110 illuminates the mask 130 by the illumination optical system 120. The circuit pattern of the light-reflecting mask 130 being transmitted through the mask 130 forms an image on the wafer 150 via the liquid LW by the projection optical system 140. The exposure apparatus 100 has excellent imaging performance and can provide high throughput and good economical benefits to devices such as semiconductor devices, LCD devices, image sensing devices such as CCDs, and thin film magnetic heads. These devices are manufactured by a step of exposing a substrate (such as a wafer or a glass plate) coated with a photoresist (photosensitive agent) using an exposure apparatus 100, a step of developing an exposed substrate, and other known steps.

當參考例示性實施例說明本發明時,要了解的是本發明並不受限於所揭露的例示性實施例。下述申請專利範圍包含最廣義解釋,以包含所有修飾及均等的結構及功能。While the invention has been described with reference to the embodiments of the invention, it is understood that the invention is not limited to the disclosed embodiments. The following claims are intended to cover the broadest scope of

1...處理設備1. . . Processing equipment

10...匯流排線10. . . Bus line

20...控制單元20. . . control unit

30...顯示單元30. . . Display unit

40...儲存單元40. . . Storage unit

50...輸入單元50. . . Input unit

60...媒體介面60. . . Media interface

70...儲存媒體70. . . Storage medium

100...曝光設備100. . . Exposure equipment

110...光源110. . . light source

120...照明光學系統120. . . Lighting optical system

121...光束成形光學系統121. . . Beam shaping optical system

122...聚光光學系統122. . . Concentrating optical system

123...極化控制單元123. . . Polarization control unit

124...光學積分器124. . . Optical integrator

125...孔徑光闌125. . . Aperture stop

126...聚光透鏡126. . . Condenser lens

127...彎曲鏡127. . . Curved mirror

128...遮罩葉片128. . . Mask blade

129...成像透鏡129. . . Imaging lens

130...遮罩130. . . Mask

135...遮罩台135. . . Masking station

140...投射光學系統140. . . Projection optical system

142...光瞳平面142. . . Optical plane

150...晶圓150. . . Wafer

155...晶圓台155. . . Wafer table

160...液體供應/回收單元160. . . Liquid supply/recovery unit

170...主要控制系統170. . . Main control system

401...圖案資料401. . . Pattern data

402...有效光源資訊402. . . Effective light source information

403...NA資訊403. . . NA information

404...λ資訊404. . . λ information

405...像差資訊405. . . Aberration information

406...極化資訊406. . . Polarized information

407...光阻資訊407. . . Photoresist information

408...P運算子408. . . P operator

409...空間影像409. . . Spatial image

410...遮罩資料410. . . Mask data

411...空間影像計算程式411. . . Spatial image calculation program

412...遮罩函數412. . . Mask function

413...P映像413. . . P image

414...遮罩產生程式414. . . Mask generation program

圖1係根據本發明一面向之顯示執行計算方法的處理設備1之組態的示意方塊圖。1 is a schematic block diagram showing the configuration of a processing device 1 that performs a calculation method in accordance with the present invention.

圖2係顯示一維平面波(正交函數系統)之示意圖。2 is a schematic diagram showing a one-dimensional plane wave (orthogonal function system).

圖3係用於詳細解釋藉由圖1中所示之處理設備1中的空間影像計算程式之計算空間影像方法的流程圖。3 is a flow chart for explaining in detail a method of calculating a spatial image by the spatial image calculation program in the processing device 1 shown in FIG. 1.

圖4A至4D係用於解釋根據本發明之第一實施例之圖,其中圖4A顯示第一實施例中所使用的有效光源、圖4B顯示第一實施例中所使用的遮罩資料、圖4C顯示藉由空間影像計算程式所計算之空間影像,以及圖4D顯示藉由SOCS所計算的空間影像。4A to 4D are views for explaining a first embodiment according to the present invention, wherein FIG. 4A shows an effective light source used in the first embodiment, and FIG. 4B shows a mask material and a map used in the first embodiment. 4C shows the spatial image calculated by the spatial image calculation program, and FIG. 4D shows the spatial image calculated by the SOCS.

圖5係用於解釋根據本發明之第二實施例之圖,其中顯示當投射光學系統具像差時,藉由空間影像計算程式所計算的空間影像。Figure 5 is a view for explaining a second embodiment according to the present invention, which shows a spatial image calculated by a spatial image calculation program when the projection optical system has aberration.

圖6係用於解釋根據本發明之第二實施例之圖,其中顯示當照射光經極化時,藉由空間影像計算程式計算的空間影像。Figure 6 is a view for explaining a second embodiment according to the present invention, which shows a spatial image calculated by a spatial image calculation program when the illumination light is polarized.

