TWI387093B - High-voltage-tolerant esd clamp circuit with low leakage current fabricated by low-voltage cmos process - Google Patents

High-voltage-tolerant esd clamp circuit with low leakage current fabricated by low-voltage cmos process Download PDF

Info

Publication number
TWI387093B
TWI387093B TW98128717A TW98128717A TWI387093B TW I387093 B TWI387093 B TW I387093B TW 98128717 A TW98128717 A TW 98128717A TW 98128717 A TW98128717 A TW 98128717A TW I387093 B TWI387093 B TW I387093B
Authority
TW
Taiwan
Prior art keywords
coupled
circuit
node
inverter
voltage
Prior art date
Application number
TW98128717A
Other languages
Chinese (zh)
Other versions
TW201108392A (en
Inventor
Chun Yu Lin
Ming Dou Ker
Fu Yi Tsai
Original Assignee
Faraday Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faraday Tech Corp filed Critical Faraday Tech Corp
Priority to TW98128717A priority Critical patent/TWI387093B/en
Publication of TW201108392A publication Critical patent/TW201108392A/en
Application granted granted Critical
Publication of TWI387093B publication Critical patent/TWI387093B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

利用低壓元件實現的低漏電高壓電源靜電放電保護 電路Low-leakage high-voltage power supply electrostatic discharge protection using low-voltage components Circuit

本發明是有關於一種靜電放電(electrostatic discharge,簡稱ESD)保護電路(clamp circuit),且特別是有關於一種利用低壓元件實現的低漏電高壓電源靜電放電保護電路。The present invention relates to an electrostatic discharge (ESD) protection circuit, and more particularly to a low leakage high voltage power supply electrostatic discharge protection circuit implemented by a low voltage component.

一般的靜電放電保護電路都配置在電子系統的電源端和接地端之間。理想的靜電放電保護電路在電子系統正常操作時必須完全關閉,不應該有漏電。如果出現靜電放電脈衝(ESD pulse),靜電放電保護電路必須導通,將靜電放電脈衝自電源端導入接地端,以保護電子系統。A general ESD protection circuit is disposed between the power supply end and the ground end of the electronic system. The ideal ESD protection circuit must be completely turned off during normal operation of the electronic system and there should be no leakage. If an ESD pulse occurs, the ESD protection circuit must be turned on to introduce an ESD pulse from the power supply to the ground to protect the electronic system.

在奈米級的互補金屬氧化物半導體(complementary metal oxide semiconductor,簡稱CMOS)製程中,閘極氧化物(gate oxide)隨著製程技術的演進而變薄,工作電壓也隨著降低。然而在一個電子系統中,經常存在多個操作在不同工作電壓的子系統,積體電路為了相容於不同的工作電壓,傳統方法會以較厚的閘極氧化層來製造可承受較高電壓的子系統,藉此避免閘極氧化層遭受過度電性應力(electrical overstress,EOS)的問題。然而,在製造過程中增加一道額外的光罩來製造厚閘極氧化層,會增加製程複雜度,產品良率可能因此下降,整體生產成本也隨之增加。In the nanoscale complementary metal oxide semiconductor (CMOS) process, the gate oxide becomes thinner with the evolution of the process technology, and the operating voltage also decreases. However, in an electronic system, there are often multiple subsystems operating at different operating voltages. In order to be compatible with different operating voltages, the conventional method can be manufactured with a thicker gate oxide layer to withstand higher voltages. Subsystem, thereby avoiding the problem of excessive electrical stress (EOS) of the gate oxide layer. However, adding an additional mask to the manufacturing process to create a thick gate oxide layer increases process complexity, product yield may decrease, and overall production costs increase.

為了降低生產成本,只使用薄閘極氧化層的低壓元件來實現可耐高工作電壓的電路已經是熱門的研究主題,靜電放電保護電路也不例外。In order to reduce the production cost, it is a hot research topic to use only the low-voltage components of the thin gate oxide layer to realize a circuit that can withstand high operating voltage, and the electrostatic discharge protection circuit is no exception.

圖1是習知的一種靜電放電保護電路的電路圖。圖1的靜電放電保護電路全部使用低壓元件,假設這些低壓元件本身只能承受VDD的工作電壓,圖1的電路則能承受兩倍VDD的工作電壓。也就是說,電源端210所提供的工作電壓Hi-Vcc為VDD的兩倍。1 is a circuit diagram of a conventional electrostatic discharge protection circuit. The ESD protection circuits of Figure 1 all use low-voltage components. Assuming that these low-voltage components can only withstand the VDD operating voltage, the circuit of Figure 1 can withstand twice the VDD operating voltage. That is to say, the operating voltage Hi-Vcc provided by the power supply terminal 210 is twice that of VDD.

圖1的靜電放電保護電路分為三部分:放電路徑202、控制電路204、以及P通道金氧半場效電晶體(p-channel metal oxide semiconductor field effect transistor,簡稱PMOS電晶體)302和304組成的分壓電路。PMOS電晶體302和304皆以二極體方式連接(diode-connected)。上述的分壓電路將工作電壓Hi-Vcc均分為二等份,使電源端210和節點303之間的跨壓等於VDD,並且使節點303和接地端之間的跨壓也等於VDD。如此就能使圖1電路中的每一個低壓元件正常操作,不至於遭受過度電性應力。The ESD protection circuit of FIG. 1 is divided into three parts: a discharge path 202, a control circuit 204, and a P-channel metal oxide semiconductor field effect transistor (PMOS) 302 and 304. Voltage divider circuit. Both PMOS transistors 302 and 304 are diode-connected. The voltage dividing circuit described above divides the operating voltage Hi-Vcc into two equal parts such that the voltage across the power supply terminal 210 and the node 303 is equal to VDD, and the voltage across the node 303 and the ground is also equal to VDD. This allows each of the low voltage components of the circuit of Figure 1 to operate normally without suffering from excessive electrical stress.

控制電路204在電子系統正常工作時會關閉PMOS電晶體206和208,使放電路徑202截止。如果電源端210出現靜電放電脈衝,控制電路204會開啟PMOS電晶體206和208,使放電路徑202導通,將靜電放電脈衝導入接地端,以保護電子系統。Control circuit 204 turns off PMOS transistors 206 and 208 when the electronic system is operating normally, causing discharge path 202 to be turned off. If an electrostatic discharge pulse occurs at the power supply terminal 210, the control circuit 204 turns on the PMOS transistors 206 and 208 to turn on the discharge path 202 and direct the electrostatic discharge pulse to the ground to protect the electronic system.

圖2是習知的另一種靜電放電保護電路的電路圖。圖2和圖1的靜電放電保護電路有相同的工作原理,差別是圖2的控制電路204比較簡化。2 is a circuit diagram of another conventional electrostatic discharge protection circuit. The electrostatic discharge protection circuit of Figures 2 and 1 has the same operational principle, with the difference that the control circuit 204 of Figure 2 is relatively simplified.

在傳統的製程下,電路元件的漏電都很輕微。以圖1和圖2的電路為例,其中的控制電路204和放電路徑202漏電並不明顯,所以分壓電路不需要提供太大的驅動電流,靜電放電保護電路的整體漏電並不嚴重。In the traditional process, the leakage of circuit components is very slight. Taking the circuit of FIG. 1 and FIG. 2 as an example, the leakage current of the control circuit 204 and the discharge path 202 is not obvious, so the voltage dividing circuit does not need to provide too much driving current, and the overall leakage of the electrostatic discharge protection circuit is not serious.

然而,在目前的奈米級先進製程,因為低壓元件各方面的尺寸都有縮減,控制電路204和放電路徑202的漏電會顯著增加,因此分壓電路必須提供很大的驅動電流,來維持正確的分壓,例如將節點303的電壓維持在VDD。由於分壓電路必須提供大電流,而且分壓電路本身也是由低壓元件組成,使得分壓電路的漏電更加嚴重,佔了整個靜電放電保護電路的漏電流(leakage current)的絕大部分;此外,分壓電路所佔用的電路布局面積也無法縮減。由於漏電問題,在先進製程中使用如圖1和圖2所示的靜電放電保護電路,已經不符合節約能源和降低成本的考量原則。However, in the current nano-scale advanced process, since the dimensions of various aspects of the low-voltage component are reduced, the leakage of the control circuit 204 and the discharge path 202 is significantly increased, so the voltage-dividing circuit must provide a large driving current to maintain The correct partial voltage, for example, maintains the voltage at node 303 at VDD. Since the voltage dividing circuit must provide a large current, and the voltage dividing circuit itself is also composed of low voltage components, the leakage of the voltage dividing circuit is more serious, accounting for most of the leakage current of the entire electrostatic discharge protection circuit. In addition, the circuit layout area occupied by the voltage divider circuit cannot be reduced. Due to the leakage problem, the use of the ESD protection circuit shown in Figures 1 and 2 in advanced processes has not met the considerations of energy conservation and cost reduction.

