TWI387224B - Frequency hopping in an sc-fdma environment - Google Patents

Frequency hopping in an sc-fdma environment Download PDF

Info

Publication number
TWI387224B
TWI387224B TW096125068A TW96125068A TWI387224B TW I387224 B TWI387224 B TW I387224B TW 096125068 A TW096125068 A TW 096125068A TW 96125068 A TW96125068 A TW 96125068A TW I387224 B TWI387224 B TW I387224B
Authority
TW
Taiwan
Prior art keywords
frequency
sub
time slot
hopping
transmission
Prior art date
Application number
TW096125068A
Other languages
Chinese (zh)
Other versions
TW200814565A (en
Inventor
Durga Prasad Malladi
Byoung-Hoon Kim
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38924077&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI387224(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200814565A publication Critical patent/TW200814565A/en
Application granted granted Critical
Publication of TWI387224B publication Critical patent/TWI387224B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2615Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using hybrid frequency-time division multiple access [FDMA-TDMA]

Description

於單載波分頻多重存取環境中之跳頻Frequency hopping in a single carrier frequency division multiple access environment

下文說明概言之係關於無線通信,且更特定而言係關於提供單載波分頻多重存取傳輸中之跳頻。The following description is generally directed to wireless communications, and more particularly to providing frequency hopping in single carrier divided multiple access transmissions.

無線通信系統廣泛佈署用於提供各種類型之通信內容,例如(舉例而言)語音、資料等等。典型之無線通信系統可係能夠藉由共享可用系統資源(例如頻寬、發射功率)來支援與多個使用者進行通信之多重存取系統。此等多重存取系統之實例包括:分碼多重存取(CDMA)系統、分時多重存取(TDMA)系統、分頻多重存取(FDMA)系統、及正交分頻多重存取(OFDMA)系統等等。Wireless communication systems are widely deployed to provide various types of communication content such as, for example, voice, material, and the like. A typical wireless communication system can support multiple access systems that communicate with multiple users by sharing available system resources (e.g., bandwidth, transmit power). Examples of such multiple access systems include: code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) ) System and so on.

一般而言,無線多重存取通信系統可同時支援多個行動裝置之通信。每一行動裝置皆可藉由正向鏈路及反向鏈路上之傳輸與一個或多個基地台進行通信。正向鏈路(或下行鏈路)係指自基地台至行動裝置之通信鏈路,而反向鏈路(或上行鏈路)係指自行動裝置至基地台之通信鏈路。進一步,可藉由單輸入單輸出(SISO)系統、多輸入單輸出(MISO)系統、多輸入多輸出(MIMO)系統等等在行動裝置與基地台之間建立通信。In general, a wireless multiple access communication system can simultaneously support communication for multiple mobile devices. Each mobile device can communicate with one or more base stations via transmissions on the forward and reverse links. The forward link (or downlink) refers to the communication link from the base station to the mobile device, and the reverse link (or uplink) refers to the communication link from the mobile device to the base station. Further, communication can be established between the mobile device and the base station by a single input single output (SISO) system, a multiple input single output (MISO) system, a multiple input multiple output (MIMO) system, or the like.

MIMO系統通常使用多個(NT 個)發射天線及多個(NR 個)接收天線進行資料傳輸。一由NT 個發射天線及NR 個接收天線構成之MIMO頻道可分解成NS 個獨立頻道-其可稱作空間頻道,其中N S {N T ,N R }。該NS 個獨立頻道中之每一個皆對應於一個維。此外,若利用由該等多個發射天線及接收天線所形成之額外維度,則MIMO系統可提供改良之效能(例如頻譜效率提高、通量更高及/或可靠性更高)。MIMO systems commonly employ multiple (N T) transmit antennas and multiple (N R) receive antennas for data transmission. A MIMO channel can be decomposed by the N T transmit antennas and N R receive antennas it into N S independent channels - which may be referred to as spatial channels, where N S { N T , N R }. Each of the N S independent channels corresponds to one dimension. Moreover, MIMO systems can provide improved performance (e.g., improved spectral efficiency, higher throughput, and/or higher reliability) if the additional dimensions formed by the plurality of transmit and receive antennas are utilized.

MIMO系統可支援各種用於在一共用物理媒體上劃分正向鏈路與反向鏈路通信之雙工技術。舉例而言,分頻雙工(FDD)系統可對正向鏈路與反向鏈路通信使用完全不同之頻率區域。此外,在分時雙工(TDD)系統中,正向鏈路與反向鏈路通信可使用一共用頻率區域。然而,習用技術只能提供有限之或根本不提供與頻道資訊有關之資訊。A MIMO system can support various duplexing techniques for dividing forward link and reverse link communications on a common physical medium. For example, a frequency division duplex (FDD) system can use a completely different frequency region for forward link and reverse link communications. In addition, in a time division duplex (TDD) system, a common frequency region can be used for forward link and reverse link communication. However, the prior art can only provide limited or no information about the channel information.

下文提供對一項或多項實施例之簡要概述,以達成對此等實施例之基本瞭解。該概述並非系對所有所涵蓋實施例之廣泛概述,且既不打算表示所有實施例之關鍵或緊要元件、亦不打算界定任何或所有實施例之範疇。其唯一目的係以簡要形式提供一項或多項實施例之某些概念來作為下文所提供之更詳細說明之前序。A brief summary of one or more embodiments is provided below to provide a basic understanding of the embodiments. The summary is not an extensive overview of the various embodiments, and is not intended to be Its sole purpose is to present some concepts of one or more embodiments

根據一項或多項實施例及其相應之揭示內容,結合促進單載波跳頻、分頻多重存取(SC-FDMA)傳輸來說明各種態樣。傳輸於一傳輸配置單元中之使用者資料可關於該配置單元之基於時間之時槽進行頻移。結果,可達成跳頻,同時維護關於SC-FDMA傳輸通常所期望之單載波約束及低峰均值功率比(PAPR)。此外,可揭示各種頻移機制以達成單載波約束之維護。更具體而言,可基於對該傳輸配置單元之經排程資料之一稽核在循環性頻移、轉置式頻移、及經頻率選擇排程資料和經跳頻資料之多重之間進行選擇。作為一結果,可使藉由跳頻所達成之干擾降低與藉由SC-FDMA傳輸所達成之低PAPR組合在一起。Various aspects are illustrated in connection with facilitating single carrier frequency hopping, frequency division multiple access (SC-FDMA) transmission, in accordance with one or more embodiments and their corresponding disclosure. The user profile transmitted in a transmission configuration unit can be frequency shifted with respect to the time-based time slot of the configuration unit. As a result, frequency hopping can be achieved while maintaining the single carrier constraint and low peak-to-average power ratio (PAPR) that are typically desired for SC-FDMA transmission. In addition, various frequency shifting mechanisms can be disclosed to achieve maintenance of single carrier constraints. More specifically, a selection may be made between cyclic frequency shifting, transposed frequency shifting, and frequency selective scheduling data and multiples of frequency hopping data based on one of the scheduled data for the transmission configuration unit. As a result, the interference reduction achieved by frequency hopping can be combined with the low PAPR achieved by SC-FDMA transmission.

根據相關態樣,本文說明在一單載波分頻多重存取(SC-FDMA)傳輸中提供維護單載波約束之跳頻。該方法可包括將一傳輸配置單元劃分成至少兩個基於時間之時槽,該等基於時間之時槽具有複數個副分頻頻率(frequency sub-division)。此外,該方法可包括將使用者資料之一部分配置至一第一時槽之一第一副分頻頻率,及將該使用者資料之一隨後部分移位配置至一第二隨後時槽之一第二副分頻頻率。In accordance with a related aspect, this document provides for providing frequency hopping for maintaining single carrier constraints in a single carrier divided multiple access (SC-FDMA) transmission. The method can include dividing a transmission configuration unit into at least two time-based time slots having a plurality of frequency sub-divisions. Moreover, the method can include configuring one of the user profiles to one of the first secondary frequency divisions of the first time slot, and arranging one of the user data for subsequent partial displacement to one of the second subsequent time slots The second sub-frequency.

又一態樣係關於一在SC-FDMA傳輸中提供跳頻之設備。該設備可包括一用於將一傳輸配置單元劃分成至少兩個基於時間之時槽之構件,該等基於時間之時槽具有複數個副分頻頻率。此外,該設備可包括一用於將使用者資料之一部分配置至一第一時槽之一第一副分頻頻率之構件,及一用於將該使用者資料之一隨後部分移位配置至一第二隨後時槽之一第二副分頻頻率之構件。Yet another aspect relates to a device that provides frequency hopping in SC-FDMA transmission. The apparatus can include a means for dividing a transmission configuration unit into at least two time-based time slots having a plurality of secondary frequency division frequencies. Additionally, the apparatus can include a means for configuring a portion of the user profile to a first secondary frequency of a first time slot, and a means for subsequently shifting one of the user profiles to A member of a second secondary frequency dividing frequency of a second subsequent time slot.

另一態樣係關於一促進SC-FDMA傳輸中之跳頻之系統。該系統可包括一多重處理器,其將一傳輸配置單元劃分成至少兩個基於時間之時槽,該等基於時間之時槽具有複數個副分頻頻率。進一步,該系統可包括一排程器,其將使用者資料之一部分配置至一第一時槽之一第一副分頻頻率,且將使用者資料之一隨後部分配置至一第二隨後時槽之一經頻移之第二副分頻頻率。Another aspect relates to a system that facilitates frequency hopping in SC-FDMA transmission. The system can include a multiprocessor that divides a transmission configuration unit into at least two time-based time slots having a plurality of secondary frequency division frequencies. Further, the system can include a scheduler configured to configure a portion of the user profile to a first secondary frequency of a first time slot and to subsequently configure one of the user profiles to a second subsequent time One of the slots is frequency shifted by a second secondary frequency.

一進一步態樣係關於一促進SC-FDMA傳輸中之跳頻以維護單載波約束之處理器。該處理器可包括一用於將一傳輸配置單元劃分成至少兩個基於時間之時槽之構件,該等基於時間之時槽具有複數個副分頻頻率。另外,該處理器可包括一用於將使用者資料之一部分配置至一第一時槽之一第一副分頻頻率之構件,及一用於將該使用者資料之一隨後部分移位配置至一第二隨後時槽之一第二副分頻頻率之構件。A further aspect relates to a processor that facilitates frequency hopping in SC-FDMA transmission to maintain single carrier constraints. The processor can include a means for dividing a transmission configuration unit into at least two time-based time slots having a plurality of secondary frequency division frequencies. Additionally, the processor can include a means for configuring a portion of the user profile to a first secondary frequency of the first time slot, and a means for subsequently shifting one of the user profiles A member of a second secondary frequency divided by a second subsequent time slot.

又一態樣係關於一促進SC-FDMA傳輸中之跳頻以維護單載波約束之電腦程式產品。該電腦程式產品可包括可由至少一個電腦執行以實現如下作業之程式碼:將一傳輸配置單元劃分成至少兩個基於時間之時槽之,該等基於時間之時槽具有複數個副分頻頻率;將使用者資料之一部分配置至一第一時槽之一第一副分頻頻率;及將該使用者資料之一隨後部分移位配置至一第二隨後時槽之一第二副分頻頻率。Yet another aspect relates to a computer program product that facilitates frequency hopping in SC-FDMA transmission to maintain single carrier constraints. The computer program product can include code executable by at least one computer to: divide a transmission configuration unit into at least two time-based time slots having a plurality of secondary frequency divisions Configuring a portion of the user data to a first sub-frequency of a first time slot; and subsequently shifting one of the user data to a second sub-frequency of a second subsequent time slot frequency.

另一態樣係關於一種應用跳頻在一SC-FDMA上行鏈路頻道上傳輸資料之方法。該方法可包括接收關於使用者資料跨一傳輸配置單元之複數個時槽進行頻移配置之資訊供用於一SC-FDMA上行鏈路傳輸,及根據所接收之資訊將使用者資料組織進一傳輸資料封包。Another aspect relates to a method of applying frequency hopping to transmit data on an SC-FDMA uplink channel. The method can include receiving information about frequency shifting configuration of user data across a plurality of time slots of a transmission configuration unit for use in an SC-FDMA uplink transmission, and organizing user data into a transmission data based on the received information. Packet.

又一態樣係關於一應用跳頻在一SC-FDMA上行鏈路頻道上傳輸資料之設備。該設備可包括一用於接收關於使用者資料跨一傳輸配置單元之複數個時槽進行頻移配置之資訊供用於一SC-FDMA上行鏈路傳輸之構件,及一用於根據所接收之資訊將使用者資料組織進一傳輸資料封包之構件。Yet another aspect relates to a device for applying frequency hopping to transmit data on an SC-FDMA uplink channel. The apparatus can include a means for receiving information about frequency shifting of user data across a plurality of time slots of a transmission configuration unit for use in an SC-FDMA uplink transmission, and a means for receiving information based on the received information Organize user data into a component that transmits data packets.

又一態樣係關於一應用跳頻在一SC-FDMA上行鏈路頻道上傳輸資料之系統。此系統可包括一天線,其接收關於使用者資料跨一傳輸配置單元之複數個時槽進行頻移配置之資訊供用於一SC-FDMA上行鏈路之傳輸。此外,該系統可包括一排程器,其根據所接收之資訊將使用者資料組織進一傳輸資料封包。Yet another aspect relates to a system for applying frequency hopping to transmit data on an SC-FDMA uplink channel. The system can include an antenna that receives information about frequency shifting configuration of user data across a plurality of time slots of a transmission configuration unit for transmission of an SC-FDMA uplink. Additionally, the system can include a scheduler that organizes user data into a transport data packet based on the received information.

又一態樣係關於一應用跳頻在一SC-FDMA上行鏈路頻道上提供資料之傳輸之處理器。該處理器可包括一用於接收關於使用者資料跨一傳輸配置單元之複數個時槽進行頻移配置之資訊供用於一SC-FDMA上行鏈路之傳輸的構件。此外,該處理器可包括一用於根據所接收之資訊將使用者資料組織進一傳輸資料封包之構件。Yet another aspect relates to a processor that applies frequency hopping to provide transmission of data on an SC-FDMA uplink channel. The processor can include means for receiving information regarding a frequency shift configuration of user data across a plurality of time slots of a transmission configuration unit for transmission of an SC-FDMA uplink. Additionally, the processor can include a means for organizing user data into a transport data packet based on the received information.

一進一步態樣係關於一促進應用跳頻在一SC-FDMA上行鏈路頻道上提供傳輸資料之電腦程式產品。該電腦程式產品可包括可由至少一個電腦執行以接收關於使用者資料跨一傳輸配置單元之複數個時槽進行頻移配置之資訊供用於一SC-FDMA上行鏈路之傳輸的程式碼。另外,該電腦程式產品可包括可由至少一個電腦執行以根據所接收之資訊將使用者資料組織進一傳輸資料封包之程式碼。A further aspect relates to a computer program product for facilitating the application of frequency hopping to provide transmission data on an SC-FDMA uplink channel. The computer program product can include code executable by at least one computer to receive information about a frequency shift configuration of user data across a plurality of time slots of a transmission configuration unit for transmission of an SC-FDMA uplink. Additionally, the computer program product can include a code executable by at least one computer to organize user data into a data packet based on the received information.

為達成上述及相關目的,該一項或多項實施例包含多個在下文中將全面說明並在申請專利範圍中特別指出之特徵。下文說明及附圖詳細描述了該一項或多項實施例之某些例示性態樣。然而,該等態樣僅表示各種可利用各實施例之原理的方式中的幾種且該等所述實施例旨在包括所有此等態樣及其等價態樣。In order to achieve the above and related ends, the one or more embodiments include a plurality of features which are fully described below and particularly pointed out in the scope of the claims. Some illustrative aspects of the one or more embodiments are described in detail in the following description and the drawings. However, the exemplifications are only a few of the various ways in which the principles of the various embodiments can be utilized and the embodiments are intended to include all such aspects and their equivalents.

現在將參照圖式來說明各種態樣,在圖式中,自始至終使用相同之參考編號來指代相同之元件。在下文中,為便於解釋,陳述了大量具體細節,以便達成對一項或多項態樣之透徹瞭解。然而,顯而易見,可在沒有此等具體細節之情形下實施此等態樣。在其他實例中,以方塊圖形式顯示眾所習知之結構和裝置,以便利於說明一項或多項態樣。Various aspects will now be described with reference to the drawings, in which the same reference numerals are used throughout the drawings. In the following, for the convenience of explanation, a number of specific details are set forth in order to achieve a thorough understanding of one or more aspects. However, it will be apparent that such aspects may be practiced without such specific details. In other instances, well-known structures and devices are shown in block diagram form in order to illustrate one or more aspects.

此外,下文將說明本發明揭示內容之各種態樣。應一目了然,本文之教示內容可實施為各種各樣之形式,且本文所揭示之任何具體結構及/或功能僅具代表性。基於本文之教示,熟悉此項技術者應瞭解,本文所揭示之態樣可獨立於任何其他態樣來構建且可以各種方式來組合該等態樣中之兩個或兩個以上態樣。舉例而言,可使用任何數量之本文所述態樣來構建一設備或實踐一方法。另外,除了本文所述態樣中之一者或多者之外,還可使用其他結構及/或功能性來構建該種裝置或實踐該種方法。作為一實例,在提供SFN資料之同步傳輸及重新傳輸之特定或無計劃/半計劃部署之無線通信環境之背景下說明本文所述之方法、裝置、系統及設備中之諸多。熟習此項技術者應瞭解:可將類似技術應用於其他通訊環境中。Further, various aspects of the present disclosure will be described below. It should be understood that the teachings herein may be embodied in a variety of forms and that any specific structure and/or function disclosed herein is merely representative. Based on the teachings herein, those skilled in the art will appreciate that the aspects disclosed herein can be constructed independently of any other aspect and that two or more of the aspects can be combined in various ways. For example, any number of the aspects described herein can be used to construct a device or practice a method. In addition, other structures and/or functionality may be used to construct or practice the device in addition to one or more of the aspects described herein. As an example, many of the methods, apparatus, systems, and devices described herein are described in the context of a wireless communication environment that provides for the simultaneous or unplanned/semi-planned deployment of SFN data for simultaneous transmission and retransmission. Those skilled in the art should be aware that similar techniques can be applied to other communication environments.

如該申請案中所用,術語"組件"、"系統"及諸如此類意欲指一與電腦相關之實體、可係硬體、軟體、執行中之軟體、韌體、中間體、微碼、及/或其任一組合。舉例而言,一組件可係但並不限於一運行於一處理器上之處理程序、一處理器、一對象、一可執行、一執行緒、一程式及/或一電腦。一個或多個組件可駐存於一處理程序及/或一執行緒內,且一組件可侷限於一個電腦上及/或分佈於兩個或更多個電腦之間。此外,該等組件可自各種上面儲存有各種資料結構之電腦可讀媒體上執行。該等組件可藉由本地及/或遠程處理程序例如根據一具有一個或多個資料封包之信號(例如,來自一個與一本地系統、分佈式系統中之另一組件交互作用、及/或藉由信號跨越一網路(例如網際網路)與其他系統交互作用之組件之資料)來進行通信。另外,如熟習此項技術者所瞭解,可藉由額外之組件重新佈置及/或構建本文所述系統之組件以便達成關於本文所述之各種態樣、目標、優點等,且本文所述系統之組件並不限於一既定圖中所述之精確組態。As used in this application, the terms "component", "system" and the like are intended to mean a computer-related entity, a hardware, a software, an executing software, a firmware, an intermediate, a microcode, and/or Any combination of them. For example, a component can be, but is not limited to, a processor running on a processor, a processor, an object, an executable, a thread, a program, and/or a computer. One or more components can reside within a process and/or a thread, and a component can be limited to one computer and/or distributed between two or more computers. In addition, the components can be executed on a variety of computer readable media having various data structures stored thereon. The components may be signaled by a local and/or remote processing program, for example, based on a signal having one or more data packets (eg, from one interacting with, and/or borrowing from, another component in a local system, a distributed system) Communication is carried out by means of signals that span the components of a network (eg, the Internet) that interact with other systems. In addition, as will be appreciated by those skilled in the art, the components of the systems described herein may be rearranged and/or constructed by additional components to achieve various aspects, objectives, advantages, etc. described herein, and the systems described herein. The components are not limited to the precise configuration described in a given figure.

此外,在本文中結合用戶台來說明各種態樣。一用戶台亦可稱作一系統、一用戶單元、行動台(mobile station)、行動裝置(mobile)、遠端站台、遠端終端、存取終端、使用者終端、使用者代理、使用者裝置或使用者裝備。一用戶台可係一蜂巢式電話、一無繩電話、一對話啟動協定(SIP)電話、一無線局部迴路(WLL)台、一個人數位助理(PDA)、一具有無線連接能力之手持式裝置、或者其他連接至一無線數據機或類似便於與一處理裝置進行無線通信之機構的處理裝置。In addition, in this article, the user station is used to illustrate various aspects. A subscriber station can also be called a system, a subscriber unit, a mobile station, a mobile station, a remote station, a remote terminal, an access terminal, a user terminal, a user agent, and a user device. Or user equipment. A subscriber station can be a cellular telephone, a cordless telephone, a SIP protocol telephone, a wireless local loop (WLL) station, a PDA, a hand-held device with wireless connectivity, or Other processing devices connected to a wireless data modem or similar mechanism that facilitates wireless communication with a processing device.