圖7A至7C係用於解釋根據本發明之第三實施例之圖,其中圖7A顯示遮罩資料,以及圖7B及7C顯示使用圖7A中所示之遮罩資料及OPC之後的遮罩資料,藉由空間影像計算程式所計算之空間影像。7A to 7C are diagrams for explaining a third embodiment according to the present invention, wherein Fig. 7A shows mask data, and Figs. 7B and 7C show mask data after using mask data and OPC shown in Fig. 7A. , a spatial image calculated by a spatial image calculation program.

圖8A及8B係用於解釋根據本發明之第四實施例之圖表,其中圖8A顯示本徵值的數字與平方之間的關係,以及圖8B顯示完整空間影像與約略空間影像(即由一些本徵值及本徵函數所計算之空間影像)之間的差異。8A and 8B are diagrams for explaining a fourth embodiment according to the present invention, wherein FIG. 8A shows the relationship between the number and the square of the eigenvalues, and FIG. 8B shows the complete spatial image and the approximate spatial image (ie, by some The difference between the eigenvalue and the spatial image calculated by the eigenfunction).

圖9A至9C係用於解釋根據本發明之第四實施例之圖表,其中圖9A顯示有效光源、圖9B顯示未經壓縮的P運算子,以及圖9C顯示經壓縮的P運算子。9A to 9C are diagrams for explaining a fourth embodiment according to the present invention, wherein Fig. 9A shows an effective light source, Fig. 9B shows an uncompressed P operator, and Fig. 9C shows a compressed P operator.

圖10係顯示根據本發明之第五實施例的處理設備之組態的方塊圖。Figure 10 is a block diagram showing the configuration of a processing apparatus in accordance with a fifth embodiment of the present invention.

圖11A至圖11E係用於解釋根據本發明之第五實施例之圖,其中圖11A顯示有效光源、圖11B顯示圖案資料、圖11C顯示P映像、圖11D顯示遮罩資料,以及圖11E顯示各區域顯現等於或大於P映像臨界值之值。11A to 11E are diagrams for explaining a fifth embodiment according to the present invention, wherein FIG. 11A shows an effective light source, FIG. 11B shows pattern data, FIG. 11C shows a P map, FIG. 11D shows mask data, and FIG. 11E shows Each region appears to be equal to or greater than the value of the P-image threshold.

圖12係顯示不具有輔助圖案之遮罩的成像表現、根據先前技術而插入輔助圖案之遮罩的成像表現,及根據第五實施例插入輔助圖案之遮罩的成像表現之比較結果的圖。Fig. 12 is a view showing an imaging performance of a mask having no auxiliary pattern, an imaging performance of a mask in which an auxiliary pattern is inserted according to the prior art, and a comparison result of an imaging performance of a mask in which an auxiliary pattern is inserted according to the fifth embodiment.

圖13A及13B係用於解釋根據本發明之第六實施例之圖,其中圖13A顯示圖案資料以及圖13B顯示P映像。13A and 13B are diagrams for explaining a sixth embodiment according to the present invention, in which Fig. 13A shows pattern data and Fig. 13B shows P map.

圖14A至14C係用於解釋根據本發明之第七實施例之圖,其中圖14A顯示有效光源、圖14B顯示P映像,以及圖14C顯示遮罩。14A to 14C are diagrams for explaining a seventh embodiment according to the present invention, wherein Fig. 14A shows an effective light source, Fig. 14B shows a P map, and Fig. 14C shows a mask.

圖15A至15F係用於解釋根據本發明之第八實施例之圖,其顯示P映像。15A to 15F are diagrams for explaining an eighth embodiment according to the present invention, which shows a P map.

圖16A及16B係用於解釋根據本發明之第九實施例之圖,其中圖16A顯示P映像以及圖16B顯示遮罩資料。16A and 16B are diagrams for explaining a ninth embodiment according to the present invention, wherein Fig. 16A shows a P map and Fig. 16B shows a mask material.

圖17係顯示依據圖11D所示的遮罩資料之遮罩的成像表現(第五實施例)與依據圖16B所示的遮罩資料之遮罩的成像表現(第九實施例)之比較結果的圖表。Figure 17 is a graph showing the comparison between the imaging performance of the mask of the mask data shown in Figure 11D (the fifth embodiment) and the imaging performance of the mask of the mask data shown in Figure 16B (the ninth embodiment). Chart.

圖18係顯示根據本發明之第十實施例的遮罩資料之圖。Figure 18 is a diagram showing mask data according to a tenth embodiment of the present invention.

圖19係顯示依據圖16B所示的遮罩資料之遮罩的成像表現(第九實施例)與依據圖18所示的遮罩資料之遮罩的成像表現(第十實施例)之比較結果的圖表。Figure 19 is a graph showing the comparison between the imaging performance of the mask of the mask data shown in Figure 16B (the ninth embodiment) and the imaging performance of the mask of the mask data shown in Figure 18 (the tenth embodiment). Chart.