圖3是習知的另一種靜電放電保護電路的電路圖。圖3的靜電放電保護電路同樣使用低壓元件,假設這些低壓元件本身只能承受VDD的工作電壓,圖3的電路則能承受三倍VDD的工作電壓。3 is a circuit diagram of another conventional electrostatic discharge protection circuit. The ESD protection circuit of Figure 3 also uses low voltage components. Assuming that these low voltage components can only withstand the VDD operating voltage, the circuit of Figure 3 can withstand three times the VDD operating voltage.

圖3的靜電放電保護電路,其工作原理和圖1、圖2的靜電放電保護電路相同。圖3的靜電放電保護電路包括放電路徑110、控制電路120、以及分壓電路130,其中放電路徑110包括矽控整流器(silicon-controlled rectifier,簡稱SCR)115。分壓電路130利用六個串聯的以二極體方式連接的PMOS電晶體Md1-Md6,將三倍VDD的工作電壓均分為三等份,以確保圖3電路中的每一個低壓元件不會遭受過度電性應力。控制電路120會在發生靜電放電脈衝時,輸出觸發電流I_trig,使放電路徑110導通,將靜電放電脈衝導入接地端。The electrostatic discharge protection circuit of FIG. 3 has the same operation principle as the electrostatic discharge protection circuit of FIGS. 1 and 2. The ESD protection circuit of FIG. 3 includes a discharge path 110, a control circuit 120, and a voltage dividing circuit 130, wherein the discharge path 110 includes a silicon-controlled rectifier (SCR) 115. The voltage dividing circuit 130 divides the operating voltage of the triple VDD into three equal parts by using six serially connected PMOS transistors Md1-Md6 in a diode manner to ensure that each low voltage component in the circuit of FIG. 3 is not Will suffer from excessive electrical stress. The control circuit 120 outputs a trigger current I_trig when the electrostatic discharge pulse occurs, turns on the discharge path 110, and introduces the electrostatic discharge pulse to the ground.

由於工作原理和圖1、圖2的靜電放電保護電路相同,圖3的靜電放電保護電路在先進製程下同樣有嚴重漏電的問題。Since the working principle is the same as the electrostatic discharge protection circuit of FIG. 1 and FIG. 2, the electrostatic discharge protection circuit of FIG. 3 also has a serious leakage problem under the advanced process.

本發明提供一種靜電放電保護電路,以低壓元件構成,可承受高壓電源,而且可解決傳統電路在先進製程的漏電問題,適用於有多種工作電壓的電子系統。The invention provides an electrostatic discharge protection circuit, which is composed of a low voltage component, can withstand a high voltage power supply, and can solve the leakage problem of the conventional circuit in an advanced process, and is suitable for an electronic system having multiple working voltages.

本發明提出一種靜電放電保護電路,包括完全相同的多個模組電路,其中第一個模組電路的電源端耦接靜電放電保護電路的電源端,其餘每一個模組電路的電源端耦接上一個模組電路的接地端,最後一個模組電路的接地端耦接靜電放電保護電路的接地端。每一上述模組電路包括一傳導路徑以及一偵測電路。傳導路徑耦接所屬模組電路的電源端。偵測電路耦接所屬模組電路的電源端、接地端與上述傳導路徑。若模組電路的電源端的電壓上升速度超過一臨界值,則偵測電路使傳導路徑導通。The invention provides an electrostatic discharge protection circuit, which comprises a plurality of identical modular circuits. The power supply end of the first module circuit is coupled to the power supply end of the electrostatic discharge protection circuit, and the power supply ends of each of the other module circuits are coupled. The ground end of the last module circuit, the ground end of the last module circuit is coupled to the ground of the ESD protection circuit. Each of the above module circuits includes a conduction path and a detection circuit. The conduction path is coupled to the power terminal of the module circuit. The detecting circuit is coupled to the power terminal, the ground terminal and the conductive path of the module circuit. If the voltage rise speed of the power supply terminal of the module circuit exceeds a critical value, the detection circuit turns on the conduction path.

在本發明之一實施例中,每一上述模組電路的傳導路徑耦接於模組電路的電源端與接地端之間,將一靜電放電脈衝自模組電路的電源端傳導至模組電路的接地端。In an embodiment of the present invention, a conduction path of each of the module circuits is coupled between a power terminal and a ground terminal of the module circuit, and an electrostatic discharge pulse is transmitted from a power terminal of the module circuit to the module circuit. Ground terminal.

在本發明之一實施例中,上述之靜電放電保護電路更包括一放電路徑。此放電路徑耦接於靜電放電保護電路的電源端與接地端之間,將靜電放電脈衝自上述電源端導入上述接地端。其中,最後一個模組電路的傳導路徑耦接此放電路徑,並輸出一觸發信號,使放電路徑導通。其餘每一模組電路的傳導路徑耦接於所屬模組電路的電源端與接地端之間,傳送上述觸發信號。In an embodiment of the invention, the electrostatic discharge protection circuit further includes a discharge path. The discharge path is coupled between the power supply end of the ESD protection circuit and the ground end, and an electrostatic discharge pulse is introduced from the power supply end to the ground end. The conduction path of the last module circuit is coupled to the discharge path, and outputs a trigger signal to turn on the discharge path. The conduction path of each of the other module circuits is coupled between the power terminal and the ground terminal of the module circuit to transmit the trigger signal.

在本發明之一實施例中,每一上述偵測電路包括PMOS電晶體、電阻、電容、以及三個反相器。PMOS電晶體耦接於所屬模組電路的電源端與第一節點之間。電阻耦接於第一節點與第二節點之間。電容耦接於第二節點與所屬模組電路的接地端之間。第一反相器耦接第二節點,接收第二節點的電壓。第二反相器耦接第一反相器,接收第一反相器的輸出。第三反相器耦接第一節點與第二反相器,接收第一節點的電壓。第三反相器的輸出使對應的傳導路徑導通或截止。In an embodiment of the invention, each of the detecting circuits includes a PMOS transistor, a resistor, a capacitor, and three inverters. The PMOS transistor is coupled between the power terminal of the module circuit and the first node. The resistor is coupled between the first node and the second node. The capacitor is coupled between the second node and the ground of the associated module circuit. The first inverter is coupled to the second node and receives the voltage of the second node. The second inverter is coupled to the first inverter and receives the output of the first inverter. The third inverter is coupled to the first node and the second inverter to receive the voltage of the first node. The output of the third inverter turns the corresponding conduction path on or off.

在本發明之一實施例中,上述之第一反相器和第二反相器的高壓端皆耦接第一節點。第一反相器和第二反相器的低壓端皆耦接所屬模組電路的接地端。第三反相器的高壓端耦接所屬模組電路的電源端。第三反相器的低壓端耦接第二反相器的輸出端。In an embodiment of the invention, the high voltage ends of the first inverter and the second inverter are coupled to the first node. The low voltage terminals of the first inverter and the second inverter are coupled to the ground terminal of the module circuit. The high voltage end of the third inverter is coupled to the power terminal of the module circuit. The low voltage end of the third inverter is coupled to the output of the second inverter.

在本發明之一實施例中,上述之靜電放電保護電路更包括一分壓電路。此分壓電路耦接於靜電放電保護電路的電源端與接地端之間,並耦接每一上述模組電路的電源端與接地端。此分壓電路將靜電放電保護電路的電源端與接地端之間的跨壓均分,使每一上述模組電路的電源端與接地端之間的跨壓相等。In an embodiment of the invention, the electrostatic discharge protection circuit further includes a voltage dividing circuit. The voltage dividing circuit is coupled between the power terminal and the ground end of the electrostatic discharge protection circuit, and is coupled to the power terminal and the ground terminal of each of the module circuits. The voltage dividing circuit divides the voltage across the power supply end and the ground end of the ESD protection circuit equally, so that the voltage across the power supply end and the ground end of each of the module circuits is equal.

