TWI394197B - A process for controlling roximity effect correction in an electron beam lithography system - Google Patents

A process for controlling roximity effect correction in an electron beam lithography system Download PDF

Info

Publication number
TWI394197B
TWI394197B TW094121185A TW94121185A TWI394197B TW I394197 B TWI394197 B TW I394197B TW 094121185 A TW094121185 A TW 094121185A TW 94121185 A TW94121185 A TW 94121185A TW I394197 B TWI394197 B TW I394197B
Authority
TW
Taiwan
Prior art keywords
line
data
parameters
dose
pattern
Prior art date
Application number
TW094121185A
Other languages
Chinese (zh)
Other versions
TW200614313A (en
Inventor
Peter Hudek
Dirk Beyer
Original Assignee
Vistec Electron Beam Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vistec Electron Beam Gmbh filed Critical Vistec Electron Beam Gmbh
Publication of TW200614313A publication Critical patent/TW200614313A/en
Application granted granted Critical
Publication of TWI394197B publication Critical patent/TWI394197B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31769Proximity effect correction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/143Electron beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

用於在電子束微影系統中控制鄰近效應校正的方法Method for controlling proximity effect correction in an electron beam lithography system

本發明涉及一種在電子束微影(electron beam lithography)系統中,用於控制鄰近效應(proximity effect)校正的方法。本方法適用於在高解析度電子束微影(EBL)中用於最優化控制鄰近校正的點擴展函數(PSF)的鄰近參數的精確數值確定。The present invention relates to a method for controlling proximity effect correction in an electron beam lithography system. The method is suitable for accurate numerical determination of neighboring parameters of a point spread function (PSF) for optimally controlling proximity correction in high resolution electron beam lithography (EBL).

鄰近效應參數是控制任意鄰近效應校正軟體的專用數值輸入。蝕刻成形波束這滿足高臨界尺寸控制“CD控制”要求(依國際SEMATECH的實際國際半導體技術路線ITRS而定)以及補償與後續的工藝步驟(顯影、蝕刻等)相聯繫的用高斯函數和/或成形光束的光罩和/或直接寫入加工中的圖形偏差。The proximity effect parameter is a dedicated numerical input that controls any proximity effect correction software. Etching the shaped beam to meet the high critical dimension control "CD control" requirements (depending on the actual international semiconductor technology route ITRS of International SEMATECH) and compensating for Gaussian functions associated with subsequent process steps (development, etching, etc.) The reticle of the shaped beam and/or the pattern deviation in direct writing processing.

人們已經提出過許多方法,用來確定反映各種效應的鄰近參數。除鄰近效應外,在電子束微影系統中還同時發生一種霧化效應。下面是幾篇應用鄰近效應校正的公開文獻。A number of methods have been proposed to determine proximity parameters that reflect various effects. In addition to the proximity effect, an atomization effect occurs simultaneously in the electron beam lithography system. Below are a few published literature on the application of proximity effect correction.

在Proc.SPIE,第4889卷,第2部分,pp.792-799(第86號論文)中揭示的題為“Optimum PEC Conditions Under Resist Heating Effect Reduction for 90 nm Node Mask Writing”的文章中,示出50KV電子束寫入造成的臨界尺寸(CD)變化,抗蝕劑加熱和鄰近效應的問題,該實驗方法在光罩製程中鄰近輸入參數的確定,該實驗方法採用在具有分立的逐步分別改變鄰近參數的各種條件下寫入的鄰近校正的測試圖形的大面積基質。這樣,從在這些圖形變形效應最小的測試圖形上的直接測量結果來確定最佳參數。該實驗及該圖像評估是非常費時的。因為輸入參數的可能組合的數目很大,所以該方法只限於最後得到的2個PSF的高斯函數近似值。該方法大量用於光罩生產中。In the article entitled "Optimum PEC Conditions Under Resist Heating Effect Reduction for 90 nm Node Mask Writing", Proc. SPIE, Vol. 4889, Part 2, pp. 792-799 (paper No. 86), The critical dimension (CD) change caused by 50KV electron beam writing, the problem of resist heating and proximity effect, the experimental method is determined by the adjacent input parameters in the reticle process, and the experimental method adopts a stepwise change separately. A large area matrix of adjacent corrected test patterns written under various conditions of adjacent parameters. In this way, the optimal parameters are determined from the direct measurements on the test patterns with the least graphical distortion effects. This experiment and the evaluation of this image are very time consuming. Since the number of possible combinations of input parameters is large, the method is limited to the Gaussian function approximation of the last 2 PSFs obtained. This method is widely used in the production of photomasks.

請見Microelectronic Engineering 5(1986)141-159,North Holland中的題為“Determination of Proximity Parameters in Electron Beam Lithography Using Doughnut-Structures”的文章。測試結構為一環形體,用來確定參數於校正函數。此方法從曝光的環形體陣列中借助於光學顯微鏡為確定鄰近參數提供一個易行的方法。此方法對用電子束來獲得CD控制是不夠靈敏的,並不適於高解析度圖案的EBL方法。See Microelectronic Engineering 5 (1986) 141-159, article entitled "Determination of Proximity Parameters in Electron Beam Lithography Using Doughnut-Structures" in North Holland. The test structure is a ring that is used to determine the parameters in the correction function. This method provides an easy way to determine proximity parameters from an exposed array of annular bodies by means of an optical microscope. This method is not sensitive enough to obtain CD control using an electron beam, and is not suitable for the EBL method of high resolution patterns.

在J.Vac.Sci.Technol.B5(1),Jan/Feb 1987中的“Point Exposure Distribution Measurements for Proximity Correction Electron Beam Lithography on a sub-100 nm Scale”的文章中,把單個點/像素曝光在大範圍的劑量中,而測到的圖形直徑和結果直接近似高斯函數。本方法只可應用於特殊的高反差抗蝕劑(即,對顯影效應中的變化是不靈敏的),需要高解析的測量技術(SEM),和另外的方法(圖形的“剝離”或沈積鍍膜)。本方法可能不能應用於大批使用的用化學增強的抗蝕劑(CAR)。隨著採用極高劑量的點曝光方法,酸擴散效應可能會超過鄰近效應的真實性質[Z.Cui,PhD,Prewett“Proximity Correction of Chemically Amplified Resist for Electron Beam Lithography,”Microelectronic Engineering 41/42(1998)183-186]。In the article "Point Exposure Distribution Measurements for Proximity Correction Electron Beam Lithography on a sub-100 nm Scale" by J. Vac. Sci. Technol. B5 (1), Jan/Feb 1987, a single dot/pixel is exposed. In a wide range of doses, the measured pattern diameter and results directly approximate the Gaussian function. This method can only be applied to special high contrast resists (ie, insensitive to changes in development effects), requires high resolution measurement techniques (SEM), and additional methods (graphic stripping or deposition) Coating). This method may not be applicable to a large number of chemically amplified resists (CARs) used. With very high dose point exposure methods, the acid diffusion effect may exceed the true nature of the proximity effect [Z. Cui, PhD, Prewett "Proximity Correction of Chemically Amplified Resist for Electron Beam Lithography," Microelectronic Engineering 41/42 (1998) ) 183-186].

在J.Appl.Phys.68(12),15 December 1990中的文章“Determination of Proximity Effect Parametersin Electron-Beam Lithography”揭示了一種用於從網狀圖形的矩形陣列中確定在電子束製片中以實驗為根據的方法,根據該方法,在資料處理鄰近參數之後將借助於照明光學檢查來修正。待測量的測試圖形被用於確定鄰近效應。該方法不適於現代的常規高解析度產品電子束微影系統。The article "Determination of Proximity Effect Parameters in Electron-Beam Lithography" in J. Appl. Phys. 68 (12), 15 December 1990 discloses a method for determining from a rectangular array of mesh patterns in electron beam production. The experiment is based on a method according to which the data will be corrected by means of illumination optical inspection after the data has been processed adjacent parameters. The test pattern to be measured is used to determine the proximity effect. This method is not suitable for modern conventional high resolution product electron beam lithography systems.

在某些刊物中也參考了霧化效應。文章“Fogging Effect Considerationin Mask Process at 50KeV E-Beam Systems”提出一種建議以在高電壓電子束系統中降低霧化效應。The atomization effect is also referred to in some publications. The article "Fogging Effect Considerationin Mask Process at 50KeV E-Beam Systems" proposes a proposal to reduce the atomization effect in high voltage electron beam systems.

在Microelectronic Engineering 5(1986)141-159,North Holland中的文章,題為“Determination of the Proximity Parameters in Electron Beam Lithography Using Doughnut-Structures”,及在J.Appl.Phys.68(12),15 December 1990中的文章“Determination of Proximity Effect Parameters in Electron-Beam Lithography”揭示了霧化效應。An article in Microelectronic Engineering 5 (1986) 141-159, North Holland, entitled "Determination of the Proximity Parameters in Electron Beam Lithography Using Doughnut-Structures", and at J. Appl. Phys. 68(12), 15 December The article "Determination of Proximity Effect Parameters in Electron-Beam Lithography" in 1990 reveals the atomization effect.

本發明的目的是要取得一個方法,該方法藉由研究霧化效應的影響,而使電子束微影系統的亮度參數能被可靠地校正。It is an object of the present invention to achieve a method by which the brightness parameters of an electron beam lithography system can be reliably corrected by studying the effects of the atomization effect.

通過根據申請專利範圍第1項提出權利要求的一種方法,獲得了上面的這個目的。This object is achieved by a method according to claim 1 of the scope of the patent application.

通過一個在電子束微影系統中用於控制鄰近效應校正的方法取得了以上目的,其中控制曝光是為了在加工處理之後獲得最後得到的與設計資料一致的圖形,該方法包括下面的步驟: 在不應用用於控制鄰近校正的該方法下,曝光任意成套的圖形; 測量最後得到的測試結構的幾何圖形,並從而獲得一組測量結果的資料; 從該組測量結果的資料,確定基本輸入參數α,β和η的用數值表示的鄰近範圍; 通過分別把至少控制函數的基本輸入參數α,β和η改變為測量結果的資料組,並從而獲得最優化的參數組,來適配一個模型, 在根據設計資料的圖形曝光期間,把校正函數用於電子束微影系統的曝光控制。A method for controlling the proximity effect correction in an electron beam lithography system achieved the above object, wherein the exposure is controlled in order to obtain a consistent pattern with the design information obtained after the final processing, the method comprising the steps of: * Exposing an arbitrary set of graphics without applying the method for controlling proximity correction; * measuring the geometry of the resulting test structure and thereby obtaining data of a set of measurements; * determining from the data of the set of measurements The adjacent input ranges of the basic input parameters α, β and η are numerically represented; * by changing at least the basic input parameters α, β and η of the control function to the data set of the measurement results, and thereby obtaining the optimized parameter set, Adapt a model, * Use the correction function for exposure control of the electron beam lithography system during pattern exposure according to the design data.

另外,把已確定的鄰近參數組用於一個計算,並把該結果與用些微的劑量曝光“在目標上”被隔開的透明和不透明線條的測量資料組作比較是有用的。另一可能性是把該適配的鄰近參數組應用到一個計算,和該結果與來自其他像錐形圖形的任意圖形的測量資料組的比較,並把該結果與來自在測試圖形代表點中的測量結果的測量資料作比較。再一個可能性是該適配的鄰近參數組應用到一個計算,和該結果與來自占空系數(duty-ratio中的複數線條的其他任意圖形的測量資料組的比較,並把該結果與來自在測試圖形代表點中的測量結果的測量資料作比較。In addition, it is useful to use the determined set of neighboring parameters for a calculation and compare the result to a set of measurement data for transparent and opaque lines that are "on target" with a slight dose exposure. Another possibility is to apply the adapted set of neighboring parameters to a calculation, and compare the result with a set of measurement data from other graphs of other cone-like graphs, and to compare the result with the representative points from the test graph. The measured data of the measurement results are compared. Yet another possibility is that the adapted set of neighboring parameters is applied to a calculation, and the result is compared with a set of measurement data from other arbitrary patterns of duty lines (duty-ratio), and the result is The measurement data of the measurement results in the test pattern representative points are compared.

本方法是根據圖形幾何變化的分析,作為對在EBL中非互作用和/或互作用的非校正圖形的直接過程的回應(電子能量,抗蝕劑材料,基底材料,前和後曝光的工藝過程,圖形轉移,等)。採用背模擬(back simulation),藉由把專用的鄰近參數引入到模型中來重新構建測量的圖形變化特性。從該模型計算的資料代表在真實圖形上被測量的相同點上的類比圖形的橫向外形位置。測量的資料與在代表的測試圖形(單獨透明/不透明線段,似錐體的圖形,在占空系數中的直線陣列等)上相同點處的計算結果的比較,目視觀察確定的鄰近參數組的質量。The method is based on the analysis of graphical geometric variations as a direct response to non-corrected and/or interacting non-corrected graphics in EBL (electron energy, resist material, substrate material, front and back exposure processes) Process, graphics transfer, etc.). Back simulation is used to reconstruct the measured pattern change characteristics by introducing dedicated proximity parameters into the model. The data calculated from the model represents the lateral shape position of the analog image at the same point measured on the real graph. The measured data is compared with the calculated results at the same point on the representative test pattern (individual transparent/opaque line segments, pyramid-like patterns, linear arrays in the duty factor, etc.), and the determined adjacent parameter sets are visually observed. quality.

在該情況下,所要求的使校正演算法在如用於該模型相同的模型概念下工作將被滿足,本方法還同時預測可能的圖形均勻性誤差(圖形一致)和在鄰近校正中,在採用實際上已確定的鄰近參數之後的解析度範圍。In this case, the required correction algorithm to work under the same model concept as used for the model will be satisfied, and the method also predicts possible graphical uniformity errors (graphic consistency) and in proximity correction, The resolution range after the actually determined neighboring parameters is used.