圖20係用於解釋根據本發明之第十一實施例之圖,其顯示當與待藉由曝光而轉移之所欲圖案為同相的輔助圖案被配置於P映像上具有正值的位置時之失焦特徵,以及當與待藉由曝光而轉移之所欲圖案為同相的輔助圖案被配置於P映像上具有負值的位置時之失焦特徵。Figure 20 is a view for explaining an eleventh embodiment according to the present invention, which shows that when an auxiliary pattern which is in phase with a desired pattern to be transferred by exposure is disposed at a position having a positive value on the P map The out-of-focus feature, and the out-of-focus feature when the auxiliary pattern in phase with the desired pattern to be transferred by exposure is disposed at a position having a negative value on the P map.

圖21係用於解釋藉由遮罩產生程式產生不具任何禁用間距之圖案資料的方法之流程圖。Figure 21 is a flow chart for explaining a method of generating pattern data without any prohibited pitch by a mask generating program.

圖22A至22E係用於解釋根據本發明之第十一實施例之圖,其中圖22A顯示圖案資料、圓22B及22c顯示遮罩資料,以及圖22D及22E顯示插入有輔助圖案的遮罩資料。22A to 22E are diagrams for explaining an eleventh embodiment according to the present invention, wherein FIG. 22A shows pattern data, circles 22B and 22c display mask data, and FIGS. 22D and 22E show mask data in which auxiliary patterns are inserted. .

圖23A至23D係用於解釋根據本發明之第十二實施例之圖,其中圖23A顯示圖案資料、圖23B顯示有效光源、圖23c顯示P映像,以及圖23D顯示遮罩資料。23A to 23D are diagrams for explaining a twelfth embodiment according to the present invention, wherein Fig. 23A shows pattern data, Fig. 23B shows an effective light source, Fig. 23c shows a P map, and Fig. 23D shows mask data.

圖24係用於解釋藉由遮罩產生程式之遮罩資料產生方法的流程圖。Figure 24 is a flow chart for explaining a mask generating method for generating a program by masking.

圖25A及25B係用於解釋根據本發明之第十二實施例之圖,其中圖25A顯示圖案資料及圖25B顯示有效光源。25A and 25B are diagrams for explaining a twelfth embodiment according to the present invention, in which FIG. 25A shows pattern data and FIG. 25B shows an effective light source.

圖26係顯示根據本發明一面向之曝光設備的組態之示意方圖。Figure 26 is a schematic diagram showing the configuration of an exposure apparatus according to the present invention.

1...處理設備1. . . Processing equipment

10...匯流排線10. . . Bus line

20...控制單元20. . . control unit

30...顯示單元30. . . Display unit

40...儲存單元40. . . Storage unit

50...輸入單元50. . . Input unit

60...媒體介面60. . . Media interface

70...儲存媒體70. . . Storage medium

401...圖案資料401. . . Pattern data

402...有效光源資訊402. . . Effective light source information

403...NA資訊403. . . NA information

404...λ資訊404. . . λ information

405...像差資訊405. . . Aberration information

406...極化資訊406. . . Polarized information

407...光阻資訊407. . . Photoresist information

408...P運算子408. . . P operator

409...空間影像409. . . Spatial image

410...遮罩資料410. . . Mask data

411...空間影像計算程式411. . . Spatial image calculation program

Claims (15)