本發明另提出一種靜電放電保護電路,包括PMOS電晶體、電容、電阻、三個反相器、以及傳導路徑。PMOS電晶體耦接於電源端與第一節點之間。電阻耦接於第一節點與第二節點之間。電容耦接於第二節點與接地端之間。第一反相器耦接第二節點,接收第二節點的電壓。第二反相器耦接第一反相器,接收第一反相器的輸出。第三反相器耦接第一節點與第二反相器,接收第一節點的電壓。傳導路徑耦接電源端,根據第三反相器的輸出而導通或截止。The invention further provides an electrostatic discharge protection circuit comprising a PMOS transistor, a capacitor, a resistor, three inverters, and a conduction path. The PMOS transistor is coupled between the power terminal and the first node. The resistor is coupled between the first node and the second node. The capacitor is coupled between the second node and the ground. The first inverter is coupled to the second node and receives the voltage of the second node. The second inverter is coupled to the first inverter and receives the output of the first inverter. The third inverter is coupled to the first node and the second inverter to receive the voltage of the first node. The conduction path is coupled to the power supply terminal and is turned on or off according to the output of the third inverter.

本發明另提出一種靜電放電保護電路,包括PMOS電晶體、反應電路、反相器、以及傳導路徑。PMOS電晶體耦接於電源端與一第一節點之間。反應電路耦接於第一節點,可偵測電源端之靜電放電脈衝,並將偵測結果反映至一第二節點與上述第一節點。反相器耦接第一節點,接收第一節點的電壓,以根據第一節點與第二節點的電壓作對應的輸出。傳導路徑耦接電源端,根據反相器的輸出而導通或截止。The invention further provides an electrostatic discharge protection circuit comprising a PMOS transistor, a reaction circuit, an inverter, and a conduction path. The PMOS transistor is coupled between the power terminal and a first node. The reaction circuit is coupled to the first node, and can detect the electrostatic discharge pulse of the power terminal, and reflect the detection result to a second node and the first node. The inverter is coupled to the first node and receives the voltage of the first node to output according to the voltage of the first node and the second node. The conduction path is coupled to the power supply terminal and is turned on or off according to the output of the inverter.

本發明的靜電放電保護電路以完全對稱的模組電路達成自我分壓,將較高的工作電壓均分至低壓元件可承受的範圍,因此可完全以低壓元件組成。在製程中不需要厚閘極氧化層的額外光罩,可簡化製程,提高產品良率,降低成本。本發明的靜電放電保護電路不需要額外的分壓電路,所以能大幅改善傳統電路在先進製程的漏電問題,每一個模組電路中也有降低漏電的設計。The electrostatic discharge protection circuit of the invention achieves self-dividing with a completely symmetrical modular circuit, and divides the higher operating voltage into a range that the low-voltage component can withstand, so that it can be completely composed of low-voltage components. An additional mask that does not require a thick gate oxide layer during the process simplifies the process, improves product yield, and reduces cost. The electrostatic discharge protection circuit of the invention does not require an additional voltage dividing circuit, so that the leakage problem of the conventional circuit in the advanced process can be greatly improved, and each module circuit also has a design for reducing leakage.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖4是依照本發明一實施例的一種靜電放電保護電路的示意圖,圖6則是圖4的靜電放電保護電路的電路圖,以下說明請參照圖4和圖6。4 is a schematic diagram of an electrostatic discharge protection circuit according to an embodiment of the present invention, and FIG. 6 is a circuit diagram of the electrostatic discharge protection circuit of FIG. 4. Please refer to FIG. 4 and FIG. 6 for the following description.

本實施例的靜電放電保護電路包括多個完全相同的模組電路,例如圖4所繪示的模組電路410和430,這些模組電路以串聯方式耦接;各模組電路具有相同的電路架構、元件組合與組態配置(configuration)。每個模組電路有一個電源端和接地端,例如模組電路410有電源端412和接地端414。這些模組電路之中,第一個模組電路的電源端耦接靜電放電保護電路的電源端450,其餘每一個模組電路的電源端耦接上一個模組電路的接地端,最後一個模組電路的接地端耦接靜電放電保護電路的接地端455。The ESD protection circuit of this embodiment includes a plurality of identical module circuits, such as the module circuits 410 and 430 illustrated in FIG. 4, which are coupled in series; each module circuit has the same circuit. Architecture, component combination and configuration configuration. Each module circuit has a power terminal and a ground terminal. For example, the module circuit 410 has a power terminal 412 and a ground terminal 414. Among the module circuits, the power supply end of the first module circuit is coupled to the power supply end 450 of the ESD protection circuit, and the power supply end of each of the other module circuits is coupled to the ground end of the previous module circuit, and the last mode The ground terminal of the group circuit is coupled to the ground terminal 455 of the electrostatic discharge protection circuit.

本實施例的靜電放電保護電路可以完全用低壓元件組成。因為有多個完全相同的模組電路串接在靜電放電保護電路的電源端450與接地端455之間,這些模組電路本身就有分壓功能,可將電源端450提供的工作電壓均分至低壓元件可承受的程度。例如,假設每個低壓元件在設計時的工作電壓是VDD,而靜電放電保護電路的工作電壓是n倍VDD,n為2以上的正整數,則靜電放電保護電路可以包括n個模組電路,將每個模組電路的跨壓均分為VDD。如此就能使每一個低壓元件正常操作,不至於遭受過度電性應力。The electrostatic discharge protection circuit of this embodiment can be composed entirely of low voltage components. Because there are a plurality of identical module circuits connected in series between the power terminal 450 and the ground terminal 455 of the ESD protection circuit, the module circuits themselves have a voltage dividing function, and the working voltage provided by the power terminal 450 can be equally divided. To the extent that the low voltage component can withstand. For example, assuming that the operating voltage of each low-voltage component is VDD, and the operating voltage of the ESD protection circuit is n times VDD, n is a positive integer of 2 or more, the ESD protection circuit may include n module circuits, The voltage across each module circuit is divided into VDD. This allows each low voltage component to operate normally without suffering from excessive electrical stress.

由於模組電路自身具有分壓功能,本實施例的靜電放電保護電路不需要圖1、圖2的202以及圖3的130這一類傳統的分壓電路。省去傳統的分壓電路,也就除去了傳統分壓電路的嚴重漏電和大面積,如此可大幅改善整個靜電放電保護電路的漏電問題,也能減少電路面積。Since the module circuit itself has a voltage dividing function, the electrostatic discharge protection circuit of the present embodiment does not require a conventional voltage dividing circuit such as 202 of FIG. 1, FIG. 2, and FIG. The conventional voltage dividing circuit is omitted, and the serious leakage and large area of the conventional voltage dividing circuit are removed, so that the leakage problem of the entire electrostatic discharge protection circuit can be greatly improved, and the circuit area can also be reduced.

每個模組電路包括一個傳導路徑和一個偵測電路,例如圖6的模組電路410包括偵測電路420以及PMOS電晶體P2所構成的傳導路徑。PMOS電晶體P2根據偵測電路420的輸出而導通或截止。偵測電路420耦接模組電路410的電源端412、接地端414與傳導路徑P2。偵測電路420的作用是偵測靜電放電脈衝,如果電源端412的電壓上升速度超過預設的臨界值,表示有靜電放電脈衝,偵測電路420會開啟PMOS電晶體P2,使傳導路徑導通。Each module circuit includes a conduction path and a detection circuit. For example, the module circuit 410 of FIG. 6 includes a conduction path formed by the detection circuit 420 and the PMOS transistor P2. The PMOS transistor P2 is turned on or off according to the output of the detecting circuit 420. The detection circuit 420 is coupled to the power terminal 412, the ground terminal 414, and the conduction path P2 of the module circuit 410. The function of the detecting circuit 420 is to detect the electrostatic discharge pulse. If the voltage rising speed of the power terminal 412 exceeds a preset threshold, indicating that there is an electrostatic discharge pulse, the detecting circuit 420 turns on the PMOS transistor P2 to turn on the conduction path.