此外,可使用標準之程式化及/或工程設計技術將本文所述之各種態樣或特徵構建為一種方法、設備或製品。本文所用術語"製品"意欲囊括可自任一電腦可讀裝置、載體或媒體存取之電腦程式。舉例而言,電腦可讀媒體可包括(但不限於)磁性儲存裝置(例如硬磁碟、軟磁碟、磁條...)、光碟(例如壓縮磁碟(CD)、數位多功能光碟(DVD)...)、智慧卡、及快閃記憶體裝置(例如卡、棒、口袋式保密磁碟)。或者,本文所述之各種儲存媒體可代表一個或多個用於儲存資訊之裝置及/或其他機器可讀媒體。術語"機器可讀媒體"可包括但並不限於無線頻道及能夠儲存、包含及/或載送指令及/或資料之各種其他媒體。In addition, the various aspects or features described herein can be constructed as a method, apparatus, or article of manufacture using standard stylized and/or engineering techniques. The term "article of manufacture" as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. By way of example, computer readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, magnetic strips...), optical disks (eg, compact disk (CD), digital versatile discs (DVD) )...), smart cards, and flash memory devices (such as cards, sticks, and pocket-type secure disks). Alternatively, the various storage media described herein may represent one or more devices for storing information and/or other machine-readable media. The term "machine-readable medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or materials.

而且,"實例性"一詞用於意指"用作一實例、例子或例解"。本文所述任何稱為"實例性"的態樣或設計均未必應視為較其他實施例或設計為佳或有利。而是,使用實例性此一措詞僅旨在代表一具體形式之概念。如該申請案中所用,術語"或"旨在表示包括"或者之內容"而非排除"或者之內容"。亦即,"X應用A或B"旨在表示該等自然包括之排列之任一者,除非另有規定或自上下文中明顯看出。亦即,若X應用A、X應用B或X應用A及B,則在上述情況中任一者之情況下皆滿足"X應用A或B"。此外,該申請案及隨附請求項中所用之冠詞一("a"及"an")一般應解釋為或意指"一個或多個",除非另有規定或根據內容明顯係指一單個形式。Moreover, the term "institutive" is used to mean "serving as an instance, instance, or example." Any aspect or design referred to herein as "institutive" is not necessarily considered to be preferred or advantageous over other embodiments or designs. Rather, the use of this example is intended only to mean a particular form of concept. As used in this application, the term "or" is intended to mean "including" or "excluding". That is, "X Application A or B" is intended to mean any of those naturally included arrangements, unless otherwise specified or apparent from the context. That is, if the X application A, the X application B, or the X application A and B, the "X application A or B" is satisfied in the case of any of the above cases. In addition, the articles 1 ("a" and "an") used in the application and the accompanying claims are generally to be interpreted as or meaning "one or more" unless otherwise specified or form.

本文中所用措詞"推斷(infer或inference)"大體係指根據藉由事件及/或資料所獲取之一組觀測值來推出或推斷系統、環境及/或使用者之狀態之過程。舉例而言,推斷可被用來識別一特定上下文或動作,或者可產生狀態之概率分佈。該推斷可具有概率性,亦即,基於對資料及事件之考量來計算所關心狀態之概率分佈。推斷亦可系指用於自一組事件及/或資料構成更高階事件之技術。此種推斷可使得自一組所觀測事件及/或所儲存事件資料構造出新的事件或動作,無論該等事件是否以時間上緊鄰之形式相關,且無論該等事件及資料是來自一個還是來自數個事件及資料源。As used herein, the phrase "infer or inference" refers to the process of deriving or inferring the state of a system, environment, and/or user based on a set of observations obtained by events and/or data. For example, inference can be used to identify a particular context or action, or can produce a probability distribution of states. The inference can be probabilistic, that is, the probability distribution of the state of interest is calculated based on considerations of data and events. Inference can also refer to techniques used to construct higher order events from a set of events and/or data. Such inference may result in the construction of new events or actions from a set of observed events and/or stored event data, whether or not such events are related in a temporally close manner, and regardless of whether the events and data are from one or From several events and sources.

圖1圖解說明一具有多個基地台110及多個終端機120(例如)可結合一項或多項態樣應用之無線通信系統100。.基地台通常係與終端機進行通信之固定台,亦可稱作存取點、節點B或某些其他術語。每一基地台110均提供一特定地理區域之通訊覆蓋,圖解說明為標示為102a、102b及102c之三個地理區域。端視術語之使用背景,術語"小區"可指一基地台及/或其覆蓋區域。為改良系統容量,可將一基地台之覆蓋區域劃分成多個更小之區域(例如根據圖1之小區102a劃分成三個更小之區域)104a、104b及104c。每一更小之區域皆由一相應基地收發機子系統(BTS)服務。端視術語之使用背景,術語"扇區"可指代一BTS及/或其覆蓋範圍。對於一扇區化小區而言,彼小區中所有扇區之BTS通常共同位於該小區之基地台內。本文所述之傳輸技術可用於一具有多個經扇區化小區之系統及具有多個未經扇區化之小區之系統。為簡便起見,在下文闡釋中,術語"基地台"係通用於服務一扇區之固定台與服務一小區之固定台兩者。1 illustrates a wireless communication system 100 having a plurality of base stations 110 and a plurality of terminal units 120, for example, that can be combined with one or more aspect applications. A base station is usually a fixed station that communicates with a terminal, and may also be referred to as an access point, a Node B, or some other terminology. Each base station 110 provides communication coverage for a particular geographic area, illustrated as three geographic areas labeled 102a, 102b, and 102c. In the context of the use of terminology, the term "cell" can refer to a base station and/or its coverage area. To improve system capacity, the coverage area of a base station can be divided into a plurality of smaller areas (e.g., divided into three smaller areas according to cell 102a of Fig. 1) 104a, 104b, and 104c. Each smaller area is served by a corresponding base transceiver subsystem (BTS). The term "sector" can refer to a BTS and/or its coverage. For a sectorized cell, the BTSs of all sectors in the cell are usually co-located in the base station of the cell. The transmission techniques described herein are applicable to a system having multiple sectorized cells and a system having multiple unsectorized cells. For the sake of brevity, in the following explanation, the term "base station" is used to both a fixed station serving one sector and a fixed station serving a cell.

終端機120通常分散於整個系統中,且每一終端機皆既可固定亦可行動。終端機亦可稱作行動台、使用者設備或某些其他術語。終端機可係無線器件、蜂巢式電話、個人數位助理(PDA)、無線數據機卡等等。終端機120可在任一既定時刻在下行鏈路及/或上行鏈路上與零個、一個或多個基地台通信。下行鏈路(或正向鏈路)係指自基地台至終端機之通信鏈路,而上行鏈路(反向鏈路)係指自終端機至基地台之通信鏈路。Terminals 120 are typically dispersed throughout the system, and each terminal can be both fixed and mobile. A terminal can also be called a mobile station, a user device, or some other terminology. The terminal can be a wireless device, a cellular phone, a personal digital assistant (PDA), a wireless data card, and the like. Terminal 120 can communicate with zero, one or more base stations on the downlink and/or uplink at any given time. The downlink (or forward link) refers to the communication link from the base station to the terminal, and the uplink (reverse link) refers to the communication link from the terminal to the base station.

對於一集中式架構而言,一系統控制器130耦合至基地台110並為基地台110提供協調及控制。對於分佈式架構而言,基地台可根據需要來相互通信。在該正向鏈路上發生以該正向鏈路及/或該通信系統可支援之最大資料傳輸率或接近該最大資料傳輸率自一存取點至一存取終端機之資料傳輸。該正向鏈路之額外頻道(例如控制頻道)可自多個存取點傳輸至一個存取終端機。可發生自一個存取終端機至一個或多個存取點之反向鏈路資料通信。For a centralized architecture, a system controller 130 is coupled to base station 110 and provides coordination and control for base station 110. For distributed architectures, base stations can communicate with each other as needed. Data transmission from the forward link and/or the maximum data transmission rate that the communication system can support or close to the maximum data transmission rate from an access point to an access terminal occurs on the forward link. Additional channels of the forward link (e.g., control channels) can be transmitted from multiple access points to one access terminal. Reverse link data communication from one access terminal to one or more access points may occur.

圖2係根據各種態樣之一特定或無計劃性/半計劃性無線通信環境200之一圖解說明。系統200可包括一個或多個扇區內之一個或多個基地台202,該一個或多個基地台202彼此及/或向一個或多個行動裝置204接收、發射、中繼等無線通信信號。如所圖解說明,每一基地台202均可提供一特定地理區域之通信覆蓋,將該等地理區域繪示為四個標示為206a、206b、206c及206d之地理區域。如熟習此項技術者所瞭解,每一基地台202均可包括一發射機鏈及一接收機鏈,其各自又包括複數個與信號傳輸及接收相關聯之組件(例如處理器、模組、多重器、解調變器、解多重器、天線等)。行動裝置204可係(舉例而言)蜂巢式電話、智慧型電話、膝上型電腦、手持式通信裝置、手持式計算裝置、衛星無線電、全球定位系統、PDA及/或任一其他適合藉由無線網路200通信之裝置。可結合本文所述之各種態樣應用系統200,以便如關於隨後圖中所述提供一無線通信環境之回饋。2 is an illustration of one of the specific or unplanned/semi-planned wireless communication environments 200 in accordance with one of a variety of aspects. System 200 can include one or more base stations 202 within one or more sectors that receive, transmit, relay, etc. wireless communication signals to each other and/or to one or more mobile devices 204. . As illustrated, each base station 202 can provide communication coverage for a particular geographic area, which are depicted as four geographic areas labeled 206a, 206b, 206c, and 206d. As is known to those skilled in the art, each base station 202 can include a transmitter chain and a receiver chain, each of which includes a plurality of components associated with signal transmission and reception (eg, a processor, a module, Multiplexers, demodulators, demultiplexers, antennas, etc.). The mobile device 204 can be, for example, a cellular telephone, a smart phone, a laptop, a handheld communication device, a handheld computing device, a satellite radio, a global positioning system, a PDA, and/or any other suitable A device for wireless network 200 communication. The system 200 can be applied in conjunction with the various aspects described herein to provide feedback in a wireless communication environment as described in the subsequent figures.

參照圖3-7,其繪示關於提供在一單載波分頻多重存取(SC-FDMA)環境中之跳頻之方法。雖然已在標準FDMA環境及正交FDMA(CFDMA)環境中示範典型之跳頻,但一單載波環境形成特定之跳頻問題。首先,不能任意重新改派一傳輸時間段之資料及頻調之指派。任意重新改派通常會破壞單載波約束。舉例而言,必須維護一局部SC-FDMA波形之連續指派。作為一結果,本發明之揭示內容提供維護單載波約束之限制性跳躍策略。如本文所用,提供了三項實例性策略,其稱作:循環性移位跳頻、鏡像轉置跳頻及一整合跳頻與頻率選擇式排程之多重策略。然而,應瞭解,在本文中另外之頻移策略並非係特別地關聯,而係包括於所主張標的物之範疇內,且亦將相關聯之圖式併入本說明書中。Referring to Figures 3-7, a method for providing frequency hopping in a single carrier frequency division multiple access (SC-FDMA) environment is illustrated. While typical frequency hopping has been demonstrated in standard FDMA environments and quadrature FDMA (CFDMA) environments, a single carrier environment creates a particular frequency hopping problem. First of all, it is not possible to arbitrarily reassign the data of a transmission time period and the assignment of the tone. Any re-redirection usually destroys single-carrier constraints. For example, a continuous assignment of a partial SC-FDMA waveform must be maintained. As a result, the disclosure of the present invention provides a restrictive hopping strategy for maintaining single carrier constraints. As used herein, three example strategies are provided, which are referred to as: cyclic shift hopping, mirror transposed hopping, and multiple strategies for integrated frequency hopping and frequency selective scheduling. However, it should be understood that the additional frequency shifting strategies herein are not specifically related, but are included within the scope of the claimed subject matter, and the associated drawings are also incorporated in this specification.

儘管為簡化說明起見,將該等方法顯示及描述為一系列動作,然而應瞭解及知曉,該等方法並不受限於動作次序,此乃因根據一項或多項實施例,某些動作可按不同於本文所示及所述之次序進行及/或與其他動作同時進行。舉例而言,熟習此項技術者將瞭解及知曉,一種方法亦可表示為一系列(例如,一狀態圖中之)相互關聯之狀態或事件。此外,在根據一項或多項態樣構建一種方法時可能並不需要所有所示動作。Although the methods are shown and described as a series of acts for the sake of simplicity of the description, it should be understood and appreciated that the methods are not limited to the order of the acts, which are in accordance with one or more embodiments. It may be performed in an order different from that shown and described herein and/or concurrently with other acts. For example, those skilled in the art will understand and appreciate that a method can also be represented as a series of (eg, in a state diagram) interrelated state or event. Furthermore, not all illustrated acts may be required when constructing a method in accordance with one or more aspects.

圖3圖解說明一用於促進一SC-FDMA環境中之跳頻之實例性方法300。方法300可促進與局部SC-FDMA(LFDMA)之指派相一致之一受控跳頻策略,從而達成減小之干擾及具有SC-FDMA傳輸之低峰均值功率比(PAPR)品質之跳頻之頻寬分集優點。作為一更具體實例,方法300可將一傳輸配置資源單元分割成多個基於時間及頻率之子部分。此外,可將跨各基於時間之子部分分佈之使用者資料配置給不同頻率之子部分。更具體而言,為維護幫助低PAPR傳輸所必需之連續之頻調指派,方法300可跨各時間子部分對使用者資料段進行線性頻移,以一整個系統頻寬為模(例如關於線性循環移位之詳細說明參見下文之圖9)。另一選擇係或另外,方法300可跨整個系統頻寬之一中心線鏡像轉置使用者資料段(例如,關於鏡像轉置之詳細說明參見下文之圖10)。FIG. 3 illustrates an example method 300 for facilitating frequency hopping in an SC-FDMA environment. Method 300 can facilitate a controlled frequency hopping strategy consistent with local SC-FDMA (LFDMA) assignments to achieve reduced interference and frequency hopping with low peak-to-average power ratio (PAPR) quality for SC-FDMA transmission. Bandwidth diversity advantages. As a more specific example, method 300 can partition a transmission configuration resource unit into a plurality of sub-portions based on time and frequency. In addition, user profiles distributed across time-based sub-portions can be assigned to sub-portions of different frequencies. More specifically, to maintain a continuous tone assignment necessary to facilitate low PAPR transmissions, method 300 can linearly shift user data segments across time sub-portions, modulo an entire system bandwidth (eg, about linear See Figure 9 below for a detailed description of the cyclic shift. Alternatively or additionally, method 300 can mirror the transposed user data segment across a centerline of the overall system bandwidth (eg, see Figure 10 below for a detailed description of mirror transposition).

根據方法300,在302處,可將一配置時間段傳輸單元(TXMIT單元)劃分成複數個基於時間之時槽及複數個基於頻率之副分頻頻率。舉例而言,可將該TXMIT單元劃分成至少兩個基於時間之時槽,其中每一時槽均包括複數個副分頻頻率之一部分。該TXMIT單元可具有(例如)1 ms之總傳輸時間間隔(TTI)。此外,舉例而言,該等副分頻頻率可各自共享該TXMIT單元之總頻寬之一部分,例如9兆赫。應瞭解,根據本發明之揭示內容及根據單載波傳輸約束,任一合適之TTI或總頻寬皆可與該TXMIT單元相關聯。According to method 300, at 302, a configuration time period transmission unit (TXMIT unit) can be divided into a plurality of time-based time slots and a plurality of frequency-based secondary frequency division frequencies. For example, the TXMIT unit can be divided into at least two time-based time slots, wherein each time slot includes a portion of a plurality of sub-frequency. The TXMIT unit can have a total transmission time interval (TTI) of, for example, 1 ms. Moreover, for example, the secondary frequency divisions can each share a portion of the total bandwidth of the TXMIT unit, such as 9 MHz. It should be appreciated that any suitable TTI or total bandwidth can be associated with the TXMIT unit in accordance with the disclosure of the present invention and in accordance with single carrier transmission constraints.

在304處,可將使用者資料之一部分配置給一第一時槽之一第一副分頻頻率。該使用者資料可與可在SC-FDMA相關網路上載送之任何通信網路服務(例如語音服務、諸如文本傳訊、即時傳訊及諸如此類之文本服務;諸如串流式視訊、串流式音訊等之資料服務;網頁瀏覽;與一網際網路在內之遠程資料網路傳輸資料、或諸如此類)相關。作為一更具體之非限制性實例,可將與一串流式視訊服務相關之一第一資料部分配置給與一TXMIT單元相關聯之900千赫(kHz)頻寬之副分頻頻率。更具體而言,900 kHz之副分頻頻率可係任一合適之副分頻頻率,例如一TXMIT單元之9 MHz頻寬之一第一、第二、第三…第九、或第十副分頻頻率。應瞭解,熟習此項技術者會將副分頻頻率、總頻寬及資料配置之一其他合適之組合認為介於所主張之標的物及相關內容之範疇內。本文中併入該等組合。At 304, a portion of the user profile can be configured to a first secondary frequency of a first time slot. The user profile can be associated with any communication network service that can be sent over the SC-FDMA-related network (eg, voice services, text messaging such as text messaging, instant messaging, and the like; such as streaming video, streaming audio, etc.) Data services; web browsing; transmission of data over remote data networks, such as an Internet, or the like. As a more specific, non-limiting example, one of the first data portions associated with a stream of video services may be assigned to a secondary frequency of 900 kHz bandwidth associated with a TXMIT unit. More specifically, the 900 kHz sub-frequency may be any suitable sub-frequency, such as one of the 9 MHz bandwidth of a TXMIT unit, first, second, third, ninth, or tenth. Frequency division frequency. It should be understood that those skilled in the art will recognize that the sub-frequency, total bandwidth, and other suitable combinations of data configurations are within the scope of the claimed subject matter and related content. These combinations are incorporated herein.

在306處,將使用者資料之一隨後部分之配置移位至一第二隨後時槽之一第二副分頻頻率。繼續前一實例,使用者資料之隨後部分可係與一串流式視訊應用相關聯之另外之串流式視訊資訊。此外,可將使用者資料之該隨後部分配置至第二時槽之一不同900 kHz頻率之副分頻頻率以便於在該第一與第二時槽之間的跳頻。作為一結果,藉由方法300可將跳頻傳輸之低干擾優點併入一SC-FDMA環境中。更特定而言,可維持第一副分頻頻率與第二副分頻頻率之間的關係,此可維護在傳輸中頻調指派之連續性(例如關於SC-FDMA傳輸中連續頻調指派之一詳細說明,參見圖8)。作為一結果,亦可維持LFDMA傳輸之有利之低PAPR品質(其在上行鏈路傳輸期間可減小終端機裝置之功率輸出)。作為一結果,方法300可提供將跳頻併入一SC-FDMA環境中之新穎方法,藉此組合兩個傳輸架構之優點。At 306, the configuration of a subsequent portion of one of the user data is shifted to a second secondary frequency of a second subsequent time slot. Continuing with the previous example, subsequent portions of the user profile may be additional streaming video information associated with a streaming video application. Additionally, the subsequent portion of the user profile can be configured to a sub-frequency of a different 900 kHz frequency at one of the second time slots to facilitate frequency hopping between the first and second time slots. As a result, the low interference advantages of frequency hopping transmission can be incorporated into an SC-FDMA environment by method 300. More specifically, the relationship between the first secondary frequency and the second secondary frequency can be maintained, which maintains continuity of tone assignments during transmission (eg, for continuous tone assignments in SC-FDMA transmissions) For a detailed description, see Figure 8). As a result, an advantageous low PAPR quality of the LFDMA transmission (which reduces the power output of the terminal device during uplink transmission) can also be maintained. As a result, method 300 can provide a novel method of incorporating frequency hopping into an SC-FDMA environment, thereby combining the advantages of both transmission architectures.

圖4繪示一用於為SC-FDMA傳輸提供循環性移位跳頻之實例性方法400。根據特定態樣,方法400可以一維護一經排程之LFDMA配置時間段之連續頻調指派之限制方式提供跳頻。作為一結果,方法400幫助整合跳頻之優點與SC-FDMA通信架構。4 illustrates an example method 400 for providing cyclic shift hopping for SC-FDMA transmission. Depending on the particular aspect, method 400 can provide frequency hopping in a manner that maintains a continuous tone assignment of a scheduled LFDMA configuration time period. As a result, the method 400 helps integrate the advantages of frequency hopping with the SC-FDMA communication architecture.