一種計算形成於一投射光學系統之一影像平面上的一光強度分佈之計算方法,當使用一照明光學系統照明一遮罩並且經由該投射光學系統投射該遮罩的一圖案之一影像至一基板上時,藉由一電腦計算該光強度分佈,該計算方法包含:一分割步驟,分割形成於該投射光學系統之一光瞳平面上的一有效光源成為複數個點光源;一產生步驟,根據該等點光源的各個位置而藉由一移動量針對各該複數個點光源移動描述該投射光學系統之一光瞳的一光瞳函數,藉此產生複數個移動的光瞳函數;一定義步驟,藉由排列各該複數個移動的光瞳函數定義一矩陣,該複數個移動的光瞳函數在該矩陣的各列或各行中於該產生步驟中產生;一第一計算步驟,執行該定義步驟中所定義之該矩陣的奇異值分解,藉此計算一本徵值及一本徵函數;以及一第二計算步驟,基於由該遮罩之該圖案所繞射的光之分佈,以及該第一計算步驟中所計算的該本徵值及該本徵函數,計算該投射光學系統之該影像平面上所形成的該光強度分佈。 A method of calculating a light intensity distribution formed on an image plane of a projection optical system, using an illumination optical system to illuminate a mask and projecting an image of the pattern of the mask to the image through the projection optical system On the substrate, the light intensity distribution is calculated by a computer, the calculation method comprising: a dividing step of dividing an effective light source formed on a pupil plane of the projection optical system into a plurality of point light sources; Generating a pupil function describing one pupil of the projection optical system for each of the plurality of point light sources by a movement amount according to respective positions of the point light sources, thereby generating a plurality of moving pupil functions; a step of defining a matrix by arranging each of the plurality of moving pupil functions, the plurality of moving pupil functions being generated in the generating step in each column or rows of the matrix; a first calculating step, executing the Defining a singular value decomposition of the matrix defined in the step, thereby calculating an eigenvalue and an eigenfunction; and a second calculation step based on The distribution of the light of the diffraction pattern of the mask, and the eigenvalue calculated in the first calculation step and the eigenfunctions, the calculation of the projected light intensity on the image plane of the optical system of distribution formed. 如申請專利範圍第1項所述之方法,其中於該產生步驟中,藉由介於該投射光學系統的光瞳之中央位置與該等點光源的位置之間的差異而移動光瞳函數。 The method of claim 1, wherein in the generating step, the pupil function is moved by a difference between a central position of the pupil of the projection optical system and a position of the point light sources. 如申請專利範圍第1項所述之方法,其中該複數個 光瞳函數包括表示下列至少一者之資訊:該投射光學系統的一像差、照明該遮罩之該光的一極化狀態、該有效光源之一光強度變化,以及該遮罩的一繞射效率。 The method of claim 1, wherein the plurality of The pupil function includes information indicating at least one of: an aberration of the projection optical system, a polarization state of the light that illuminates the mask, a change in light intensity of one of the effective light sources, and a winding of the mask Shooting efficiency. 如申請專利範圍第1項所述之方法,其中在該產生步驟中該複數個移動的光瞳函數係一維的排列。 The method of claim 1, wherein the plurality of moving pupil functions are one-dimensionally arranged in the generating step. 一種藉由一電腦產生用於包括一投射光學系統之一曝光設備的一遮罩之一圖案的資料之產生方法,該產生方法包含:一分割步驟,分割形成於該投射光學系統之一光瞳平面上的一有效光源成為複數個點光源;一產生步驟,根據該等點光源的各個位置而藉由一移動量針對各該複數個點光源移動描述該投射光學系統之一光瞳的一光瞳函數,藉此產生複數個移動的光瞳函數;一定義步驟,藉由排列各該複數個移動的光瞳函數定義一矩陣,該複數個移動的光瞳函數在該矩陣的各列或各行中於該產生步驟中產生;一第一計算步驟,執行該定義步驟中所定義之該矩陣的奇異值分解,藉此計算一本徵值及一本徵函數;一第二計算步驟,當插入一目標圖案的元素至該投射光學系統的一物件平面上時,基於藉由該目標圖案所繞射的光之分佈以及該第一計算步驟中所計算的該本徵值及該本徵函數,計算表示該等元素彼此影響的一映像;以及一資料產生步驟,基於該第二計算步驟中所計算的該映像,產生該遮罩之該圖案的資料。 A method for generating data for a pattern of a mask including an exposure device of a projection optical system by a computer, the generating method comprising: a dividing step of forming a pupil formed in the projection optical system An effective light source on the plane becomes a plurality of point light sources; a generating step of moving a light describing the pupil of the projection optical system for each of the plurality of point light sources by a movement amount according to each position of the point light sources a 瞳 function, thereby generating a plurality of moving pupil functions; a defining step of defining a matrix by arranging each of the plurality of moving pupil functions, the plurality of moving pupil functions in each column or row of the matrix Generating in the generating step; a first calculating step of performing singular value decomposition of the matrix defined in the defining step, thereby calculating an eigenvalue and an eigenfunction; and a second calculating step when inserting When the element of a target pattern is on an object plane of the projection optical system, based on the distribution of light diffracted by the target pattern and the calculation in the first calculation step The eigenvalue and the eigenfunction, calculate an image indicating that the elements affect each other; and a data generating step of generating the data of the mask based on the image calculated in the second calculating step . 如申請專利範圍第5項所述之方法,其中該資料產生步驟中,當基於該映像之一臨界值所決定的區域與假設該目標圖案之資料為一處理目標的該目標圖案之複數個元素不匹配時,重新設定該有效光源,以及基於該重新設定的有效光源而產生該遮罩之該圖案的資料。 The method of claim 5, wherein in the data generating step, a region determined based on a threshold value of the image and a plurality of elements of the target pattern assuming that the data of the target pattern is a processing target When there is no match, the effective light source is reset, and the pattern of the pattern of the mask is generated based on the reset effective light source. 