如圖4所示,每一個模組電路的傳導路徑P2耦接於所屬模組電路的電源端與接地端之間。如果靜電放電保護電路的電源端450出現靜電放電脈衝,每一個模組電路其中的偵測電路都會使對應的傳導路徑導通,將靜電放電脈衝自所屬模組電路的電源端傳導至所屬模組電路的接地端。如此,靜電放電脈衝就會從電源端450被導入接地端455,達到保護電子系統的目的。As shown in FIG. 4, the conduction path P2 of each module circuit is coupled between the power terminal and the ground terminal of the module circuit. If an electrostatic discharge pulse occurs at the power terminal 450 of the ESD protection circuit, the detection circuit of each module circuit turns on the corresponding conduction path, and the ESD pulse is transmitted from the power terminal of the module circuit to the module circuit to which it belongs. Ground terminal. In this way, the electrostatic discharge pulse is introduced from the power supply terminal 450 to the ground terminal 455 to protect the electronic system.

為了減少漏電,本發明可適當地限制上述PMOS電晶體P2的尺寸,雖然這可能會使傳導路徑的導電能力降低,但本發明可使用如圖5和圖7所示的增強性設計。圖5是依照本發明另一實施例的一種靜電放電保護電路的示意圖,而圖7是圖5的靜電放電保護電路的電路圖。圖5的靜電放電保護電路增加了放電路徑470。放電路徑470耦接於靜電放電保護電路的電源端450與接地端455之間。除了最後一個模組電路以外,每一個模組電路的傳導路徑P2耦接於所屬模組電路的電源端與接地端之間,如模組電路410所示。最後一個模組電路的傳導路徑P2則耦接於所屬模組電路的電源端與放電路徑470之間,如模組電路430所示。請注意模組電路430和各模組電路410仍可以是相同的電路,具有相同的電路架構與元件組合。In order to reduce leakage, the present invention can appropriately limit the size of the above-described PMOS transistor P2, although this may reduce the conductivity of the conduction path, the present invention may use the enhanced design as shown in FIGS. 5 and 7. FIG. 5 is a schematic diagram of an electrostatic discharge protection circuit according to another embodiment of the present invention, and FIG. 7 is a circuit diagram of the electrostatic discharge protection circuit of FIG. 5. The ESD protection circuit of Figure 5 adds a discharge path 470. The discharge path 470 is coupled between the power terminal 450 and the ground terminal 455 of the ESD protection circuit. In addition to the last module circuit, the conduction path P2 of each module circuit is coupled between the power terminal and the ground terminal of the module circuit, as shown by the module circuit 410. The conduction path P2 of the last module circuit is coupled between the power terminal of the module circuit and the discharge path 470, as shown by the module circuit 430. Please note that the module circuit 430 and each module circuit 410 can still be the same circuit, with the same circuit architecture and component combination.

當靜電放電保護電路的電源端450出現靜電放電脈衝,每一個模組電路內的偵測電路會使對應的傳導路徑導通。靜電放電脈衝會產生觸發信號,觸發信號會沿著每一個模組電路的傳導路徑一路傳送至放電路徑470,使放電路徑470導通,將靜電放電脈衝自靜電放電保護電路的電源端450導入靜電放電保護電路的接地端455。上述的觸發信號可以是電流信號或電壓信號。放電路徑470可以使用矽控整流器(SCR)或場氧化層電晶體(field-oxide device,簡稱FOD)等元件來組成。如果放電路徑470使用不含氧化層的元件,例如矽控整流器,則其漏電量可以忽略不計,可兼具提高導電能力與減少漏電的功效。When an electrostatic discharge pulse occurs at the power terminal 450 of the ESD protection circuit, the detection circuit in each module circuit turns on the corresponding conduction path. The electrostatic discharge pulse generates a trigger signal, and the trigger signal is transmitted along the conduction path of each module circuit to the discharge path 470, so that the discharge path 470 is turned on, and the electrostatic discharge pulse is introduced into the electrostatic discharge from the power terminal 450 of the electrostatic discharge protection circuit. The ground terminal 455 of the protection circuit. The trigger signal described above may be a current signal or a voltage signal. The discharge path 470 can be composed of a component such as a controlled voltage rectifier (SCR) or a field-oxide device (FOD). If the discharge path 470 uses an element that does not contain an oxide layer, such as a controlled rectifier, its leakage current is negligible, and it can both improve the conductivity and reduce the leakage.

以下配合圖8至圖11說明本發明一實施例其中,偵測電路的細節與其運作原理。圖8為依照本發明一實施例的一種靜電放電保護電路的電路圖。為了簡潔起見,圖8的靜電放電保護電路僅包括一個模組電路810。模組電路810包括偵測電路820以及PMOS電晶體P2構成的傳導路徑。850是圖8的靜電放電保護電路和模組電路810的共同電源端,855是圖8的靜電放電保護電路和模組電路810的共同接地端。The details of the detection circuit and the operation principle thereof will be described below with reference to FIG. 8 to FIG. FIG. 8 is a circuit diagram of an electrostatic discharge protection circuit in accordance with an embodiment of the present invention. For the sake of brevity, the ESD protection circuit of FIG. 8 includes only one module circuit 810. The module circuit 810 includes a conduction path formed by the detection circuit 820 and the PMOS transistor P2. 850 is the common power supply end of the ESD protection circuit and the module circuit 810 of FIG. 8, and 855 is the common ground end of the ESD protection circuit and the module circuit 810 of FIG.

偵測電路820包括PMOS電晶體P1、電阻R1、電容C1、以及三個反相器I1、I2、I3。每個反相器有四個端點,分別是輸入端、輸出端、高壓端、以及低壓端。其中,高壓端也就是反相器的PMOS電晶體的源極(source),低壓端也就是反相器的N通道金氧半場效電晶體(n-channel metal oxide semiconductor field effect transistor,簡稱NMOS電晶體)的源極。PMOS電晶體P1耦接於電源端850與節點801之間。電阻R1耦接於節點801與節點802之間。電容C1耦接於節點802與接地端855之間。電阻R1與電容C1可形成一反應電路,節點801與802可分別視為一第一節點與一第二節點。反相器I1的高壓端耦接節點801,低壓端耦接接地端855,輸入端耦接節點802,接收節點802的電壓,輸出端耦接節點803,提供節點803的電壓。反相器I2的高壓端同樣耦接節點801,低壓端同樣耦接接地端855,輸入端耦接節點803,接收節點803的電壓,輸出端耦接節點804,提供節點804的電壓。反相器I1與I2可視為一組合電路。反相器I3的高壓端耦接電源端850,低壓端耦接節點804,輸入端耦接節點801,接收節點801的電壓,輸出端耦接節點805,提供節點805的電壓。節點805的電壓也就是PMOS電晶體P2的閘極(gate)電壓。因此,反相器I3的輸出可使傳導路徑P2導通或截止。The detecting circuit 820 includes a PMOS transistor P1, a resistor R1, a capacitor C1, and three inverters I1, I2, and I3. Each inverter has four terminals, an input terminal, an output terminal, a high voltage terminal, and a low voltage terminal. Wherein, the high voltage end is the source of the PMOS transistor of the inverter, and the low voltage end is the N-channel metal oxide semiconductor field effect transistor (NMOS). The source of the crystal). The PMOS transistor P1 is coupled between the power terminal 850 and the node 801. The resistor R1 is coupled between the node 801 and the node 802. The capacitor C1 is coupled between the node 802 and the ground 855. The resistor R1 and the capacitor C1 can form a reaction circuit, and the nodes 801 and 802 can be regarded as a first node and a second node, respectively. The high voltage terminal of the inverter I1 is coupled to the node 801, the low voltage terminal is coupled to the ground terminal 855, the input terminal is coupled to the node 802, the voltage of the node 802 is received, and the output terminal is coupled to the node 803 to provide the voltage of the node 803. The high voltage terminal of the inverter I2 is also coupled to the node 801. The low voltage terminal is also coupled to the ground terminal 855. The input terminal is coupled to the node 803, and receives the voltage of the node 803. The output terminal is coupled to the node 804 to provide the voltage of the node 804. The inverters I1 and I2 can be regarded as a combined circuit. The high voltage terminal of the inverter I3 is coupled to the power terminal 850, the low voltage terminal is coupled to the node 804, the input terminal is coupled to the node 801, the voltage of the node 801 is received, and the output terminal is coupled to the node 805 to provide the voltage of the node 805. The voltage at node 805 is also the gate voltage of PMOS transistor P2. Therefore, the output of the inverter I3 can turn on or off the conduction path P2.