根據方法400,在402處,可將一上行鏈路SC-FDMA配置傳輸單元(TXMIT單元)劃分成複數個基於時間之時槽及複數個基於頻率之副分頻頻率。舉例而言,可給TXMIT單元之每一時槽配置TXMIT單元之總TTI之一部分(例如1 ms),且可給每一副分頻頻率配置該TXMIT單元之一頻寬之一部分(例如9 MHz)。另外,該副分頻頻率可跨越整個TTI,使得給每一時槽配置每一副分頻頻率之一部分。According to method 400, at 402, an uplink SC-FDMA configuration transmission unit (TXMIT unit) can be partitioned into a plurality of time-based time slots and a plurality of frequency-based secondary frequency division frequencies. For example, one time slot (eg, 1 ms) of the total TTI of the TXMIT unit can be configured for each time slot of the TXMIT unit, and one of the bandwidths of the TXMIT unit can be configured for each sub-frequency (eg, 9 MHz) . Additionally, the secondary crossover frequency can span the entire TTI such that each time slot is configured with one portion of each secondary frequency.

在404處,在頻率上,第一時槽中之一第一副分頻頻率與一第二時槽中之一第二副分頻頻率可分隔大致該TXMIT單元之頻寬之一半。舉例而言,若該頻寬係9 MHz,則其大致一半係大致4.5 MHz。因此,第一及第二副分頻頻率可被移位(例如線性,以總頻寬為模)大致4.5 MHz之頻率。此外,亦可將在參考編號402處形成之副分頻頻率之每一者線性移位該TXMIT單元之頻寬之約一半,以總頻寬為模(例如關於線性頻移一頻寬約一半之詳細說明,參見圖9)。At 404, in frequency, one of the first sub-frequency of the first time slot and one of the second sub-frequency of the second time slot are separated by approximately one-half of the bandwidth of the TXMIT unit. For example, if the bandwidth is 9 MHz, approximately half of it is approximately 4.5 MHz. Thus, the first and second secondary frequency divisions can be shifted (e.g., linear, modulo the total bandwidth) to a frequency of approximately 4.5 MHz. In addition, each of the sub-frequency divided by the reference number 402 can be linearly shifted by about half of the bandwidth of the TXMIT unit, modulo the total bandwidth (eg, about half of the linear frequency shift and the bandwidth). For details, see Figure 9).

作為圖解說明上文之一實例,根據方法400之一TXMIT單元可具有10 MHz之總頻寬。可將該TXMIT單元劃分成4個副分頻頻率,每一副分頻頻率均大致具有2.5 MHz之頻寬,使得4個副分頻頻率之頻寬加起來恰好達10 MHz。此外,根據一參考編號404,具有對應於(舉例而言)總頻寬之0至2.5 MHz部分之2.5 MHz頻寬之一第一副分頻頻率可與該第二時槽之一相應副分頻頻率間隔該總頻寬之約一半(例如5.0 MHz)之頻率。作為一結果,此相應之副分頻頻率可具有對應於總頻寬之5.0 MHz至7.5 MHz部分之2.5 MHz之頻寬。As an illustration of one of the above examples, a TXMIT unit according to one of the methods 400 may have a total bandwidth of 10 MHz. The TXMIT unit can be divided into four sub-frequency divisions, each of which has a bandwidth of approximately 2.5 MHz, such that the bandwidth of the four sub-frequency divisions adds up to exactly 10 MHz. Further, according to a reference number 404, a first sub-frequency having a width of 2.5 MHz corresponding to, for example, a portion of 0 to 2.5 MHz of the total bandwidth may be associated with one of the second slots The frequency is separated by a frequency of about half (e.g., 5.0 MHz) of the total bandwidth. As a result, the corresponding sub-frequency can have a bandwidth of 2.5 MHz corresponding to the 5.0 MHz to 7.5 MHz portion of the total bandwidth.

亦根據參考編號404,在頻寬上之線性移位可自整個頻寬頻譜之上端"包裹"至整個頻寬頻譜之下端,且反之亦然。舉例而言,若一第一時槽之第一副分頻頻率對應於整個頻寬之7.5 MHz至10.0 MHz之部分,則對應於該第二時槽中之副分頻頻率(例如第二副分頻頻率)之一線性移位可包括整個頻寬之一2.5 MHz至5.0 MHz之部分。作為一額外實例,具有整個頻寬之5.0 MHz至7.5 MHz部分之一第一副分頻頻率可對應於一具有整個頻寬之0至2.5 MHz部分之一第二副分頻頻率。作為一結果,在頻率上之線性移位可自一頻譜之上限(例如10.0 MHz)"包裹"至一頻譜之一下限(例如0 MHz),且反之亦然。作為一結果,一般而言可根據方法400之態樣及根據所揭示之標的物來維護連續之頻調指派。Also according to reference numeral 404, the linear shift in bandwidth can be "wrapped" from the upper end of the entire bandwidth spectrum to the lower end of the entire bandwidth spectrum, and vice versa. For example, if the first sub-frequency of the first time slot corresponds to a portion of the entire bandwidth from 7.5 MHz to 10.0 MHz, corresponding to the sub-frequency in the second time slot (eg, the second pair) One of the frequency division shifts can include a portion of the entire bandwidth from 2.5 MHz to 5.0 MHz. As an additional example, the first sub-frequency of one of the 5.0 MHz to 7.5 MHz portions having the entire bandwidth may correspond to a second sub-frequency having one of the 0 to 2.5 MHz portions of the entire bandwidth. As a result, a linear shift in frequency can be "wrapped" from an upper limit of a spectrum (e.g., 10.0 MHz) to a lower limit of a spectrum (e.g., 0 MHz), and vice versa. As a result, continuous tone assignments can generally be maintained in accordance with the aspects of method 400 and in accordance with the disclosed subject matter.

在406處,可將使用者資料配置至一第一時槽中之一第一副分頻頻率。在408處,可將該使用者資料之一額外部分配置至一第二時槽之一第二副分頻頻率。舉例而言,可使使用者資料與網頁瀏覽訊務相關聯。可將網頁瀏覽訊務之一第一部分配置至第一時槽(例如TXMIT單元之基於時間之部分),併可將該網頁瀏覽訊務之一第二部分配置至該第二時槽。此外,如上文所述,第一時槽中之網頁瀏覽訊務可處於配置給整個頻寬之0 MHz至2.5 MHz部分之第一副分頻頻率。然後,藉由將網頁瀏覽訊務之第二部分配置至配置給整個頻寬之5.0 MHz至7.5 MHz之線性移位(以整個頻寬為模)之第二副分頻頻率,可以一高度傳輸頻率偏移開始跳頻。作為一結果,由於頻率偏移,可大大降低一相應SC-FDMA信號中之干擾,且傳輸效率增加。此外,可將在參考編號406及408處提供之配置排程廣播至一小區內之各終端機裝置。作為一結果,根據此配置之傳輸可維護連續之頻調指派,建立與SC-FDMA傳輸相關聯之低PAPR。因此,方法400提供一與提供單載波環境之跳頻相關聯之特定態樣。At 406, the user profile can be configured to one of the first secondary frequency divisions in a first time slot. At 408, an additional portion of the user profile can be configured to a second secondary frequency of a second time slot. For example, user profiles can be associated with web browsing traffic. The first portion of the web browsing service can be configured to a first time slot (eg, a time-based portion of the TXMIT unit), and a second portion of the web browsing service can be configured to the second time slot. Moreover, as described above, the web browsing traffic in the first time slot can be in a first secondary frequency divided into 0 MHz to 2.5 MHz portions of the entire bandwidth. Then, by arranging the second part of the web browsing service to a second sub-frequency that is configured to linearly shift the entire bandwidth from 5.0 MHz to 7.5 MHz (modulated by the entire bandwidth), it can be transmitted at a high altitude. The frequency offset starts to hop. As a result, due to the frequency offset, the interference in a corresponding SC-FDMA signal can be greatly reduced, and the transmission efficiency is increased. In addition, the configuration schedules provided at reference numbers 406 and 408 can be broadcast to each terminal device within a cell. As a result, transmissions in accordance with this configuration can maintain a continuous tone assignment, establishing a low PAPR associated with the SC-FDMA transmission. Thus, method 400 provides a particular aspect associated with providing frequency hopping in a single carrier environment.

應瞭解,如上文所述,副分頻頻率之仔細劃分可有利於維護單載波約束。舉例而言,若一使用者資料塊跨越一整個頻寬之一中心線(例如10.0 MHz整個頻寬之5.0 MHz之中心線,或9 MHz整個頻寬之4.5 MHz之線等),則上述線性移位頻率"包裹"技術可使使用者資料同時出現在一頻譜之一上限及該頻譜之一下限,從而破壞單載波傳輸所需之連續頻調指派。作為一結果,避免跨越此中心線之資料塊可結合方法400之循環性頻移來促進正確之SC-FDMA傳輸。此外,下文所述之進一步實施例提供緩解由跨越一頻率頻譜中心線之資料塊而形成之問題的替代機制。It will be appreciated that as described above, careful division of the secondary crossover frequencies may facilitate maintaining single carrier constraints. For example, if a user data block spans one centerline of an entire bandwidth (for example, a center line of 5.0 MHz for a whole bandwidth of 10.0 MHz, or a line of 4.5 MHz for a whole bandwidth of 9 MHz, etc.), the above linearity The shift frequency "wrap" technique allows user data to appear simultaneously at one of the upper limits of one spectrum and one of the lower limits of the spectrum, thereby disrupting the continuous tone assignment required for single carrier transmission. As a result, avoiding data blocks that span this centerline can be combined with the cyclic frequency shift of method 400 to facilitate proper SC-FDMA transmission. Moreover, the further embodiments described below provide an alternative mechanism for mitigating problems formed by data blocks that span a frequency spectrum centerline.

圖5圖解說明一用於提供用於SC-FDMA傳輸之鏡像轉置跳頻之實例性方法。如下文所述,鏡像轉置跳頻可幫助緩解與跨越頻率中心線之資料塊相關聯之問題。舉例而言,單載波約束會要求一資料塊之頻調指派為連續。更具體而言,配置給一傳輸配置時間段之一頻率段之資料不應被彼段中之其他資料中斷。作為一實例,若將一資料塊配置給一頻譜之2.5 MHz至5.0 MHz部分,則僅應將與彼塊相關聯之資料包括於此2.5 MHz至5.0 MHz之部分內以保持資料之連續性。另一方面,若一頻率段同時跨越一頻譜之一上限及下限,則指派給彼頻率段之資料在頻率上將不連續(例如,可由一5.0 MHz之線性移位及上述應用於具有一跨越10.0 MHz總頻寬頻譜中心線之3.8 MHz至6.2 MHz部分之第一副分頻頻率的頻譜"包裹"形成包括頻率頻譜之一0至1.2 MHz部分及一8.8 MHz至10.0 MHz部分之一第二副分頻頻率),具體而言,乃因該資料之一部分將處於下限部分,在頻率上被上限部分中其餘之資料(例如關於先前之0至1.2 MHz及8.8 MHz至10.0 MHz實例之配置給其他資料之介於1.2 MHz與8.8 MHz之間的頻率頻譜之一部分)中斷。Figure 5 illustrates an exemplary method for providing mirrored transposition hopping for SC-FDMA transmission. As described below, mirrored transposed frequency hopping can help alleviate problems associated with data blocks that span frequency centerlines. For example, a single carrier constraint would require that the tone of a data block be assigned to be continuous. More specifically, the data allocated to one of the frequency segments of a transmission configuration period should not be interrupted by other data in the segment. As an example, if a data block is configured for a 2.5 MHz to 5.0 MHz portion of a spectrum, only the data associated with that block should be included in this 2.5 MHz to 5.0 MHz portion to maintain data continuity. On the other hand, if a frequency segment simultaneously spans an upper limit and a lower limit of a spectrum, the data assigned to the frequency segment will be discontinuous in frequency (for example, a linear shift of 5.0 MHz and the above application has a span) The spectrum "wrap" of the first sub-frequency of the 3.8 MHz to 6.2 MHz portion of the 10.0 MHz total bandwidth spectrum centerline includes one of the frequency spectrum from 0 to 1.2 MHz and one of the 8.8 MHz to 10.0 MHz portions. Sub-frequency (specifically), because one part of the data will be in the lower part, and the rest of the data in the upper part of the frequency (for example, the configuration of the previous 0 to 1.2 MHz and 8.8 MHz to 10.0 MHz instances) Interruption of the other part of the frequency spectrum between 1.2 MHz and 8.8 MHz).

下文藉由方法500所述之一鏡像轉置技術可相對於方法400所述之循環性移位跳頻緩解或消除與資料跨越一中心線頻率相關聯之問題(對於方法500所用之鏡像轉置之詳細說明,參見圖10)。對於鏡像轉置,第一及第二副分頻頻率(例如分別對應於第一及第二時槽)可跨TXMIT單元之頻寬之一中心線頻率進行轉置。作為一結果,由於第一副分頻頻率大致分別在中心線以下或以上,因而第二副分頻頻率可大致等距地位於該中心線以上或以下。鏡像轉置暗示跨越中心線之資料塊仍連續。亦即,此塊之上部關於下部轉置,且反之亦然,但該塊仍跨越該中心線且其頻調指派仍連續,從而維護單載波約束。The problem of correlating data across a centerline frequency with respect to the cyclic shift hopping described with respect to method 400 can be mitigated or reduced by a mirrored transposition technique described by method 500 (for mirror transposition used in method 500). For details, see Figure 10). For mirror transposition, the first and second sub-frequency (eg, corresponding to the first and second time slots, respectively) can be transposed across a centerline frequency of the bandwidth of the TXMIT unit. As a result, since the first secondary frequency is substantially below or above the centerline, respectively, the second secondary frequency can be located substantially equidistantly above or below the centerline. Mirror transposition implies that the data blocks across the centerline are still contiguous. That is, the upper portion of the block is transposed with respect to the lower portion, and vice versa, but the block still spans the centerline and its tone assignments are still continuous, thereby maintaining single carrier constraints.

根據方法500,在502處,可將一上行鏈路SC-FDMA TXMIT單元劃分成多個基於時間之時槽及基於頻率之副分頻頻率。在504處,可跨該頻寬頻率頻譜之一中心線關於該第二時槽之副分頻頻率對該第一時槽之副分頻頻率進行轉置。作為一特定實例,可在該第二時槽中對一跨越具有一大致處於5.0 MHz中心線之10.0 MHz頻譜之0 MHz至2.5 MHz之副分頻頻率進行轉置,以便使其跨越10.0 MHz頻譜之大致7.5 MHz至10.0 MHz。作為一進一步之實例,跨越10.0 MHz頻譜之4.0 MHz至6.5 MHz(跨越該頻譜之中心線)之副分頻頻率可藉由方法500在第二時槽中進行轉置,以便跨越10.0 MHz頻譜之大致3.5 MHz至6.0 MHz。稍後之實例圖解說明一跨越一頻率頻譜中心線之資料塊如何可在一第二時槽中跳頻以維護彼頻率頻譜之連續頻調指派。According to method 500, at 502, an uplink SC-FDMA TXMIT unit can be partitioned into a plurality of time-based time slots and a frequency-based secondary frequency. At 504, the secondary frequency of the first time slot can be transposed across a center line of the bandwidth frequency spectrum with respect to a secondary frequency of the second time slot. As a specific example, a sub-frequency of 0 MHz to 2.5 MHz across a 10.0 MHz spectrum having a centerline approximately 5.0 MHz can be transposed in the second time slot to span the 10.0 MHz spectrum. It is roughly 7.5 MHz to 10.0 MHz. As a further example, the sub-frequency of the 4.0 MHz to 6.5 MHz (crossing the centerline of the spectrum) across the 10.0 MHz spectrum can be transposed in the second time slot by method 500 to span the 10.0 MHz spectrum. Roughly 3.5 MHz to 6.0 MHz. A later example illustrates how a data block spanning a frequency spectrum centerline can be frequency hopped in a second time slot to maintain a continuous tone assignment of the frequency spectrum.

在506處,可將使用者資料指派給一第一時槽中之一第一副分頻頻率。在508處,可將使用者資料之一額外部分配置給一第二時槽之一第二副分頻頻率。在510處,可將該配置之一排程廣播至一裝置(例如諸如行動電話、多模式電話等終端機裝置、無線裝置等),舉例而言請求該使用者資料。如上文所述,方法500可以一維護連續之頻調指派之方式達成SC-FDMA環境中之跳頻。另外,方法500之鏡像轉置機制可如上文所述緩解或消除與跨越一頻譜頻率之一中心線之資料塊相關聯之問題。At 506, the user profile can be assigned to one of the first secondary frequency divisions in a first time slot. At 508, an additional portion of one of the user data can be assigned to one of the second time slots of the second time slot. At 510, one of the configurations can be scheduled to be broadcast to a device (eg, a terminal device such as a mobile phone, multi-mode phone, wireless device, etc.), for example, requesting the user profile. As described above, method 500 can achieve frequency hopping in an SC-FDMA environment by maintaining a continuous tone assignment. Additionally, the mirror transposition mechanism of method 500 can mitigate or eliminate problems associated with data blocks spanning one of the centerlines of a spectral frequency as described above.

應瞭解,在某些情形下,方法500之鏡像轉置機制較循環性移位跳頻可能效率低。具體而言,根據通常與跳頻相關聯之降低之干擾,鏡像轉置可促進一頻率頻譜之一中心線頻率附近資料塊之較低之副分頻頻率分集。然而,下文更詳細論述之多重機制可幫助減輕頻率擴散問題之某些。It should be appreciated that in some cases, the mirror transposition mechanism of method 500 may be less efficient than cyclic shift hopping. In particular, mirrored transposition may facilitate lower sub-frequency diversity of the data block near the centerline frequency of one of the frequency spectra in accordance with the reduced interference typically associated with frequency hopping. However, the multiple mechanisms discussed in more detail below can help mitigate some of the frequency spread problems.

圖6繪示根據一項或多項態樣基於使用者資料之指派在各SC-FDMA跳頻機制之間進行選擇之實例性方法600。如上文所述,方法600可對將資料特定地配置至一傳輸配置單元進行分析以確定本文所揭示之一最適合低PAPR及干擾傳輸之SC-FDMA跳頻機制。應瞭解,本文中併入本文中未具體關聯但介於本發明範疇內之用於在各所述跳頻機制之間進行選擇之其他機制。6 illustrates an example method 600 for selecting between SC-FDMA frequency hopping mechanisms based on assignment of user data in accordance with one or more aspects. As described above, method 600 can analyze the configuration of the data specifically to a transmission configuration unit to determine one of the SC-FDMA frequency hopping mechanisms that are best suited for low PAPR and interference transmission. It should be understood that other mechanisms for selecting between the various frequency hopping mechanisms are not specifically associated herein but are within the scope of the present invention.

根據方法600,在602處,可將一上行鏈路SC-FDMA傳輸配置單元(TXMIT單元)劃分成多個時槽及副分頻頻率。在604處,可對該TXMIT單元進行稽核以識別配置在該TXMIT單元之一頻率頻譜中心線附近之使用者資料。舉例而言,可藉由稽核確定及識別跨越該中心線之使用者資料。在606處,作出該稽核是否已識別跨越該中心線之資料之確定。若未識別,則方法600繼續至608,在此處可根據本文所述之循環性移位跳頻重新配置該TXMIT單元內配置之至少一資料子集。若在參考編號604處,該稽核確定資料未跨越該中心線,則方法600可繼續至610。在610處,可根據本文所述之鏡像轉置跳頻技術重新配置至少一資料子集。在參考編號608及610之後,方法600可繼續至612,在此處可將資料配置之一排程廣播至至少一個消耗該使用者資料之裝置,(舉例而言)在一SC-FDMA上行鏈路中達成跳頻傳輸。如上文所述,方法600可提供SC-FDMA環境中最適合維護單載波約束並提供高分集、低干擾及低PAPR傳輸之間隔式跳頻機制。According to method 600, at 602, an uplink SC-FDMA transmission configuration unit (TXMIT unit) can be divided into a plurality of time slots and a sub-frequency. At 604, the TXMIT unit can be audited to identify user profiles disposed near one of the frequency spectrum centerlines of the TXMIT unit. For example, user data across the centerline can be determined and identified by an audit. At 606, a determination is made whether the audit has identified data across the centerline. If not, the method 600 continues to 608 where at least one subset of data configured within the TXMIT unit can be reconfigured in accordance with the cyclic shift hopping described herein. If at reference number 604, the audit determines that the material does not cross the centerline, then method 600 can continue to 610. At 610, at least one subset of data can be reconfigured in accordance with the mirrored transposition frequency hopping technique described herein. After reference numbers 608 and 610, method 600 can continue to 612 where one of the data configurations can be scheduled to be broadcasted to at least one device that consumes the user data, for example, in an SC-FDMA uplink. Frequency hopping transmission is achieved in the road. As described above, method 600 can provide a slot hopping mechanism that is best suited to maintain single carrier constraints and provide high diversity, low interference, and low PAPR transmission in an SC-FDMA environment.