如申請專利範圍第5項所述之方法,其中該資料產生步驟包括:一指定步驟,由一原點指定一參考向量至一區域,其顯示不少於該第二計算步驟中所計算的該映像上之一臨界值的一值;一第一資料產生步驟,選擇該目標圖案之複數個元素中之一者,以及當假設該元素的中心為一起始點而設定該參考向量時,移除與該參考向量之一端點匹配之位置上的一元素,藉此產生第一圖案資料;以及一第二資料產生步驟,產生自該第一資料產生步驟中所移除的該元素所形成之第二圖案資料。 The method of claim 5, wherein the data generating step comprises: a specifying step of assigning a reference vector to an area by an origin, the display being not less than the calculated in the second calculating step a value of a threshold value on the image; a first data generation step of selecting one of a plurality of elements of the target pattern, and removing the reference vector when the center of the element is assumed to be a starting point An element at a position that matches an endpoint of the reference vector, thereby generating a first pattern data; and a second data generation step of generating the element formed from the element removed in the first data generation step Two pattern materials. 如申請專利範圍第7項所述之方法,其中於該資料產生步驟中,重複該第一資料產生步驟及該第二資料產生步驟。 The method of claim 7, wherein in the data generating step, the first data generating step and the second data generating step are repeated. 一種儲存一程式之儲存媒體,當使用一照明光學系統照明一遮罩並且經由一投射光學系統投射該遮罩的一圖案之一影像至一基板上時,該程式係用於令一電腦執行計算形成於該投射光學系統之一影像平面上的一光強度分佈,該程式令該電腦執行: 一分割步驟,分割形成於該投射光學系統之一光瞳平面上的一有效光源成為複數個點光源;一產生步驟,根據該等點光源的各個位置而藉由一移動量針對各該複數個點光源移動描述該投射光學系統之一光瞳的一光瞳函數,藉此產生複數個移動的光瞳函數;一定義步驟,藉由排列各該複數個移動的光瞳函數定義一矩陣,該複數個移動的光瞳函數在該矩陣的各列或各行中於該產生步驟中產生;一第一計算步驟,執行該定義步驟中所定義之該矩陣的奇異值分解,藉此計算一本徵值及一本徵函數;以及一第二計算步驟,基於由該遮罩之該圖案所繞射的光之分佈,以及該第一計算步驟中所計算的該本徵值及該本徵函數,計算該投射光學系統之該影像平面上所形成的該光強度分佈。 A storage medium storing a program for causing a computer to perform calculations when an illumination optical system is used to illuminate a mask and project an image of a pattern of the mask onto a substrate via a projection optical system a light intensity distribution formed on an image plane of the projection optical system, the program causing the computer to execute: a dividing step of dividing an effective light source formed on a pupil plane of the projection optical system into a plurality of point light sources; and generating a step of, for each position of the point light sources, by a movement amount for each of the plurality of points Point source movement describes a pupil function of one of the projection optical systems, thereby generating a plurality of moving pupil functions; a defining step of defining a matrix by arranging each of the plurality of moving pupil functions, A plurality of moving pupil functions are generated in the generating step in each column or rows of the matrix; a first calculating step of performing singular value decomposition of the matrix defined in the defining step, thereby calculating an eigenvalue a value and an eigenfunction; and a second calculating step based on the distribution of light diffracted by the pattern of the mask, and the eigenvalue and the eigenfunction calculated in the first calculating step, The light intensity distribution formed on the image plane of the projection optical system is calculated. 一種儲存一程式之儲存媒體,該程式令電腦執行產生供包括一投射光學系統之一曝光設備的一遮罩之一圖案的資料之一處理,該程式令該電腦執行:一分割步驟,分割形成於該投射光學系統之一光瞳平面上的一有效光源成為複數個點光源;一產生步驟,根據該等點光源的各個位置而藉由一移動量針對各該複數個點光源移動描述該投射光學系統之一光瞳的一光瞳函數,藉此產生複數個移動的光瞳函數;一定義步驟,藉由排列各該複數個移動的光瞳函數定義一矩陣,該複數個移動的光瞳函數在該矩陣的各列或各 行中於該產生步驟中產生;一第一計算步驟,執行該定義步驟中所定義之該矩陣的奇異值分解,藉此計算一本徵值及一本徵函數;一第二計算步驟,當插入一目標圖案的元素至該投射光學系統的一物件平面上時,基於藉由該目標圖案所繞射的光之分佈以及該第一計算步驟中所計算的該本徵值及該本徵函數,計算表示該等元素彼此影響的一映像;以及一資料產生步驟,基於該第二計算步驟中所計算的該映像,產生該遮罩之該圖案的資料。 A storage medium storing a program for causing a computer to execute processing for generating one of a pattern of a mask including an exposure device of a projection optical system, the program causing the computer to perform: a segmentation step, segmentation An effective light source on a pupil plane of the projection optical system becomes a plurality of point light sources; a generating step of describing the projection for each of the plurality of point source movements by a movement amount according to each position of the point light sources a pupil function of one of the optical systems, thereby generating a plurality of moving pupil functions; a defining step of defining a matrix by arranging the plurality of moving pupil functions, the plurality of moving pupils Function in each column or each of the matrix Generating in the generating step; a first calculating step of performing singular value decomposition of the matrix defined in the defining step, thereby calculating an eigenvalue and an eigenfunction; and a second calculating step Inserting an element of a target pattern onto an object plane of the projection optical system based on a distribution of light diffracted by the target pattern and the eigenvalue and the eigenfunction calculated in the first calculating step Calculating an image indicating that the elements affect each other; and a data generating step of generating data of the pattern of the mask based on the image calculated in the second calculating step. 