本發明的優點為具有採用建立在模型基礎上的分析和被曝光的非校正代表性圖形(分析作為典型的圖形幾何變化的直接過程回應)原有的幾何變形的解釋,這圖形是在特定的點上(採用商業測量工業,例如CD-SEM)被測量的,和記錄了後面加工過程的資料。接連的“背模擬(back simulation)”過程是被用來這些效應的最佳可能的重新構建。“背模擬”指是的一種根據前和後的曝光條件和/或鄰近(圖形尺寸周圍)效應(=圖形和過程重新構建),對於具體圖形細節的幾何圖形變化測量的最佳近似找出最佳數量的輸入參數組的計算方法。一旦這種圖形細節可以是作為曝光強度函數的在一特定點上的圖形的尺寸變化(例如,在最簡的例子中,線寬和/或接觸尺寸的變化對在兩個色調中的曝光劑量)。另一種變化可以是,例如,鄰近圖形的位置(例如,線寬測量對大凸緣的間隙寬度變化的關係一似錐體的圖形,和/或在柵格中的線條一在占空系數中的線條)。結果,在把獲得的參數引入到模型中之後,合適的模擬顯示出,從測量所獲得的幾何圖像變化相關性的相同傾向。因此,如果高速演算法如在用於該模型中相同模型概念下工作,那麼,它在鄰近校正中,導致採用這些輸入參數組的附加變形效應的良好恢復。An advantage of the present invention is that it has an interpretation of the original geometric deformation using an analysis based on the model and an uncorrected representative image that is exposed (analysis of the direct process response as a typical graphical geometric change), the graphic being specific It was measured at the point (using a commercial measurement industry such as CD-SEM) and the data of the subsequent processing was recorded. Successive "back simulation" processes are the best possible reconstructions to be used for these effects. “Back Simulation” refers to the best approximation of the geometrical change measurements for specific graphic details based on pre- and post-exposure conditions and/or proximity (around graphic size) effects (=graphics and process reconstruction). A good calculation method for the number of input parameter sets. Once such graphical detail can be a change in the size of the pattern at a particular point as a function of exposure intensity (eg, in the simplest example, the change in line width and/or contact size versus exposure dose in two tones) ). Another variation may be, for example, the position of the adjacent pattern (eg, the relationship of the line width measurement to the change in the gap width of the large flange, a cone-like pattern, and/or the line one in the grid in the duty factor) Line). As a result, after introducing the obtained parameters into the model, a suitable simulation shows the same tendency to change the correlation of the geometric images obtained from the measurements. Thus, if a high speed algorithm works as the same model concept used in the model, then it results in a good recovery of the additional deformation effects of these input parameter sets in the proximity correction.

可實現直至最小可分辨的圖形尺寸的測量和模擬,它還允許由電子向前散射,二次電子分佈,束模糊,抗蝕劑效應(顯影、酸擴散,淬火)和圖形轉移(微負載)引起的、已知的“短程”效應描述的參數的精確確定。結果,與該參數組一同工作的鄰近校正也將可以在較深的亞-100nm微影交點中正確地工作。Measurement and simulation up to the minimum resolvable pattern size is achieved, which also allows forward scattering by electrons, secondary electron distribution, beam blur, resist effects (development, acid diffusion, quenching) and pattern transfer (microloading) The precise determination of the parameters described by the known "short-range" effect. As a result, proximity corrections that work with this parameter set will also work correctly in deeper sub-100 nm lithography intersections.

在一對曝光的圖形上的實驗測量(在附錄“測試圖形”中描述)是為提供所有必須的數值引入到PROX-In(PROX-In而建立在起著為蝕刻人確定鄰近效應參數的幫助作用的軟體工具之上的使用人順利的WindowT M )無主動的編輯對話邏輯框,並創建包含測試資料的簡單ASC11-文件的前提。接著,這些資料起著為在本程式中鄰近參數確定所需的用於選擇特殊的內建演算法的基礎的作用。為了最大限度地避免圖形因亞微米特性降級或變形,為處理這個效應使用校正方法是不可避免的。現有的技術依靠:a)曝光劑量的逐次調節,b)圖形的幾何圖像的修正,或c)在上面提到的兩個方法的組合。Experimental measurements on a pair of exposed patterns (described in the appendix "Test Patterns") are provided to provide all the necessary values to PROX-In (PROX-In is built to help determine the proximity effect parameters for the etcher) The function of the software tool above the user's smooth Window T M ) has no active editing dialog box and creates a premise of a simple ASC11-file containing the test data. These data then serve to determine the basis for selecting a particular built-in algorithm for the proximity parameters in the program. In order to minimize the degradation or distortion of the pattern due to submicron characteristics, it is inevitable to use a correction method to handle this effect. The prior art relies on: a) successive adjustments of the exposure dose, b) correction of the geometric image of the graphic, or c) a combination of the two methods mentioned above.

這個方法的主要優點是,它不需要使用帶有各種輸入參數的已曝光鄰近校正圖形的大的基質。參數將在非校正的簡單測試圖形上從測量來確定。待分析的資料量和/或參數被大大地減少。本發明的優點如下。本發明只使用小量已曝光的測試圖形的相當簡單的組合。把由測試圖樣覆蓋的基底(5英寸和較大的)面積限於1%之下。而且,測試圖形在沒有任何鄰近校正的情況下曝光。另外,籍助於在測試圖形周圍的附加輔助圖形的基底“模型”曝光,存在著改變整體圖形載入的可能性。這能確定根據在顯影和/或蝕刻過程中的偏離的圖形載入的變化。存在著直接觀察藉由個別改變輸入參數中一個參數值之圖形變壞的傾向。隨後存在輸入參數的互作用精細調諧,以獲得最佳可能的CD-要求(CD線性)。採用具有直接檢驗可能性的兩組或更多的高斯值輸入參數組(高斯函數),在何處及為何需要具有各種參數的附加高斯函數,能實現達到較佳結果。對任意鄰近參數組的專用圖形細節的背模擬和重新構建,允許在CD中,對已給定各種幾何組合的圖形的參數組,會有可能的變化預測。The main advantage of this method is that it does not require the use of large matrices of exposed adjacent correction patterns with various input parameters. The parameters will be determined from the measurements on a non-corrected simple test pattern. The amount of data and/or parameters to be analyzed is greatly reduced. The advantages of the present invention are as follows. The present invention uses only a relatively simple combination of a small number of exposed test patterns. The area of the substrate (5 inches and larger) covered by the test pattern was limited to 1% below. Moreover, the test pattern is exposed without any proximity correction. In addition, there is a possibility to change the overall graphics loading by the base "model" exposure of the additional auxiliary graphics around the test pattern. This can determine the change in pattern loading according to deviations during development and/or etching. There is a tendency to directly observe the deterioration of the pattern by individually changing one of the input parameters. There is then an interaction fine tuning of the input parameters to obtain the best possible CD-requirement (CD linearity). Using two or more Gaussian input parameter sets (Gaussian functions) with direct test possibilities, where and why additional Gaussian functions with various parameters are needed can achieve better results. The back-simulation and re-construction of the specific graphical details of any adjacent parameter sets allows for predictable changes in the parameters of the set of parameters for the given geometric combinations in the CD.

在產品的真實條件下,開發並實現了用於在本應用中所描述之方法的最優化和測試目的的電腦程式“PROX-In”。Under the real conditions of the product, the computer program "PROX-In" for the optimization and testing purposes of the method described in this application was developed and implemented.

第1圖示出電子束微影系統1的方塊圖。電子束微影系統1具有發射電子束3的電子束源2。本說明書僅提及電子束3。然而,必須知道,本發明並不僅限於電子束。一般來說,本發明可與能應用到在基底4上寫入圖形5的粒子束一起使用。把基底4本身放在載物台6上,這載物台可由電動機7和8在由跨越X-座標X和Y-座標Y的平面上移動。電子束3在從電子束源2出射後,穿過光束對準線圈9。在光束對準線圈9之後,在電子束3的傳播方向上,提供光束遮沒單元10。在此之後,電子束3到達磁偏轉單元11,一般來說,它包括四個磁線圈12。在此之後,電子束3指向基底4。正如已提到的,基底4被放在載物台6上。這載物台的實際位置受位置反饋裝置13控制。另外,把電子檢測器14放在靠近載物台6的附近。提供電腦15是用來控制整個電子束微影系統1。尤其是,控制,測量和調整光束參數,以便產生出具有恆定尺寸的圖形。把電腦15通過介面16聯接到電子束微影系統1,該介面實現類比到數值和/或數值到類比的轉換。把介面16連接到光束遮沒單元10,磁偏轉單元11,位置反饋裝置13,電子檢測器14和移動載物台6的電動機7和8。通過顯示幕17,使用者可得到有關設定和/或電子束微影系統1的調節參數的資訊。Fig. 1 is a block diagram showing an electron beam lithography system 1. The electron beam lithography system 1 has an electron beam source 2 that emits an electron beam 3. This specification only mentions the electron beam 3. However, it must be understood that the invention is not limited to electron beams. In general, the invention can be used with particle beams that can be applied to the writing of pattern 5 on substrate 4. The substrate 4 itself is placed on a stage 6, which can be moved by the motors 7 and 8 in a plane spanning the X-coordinate X and the Y-coordinate Y. After exiting the electron beam source 2, the electron beam 3 is directed through the beam to the coil 9. After the beam is aligned with the coil 9, in the direction of propagation of the electron beam 3, the beam blanking unit 10 is provided. After that, the electron beam 3 reaches the magnetic deflection unit 11, which generally comprises four magnetic coils 12. After that, the electron beam 3 is directed to the substrate 4. As already mentioned, the substrate 4 is placed on the stage 6. The actual position of this stage is controlled by position feedback means 13. In addition, the electron detector 14 is placed in the vicinity of the stage 6. A computer 15 is provided for controlling the entire electron beam lithography system 1. In particular, the beam parameters are controlled, measured and adjusted to produce a pattern of constant size. The computer 15 is coupled via an interface 16 to an electron beam lithography system 1, which implements analog to numerical and/or numerical to analog conversion. The interface 16 is connected to the beam obscuring unit 10, the magnetic deflection unit 11, the position feedback device 13, the electron detector 14, and the motors 7 and 8 of the moving stage 6. Through the display screen 17, the user can obtain information about the setting and/or adjustment parameters of the electron beam lithography system 1.

第2a圖是用於覆蓋某個區域21的圖形20的示例,且區域21用多個高斯光束22填滿。每個高斯光束具有相同的直徑。在第2b圖中,示出高斯光束22的橫截面23的形狀。多根光束覆蓋著為圖形20所需要的區域21。Figure 2a is an example of a pattern 20 for covering a certain area 21, and the area 21 is filled with a plurality of Gaussian beams 22. Each Gaussian beam has the same diameter. In Fig. 2b, the shape of the cross section 23 of the Gaussian beam 22 is shown. A plurality of beams cover the area 21 required for the pattern 20.

第3a圖示出用於圖形30的示例,該圖形是用成形光束32被寫入的。圖形30的總區域31由多個可變形狀的圖形所覆蓋。可變形狀的圖形填滿待寫入的圖形31的區域。在此情況下,區域31由電子束的三個不同形狀321 ,322 和323 所覆蓋。第3b圖示出成形光束32的橫截面33的形狀,其中各別光束的形狀可根據需要被寫入的圖形來調節。如第3b圖所示,可改變光束的形狀。這由箭頭34指出。Figure 3a shows an example for a graphic 30 that is written with a shaped beam 32. The total area 31 of the graphic 30 is covered by a plurality of shapes of the variable shape. The variable shape graphic fills the area of the graphic 31 to be written. In this case, the region 31 is covered by three different shapes 32 1 , 32 2 and 32 3 of the electron beam. Figure 3b shows the shape of the cross-section 33 of the shaped beam 32, wherein the shape of the individual beams can be adjusted according to the pattern to be written. As shown in Figure 3b, the shape of the beam can be changed. This is indicated by arrow 34.

在這種兩種情況下(高斯光束或成形光束),亞微米特性或圖形成為以光罩寫入的關鍵問題。採用此圖形尺寸,電子束微影系統面臨共同寄生電子散射效應,它在被寫入圖形的周圍區域中,造成不需要的曝光沈積。這個寄生電子散射效應被叫做鄰近效率[參見例如:T.H.Chang.“Proximity effect in electron beam lithography,”J.Vac.Sci.Technol 12(1975)p.1271]。在最小的特徵尺寸變成小於電子的背散射範圍的情況下,圖形覆蓋影響待寫入圖形的尺寸控制。另一方面,前散射限制了最大的解析度。當電子能量增加時,在背向和前向散射之間的差別亦增加。屬於專用區域中的任何圖形細節,在實現最後得到的微影圖形的圖像中,與它原有的設計尺寸和形狀相比都遭到了顯著的變形。要最大地避免具有亞微米特點的圖形的降級/變形,不可避免要為處理這個效應施加一種校正方法。In both cases (Gaussian beam or shaped beam), submicron properties or graphics become a critical issue in reticle writing. With this pattern size, the electron beam lithography system faces a common parasitic electron scattering effect that causes unwanted exposure deposition in the surrounding area of the pattern being written. This parasitic electron scattering effect is called proximity efficiency [see, for example, T.H. Chang. "Proximity effect in electron beam lithography," J. Vac. Sci. Technol 12 (1975) p. 1271]. In the case where the smallest feature size becomes smaller than the backscattering range of the electron, the graphic overlay affects the size control of the graphic to be written. On the other hand, front scatter limits the maximum resolution. As the electron energy increases, the difference between the back and forward scatter increases. Any graphic detail belonging to a dedicated area is significantly distorted in the image of the resulting lithographic pattern compared to its original design size and shape. To minimize the degradation/deformation of a submicron-like pattern, it is inevitable to apply a correction method to deal with this effect.