圖7圖解說明一用於對一SC-FDMA環境中之跳頻傳輸及非跳頻傳輸進行多重之一實例性方法。在702處,可如本文所述將一上行鏈路SC-FDMA傳輸配置單元(TMXIT單元)劃分進"M"個頻率子頻帶及至少兩個時槽。在704處,可將對應於集合{0,2,4...}之諸多"M"個子頻帶配置至頻率選擇式排程(FSS)。更特定而言,可在整個服務持續時間(例如視訊共享、語音呼叫、網頁瀏覽等)及服務持續時間之至少一部分將FSS資料配置至大致不變之頻率部分。在706處,可將對應於集合{M,M-2,M-4...}之諸多"M"個子頻帶配置至跳頻式排程(FHS)。另外,可約束FSS及FHS子頻帶之配置,使得所指派之子頻帶總數等於"M"。Figure 7 illustrates an exemplary method for multiplexing multiple frequency hopping and non-hopping transmissions in an SC-FDMA environment. At 702, an uplink SC-FDMA transmission configuration unit (TMXIT unit) can be partitioned into "M" frequency sub-bands and at least two time slots as described herein. At 704, a number of "M" sub-bands corresponding to the set {0, 2, 4...} can be configured to a frequency selective schedule (FSS). More specifically, the FSS data can be configured to a substantially constant frequency portion for at least a portion of the service duration (eg, video sharing, voice call, web browsing, etc.) and service duration. At 706, a number of "M" subbands corresponding to the set {M, M-2, M-4...} can be configured to a frequency hopping schedule (FHS). In addition, the configuration of the FSS and FHS subbands can be constrained such that the total number of assigned subbands is equal to "M".

除上述內容外,在參考編號706處,可將前文所述之循環性移位及/或鏡像轉置跳頻策略作為跳頻配置之一部分併入。舉例而言,關於循環性移位跳頻,可將與特定使用者相關聯之資料映射至FHS子頻帶。此一結果可藉由將一頻率頻譜分割成兩個半部分來達成,其中每一半中具有大致相同數量之子頻帶。可使用一組類似之編號(例如可將每一半中之子頻帶分別編號成1、2、3、4…)進一步對該頻譜每一半之該等子頻帶進行編號。此外,可將該頻率頻譜之每一半中子頻帶之類似編號配置至資料之FSS集合或FHS集合(對於經多重之FSS及FHS資料之配置的詳細說明,參見圖11)。In addition to the above, at reference numeral 706, the cyclic shift and/or mirror transposed frequency hopping strategies described above may be partially incorporated as part of a frequency hopping configuration. For example, with respect to cyclic shift hopping, data associated with a particular user can be mapped to an FHS sub-band. This result can be achieved by dividing a frequency spectrum into two halves, each having approximately the same number of sub-bands. The sub-bands of each half of the spectrum may be further numbered using a similar set of numbers (e.g., sub-bands in each half may be numbered 1, 2, 3, 4, ..., respectively). In addition, similar numbers of sub-bands in each half of the frequency spectrum can be configured to the FSS set or FHS set of data (see Figure 11 for a detailed description of the configuration of multiple FSS and FHS data).

在708處,可在一TXMIT單元內對該FSS及FHS子頻帶進行多重。作為一特定非限制性實例,可將間隔式頻率子頻帶配置至FSS及FHS資料。作為一進一步之非限制性實例,可將處於一頻率頻譜下端之頻率子頻帶配置至FSS資料,而將處於頻率頻譜上端之頻率子頻帶配置至FHS資料,或反之亦然。應瞭解,熟習此項技術者可認識到其他在上述實例中未具體關聯但包括於本發明範疇內之配置策略,且在本文中未包括該等策略。在710處,可廣播FSS及FHS資料之配置排程以便根據本文所述之一經多重之跳頻策略進行資料之上行鏈路傳輸。作為一結果,方法700可便於提供一TXMIT單元中之跳頻及非跳頻資料部分,以(舉例而言)促進各終端機裝置之通信要求。At 708, the FSS and FHS subbands can be multiplexed in a TXMIT unit. As a specific, non-limiting example, the spaced frequency subbands can be configured to FSS and FHS data. As a further non-limiting example, a frequency sub-band at the lower end of a frequency spectrum can be configured to the FSS data, and a frequency sub-band at the upper end of the frequency spectrum can be configured to the FHS data, or vice versa. It will be appreciated that those skilled in the art will recognize other configuration strategies that are not specifically related in the above examples but are included within the scope of the present invention and which are not included herein. At 710, a configuration schedule of FSS and FHS data can be broadcast to perform uplink transmission of data via multiple frequency hopping strategies in accordance with one of the methods described herein. As a result, method 700 can facilitate providing portions of frequency hopping and non-hopping data in a TXMIT unit to, for example, facilitate communication requirements for each terminal device.

圖8繪示一可提供低峰均值功率比之一實例性SC-FDMA信號轉換。串列轉並列變換器802可接收一(舉例而言)具有經串列多重之時域調變符號之輸入之資料流。串列轉並列變換器802可將該輸入之資料流分割成具有並行之時域調變符號之輸出流。可將此輸出流提供至一Q-點離散傅立葉轉換(Q-pt DFT)裝置804。然後,可藉由Q-pt DFT 804轉換該資料流以將各截然不同之時域資料部分以頻域資料表示。可將該等資料部分提供至一頻譜成形組件806,其可進一步定形該頻域頻譜以最小化頻譜洩漏。頻譜成形組件806然後可將形成之頻域資料流發送至一頻調映射組件808,頻調映射組件808可將資料流內之副載波調整成一頻率頻譜之一特定部分,舉例而言佔據單載波約束所要求之資料流之連續部分。頻調映射808然後可將經映射之資料流提供至一N點逆向快速傅立葉轉換(N-pt IFFT)810。該N-pt IFFT可將頻域資料流轉換回至一時域中。8 illustrates an example SC-FDMA signal conversion that provides a low peak-to-average power ratio. Tandem-to-parallel converter 802 can receive, for example, a data stream having input of a plurality of time-domain modulation symbols in series. The serial to parallel converter 802 can split the input data stream into an output stream having parallel time domain modulation symbols. This output stream can be provided to a Q-point discrete Fourier transform (Q-pt DFT) device 804. The data stream can then be converted by Q-pt DFT 804 to represent portions of the distinct time domain data as frequency domain data. The data portions can be provided to a spectral shaping component 806 that can further shape the frequency domain spectrum to minimize spectral leakage. The spectrum shaping component 806 can then transmit the formed frequency domain data stream to a tone mapping component 808, which can adjust the subcarriers within the data stream to a particular portion of a frequency spectrum, for example occupying a single carrier. Constrains the contiguous portion of the data stream required. The tone map 808 can then provide the mapped data stream to an N-point inverse fast Fourier transform (N-pt IFFT) 810. The N-pt IFFT converts the frequency domain data stream back into the one-time domain.

圖9圖解說明一根據本文所述之一項或多項態樣應用循環性移位跳頻之樣本傳輸配置單元(TXMIT單元)。具體而言,該TXMIT單元可具有至少兩個由一特定時間線906分離之基於時間之時槽902及904。可將每一時槽902、904進一步劃分成複數個時間塊及複數個副分頻頻率908、910、912、914。因此,繪示於圖9之TXMIT單元內之每一矩形資料部分均包括一特定時間塊及一特定副分頻頻率908、910、912、914。9 illustrates a sample transmission configuration unit (TXMIT unit) that applies cyclic shift hopping in accordance with one or more aspects described herein. In particular, the TXMIT unit can have at least two time-based time slots 902 and 904 separated by a particular timeline 906. Each time slot 902, 904 can be further divided into a plurality of time blocks and a plurality of sub-frequency frequencies 908, 910, 912, 914. Therefore, each rectangular data portion shown in the TXMIT unit of FIG. 9 includes a specific time block and a specific secondary frequency 908, 910, 912, 914.

所繪示之TXMIT單元之各種時間塊可遞送不同之資訊類型。舉例而言,每一時槽902、904均可具有7個時間塊。此外,可使該時間塊與通信服務資料或導頻資訊相關聯。作為一結果,每一塊均含有指示一資料塊之"資料"或一導頻資訊塊之"P"。此外,可使導頻資訊與一特定服務或終端機裝置(未顯示)相關聯(例如對應於(舉例而言)資料1、資料2、資料3或資料4,或對應於P1、P2、P3或P4,其中一整數分別指示第一、第二、第三或第四服務或終端機)。此外,可將與一特定服務/終端機相關聯之資料及導頻資訊配置至一具體副分頻頻率908、910、912、914.作為一更具體實例,如所繪示,可將與一第一服務相關聯之資料及導頻資訊(例如資料1及P1)配置至第一基於時間之時槽902中之一第一副分頻頻率908。此外,可將與一第二服務相關聯之資料及導頻資訊(例如資料2及P2)配置至該第一基於時間之時槽902中之一第二副分頻頻率910,且依此類推。The various time blocks of the illustrated TXMIT unit can deliver different types of information. For example, each time slot 902, 904 can have seven time blocks. In addition, the time block can be associated with communication service data or pilot information. As a result, each block contains a "data" indicating a data block or a "P" of a pilot information block. In addition, the pilot information can be associated with a particular service or terminal device (not shown) (eg, corresponding to, for example, Data 1, Data 2, Data 3, or Data 4, or corresponding to P1, P2, P3) Or P4, where an integer indicates the first, second, third or fourth service or terminal respectively). In addition, the data and pilot information associated with a particular service/terminal may be configured to a specific secondary frequency 908, 910, 912, 914. As a more specific example, as illustrated, The first service-associated data and pilot information (e.g., data 1 and P1) are configured to a first secondary frequency 908 of the first time-based time slot 902. In addition, data and pilot information (eg, data 2 and P2) associated with a second service may be configured to one of the second secondary frequency 910 of the first time-based time slot 902, and so on. .

為達成循環性移位跳頻,可將資料配置至與第一時槽902相應之第二時槽904中不同之副分頻頻率908、910、912、914。作為一特定實例,在傳輸於該第一時槽中之一組資料(例如資料1)與傳輸於該第二時槽中之一對應組資料(例如資料1)之間的頻移可具有一大致與該TXMIT單元相關聯之總頻譜頻寬之大致一半的線性移位量級。圖9提供此一移位之實例。特定而言,將與第一時槽902中之一第三副分頻頻率912相關聯之資料(例如資料1)在頻率上向上移位至第二時槽904中之一第一副分頻頻率908,即大致為總頻譜頻寬一半之移位。另外,圖9亦繪示上文所述之頻率"包裹"。更特定而言,將在第一時槽902期間配置至第一副分頻頻率908之資料移位至第三副分頻頻率912,且自該頻率頻譜上部"包裹"至該頻率頻譜之一下部。應瞭解,根據本發明之新方法,可達成不同於大致為總頻寬頻譜一半之其他頻移值,且將該等頻移機制作為本發明之一部分併入。To achieve cyclic shift hopping, the data can be configured to different secondary frequency divisions 908, 910, 912, 914 in the second time slot 904 corresponding to the first time slot 902. As a specific example, the frequency shift between a set of data (eg, material 1) transmitted in the first time slot and a corresponding group of data (eg, data 1) transmitted in the second time slot may have a A linear shift magnitude that is approximately half of the total spectral bandwidth associated with the TXMIT unit. Figure 9 provides an example of such a shift. In particular, the data associated with one of the third sub-frequency 912 of the first time slot 902 (eg, data 1) is shifted up in frequency to one of the first time slots 904 of the second time slot 904. Frequency 908, which is roughly a shift of half the total spectral bandwidth. In addition, FIG. 9 also shows the frequency "package" described above. More specifically, the data configured to the first secondary frequency 908 during the first time slot 902 is shifted to the third secondary frequency 912 and "wrapped" from the upper portion of the frequency spectrum to one of the frequency spectra unit. It will be appreciated that in accordance with the new method of the present invention, other frequency shift values that are substantially different from approximately half of the total bandwidth spectrum can be achieved and that such frequency shifting mechanisms are incorporated as part of the present invention.

圖10圖解說明一根據本發明之額外態樣應用鏡像轉置跳頻之樣本傳輸配置單元。具體而言,該TXMIT單元可具有至少兩個由一特定時間線1006(例如代表配置給該TXMIT單元之時間的一半,例如一毫秒之一半)分離之基於時間之時槽1002及1004。可將每一時槽1002、1004劃分成複數個時間塊及複數個副分頻頻率1008、1010、1012。因此,繪示於圖10之TXMIT單元內每一矩形資料部分包括一特定時間塊及一特定副分頻頻率1008、1010、1012。Figure 10 illustrates a sample transmission configuration unit for applying image transposed frequency hopping in accordance with additional aspects of the present invention. In particular, the TXMIT unit can have at least two time-based time slots 1002 and 1004 separated by a particular timeline 1006 (e.g., representing one half of the time configured for the TXMIT unit, such as one-half of a millisecond). Each time slot 1002, 1004 can be divided into a plurality of time blocks and a plurality of sub-frequency frequencies 1008, 1010, 1012. Therefore, each rectangular data portion shown in the TXMIT unit of FIG. 10 includes a specific time block and a specific secondary frequency divided by 1008, 1010, 1012.

以類似於上文關於圖9所述之方式,圖10之實例性TXMIT單元之每一時槽1002、1004可具有分派給資料服務之6個時槽及至少一個配置給與該等服務之傳輸相關聯之導頻資訊之時間塊。另外,可將與一特定服務或終端機裝置(未顯示)相關聯之資料及/或導頻資訊(例如對應於(舉例而言)資料1、資料2、資料3或資料4,或P1、P2、P3或P4,其中一整數分別表示第一、第二、第三或第三服務或終端機)配置至一特定副分頻頻率1008、1010、1012。In a manner similar to that described above with respect to FIG. 9, each time slot 1002, 1004 of the exemplary TXMIT unit of FIG. 10 may have six time slots assigned to the data service and at least one configuration associated with the transmission of the services. The time block of the pilot information. In addition, data and/or pilot information associated with a particular service or terminal device (not shown) may be associated (e.g., corresponding to, for example, Data 1, Data 2, Data 3, or Data 4, or P1, respectively). P2, P3 or P4, wherein an integer represents a first, second, third or third service or terminal, respectively, is configured to a particular secondary frequency of divisions 1008, 1010, 1012.

為實現鏡像轉置跳頻,可將資料配置至對應於第一時槽1002之第二時槽1004內不同之副分頻頻率1008、1010、1012。作為一特定實例,可跨總頻率頻譜頻寬之一中心線1014頻率對傳輸於第一時槽1002內之一組資料(例如資料1)及傳輸於第二時槽1004內之一對應組資料(例如資料1)進行轉置。更特定而言,可關於第一時槽1002中之第一副分頻頻率1008、1010、1012在第二時槽1004中移位一對應之第二副分頻頻率1008、1010、1012,使得第二副分頻頻率1008、1010、1012大致等距地處於中心線1014之上(例如大於中心線1014)或之下(例如小於中心線1014),乃因該第一副分頻頻率1008、1010、1012分別大致處於中心線1014之上或之下。圖10提供此一移位之一實例。特定而言,圖中繪示將配置給第一時槽1002中一第一副分頻頻率1008之一第一資料塊(例如資料1)跨頻率中心線1014轉置進入一第二時槽1004中之一第三副分頻頻率1012。更特定而言,根據關於中心線1014之轉置,第三副分頻頻率1012大致遠至低於(例如小於)第二時槽1004中之中心線1014頻率,乃因第一副分頻頻率1008高於(例如大於)第一時槽1002中之中心線1014。To achieve mirrored transposition frequency hopping, the data may be configured to different secondary frequency divisions 1008, 1010, 1012 corresponding to the second time slot 1004 of the first time slot 1002. As a specific example, a group of data (for example, data 1) transmitted in the first time slot 1002 and a corresponding group data transmitted in the second time slot 1004 may be transmitted across a center line 1014 of the total frequency spectrum bandwidth. (for example, data 1) Transpose. More specifically, a corresponding second sub-frequency 168, 1010, 1012 may be shifted in the second time slot 1004 with respect to the first sub-frequency 168, 1010, 1012 in the first time slot 1002, such that The second sub-divided frequencies 1008, 1010, 1012 are substantially equidistant above the centerline 1014 (eg, greater than the centerline 1014) or below (eg, less than the centerline 1014) due to the first secondary crossover frequency of 1008, 1010, 1012 are respectively above or below the centerline 1014. Figure 10 provides an example of such a shift. In particular, the first data block (eg, data 1) configured to be assigned to a first sub-frequency 168 in the first time slot 1002 is transposed across the frequency centerline 1014 into a second time slot 1004. One of the third sub-frequency is 1012. More specifically, according to the transposition with respect to the centerline 1014, the third sub-frequency 1012 is substantially far below (eg, less than) the centerline 1014 frequency in the second time slot 1004, due to the first secondary frequency 1008 is above (eg, greater than) the centerline 1014 in the first time slot 1002.

除上述內容外,繪示於圖10中之鏡像轉置跳頻可緩解或消除可相對於循環性移位跳頻發生之頻調指派之非連續性。一第二副分頻頻率1010跨越第一時槽1002中之頻率頻譜中心線1014,且在第一時槽1002中連續。然而,當如上所述將該資料塊(例如資料2)跨頻率頻譜中心線1014轉置進入第二時槽1004中時,該資料塊在該第二時槽1004中仍連續。作為一結果,可藉由所繪示之鏡像轉置式跳頻維護單載波傳輸所要求之連續頻調指派約束。應瞭解,本文中併入其他未特定地繪示於圖10中但熟習此項技術者認為介於所揭示標的物範疇內之鏡像轉置實例(例如具有額外之副分頻頻率、多條分頻線(例如象限線等)或諸如此類)。In addition to the above, the image transposed frequency hopping illustrated in Figure 10 can alleviate or eliminate the discontinuity of the tone assignment that can occur with respect to cyclic shift hopping. A second secondary frequency 1010 spans the frequency spectrum centerline 1014 in the first time slot 1002 and is continuous in the first time slot 1002. However, when the data block (e.g., material 2) is transposed into the second time slot 1004 across the frequency spectrum centerline 1014 as described above, the data block is still continuous in the second time slot 1004. As a result, the continuous tone tone assignment constraints required for single carrier transmission can be maintained by the illustrated mirrored transposition frequency hopping. It should be understood that other examples of mirror transpositions that are not specifically depicted in FIG. 10 but are considered by those skilled in the art to be within the scope of the disclosed subject matter are incorporated herein (eg, having an additional sub-frequency, multiple points) Frequency lines (such as quadrant lines, etc.) or the like.

圖11繪示根據進一步態樣應用經多重之跳頻及非跳頻使用者資料之實例性傳輸配置單元(TXMIT單元)。本文所述之一TXMIT單元可包括至少兩個基於時間之時槽1102、1104,其中可關於兩個時槽1102、1104在頻率上移位對應於服務或特定終端機之資料,以幫助在一SC-FDMA環境中之跳頻。FIG. 11 illustrates an example transmission configuration unit (TXMIT unit) that applies multiple frequency hopping and non-frequency hopping user data according to further aspects. One of the TXMIT units described herein can include at least two time-based time slots 1102, 1104 in which information corresponding to a service or a particular terminal can be shifted in frequency with respect to two time slots 1102, 1104 to assist in Frequency hopping in an SC-FDMA environment.

跳頻多重可併入將副分頻頻率劃分成兩個組及將該等組之類似副分頻頻率指派至一特定跳頻式排程(FHS)或頻率選擇式排程(FSS)。舉例而言,大致大於一特定頻率(例如中心線頻率)之副分頻頻率1108、1110可形成一第一組,且大致小於該特定頻率之副分頻頻率1112、1114可形成第二組。舉例而言,副分頻頻率1110與1112之間的中心線頻率(未繪示)可描繪副分頻頻率群組。位於高於中心線頻率之副分頻頻率1108、1110內之資料可形成組1。位於較中心線頻率為低之副分頻頻率1112、1114內之資料可形成組2。亦可使用一共用組之編號列出每一組之各副分頻頻率。舉例而言,一組滿足可將副分頻頻率1108、1110、1112、1114列成兩組之編號可包括{1,2}。更具體而言,可將第一組之副分頻頻率1108編號成1,且將第一組之副分頻頻率1110編號成2。以大致類似之形式,可將第二組之副分頻頻率1112編號成1且將第二組之副分頻頻率1114編號成2。The frequency hopping multiple can be incorporated into dividing the sub-frequency into two groups and assigning similar sub-frequency of the groups to a particular frequency hopping schedule (FHS) or frequency selective scheduling (FSS). For example, sub-frequency 1108, 1110 that is substantially greater than a particular frequency (eg, centerline frequency) may form a first group, and sub-frequency 1122, 1114 that is substantially less than the particular frequency may form a second group. For example, a centerline frequency (not shown) between the secondary crossover frequencies 1110 and 1112 can depict a sub-frequency group. The data located in the sub-frequency 1108, 1110 above the centerline frequency may form group 1. The data located in the sub-frequency 1122, 1114, which is lower than the center line frequency, can form group 2. The sub-frequency of each group can also be listed using the number of a common group. For example, a set of numbers that satisfies the two sub-frequencyes 1108, 1110, 1112, 1114 in two groups may include {1, 2}. More specifically, the sub-frequency 1108 of the first group can be numbered as 1, and the sub-frequency 1110 of the first group can be numbered 2. In a substantially similar form, the second set of sub-frequency 1612 can be numbered 1 and the second set of sub-frequency 1114 can be numbered 2.