一種曝光方法,包含:一計算步驟,當使用一照明光學系統照明一遮罩並且經由一投射光學系統投射該遮罩的一圖案之一影像至一基板上時,計算形成於該投射光學系統之一影像平面上的一光強度分佈;一調整步驟,基於該計算步驟中所計算的該光強度分佈而調整一曝光條件;以及一曝光步驟,於該調整步驟後,投射該遮罩之該圖案的該影像至該基板上,該計算步驟包括一分割步驟,分割形成於該投射光學系統之一光瞳平面上的一有效光源成為複數個點光源;一產生步驟,根據該等點光源的各個位置而藉由一移動量針對各該複數個點光源移動描述該投射光學系統之一光瞳的一光瞳函數,藉此產生複數個移動的光瞳函數; 一定義步驟,藉由排列各該複數個移動的光瞳函數定義一矩陣,該複數個移動的光瞳函數在該矩陣的各列或各行中於該產生步驟中產生;一第一計算步驟,執行該定義步驟中所定義之該矩陣的奇異值分解,藉此計算一本徵值及一本徵函數,以及一第二計算步驟,基於由該遮罩之該圖案所繞射的光之分佈,以及該第一計算步驟中所計算的該本徵值及該本徵函數,計算該投射光學系統之該影像平面上所形成的該光強度分佈。 An exposure method comprising: a calculating step of calculating a shadow image of a mask of a mask onto a substrate by using an illumination optical system to illuminate a mask and projecting the image of the mask to a substrate via a projection optical system a light intensity distribution on an image plane; an adjustment step of adjusting an exposure condition based on the calculated light intensity distribution in the calculating step; and an exposure step of projecting the pattern of the mask after the adjusting step And the calculating step comprises a dividing step of dividing an effective light source formed on a pupil plane of the projection optical system into a plurality of point light sources; and generating a step according to each of the point light sources Positioning a displacement function describing a pupil of the projection optical system for each of the plurality of point light sources by a movement amount, thereby generating a plurality of moving pupil functions; a defining step of defining a matrix by arranging each of the plurality of moving pupil functions, the plurality of moving pupil functions being generated in the generating step in each column or rows of the matrix; a first calculating step, Performing a singular value decomposition of the matrix defined in the defining step, thereby calculating an eigenvalue and an eigenfunction, and a second calculating step, based on the distribution of light diffracted by the pattern of the mask And the eigenvalue calculated in the first calculating step and the eigenfunction, and calculating the light intensity distribution formed on the image plane of the projection optical system. 一種遮罩製造方法,包含:根據申請專利範圍第5至8項中任一項所定義之產生方法而產生供一遮罩的一圖案之資料;以及使用所產生的資料製造該遮罩。 A mask manufacturing method comprising: generating a pattern for a mask according to a production method defined in any one of claims 5 to 8; and fabricating the mask using the generated data. 一種曝光方法,包含以下步驟:根據申請專利範圍第12項中所定義之遮罩製造方法而製造一遮罩;照明該製造的遮罩;以及經由一投射光學系統將該遮罩之一圖案的一影像投射至一基板之上。 An exposure method comprising the steps of: manufacturing a mask according to the mask manufacturing method defined in claim 12; illuminating the manufactured mask; and patterning one of the masks via a projection optical system An image is projected onto a substrate. 一種藉由一電腦計算於一曝光設備中之透射相交係數之計算方法,該曝光設備使用一照明光學系統照明一遮罩,以及經由一投射光學系統投射該遮罩之一圖案的一影像至一基板上,該計算方法包含:一分割步驟,分割形成於該投射光學系統之一光瞳平 面上的一有效光源成為複數個點光源;一產生步驟,根據該等點光源的各個位置而藉由一移動量針對各該複數個點光源移動描述該投射光學系統之一光瞳的一光瞳函數,藉此產生複數個移動的光瞳函數;一定義步驟,藉由排列各該複數個光瞳函數定義一矩陣,該複數個移動的光瞳函數在該矩陣的各列或各行中於該產生步驟中產生;以及一計算步驟,基於該定義步驟中所定義之該矩陣而計算該透射相交係數。 A method for calculating a transmission intersection coefficient in an exposure apparatus by a computer, the exposure apparatus illuminating a mask using an illumination optical system, and projecting an image of a pattern of the mask to the image via a projection optical system On the substrate, the calculation method comprises: a segmentation step, the segmentation is formed on one of the projection optical systems An effective light source on the surface becomes a plurality of point light sources; a generating step of moving a light describing the pupil of the projection optical system for each of the plurality of point light sources by a movement amount according to each position of the point light sources a 瞳 function, thereby generating a plurality of moving pupil functions; a defining step of defining a matrix by arranging each of the plurality of pupil functions, the plurality of moving pupil functions being in each column or rows of the matrix The generating step is generated; and a calculating step of calculating the transmission intersection coefficient based on the matrix defined in the defining step. 如申請專利範圍第14項所述之方法,進一步包含執行該計算步驟中所計算之描述該透射相交係數之該矩陣的奇異值分解之一步驟,藉此計算一本徵值及一本徵函數。 The method of claim 14, further comprising the step of performing a singular value decomposition of the matrix describing the transmission intersection coefficient calculated in the calculating step, thereby calculating an eigenvalue and an eigenfunction .
TW097137749A 2007-10-03 2008-10-01 Calculation method, generation method, program, exposure method, and mask fabrication method TWI403861B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260360A JP4402145B2 (en) 2007-10-03 2007-10-03 Calculation method, generation method, program, exposure method, and original plate creation method