偵測電路820是利用電容C1的充電速度來區分正常的工作電壓和突發的靜電放電脈衝;等效上,根據此充電速度,即可為電源端之電壓上升速度定義出一臨界值(臨界速度)。根據一典型參數之實施例,圖9繪示圖8的靜電放電保護電路在正常啟動時的工作電壓VDD、節點801至805的電壓、以及模組電路810的漏電流。正常啟動時,電源端850提供的工作電壓VDD約在100微秒(microsecond)的時間內從0V上升到1V(也就是VDD的額定電壓值),VDD的上升使PMOS電晶體P1導通。此時VDD的上升速度低於設計時的預設臨界速度,電容C1的充電速度能跟上,所以節點801和802的電壓同步上升。對於反相器I1和I2而言,節點801的電壓是邏輯高電位,節點802的電壓同樣是邏輯高電位。所以反相器I1接收節點802的邏輯高電位,輸出節點803的邏輯低電位,而反相器I2接收節點803的邏輯低電位,輸出節點804的邏輯高電位。但是對於反相器I3而言,電源端850的工作電壓VDD才是邏輯高電位,節點801和804的電壓只有0.2V,相比之下都是邏輯低電位。所以反相器I3的NMOS電晶體截止,而PMOS電晶體導通,使節點805的電壓等於(或趨近於)工作電壓VDD,進而使傳導路徑的PMOS電晶體P2截止,因此不會送出觸發電流使放電路徑870導通。The detecting circuit 820 uses the charging speed of the capacitor C1 to distinguish the normal working voltage from the sudden electrostatic discharge pulse; equivalently, according to the charging speed, a critical value can be defined for the voltage rising speed of the power terminal (critical speed). According to an embodiment of a typical parameter, FIG. 9 illustrates the operating voltage VDD, the voltages of the nodes 801 to 805, and the leakage current of the module circuit 810 of the ESD protection circuit of FIG. 8 during normal startup. During normal startup, the operating voltage VDD provided by the power supply terminal 850 rises from 0V to 1V (that is, the rated voltage value of VDD) in about 100 microseconds, and the rise of VDD turns on the PMOS transistor P1. At this time, the rising speed of VDD is lower than the preset critical speed at the time of design, and the charging speed of the capacitor C1 can keep up, so the voltages of the nodes 801 and 802 rise synchronously. For inverters I1 and I2, the voltage at node 801 is a logic high and the voltage at node 802 is also a logic high. Therefore, inverter I1 receives the logic high of node 802, outputs a logic low of node 803, and inverter I2 receives the logic low of node 803, outputting a logic high of node 804. However, for inverter I3, the operating voltage VDD of the power supply terminal 850 is a logic high, and the voltages of the nodes 801 and 804 are only 0.2V, which is a logic low potential. Therefore, the NMOS transistor of the inverter I3 is turned off, and the PMOS transistor is turned on, so that the voltage of the node 805 is equal to (or is close to) the operating voltage VDD, thereby turning off the PMOS transistor P2 of the conduction path, so that the trigger current is not sent. The discharge path 870 is turned on.

PMOS電晶體P1是偵測電路820本身的低漏電設計。正常啟動時,節點805的電壓逐步上升,最終會使PMOS電晶體P1截止不導通,使電容C1不再充電。如圖9所示,電容C1僅充電到0.2V為止,和1V的工作電壓VDD相比並不多,這樣可以減少電容C1和整個模組電路810的漏電。如圖9所示,模組電路810的漏電流不超過0.15微安培(μA)。因為這樣,電容C1不必為了減少漏電而特別使用厚氧化層,可以減少電路面積。The PMOS transistor P1 is a low leakage design of the detection circuit 820 itself. During normal startup, the voltage of the node 805 gradually rises, and finally the PMOS transistor P1 is turned off and does not conduct, so that the capacitor C1 is no longer charged. As shown in FIG. 9, the capacitor C1 is only charged to 0.2V, and is not much compared with the operating voltage VDD of 1V, which can reduce the leakage of the capacitor C1 and the entire module circuit 810. As shown in FIG. 9, the leakage current of the module circuit 810 does not exceed 0.15 microamperes (μA). Because of this, the capacitor C1 does not have to use a thick oxide layer in order to reduce leakage, and the circuit area can be reduced.

圖10繪示圖8的靜電放電保護電路在遭遇靜電放電脈衝時的工作電壓VDD、節點801至805的電壓、以及傳導路徑P2輸出的觸發電流。靜電放電脈衝使工作電壓VDD在10奈秒(nanosecond)之內就從0V上升到2V,VDD的上升使PMOS電晶體P1導通。此時VDD的上升速度高於設計時的預設臨界速度,電容C1的充電速度無法跟上,所以節點801的電壓和工作電壓VDD同步上升,而節點802的電壓卻不能同步上升。對於反相器I1和I2而言,節點801的電壓(2V)是邏輯高電位,節點802的電壓相對變成是邏輯低電位。所以反相器I1接收節點802的邏輯低電位,輸出節點803的邏輯高電位,而反相器I2接收節點803的邏輯高電位,輸出節點804的邏輯低電位。對於反相器I3而言,電源端850和節點801的電壓都是邏輯高電位,節點804的電壓是邏輯低電位。所以反相器I3的PMOS電晶體截止,而NMOS電晶體導通,拉低節點805的電壓,進而使傳導路徑的PMOS電晶體P2導通,並送出觸發電流進一步使放電路徑870亦一併導通。FIG. 10 illustrates the operating voltage VDD, the voltages of the nodes 801 to 805, and the trigger current output by the conduction path P2 of the electrostatic discharge protection circuit of FIG. 8 when subjected to an electrostatic discharge pulse. The electrostatic discharge pulse causes the operating voltage VDD to rise from 0V to 2V within 10 nanoseconds, and the rise of VDD turns on the PMOS transistor P1. At this time, the rising speed of VDD is higher than the preset critical speed at the time of design, and the charging speed of the capacitor C1 cannot keep up, so the voltage of the node 801 and the operating voltage VDD rise synchronously, and the voltage of the node 802 cannot rise synchronously. For inverters I1 and I2, the voltage at node 801 (2V) is a logic high and the voltage at node 802 becomes a logic low. Therefore, the inverter I1 receives the logic low of the node 802, the logic high of the output node 803, and the inverter I2 receives the logic high of the node 803 and the logic low of the output node 804. For inverter I3, the voltages at power supply terminal 850 and node 801 are both logic high and the voltage at node 804 is logic low. Therefore, the PMOS transistor of the inverter I3 is turned off, and the NMOS transistor is turned on, the voltage of the node 805 is pulled down, and the PMOS transistor P2 of the conduction path is turned on, and the trigger current is sent to further turn on the discharge path 870.

圖11繪示圖8的靜電放電保護電路在遭遇另一個更強的靜電放電脈衝時的工作電壓VDD、節點801至805的電壓、以及傳導路徑P2輸出的觸發電流。圖11的靜電放電脈衝使工作電壓VDD在10奈秒之內就從0V上升到5V。圖11和圖10的情況很類似,故不予贅述。FIG. 11 illustrates the operating voltage VDD, the voltages of the nodes 801 to 805, and the trigger current output by the conduction path P2 of the electrostatic discharge protection circuit of FIG. 8 when encountering another stronger electrostatic discharge pulse. The electrostatic discharge pulse of Figure 11 causes the operating voltage VDD to rise from 0V to 5V within 10 nanoseconds. The situation in Fig. 11 and Fig. 10 is very similar and will not be described again.

如圖12所示,某些傳統的靜電放電保護電路,在工作電壓VDD出現雜訊/突波之後,用來開啟放電路徑的觸發電壓不會回到0V,而是出現栓鎖(latch)現象,維持在一個非零電壓(在圖12的例子中,是維持於1V左右)。這樣的栓鎖現象會造成電路持續漏電,並不理想。另一方面,圖8的本發明實施例沒有上述的栓鎖問題。如圖13所示,工作電壓VDD的雜訊會使PMOS電晶體P1和P2導通,提供觸發電壓(也就是電阻R2的跨壓)。但因為電阻R1和電容C1的放電路徑,放電之後會使各節點電壓回到雜訊發生前的電壓準位,雜訊消散之後會使PMOS電晶體P1和P2截止,使觸發電壓回到0V。As shown in FIG. 12, in some conventional ESD protection circuits, after the noise/surge occurs at the operating voltage VDD, the trigger voltage for turning on the discharge path does not return to 0V, but a latch phenomenon occurs. Maintained at a non-zero voltage (in the example of Figure 12, it is maintained at around 1V). Such a latching phenomenon can cause a continuous leakage of the circuit, which is not ideal. On the other hand, the embodiment of the invention of Fig. 8 does not have the aforementioned latching problem. As shown in Figure 13, the noise of the operating voltage VDD turns on the PMOS transistors P1 and P2 to provide a trigger voltage (i.e., the voltage across the resistor R2). However, because of the discharge path of the resistor R1 and the capacitor C1, the voltage of each node is returned to the voltage level before the noise occurs after the discharge, and the PMOS transistors P1 and P2 are turned off after the noise is dissipated, so that the trigger voltage returns to 0V.