可將指派至不同組(例如第一或第二組)內相同編號(例如1或2)之每一副分頻頻率1108、1110、1112、1114配置至FHS傳輸或FSS傳輸。如圖11所繪示,將中心線以上之第一副分頻頻率副分頻頻率1108配置至FHS,且因此將與第一副分頻頻率1108相關聯之資料(例如資料1)移位至第二時槽1104中之第三副分頻頻率1112。將配置給上文所界定之組1內第二副分頻頻率副分頻頻率1110之資料排程為FSS,且因此將此資料(例如資料2)配置至該第二時槽1104中之第二副分頻頻率1110。以一類似方式,將群組2之副分頻頻率1之1112及群組2之副分頻頻率2之1114分別配置至FHS排程及FSS排程。應瞭解,在本揭示內容中併入本文所述之其他形式之跳頻或熟習此項技術者藉由本文所關聯之實例所知曉之其他形式之跳頻(例如鏡像轉置或經多重之跳頻)。Each of the secondary frequency 1108, 1110, 1112, 1114 assigned to the same number (eg, 1 or 2) within a different group (eg, the first or second group) may be configured for FHS transmission or FSS transmission. As shown in FIG. 11, the first sub-frequency frequency sub-frequency 1108 above the center line is configured to the FHS, and thus the data associated with the first sub-frequency 1108 (eg, data 1) is shifted to The third sub-frequency 1112 in the second time slot 1104. The data schedule assigned to the second secondary frequency sub-frequency 1610 in the group 1 defined above is FSS, and thus the data (eg, data 2) is configured to the second time slot 1104. The second sub-frequency is 1110. In a similar manner, the 1112 of the sub-frequency 1 of group 2 and the 1114 of the sub-frequency 2 of group 2 are respectively allocated to the FHS schedule and the FSS schedule. It should be appreciated that other forms of frequency hopping described herein are incorporated in the present disclosure or other forms of frequency hopping known to those skilled in the art by way of example herein (eg, mirror transposition or multiple hopping) frequency).

圖12圖解說明一可根據一項或多項態樣在上行鏈路SC-FDMA傳輸中應用跳頻之樣本存取終端機。存取終端機1200包括一天線1202(例如一傳輸接收),其接收一信號並對所接收之信號實施典型之作業(例如濾波、放大、降頻轉換等)。具體而言,天線1202亦可接收關於使用者資料跨一用於一SC-FDMA上行鏈路傳輸中之傳輸配置單元之複數個時槽頻移配置之資訊,或類似資訊。天線1202可包括一解調變器1204,其可解調變所接收之符號且將其提供至一處理器1206進行評估。處理器1206可係一專用於分析天線1202所接收之資訊及/或產生供發射機1216發射之資訊之處理器。另外,處理器1206可係一控制存取終端機1200之一個或多個組件之處理器,及/或一分析天線1202所接收之資訊之處理器,產生供發射機1216發射之資訊並控制存取終端機1200之一個或多個組件。另外,處理器1206可執行指令用於解釋一與上行鏈路傳輸(例如至一基地台之傳輸)相關聯之配置排程或諸如此類。Figure 12 illustrates a sample access terminal that can apply frequency hopping in uplink SC-FDMA transmissions according to one or more aspects. Access terminal 1200 includes an antenna 1202 (e.g., a transmission and reception) that receives a signal and performs typical operations (e.g., filtering, amplifying, downconverting, etc.) on the received signal. In particular, antenna 1202 may also receive information about user data across a plurality of time slot frequency shift configurations for a transmission configuration unit in an SC-FDMA uplink transmission, or the like. Antenna 1202 can include a demodulator 1204 that can demodulate the received symbols and provide them to a processor 1206 for evaluation. The processor 1206 can be a processor dedicated to analyzing information received by the antenna 1202 and/or generating information for transmission by the transmitter 1216. In addition, the processor 1206 can be a processor that controls one or more components of the access terminal 1200, and/or a processor that analyzes the information received by the antenna 1202, generates information for transmission by the transmitter 1216, and controls the storage. One or more components of the terminal 1200 are taken. In addition, processor 1206 can execute instructions for interpreting a configuration schedule associated with an uplink transmission (e.g., transmission to a base station) or the like.

存取終端機1200可額外地包括記憶體1208,其運作地耦合至處理器1206且可儲存欲進行傳輸、接收及類似操作之資料。記憶體1208可儲存與上行鏈路配置資料相關之資訊、用於已構建之跳頻之協定、用於在一配置傳輸單元中組織資料之協定、對經跳頻之資料進行解多重、在一上行鏈路傳輸中對經跳頻及排程之資料進行多重、及諸如此類。Access terminal 1200 can additionally include a memory 1208 operatively coupled to processor 1206 and capable of storing data for transmission, reception, and the like. The memory 1208 can store information related to the uplink configuration data, a protocol for the constructed frequency hopping, an agreement for organizing data in a configuration transmission unit, and demultiplexing the frequency hopped data in one Multiplexing of frequency hopping and scheduling data in uplink transmissions, and the like.

應瞭解,本文所述之資料儲存器(例如記憶體1208)既可係揮發性記憶體亦可係非揮發性記憶體,或者可同時包含揮發性與非揮發性兩種記憶體。藉由例示而非限定方式,非揮發性記憶體可包括唯讀記憶體(ROM)、可程式化ROM(PROM)、電可程式化ROM(EPROM)、電可擦PROM(EEPROM)、或快閃記憶體。揮發性記憶體可包括用作外部快取記憶體之隨機存取記憶體(RAM)。藉由例示而非限定方式,RAM可具備許多種形式,例如同步RAM(SRAM)、動態RAM(DRAM)、同步DRAM(SDRAM)、雙倍資料傳輸率SDRAM(DDR SDRAM)、增強之SDRAM(ESDRAM)、同步鏈路(Synchlink)DRAM(SLDRAM)、及直接Rambus RAM(DRRAM)。該等標的物系統及方法中之記憶體1208旨在包括但不限於該等及任何其他適宜類型之記憶體。It should be understood that the data storage (eg, memory 1208) described herein can be either volatile or non-volatile, or both volatile and non-volatile. By way of illustration and not limitation, non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable PROM (EEPROM), or fast Flash memory. Volatile memory can include random access memory (RAM) used as external cache memory. By way of illustration and not limitation, RAM can be in many forms, such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM). ), Synchronized Link (Synchlink) DRAM (SLDRAM), and Direct Rambus RAM (DRRAM). The memory 1208 in the subject systems and methods is intended to include, but is not limited to, such and any other suitable type of memory.

天線1202可進一步運作地耦合至排程器1212,排程器1212可根據天線1202所接收之資訊將使用者資料組織進入一傳輸資料封包。更具體而言,排程器1212可將傳輸資料封包之不同時槽內之使用者資料頻移大致配置給上行鏈路傳輸之一頻寬(例如提供用於上行鏈路SC-FDMA傳輸)之一半。可將此使用者資料配置至該配置單元之轉置跨越一與該傳輸配置單元相關聯之一頻寬之一中心線頻率的經頻移副分頻頻率。Antenna 1202 can be further operatively coupled to scheduler 1212, which can organize user data into a transport data packet based on information received by antenna 1202. More specifically, the scheduler 1212 can substantially configure the user data frequency shift in different time slots of the transmission data packet to a bandwidth of the uplink transmission (eg, for uplink SC-FDMA transmission). half. The user profile can be configured to the transposed sub-frequency of the transposition of the configuration unit across a centerline frequency of a bandwidth associated with the transmission configuration unit.

排程器1212可進一步耦合至一多重處理器1210。多重處理器1210可根據一無線網路之一組件(例如基地台)提供之一上行鏈路傳輸排程在未經頻移之使用者資料與經頻移之使用者資料之間進行選擇。可將多重處理器選擇之資料提供至排程器1212以併入一傳輸資料封包中。另外,多重處理器1210可運作地與記憶體1208耦合以存取儲存於其中之多重協定。Scheduler 1212 can be further coupled to a multiprocessor 1210. The multiprocessor 1210 can select between one of the untransmitted user data and the frequency shifted user data based on an uplink transmission schedule provided by one of the components of the wireless network (e.g., the base station). Multiple processor selected data may be provided to scheduler 1212 for incorporation into a transport data packet. Additionally, multiprocessor 1210 is operatively coupled to memory 1208 to access multiple protocols stored therein.

存取終端機1200尚進一步包括一調變器1214及一將一信號(例如包括一傳輸資料封包)傳輸至(例如)一基地台、一存取點、另一存取終端機、一遠程代理等之發射機1216。雖然繪示為與處理器1206分離,但應瞭解多重處理器1210及排程器1212可係處理器1206或諸多處理器(未顯示)之一部分。The access terminal 1200 further includes a modulator 1214 and a signal (eg, including a transport data packet) transmitted to, for example, a base station, an access point, another access terminal, and a remote agent. Wait for the transmitter 1216. Although illustrated as being separate from processor 1206, it should be understood that multiprocessor 1210 and scheduler 1212 can be part of processor 1206 or a number of processors (not shown).

圖13係一對一系統1300之圖解說明,系統1300以一維護單載波約束之方式促進SC-FDMA環境中之跳頻。系統1300包括一基地台1302(例如存取點),基地台1302具有一經由複數個接收天線1306自一個或多個行動裝置1304接收信號之接收機1310、及一經由一發射天線1308向該一個或多個行動裝置1304實施發射之發射機1324。接收機1310可自接收天線1306接收資訊,並可進一步包括一信號容納器(未顯示),其接收根據基地台1302所提供之傳輸配置時間段排程之上行鏈路資料。另外,接收機1310運作地與一解調變器1312相關聯,解調變器1312對所接收之資訊進行解調變。藉由一耦合至一記憶體1316之處理器1314分析經解調變之符號,記憶體1316儲存與如下相關之資訊:以一維護SC-FDMA傳輸之單載波約束之方式提供跳頻;提供對一傳輸配置時間段之一稽核以確定使用者資料相對於一頻率中心線之位置;在多個跳頻技術之間進行選擇以維護連續之頻調指派;及/或任何其他與實施本文所述之各種動作及功能相關之合適之資訊。Figure 13 is a graphical illustration of a one-to-one system 1300 that facilitates frequency hopping in an SC-FDMA environment in a manner that maintains single carrier constraints. System 1300 includes a base station 1302 (e.g., an access point) having a receiver 1310 that receives signals from one or more mobile devices 1304 via a plurality of receive antennas 1306, and a transmit antenna 1308 to the one via a transmit antenna 1308. Or a plurality of mobile devices 1304 implement a transmitter 1324 that transmits. Receiver 1310 can receive information from receive antenna 1306 and can further include a signal receiver (not shown) that receives uplink data scheduled according to a transmission configuration time period provided by base station 1302. Additionally, receiver 1310 is operatively associated with a demodulator 1312 that demodulates the received information. The processor 1316 stores information related to the following by providing a demodulated symbol by a processor 1314 coupled to a memory 1316: providing frequency hopping in a manner that maintains single carrier constraints for SC-FDMA transmission; Auditing one of the transmission configuration time periods to determine the location of the user data relative to a frequency centerline; selecting between multiple frequency hopping techniques to maintain a continuous tone assignment; and/or any other implementation described herein Appropriate information about the various actions and functions.

處理器1314進一步耦合至一多重處理器1318,多重處理器1318可將一傳輸配置單元劃分成至少兩個基於時間之時槽,該等基於時間之時槽具有複數個副分頻頻率。另外,多重處理器1318可使該傳輸配置單元之一個或多個副分頻頻率相對於彼此頻移。作為一特定實例,可將一第一時槽中之副分頻頻率移位大致第二時槽中一傳輸頻寬之一半。另一選擇係或額外地,可跨與本文所述之傳輸配置單元相關聯之頻寬之一中心線頻率對副分頻頻率進行轉置。而且,多重處理器1318可整合配置至一第一時槽之一第一副分頻頻率及一第二隨後時槽之一第二副分頻頻率之使用者資料與配置至與該第一時槽及第二時槽相關聯之大致相等之副分頻頻率之額外之使用者資料。The processor 1314 is further coupled to a multiprocessor 1318 that divides a transmission configuration unit into at least two time-based time slots having a plurality of secondary frequency divisions. Additionally, multiprocessor 1318 can shift one or more of the sub-frequency of the transmission configuration unit relative to one another. As a specific example, the sub-frequency of a first time slot can be shifted by approximately one-half of a transmission bandwidth in the second time slot. Alternatively or additionally, the secondary frequency can be transposed across one of the centerline frequencies of the bandwidth associated with the transmission configuration unit described herein. Moreover, the multiprocessor 1318 can integrate the user data and the configuration of one of the first sub-frequency of one of the first time slots and the second sub-frequency of the second subsequent time slot to the first time. Additional user data for the substantially equal secondary crossover frequency associated with the slot and the second time slot.

多重處理器1318可耦合至一排程器1320,排程器1320可將使用者資料之一部分配置至一第一時槽之一第一副分頻頻率,並將使用者資料之一隨後部分配置至一第二隨後時槽之一經頻移之第二副分頻頻率。另外,排程器1320可耦合至發射機1324,除上述作用外,發射機1324可將與使用者資料第一部分之配置及使用者資料第二部分之經移位配置相關之資訊廣播至一終端機裝置用於一SC-FDMA上行鏈路傳輸中。The multiprocessor 1318 can be coupled to a scheduler 1320 that can configure a portion of the user profile to a first secondary frequency of a first time slot and then configure one of the user profiles. A second sub-frequency that is frequency shifted by one of the second subsequent slots. In addition, the scheduler 1320 can be coupled to the transmitter 1324. In addition to the functions described above, the transmitter 1324 can broadcast information related to the configuration of the first portion of the user profile and the shifted configuration of the second portion of the user profile to a terminal. The device is used in an SC-FDMA uplink transmission.

除上述內容外,處理器1314可評估使用者資料之一排程以辨識配置至使用者資料該隨後部分之第二隨後時槽之第二副分頻頻率。更特定而言,處理器1314可確定該使用者資料是否跨與該傳輸配置單元相關聯之傳輸頻寬之一中心線進行配置。若作出此確定,多重處理器1318可在一個或多個跳頻策略之間進行選擇以維護本文所述之單載波約束。In addition to the above, the processor 1314 can evaluate one of the user profiles to identify a second secondary frequency that is configured to the second subsequent time slot of the subsequent portion of the user profile. More specifically, the processor 1314 can determine whether the user profile is configured across a centerline of one of the transmission bandwidths associated with the transmission configuration unit. If this determination is made, multiprocessor 1318 can select between one or more frequency hopping strategies to maintain the single carrier constraints described herein.

現在參見圖14,在下行鏈路上,在存取點1405處,一發射(TX)資料處理器1410接收、格式化、編碼、交錯、及調變(或者符號映射)訊務資料並提供調變符號("資料符號")。一符號調變器1415接收並處理該等資料符號及導頻符號並提供一符號流。符號調變器1420對資料及導頻符號實施多重且將其提供至一發射機單元(TMTR)1420。每一發射符號皆可係一資料符號、一導頻符號、或一信號值0。該等導頻符號可在每一符號時間段內連續發送。該等導頻符號可經分頻多重(FDM)、正交分頻多重(OFDM)、分時多重(TDM)、分頻多重(FDM)、分碼多重(CDM)。Referring now to Figure 14, on the downlink, at access point 1405, a transmit (TX) data processor 1410 receives, formats, codes, interleaves, and modulates (or symbol maps) the traffic data and provides modulation. Symbol ("data symbol"). A symbol modulator 1415 receives and processes the data symbols and pilot symbols and provides a stream of symbols. The symbol modulator 1420 implements multiple data and pilot symbols and provides them to a transmitter unit (TMTR) 1420. Each transmitted symbol can be a data symbol, a pilot symbol, or a signal value of zero. The pilot symbols can be transmitted continuously for each symbol period. The pilot symbols can be divided by frequency division multiplexing (FDM), orthogonal frequency division multiple (OFDM), time division multiple (TDM), frequency division multiple (FDM), and code division multiple (CDM).

TMTR 1420接收符號流並將符號流轉換成一個或多個類比信號並進一步調節(例如,放大、濾波及增頻轉換)該等類比信號,以產生一適於在無線頻道上傳輸之下行鏈路信號。然後,經由一天線1425將該下行鏈路信號發射至該等終端機。在終端機1430處,一天線1435接收該下行鏈路信號並提供所接收信號至一接收單元(RCVR)1440。接收單元1440調節(例如濾波、放大、及降頻轉換)所接收信號,並將經調節之信號數位化以獲得樣本。一符號解調變器1445解調變並提供所接收之導頻符號至一處理器1450以用於頻道估計。符號解調變器1445進一步自處理器1450接收一下行鏈路之頻率響應估計,對所接收資料符號實施資料解調變以獲得資料符號估計(其係對所發射資料符號之估計),並將該等資料符號估計提供至一RX資料處理器1455,RX資料處理器1455解調變(即符號解映射)、解交錯及解碼該等資料符號估計以恢復所發射之訊務資料。符號解調變器1445及RX資料處理器1455所實施之處理分別互補於存取點1405處由符號調變器1415及TX資料處理器1410所實施之處理。The TMTR 1420 receives the symbol stream and converts the symbol stream into one or more analog signals and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to produce a downlink suitable for transmission over a wireless channel. signal. The downlink signal is then transmitted via an antenna 1425 to the terminals. At terminal 1430, an antenna 1435 receives the downlink signal and provides the received signal to a receiving unit (RCVR) 1440. Receive unit 1440 conditions (eg, filters, amplifies, and downconverts) the received signal and digitizes the conditioned signal to obtain a sample. A symbol demodulator 1445 demodulates and provides the received pilot symbols to a processor 1450 for channel estimation. The symbol demodulator 1445 further receives a frequency response estimate of the downlink from the processor 1450, performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols), and The data symbol estimates are provided to an RX data processor 1455 which demodulates (i.e., symbol demaps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data. The processing performed by symbol demodulator 1445 and RX data processor 1455 is complementary to the processing performed by symbol modulator 1415 and TX data processor 1410 at access point 1405, respectively.

在上行鏈路上,一TX資料處理器1460處理訊務資料並提供資料符號。一符號調變器1465接收該等資料符號並多重處理該等資料符號與導頻符號,並執行調變,然後提供一符號流。然後,一發射單元1470接收並處理該符號流,以產生一上行鏈路信號,該上行鏈路信號經由一天線1435發射至存取點1405。具體而言,該上行鏈路信號可係根據SC-FDMA要求並可包括本文所述之跳頻機制。On the uplink, a TX data processor 1460 processes the traffic data and provides data symbols. A symbol modulator 1465 receives the data symbols and multiplies the data symbols and pilot symbols, performs modulation, and then provides a stream of symbols. A transmit unit 1470 then receives and processes the symbol stream to generate an uplink signal that is transmitted via an antenna 1435 to an access point 1405. In particular, the uplink signal may be in accordance with SC-FDMA requirements and may include the frequency hopping mechanism described herein.

在存取點1405處,由天線1425接收到來自終端機1430之上行鏈路信號,並由一接收單元1475處理該上行鏈路信號以獲得樣本。然後,一符號解調變器1480處理該等樣本並提供所接收的上行鏈路導頻符號及資料符號估計值。一RX資料處理器1485處理該等數據符號估計值,以恢復由終端機1430所發射之訊務資料。一處理器1490為每一在上行鏈路上實施發射之現用終端機執行頻道估計。多個終端機可同時在上行鏈路上在其各自受指派之導頻子頻帶組上發射導頻,其中該等導頻子頻帶組可交錯。At access point 1405, an uplink signal from terminal 1430 is received by antenna 1425 and processed by a receiving unit 1475 to obtain samples. A symbol demodulator 1480 then processes the samples and provides received uplink pilot symbols and data symbol estimates. An RX data processor 1485 processes the data symbol estimates to recover the traffic data transmitted by the terminal unit 1430. A processor 1490 performs channel estimation for each active terminal that implements transmissions on the uplink. Multiple terminals may simultaneously transmit pilots on their respective assigned pilot sub-band groups on the uplink, where the pilot sub-band groups may be interleaved.

處理器1490及1450分別指導(例如控制、協調、管控等)存取點1405及終端機1430處之作業。各個處理器1490及1435可分別與用於儲存程式碼及資料之記憶體單元(未圖示)相關聯。處理器1490及1450亦可執行計算來分別導出上行鏈路及下行鏈路之頻率及脈衝響應估計值。Processors 1490 and 1450 direct (eg, control, coordinate, manage, etc.) operations at access point 1405 and terminal 1430, respectively. Each processor 1490 and 1435 can be associated with a memory unit (not shown) for storing code and data, respectively. Processors 1490 and 1450 can also perform computations to derive frequency and impulse response estimates for the uplink and downlink, respectively.