Publications (2)

Publication Number Publication Date
TW200931191A TW200931191A (en) 2009-07-16
TWI403861B true TWI403861B (en) 2013-08-01

Family

ID=40089866

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097137749A TWI403861B (en) 2007-10-03 2008-10-01 Calculation method, generation method, program, exposure method, and mask fabrication method

Country Status (5)

Country Link
US (3) US8059262B2 (en)
EP (1) EP2045663B1 (en)
JP (1) JP4402145B2 (en)
KR (1) KR101011732B1 (en)
TW (1) TWI403861B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086926B2 (en) * 2008-07-15 2012-11-28 キヤノン株式会社 Calculation method, program, and exposure method
US8239786B2 (en) * 2008-12-30 2012-08-07 Asml Netherlands B.V. Local multivariable solver for optical proximity correction in lithographic processing method, and device manufactured thereby
JP5607308B2 (en) * 2009-01-09 2014-10-15 キヤノン株式会社 Original data generation program and method
JP5607348B2 (en) * 2009-01-19 2014-10-15 キヤノン株式会社 Method and program for generating original data, and original production method
US8739079B2 (en) * 2009-10-30 2014-05-27 Canon Kabushiki Kaisha Recording medium and determination method
JP5279745B2 (en) * 2010-02-24 2013-09-04 株式会社東芝 Mask layout creation method, mask layout creation device, lithography mask manufacturing method, semiconductor device manufacturing method, and computer-executable program
NL2006091A (en) * 2010-03-05 2011-09-06 Asml Netherlands Bv Design rule optimization in lithographic imaging based on correlation of functions representing mask and predefined optical conditions.
KR101444624B1 (en) 2010-08-23 2014-09-26 미쓰비시덴키 가부시키가이샤 Projection display device
JP5539140B2 (en) * 2010-09-28 2014-07-02 キヤノン株式会社 Determination method, exposure method, program, and computer
JP5627394B2 (en) * 2010-10-29 2014-11-19 キヤノン株式会社 Program for determining mask data and exposure conditions, determination method, mask manufacturing method, exposure method, and device manufacturing method
JP2012151246A (en) * 2011-01-18 2012-08-09 Canon Inc Decision program of effective light source, exposure method, device manufacturing method, and decision program of intensity transmittance distribution of frequency filter
JP5833437B2 (en) 2011-12-29 2015-12-16 ルネサスエレクトロニクス株式会社 Simulation apparatus and simulation program
JP6039910B2 (en) * 2012-03-15 2016-12-07 キヤノン株式会社 Generation method, program, and information processing apparatus
JP5869942B2 (en) * 2012-04-03 2016-02-24 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Mask design method, program and mask design system
JP5656905B2 (en) 2012-04-06 2015-01-21 キヤノン株式会社 Determination method, program, and information processing apparatus
US10133184B2 (en) * 2012-04-25 2018-11-20 Nikon Corporation Using customized lens pupil optimization to enhance lithographic imaging in a source-mask optimization scheme
JP6000773B2 (en) * 2012-09-13 2016-10-05 キヤノン株式会社 Aberration estimation method, program, and imaging apparatus
JP6112872B2 (en) * 2013-01-18 2017-04-12 キヤノン株式会社 Imaging system, image processing method, and imaging apparatus
US10057498B1 (en) 2013-03-15 2018-08-21 Cognex Corporation Light field vision system camera and methods for using the same
US8875066B2 (en) * 2013-03-15 2014-10-28 Synopsys, Inc. Performing image calculation based on spatial coherence
JP6238687B2 (en) * 2013-11-12 2017-11-29 キヤノン株式会社 Mask pattern creation method, optical image calculation method
US9753539B2 (en) 2014-10-02 2017-09-05 Futureplay Inc. Method, device, system and non-transitory computer-readable recording medium for providing user interface
WO2016091536A1 (en) * 2014-12-09 2016-06-16 Asml Netherlands B.V. Method and apparatus for image analysis
NL2016093B1 (en) * 2016-01-14 2017-07-25 Univ Delft Tech Lithographic defined 3D lateral wiring.
DE102017101340B4 (en) * 2016-02-08 2020-02-20 Carl Zeiss Smt Gmbh Process for simulating a photolithographic process for producing a wafer structure
CN107037695B (en) * 2017-06-15 2018-04-10 北京理工大学 It is a kind of to calculate coherent imaging etching system channel capacity and the method for image error lower limit
CN108279553B (en) * 2018-01-30 2019-06-21 中国科学院上海光学精密机械研究所 A kind of photo-etching machine illumination control test macro and method
TWI753152B (en) * 2018-04-12 2022-01-21 聯華電子股份有限公司 Mask and method of forming pattern
KR102658892B1 (en) * 2021-12-27 2024-04-18 서울대학교산학협력단 Holographic aberration correction method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200502709A (en) * 2003-03-31 2005-01-16 Asml Masktools Bv Source and mask optimization
TW200502705A (en) * 2003-01-14 2005-01-16 Asml Masktools Bv Method of optical proximity correction design for contact hole mask
JP2007520892A (en) * 2004-02-03 2007-07-26 メンター・グラフィクス・コーポレーション Optimizing the light source for image fidelity and throughput