以上實施例的靜電放電保護電路本身就能分壓,並不需要額外的分壓電路。不過,即使增加了分壓電路,也不會影響以上實施例的靜電放電保護電路的運作。例如圖4和圖5的實施例中,可以在多個模組電路旁邊增加一個分壓電路(未繪示),提供驅動各模組電路的電流。這個分壓電路可以耦接於靜電放電保護電路的電源端450與接地端455之間,並耦接每一個模組電路的電源端與接地端,例如耦接模組電路410的電源端412與接地端414。如前所述,分壓電路可將靜電放電保護電路的電源端與接地端之間的跨壓均分,進一步確保每一個模組電路的電源端與接地端之間的跨壓相等。舉例來說,若有n個模組電路410應用於n倍VDD的電子系統中,則此分壓電路中可包括n個相同的分壓元件(如電阻、二極體或電晶體),每一分壓元件相互串連的兩端分別連接至一對應模組電路410的電源端與接地端。由於以上實施例的模組電路本身就能分壓,上述的分壓電路不需要很大的驅動能力,不會有嚴重漏電問題,也不需要佔用很大的布局面積。The electrostatic discharge protection circuit of the above embodiment can be divided by itself, and does not require an additional voltage dividing circuit. However, even if a voltage dividing circuit is added, the operation of the electrostatic discharge protection circuit of the above embodiment will not be affected. For example, in the embodiment of Figures 4 and 5, a voltage divider circuit (not shown) can be added next to the plurality of module circuits to provide current for driving the various module circuits. The voltage dividing circuit can be coupled between the power terminal 450 and the grounding terminal 455 of the ESD protection circuit, and coupled to the power terminal and the ground terminal of each module circuit, for example, the power terminal 412 of the module circuit 410. And ground terminal 414. As described above, the voltage dividing circuit can equally divide the voltage across the power supply end and the ground of the ESD protection circuit, further ensuring that the voltage across the power supply terminal and the ground terminal of each module circuit is equal. For example, if there are n module circuits 410 applied to an electronic system of n times VDD, the voltage dividing circuit may include n identical voltage dividing elements (such as resistors, diodes or transistors). The two ends of each voltage dividing component connected in series are respectively connected to a power terminal and a ground terminal of a corresponding module circuit 410. Since the module circuit of the above embodiment can be divided by itself, the above-mentioned voltage dividing circuit does not need a large driving capability, does not have a serious leakage problem, and does not need to occupy a large layout area.

綜上所述,本發明的靜電放電保護電路完全以低壓元件組成,而且可承受高壓電源,不會使其中的元件遭受過度電性應力,適用於有多種工作電壓的電子系統。由於完全使用低壓元件,本發明的靜電放電保護電路不需要厚閘極氧化層的額外光罩,可以簡化製程,提高產品良率,降低成本。本發明的靜電放電保護電路不需要傳統的分壓電路,因此能降低漏電,並減少電路面積。此外,本發明的靜電放電保護電路其中的模組電路本身也有降低漏電和減少面積的設計。另外,本發明的模組化設計概念可使本發明能使相同設計的模組電路適用於不同工作電壓的不同電子系統。在圖4、圖5的實施例中,若有需要,模組電路430與接地端455之間亦可設置電路;而第一個模組電路410的電源端412與電源端450之間也可視需要設置相關電路。In summary, the electrostatic discharge protection circuit of the present invention is completely composed of a low voltage component, and can withstand a high voltage power supply without subjecting the components therein to excessive electrical stress, and is suitable for an electronic system having multiple operating voltages. Since the low voltage component is completely used, the electrostatic discharge protection circuit of the present invention does not require an additional mask of a thick gate oxide layer, which simplifies the process, improves product yield, and reduces cost. The electrostatic discharge protection circuit of the present invention does not require a conventional voltage dividing circuit, thereby reducing leakage and reducing circuit area. In addition, the module circuit of the electrostatic discharge protection circuit of the present invention also has a design for reducing leakage and reducing area. In addition, the modular design concept of the present invention enables the present invention to enable modular circuits of the same design to be applied to different electronic systems of different operating voltages. In the embodiment of FIG. 4 and FIG. 5, if necessary, a circuit may be disposed between the module circuit 430 and the ground terminal 455; and the power terminal 412 of the first module circuit 410 and the power terminal 450 are also visible. Need to set the relevant circuit.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

110...放電路徑110. . . Discharge path

115...矽控整流器115. . . Voltage controlled rectifier

120...控制電路120. . . Control circuit

130...分壓電路130. . . Voltage dividing circuit

202...放電路徑202. . . Discharge path

204...控制電路204. . . Control circuit

210、303、315、346...電路節點210, 303, 315, 346. . . Circuit node

300...靜電放電保護電路300. . . Electrostatic discharge protection circuit

206、208、302、304、306、318、340、344、348...PMOS電晶體206, 208, 302, 304, 306, 318, 340, 344, 348. . . PMOS transistor

312、316、322、342...NMOS電晶體312, 316, 322, 342. . . NMOS transistor

307...電阻307. . . resistance

308、324、326、345...電容308, 324, 326, 345. . . capacitance

410、430...模組電路410, 430. . . Module circuit

420...偵測電路420. . . Detection circuit

412、450...電源端412, 450. . . Power terminal

414、455...接地端414, 455. . . Ground terminal

470...放電路徑470. . . Discharge path

801-805...電路節點801-805. . . Circuit node

810...模組電路810. . . Module circuit

820‧‧‧偵測電路820‧‧‧Detection circuit

850‧‧‧電源端850‧‧‧Power terminal

855‧‧‧接地端855‧‧‧ Grounding terminal

870‧‧‧放電路徑870‧‧‧discharge path

a-v‧‧‧電路節點A-v‧‧‧circuit node

C1‧‧‧電容C1‧‧‧ capacitor

D1、D2‧‧‧二極體D1, D2‧‧‧ diode

I_trig‧‧‧電流信號I_trig‧‧‧current signal

I1、I2、I3‧‧‧反相器I1, I2, I3‧‧‧ inverter

M1-M4、M6、Md1-Md6、Mp1-Mp5‧‧‧PMOS電晶體M1-M4, M6, Md1-Md6, Mp1-Mp5‧‧‧ PMOS transistors

M5、Mn1‧‧‧NMOS電晶體M5, Mn1‧‧‧ NMOS transistor

Mc1‧‧‧電容Mc1‧‧‧ capacitor

P1、P2‧‧‧PMOS電晶體P1, P2‧‧‧ PMOS transistor

R1、R2‧‧‧電阻R1, R2‧‧‧ resistance

Hi-Vcc、VDD‧‧‧工作電壓Hi-Vcc, VDD‧‧‧ working voltage

VSS‧‧‧接地電壓VSS‧‧‧ Grounding voltage

圖1至圖3是習知的三種靜電放電保護電路的電路圖。1 to 3 are circuit diagrams of three conventional ESD protection circuits.

圖4是依照本發明一實施例的一種靜電放電保護電路的示意圖。4 is a schematic diagram of an electrostatic discharge protection circuit in accordance with an embodiment of the present invention.

圖5是依照本發明另一實施例的一種靜電放電保護電路的示意圖。FIG. 5 is a schematic diagram of an electrostatic discharge protection circuit in accordance with another embodiment of the present invention.

圖6是圖4的靜電放電保護電路的電路圖。Fig. 6 is a circuit diagram of the electrostatic discharge protection circuit of Fig. 4.

圖7是圖5的靜電放電保護電路的電路圖。Fig. 7 is a circuit diagram of the electrostatic discharge protection circuit of Fig. 5.

圖8是依照本發明另一實施例的一種靜電放電保護電路的電路圖。FIG. 8 is a circuit diagram of an electrostatic discharge protection circuit in accordance with another embodiment of the present invention.