第4a圖示出對在鍍於GaAs基底41上、定義抗蝕劑的聚甲基丙烯酸甲酯層40(PMMA)中的100個電子散射的模擬軌道42。電子的初能量被設定為15KeV。當電子束43在PMMA薄層中出射時,電子就根據計算的軌道散射和運動。第4b圖示出對100個電子在鍍於GaAs基底41上的PMMA薄層40中散射的模擬軌道,其中,電子的初能量是較高的如示於第4a圖的計算。在電子束微影中,主要的變形是因為帶有環繞額外效應的抗蝕劑/基底系統的電子互作用,這些額外效應是不能確切地分開並分別地予以處理的。此處,主要的任務是散佈在抗蝕劑中的吸收能量密度分佈(AEDD),在抗蝕劑容積中具有相應的輻照-化學事件分佈,在抗蝕劑中建立潛在圖像(抗蝕劑的變異)。通過使用電子散射過程的統計的(蒙特卡羅)或分析的(輸運方程)計算,在抗蝕劑層中的AEDD模型是可能的。在從曝光中,吸收必要的輻照量子之後,藉由已輻射過的抗蝕劑容積的局部化學變化,於是就形成了真實的潛在圖像。Figure 4a shows a simulated orbit 42 for 100 electron scattering in a polymethyl methacrylate layer 40 (PMMA) on a GaAs substrate 41 defining a resist. The initial energy of the electron is set to 15KeV. When the electron beam 43 exits in the thin layer of PMMA, the electrons scatter and move according to the calculated orbit. Figure 4b shows a simulated orbital scattering of 100 electrons in a thin layer of PMMA plated on a GaAs substrate 41, wherein the initial energy of the electrons is higher as calculated in Figure 4a. In electron beam lithography, the main deformation is due to the electronic interaction of the resist/substrate system with additional effects that cannot be exactly separated and processed separately. Here, the main task is the absorbed energy density distribution (AEDD) dispersed in the resist, with a corresponding irradiation-chemical event distribution in the resist volume, creating a latent image in the resist (resistance Variation of the agent). The AEDD model in the resist layer is possible by using statistical (Monte Carlo) or analytical (transport equation) calculations of the electron scattering process. After absorbing the necessary radiation quantum from the exposure, a true potential image is formed by the local chemical change of the irradiated resist volume.

第5a圖示出圖形50的形式的示意圖,該圖形需要在基底上的抗蝕劑中寫入。圖形50具有4個不同的部件,這些部件用它們的來自圖形設計資料的尺寸,作為最後得到清晰地描述。第一部件51是一具有限定寬度的直線。第二部件52是矩形形狀的區域。一直線從上角延伸並形成接合區的下角。第三部件53是矩形形狀的區域。一直線延伸到左方,形成該區域的下角。第四部件54包括兩個區域,這兩個區域在它們的下角處用一直線連接。一附加的直線從一區域的上角延伸到左面。Figure 5a shows a schematic diagram of the form of the pattern 50 that needs to be written in the resist on the substrate. The graphic 50 has four different components that are clearly described as their final dimensions from the graphic design data. The first member 51 is a straight line having a defined width. The second member 52 is a rectangular shaped region. A straight line extends from the upper corner and forms the lower corner of the joint. The third member 53 is a rectangular shaped region. A straight line extends to the left to form the lower corner of the area. The fourth component 54 includes two regions that are connected by a straight line at their lower corners. An additional straight line extends from the upper corner of the area to the left.

第5b圖示出被寫入在抗蝕劑中的最後得到的圖形55,其中沒有應用根據本發明的校正。在抗蝕劑層中的鄰近效應成為清晰可見。在第一位置56上,此處兩區域被一線分開,在那裏發生顯著的線寬變寬和兩個區域形狀的彎曲。在區域和直線之間不再有間距。在第二位置57處,在那裏,兩接合區彼此面對著,變形導致在那兩個接合區之間的相互連接。Figure 5b shows the resulting pattern 55 being written in the resist without the correction according to the invention applied. The proximity effect in the resist layer becomes clearly visible. In the first position 56, the two regions are separated by a line where significant line width widening and bending of the two region shapes occur. There is no longer a gap between the area and the line. At the second position 57, where the two joint regions face each other, the deformation results in an interconnection between the two joint regions.

第6圖示出第一可能的(已在PROX-In中實現)被寫入抗蝕劑中的測試圖形60。背模擬這個第一測試圖形60的過程叫做錐形“PYR”(採用類似錐形的測試圖形60)。這個特殊方法可由使用者經過PROX-In使用者介面來啟動(參見第8圖)。這過程能在分析從已曝光的對稱錐形測試圖形60的線寬變化的用實驗測得的資料之後,確定輸入參數。第一測試圖形包括具有預先限定線寬63的線條61。在預先限定的線條61的兩側,沿著已測線61,具有可變間隙寬度64的大凸緣62被曝光。在非校正的情況下,預先限定的單根清晰的線寬63,隨著在已測線61和大量墊片62之間間隙寬度64的減小而增加。測量是在第6圖中用點65標記的位置上做的。設計的間隙寬度與已測的線寬63的依存關係是為用於本方法的計算和背模擬所獲得的輸入的基礎(參見第9圖)。所獲得資料的第一行91包括已設計和曝光的間隙寬度,用[μm)指出,而第二行92則包括已曝光和已測試的線寬的合適線寬63。對本過程必須要找出用於非校正的錐形測試圖形60的最佳曝光劑量,在這裏,單根預先限定的已曝光的線條(例如,在第6圖中,在第一測試圖形60右側上的線條是不受大區域影響的)與目標會合。示於第9圖中僅有的第一最高值是對僅有的大間隙寬度64的線寬61的開始值(此處,例如為2μm)。Figure 6 shows the first possible test pattern 60 (which has been implemented in PROX-In) being written into the resist. The process of simulating this first test pattern 60 is referred to as a tapered "PYR" (using a cone-like test pattern 60). This special method can be initiated by the user via the PROX-In user interface (see Figure 8). This process can determine the input parameters after analyzing the experimentally measured data from the line width variation of the exposed symmetric cone test pattern 60. The first test pattern includes lines 61 having a predefined line width 63. On both sides of the predefined line 61, along the line 61 being measured, a large flange 62 having a variable gap width 64 is exposed. In the case of non-correction, a predefined single clear line width 63 increases as the gap width 64 decreases between the measured line 61 and the plurality of pads 62. The measurement is made at the position marked with a dot 65 in Fig. 6. The dependence of the designed gap width on the measured line width 63 is the basis for the inputs obtained for the calculation and back simulation of the method (see Figure 9). The first line 91 of the obtained data includes the width of the gap that has been designed and exposed, indicated by [μm), while the second line 92 includes a suitable line width 63 of the exposed and tested line width. For this process it is necessary to find the optimum exposure dose for the non-corrected cone test pattern 60, here a single pre-defined exposed line (for example, in Figure 6, on the right side of the first test pattern 60) The lines above are not affected by large areas) and meet the target. The only first highest value shown in Fig. 9 is the start value (here, for example, 2 μm) of the line width 61 of the only large gap width 64.

第7圖示出也已在PROX-In中實現的第二可能測試圖形70,其PROX-In可供直接確定鄰近參數之用。類似於在前面描述過的其他方法,本過程是基於已曝光的非校正占空系數測試圖形“DRT”的線寬71的測量值。複數線條72在抗蝕劑中被曝光和/或另外再加工。線條72是在該線條之間的各種間距73的陣列74中被形成的。這方法可由使用者經過專用的PROX-In使用者介面來啟動(參見第10圖)。這過程允許在分析來自已曝光的對稱第二測試圖形70的代表線條75寬度變化的用實驗測到的資料之後,確定鄰近輸入參數。為接收已獲得的存儲資訊(參見第11圖),提供在該表格的兩行中的資料。第一行111是作為比(1:1,1:2,1:3...1:20)的數值1,2,3,...20的占空系數。第二行112是對合適的比率用μm的測量線寬。必須從對各種線條/間距比率的每個陣列74的中央的某處測量線寬的變化。在第7圖中的圓點75指出所做測量的位置。這在開始“DRT”測量過程之前是重要的,而這過程對確定在第二測試圖形70右側上的單根透明線條76的最佳曝光劑量是必須的。換句話說,已測量的單根透明線條具有如CAD-資料所需要的線寬,且已構成圖形的線條與目標盡可能良好的會合。Figure 7 shows a second possible test pattern 70 that has also been implemented in PROX-In, the PROX-In of which can be used to directly determine the proximity parameters. Similar to the other methods described above, the process is based on the measured value of the line width 71 of the exposed non-corrected duty factor test pattern "DRT". The plurality of lines 72 are exposed and/or otherwise processed in the resist. Lines 72 are formed in an array 74 of various spacings 73 between the lines. This method can be initiated by the user via a dedicated PROX-In user interface (see Figure 10). This process allows the proximity input parameters to be determined after analyzing the experimentally measured data representing the width variation of the line 75 from the exposed symmetric second test pattern 70. To receive the stored information (see Figure 11), the data in the two rows of the form is provided. The first line 111 is the duty factor of the values 1, 2, 3, ... 20 as ratios (1:1, 1:2, 1:3...1:20). The second row 112 is the measured line width in μm for a suitable ratio. The change in line width must be measured from somewhere in the center of each array 74 for various line/pitch ratios. The dot 75 in Fig. 7 indicates the position of the measurement. This is important prior to initiating the "DRT" measurement process, which is necessary to determine the optimal exposure dose for the single transparent line 76 on the right side of the second test pattern 70. In other words, the single transparent line that has been measured has the line width as required for the CAD-data, and the lines that have formed the pattern meet the target as best as possible.

第8圖示出用於使用者啟動如第6圖所示第一測試圖形60曝光的輸入視窗80。使用者通過設置在指出“PYR”名稱上面的標記(檢查“PYR”鈕)81選擇錐形過程,然後背模擬過程就開始了。其結果示於表90中(參見第9圖)。從已曝光的第一錐形測試圖形60得到的測量結果被設置在第二(中央)行92中。第一行91示出間隙寬度,而第三行93對已給定確定的輸入參數組示出從模擬背模擬/重新構建/計算的線寬63。第9a圖以曲線形式94示出來自PROX-In的結果,此處目的是要找到這種提供最符合具有計算資料(紅色)97的測量資料(黑色)96的參數組95。Figure 8 shows an input window 80 for the user to initiate exposure of the first test pattern 60 as shown in Figure 6. The user selects the cone process by setting a mark (check "PYR" button) 81 above the "PYR" name, and then the back simulation process begins. The results are shown in Table 90 (see Figure 9). The measurement results obtained from the exposed first tapered test pattern 60 are set in the second (central) row 92. The first row 91 shows the gap width, while the third row 93 shows the line width 63 from the simulated back simulation/rebuild/calculation for a given set of input parameters. Figure 9a shows the results from PROX-In in curve form 94, the purpose here being to find such a parameter set 95 that provides the most suitable measurement data (black) 96 with calculated data (red) 97.

第10圖示出用於使用者啟動如第7圖所示的第二“DRT”測試圖形70的過程的PROX-In輸入視窗100。使用者通過設置在指出“DRT”名稱上面的標記101(檢查“DRT”鈕)選擇占空系數測試過程,然後,計算過程就開始了。其結果示於表110(參閱第11圖)。從已曝光的第二測試圖形70得到的測量結果被設置在三行中。第一行111包含具有占空系數的資料,第二行112包含具有已測量線寬的資料,而第三行113則包含來自背模擬計算的線寬。Figure 10 shows the PROX-In input window 100 for the user to initiate the process of the second "DRT" test pattern 70 as shown in Figure 7. The user selects the duty cycle test process by setting the mark 101 (checking the "DRT" button) above the "DRT" name, and then the calculation process begins. The results are shown in Table 110 (see Figure 11). The measurement results obtained from the exposed second test pattern 70 are set in three lines. The first row 111 contains data with a duty cycle, the second row 112 contains data with measured line widths, and the third row 113 contains line widths from back simulation calculations.

第11a圖以曲線圖形式114示出來自PROX-In的結果,此處目的是(也是在前面具有錐形圖形的情況相同的)要找到這種提供最符合具有計算資料117的測量資料116的參數組115。Figure 11a shows the results from PROX-In in the form of a graph 114, the purpose here being (also the same as in the case of a tapered pattern in the front) is to find such a provision of the measurement data 116 that best fits the calculation data 117. Parameter group 115.

顯然地為了要得到額外的實驗和模擬的資料可設計和採用其他測試圖形符合,而對這些資料,已確定的鄰近參數必須交叉檢查並使它們符合。這符合提供一組參數,它能使微圖形成對曝光,且得到的結果與為所需圖形提供的設計資料高度一致,換句話說:任何用根據本發明方法曝光的圖形,導致具有如根據設計資料所需的尺寸的圖形。Obviously, in order to obtain additional experimental and simulated data, other test patterns can be designed and matched, and for these data, the determined adjacent parameters must be cross-checked and made to match. This is consistent with providing a set of parameters that enable the micrograph to be exposed to the exposure, and the results obtained are highly consistent with the design data provided for the desired pattern, in other words: any pattern exposed by the method according to the invention results in a basis A graphic of the size required to design the material.

PROX-In在標準電腦15上運作。電腦15在Windows下運作,且不需要任何專用的硬體/軟體部件。PROX-In的安裝是很容易的。創建分開的索引並在此複製供給的/提供的文件。從顯示於與電腦15有關聯的顯示幕主視窗120上,PROX-In的一般結構是清晰的。在開始程式PROX-In之後,主視窗立刻出現(參見第12圖)。主視窗120被分成三個主部分。第一部分121處於主窗口120的整個上半部。第一部分在其上加以“計算α”和“計算β和η”的標題。第一部分121由第一,第二,第三和第四分開的附屬框1211 ,1212 ,1213 和1214 組成。第一附屬框1211 加上標題為“α”。第二附屬框1212 加上標題為“β-手動”。第三附屬框加上標題為“β-自動”。第四附屬框加上標題為“η”。各個附屬框做為來自相對大的圖形/寬線的測量回應的快速和微影過程僅有的第一評估,並傳遞用於接近參數的第一(大致的)數值的方法的作用。PROX-In operates on a standard computer 15. The computer 15 operates under Windows and does not require any dedicated hardware/software components. The installation of PROX-In is very easy. Create separate indexes and copy the supplied/provided files here. The general structure of the PROX-In is clear from the display main window 120 associated with the computer 15. After starting the program PROX-In, the main window appears immediately (see Figure 12). The main window 120 is divided into three main sections. The first portion 121 is in the entire upper half of the main window 120. The first part has the title of "calculate α" and "calculate β and η". The first portion 121 is composed of first, second, third and fourth separate sub-frames 121 1 , 121 2 , 121 3 and 121 4 . The first sub-frame 121 1 is added with the title "α". The second sub-frame 121 2 is added with the title "β-manual". The third sub-frame is titled "β-Auto". The fourth sub-frame is added with the title "η". Each of the sub-frames acts as the only first evaluation of the fast and lithographic processes from the relatively large graphics/wide lines of measurement responses and conveys the role of the method for approaching the first (general) value of the parameters.