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715895B2 (en) 1994-01-31 1998-02-18 日本電気株式会社 Light intensity distribution simulation method
JP3256678B2 (en) 1998-02-19 2002-02-12 株式会社東芝 Lens aberration measurement method
US6223139B1 (en) * 1998-09-15 2001-04-24 International Business Machines Corporation Kernel-based fast aerial image computation for a large scale design of integrated circuit patterns
TW552561B (en) * 2000-09-12 2003-09-11 Asml Masktools Bv Method and apparatus for fast aerial image simulation
TWI285295B (en) * 2001-02-23 2007-08-11 Asml Netherlands Bv Illumination optimization in lithography
JP4019947B2 (en) 2003-01-15 2007-12-12 松下電器産業株式会社 Video signal conversion apparatus and video signal conversion method
US7030966B2 (en) * 2003-02-11 2006-04-18 Asml Netherlands B.V. Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations
TW200533982A (en) * 2004-02-17 2005-10-16 Adv Lcd Tech Dev Ct Co Ltd Light irradiation apparatus, light irradiation method, crystallization apparatus, crystallization method, device, and light modulation element
DE602006002044D1 (en) * 2005-02-23 2008-09-18 Asml Masktools Bv Method and apparatus for optimizing the illumination of a layer of a complete chip
JP2007273560A (en) 2006-03-30 2007-10-18 Toshiba Corp Light intensity distribution simulation method
JP5235322B2 (en) 2006-07-12 2013-07-10 キヤノン株式会社 Original data creation method and original data creation program
JP4804294B2 (en) 2006-09-20 2011-11-02 キヤノン株式会社 Master data creation program, master data creation method, master creation method, exposure method, and device manufacturing method
JP5086926B2 (en) * 2008-07-15 2012-11-28 キヤノン株式会社 Calculation method, program, and exposure method
JP5159501B2 (en) 2008-08-06 2013-03-06 キヤノン株式会社 Master data creation program, master data creation method, master creation method, exposure method, and device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200502705A (en) * 2003-01-14 2005-01-16 Asml Masktools Bv Method of optical proximity correction design for contact hole mask
TW200502709A (en) * 2003-03-31 2005-01-16 Asml Masktools Bv Source and mask optimization
JP2007520892A (en) * 2004-02-03 2007-07-26 メンター・グラフィクス・コーポレーション Optimizing the light source for image fidelity and throughput

Also Published As

Publication number Publication date
US20150070669A1 (en) 2015-03-12
EP2045663B1 (en) 2019-08-14
EP2045663A2 (en) 2009-04-08
US20120019805A1 (en) 2012-01-26
US8908153B2 (en) 2014-12-09
KR101011732B1 (en) 2011-02-07
US10073936B2 (en) 2018-09-11
JP2009094109A (en) 2009-04-30
US8059262B2 (en) 2011-11-15
EP2045663A3 (en) 2017-07-12
US20090091736A1 (en) 2009-04-09
TW200931191A (en) 2009-07-16
JP4402145B2 (en) 2010-01-20
KR20090034744A (en) 2009-04-08

Similar Documents

Publication Publication Date Title
TWI403861B (en) Calculation method, generation method, program, exposure method, and mask fabrication method
JP5235322B2 (en) Original data creation method and original data creation program
JP3992688B2 (en) Method of optical proximity correction design for contact hole mask
TWI414901B (en) Computer readable medium and exposure method
JP5685371B2 (en) Method for simulating aspects of a lithographic process
US7030966B2 (en) Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations
KR100760037B1 (en) Source and mask optimization
JP4707701B2 (en) Method and computer program for generating a model for simulating the imaging performance of an optical imaging system having a pupil
US20070121090A1 (en) Lithographic apparatus and device manufacturing method
KR20050043713A (en) Eigen decomposition based opc model
KR20110097800A (en) Fast freeform source and mask co-optimization method
KR101001219B1 (en) Mask data generation method, mask fabrication method, exposure method, device fabrication method, and storage medium
JP5607308B2 (en) Original data generation program and method
JP4921536B2 (en) Program and calculation method
Dam et al. Validation and application of a mask model for inverse lithography
JP2010156849A (en) Generation method, method for making original plate, exposure method, method for producing device and program