對於一多重存取系統(例如,SC-FDMA、FDMA、OFDMA、CDMA、TDMA、TDMA等),多個終端機可在上行鏈路上同時發射。對於此一系統,該等導頻子頻帶可由不同終端機共享。頻道估計技術可用於其中每一終端機之導頻子頻帶皆跨越整個運作頻帶(可能除頻帶邊緣之外)之情形。為獲得每一終端機之頻率分集,此一導頻子頻帶結構將較佳。本文所述技術可由不同之構件執行。舉例而言,該等技術可實施於硬體、軟體、或其一組合中。對於硬體實施方案,其可係數位、類比、或數位及類比兩者,頻道估計所用之處理單元可構建於一或多個應用專用積體電路(ASIC)、數位信號處理器(DSP)、數位信號處理裝置(DSPD)、可程序化邏輯裝置(PLD)、現場可程序化閘陣列(FPGA)、處理器、控制器、微控制器、微處理器、其他設計用於執行本文所述功能之電子單元、或其一組合中。對於軟體,可藉由執行本文所述功能之模組(例如程序、功能等)來構建。該等軟體碼可儲存於記憶體單元中並由處理器1490及1450來執行。For a multiple access system (eg, SC-FDMA, FDMA, OFDMA, CDMA, TDMA, TDMA, etc.), multiple terminals can transmit simultaneously on the uplink. For this system, the pilot subbands can be shared by different terminals. The channel estimation technique can be used in situations where the pilot subbands of each terminal span the entire operating band (possibly except for the band edges). In order to obtain the frequency diversity of each terminal, this pilot subband structure will be better. The techniques described herein can be performed by different components. For example, such techniques can be implemented in hardware, software, or a combination thereof. For hardware implementations, which may be coefficient bits, analogs, or digits and analogs, the processing unit used for channel estimation may be constructed in one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), Digital Signal Processing Unit (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), Processor, Controller, Microcontroller, Microprocessor, and others designed to perform the functions described herein The electronic unit, or a combination thereof. For software, it can be constructed by modules (eg, programs, functions, etc.) that perform the functions described herein. The software codes can be stored in the memory unit and executed by the processors 1490 and 1450.

應瞭解,本文所述實施例可實施於硬體、軟體、韌體、中間體、微碼、或其任一組合中。對於硬體實施方案而言,各處理單元可構建於一個或多個應用專用積體電路(ASIC)、數位信號處理器(DSP)、數位信號處理裝置(DSPD)、可程式化邏輯裝置(PLD)、現場可程式化閘陣列(FPGA)、處理器、控制器、微控制器、微處理器、其他設計用於執行本文所述功能之電子單元、或其一組合中。It will be appreciated that the embodiments described herein can be implemented in hardware, software, firmware, intermediates, microcode, or any combination thereof. For hardware implementations, each processing unit can be built into one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), and programmable logic devices (PLDs). ), Field Programmable Gate Array (FPGA), processor, controller, microcontroller, microprocessor, other electronic unit designed to perform the functions described herein, or a combination thereof.

當該等實施例實施於軟體、韌體、中間體或微碼、程式碼或碼段中時,其可儲存於例如儲存組件等機器可讀媒體中。碼段可代表程序、功能、次程式、程式、例程、次例程、模組、軟體包、類別、或任何由指令、資料結構或程式語句構成之組合。碼段可藉由傳遞及/或接收資訊、資料、自變數、參數或記憶體內容而耦合至另一碼段或硬體電路。資訊、自變數、參數、資料等可使用包括記憶體共享、訊息傳遞、記號傳遞、網路傳輸等在內之任何合適途徑傳遞、轉接或發射。When the embodiments are implemented in a software, firmware, intermediate or microcode, code or code segment, they can be stored in a machine readable medium such as a storage component. A code segment can represent a program, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment can be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, self-variables, parameters, data, etc. can be transmitted, transferred or transmitted using any suitable means including memory sharing, messaging, token transfer, network transmission, and the like.

對於一軟體構建方案,可使用執行本文所述功能之模組(例如,程序、功能等等)來構建本文所述技術。軟體碼可儲存於記憶體單元中並由處理器執行。該記憶體單元可構建於處理器內或處理器外部,在記憶體單元構建於處理器外部之情況下,記憶體單元可藉由此項技術中已知的各種方法以通信方式耦合至處理器。For a software build scheme, the techniques described herein can be implemented using modules (eg, programs, functions, etc.) that perform the functions described herein. The software code can be stored in the memory unit and executed by the processor. The memory unit can be built into the processor or external to the processor. In the case where the memory unit is external to the processor, the memory unit can be communicatively coupled to the processor by various methods known in the art. .

參見圖15,其圖解說明一實例性系統1500,其以一維護單載波約束之方式提供用於SC-FDMA傳輸之跳頻。舉例而言,系統1500可至少部分地存在於無線通信網路及/或諸如節點、基地台、存取點或諸如此類之發射機中。應瞭解,將系統1500表示成包括若干功能塊,該等功能塊可為代表由一處理器、軟體、或其組合(例如韌體)所執行之功能之功能塊。Referring to Figure 15, an exemplary system 1500 is illustrated that provides frequency hopping for SC-FDMA transmission in a manner that maintains single carrier constraints. For example, system 1500 can reside at least in part in a wireless communication network and/or in a transmitter such as a node, base station, access point, or the like. It will be appreciated that system 1500 is represented as including a number of functional blocks, which may be functional blocks representing functions performed by a processor, software, or combination thereof (e.g., firmware).

系統1500可包括一用於將傳輸配置單元劃分成至少兩個基於時間之時槽之模組1502,該等基於時間之時槽具有複數個副分頻頻率。舉例而言,該等副分頻頻率可包括總系統頻率頻譜頻寬之一部分。此外,可關於不同之基於時間之時槽對該等副分頻頻率進行頻移。如本文所述,可將屬於一服務之資料配置至不同時槽之多個經頻移之部分以促進在一SC-FDMA環境中之跳頻。更具體而言,可根據一線性循環移位關於另一時槽之副分頻頻率對一時槽之副分頻頻率進行移位。舉例而言,可使用總系統頻譜頻寬之一部分(例如大致一半、或三分之一或四分之一等)來線性移位一時槽中之副分頻頻率。另一選擇係或另外,可藉由鏡像轉置關於頻譜頻寬之一中心線(或例如諸如第三線、象限線及類似線等一個或多個非中心線)對副分頻頻率進行移位。除上述內容外,可如本文所述在一個或多個時槽內對跳頻及非跳頻副分頻頻率進行多重。System 1500 can include a module 1502 for dividing a transmission configuration unit into at least two time-based time slots having a plurality of secondary frequency divisions. For example, the secondary frequency divisions can include a portion of the total system frequency spectral bandwidth. In addition, the sub-frequency can be frequency shifted with respect to different time-based time slots. As described herein, data belonging to a service can be configured to multiple frequency shifted portions of different time slots to facilitate frequency hopping in an SC-FDMA environment. More specifically, the sub-frequency of one-time slot can be shifted according to a linear cyclic shift with respect to the sub-frequency of another time slot. For example, a portion of the total system spectral bandwidth (eg, approximately one-half, or one-third or one-quarter, etc.) may be used to linearly shift the secondary frequency of the one-time slot. Alternatively or additionally, the secondary crossover frequency can be shifted by mirror transposition of one of the centerlines of the spectral bandwidth (or one or more non-centerlines such as, for example, third, quadrant, and the like) . In addition to the above, the frequency hopping and non-frequency hopping sub-frequency can be multiplexed in one or more time slots as described herein.

系統1500可進一步包括一用於將資料配置至一傳輸配置單元之模組1504。更具體而言,模組1504可將使用者資料之一部分配置至一第一時槽之一第一副分頻頻率,並將使用者資料之一額外部分配置至一第二隨後時槽之一經移位之第二副分頻頻率。根據進一步之態樣,系統1500可包括一用於移位其一部分之配置時間段之頻率的模組1506。舉例而言,模組1506可如上文所述關於一第一副分頻頻率移位一第二副分頻頻率。System 1500 can further include a module 1504 for configuring data to a transmission configuration unit. More specifically, the module 1504 can configure one part of the user data to one of the first sub-frequency of the first time slot, and configure one of the user data to the second subsequent time slot. The second sub-frequency of the shift. According to a further aspect, system 1500 can include a module 1506 for shifting the frequency of a portion of its configured time period. For example, module 1506 can shift a second sub-frequency by a first sub-frequency as described above.

根據本發明之另一態樣,系統1500可包括一用於將資料傳輸至一終端機之模組1508。舉例而言,模組1508可將與使用者資料之一第一部分之配置及使用者資料之一第二部分之移位配置相關之資訊傳輸至一終端機裝置用於一SC-FDMA上行鏈路傳輸中。作為一結果,該終端機裝置可組合跳頻傳輸之低干擾及高分集性質與SC-FDMA傳輸之低PAPR性質。In accordance with another aspect of the present invention, system 1500 can include a module 1508 for transmitting data to a terminal. For example, the module 1508 can transmit information related to the configuration of the first part of the user data and the shift configuration of the second part of the user data to a terminal device for an SC-FDMA uplink. In transit. As a result, the terminal device can combine the low interference and high diversity nature of the frequency hopping transmission with the low PAPR nature of the SC-FDMA transmission.

根據進一步之態樣,系統1500可包括一用於在一傳輸配置單元中多重資料之模組1510。模組1510將配置至第一時槽之第一副分頻頻率及第二隨後時槽之一第二副分頻頻率之使用者資料與配置至與第一及第二時槽相關聯之大致相等之副分頻頻率之額外之使用者資料多重。作為一更一般之實例,模組1510可將經循環性移位之資料與經鏡像轉置之資料及/或與經頻率選擇式排程之資料一起進行多重。作為一結果,系統1500可按照服務及/或裝置約束之要求同時提供跳頻或非跳頻。According to a further aspect, system 1500 can include a module 1510 for multiplexing multiple data in a configuration unit. The module 1510 configures the user profile of the first secondary frequency divided by the first time slot and the second secondary frequency of the second subsequent time slot to be associated with the first and second time slots. Additional user data for equal sub-frequency is multiple. As a more general example, module 1510 can multiplex the cyclically shifted data with mirrored transposed data and/or with frequency selective scheduling data. As a result, system 1500 can provide both frequency hopping or non-hopping as required by the service and/or device constraints.

根據本發明新穎方法之相關態樣,系統1500可包括一用於評估一使用者資料排程之模組1512。特定而言,模組1512可評估使用者資料一排程以關於排程至一第一副分頻頻率及時槽之相關資料識別配置至使用者資料之一部分之一第二時槽之一第二副分頻頻率。作為一更具體之實例,模組1512可評估使用者資料之一排程以確定該使用者資料是否跨與一傳輸配置單元相關聯之一傳輸頻寬之一中心線(或例如一個或多個非中心頻率線)配置。作為一結果,模組1512可促進在一個或多個適合最小化PAPR及傳輸干擾並最大化頻率分集之跳頻機制(例如循環性移位、鏡像轉置、及/或經多重之跳頻)之間進行選擇。In accordance with a related aspect of the novel method of the present invention, system 1500 can include a module 1512 for evaluating a user profile. In particular, the module 1512 can evaluate the user data for a schedule to identify one of the second time slots of the user profile with respect to the data associated with the first sub-frequency and the time slot. Sub-frequency. As a more specific example, module 1512 can evaluate one of the user profiles to determine if the user profile spans one of the transmission bandwidths associated with a transmission configuration unit (or one or more, for example, one or more Non-central frequency line) configuration. As a result, the module 1512 can facilitate one or more frequency hopping mechanisms (eg, cyclic shift, mirror transpose, and/or multiple frequency hopping) that are suitable for minimizing PAPR and transmitting interference and maximizing frequency diversity. Choose between.

參考圖16,其繪示一實例性系統1600,其可根據一項或多項態樣在一SC-FDMA上行鏈路傳輸中應用跳頻。系統1600可至少部分地存在於(舉例而言)一行動裝置內。如圖所示,系統1600包括若干個可代表由一處理器、軟體、或其一組合(例如韌體)所執行功能之功能塊。Referring to Figure 16, an exemplary system 1600 is illustrated that can apply frequency hopping in an SC-FDMA uplink transmission in accordance with one or more aspects. System 1600 can reside at least partially within, for example, a mobile device. As shown, system 1600 includes a number of functional blocks that can represent functions performed by a processor, software, or a combination thereof (e.g., firmware).

系統1600可包括一用於接收頻移資訊之模組1602。更特定而言,模組1602可接收關於使用者資料跨用於SC-FDMA上行鏈路傳輸中之一傳輸配置單元之複數個時槽進行頻移配置之資訊。此外,系統1600可包括一用於組織上行鏈路使用者資料之模組1604。舉例而言,模組1604可根據用於接收頻移資訊之模組1502所接收之資訊將使用者資料組織進一傳輸資料封包內。更特定而言,可組織資料使得該資料關於該資料封包之一第一及第二時槽頻移該傳輸配置單元之一頻寬之一半。另一選擇係或額外地,可將資料配置至該配置單元之轉置跨越一與該傳輸配置單元相關聯之頻寬之一中心線頻率的經頻移副分頻頻率。根據更多之其他態樣,可將資料配置至該第一及第二時槽之相同副分頻頻率。作為一結果,系統1600可按照裝置及/或服務約束之要求達成各種跳頻機制或非跳頻。System 1600 can include a module 1602 for receiving frequency shift information. More specifically, the module 1602 can receive information regarding frequency shift configuration of user data across a plurality of time slots for one of the SC-FDMA uplink transmissions. Additionally, system 1600 can include a module 1604 for organizing uplink user profiles. For example, the module 1604 can organize the user data into a transmission data packet according to the information received by the module 1502 for receiving the frequency shift information. More specifically, the organizen data causes the data to be shifted by one-half the bandwidth of one of the transmission configuration units with respect to one of the first and second time slots of the data packet. Alternatively or additionally, the data may be configured to transpose the frequency-shifted sub-frequency of the configuration unit to span a centerline frequency of one of the bandwidths associated with the transmission configuration unit. According to still other aspects, the data can be configured to the same secondary crossover frequency of the first and second time slots. As a result, system 1600 can achieve various frequency hopping mechanisms or non-frequency hopping as required by the device and/or service constraints.

上文所述包括一項或多項態樣之實例。當然,不可能出於說明前述態樣之目的而說明各組件或方法的每一種可構想之組合,而是,熟習此項技術者可知,可具有各種態樣之諸多進一步組合及排列。相應地,所述態樣旨在囊括所有此等仍歸屬於隨附申請專利範圍之範疇內之改變、修改及變化形式。此外,就本詳細說明或申請專利範圍中所用措詞"包括(includes)"而言,該措詞之包括方式擬與措詞"包括(comprising)"在一請求項中用作一轉折詞時所解釋之方式相同。The examples above include examples of one or more aspects. Of course, it is not possible to describe every conceivable combination of components or methods for the purpose of illustrating the foregoing aspects, but it will be apparent to those skilled in the art that many further combinations and permutations of various aspects are possible. Accordingly, the described aspects are intended to cover all such changes, modifications, and variations that are within the scope of the appended claims. In addition, the term "includes" as used in this detailed description or the scope of the patent application, the manner in which the wording is included and the word "comprising" is used as a turning point in a claim. The explanation is the same.

100...無線通信系統100. . . Wireless communication system

102a...地理區域102a. . . Geographical area

102b...地理區域102b. . . Geographical area

102c...地理區域102c. . . Geographical area

104a...更小之區域104a. . . Smaller area

104b...更小之區域104b. . . Smaller area

104c...更小之區域104c. . . Smaller area

110...基地台110. . . Base station

120...終端機120. . . Terminal

130...系統控制器130. . . System controller

200...無線通信環境200. . . Wireless communication environment

202...基地台202. . . Base station

204...行動裝置204. . . Mobile device

206a...地理區域206a. . . Geographical area

206b...地理區域206b. . . Geographical area

206c...地理區域206c. . . Geographical area

206d...地理區域206d. . . Geographical area

802...串列轉並列變換器802. . . Serial to parallel converter

804...Q-點離散傅立葉轉換裝置804. . . Q-point discrete Fourier transform device

806...頻譜成形組件806. . . Spectrum shaping component

808...頻調映射組件808. . . Tone mapping component

810...N點逆向快速傅立葉轉換810. . . N-point inverse fast Fourier transform

902...時槽902. . . Time slot

904...時槽904. . . Time slot

906...時間線906. . . timeline

908...副分頻頻率908. . . Secondary frequency

910...副分頻頻率910. . . Secondary frequency

912...副分頻頻率912. . . Secondary frequency

914...副分頻頻率914. . . Secondary frequency

1002...基於時間之時槽1002. . . Time-based slot

1004...基於時間之時槽1004. . . Time-based slot

1006...時間線1006. . . timeline

1008...副分頻頻率1008. . . Secondary frequency

1010...副分頻頻率1010. . . Secondary frequency

1012...副分頻頻率1012. . . Secondary frequency

1014...中心線1014. . . Center line

1102...時槽1102. . . Time slot

1104...時槽1104. . . Time slot

1108...副分頻頻率1108. . . Secondary frequency

1110...副分頻頻率1110. . . Secondary frequency

1112...副分頻頻率1112. . . Secondary frequency

1114...副分頻頻率1114. . . Secondary frequency

1200...存取終端機1200. . . Access terminal

1202...天線1202. . . antenna

1204...解調變器1204. . . Demodulation transformer

1206...處理器1206. . . processor

1208...記憶體1208. . . Memory

1210...多重處理器1210. . . Multiple processor

1212...排程器1212. . . Scheduler

1214...調變器1214. . . Modulator

1216...發射機1216. . . transmitter

1300...系統1300. . . system

1302...基地台1302. . . Base station

1304...行動裝置1304. . . Mobile device

1306...接收天線1306. . . Receive antenna

1308...發射天線1308. . . Transmitting antenna

1310...接收機1310. . . Receiver

1312...解調變器1312. . . Demodulation transformer

1314...處理器1314. . . processor

1316...記憶體1316. . . Memory

1318...多重處理器1318. . . Multiple processor

1320...排程器1320. . . Scheduler

1324...發射機1324. . . transmitter

1405...存取點1405. . . Access point

1410...發射(TX)資料處理器1410. . . Transmit (TX) data processor

1415...符號調變器1415. . . Symbol modulator

1420...符號調變器1420. . . Symbol modulator

1425...天線1425. . . antenna

1430...終端機1430. . . Terminal

1435...天線1435. . . antenna

1440...接收單元1440. . . Receiving unit

1445...符號解調變器1445. . . Symbol demodulation transformer

1450...處理器1450. . . processor

1455...RX資料處理器1455. . . RX data processor

1460...TX資料處理器1460. . . TX data processor

1465...符號調變器1465. . . Symbol modulator

1470...發射單元1470. . . Launch unit

1475...接收單元1475. . . Receiving unit

1480...符號解調變器1480. . . Symbol demodulation transformer

1485...RX資料處理器1485. . . RX data processor

1490...處理器1490. . . processor

1500...實例性系統1500. . . Instance system

1502...模組1502. . . Module

1504...模組1504. . . Module

1506...模組1506. . . Module

1508...模組1508. . . Module

1510...模組1510. . . Module

1512...模組1512. . . Module

1600...系統1600. . . system

1602...模組1602. . . Module

1604...模組1604. . . Module

圖1圖解說明一根據本文所述各種態樣之無線通信系統。Figure 1 illustrates a wireless communication system in accordance with various aspects described herein.

圖2繪示一無線通信環境使用之一實例性通信設備。2 illustrates an example communication device for use in a wireless communication environment.

圖3圖解說明一用於促進單載波分頻多重存取(SC-FDMA)傳輸中之跳頻之實例性方法。3 illustrates an example method for facilitating frequency hopping in single carrier frequency division multiple access (SC-FDMA) transmission.

圖4繪示一用於提供用於SC-FDMA傳輸之循環性移位跳頻之實例性方法。4 illustrates an example method for providing cyclic shift hopping for SC-FDMA transmission.

圖5圖解說明一用於SC-FDMA傳輸之鏡像轉置式跳頻之實例性方法。Figure 5 illustrates an exemplary method of mirrored transposed frequency hopping for SC-FDMA transmission.

圖6繪示一根據一項或多項態樣基於使用者資料之配置在多個SC-FDMA跳頻機制之間進行選擇之實例性方法。6 illustrates an example method for selecting between multiple SC-FDMA frequency hopping mechanisms based on user profile configuration based on one or more aspects.

圖7圖解說明一用於在一SC-FDMA環境中對跳頻及非跳頻傳輸進行多重之實例性方法。Figure 7 illustrates an exemplary method for multiplexing frequency hopping and non-hopping transmissions in an SC-FDMA environment.

圖8繪示一提供一低峰均值功率比之實例性SC-FDMA信號變換。Figure 8 illustrates an exemplary SC-FDMA signal conversion that provides a low peak-to-average power ratio.

圖9圖解說明一根據一項或多項態樣應用循環性移位跳頻之實例性傳輸配置單元。Figure 9 illustrates an example transmission configuration unit that applies cyclic shift hopping in accordance with one or more aspects.

圖10圖解說明一根據額外之態樣應用鏡像轉置跳頻之一實例性傳輸配置單元。Figure 10 illustrates an example transmission configuration unit that applies image transposed frequency hopping according to additional aspects.

圖11繪示一根據進一步之態樣應用經多重之跳頻及非跳頻使用者資料之實例性傳輸配置單元。FIG. 11 illustrates an exemplary transmission configuration unit for applying multiple frequency hopping and non-frequency hopping user data according to a further aspect.