把第二部分122放在主視窗120的底部。第二部分122在其上加以“模擬”的標題,並做為採用背模擬根據最佳圖形重新構建的參數的最後“精細調諧”。The second portion 122 is placed at the bottom of the main window 120. The second portion 122 has a "simulated" heading thereon and serves as the final "fine tuning" of the parameters reconstructed from the best graphics using back simulation.

第三部分123位於主視窗120的右底側。第三部分123是一個具有內容視窗124的卷軸形的“輸入/輸出”MEMO-框,在這裏,出現某些有選擇操作/計算造成的必要的資訊。The third portion 123 is located on the right bottom side of the main window 120. The third portion 123 is a scroll-shaped "input/output" MEMO-box with a content window 124, where some necessary information resulting from the selection operation/calculation occurs.

新的電子束微影系統是為滿足在100nm器件加工水平及以下的CD需要而設計的。為符合這些技術規格,必須有覆蓋所有經過整個加工過程的圖形降級/變形效應的合適知識基礎,且還有準確的校正方法的連貫應用。The new electron beam lithography system is designed to meet the CD needs of the 100nm device processing level and below. In order to comply with these specifications, there must be a suitable knowledge base covering all graphical degradation/deformation effects through the entire process, as well as a coherent application of accurate calibration methods.

在電子束微影系統1中,其主要變形起源於環繞著額外效應的抗蝕劑/基底系統的電子交互作用,這些額外效應是不能確切地分開和分別地予以處理的。此處,主要的任務為散佈在抗蝕劑中的吸收能量密度分佈(AEDD),其抗蝕劑為在抗蝕劑容積中具有相應的輻照-化學事件分佈,其抗蝕容積為在抗蝕劑中建立的潛在圖像(抗蝕劑變異)。藉由採用電子散射過程的統計的(蒙特卡羅)或分析的(輸運方程式)計算,在抗蝕劑層中的AEDD模型模擬是可能的。在從曝光中,吸收必要的輻照量之後,藉由已輻照的抗蝕劑容積的局部化學變化,就形成了真實的潛在圖像。In the electron beam lithography system 1, the main variant originates from the electronic interaction of the resist/substrate system surrounding the additional effects, which are not exactly separate and separately processed. Here, the main task is the absorbed energy density distribution (AEDD) dispersed in the resist, the resist having a corresponding irradiation-chemical event distribution in the resist volume, and the resist volume is in the resist Potential image created in the etchant (resist variation). AEDD model simulation in the resist layer is possible by statistical (Monte Carlo) or analytical (transport equation) calculations using electron scattering processes. After absorbing the necessary amount of exposure from the exposure, a true potential image is formed by local chemical changes in the irradiated resist volume.

通常,鄰近校正控制函數f(r)被描述為兩個或更多高斯函數之和(參見方程1)在標準化的2G-函數的情況下,它表達如下: In general, the proximity correction control function f(r) is described as the sum of two or more Gaussian functions (see Equation 1). In the case of a standardized 2G-function, it is expressed as follows:

其中第一項α-表出前向散射的短程特徵,第二項β-背向散射,參數η-是背向散射分量對前向散射分量的沈積能量之比,而γ-是離電子入射點的距離(參見第4a圖)。The first item α- represents the short-range characteristic of forward scatter, the second item β-backscatter, the parameter η- is the ratio of the backscattered component to the deposition energy of the forward scatter component, and γ- is the point of departure from the electron. Distance (see Figure 4a).

在合適的顯影液中,應用後曝光過程(大多是濕過程)之後,可獲得最後的解除抗蝕劑光罩。對真實的抗蝕劑圖形幾何的模型和預測,需要確切地知道通過輻照改變的聚合物的溶解特性。顯影過程引起整個模擬的大量不確定性,這是因為這複雜的熱-流體-動力過程的高度非線性特性所致。由於有種類繁多的系統存在(半導體基底,抗蝕劑和後曝光過程),方程式1中的諸參數需要對所有這些不同的系統來確定。In a suitable developer, after applying a post-exposure process (mostly a wet process), a final de-resist mask can be obtained. For models and predictions of true resist pattern geometry, it is necessary to know exactly the solubility characteristics of the polymer that is altered by irradiation. The development process causes a large amount of uncertainty in the overall simulation due to the highly nonlinear nature of this complex thermo-hydrodynamic-dynamic process. Due to the existence of a wide variety of systems (semiconductor substrates, resists and post-exposure processes), the parameters in Equation 1 need to be determined for all of these different systems.

在光罩的製作中,類似的複雜清楚表明也是第二個步驟一通過在濕和/或乾的這兩個蝕刻中的抗蝕劑,圖形轉移至成像層和/或基底之中。In the fabrication of the reticle, a similar complexity clearly indicates that the second step is also transferred to the imaging layer and/or substrate by a resist in both wet and/or dry etches.

在電子束微影系統的領域中的鄰近效應的校正通過某些商業套裝軟體是可以得到的,這些套裝軟體都是根據採用如上面描述的電子散射現像的兩個或多個高斯近似值的原理來處理曝光劑量最優化的問題。如果輸入參數僅僅從蒙特卡羅模擬來確定,那麼計算只涉及純的AEDD。這種結果不包含任何關於來自其他影響因素的額外非線性效應的資訊。一種影響因素就是這過程,例如,在抗蝕劑中的輻照-化學事件,熱效應,以及在顯影中的溶解特性,如在光罩製作中的蝕刻。另一影響因素是工具,(例如,電-光像差和影響氣體圖像斜度和/或邊緣分辨能力的空間電荷效應),依賴踫撞影響最後得到的圖形變形。考慮到這些,用於校正方案的輸入應採用確切地描述這些效應的物體特性模型來估計。另外還精細地調諧來自實驗測量結果的這些參數之值。Correction of proximity effects in the field of electron beam lithography systems is available through certain commercial package software, which are based on the principle of two or more Gaussian approximations using electron scattering images as described above. Handle the problem of optimizing the exposure dose. If the input parameters are only determined from Monte Carlo simulations, the calculations only involve pure AEDD. This result does not contain any information about additional nonlinear effects from other influencing factors. One influencing factor is this process, for example, irradiation-chemical events in the resist, thermal effects, and dissolution characteristics in development, such as etching in reticle fabrication. Another influencing factor is the tool, (for example, electro-optical aberrations and space charge effects that affect gas image slope and/or edge resolving power), relying on slamming to affect the resulting graphical distortion. With this in mind, the inputs used for the correction scheme should be estimated using an object property model that accurately describes these effects. The values of these parameters from the experimental measurements are also finely tuned.

對校正過程來說,只有適當地選擇數值輸入才能使這個系統工作。所以已採取很大的努力來開發一種快速和容易的方法用於為確定曝光校正演算法所需要的與過程有關的輸入參數組的數值確定。靈活的套裝程式PROX-In將幫助微影人員找到/確定這些最優化的數值。For the calibration process, this system can only be operated if the value input is properly selected. Therefore, great efforts have been made to develop a fast and easy method for determining the numerical value of the process-related input parameter set required to determine the exposure correction algorithm. The flexible package PROX-In will help lithographers find/determine these optimized values.

採取特殊的注意來同步化校正器的演算法和PROX-In軟體這兩者,對相同的輸入參數分別獲得在該模擬模式中的相同結果。本發明採用半唯像概念。Special care was taken to synchronize both the corrector's algorithm and the PROX-In software, and the same results were obtained for the same input parameters in the simulation mode. The present invention employs the concept of semi-portraits.

用電子束微影系統1的鄰近校正,對產生100nm及以下的裝置,把在光罩上的尺寸誤差降低到<10nm。With the proximity correction of the electron beam lithography system 1, the size error on the reticle is reduced to <10 nm for devices producing 100 nm or less.

在開始PROX-In之前,不可避免地要直接從專門設計的和已曝光的測試圖形的組合擷取下面主要的用數值表示的微影參數(如為數值計算,引入/設置參數到PROX-In中所必需的)。Before starting PROX-In, it is inevitable to extract the following main numerical values of lithography parameters directly from the combination of specially designed and exposed test patterns (for numerical calculations, import/set parameters to PROX-In). Required in the middle).

第13圖示出主視窗120的第一部分121的附屬視窗130。在第一個方法中,α-參數是作為實際的電子能量和所用的抗蝕劑材料和厚度的函數從蒙特卡羅計算中計算的。在標有名稱“計算α”的附屬視窗130中,選擇鈕“ALPHA(α)”131能使它有可能得到對由C,H,和O原子組成的簡單聚合物材料(任選平均密度在1.1-1.3[g/cm3 ]之間的PMMA-(C5 H8 O2 ))的定向α值(只與純的電子彈性正向散射有關,與基底材料無關)。使用者具有用於抗蝕劑材料的輸入區段132,用於電子能量的輸入區段133和用於抗蝕劑深度的輸入區段134。計算要求電子能量[KeV]和應確定α處的抗蝕劑中的深度[μm]的輸入。FIG. 13 shows an attached window 130 of the first portion 121 of the main window 120. In the first method, the alpha-parameter is calculated from the Monte Carlo calculation as a function of the actual electron energy and the resist material and thickness used. In the satellite window 130 labeled "Calculation a", the selection button "ALPHA(α)" 131 makes it possible to obtain a simple polymer material consisting of C, H, and O atoms (optional average density at The orientation alpha value of PMMA-(C 5 H 8 O 2 ) between 1.1-1.3 [g/cm 3 ] (only related to pure electron elastic forward scattering, independent of the substrate material). The user has an input section 132 for the resist material, an input section 133 for electron energy and an input section 134 for the resist depth. The input of the required electron energy [KeV] and the depth [μm] in the resist at α should be calculated.

一般來說,並不推薦直接這個已得到α值作為進入校正過程中的輸入。這個計算僅接近來自所用曝光能量和抗蝕劑厚度對α值變化的相關性。真實的α的最終參數正常地將具有稍為較大的值,因為除了電子的正向散射之外,其他額外的過程(顯影、蝕刻)和/或工具相關的誤差(光像差,當前的-,前-,和後曝光過程穩定性和複製性諸問題)也會影響這個參數。In general, it is not recommended to directly derive the alpha value as an input into the calibration process. This calculation is only close to the correlation between the exposure energy used and the thickness of the resist versus the change in alpha value. The true alpha final parameter will normally have a slightly larger value because of the additional process (development, etching) and/or tool-related errors (optical aberrations, current - in addition to forward scattering of electrons) , pre-, and post-exposure process stability and replication problems) will also affect this parameter.

對實際的過程,採用“背模擬”,在其他參數(β,η,...)的粗略估計之後,將可完成最後α-參數的確定。For the actual process, the "back simulation" is used, and after a rough estimation of other parameters (β, η, ...), the final α-parameter determination can be completed.

第14圖示出在顯示幕或用於計算β和η的使用者介面上的主視窗121第一部分的附屬視窗140。β-參數代表在電子束微影系統中,關於圖像變形的鄰近效應的“長距離”碰撞。這意味著β-值有影響地和精細地確定分別在透明和/或不透明模式這兩者中的交互作用和在非交互作用圖形的大範圍上分佈的最後劑量。Figure 14 shows an ancillary window 140 of the first portion of the main window 121 on the display screen or user interface for calculating β and η. The β-parameter represents a "long distance" collision with respect to the proximity effect of image distortion in an electron beam lithography system. This means that the β-value affects and finely determines the interaction in both the transparent and/or opaque modes and the last dose distributed over a wide range of non-interactive graphics.

所以,一個“良好”的β值估計,對在實際條件下鄰近校正的工作,是關鍵因素,這個參數對基底材料的成分是極為靈敏的(在許多具體情況下,對統計/分析的電子散射計算的準確基底定義是不可能的)。Therefore, a “good” beta value estimate is a key factor for the work of proximity correction under actual conditions. This parameter is extremely sensitive to the composition of the substrate material (in many cases, the electron scattering for statistics/analysis) The exact base definition of the calculation is not possible).

在附屬視窗140中,使用者具有輸入區段141以引入評估的線寬[μm]值。選擇在附屬視窗140中的“β-手動”142或“β-自動”143,並通過按下按鈕“開始計算”144將啟動這個過程。In the satellite window 140, the user has an input section 141 to introduce an estimated line width [μm] value. Selecting "β-Manual" 142 or "β-Auto" 143 in the Accessory Window 140 and starting the process by pressing the button "Start Calculation" 144 will be initiated.

在啟動之後,使用者尋找[ .BET]型的ASCII-內容的文件。該文件的結構需要來自也包括已用各種劑量曝光的非校正的寬線的測試圖形的測量資料。After startup, the user looks for a file of the ASCII-content of the [ * .BET] type. The structure of the document requires measurement data from test patterns that also include non-corrected wide lines that have been exposed with various doses.

第15圖示出[ .BET]-文件的表格150,用於準備其顯示出劑量[μC/cm2 ]對已曝光的線寬[μm]的關係。Fig. 15 shows a table 150 of [ * .BET]-documents for preparing a relationship showing the dose [μC/cm 2 ] to the exposed line width [μm].