圖9繪示圖8的靜電放電保護電路在正常啟動時的各節點電壓和漏電流。FIG. 9 is a diagram showing voltages and leakage currents of respective nodes of the ESD protection circuit of FIG. 8 during normal startup.

圖10和圖11繪示圖8的靜電放電保護電路遭遇靜電放電脈衝時的各節點電壓和觸發電流。10 and 11 illustrate voltages and trigger currents of respective nodes when the electrostatic discharge protection circuit of FIG. 8 encounters an electrostatic discharge pulse.

圖12繪示習知的一種靜電放電保護電路遭遇電源雜訊時的工作電壓和觸發電壓。FIG. 12 illustrates an operating voltage and a trigger voltage of a conventional electrostatic discharge protection circuit that encounters power supply noise.

圖13繪示圖8的靜電放電保護電路遭遇電源雜訊時的工作電壓和觸發電壓。FIG. 13 is a diagram showing the operating voltage and the trigger voltage of the ESD protection circuit of FIG. 8 when power supply noise is encountered.

410‧‧‧模組電路410‧‧‧Modular Circuit

420‧‧‧偵測電路420‧‧‧Detection circuit

412、450‧‧‧電源端412, 450‧‧‧ power supply end

414、455‧‧‧接地端414, 455‧‧‧ Grounding

P2‧‧‧PMOS電晶體P2‧‧‧ PMOS transistor

VDD‧‧‧工作電壓VDD‧‧‧ working voltage

VSS‧‧‧接地電壓VSS‧‧‧ Grounding voltage

Claims (14)

一種靜電放電保護電路,包括:完全相同的多個模組電路,其中第一個模組電路的電源端耦接該靜電放電保護電路的電源端,其餘每一個模組電路的電源端耦接上一個模組電路的接地端,最後一個模組電路的接地端耦接該靜電放電保護電路的接地端,每一上述模組電路包括:一傳導路徑,耦接該模組電路的電源端;以及一偵測電路,耦接該模組電路的電源端、接地端與該傳導路徑,若該模組電路的電源端的電壓上升速度超過一臨界值,則該偵測電路使該傳導路徑導通,其中每一上述偵測電路包括:一PMOS電晶體,耦接於所屬模組電路的電源端與一第一節點之間;一電阻,耦接於該第一節點與一第二節點之間;一電容,耦接於該第二節點與所屬模組電路的接地端之間;一第一反相器,耦接該第二節點,接收該第二節點的電壓;一第二反相器,耦接該第一反相器,接收該第一反相器的輸出;以及一第三反相器,耦接該第一節點與該第二反相器,接收該第一節點的電壓,該第三反相器的輸出使對應的該傳導路徑導通或截止。 An ESD protection circuit includes: a plurality of module circuits identical to each other, wherein a power supply end of the first module circuit is coupled to a power supply end of the ESD protection circuit, and a power supply end of each of the other module circuits is coupled a ground end of the module circuit, the ground end of the last module circuit is coupled to the ground end of the ESD protection circuit, each of the module circuits includes: a conductive path coupled to the power end of the module circuit; a detecting circuit coupled to the power terminal, the grounding end and the conducting path of the module circuit; if the voltage rising speed of the power terminal of the module circuit exceeds a critical value, the detecting circuit turns on the conducting path, wherein Each of the detecting circuits includes: a PMOS transistor coupled between the power terminal of the module circuit and a first node; and a resistor coupled between the first node and a second node; a capacitor coupled between the second node and a ground terminal of the module circuit; a first inverter coupled to the second node to receive the voltage of the second node; a second inverter coupled Pick up the first An inverter receiving an output of the first inverter; and a third inverter coupled to the first node and the second inverter to receive a voltage of the first node, the third inversion The output of the device turns the corresponding conduction path on or off. 如申請專利範圍第1項所述之靜電放電保護電路,其中該傳導路徑包括一PMOS電晶體,該PMOS電晶體根據該偵測電路的輸出而導通或截止。 The ESD protection circuit of claim 1, wherein the conduction path comprises a PMOS transistor, and the PMOS transistor is turned on or off according to an output of the detection circuit. 如申請專利範圍第1項所述之靜電放電保護電路,其中每一上述模組電路的傳導路徑耦接於該模組電路的電源端與接地端之間,將一靜電放電脈衝自該模組電路的電源端傳導至該模組電路的接地端。 The electrostatic discharge protection circuit of claim 1, wherein a conduction path of each of the module circuits is coupled between a power supply end and a ground end of the module circuit, and an electrostatic discharge pulse is applied from the module. The power supply terminal of the circuit is conducted to the ground terminal of the module circuit. 如申請專利範圍第1項所述之靜電放電保護電路,更包括:一放電路徑,耦接於該靜電放電保護電路的電源端與接地端之間,將一靜電放電脈衝自該靜電放電保護電路的電源端導入該靜電放電保護電路的接地端;其中最後一個模組電路的傳導路徑耦接該放電路徑,輸出一觸發信號,使該放電路徑導通;其餘每一模組電路的傳導路徑耦接於該模組電路的電源端與接地端之間,傳送該觸發信號。 The electrostatic discharge protection circuit of claim 1, further comprising: a discharge path coupled between the power supply end and the ground end of the electrostatic discharge protection circuit, and an electrostatic discharge pulse from the electrostatic discharge protection circuit The power supply end is connected to the ground end of the ESD protection circuit; the conduction path of the last module circuit is coupled to the discharge path, and a trigger signal is output to make the discharge path conductive; the conduction path coupling of each of the remaining module circuits is coupled The trigger signal is transmitted between the power terminal and the ground terminal of the module circuit. 如申請專利範圍第1項所述之靜電放電保護電路,其中該第一反相器和該第二反相器的高壓端皆耦接該第一節點,該第一反相器和該第二反相器的低壓端皆耦接所屬模組電路的接地端,該第三反相器的高壓端耦接所屬模組電路的電源端,該第三反相器的低壓端耦接該第二反相器的輸出端。 The ESD protection circuit of claim 1, wherein the high voltage terminals of the first inverter and the second inverter are coupled to the first node, the first inverter and the second The low voltage end of the inverter is coupled to the ground end of the module circuit, the high voltage end of the third inverter is coupled to the power end of the module circuit, and the low voltage end of the third inverter is coupled to the second end. The output of the inverter. 如申請專利範圍第1項所述之靜電放電保護電路,更包括: 一分壓電路,耦接於該靜電放電保護電路的電源端與接地端之間,並耦接每一上述模組電路的電源端與接地端,將該靜電放電保護電路的電源端與接地端之間的跨壓均分,使每一上述模組電路的電源端與接地端之間的跨壓相等。 The electrostatic discharge protection circuit of claim 1, further comprising: a voltage dividing circuit is coupled between the power end of the ESD protection circuit and the ground end, and is coupled to the power end and the ground end of each of the module circuits, and the power end of the ESD protection circuit is grounded The voltage across the terminals is evenly divided so that the voltage across the power supply terminal and the ground terminal of each of the above module circuits is equal. 一種靜電放電保護電路,包括:一第一PMOS電晶體,耦接於一電源端與一第一節點之間;一電阻,耦接於該第一節點與一第二節點之間;一電容,耦接於該第二節點與一接地端之間;一第一反相器,耦接該第二節點,接收該第二節點的電壓;一第二反相器,耦接該第一反相器,接收該第一反相器的輸出;一第三反相器,耦接該第一節點與該第二反相器,接收該第一節點的電壓;以及一傳導路徑,耦接該電源端,根據該第三反相器的輸出而導通或截止。 An ESD protection circuit includes: a first PMOS transistor coupled between a power terminal and a first node; a resistor coupled between the first node and a second node; a capacitor, The first inverter is coupled to the second node and coupled to the second node to receive the voltage of the second node; a second inverter coupled to the first inverting Receiving the output of the first inverter; a third inverter coupled to the first node and the second inverter to receive the voltage of the first node; and a conductive path coupled to the power supply The terminal is turned on or off according to the output of the third inverter. 如申請專利範圍第7項所述之靜電放電保護電路,其中該傳導路徑包括一第二PMOS電晶體,該第二PMOS電晶體根據該第三反相器的輸出而導通或截止。 The ESD protection circuit of claim 7, wherein the conduction path comprises a second PMOS transistor, the second PMOS transistor being turned on or off according to an output of the third inverter. 如申請專利範圍第7項所述之靜電放電保護電路,其中該傳導路徑耦接於該電源端與該接地端之間,將一靜電放電脈衝自該電源端傳導至該接地端。 The ESD protection circuit of claim 7, wherein the conduction path is coupled between the power terminal and the ground, and an electrostatic discharge pulse is transmitted from the power terminal to the ground. 如申請專利範圍第7項所述之靜電放電保護電路,更包括:一放電路徑,耦接該傳導路徑與該接地端,將一靜電放電脈衝導入該接地端,其中該傳導路徑輸出一觸發信號,使該放電路徑導通。 The electrostatic discharge protection circuit of claim 7, further comprising: a discharge path coupled to the conduction path and the ground end to introduce an electrostatic discharge pulse to the ground end, wherein the conduction path outputs a trigger signal , the discharge path is turned on. 如申請專利範圍第7項所述之靜電放電保護電路,其中該第一反相器和該第二反相器的高壓端皆耦接該第一節點,該第一反相器和該第二反相器的低壓端皆耦接該接地端,該第三反相器的高壓端耦接該電源端,該第三反相器的低壓端耦接該第二反相器的輸出端。 The ESD protection circuit of claim 7, wherein the high voltage terminals of the first inverter and the second inverter are coupled to the first node, the first inverter and the second The low-voltage end of the inverter is coupled to the ground, the high-voltage end of the third inverter is coupled to the power terminal, and the low-voltage end of the third inverter is coupled to the output of the second inverter. 一種靜電放電保護電路,包括:一第一PMOS電晶體,耦接於一電源端與一第一節點之間;一反應電路,耦接於該第一節點;該反應電路可偵測該電源端之靜電放電脈衝並將偵測結果反映至一第二節點與該第一節點;一反相器,耦接該第一節點,接收該第一節點的電壓,以根據該第一節點與該第二節點的電壓作對應的輸出;以及一傳導路徑,耦接該電源端,根據該反相器的輸出而導通或截止,其中該反相器經由一組合電路耦接至該第二節點;當該反應電路偵測到靜電放電脈衝時,該反應電路可在該第一節點與該第二節點間提供一壓差以使該組合電路接收一邏輯高電位之輸入;當該反應電路未偵測到靜電 放電脈衝時,該反應電路則會使該組合電路接收一邏輯低電位之輸入。 An ESD protection circuit includes: a first PMOS transistor coupled between a power terminal and a first node; a reaction circuit coupled to the first node; the reaction circuit can detect the power terminal The electrostatic discharge pulse reflects the detection result to a second node and the first node; an inverter coupled to the first node, receiving the voltage of the first node, according to the first node and the first The voltage of the two nodes is a corresponding output; and a conductive path is coupled to the power supply terminal, and is turned on or off according to an output of the inverter, wherein the inverter is coupled to the second node via a combination circuit; When the reaction circuit detects an electrostatic discharge pulse, the reaction circuit can provide a voltage difference between the first node and the second node to enable the combination circuit to receive a logic high potential input; when the reaction circuit is not detected To static electricity When the pulse is discharged, the reaction circuit causes the combination circuit to receive a logic low input. 如申請專利範圍第12項的靜電放電保護電路,其中,該反應電路包含有:一電阻,耦接於該第一節點與該第二節點之間;以及一電容,耦接於該第二節點與一接地端之間。 The electrostatic discharge protection circuit of claim 12, wherein the reaction circuit comprises: a resistor coupled between the first node and the second node; and a capacitor coupled to the second node Between a ground and a ground. 如申請專利範圍第12項的靜電放電保護電路,其中,該組合電路包含有:一第一反相器,耦接該第二節點,接收該第二節點的電壓;以及一第二反相器,耦接該第一反相器,接收該第一反相器的輸出。 The electrostatic discharge protection circuit of claim 12, wherein the combination circuit comprises: a first inverter coupled to the second node to receive a voltage of the second node; and a second inverter The first inverter is coupled to receive the output of the first inverter.
TW98128717A 2009-08-26 2009-08-26 High-voltage-tolerant esd clamp circuit with low leakage current fabricated by low-voltage cmos process TWI387093B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98128717A TWI387093B (en) 2009-08-26 2009-08-26 High-voltage-tolerant esd clamp circuit with low leakage current fabricated by low-voltage cmos process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98128717A TWI387093B (en) 2009-08-26 2009-08-26 High-voltage-tolerant esd clamp circuit with low leakage current fabricated by low-voltage cmos process