圖12圖解說明一根據一項或多項態樣在上行鏈路SC-FDMA傳輸中應用跳頻之實例性存取終端機。Figure 12 illustrates an example access terminal that applies frequency hopping in uplink SC-FDMA transmissions in accordance with one or more aspects.

圖13繪示一可結合本文所述之一無線網路環境應用之實例性基地台。Figure 13 illustrates an exemplary base station that can be utilized in conjunction with one of the wireless network environment applications described herein.

圖14圖解說明一根據本文所揭示之態樣促進一SC-FDMA環境中之跳頻傳輸之實例性系統。14 illustrates an example system that facilitates frequency hopping transmission in an SC-FDMA environment in accordance with the aspects disclosed herein.

圖15繪示一藉由一個或多個使用者終端機促進上行鏈路SC-FDMA傳輸之跳頻之系統。15 illustrates a system for facilitating frequency hopping of uplink SC-FDMA transmissions by one or more user terminals.

圖16繪示一將上行鏈路SC-FDMA傳輸之跳頻應用於一個或多個網路基地台之系統。16 illustrates a system for applying frequency hopping of uplink SC-FDMA transmissions to one or more network base stations.

(無元件符號說明)(no component symbol description)

Claims (49)

一種用於在一單載波分頻多重存取(SC-FDMA)傳輸中執行跳頻的方法,其包括:接收關於一傳輸配置單元之資訊,該傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率;基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或循環性移位跳頻或二者皆有來判定在該第二時槽中之該第二副分頻頻率;及發送在該第一時槽之該第一副分頻頻率中及在該第二時槽之該第二副分頻頻率中之資料。 A method for performing frequency hopping in a single carrier frequency division multiple access (SC-FDMA) transmission, comprising: receiving information about a transmission configuration unit spanning first and second time slots At least two time-based time slots, and a plurality of sub-frequency divided frequencies including first and second sub-frequency; based on the first sub-frequency in the first time slot and further based on mirroring Setting a frequency hopping or cyclic shift hopping or both to determine the second secondary frequency in the second time slot; and transmitting in the first secondary frequency of the first time slot And data in the second sub-frequency of the second time slot. 如請求項1之方法,其中該第二副分頻頻率係依據循環性移位跳頻來判定,及其中該資訊指示在該第一及該第二副分頻頻率之間的一頻率移位。 The method of claim 1, wherein the second sub-frequency is determined according to a cyclic shift hopping, and wherein the information indicates a frequency shift between the first and the second sub-frequency . 如請求項1之方法,其中該第二副分頻頻率係依據循環性移位跳頻來判定,及在頻率上自該第一副分頻頻率移位大致一傳輸頻寬之一半。 The method of claim 1, wherein the second sub-frequency is determined according to a cyclic shift hopping frequency, and is shifted from the first sub-frequency by one-half of a transmission bandwidth in frequency. 如請求項1之方法,其中該第二副分頻頻率係依據鏡像轉置跳頻來判定,及其中該第一及該第二副分頻頻率轉置跨越一傳輸頻寬之一中心線頻率,使得當該第一副分頻頻率分別大致位於該中心線頻率下或上時,該第二副分頻頻率大致等距地位於該中心線頻率上或下。 The method of claim 1, wherein the second sub-frequency is determined according to the image transposed frequency hopping, and wherein the first and the second sub-frequency are transposed across a center line frequency of one transmission bandwidth The second secondary frequency is substantially equidistantly located above or below the centerline frequency when the first secondary frequency is substantially at or above the centerline frequency, respectively. 如請求項3方法,其中若該資料經排程使得其不跨越該傳輸頻寬之一中心線頻率,則該第二副分頻頻率在頻率 上自該第一副分頻頻率移位大致該傳輸頻寬之一半。 The method of claim 3, wherein if the data is scheduled such that it does not cross a centerline frequency of the transmission bandwidth, the second secondary frequency is at a frequency The shift from the first sub-frequency is approximately one-half of the transmission bandwidth. 如請求項4之方法,其中若該資料經排程使得其跨越該中心線頻率,則該第一及該第二副分頻頻率轉置跨越該傳輸頻寬之該中心線頻率。 The method of claim 4, wherein if the data is scheduled such that it spans the centerline frequency, the first and second secondary frequency divisions are transposed across the centerline frequency of the transmission bandwidth. 如請求項1之方法,其中該至少兩個基於時間之時槽包括一與該傳輸配置單元相關聯之大致相等之時間部分。 The method of claim 1, wherein the at least two time-based time slots comprise a substantially equal time portion associated with the transmission configuration unit. 如請求項1之方法,其中來自另一使用者之資料係在該第一時槽之該第二副分頻頻率中及在該第二時槽之該第一副分頻頻率中被發送。 The method of claim 1, wherein the data from the other user is transmitted in the second sub-frequency of the first time slot and in the first sub-frequency of the second time slot. 如請求項1之方法,其中該第一副分頻頻率係在一傳輸頻寬之一邊緣處的一第一分頻頻率內,及其中該第二副分頻頻率係在該傳輸頻寬之一相對邊緣處的一第二分頻頻率內。 The method of claim 1, wherein the first sub-frequency is within a first frequency of a frequency of one of the transmission bandwidths, and wherein the second sub-frequency is at the transmission bandwidth A second frequency within a relative edge. 如請求項1之方法,其進一步包含:產生包含在該第一時槽之該第一副分頻頻率中發送之該資料之一第一複數個SC-FDMA符號;及產生包含在該第二時槽之該第二副分頻頻率中發送之該資料之一第二複數個SC-FDMA符號。 The method of claim 1, further comprising: generating a first plurality of SC-FDMA symbols of the data transmitted in the first sub-frequency of the first time slot; and generating the second A second plurality of SC-FDMA symbols of the data transmitted in the second sub-frequency of the time slot. 一種在一單載波分頻多重存取(SC-FDMA)傳輸中執行跳頻之設備,其包括:用於接收關於一傳輸配置單元之資訊之構件,該傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率; 用於基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或循環性移位跳頻或二者皆有來判定在該第二時槽中之該第二副分頻頻率之構件;及用於發送在該第一時槽之該第一副分頻頻率中及在該第二時槽之該第二副分頻頻率中之資料之構件。 An apparatus for performing frequency hopping in a single carrier frequency division multiple access (SC-FDMA) transmission, comprising: means for receiving information about a transmission configuration unit, the transmission configuration unit spanning the first and second At least two time-based time slots of the time slot, and a plurality of sub-frequency division frequencies including the first and second sub-frequency; Determining, in the second time slot, based on the first sub-frequency in the first time slot and further depending on a mirrored transposition frequency or a cyclic shift frequency hopping or both a component of the second frequency dividing frequency; and means for transmitting data in the first secondary frequency of the first time slot and in the second secondary frequency of the second time slot. 如請求項11之設備,其中該第二副分頻頻率係依據循環性移位跳頻來判定,及其中該資訊指示在該第一及該第二副分頻頻率之間的一頻率移位。 The device of claim 11, wherein the second secondary frequency is determined according to a cyclic shift frequency hopping, and wherein the information indicates a frequency shift between the first and second secondary frequency . 如請求項11之設備,其中該第二副分頻頻率係依據循環性移位跳頻來判定,及在頻率上自該第一副分頻頻率移位大致一傳輸頻寬之一半。 The device of claim 11, wherein the second sub-frequency is determined according to a cyclic shift hopping frequency, and is shifted from the first sub-frequency by one-half of a transmission bandwidth in frequency. 如請求項11之設備,其中該第二副分頻頻率係依據鏡像轉置跳頻來判定,及其中該第一及該第二副分頻頻率轉置跨越一傳輸頻寬之一中心線頻率,使得當該第一副分頻頻率分別大致位於該中心線頻率下或上時,該第二副分頻頻率大致等距地位於在該中心線頻率上或下。 The device of claim 11, wherein the second sub-frequency is determined according to the image transposed frequency hopping, and wherein the first and the second sub-frequency are transposed across a center line frequency of one transmission bandwidth The second secondary frequency is substantially equidistantly located above or below the centerline frequency when the first secondary frequency is substantially at or above the centerline frequency, respectively. 如請求項13之設備,其中若該資料經排程使得其不跨越該傳輸頻寬之一中心線頻率,則該第二副分頻頻率在頻率上自該第一副分頻頻率移位大致該傳輸頻寬之一半。 The device of claim 13, wherein if the data is scheduled such that it does not span a centerline frequency of the transmission bandwidth, the second secondary frequency is shifted in frequency from the first secondary frequency. One half of the transmission bandwidth. 如請求項14之設備,其中若該資料經排程使得其跨越該中心線頻率,則該第一及該第二副分頻頻率轉置跨越該傳輸頻寬之該中心線頻率。 The device of claim 14, wherein the first and second secondary frequency divisions transpose across the centerline frequency of the transmission bandwidth if the data is scheduled such that it spans the centerline frequency. 如請求項11之設備,其中該至少兩個基於時間之時槽包括一與該傳輸配置單元相關聯之大致相等之時間部分。 The device of claim 11, wherein the at least two time-based time slots comprise a substantially equal time portion associated with the transmission configuration unit. 如請求項11之設備,其中來自另一使用者之資料係在該第一時槽之該第二副分頻頻率中及在該第二時槽之該第一副分頻頻率中被發送。 The device of claim 11, wherein the data from the other user is transmitted in the second sub-frequency of the first time slot and in the first sub-frequency of the second time slot. 如請求項11之設備,其中該第一副分頻頻率係在一傳輸頻寬之一邊緣處的一第一分頻頻率內,及其中該第二副分頻頻率係在該傳輸頻寬之一相對邊緣處的一第二分頻頻率內。 The device of claim 11, wherein the first sub-frequency is within a first frequency of a frequency of one of the transmission bandwidths, and wherein the second sub-frequency is at the transmission bandwidth A second frequency within a relative edge. 如請求項11之設備,其進一步包含:用於產生包含在該第一時槽之該第一副分頻頻率中發送之該資料之一第一複數個SC-FDMA符號之構件;及用於產生包含在該第二時槽之該第二副分頻頻率中發送之該資料之一第二複數個SC-FDMA符號之構件。 The device of claim 11, further comprising: means for generating a first plurality of SC-FDMA symbols of the data transmitted in the first sub-frequency of the first time slot; and Generating a component comprising a second plurality of SC-FDMA symbols of the data transmitted in the second sub-frequency of the second time slot. 一種在一單載波分頻多重存取(SC-FDMA)傳輸中執行跳頻之設備,其包括:至少一處理器,其經組態以接收關於一傳輸配置單元之資訊,該傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率、基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或循環性移位跳頻或二者皆有來判定在該第二時槽中之該第二副分頻頻率、及發送在該第一時槽之該第一副分頻頻率中及在該第二時槽之該第二副分頻頻率中之資料。 An apparatus for performing frequency hopping in a single carrier frequency division multiple access (SC-FDMA) transmission, comprising: at least one processor configured to receive information about a transmission configuration unit, the transmission configuration unit spanning At least two time-based time slots including the first and second time slots, and a plurality of secondary frequency division frequencies including the first and second secondary frequency divisions, based on the first secondary frequency in the first time slot Dividing the frequency and further determining the second sub-frequency in the second time slot according to the mirrored transposition frequency hopping or the cyclic shift frequency hopping or both, and transmitting in the first time slot Information in the first sub-frequency and in the second sub-frequency of the second time slot. 如請求項21之設備,其中該第二副分頻頻率係依據循環性移位跳頻來判定,及其中該資訊指示在該第一及該第 二副分頻頻率之間的一頻率移位。 The device of claim 21, wherein the second sub-frequency is determined according to a cyclic shift hopping frequency, and wherein the information is indicated in the first and the first A frequency shift between the two sub-frequency. 如請求項21之設備,其中該第二副分頻頻率係依據循環性移位跳頻來判定,及相對於該第一副分頻頻率頻移大致一傳輸頻寬之一半。 The device of claim 21, wherein the second sub-frequency is determined according to a cyclic shift hopping frequency, and the frequency is shifted by one-half of a transmission bandwidth with respect to the first sub-frequency. 如請求項21之設備,其中該第二副分頻頻率係依據鏡像轉置跳頻來判定,及其中該第一及該第二副分頻頻率轉置跨越一傳輸頻寬之一中心線頻率,使得當該第一副分頻頻率分別大致位於該中心線頻率下或上時,該第二副分頻頻率大致位於該中心線頻率上或下。 The device of claim 21, wherein the second sub-frequency is determined according to the image transposed frequency hopping, and wherein the first and the second sub-frequency are transposed across a center line frequency of one transmission bandwidth The second secondary frequency is substantially above or below the centerline frequency when the first secondary frequency is substantially at or above the centerline frequency. 如請求項23之設備,其中若該資料經排程使得其不跨越該傳輸頻寬之一中心線頻率,則該第二副分頻頻率在頻率上自該第一副分頻頻率移位大致該傳輸頻寬之一半。 The device of claim 23, wherein if the data is scheduled such that it does not span a centerline frequency of the transmission bandwidth, the second secondary frequency is shifted in frequency from the first secondary frequency. One half of the transmission bandwidth. 如請求項24之設備,其中若該資料經排程使得其跨越該中心線頻率,則該第一及該第二副分頻頻率轉置跨越該傳輸頻寬之該中心線頻率。 The device of claim 24, wherein if the data is scheduled such that it spans the centerline frequency, the first and second secondary frequency divisions are transposed across the centerline frequency of the transmission bandwidth. 如請求項21之設備,其中該至少兩個基於時間之時槽包括一與該傳輸配置單元相關聯之大致相等之時間部分。 The device of claim 21, wherein the at least two time-based time slots comprise a substantially equal time portion associated with the transmission configuration unit. 如請求項21之設備,其中來自另一使用者之資料係在該第一時槽之該第二副分頻頻率中及在該第二時槽之該第一副分頻頻率中被發送。 The device of claim 21, wherein the data from the other user is transmitted in the second secondary frequency of the first time slot and in the first secondary frequency of the second time slot. 如請求項21之設備,其中該第一副分頻頻率係在一傳輸頻寬之一邊緣處的一第一分頻頻率內,及其中該第二副分頻頻率係在該傳輸頻寬之一相對邊緣處的一第二分頻頻率內。 The device of claim 21, wherein the first secondary frequency is within a first frequency divided by one of the edges of the transmission bandwidth, and wherein the second secondary frequency is at the transmission bandwidth A second frequency within a relative edge. 如請求項21之設備,其中該處理器進一步經組態以產生包含在該第一時槽之該第一副分頻頻率中發送之該資料之一第一複數個SC-FDMA符號,及產生包含在該第二時槽之該第二副分頻頻率中發送之該資料之一第二複數個SC-FDMA符號。 The device of claim 21, wherein the processor is further configured to generate a first plurality of SC-FDMA symbols of the data transmitted in the first secondary frequency of the first time slot, and to generate And a second plurality of SC-FDMA symbols of the data transmitted in the second sub-frequency of the second time slot. 一種在一單載波分頻多重存取(SC-FDMA)傳輸中促進跳頻之處理器,其包括:用於接收關於一傳輸配置單元之資訊之構件,該傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率;用於基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或循環性移位跳頻或二者皆有來判定在該第二時槽中之該第二副分頻頻率之構件;及用於發送在該第一時槽之該第一副分頻頻率中及在該第二時槽之該第二副分頻頻率中之資料之構件。 A processor for facilitating frequency hopping in a single carrier frequency division multiple access (SC-FDMA) transmission, comprising: means for receiving information about a transmission configuration unit, the transmission configuration unit spanning the first and the At least two time-based time slots of the second time slot, and a plurality of secondary frequency division frequencies including the first and second secondary frequency; for determining the first secondary frequency in the first time slot And further determining, according to the mirror transposition frequency hopping or the cyclic shift hopping frequency, or both, the means for determining the second sub-frequency in the second time slot; and for transmitting in the first time slot a component of the data in the first sub-frequency and in the second sub-frequency of the second time slot. 一種電腦可讀取媒體,其包含用於在一單載波分頻多重存取(SC-FDMA)傳輸中促進跳頻之程式碼,該等程式碼可由至少一個電腦執行以:接收關於一傳輸配置單元之資訊,該傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率;基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或循環性移位跳頻或二者皆有來判定在 該第二時槽中之該第二副分頻頻率;及發送在該第一時槽之該第一副分頻頻率中及在該第二時槽之該第二副分頻頻率中之資料。 A computer readable medium comprising code for facilitating frequency hopping in a single carrier frequency division multiple access (SC-FDMA) transmission, the code being executable by at least one computer to: receive information about a transmission configuration Information about the unit, the transmission configuration unit spanning at least two time-based time slots including the first and second time slots, and a plurality of secondary frequency division frequencies including the first and second secondary frequency divisions; The first sub-frequency of the one-time slot is further determined by the image transposition frequency hopping or the cyclic shift frequency hopping or both The second sub-frequency of the second time slot; and the data transmitted in the first sub-frequency of the first time slot and the second sub-frequency of the second time slot . 一種用於利用跳頻而經由一單載波分頻多重存取(SC-FDMA)上行鏈路頻道接收資料之方法,其包括:判定一傳輸配置單元,該傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率,其中在該第二時槽中之該第二副分頻頻率係基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或循環性移位跳頻或二者皆有來判定;及接收在該第一時槽之該第一副分頻頻率中及在該第二時槽之該第二副分頻頻率中發送之資料。 A method for receiving data via a single carrier divided multiple access (SC-FDMA) uplink channel using frequency hopping, comprising: determining a transmission configuration unit, the transmission configuration unit spanning the first and second At least two time-based time slots of the time slot, and a plurality of sub-frequency divided frequencies including the first and second sub-frequency, wherein the second sub-frequency in the second time slot is based on Determining the first sub-frequency in the first time slot and further determining whether the image is in accordance with a mirrored transposition frequency hopping or a cyclic shift frequency hopping or both; and receiving the first pair of the first time slot The data transmitted in the frequency division frequency and in the second sub-frequency of the second time slot. 如請求項33之方法,其進一步包括發送關於該傳輸配置單元之資訊。 The method of claim 33, further comprising transmitting information regarding the transmission configuration unit. 如請求項33之方法,其中該第二副分頻頻率係依據循環性移位跳頻來判定,及在頻率上自該第一副分頻頻率移位大致一傳輸頻寬之一半。 The method of claim 33, wherein the second sub-frequency is determined according to a cyclic shift hopping frequency and is shifted from the first sub-frequency by one-half of a transmission bandwidth in frequency. 如請求項33之方法,其中該第二副分頻頻率係依據鏡像轉置跳頻來判定,及轉置跨越關於該第一副分頻之一傳輸頻寬之一中心線頻率。 The method of claim 33, wherein the second secondary frequency is determined based on a mirrored transposed frequency hopping, and the transposition spans a centerline frequency of one of the transmission bandwidths of the first secondary frequency. 如請求項33之方法,其進一步包括發送指示一終端機裝置是使用未經頻移還是經頻移之副分頻的資訊以用於該傳輸配置單元中之上行鏈路傳輸。 The method of claim 33, further comprising transmitting information indicating whether the terminal device is using the undivided or frequency shifted sub-frequency for uplink transmission in the transmission configuration unit. 一種利用跳頻而經由一單載波分頻多重存取(SC-FDMA)上行鏈路頻道接收資料之設備,其包括:用於判定一傳輸配置單元之構件,該傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率,其中在該第二時槽中之該第二副分頻頻率係基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或循環性移位跳頻或二者皆有來判定;及用於接收在該第一時槽之該第一副分頻頻率中及在該第二時槽之該第二副分頻頻率中發送之資料之構件。 An apparatus for receiving data via a single carrier divided multiple access (SC-FDMA) uplink channel by using frequency hopping, comprising: means for determining a transmission configuration unit, the transmission configuration unit spanning the first At least two time-based time slots of the second time slot, and a plurality of secondary frequency division frequencies including first and second secondary frequency divisions, wherein the second secondary frequency division frequency in the second time slot Determining based on the first sub-frequency in the first time slot and further depending on mirrored transposition frequency hopping or cyclic shift frequency hopping or both; and for receiving in the first time slot a component of the first secondary frequency divided by the data transmitted in the second secondary frequency of the second time slot. 如請求項38之設備,其進一步包括用於發送關於該傳輸配置單元之資訊之構件。 The device of claim 38, further comprising means for transmitting information regarding the transmission configuration unit. 如請求項38之設備,其中該第二副分頻頻率係依據循環性移位跳頻來判定,及在頻率上自該第一副分頻頻率移位大致一傳輸頻寬之一半。 The device of claim 38, wherein the second sub-frequency is determined according to a cyclic shift hopping frequency and is shifted from the first sub-frequency by one-half of a transmission bandwidth in frequency. 如請求項38之設備,其中該第二副分頻頻率係依據鏡像轉置跳頻來判定,及轉置跨越關於該第一副分頻之一傳輸頻寬之一中心線頻率。 The device of claim 38, wherein the second secondary frequency is determined based on a mirrored transposed frequency hopping, and the transposition spans a centerline frequency of one of the transmission bandwidths of the first secondary frequency. 如請求項38之設備,其進一步包括發送指示一終端機裝置是使用未經頻移還是經頻移之副分頻的資訊以用於該傳輸配置單元中之上行鏈路傳輸。 The device of claim 38, further comprising transmitting information indicating whether the terminal device uses the undivided or frequency shifted sub-frequency for uplink transmission in the transmission configuration unit. 一種利用跳頻而經由一單載波分頻多重存取(SC-FDMA)上行鏈路頻道接收資料之設備,其包括:至少一處理器,其經組態以判定一傳輸配置單元,該 傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率、及基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或循環性移位跳頻或二者皆有來判定在該第二時槽中之該第二副分頻頻率。 An apparatus for receiving data via a single carrier divided multiple access (SC-FDMA) uplink channel using frequency hopping, comprising: at least one processor configured to determine a transmission configuration unit, The transmission configuration unit spans at least two time-based time slots including the first and second time slots, and a plurality of secondary frequency division frequencies including the first and second secondary frequency divisions, and based on the first time slot The first sub-dividing frequency and the second sub-frequency in the second time slot are further determined according to the mirror transposed frequency hopping or the cyclic shift hopping or both. 如請求項43之設備,其中該至少一處理器經進一步組態以發送關於該傳輸配置單元之資訊。 The device of claim 43, wherein the at least one processor is further configured to transmit information regarding the transmission configuration unit. 如請求項43之設備,其中該第二副分頻頻率係依據循環性移位跳頻來判定,及在頻率上自該第一副分頻頻率移位大致一傳輸頻寬之一半。 The device of claim 43, wherein the second sub-frequency is determined according to a cyclic shift hopping frequency and is shifted from the first sub-frequency by one-half of a transmission bandwidth in frequency. 如請求項43之設備,其中該第二副分頻頻率係依據鏡像轉置跳頻來判定,及轉置跨越關於該第一副分頻之一傳輸頻寬之一中心線頻率。 The device of claim 43, wherein the second secondary frequency is determined based on a mirrored transposed frequency hopping, and the transposition spans a centerline frequency of one of the transmission bandwidths of the first secondary frequency. 如請求項43之設備,其中該至少一處理器經進一步組態以發送指示一終端機裝置是使用未經頻移還是經頻移之副分頻的資訊以用於該傳輸配置單元中之上行鏈路傳輸。 The device of claim 43, wherein the at least one processor is further configured to transmit information indicating whether a terminal device is using a frequency offset or a frequency offset sub-frequency for uplink in the transmission configuration unit Link transmission. 一種利用跳頻而經由一單載波分頻多重存取(SC-FDMA)上行鏈路頻道接收資料傳輸之處理器,其包括:用於判定一傳輸配置單元之構件,該傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率,其中在該第二時槽中之該第二副分頻頻率係基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或 循環性移位跳頻或二者皆有來判定;及用於接收在該第一時槽之該第一副分頻頻率中及在該第二時槽之該第二副分頻頻率中發送之資料之構件。 A processor for receiving data transmission via a single carrier divided multiple access (SC-FDMA) uplink channel by using frequency hopping, comprising: means for determining a transmission configuration unit, the transmission configuration unit spanning At least two time-based time slots of the first and second time slots, and a plurality of secondary frequency division frequencies including the first and second secondary frequency divisions, wherein the second secondary frequency division in the second time slot The frequency is based on the first sub-frequency in the first time slot and further depending on the image transposed frequency hopping or Cyclic shift hopping or both are determined; and for receiving in the first sub-frequency of the first time slot and in the second sub-frequency of the second time slot The component of the data. 一種電腦可讀媒體,其包含用於促進利用跳頻而經由一單載波分頻多重存取(SC-FDMA)上行鏈路頻道接收資料之程式碼,該等程式碼可由至少一個電腦執行以:判定一傳輸配置單元,該傳輸配置單元跨越包含第一及第二時槽之至少兩個基於時間之時槽,及包含第一及第二副分頻頻率之複數個副分頻頻率,其中在該第二時槽中之該第二副分頻頻率係基於在該第一時槽中之該第一副分頻頻率及進一步依據鏡像轉置跳頻或循環性移位跳頻或二者皆有來判定;及接收在該第一時槽之該第一副分頻頻率中及在該第二時槽之該第二副分頻頻率中發送之資料。 A computer readable medium, comprising code for facilitating the use of frequency hopping to receive data via a single carrier divided multiple access (SC-FDMA) uplink channel, the code being executable by at least one computer to: Determining a transmission configuration unit, the transmission configuration unit spanning at least two time-based time slots including the first and second time slots, and a plurality of secondary frequency division frequencies including the first and second secondary frequency divisions, wherein The second sub-frequency in the second time slot is based on the first sub-frequency in the first time slot and further based on mirror transposition frequency hopping or cyclic shift frequency hopping or both Determining; and receiving data transmitted in the first sub-frequency of the first time slot and in the second sub-frequency of the second time slot.
TW096125068A 2006-07-10 2007-07-10 Frequency hopping in an sc-fdma environment TWI387224B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81991606P 2006-07-10 2006-07-10