測量應在用各種劑量曝光的孤立寬線條上執行。測量的結果160示於第16圖。測量線條應是作為寬度>β(“收集所有背向散射電子”,即對50KeV的光罩製作10μm)的長孤立線條曝光的圖形。( .BET)文件(表150)是通過使用任意的內容編輯器,用像在兩行151,152中的“劑量”[μC/cm2 ]-分離器-“線寬”[μm],在ASCII格式中隨劑量值的下降來寫入。該測量是用CD-測量儀器來做的(例如LeicaLMS-IPRO,Leica LWM,CD-SEM,或其類似的儀器)。Measurements should be performed on isolated wide lines exposed with various doses. The result of the measurement 160 is shown in Fig. 16. The measured line should be as width > β ("Collect all backscattered electrons", ie for 50KeV masks 10μm) long isolated line exposed graphics. The ( * .BET) file (Table 150) is by using an arbitrary content editor, using the "dose" [μC/cm 2 ]-separator-"line width" [μm] in the two lines 151,152. Write in the ASCII format as the dose value decreases. This measurement is made using a CD-measuring instrument (eg Leica LMS-IPRO, Leica LWM, CD-SEM, or the like).

該方法是根據線寬變化對曝光劑量關係的分析(參見第16圖)。劑量是在橫軸上被寫入的,並從最小的合理值經過最佳曝光(此處線寬為15μm與目標會合,直至較高的值,約至最佳劑量的10X)而增加(用精細的步驟)。測量線寬示於縱軸。背散射全部效應的目視觀察與來自前和後曝光過程的所有額外碰撞一起,用最後得到的線寬和/或格式示於第16圖。對已給定過程的結構的專用β參數,可通過把( .BET)-文件引入到“β-手動”和/或“β-自動”下的演算法來計算。This method is based on an analysis of the exposure dose relationship based on line width variation (see Figure 16). The dose is written on the horizontal axis and is increased from the smallest reasonable value by optimal exposure (where the line width is 15 μm and the target meets until the higher value, about 10X to the optimal dose). Fine steps). The measurement line width is shown on the vertical axis. Visual observation of the overall effect of backscattering, along with all additional collisions from the front and back exposure processes, is shown in Figure 16 using the resulting line width and/or format. The specific beta parameter for the structure of a given process can be calculated by introducing a ( * .BET)-file into the algorithm under "β-manual" and/or "β-automatic".

第17圖示出在顯示器上或用於計算η的使用者介面上的主視窗120第一部分的附屬視窗170。在PROX-In主視窗120上,按鈕“ETA”171啟動“η”的計算。為了實現這個步驟在前面已確定的β值,和兩個作為從孤立的透明長,寬,和狹的線條的測量結果的兩個附加的實驗值是必需的。η-值的計算要求最佳的劑量因素(此處目標對兩根線條都是會合的):(i)對大圖形的劑量=劑量 (例如10μm或15μm已曝光的線)以及(ii)對小圖形的劑量=劑量 (例如1μm線),作為無維的值(non-dimensional):劑量因素=劑量 /劑量 。這個值必須引入標題為“劑量因素”172的位置中,而已曝光的圖形尺寸引入標題為“圖形尺寸為”“大”173和“小”174“寬度×長度”用[μm]的位置中。在選擇按鈕“ETA”171並按下按鈕“開始計算”之後就計算η-值並用紅色顯示(參見第17圖)。Figure 17 shows an ancillary window 170 of the first portion of the main window 120 on the display or for computing the user interface of η. On the PROX-In main window 120, the button "ETA" 171 starts the calculation of "n". In order to achieve this step the previously determined beta values, and two additional experimental values as measurements from isolated transparent long, wide, and narrow lines are required. The calculation of the η-value requires the best dose factor (where the target agrees for both lines): (i) dose to large pattern = large dose (eg 10 μm or 15 μm exposed line) and (ii) Dosage for small graphics = small dose (eg 1 μm line), as a non-dimensional value: dose factor = small dose / large dose. This value must be introduced into the position titled "Dose Factor" 172, and the exposed graphic size is introduced in the position titled "Graph Size""Large" 173 and "Small" 174 "Width x Length". After selecting the button "ETA" 171 and pressing the button "Start Calculation", the η-value is calculated and displayed in red (see Figure 17).

主視窗120的第二區段180,被加以“模擬”的標題,並在選定的圖形上起著數值輸入參數的“精細調諧”的作用。參數調諧是根據與所加劑量和/或周圍附近有關圖形的已測尺寸變化的“背模擬”。在處置方面有四種類型的圖形,藉助於這些圖形,就有可能執行背模擬(第10圖)。一種圖形為一條寬的單根透明線。線寬變化對曝光曝量的關係是根據得到的結果和相應的( .BET)-文件(參見第15圖)。另一種可能性是相對的最佳劑量=劑量因素對孤立透明線條的線寬的關係,寬度範圍從最小限度可分辨的線條直至2-3μm(根據該過程)。來自測量結果的ASCII資料可從線寬對( .TGT)-文件的劑量因素形式中得到。相應的資料可從非校正的已曝光測試圖形的測量結果中抽取出來。“PYR”-似錐形的圖形-線寬的變化作為在測量線條和大而對稱地曝光,沿著測量線的墊片之間程式化的間隙寬度的函數(參見第6圖)。在ASCII格式中,來自以下面形式的測量結果中的測量資料是需要的:間隙寬度對線寬的關係作為( .PYR)-文件。在ASCII格式中,來自以下面形式的測量結果的“DRT”-占空系數測試-作為線條/間隔間距函數的線寬變化-測量結果資料是需要的:線寬對間距的關係作為( .DRT)-文件。-資料可從非校正的測試圖形上的測試結果中抽取出來(參見第7圖)。在模擬部分的主要工作,如在主視窗120的第二區段180中顯示的,是為所用微影模型找出(相互作用)合理的輸入參數組,這模擬示出與測量適配的最佳可能。那就意味著:該模擬應重新構建已測圖形幾何變化的真實情況。The second section 180 of the main window 120 is "simulated" and acts as a "fine tuning" of the numerical input parameters on the selected graphic. Parameter tuning is a "back simulation" based on measured dimensions of the graph associated with the applied dose and/or nearby surroundings. There are four types of graphics in terms of disposal, by means of which it is possible to perform a back simulation (Fig. 10). One type of graphic is a single, single transparent line. The relationship between line width variation and exposure exposure is based on the results obtained and the corresponding ( * .BET)-file (see Figure 15). Another possibility is the relative optimum dose = the relationship of the dose factor to the line width of the isolated transparent lines, the width ranging from the minimum distinguishable line up to 2-3 μm (according to the process). The ASCII data from the measurement results can be obtained from the linewidth pair ( * .TGT)-file dose factor form. The corresponding data can be extracted from the measurement results of the uncorrected exposed test pattern. "PYR" - a cone-like pattern - the change in line width as a function of the gap width of the stylized gap between the gauges along the measurement line and the large and symmetric exposure of the measured lines (see Figure 6). In the ASCII format, measurement data from measurement results in the following form is required: the relationship of the gap width to the line width is taken as ( * .PYR)-file. In the ASCII format, the "DRT"-duty factor test from the measurement results in the following form - line width variation as a function of line/space spacing - measurement data is needed: line width versus pitch relationship as ( * . DRT) - file. - Data can be extracted from test results on non-corrected test patterns (see Figure 7). The main work in the simulation section, as shown in the second section 180 of the main window 120, is to find (interact) a reasonable set of input parameters for the lithography model used, which simulates the most suitable for the measurement. Good. That means: the simulation should reconstruct the realities of the geometric changes in the measured graphics.

該模擬部分的主要工作是為微影模型所用的找出合理的輸入參數值,此處模擬示出與測量適配的最佳可能。那就意味著,這模擬應重新構建已測圖形幾何變化的真實情況。The main work of this simulation part is to find reasonable input parameter values for the lithography model, where the simulation shows the best possible adaptation to the measurement. That means that the simulation should reconstruct the realities of the geometric changes in the measured graphics.

在按下用於模擬的開始按鈕181之前,使用者必須選擇四種圖形類型(“LW對Q”,“至目標...”,“PYR”,“DRT”)中的一個,從這些類型中,用測到的資料可得到相應的ASCII-文件。也必須用有關的數值填滿所有的有源Edit-Window182(編輯窗口182),並選擇採用2,3,或4個高斯光速圖像的所需要的模型方法。Before pressing the start button 181 for simulation, the user must select one of four graphic types ("LW vs. Q", "To Target...", "PYR", "DRT") from these types. In the test, the corresponding ASCII-file can be obtained. It is also necessary to fill all active Edit-Window 182 (Edit Window 182) with the relevant values and select the desired model method for 2, 3, or 4 Gaussian speed images.

可能的數值模糊(例如,不僅是單值的結果和/或參數值沒有一個合理的物理解釋)會造成某些複雜的問題。所以我們推薦一般用“2G”184(兩個高斯光束)方法來開始模擬,並作為開始值引入從第一粗略近似值獲得的β-和η-值。作為開始值,可設置在0.05-0.1μm範圍的數值。Possible numerical ambiguities (for example, not only single-valued results and/or parameter values without a reasonable physical interpretation) can cause some complex problems. Therefore, we recommend using the "2G" 184 (two Gaussian beam) method to start the simulation and introduce the β- and η-values obtained from the first coarse approximation as the starting value. As the starting value, a value in the range of 0.05 to 0.1 μm can be set.

在開始類比之後,請求對應ASCII-文件出現[根據所選定的圖形類型,( .BET),( .TGT),( .PYR),或( .DRT)中的一個]。如果該文件被該程式成功地讀出和解釋,則新的圖解視窗190(參見第19圖)立刻在主視窗120第二區段180的頂部出現,它示出來自在合適的圖解形式中採用進入的值的測量結果191和有關模擬192的結果。After starting the analogy, the request corresponding ASCII-file appears [according to the selected graphic type, ( * .BET), ( * .TGT), ( * .PYR), or one of ( * .DRT)]. If the file is successfully read and interpreted by the program, the new graphical window 190 (see Figure 19) appears immediately at the top of the second section 180 of the main window 120, which shows the entry from the appropriate graphical form. The value of the measurement 191 and the results of the simulation 192.

在位於視窗120的右底側的第三部分123上出現與該圖解連同資訊內容(參見第12圖)。第三部分123包含在實驗結果和計算的適配品質的評估結果之間作對應的數值比較。在第三部分123中,該資料可被直接處理,類似於在正常的編輯器中那樣,就是標示這內容,複製到剪輯板上,而且還把已複製的ASCII資料直接地引入到其他的軟體中(例如Excel,...)作進一步的處理之用。The illustration along with the information content appears on the third portion 123 located on the right bottom side of the window 120 (see Figure 12). The third portion 123 contains a corresponding numerical comparison between the experimental results and the calculated evaluation results of the fit quality. In the third part 123, the material can be processed directly, similar to in a normal editor, by marking the content, copying it onto the clip board, and also importing the copied ASCII data directly into other software. Medium (eg Excel, ...) for further processing.

在“stat”183下,在第二區段180上的各個類比步驟之後,指出剛才執行模擬的品質值出現。一般來說,在採用背模擬方法確定參數的適配過程中的每個步驟將往往會對“stat”183得到最小的可能值(例如參看在第19圖和第20圖之間的在“stat”中的差別:明顯地示出第20圖具有較佳適配200的特點)。Under "stat" 183, after each analog step on the second section 180, it is indicated that the quality value of the simulation just performed appears. In general, each step in the adaptation process using the back-simulation method to determine the parameters will tend to get the smallest possible value for "stat" 183 (see, for example, the "stat" between Figure 19 and Figure 20 The difference in "the figure 20 is clearly shown to have the characteristics of a better fit 200".

“ind”193,203以箭頭“”的形式示出在適配過程中間適配的質量傾向。按下“Set”按鈕194,204把當前的“stat”值設置為最小值用來品質評估,並從現在起指示器“ind”將示出與該值相一致的適配品質傾向。“ind”意思:“”-較差;“”-較好;“”-無顯著變化。"ind" 193, 203 with an arrow " The form shows the quality tendency to be adapted in the middle of the adaptation process. Pressing the "Set" button 194, 204 sets the current "stat" value to the minimum value for quality assessment, and from now on the indicator "ind" An adaptation quality tendency consistent with this value will be shown. "ind" means: " "-poor;" "-better;" "- No significant changes.

在一個選定的圖形類型的情況下,除“DRT”之外,分別嘗試程式函數:“自動-α”,“自動-β”,和“自動-η”(參見第18圖)中的每一個必是可能的(檢查適合的視窗,注意:在相同的時間中只能檢查一個!)。這結果對α或β或η是一個最佳的參數值建議,它用紅色出現在第二區段180中。如果這已計算值的建議認為是可靠的,然後應把它引入到合適的Edit-Window(編輯視窗)下面作為下一次模擬步驟的新值。作為在自動-適配過程中僅有的第一步驟,建議用“自動-η”函數來開始-找出一個η的近似地有關的並可接受的值。在把這值引入到編輯視窗中的下面之後,參數配合需要通過所有的輸入參數的許多次更多的替代。In the case of a selected graphic type, in addition to "DRT", try each of the program functions: "Auto-α", "Auto-β", and "Auto-η" (see Figure 18). It must be possible (check the appropriate window, note: only one can be checked at the same time!). This result is an optimal parameter value recommendation for α or β or η, which appears in red in the second segment 180. If the suggested value is considered reliable, then it should be introduced under the appropriate Edit-Window as the new value for the next simulation step. As the only first step in the auto-adaptation process, it is recommended to start with an "auto-n" function - find an approximately relevant and acceptable value of η. After introducing this value below the edit window, the parameter fit requires many more substitutions of all input parameters.