Publications (2)

Publication Number Publication Date
TW201108392A TW201108392A (en) 2011-03-01
TWI387093B true TWI387093B (en) 2013-02-21

Family

ID=44835601

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98128717A TWI387093B (en) 2009-08-26 2009-08-26 High-voltage-tolerant esd clamp circuit with low leakage current fabricated by low-voltage cmos process

Country Status (1)

Country Link
TW (1) TWI387093B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8670219B2 (en) * 2011-06-16 2014-03-11 Monolithic Power Systems, Inc. High-voltage devices with integrated over-voltage protection and associated methods
US8773826B2 (en) * 2012-08-29 2014-07-08 Amazing Microelectronic Corp. Power-rail electro-static discharge (ESD) clamp circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200418164A (en) * 2002-08-09 2004-09-16 Motorola Inc Electrostatic discharge protection circuitry and method of operation
US20080049365A1 (en) * 2006-08-24 2008-02-28 Eugene Worley N-channel esd clamp with improved performance
TW200840016A (en) * 2007-03-28 2008-10-01 Ememory Technology Inc Electrostatic discharge protection device
US20090015974A1 (en) * 2007-07-10 2009-01-15 Chang-Tzu Wang Esd detection circuit
US7545614B2 (en) * 2005-09-30 2009-06-09 Renesas Technology America, Inc. Electrostatic discharge device with variable on time

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200418164A (en) * 2002-08-09 2004-09-16 Motorola Inc Electrostatic discharge protection circuitry and method of operation
US7545614B2 (en) * 2005-09-30 2009-06-09 Renesas Technology America, Inc. Electrostatic discharge device with variable on time
US20080049365A1 (en) * 2006-08-24 2008-02-28 Eugene Worley N-channel esd clamp with improved performance
TW200840016A (en) * 2007-03-28 2008-10-01 Ememory Technology Inc Electrostatic discharge protection device
US20090015974A1 (en) * 2007-07-10 2009-01-15 Chang-Tzu Wang Esd detection circuit

Also Published As

Publication number Publication date
TW201108392A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
TWI413227B (en) Electrostatic discharge protection circuit and method of operation
US8867183B2 (en) ESD protection techniques
US7397280B2 (en) High-voltage tolerant power-rail ESD clamp circuit for mixed-voltage I/O interface
US8422180B2 (en) High-voltage-tolerant ESD clamp circuit with low leakage current fabricated by low-voltage CMOS process
US20070171587A1 (en) Esd protection circuit with feedback technique
US9425616B2 (en) RC triggered ESD protection device
US8810982B2 (en) Semiconductor integrated circuit and protection circuit
TWI384613B (en) Esd protection circuit and esd protection method
US20060274466A1 (en) High voltage power supply clamp circuitry for electrostatic discharge (ESD) protection
KR20160072815A (en) Electrostatic discharge protection circuitry
WO2006039624A1 (en) Multi-stack power supply clamp circuitry for electrostatic discharge protection
WO2016088482A1 (en) Semiconductor integrated circuit
TWI517347B (en) Preventing electrostatic discharge (esd) failures across voltage domains
JP2010041013A (en) Protection circuit
TWI387093B (en) High-voltage-tolerant esd clamp circuit with low leakage current fabricated by low-voltage cmos process
CN103269217A (en) Output buffer
JP6784820B2 (en) ESD protection circuit
US7965482B2 (en) ESD protection circuit and semiconductor device
CN112448378A (en) Electrostatic protection circuit
US10177135B2 (en) Integrated circuit and electrostatic discharge protection circuit thereof
CN102013672B (en) Low-electric leakage high-voltage power supply electrostatic discharge protective circuit realized by utilizing low-voltage component
TWI792767B (en) Electrical discharge circuit having stable discharging mechanism
US20220238509A1 (en) Electrostatic discharge circuit and electrostatic discharge control system
JP2009076664A (en) Electrostatic discharge protective circuit
TWI779942B (en) Electrical discharge circuit having stable discharging mechanism