Publications (2)

Publication Number Publication Date
TW200814565A TW200814565A (en) 2008-03-16
TWI387224B true TWI387224B (en) 2013-02-21

Family

ID=38924077

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096125068A TWI387224B (en) 2006-07-10 2007-07-10 Frequency hopping in an sc-fdma environment

Country Status (23)

Country Link
US (1) US10084627B2 (en)
EP (3) EP2039027B1 (en)
JP (5) JP5372749B2 (en)
KR (1) KR101106393B1 (en)
CN (3) CN104734744B (en)
AU (1) AU2007272600B2 (en)
BR (1) BRPI0713860B1 (en)
CA (1) CA2655865C (en)
DK (3) DK2039027T3 (en)
ES (3) ES2402311T3 (en)
HK (3) HK1130579A1 (en)
HU (1) HUE025005T2 (en)
IL (1) IL195946A (en)
MX (1) MX2009000326A (en)
MY (1) MY144575A (en)
NO (1) NO340486B1 (en)
NZ (1) NZ573586A (en)
PL (3) PL2605424T3 (en)
PT (3) PT2039027E (en)
RU (1) RU2406230C2 (en)
TW (1) TWI387224B (en)
UA (1) UA93554C2 (en)
WO (1) WO2008008748A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8369424B2 (en) * 2006-07-14 2013-02-05 Qualcomm Incorporated Frequency selective and frequency diversity transmissions in a wireless communication system
US8588171B2 (en) * 2006-09-25 2013-11-19 Panasonic Corporation Radio communication device and pilot arrangement method
KR20080065518A (en) * 2007-01-09 2008-07-14 삼성전자주식회사 Method for frequency hopping in single carrier frequency division multiple access system
US9072095B2 (en) * 2007-01-09 2015-06-30 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in a single carrier-frequency division multiple access system
KR20090006708A (en) 2007-07-12 2009-01-15 엘지전자 주식회사 Method for transmitting scheduling request signal
US9496918B2 (en) 2007-08-08 2016-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Multicarrier communication system employing explicit frequency hopping
HUE027901T2 (en) * 2007-08-08 2016-10-28 ERICSSON TELEFON AB L M (publ) Multicarrier communication system employing explicit frequency hopping
KR101448653B1 (en) * 2007-10-01 2014-10-15 엘지전자 주식회사 Frequency Hopping Pattern And Method For transmitting Uplink Signals Using The Same
CN101184075B (en) * 2007-12-13 2012-01-04 华为技术有限公司 Frequency deviation compensation method and device
KR101232017B1 (en) 2008-04-29 2013-02-08 한국전자통신연구원 Apparatus and method for transmitting data using multiple antenna for signgle carrier frequency division multiple access system
KR20110016999A (en) 2008-06-11 2011-02-18 노키아 지멘스 네트웍스 오와이 Local area optimized uplink control channel
US8825100B2 (en) 2008-08-11 2014-09-02 Blackberry Limited Method and system for providing a power boost for a wireless communication link using a subset of subcarrier frequencies of the wireless communication link channel as a reduced bandwidth channel
KR101534169B1 (en) 2008-12-23 2015-07-07 삼성전자 주식회사 Method and apparatus for allocation of frequency in wireless communication systems with frequency hopping mode
KR101452732B1 (en) 2009-03-10 2014-10-21 삼성전자주식회사 System and method for cooperating between basestations
KR101826671B1 (en) 2009-03-10 2018-02-08 삼성전자 주식회사 A method for transmitting and receiving data using Interference Cancellation in a Single-Carrier Frequency Division Multiple Access system and an apparatus thereof
KR101307630B1 (en) * 2009-03-23 2013-09-12 후지쯔 가부시끼가이샤 Radio communication system, base station device, terminal, and radio communication method in radio communication system
BRPI1012919B8 (en) * 2009-05-29 2022-09-20 Panasonic Corp TERMINAL DEVICE, BASE STATION DEVICE, METHOD OF TRANSMITTING A SIGNAL FROM A TERMINAL DEVICE, METHOD OF RECEIVING A SIGNAL TRANSMITTED FROM A TERMINAL DEVICE, INTEGRATED CIRCUIT FOR CONTROLLING A PROCESS IN A TERMINAL DEVICE AND INTEGRATED CIRCUIT FOR CONTROLLING A PROCESS IN A BASE STATION COMMUNICATING WITH A TERMINAL DEVICE
CN102045789B (en) * 2009-10-16 2013-05-08 中兴通讯股份有限公司 Frequency physics resource scheduling method and system based on frequency hopping
US8576936B2 (en) * 2010-01-25 2013-11-05 Harris Corporation Method and apparatus for high speed data transmission modulation and demodulation
US8619687B2 (en) * 2010-02-12 2013-12-31 Sharp Laboratories Of America, Inc. Coordinating uplink resource allocation
US8306150B2 (en) 2010-06-25 2012-11-06 Texas Instruments Incorporated System and method for estimating a transmit channel response and/or a feedback channel response using frequency shifting
CN109495231B (en) * 2013-04-25 2023-05-09 华为技术有限公司 Method and device for transmitting signals
US9548918B2 (en) * 2014-02-28 2017-01-17 General Electric Company Edge router systems and methods
EP3007505B1 (en) * 2014-10-06 2017-03-08 Mitsubishi Electric R&D Centre Europe B.V. Method for signalling time and frequency resources allocation in a wireless communication system
US10356777B2 (en) * 2016-04-13 2019-07-16 Qualcomm Incorporated Frequency hopping in OFDMA wireless networks
US11032808B2 (en) * 2017-03-30 2021-06-08 Qualcomm Incorporated Frequency hopping for control resource set with single carrier waveform
WO2019095223A1 (en) * 2017-11-16 2019-05-23 北京小米移动软件有限公司 Frequency hopping configuration method and device
EP3834341A1 (en) * 2018-08-10 2021-06-16 Telefonaktiebolaget LM Ericsson (publ) Physical shared channel splitting at slot boundaries
KR102564421B1 (en) * 2019-11-27 2023-08-07 한국전자통신연구원 Method and apparatus for generating baseband transmission signal in mobile communication system supporting multiple component carriers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018631A1 (en) * 2001-12-31 2005-01-27 T V L N Sivakumar Frequency hopping spread spectrum communication system
TW200610292A (en) * 2004-03-05 2006-03-16 Qualcomm Inc Pilot transmission and channel estimation for MISO and MIMO receivers in a multi-antenna system

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9102220D0 (en) 1991-02-01 1991-03-20 British Telecomm Method and apparatus for decoding video signals
FI941289A (en) * 1994-03-18 1995-09-19 Nokia Telecommunications Oy Method for realizing frequency jumping and a base station device
JP3047767B2 (en) * 1995-03-20 2000-06-05 株式会社日立製作所 Wireless LAN system
JPH09294092A (en) 1996-04-24 1997-11-11 Brother Ind Ltd Spread spectrum multiplex communication system and communication equipment using the communication system
JPH1013380A (en) 1996-06-26 1998-01-16 Canon Inc Frequency hopping communication equipment and its system
US6130905A (en) * 1996-07-03 2000-10-10 Brother Kogyo Kabushiki Kaisha Wireless communication system
JP3694991B2 (en) 1996-07-03 2005-09-14 ブラザー工業株式会社 Wireless communication system
JPH10178370A (en) 1996-12-18 1998-06-30 Kokusai Electric Co Ltd Frequency hopping radio communication system
CN1249098A (en) 1997-03-07 2000-03-29 贝瑞特控股公司 Improvement in ultrafast time hopping CDMA-RF
US6954481B1 (en) 2000-04-18 2005-10-11 Flarion Technologies, Inc. Pilot use in orthogonal frequency division multiplexing based spread spectrum multiple access systems
US7551921B2 (en) * 2000-05-31 2009-06-23 Wahoo Communications Corporation Wireless communications system with parallel computing artificial intelligence-based distributive call routing
US6452512B1 (en) * 2001-07-03 2002-09-17 Lexmark International, Inc. Method for initializing an analog encoder
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US20040146211A1 (en) * 2003-01-29 2004-07-29 Knapp Verna E. Encoder and method for encoding
FI20031053A0 (en) 2003-07-10 2003-07-10 Nokia Corp Transmission method and base station
US7154956B2 (en) 2003-07-22 2006-12-26 Mitsubishi Electric Research Laboratories, Inc. OFDM receiver for detecting FSK modulated signals
WO2005025135A1 (en) 2003-09-11 2005-03-17 Infineon Technologies Ag Method for data transmission within a wireless local area network (wlan)
US7154933B2 (en) 2003-09-25 2006-12-26 Avneesh Agrawal Interference management for soft handoff and broadcast services in a wireless frequency hopping communication system
US7421005B2 (en) 2003-10-09 2008-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Frequency offset hopping for telecommunications
US9473269B2 (en) * 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
KR100922950B1 (en) 2004-03-05 2009-10-22 삼성전자주식회사 Apparatus and method for transmitting and receiving process result of a data frame in a orthogonal frequency division multiple system
KR20050099905A (en) 2004-04-12 2005-10-17 삼성전자주식회사 Transmitting/receiving apparatus method for fast frequency hopping in orthogonal frequency division multiplex system and method therefor
KR20050099906A (en) 2004-04-12 2005-10-17 삼성전자주식회사 Transmitting/receiving apparatus method for fast frequency hopping using cyclic frequency hopping pattern in orthogonal frequency division multiplex system and method therefor
US7580444B2 (en) * 2004-05-04 2009-08-25 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Frequency hopping communication system
US7724777B2 (en) 2004-06-18 2010-05-25 Qualcomm Incorporated Quasi-orthogonal multiplexing for a multi-carrier communication system
KR100913260B1 (en) 2004-07-01 2009-08-21 콸콤 인코포레이티드 Method and apparatus for using frame rate up conversion techniques in scalable video coding
KR20060003296A (en) * 2004-07-05 2006-01-10 삼성전자주식회사 Method and system for providing hand-off service between a mobile communication system and a wireless local access network
KR100725773B1 (en) 2004-08-20 2007-06-08 삼성전자주식회사 Apparatus and method for adaptively changing the uplink power control scheme depending on the status of mobile station in a wireless mobile communication system using time division duplexing scheme
US7852746B2 (en) * 2004-08-25 2010-12-14 Qualcomm Incorporated Transmission of signaling in an OFDM-based system
JP4261443B2 (en) 2004-09-03 2009-04-30 株式会社東芝 Wireless communication system and wireless communication apparatus
US7924935B2 (en) 2004-09-30 2011-04-12 Nortel Networks Limited Channel sounding in OFDMA system
JP4684628B2 (en) 2004-11-16 2011-05-18 Kddi株式会社 Subcarrier allocation apparatus and multicarrier radio communication system
CN100563137C (en) 2004-12-15 2009-11-25 华为技术有限公司 A kind of method that in orthogonal frequency division multiple access system, realizes fast frequency hopping
JP2006180374A (en) 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Base station device, communication terminal device, and resource allocation method
EP1832074B1 (en) 2004-12-27 2013-11-20 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving a signal in an FFH-OFDM communication system
US8102872B2 (en) * 2005-02-01 2012-01-24 Qualcomm Incorporated Method for discontinuous transmission and accurate reproduction of background noise information
US7916623B2 (en) * 2005-06-15 2011-03-29 Lg Electronics Inc. Method of allocating wireless resources in a multi-carrier system
US8169994B2 (en) * 2005-07-27 2012-05-01 Rockstar Bidco Lp System and method for frequency division multiple access communications
CN101300805B (en) * 2005-09-08 2011-12-14 北方电讯网络有限公司 Load balancing for an air interface protocol architecture with a plurality of heterogenous physical layer modes
CN101300766A (en) 2005-11-04 2008-11-05 松下电器产业株式会社 Radio transmission device, and radio transmission method
US7881460B2 (en) * 2005-11-17 2011-02-01 Microsoft Corporation Configuration of echo cancellation
JP4711835B2 (en) 2006-01-17 2011-06-29 株式会社エヌ・ティ・ティ・ドコモ Transmitting apparatus, receiving apparatus, and random access control method
US20070190950A1 (en) * 2006-02-15 2007-08-16 General Motors Corporation Method of configuring voice and data communication over a voice channel
US7747269B2 (en) * 2006-02-27 2010-06-29 Qualcomm Incorporated System and method for providing communication resources to wireless dispatch priority users
US20070259681A1 (en) * 2006-05-02 2007-11-08 Jung-Fu Cheng Method and Apparatus for Interference Based User Equipment Management in a Wireless Communication Network
CN101454999B (en) 2006-05-29 2012-09-19 三星电子株式会社 Method and apparatus for allocating frequency resources in a wireless communication system supporting frequency division multiplexing
KR20080065518A (en) 2007-01-09 2008-07-14 삼성전자주식회사 Method for frequency hopping in single carrier frequency division multiple access system
US9072095B2 (en) 2007-01-09 2015-06-30 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in a single carrier-frequency division multiple access system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018631A1 (en) * 2001-12-31 2005-01-27 T V L N Sivakumar Frequency hopping spread spectrum communication system
TW200610292A (en) * 2004-03-05 2006-03-16 Qualcomm Inc Pilot transmission and channel estimation for MISO and MIMO receivers in a multi-antenna system

Also Published As

Publication number Publication date
HK1209921A1 (en) 2016-04-08
DK2611046T3 (en) 2015-06-22
EP2605424A1 (en) 2013-06-19
CN104734744B (en) 2017-05-31
CN104639210B (en) 2017-07-11
ES2538852T3 (en) 2015-06-24
NO340486B1 (en) 2017-05-02
WO2008008748A3 (en) 2008-08-28
PT2605424E (en) 2015-07-10
HUE025005T2 (en) 2016-05-30
CN104639210A (en) 2015-05-20
AU2007272600B2 (en) 2010-12-09
JP2015008480A (en) 2015-01-15
DK2039027T3 (en) 2013-06-03
EP2611046B1 (en) 2015-03-11
ES2541495T3 (en) 2015-07-21
AU2007272600A1 (en) 2008-01-17
JP2013258720A (en) 2013-12-26
NO20090133L (en) 2009-04-03
EP2039027A2 (en) 2009-03-25
WO2008008748A2 (en) 2008-01-17
KR101106393B1 (en) 2012-01-17
HK1130579A1 (en) 2009-12-31
BRPI0713860A2 (en) 2012-11-13
TW200814565A (en) 2008-03-16
JP6026607B2 (en) 2016-11-16
PL2039027T3 (en) 2013-08-30
CN101490980B (en) 2015-01-28
CN101490980A (en) 2009-07-22
PL2611046T3 (en) 2015-08-31
JP2016026436A (en) 2016-02-12
KR20090048447A (en) 2009-05-13
BRPI0713860B1 (en) 2021-08-17
US20080089286A1 (en) 2008-04-17
RU2406230C2 (en) 2010-12-10
JP2012199932A (en) 2012-10-18
JP5628240B2 (en) 2014-11-19
PL2605424T3 (en) 2015-09-30
UA93554C2 (en) 2011-02-25
EP2605424B1 (en) 2015-04-08
JP5372749B2 (en) 2013-12-18
RU2009104313A (en) 2010-08-20
PT2611046E (en) 2015-07-13
MY144575A (en) 2011-10-14
CA2655865A1 (en) 2008-01-17
IL195946A0 (en) 2009-09-01
EP2611046A1 (en) 2013-07-03
HK1211758A1 (en) 2016-05-27
CN104734744A (en) 2015-06-24
DK2605424T3 (en) 2015-07-13
IL195946A (en) 2015-04-30
ES2402311T3 (en) 2013-04-30
JP2009544189A (en) 2009-12-10
US10084627B2 (en) 2018-09-25
EP2039027B1 (en) 2013-02-27
PT2039027E (en) 2013-05-22
CA2655865C (en) 2014-05-20
NZ573586A (en) 2011-10-28
MX2009000326A (en) 2009-05-12

Similar Documents

Publication Publication Date Title
TWI387224B (en) Frequency hopping in an sc-fdma environment
US8811141B2 (en) OFDM/OFDMA frame structure for communication systems
US20110216725A1 (en) Transmission apparatus and communication method
KR20100075642A (en) Ofdm/ofdma frame structure for communication systems
JP2002111631A (en) System and apparatus for radio communication