用“3G”和“4G”指出的視窗(參見主視窗120的第二區段180)是用於選擇多於兩個高斯參數組值。經常會發生測量結果的某些區域不能與用採用標準的兩個高斯參數組值的模擬滿意地適配(參見第19圖;用處圓195標出的範圍)。在線寬變化的已測輸入是正確的情況下,此事實上可導致對在校正過程中的某些圖形組合的最佳劑量分配的局部失敗。一般來說,為了改善適配的品質,採用多個兩個高斯函數是可能的(參見第20圖)。The window indicated by "3G" and "4G" (see the second section 180 of the main window 120) is for selecting more than two Gaussian parameter set values. Certain areas where measurement results often occur cannot be satisfactorily adapted to simulations using two Gaussian parameter set values using the standard (see Figure 19; range marked with circle 195). Where the measured input of the online wide variation is correct, this may in fact lead to a partial failure of the optimal dose allocation for certain combinations of graphics during the calibration process. In general, it is possible to use multiple two Gaussian functions in order to improve the quality of the adaptation (see Figure 20).

如果採用“3G”或“4G”,建議移動兩個從“2G”過程中獲得的數值β和η,作為在“3G”或“4G”中的最後兩個參數,即,βγ和ηv。這新的“空白”參數β和η現在應該用某些“小的”開始值來設置,並逐步調諧以獲得最佳適配。對α,和β,和η的精細調諧,“自動”函數是有用的。If "3G" or "4G" is used, it is recommended to move two values β and η obtained from the "2G" process as the last two parameters in "3G" or "4G", ie, β γ and η v. This new "blank" parameter β and η should now be set with some "small" starting values and tuned step by step to get the best fit. For fine tuning of α, and β, and η, an "automatic" function is useful.

第21圖示出選擇視窗210。使用者選擇“LW對Q”211,並同時還檢查在下面的“Opt.Dose對LW”視窗212。這是得到關於具有所提出的輸入參數組校正過程的全視圖的全面控制過程,這過程不需要任何輸入檔案。由於該結果出現在來自該模型的計算結果的綜合表220中(參見第20圖),就形成了。表220由7行和46列組成。每列包含對已給的線寬(從100μm降至50nm曝光),在校正之後的計算劑因素。在第22圖中的行具有下面的含義:1-線寬[μm]221,行號:2-計算的最佳劑量[μC/cm2 ]222,行號:3-對單根透明線的劑量因素223,行號:4-對單根透明接觸的劑量因素224,行號:5-對在L/S(1:1)大陣列中間線條的劑量因素225,行號:6-在取自(1:1)大陣列中間線條的中間處之曝光密度因素226,以及行號:7-對單根不透明線227的劑量因素。Figure 21 shows the selection window 210. The user selects "LW vs. Q" 211 and also checks the "Opt.Dose vs. LW" window 212 below. This is a comprehensive control process with a full view of the proposed set of input parameter sets, which does not require any input files. Since the result appears in the comprehensive table 220 of the calculation results from the model (see Fig. 20), it is formed. Table 220 consists of 7 rows and 46 columns. Each column contains the calculated factor for the given line width (from 100 μm to 50 nm exposure) after correction. The line in Fig. 22 has the following meanings: 1-line width [μm] 221, line number: 2 - calculated optimal dose [μC/cm 2 ] 222, line number: 3-for a single transparent line Dose factor 223, line number: 4- dose factor 224 for a single transparent contact, line number: 5 - dose factor 225 in the middle line of the L/S (1:1) large array, line number: 6 - in the The exposure density factor 226 from the middle of the (1:1) large array of intermediate lines, and the row number: 7 - the dose factor for the single opaque line 227.

第23圖示出選擇視窗230。“to Target...”(“到目標...”)過程能讓使用者接收來自用於對一給定的過程降至最小可獲得尺寸的單根透明線條的最佳圖形的精確抽取“校正曲線”的最優化參數組。Figure 23 shows the selection window 230. The "to Target..." process allows the user to receive an accurate extraction of the best graphics from a single transparent line used to minimize a given process size. Optimization curve set for the calibration curve.

第24圖示出最佳劑量的比較240對單根透明線的所測線寬242和採用“2G”近似模擬的單根透明線條的線寬242。採用“2G”近似計算的“校正曲線”241並不提供相對於線寬的所測資料的最佳適配。Figure 24 shows a comparison of the optimal dose of 240 for the measured line width 242 of a single transparent line and a line width 242 of a single transparent line approximated by "2G". The "correction curve" 241 calculated using the "2G" approximation does not provide the best fit to the measured data relative to the line width.

第25圖示出最佳劑量的比較240對單根透明線的所測線寬和採用“3G”近似。採用“3G”近似模擬的單根透明線條的242線寬。採用“3G”近似計算的“校正曲線”251提供相對於線寬的所測資料252的最佳適配。Figure 25 shows a comparison of the optimal dose of 240 for the measured line width of a single transparent line and using a "3G" approximation. The 242 line width of a single transparent line simulated by the "3G" approximation. The "correction curve" 251 calculated using the "3G" approximation provides the best fit of the measured data 252 relative to the line width.

第26圖示出產生結果的控制函數261圖像的曲線260。在整個參數組確定過程中的最後步驟是用於產生曝光過程最優化的控制面數261。控制函數261全部由所獲得的鄰近輸入參數α,β,η,...決定。Figure 26 shows a plot 260 of the resulting control function 261 image. The final step in the entire parameter set determination process is the number of control faces 261 used to generate the exposure process optimization. The control function 261 is all determined by the obtained adjacent input parameters α, β, η, .

在檢查“EID to a File( .pec)”檢查視窗之後,對模擬步驟中的每個步驟,都可獲得以“EID”[Exposure Intensity Distribution(曝光密度分佈)]的形式的產生結果的控制函數261。這過程需要對產生結果的“EID”-檔案“EID”-File的檔案名稱File Name(參見第24圖):在顯示幕的上面部分顯出作為徑向距離[μm]對曝光密度[任意單位]的關係所得到的控制函數的曲線圖像(參見第23圖)。After checking the "EID to a File ( * .pec)" check window, the control of the result in the form of "EID" [Exposure Intensity Distribution] can be obtained for each step in the simulation step. Function 261. This process requires the file name "File Name" (see Figure 24) for the resulting "EID"-file "EID"-File: displayed in the upper part of the display as radial distance [μm] versus exposure density [arbitrary unit A curve image of the control function obtained by the relationship (see Figure 23).

第27圖示出圖形270的形式,它需要被寫入到基底上的抗蝕劑中。圖形270由CAD-資料提供,並在本實施例中有四個不同的部件。圖形270的尺寸清楚地依據CAD-資料或設計資料。第一部件是具有限定寬度的直線271。第二部件272是矩形形狀的區域。直線273從上角延伸並形成該區域的下角。第一部件的直線271與從第二部件延伸的直線273平行。第三部件274是矩形形狀的區域。直線273向左面延伸,形成該接合區的下角。第四部件275包括兩個區域。這兩個區域在它們的下角用直線271連接。一附加直線從一個區域的上角向左延伸。正如已在上面提及的,所有直線271是平行的。Figure 27 shows the form of a pattern 270 that needs to be written into the resist on the substrate. The graphic 270 is provided by CAD-data and has four different components in this embodiment. The dimensions of the graphic 270 are clearly based on CAD-data or design data. The first component is a straight line 271 having a defined width. The second member 272 is a rectangular shaped region. A line 273 extends from the upper corner and forms the lower corner of the area. The line 271 of the first component is parallel to the line 273 extending from the second component. The third member 274 is a rectangular shaped region. A straight line 273 extends to the left to form a lower corner of the joint. The fourth component 275 includes two regions. These two regions are connected by a straight line 271 at their lower corners. An additional straight line extends from the upper corner of an area to the left. As already mentioned above, all lines 271 are parallel.

如由CAD-設計所限定的圖形被分成子形狀276。對每個子形狀276分配用於微影過程限定的電子束密度。作為由程序控制和最後得到的鄰近校正引起的結果,子形狀276被進一步劃分並導致最佳的子形狀277。對每個個別的最佳子形狀277,分配電子束的個別劑量。劑量的分配根據校正函數的最佳適配的參數組來實現。The graphics as defined by the CAD-design are divided into sub-shapes 276. Each sub-shape 276 is assigned an electron beam density for the lithography process definition. As a result of program control and the resulting proximity correction, the subshape 276 is further divided and results in an optimal subshape 277. For each individual optimal sub-shape 277, individual doses of the electron beam are dispensed. The dispensing of the dose is carried out according to the optimally adapted parameter set of the correction function.

第28圖示出用與不用所施加的控制函數寫入圖形的示意圖像。把限定的電子束劑量分配到第一和第二區280和281。由電子束照射引起的圖形的示意圖像282示出在個別的區域2841 和2842 之間的連接處283。根據CAD-資料,期望接合區2841 和2842 是分開的。電子束的照射造成在兩接合區2841 和2842 之間的不需要的連接。結構圖形的真實圖像285示出在兩接合區2841 和2842 之間的連接。根據本發明,至少把第一和第二區280和281分成兩個子區域2801 ,2802 ,...,280n 和2811 ,2812 ...和281n ,其中把不同的劑量分配到子區域。根據本實施例,把區域280和281分為三個子區域2801 ,2802 ,和2803 。把個別的劑量分配到每個子區域2801 ,2802 ,和2803 ,其中第一子區域2801 受到劑量Do,第二子區域2802 受到劑量D1 ,而第三子區域2803 則受到劑量D2 。作為本發明的對各個子區域的各種劑量分配的結果,得到如由CAD資料所要求的尺寸的結構。各種產生結果的結構286的示意圖像示出在兩個結構之間有著明晰的間隔。這間隔由具有恒定寬度直線287所限定,還示出了圖形結構的真實圖像288。Figure 28 shows a schematic image written with and without the applied control function. A defined electron beam dose is dispensed to the first and second zones 280 and 281. Schematic pattern caused by electron beam irradiation as shown in the 282 region of the connection between the individual and 284 2 2841 283. According to the CAD-data, it is desirable that the joint areas 284 1 and 284 2 are separate. Caused by electron beam irradiation in unwanted connections between 2841 and 2842 two lands. Real image arrangement pattern 285 is shown connected between the two lands 300 1 and 284 2. According to the present invention, at least the first and second regions 280 and 281 are divided into two sub-regions 280 1 , 280 2 , ..., 280 n and 281 1 , 281 2 ... and 281 n , wherein different doses are applied Assigned to a sub-area. According to the present embodiment, the regions 280 and 281 are divided into three sub-regions 280 1 , 280 2 , and 280 3 . Individual doses are assigned to each of the sub-regions 280 1 , 280 2 , and 280 3 , wherein the first sub-region 280 1 is subjected to the dose Do, the second sub-region 280 2 is subjected to the dose D 1 , and the third sub-region 280 3 is subjected to Dose D 2 . As a result of the various dose assignments for the various sub-regions of the present invention, a structure of the size as required by the CAD data is obtained. A schematic image of various resulting structures 286 shows a clear spacing between the two structures. This spacing is defined by a line 287 having a constant width, and also shows a real image 288 of the graphical structure.

1...電子系微影系統1. . . Electronic lithography system

2...電子束源2. . . Electron beam source

3...電子束3. . . Electron beam

4...基底4. . . Base

5...圖形5. . . Graphics

6...載物台6. . . Stage

7...電動機7. . . electric motor

8...電動機8. . . electric motor

9...光束對準線圈9. . . Beam alignment coil

10...光束遮沒單元10. . . Beam masking unit

11...磁偏轉單元11. . . Magnetic deflection unit

12...磁線圈12. . . Magnetic coil

13...反饋裝置13. . . Feedback device

14...電子檢測器14. . . Electronic detector

15...電腦15. . . computer

16...介面16. . . interface

17...顯示幕17. . . Display screen

20...圖形20. . . Graphics

21...區域twenty one. . . region

22...高斯光束twenty two. . . Gaussian beam

23...橫截面twenty three. . . Cross section

30...圖形30. . . Graphics

31...總區域31. . . Total area

32...成形光束32. . . Formed beam

321 ...形狀32 1 . . . shape

322 ...形狀32 2 . . . shape

323 ...形狀32 3 . . . shape

33...橫截面33. . . Cross section

34...箭頭34. . . arrow

40...聚甲基丙烯酸甲酯層40. . . Polymethyl methacrylate layer

41...GaAs基底41. . . GaAs substrate

42...模擬軌道42. . . Simulated orbit

43...電子束43. . . Electron beam

50...圖形50. . . Graphics

51...第一部件51. . . First part

52...第二部件52. . . Second part

53...第三部件53. . . Third part

54...第四部件54. . . Fourth part

55...得到的圖形55. . . Get the graphics

56...第一位置56. . . First position

57...第二位置57. . . Second position

60...第一測試圖形60. . . First test pattern

61...線條61. . . line

62...凸緣62. . . Flange

63...線寬63. . . Line width

64...間隙寬度64. . . Gap width

65...點65. . . point

70...第二可能測試圖形70. . . Second possible test pattern

71...線寬71. . . Line width

72...線條72. . . line

73...間距73. . . spacing

74...陣列74. . . Array

75...線條75. . . line

76...單根透明線條76. . . Single transparent line

80...輸入視窗80. . . Input window

81...標記81. . . mark

90...表90. . . table

91...第一行91. . . first row

92...第二行92. . . second line

93...第三行93. . . The third row

94...曲線形式94. . . Curve form

95...參數組95. . . Parameter group

96...測量資料96. . . Measurement data

97...計算資料97. . . Calculation data

100...輸入視窗100. . . Input window

101...標記101. . . mark

110...表110. . . table

111...第一行111. . . first row

112...第二行112. . . second line

113...第三行113. . . The third row

114...圖形式114. . . Graphical form

115...參數組115. . . Parameter group

116...測量資料116. . . Measurement data

117...計算資料117. . . Calculation data

120...主視窗120. . . Main window

121...第一部分121. . . first part

1211 ...附屬框121 1 . . . Subsidiary box

1212 ...附屬框121 2 . . . Subsidiary box

1213 ...附屬框121 3 . . . Subsidiary box

1214 ...附屬框121 4 . . . Subsidiary box

122...第二部分122. . . the second part

123...第三部分123. . . the third part

124...內容視窗124. . . Content window

130...附屬視窗130. . . Accessory window

131...選擇鈕“ALPHA”131. . . Select button "ALPHA"

132...輸入區段132. . . Input section

133...輸入區段133. . . Input section

134...輸入區段134. . . Input section

140...附屬視窗140. . . Accessory window

141...輸入區段141. . . Input section

142...按鈕“β-手動”142. . . Button "β-manual"

143...按鈕“β-自動”143. . . Button "β-automatic"

144...按鈕“開始計算”144. . . Button "Start calculation"

150...表150. . . table

151...行151. . . Row

152...行152. . . Row

160...結果160. . . result

170...附屬視窗170. . . Accessory window

171...按鈕“ETA”171. . . Button "ETA"

172...“劑量因數”172. . . "dose factor"

173...“圖形尺寸”“大”173. . . "Graphic size" "large"

174...“小”174. . . "small"

180...第二區段180. . . Second section

181...開始按鈕181. . . Start button

182...編輯窗口182. . . Edit window

183...“stat”183. . . "stat"

184...“2G”184. . . "2G"

190...圖解視窗190. . . Graphical window

191...測量結果191. . . Measurement result

192...模擬192. . . simulation

193...“ind”193. . . "ind"

194...“set”按鈕194. . . "set" button

195...虛圓195. . . Virtual circle

203...“ind”203. . . "ind"

204...“set”按鈕204. . . "set" button

210...選擇視窗210. . . Select window

211...“LW對Q”211. . . "LW vs Q"

212...視窗212. . . Windows

220...表220. . . table

221...線寬221. . . Line width

222...計算的最佳劑量222. . . Calculated optimal dose

223...劑量因素223. . . Dose factor

224...劑量因素224. . . Dose factor

225...劑量因素225. . . Dose factor

226...曝光密度因素226. . . Exposure density factor

227...單根不透明線227. . . Single opaque line

230...選擇視窗230. . . Select window

240...比較240. . . Comparison

241...校正曲線241. . . Calibration curve

242...線寬242. . . Line width

250...比較250. . . Comparison

251...校正曲線251. . . Calibration curve

252...資料252. . . data

260...曲線260. . . curve

261...控制函數261. . . Control function

270...圖形270. . . Graphics

271...直線271. . . straight line

272...第二部分272. . . the second part

273...直線273. . . straight line

274...第三部分274. . . the third part

275...第四部分275. . . fourth part

276...子形狀276. . . Sub shape

277...子形狀277. . . Sub shape

280...第一區280. . . First district

2801 ...子區域280 1 . . . Subregion

2802 ...子區域280 2 . . . Subregion

2803 ...子區域280 3 . . . Subregion

281...第二區281. . . Second district

2811 ...子區域281 1 . . . Subregion

2812 ...子區域281 2 . . . Subregion

2813 ...子區域281 3 . . . Subregion

282...示意圖像282. . . Schematic image

283...連接處283. . . Junction

2841 ...個別接合區284 1 . . . Individual junction

2842 ...個別接合區284 2 . . . Individual junction

285...真實圖像285. . . Real image

286...結果的結構286. . . Result structure

287...直線287. . . straight line

288...真實圖像288. . . Real image

現在將在下面的本發明詳細描述中,結合附圖更為全面地描述本發明的特性和操作模式,其中:第1圖是電子束微影系統的方塊圖;第2a圖是對用高斯光束寫入的圖像示例;第2b圖是具有恒定直徑的高斯光束的橫截面形狀;第3a圖是採用具有成形波束寫入的圖形的示例;第3b圖是該成形光束的橫截面形狀,其中,該光束形狀可根據需要寫入的圖形來調節;第4a圖示出對鍍在GaAs基底上的聚甲基丙烯酸甲酯(PMMA)中散射的100個電子的模擬軌道;第4b圖示出對鍍在GaAs基底上的聚甲基丙烯酸甲酯(PMMA)中散射的100個電子的類比軌道,其中,電子的初能量比較高如同在第4a圖的計算中所示的情形;第5a圖示出需要在基底上的抗蝕劑中寫入的圖形樣式的示意圖;第5b圖示出該圖形的結果,該圖形在抗蝕劑中被寫入,且沒有應用根據本發明的校正;第6圖示出被寫入到抗蝕劑之內的第一測試圖形;第7圖示出被寫入到抗蝕劑之內的第二測試圖形;第8圖示出為使用者的輸入視窗以開始示於第6圖中的第一測試圖形的曝光;第9圖示出從已曝光的第一測試圖形得到的測量結果表;第10圖示出為使用者輸入視窗以開始示於第7圖中的第二測試圖形的曝光;第11圖示出從已曝光的第二測試圖形得到的測量結果表;第12圖示出提供在與電腦有關聯的顯示幕上的程式PROX-In的主視窗;第13圖示出在顯示幕或用於計算α的使用者介面上的主視窗第一部分的子視窗;第14圖示出在顯示幕或用於計算β和η的使用者介面上的主視窗第一部分的子視窗;第15圖示出作為所施加劑量函數的已曝光線條寬度的表格;第16圖示出在作為已曝光試劑函數的線寬中的變化;第17圖示出在顯示幕或用於計算η的使用者介面上的主視窗第一部分的子視窗;第18圖示出主視窗(參見第12圖)的第二部段,它起著用數值表示的輸入參數的“精細調諧”的作用;第19圖示出採用“2G”近似的15μm線寬變化的模擬;第20圖示出採用“3G”近似的15μm線寬變化的模擬;第21圖示出選擇視窗;第22圖示出帶有從該模型計算結果的綜合表;第23圖示出選擇視窗;第24圖示比對單根透明線的已測的和模擬的線寬的最佳劑量模擬比較,採用“2G”近似;第25圖示比對單根透明線的已測的和模擬的線寬的最佳劑量比較,採用“3G”近似;第26圖示出最後得到的控制函數的曲線圖表示;第27圖示出示意的代表圖形,它是要被微影過程寫入的,且該圖形的瓦解進入子元件中,以及第28圖示出用和不用所應用的控制函數寫入的圖形的示意圖。The characteristics and modes of operation of the present invention will now be described more fully in the following detailed description of the invention, in which: FIG. 1 is a block diagram of an electron beam lithography system; and FIG. 2a is a pair of Gaussian beams An example of a written image; a 2b image is a cross-sectional shape of a Gaussian beam having a constant diameter; a 3a is an example of a pattern with a shaped beam writing; and a 3B is a cross-sectional shape of the shaped beam, wherein The shape of the beam can be adjusted according to the pattern to be written; Figure 4a shows the simulated orbit of 100 electrons scattered in polymethyl methacrylate (PMMA) plated on a GaAs substrate; Figure 4b shows An analog orbit of 100 electrons scattered in polymethyl methacrylate (PMMA) plated on a GaAs substrate, wherein the initial energy of the electron is relatively high as shown in the calculation of Fig. 4a; Fig. 5a A schematic diagram showing the pattern of the pattern to be written in the resist on the substrate; Figure 5b shows the result of the pattern, the pattern being written in the resist, and the correction according to the invention is not applied; Figure 6 shows the write to the resist a first test pattern within; FIG. 7 shows a second test pattern written into the resist; FIG. 8 shows the user's input window to begin with the first shown in FIG. Exposure of the test pattern; FIG. 9 shows a measurement result table obtained from the exposed first test pattern; FIG. 10 shows an exposure for the user input window to start the second test pattern shown in FIG. 7; Fig. 11 shows a measurement result table obtained from the exposed second test pattern; Fig. 12 shows a main window of the program PROX-In provided on the display screen associated with the computer; Fig. 13 shows the display a sub-window of the first portion of the main window of the user interface on the user interface for calculating alpha; Figure 14 shows a sub-window of the first portion of the main window on the display screen or the user interface for calculating β and η; Figure 15 shows a table of the exposed line width as a function of the applied dose; Figure 16 shows the change in the line width as a function of the exposed reagent; Figure 17 shows the use in the display screen or for the calculation of η The child window of the first part of the main window; Figure 18 shows the main The second section of the window (see Figure 12), which acts as a "fine tuning" of the input parameters numerically represented; Figure 19 shows a simulation of the 15 μm linewidth variation using the "2G" approximation; The figure shows a simulation of a 15 μm line width variation using a "3G" approximation; a 21st figure showing a selection window; a 22nd figure showing a comprehensive table with calculation results from the model; and a 23rd drawing showing a selection window; The comparison shows the best dose simulation comparison of the measured and simulated linewidths of a single transparent line, using a "2G" approximation; the 25th plot compares the measured and simulated linewidths of a single transparent line. The optimal dose comparison uses a "3G" approximation; Figure 26 shows a graphical representation of the resulting control function; Figure 27 shows a schematic representation of the graph to be written by the lithography process, and the graph The collapse into the sub-element, and Figure 28 shows a schematic of the graph written with and without the applied control function.

1...電子系微影系統1. . . Electronic lithography system

2...電子束源2. . . Electron beam source

3...電子束3. . . Electron beam

4...基底4. . . Base

5...圖形5. . . Graphics

6...載物6. . . Load

7...電動機7. . . electric motor

8...電動機8. . . electric motor

9...光束對準線圈9. . . Beam alignment coil

10...光束遮沒單元10. . . Beam masking unit

11...磁偏單元11. . . Magnetic bias unit

12...磁線圈12. . . Magnetic coil

13...反饋裝置13. . . Feedback device

14...電子檢測器14. . . Electronic detector

15...電腦15. . . computer

16...介面16. . . interface

17...顯示幕17. . . Display screen

Claims (17)

一種用於在電子束微影系統中控制鄰近效應校正的方法,其中一控制函數所控制的曝光是為了在加工處理之後,獲得最後得到的圖形與設計資料一致,該方法包括下面的步驟:*在不應用該用於控制鄰近校正的方法下,曝光任意組的圖形;*測量最後得到的測試結構的幾何圖形,並從而獲得一組測量結果的資料;*從該測量結果的資料組決定基本輸入鄰近參數;*在根據設計資料的圖形曝光期間,把該控制函數應用到電子束微影系統的曝光控制;*分別改變至少該控制函數的基本輸入鄰近參數;以及適配一模型至該測量結果的資料組,並從而獲得最優化的鄰近參數組;*將該分別改變的鄰近參數應用至計算,以及將計算後的結果與該測量結果的資料組進行比較。 A method for controlling proximity effect correction in an electron beam lithography system, wherein an exposure controlled by a control function is to obtain a final obtained pattern consistent with design data after processing, the method comprising the following steps: Exposing any set of graphics without applying the method for controlling proximity correction; * measuring the geometry of the resulting test structure and obtaining a set of measurements; * determining the basis from the data set of the measurement Entering adjacent parameters; * applying the control function to the exposure control of the electron beam lithography system during pattern exposure according to the design data; * changing at least the basic input proximity parameters of the control function; and adapting a model to the measurement The resulting data set, and thus the optimized set of neighboring parameters; * the separately changed neighboring parameters are applied to the calculation, and the calculated result is compared to the data set of the measured result. 如申請專利範圍第1項所述方法,其中該方法包括把確定的鄰近參數組應用到計算,並把這些結果與用正常劑量曝光的孤立透明和不透明線條的測量資料進行比較的步驟。 The method of claim 1, wherein the method comprises the step of applying a determined set of adjacent parameters to the calculation and comparing the results to measurements of isolated transparent and opaque lines exposed with normal doses. 如申請專利範圍第1項所述方法,其中該方法包括把適配 的鄰近參數組應用到計算,和這些結果與來自其他任意的似錐形的圖形的測量資料進行比較,並把這些結果與來自在測試圖形的代表點上測量結果的測量資料組作比較的步驟。 The method of claim 1, wherein the method comprises adapting The proximity parameter set is applied to the calculation, and the results are compared with measurements from other arbitrary conical-like graphs, and the results are compared with the measurement data set from the measurement results at the representative points of the test pattern. . 如申請專利範圍第1項所述方法,其中該方法包括把適配的鄰近參數組應用到一個計算,和這些結果與來自其他任意的在占空系數中的多根線條的圖形的測量資料組的一個比較,並把這些結果與來自測試圖形的代表點上的測量結果的測量結果作比較的步驟。 The method of claim 1, wherein the method comprises applying the adapted set of neighboring parameters to a calculation, and the measurement data set of the result and the graph of the plurality of lines from the other arbitrary duty factor A comparison and comparison of these results with measurements from measurements at representative points of the test pattern. 如申請專利範圍第1項所述方法,其中該控制函數是至少兩個高斯函數的和。 The method of claim 1, wherein the control function is a sum of at least two Gaussian functions. 如申請專利範圍第5項所述方法,其中該控制函數的構成是藉由 來確定的,其中第一術語α-表示前向散射的短範圍特徵,第二術語β-背向散射,參數η是背向散射分量對前向散射分量的沈積能量之比,以及γ-是離電子入射點的距離。The method of claim 5, wherein the control function is constituted by Determined, wherein the first term α- denotes a short-range feature of forward scatter, the second term β-backscatter, the parameter η is the ratio of the backscattered component to the deposition energy of the forward scatter component, and γ- is The distance from the point of incidence of the electron. 如申請專利範圍第1項所述的方法,其中該控制函數是由3個高斯函數之和來確定的。 The method of claim 1, wherein the control function is determined by a sum of three Gaussian functions. 如申請專利範圍第1項所述的方法,其中該控制函數是由4個高斯函數之和來確定的。 The method of claim 1, wherein the control function is determined by a sum of four Gaussian functions. 如申請專利範圍第1項所述的方法,其中根據該設計資料的圖形被再分成最佳的子形狀,和把個別的劑量分配到各 個最佳的子形狀,其中該個別的劑量是從該校正函數來確定的。 The method of claim 1, wherein the graphic according to the design data is subdivided into optimal sub-shapes, and individual doses are assigned to each The best sub-shape, wherein the individual dose is determined from the correction function. 如申請專利範圍第9項所述的方法,其中分配到該最佳子形狀的該個別的劑量,導致一個曝光的圖形,這個圖形是在與設計資料相同的尺寸中。 The method of claim 9, wherein the individual doses assigned to the optimal sub-shape result in an exposed pattern that is in the same dimensions as the design data. 如申請專利範圍第1到10項中任一項所述方法,其中在電子束微影系統中利用該鄰近校正控制函數,對100nm的裝置世代(100 nm device generation),把尺寸誤差降低到10nm。 The method of any one of claims 1 to 10, wherein the proximity correction control function is utilized in an electron beam lithography system to reduce the size error to 10 nm for a 100 nm device generation (100 nm device generation) . 如申請專利範圍第1項所述方法,其中該鄰近控制函數被嵌入PROX-In的軟體中。 The method of claim 1, wherein the proximity control function is embedded in a software of PROX-In. 如申請專利範圍第12項所述方法,其中該PROx-In軟體是在連接到電子束微影系統的標準電腦上運作,把顯示幕連接到該電腦,並在顯示幕上示出作為使用者介面的主視窗(120),其中該主視窗,在啟動程式PROX-In之後就立刻出現,且該主視窗被分成三個主部分。 The method of claim 12, wherein the PROx-In software operates on a standard computer connected to the electron beam lithography system, connects the display screen to the computer, and displays the user as a user on the display screen. The main window (120) of the interface, wherein the main window appears immediately after starting the program PROX-In, and the main window is divided into three main parts. 如申請專利範圍第13項所述方法,其中該主視窗的第一部分由第一,第二,第三和第四分開的子視窗構成,且其中這分開的各個子視窗被用來計算這些參數。 The method of claim 13 wherein the first portion of the main window is comprised of first, second, third and fourth separate sub-windows, and wherein the separate sub-windows are used to calculate the parameters . 如申請專利範圍第13項所述方法,其中主視窗的第二部分,在選定的測試圖形上,做為數值輸入參數組的“精細調諧”的作用,其中該參數調諧是根據依賴於所施加的劑量和/或鄰近之處的圖形的已測尺寸變化的“背模擬”。 The method of claim 13, wherein the second portion of the main window acts as a "fine tuning" of the numerical input parameter set on the selected test pattern, wherein the parameter tuning is dependent on the applied The "back simulation" of the measured size change of the dose and / or the vicinity of the graph. 如申請專利範圍第15項所述方法,其中可選擇四種類型 的圖形來執行背模擬,第一圖形是寬的單根透明的線條,和該最後得到線寬變化對該曝光劑量的關係是根據所得的結果和發生的相應的(*.BET)-文件,第二測試圖形是孤立的透明線條,它應具有有限的寬度,其中相對最佳劑量=劑量因素對孤立的透明線條線寬的關係,其寬度範圍從最小可分辨的線條直到2-3μm的線條被曝光,且從以線寬的方式的測量結果對來自(*.TGT)-文件的該劑量因素的關係得到ASCII-資料;第三測試圖形是“PYR”-似錐形圖形-其中線寬變化是作為在已測線條和大的,對稱地曝光的,沿著該已測線條的墊片之間的程式化的間隙寬度的函數被獲得的,且該測量結果的資料是在ASCII-格式中,並像間隙寬度對線寬的關係一樣的(*.PYR)-檔案來顯示;第四測試圖形是“DRT”-占空系數測試線寬變化作為線條/間隔-間距-測量結果的函數,且該資料是在ASCII-格式中,且像線寬對間距一樣的(*.DRT)-檔案來顯示,所有資料是從在非校正的測試圖形上的測量結果抽取的。 For example, the method described in claim 15 can select four types. The graphics are used to perform the back simulation, the first graphic is a wide single transparent line, and the relationship of the resulting line width change to the exposure dose is based on the resulting result and the corresponding (*.BET)-file that occurs, The second test pattern is an isolated transparent line which should have a finite width, where the relative optimum dose = dose factor versus isolated transparent line width, the width ranging from the smallest distinguishable line up to 2-3 μm line It is exposed, and the ASCII-data is obtained from the relationship of the dose factor from the (*.TGT)-file from the measurement result in the line width manner; the third test pattern is "PYR"-like tapered pattern - wherein the line width The change is obtained as a function of the programmed gap width between the measured line and the large, symmetrically exposed pad along the measured line, and the data of the measurement is in ASCII-format Medium, and the same as the gap width to line width (*.PYR)-file to display; the fourth test pattern is "DRT" - duty factor test line width change as a function of line / interval - spacing - measurement results And the information is in ASCII- In the format, and the line width is the same as the spacing (*.DRT)-file, all data is extracted from the measurement results on the uncorrected test pattern. 如申請專利範圍第13項所述方法,其中該主視窗的第三部分位於主視窗的右底側中,該第三部分包含在實驗資料和帶有適配品質評估的計算結果之間相應的數值比較,其中該資料可如同在正常的編輯器中直接在該第三部分中處理,即標出其內容,複製到剪輯版,且還直接把這複製的ASCII-資料引入到其他軟體中(例如,Excel,...)用於作進一步處理。The method of claim 13, wherein the third portion of the main window is located in a right bottom side of the main window, and the third portion is included between the experimental data and the calculation result with the adaptation quality evaluation. Numerical comparison, in which the data can be processed directly in the third part as in the normal editor, that is, the content is marked, copied to the cut version, and the copied ASCII data is directly introduced into other software ( For example, Excel, ...) is used for further processing.
TW094121185A 2004-06-29 2005-06-24 A process for controlling roximity effect correction in an electron beam lithography system TWI394197B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04103020A EP1612834A1 (en) 2004-06-29 2004-06-29 A process for controlling the proximity effect correction

Publications (2)

Publication Number Publication Date
TW200614313A TW200614313A (en) 2006-05-01
TWI394197B true TWI394197B (en) 2013-04-21

Family

ID=34929263

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094121185A TWI394197B (en) 2004-06-29 2005-06-24 A process for controlling roximity effect correction in an electron beam lithography system

Country Status (5)

Country Link
US (1) US7241542B2 (en)
EP (1) EP1612834A1 (en)
JP (1) JP4871536B2 (en)
CN (1) CN1734706A (en)
TW (1) TWI394197B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706813B1 (en) * 2006-02-13 2007-04-12 삼성전자주식회사 Method for arranging patterns of a semiconductor device
JP4773224B2 (en) * 2006-02-14 2011-09-14 株式会社ニューフレアテクノロジー Charged particle beam drawing apparatus, charged particle beam drawing method and program
US7638247B2 (en) * 2006-06-22 2009-12-29 Pdf Solutions, Inc. Method for electron beam proximity effect correction
CN100559272C (en) * 2007-06-04 2009-11-11 中国科学院上海技术物理研究所 A kind of method of constructing sub-10 nano gap and array thereof
US7805699B2 (en) * 2007-10-11 2010-09-28 Mentor Graphics Corporation Shape-based photolithographic model calibration
CN101750902B (en) * 2008-12-02 2012-10-03 中芯国际集成电路制造(上海)有限公司 Atomization effect compensation method of exposure conditions of diverse electron beams and exposure method thereof
DE102009007770A1 (en) 2009-02-05 2010-08-12 Carl Zeiss Sms Gmbh Corrective action determining method for electron beam lithographic mask writer, involves evaluating aerial image by test mask with respect to observation of tolerances based on test structures, and determining corrective action
CN101893821B (en) * 2009-05-22 2012-05-23 中芯国际集成电路制造(北京)有限公司 Method for optical proximity correction of database
DE102009049787B4 (en) * 2009-10-19 2012-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for determining parameters of a proximity function, in particular for the correction of the proximity effect in electron beam lithography
DE102010035047B4 (en) 2010-08-21 2019-08-14 Vistec Electron Beam Gmbh Method for determining a process proximity effect describing Process Proximity Function for controlling the electron beam exposure of wafers and masks
US8539392B2 (en) 2011-02-24 2013-09-17 National Taiwan University Method for compensating proximity effects of particle beam lithography processes
US9484186B2 (en) * 2012-10-23 2016-11-01 Synopsys, Inc. Modeling and correcting short-range and long-range effects in E-beam lithography
WO2015126246A1 (en) 2014-02-21 2015-08-27 Mapper Lithography Ip B.V. Proximity effect correction in a charged particle lithography system
JP2017090817A (en) * 2015-11-16 2017-05-25 キヤノン株式会社 Exposure apparatus and article manufacturing method
US10748744B1 (en) * 2019-05-24 2020-08-18 D2S, Inc. Method and system for determining a charged particle beam exposure for a local pattern density
US11756765B2 (en) 2019-05-24 2023-09-12 D2S, Inc. Method and system for determining a charged particle beam exposure for a local pattern density
KR20210008678A (en) 2019-07-15 2021-01-25 삼성전자주식회사 Method of manufacturing photomasks and method of manufacturing semiconductor devices
CN110456609B (en) * 2019-08-09 2021-04-09 中国科学院光电技术研究所 Proximity effect correction method suitable for maskless digital lithography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432714A (en) * 1993-01-29 1995-07-11 International Business Machines Corporation System and method for preparing shape data for proximity correction
US6071658A (en) * 1997-12-31 2000-06-06 United Microelectronics Corp. Proximity effect correction method for mask production
EP1088328B1 (en) * 1998-06-16 2003-05-02 Dirk Ernst Maria Van Dyck Method and device for correcting proximity effects
US20040075064A1 (en) * 2002-06-27 2004-04-22 Shunko Magoshi Method for correcting a proximity effect, an exposure method, a manufacturing method of a semiconductor device and a proximity correction module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156813A (en) * 1984-12-28 1986-07-16 Toshiba Corp Pattern employed for electron beam lithography
JPS61198630A (en) * 1985-02-27 1986-09-03 Toshiba Corp Resist pattern formation
JPS6358829A (en) * 1986-08-29 1988-03-14 Toshiba Corp Pattern formation using electron beam
JPS6386518A (en) * 1986-09-30 1988-04-16 Toshiba Corp Formation of pattern
JP3348586B2 (en) * 1995-12-28 2002-11-20 ソニー株式会社 Proximity effect correction method in electron beam lithography
JP3466900B2 (en) * 1998-01-19 2003-11-17 株式会社東芝 Electron beam writing apparatus and electron beam writing method
JPH11260694A (en) * 1998-03-12 1999-09-24 Oki Electric Ind Co Ltd Method for measuring proximity effect parameter
JPH11274043A (en) * 1998-03-24 1999-10-08 Oki Electric Ind Co Ltd Method of forming resist pattern
JP2001244165A (en) * 2000-02-25 2001-09-07 Nikon Corp Method for correcting proximity effect, reticle, and method of manufacturing device
JP3686367B2 (en) * 2001-11-15 2005-08-24 株式会社ルネサステクノロジ Pattern forming method and semiconductor device manufacturing method
JP2004140311A (en) * 2002-08-20 2004-05-13 Sony Corp Exposure method and aligner
JP2005019780A (en) * 2003-06-27 2005-01-20 Nikon Corp Method for estimating pattern shape in charged-particle ray exposure transfer, method for determining reticle pattern used for charged-particle ray exposure transfer and method for estimating parameter of proximity effect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432714A (en) * 1993-01-29 1995-07-11 International Business Machines Corporation System and method for preparing shape data for proximity correction
US6071658A (en) * 1997-12-31 2000-06-06 United Microelectronics Corp. Proximity effect correction method for mask production
EP1088328B1 (en) * 1998-06-16 2003-05-02 Dirk Ernst Maria Van Dyck Method and device for correcting proximity effects
US20040075064A1 (en) * 2002-06-27 2004-04-22 Shunko Magoshi Method for correcting a proximity effect, an exposure method, a manufacturing method of a semiconductor device and a proximity correction module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cui, Zheng, et al.,"Proximity correction of chemically amplified resists for electron beam lithography", Microelectronic Engineering, Vol. 41-42, 1998, pp. 183-186。 *

Also Published As

Publication number Publication date
JP2006019733A (en) 2006-01-19
JP4871536B2 (en) 2012-02-08
US20050287450A1 (en) 2005-12-29
EP1612834A1 (en) 2006-01-04
US7241542B2 (en) 2007-07-10
TW200614313A (en) 2006-05-01
CN1734706A (en) 2006-02-15

Similar Documents

Publication Publication Date Title
TWI394197B (en) A process for controlling roximity effect correction in an electron beam lithography system
JP4871535B2 (en) Method for reducing the fogging effect
Rizvi Handbook of photomask manufacturing technology
JP4476975B2 (en) Charged particle beam irradiation amount calculation method, charged particle beam drawing method, program, and charged particle beam drawing apparatus
JP4976071B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
EP1290496B1 (en) Modification of mask layout data to improve mask fidelity
US10410830B2 (en) Charged particle beam apparatus and positional displacement correcting method of charged particle beam
US20110031387A1 (en) Charged particle beam writing apparatus and method thereof
US20080073574A1 (en) Writing method of charged particle beam, support apparatus of charged particle beam writing apparatus, writing data generating method and program-recorded readable recording medium
JP5731257B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
US20230102923A1 (en) Charged particle beam writing method and charged particle beam writing apparatus
KR19980080950A (en) Pattern exposure method using electron beam
JP4747112B2 (en) Pattern forming method and charged particle beam drawing apparatus
Kruit et al. Optimum dose for shot noise limited CD uniformity in electron-beam lithography
KR20190133110A (en) Electron beam irradiation method, electron beam irradiation apparatus and non-transitory computer readable medium recoridng program
JP3455048B2 (en) Pattern formation method
Hudek et al. Multi-beam mask writer exposure optimization for EUV mask stacks
TWI831208B (en) Charged particle beam mapping method, charged particle beam mapping device and computer-readable recording medium
EP1612833A1 (en) Method for reducing the fogging effect
JPH0661127A (en) Electron beam lithographing method
TW202343521A (en) Charged particle beam writing method charged particle beam writing apparatus and computer readable recording medium
JP6035792B2 (en) Backscatter, forward scatter and beam blur correction device, back scatter, forward scatter and beam blur correction method and back scatter, forward scatter and beam blur correction program
KR20190018638A (en) Method for projecting a beam of particles onto a substrate by modification of scattering effects

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees