TWI383162B - Fault location method - Google Patents

Fault location method Download PDF

Info

Publication number
TWI383162B
TWI383162B TW98144186A TW98144186A TWI383162B TW I383162 B TWI383162 B TW I383162B TW 98144186 A TW98144186 A TW 98144186A TW 98144186 A TW98144186 A TW 98144186A TW I383162 B TWI383162 B TW I383162B
Authority
TW
Taiwan
Prior art keywords
fault
voltage
parameter
impedance
current
Prior art date
Application number
TW98144186A
Other languages
Chinese (zh)
Other versions
TW201122503A (en
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW98144186A priority Critical patent/TWI383162B/en
Publication of TW201122503A publication Critical patent/TW201122503A/en
Application granted granted Critical
Publication of TWI383162B publication Critical patent/TWI383162B/en

Links

Description

故障定位方法Fault location method

本發明是有關於一種輸電線的偵測技術,特別是指一種故障定位方法。The invention relates to a detection technology of a power transmission line, in particular to a fault location method.

電力佈局上,通常是以一輸電線來聯繫兩個變電器,因此輸電線品質的維持是有效供電的先決條件。當供電不穩定,系統大都要求在所傳電力信號的3~5個週期內就找出輸電線的故障位置,以儘快排除障礙。In the power layout, the two transformers are usually connected by a power transmission line, so the maintenance of the quality of the transmission line is a prerequisite for effective power supply. When the power supply is unstable, most of the systems require that the fault location of the power line be found within 3 to 5 cycles of the transmitted power signal to remove the obstacle as soon as possible.

習知一種故障定位法,是先測量該輸電線而得知所傳電力信號的電壓與電流,再藉由離散傅利葉轉換(DFT,Discrete Fourier Transform)對電壓與電流分別進行濾波來取出基頻相量(phasor),最後再就「電壓相量之於電流相量的相對關係」與「輸電線的特徵阻抗」做比較,來分析出故障位置。A fault location method is known in which the power line is first measured to know the voltage and current of the transmitted power signal, and then the voltage and current are respectively filtered by a discrete Fourier transform (DFT) to extract the fundamental frequency phase. The amount of phasor is finally compared with the characteristic relationship of the current phasor of the voltage phasor and the characteristic impedance of the power line to analyze the fault location.

然而,這種定位法主要建立在穩態相量的基礎上。但發生故障後,DFT算出的相量除了穩態成分,通常也挾帶著暫態成分(如:衰減直流成分),使得故障定位的精確度大受影響。為此,C. S. Yu在2006年於”A Discrete-Fourier-transform based adaptive mimic phasor estimator for distance relaying applications,”IEEE Trans. Power Delivery,vol.21,no.4,pp.1836-1846 中提出改良式的DFT架構,企圖移除其中的衰減直流成分,只是計算成本大幅地超出預期。However, this positioning method is mainly based on the steady state phasor. However, after a fault occurs, the phasor calculated by the DFT, in addition to the steady-state component, usually carries a transient component (eg, attenuating the DC component), so that the accuracy of the fault location is greatly affected. To this end, CS Yu proposed an improved version in "A Discrete-Fourier-transform based adaptive mimic phasor estimator for distance relaying applications," IEEE Trans. Power Delivery, vol. 21, no. 4, pp. 1836-1846 . The DFT architecture attempts to remove the attenuating DC component, but the computational cost is significantly larger than expected.

因此,本發明之目的,即在提供一種故障定位方法,能在系統要求的時間內提供輸電線上發生故障的位置,不但定位精確度高,也能有效控制計算成本。Therefore, the object of the present invention is to provide a fault location method capable of providing a fault location on a power transmission line within a time required by the system, which not only has high positioning accuracy, but also can effectively control the calculation cost.

於是,本發明故障定位方法,適用於為聯繫一第一變電器和一第二變電器間的一輸電線,計算出一故障位置,包含以下步驟:(A)分別量測於該第一變電器處的一第一參考電壓與一第一參考電流和該第二變電器處的一第二參考電壓與一第二參考電流;(B)設定一故障參數的初始值,該故障參數是該故障位置與該第二變電器的距離之於該輸電線總長的比例;(C)基於該輸電線的一總長、一特徵阻抗和一傳播常數以及該故障參數,得到一第一組阻抗,該第一組阻抗表示了位於該故障位置與該第一變電器之間的該輸電線的等效電路模型;(D)利用該第一參考電壓和該第一參考電流和該第一組阻抗得到一第一故障電壓;(E)基於該輸電線的總長、該特徵阻抗和該傳播常數以及該故障參數,得到一第二組阻抗,該第二組阻抗表示了位於該故障位置與該第二變電器之間的輸電線的等效電路模型;(F)利用該第二參考電壓、該第二參考電流和該第二組阻抗得到一第二故障電壓;(G)計算該第一、第二故障電壓的差值,並利用該差值來更新該故障參數,並基於更新後的故障參數重複步驟(C)~(G),直到更新後的故障參數使該第一、第二故障電壓趨於接近;及(H)利用更新完成的該故障參數求出該故障位置。Therefore, the fault location method of the present invention is adapted to calculate a fault location for contacting a power transmission line between a first power transformer and a second power transformer, and includes the following steps: (A) separately measuring the first change a first reference voltage at the electrical device and a first reference current and a second reference voltage and a second reference current at the second power transformer; (B) setting an initial value of a fault parameter, the fault parameter is a ratio of a fault location to the second power transformer to a total length of the power line; (C) obtaining a first set of impedances based on a total length of the power line, a characteristic impedance and a propagation constant, and the fault parameter, The first set of impedances represents an equivalent circuit model of the power line between the fault location and the first power transformer; (D) using the first reference voltage and the first reference current and the first set of impedances a first fault voltage; (E) obtaining a second set of impedances based on the total length of the power line, the characteristic impedance and the propagation constant, and the fault parameter, the second set of impedances indicating the fault location and the second Between transformers An equivalent circuit model of the wire; (F) using the second reference voltage, the second reference current, and the second set of impedances to obtain a second fault voltage; (G) calculating a difference between the first and second fault voltages And using the difference to update the fault parameter, and repeating steps (C)~(G) based on the updated fault parameter until the updated fault parameter causes the first and second fault voltages to approach; and H) Find the fault location by using the fault parameter completed by the update.

而本發明故障定位方法,適用於為聯繫一第一變電器和一第二變電器間的一輸電線,計算出一故障位置,包含以下步驟:(A)分別量測於該第一變電器處的一第一參考電壓與一第一參考電流和該第二變電器處的一第二參考電壓與一第二參考電流;(B)基於該輸電線的一總長、一特徵阻抗和一傳播常數,得到一組因子,該組因子表示了位於該故障位置與該第一變電器之間的該輸電線的等效阻抗相對於一故障參數的比例,且該故障參數是該故障位置與該第二變電器的距離之於該輸電線總長的比例;(C)基於該等參考電壓、該等參考電流以及該組因子,計算出滿足一第一故障電壓等於一第二故障電壓的故障參數,其中該第一故障電壓是指該故障位置處基於該第一參考電壓的電壓,該第二故障電壓是指該故障位置處基於該第二參考電壓的電壓;及(D)利用該故障參數求出該故障位置。The fault location method of the present invention is applicable to calculate a fault location for contacting a power transmission line between a first power transformer and a second power transformer, and includes the following steps: (A) separately measuring the first power transformer a first reference voltage and a first reference current and a second reference voltage and a second reference current at the second power transformer; (B) based on a total length of the power line, a characteristic impedance, and a propagation a constant, a set of factors representing a ratio of an equivalent impedance of the power line between the fault location and the first power transformer to a fault parameter, and the fault parameter is the fault location and the The ratio of the distance of the second power transformer to the total length of the power line; (C) calculating a fault parameter that satisfies a first fault voltage equal to a second fault voltage based on the reference voltage, the reference current, and the set of factors Wherein the first fault voltage refers to a voltage based on the first reference voltage at the fault location, the second fault voltage refers to a voltage based on the second reference voltage at the fault location; and (D) utilizes the fault parameter Find the fault location.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之二個較佳實施例的詳細說明中,將可清楚的呈現。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention.

在本發明被詳細描述之前,要注意的是,在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals.

第一較佳實施例之原理介紹與推導Introduction and derivation of the principle of the first preferred embodiment

參閱圖1,其繪示了一個二端點的三相電力系統100。這二端點是指分處兩地的第一變電器1和第二變電器2,會藉由一總長W的輸電線3來傳遞三個分別具有不同相位的電力信號。在進行輸電線3的故障定位時,為了同步地取得這些電力信號於該等變電器1、2處的電壓與電流,較佳地會配合一全球定位衛星(GPS)系統200來監測。Referring to Figure 1, a two-terminal three-phase power system 100 is illustrated. The two end points refer to the first power transformer 1 and the second power transformer 2, which are divided into two places, and three power signals having different phases are respectively transmitted by the power line 3 of a total length W. In order to locate the fault location of the power line 3, in order to synchronously obtain the voltage and current of the power signals at the transformers 1, 2, it is preferably monitored in conjunction with a Global Positioning Satellite (GPS) system 200.

而根據J. J. Grainger和W.D. Stevenson於Power System Analysis,New York:McGraw-Hill,1994 中的介紹,可知:就其中一電力信號來說,假設故障位置F發生在與變電器2距離dW處,那麼輸電線3於變電器1到此故障位置F間會等效形成如圖2所示的第一組阻抗,其中故障參數d代表「故障位置F與變電器2的距離」之於「該輸電線總長」的比例,According to JJ Grainger and WD Stevenson in Power System Analysis, New York: McGraw-Hill, 1994 , it can be seen that for one of the power signals, it is assumed that the fault location F occurs at a distance dW from the transformer 2, then the input The electric wire 3 is equivalently formed between the transformer 1 and the fault position F to form a first group of impedances as shown in FIG. 2, wherein the fault parameter d represents "the distance between the fault location F and the transformer 2" to "the total length of the transmission line "proportion, .

第一組阻抗包括一個第一阻抗Z1(d)及二個第二阻抗Y1(d),且該等值會隨著故障參數d改變。第一阻抗Z1(d)跨接於變電器1與故障位置F間,而各第二阻抗Y1(d)則是耦接其中一跨接處與接地點。詳細參數定義如下:The first set of impedances includes a first impedance Z1(d) and two second impedances Y1(d), and the values change with the fault parameter d. The first impedance Z1(d) is connected between the transformer 1 and the fault location F, and each of the second impedances Y1(d) is coupled to one of the bridges and the ground point. The detailed parameters are defined as follows:

其中,Zc為該輸電線3的特徵阻抗,γ為該輸電線3的傳播常數,且Where Zc is the characteristic impedance of the power line 3, γ is the propagation constant of the power line 3, and .

請注意,除了相位差異外,輸電線3傳送之三個電力信號具有相同的電壓絕對值,以及相同的電流絕對值,因此分析各電力信號後所對應到的等效電路會包括同樣的阻抗元件值。所以,利用前述相關其中一電力信號的電路模型來探討故障位置F,即已足夠。Note that in addition to the phase difference, the three power signals transmitted by the power line 3 have the same absolute value of the voltage and the same absolute value of the current, so the equivalent circuit corresponding to each power signal will include the same impedance element. value. Therefore, it is sufficient to use the circuit model of one of the aforementioned related power signals to investigate the fault location F.

進一步地,第一阻抗Z1(d)還可等效為一電阻R1(d)串接一電感L1(d),第二阻抗Y1(d)也可等效為一電導G1(d)並聯一電容C1(d),即:Further, the first impedance Z1(d) can also be equivalent to a resistor R1(d) connected in series with an inductor L1(d), and the second impedance Y1(d) can also be equivalent to a conductance G1(d) connected in parallel. Capacitor C1(d), ie:

而Real [x ]代表x的實部,Imag [x ]代表x的虛部。While Re al [ x ] represents the real part of x, Im ag [ x ] represents the imaginary part of x.

值得留意的是,由於一般系統的電力信號普遍落於60Hz頻率,所以較佳地角頻率ω1 =2π×60,取樣時間Δt 為1/(60N),且N是一正整數。It is worth noting that since the power signal of the general system generally falls at the frequency of 60 Hz, the angular frequency ω 1 = 2π × 60 is preferable, the sampling time Δ t is 1/(60N), and N is a positive integer.

由於電容C1(d)和電感L1(d)對於電路的影響是非線性的,所以本實施例特別引進S. Chapra and R. CanaleNumerical Methods for Engineers,5 th Edition,McGraw-Hill,New York,2005 所提到的一用以描述動態相量的方式,主要是在取樣時間為Δt 的情況下,以取樣時間索引值k、k-1來描述電力信號,並且會特別強調電感L1(d)與電容C1(d)的暫態特性,即:流經L1(d)的電流變化,和C1(d)的跨壓變化。Since the capacitance C1 (d) and an inductor L1 (d) to the circuit is non-linear effects, the present embodiment is particularly S. Chapra and R. Canale introduced in Numerical Methods for Engineers, 5 th Edition , McGraw-Hill, New York, a dynamic way to describe the amount of 2005 phase mentioned, mainly in the case where the sampling time is Δ t, the sampling time index k, k-1 described power signal, and will be particularly emphasized inductor L1 (d And the transient characteristics of the capacitor C1(d), that is, the current flowing through L1(d), and the change in the voltage across C1(d).

假設量測變電器1處的電力信號會得到一第一參考電壓V1 (k)及一第一參考電流I1 (k),那麼「與變電器2距離dW」處的第一故障電壓VF1 (k,d)為:Assuming that the power signal at the measuring transformer 1 obtains a first reference voltage V 1 (k) and a first reference current I 1 (k), then the first fault voltage V at the distance dW from the transformer 2 F1 (k,d) is:

這裡的第一故障電流Iz1 (k,d)代表:I1 (k)扣除「流往Y1(d)之電流」的結果,可進一步寫成:Here, the first fault current I z1 (k,d) represents: I 1 (k) minus the result of "current flowing to Y1 (d)", which can be further written as:

請注意,對每一取樣時間索引值k來說,第一參考電壓V1 (k)與第一參考電流I1 (k)都會有些不同。而輸電線3的每一處都可能發生故障,所以除了k以外,第一故障電壓VF1 (k,d)與第一故障電流Iz1 (k,d)還會隨d變化。Note that the index values for each sampling time k, a first reference voltage V 1 (k) and the first reference current I 1 (k) will be somewhat different. The fault may occur at every place of the power line 3, so the first fault voltage V F1 (k, d) and the first fault current I z1 (k, d) may vary with d except for k.

另一方面,本發明領域具有通常知識者可同理推論:當故障參數為d,變電器2到此故障位置F間的一第二組阻抗會如圖3所示,且所包括的第一阻抗Z2(d)具有相互串接的一電阻R2(d)及一電感L2(d),所包括的二個第二阻抗Y2(d)分別具有並聯的一電導G2(d)及一電容C2(d)。On the other hand, the general knowledge in the field of the invention can be reasonably inferred: when the fault parameter is d, a second set of impedance between the transformer 2 and the fault position F will be as shown in FIG. 3, and the first included The impedance Z2(d) has a resistor R2(d) and an inductor L2(d) connected in series, and the two second impedances Y2(d) included respectively have a conductance G2(d) and a capacitor C2 connected in parallel. (d).

假設量測變電器2處的電力信號會得到一第二參考電壓V2 (k)及一第二參考電流I2 (k),那麼「與變電器2距離dW」處的第二故障電壓VF2 (k,d)為:Assuming that the power signal at the measuring transformer 2 obtains a second reference voltage V 2 (k) and a second reference current I 2 (k), then the second fault voltage V at the distance dW from the transformer 2 F2 (k,d) is:

其中的第二故障電流Iz2 (k,d)代表:I2 (k)扣除「流往Y2(d)之電流」的結果,可進一步寫成:The second fault current I z2 (k,d) represents: I 2 (k) deducting the result of "current flowing to Y2 (d)", which can be further written as:

最後,因為配合著GPS系統200,可以準確地測得電力信號於變電器1、2的同步電壓與電流。所以,不管於哪一暫態(如:取樣時間索引值k),從變電器1推演或是從變電器2推演故障位置F的電壓準位,都會得到相同的值。簡言之,只要找出符合V F 1 (k ,d )-V F 2 (k ,d )=0的d,就能推得:在與變電器2距離dW處,輸電線3發生了故障。Finally, because of the GPS system 200, the synchronous voltage and current of the power signal to the power transformers 1, 2 can be accurately measured. Therefore, regardless of which transient state (eg, sampling time index value k), the same value is obtained from the converter 1 or the voltage level of the fault location F from the transformer 2. In short, as long as the d is found to satisfy V F 1 ( k , d )- V F 2 ( k , d )=0, it can be concluded that the power line 3 has failed at a distance dW from the transformer 2. .

第一較佳實施例之實現方式Implementation of the first preferred embodiment

參閱圖4,在前述方程式的基礎下,本發明故障定位器5之第一較佳實施例適用於耦接一內建於變電器1的第一量測模組11,並耦接一內建於變電器2的第二量測模組21。這兩個模組11、21會分別量測輸電線3上的電力信號,以供故障定位器5做為計算故障位置的參考。Referring to FIG. 4, the first preferred embodiment of the fault locator 5 of the present invention is adapted to be coupled to a first measurement module 11 built in the transformer 1 and coupled to a built-in system. The second measurement module 21 of the transformer 2. The two modules 11, 21 respectively measure the power signal on the power line 3 for the fault locator 5 as a reference for calculating the fault location.

故障定位器5包含一設定單元51、一第一電流運算模組52、一第一電壓運算模組53、一第二電流運算模組55、一第二電壓運算模組56、一逼近模組57、一定位模組58,以及一阻抗計算單元59。且模組52、53耦接,模組55、56耦接,而逼近模組57則分別耦接模組53、56、58。較佳地,電流運算模組52、55和電壓運算模組53、56會統整到一運算裝置50中。The fault locator 5 includes a setting unit 51, a first current computing module 52, a first voltage computing module 53, a second current computing module 55, a second voltage computing module 56, and an approaching module. 57. A positioning module 58, and an impedance calculating unit 59. The modules 52 and 53 are coupled, and the modules 55 and 56 are coupled, and the approaching module 57 is coupled to the modules 53, 56 and 58, respectively. Preferably, the current computing modules 52, 55 and the voltage computing modules 53, 56 are integrated into an computing device 50.

量測模組11、21與故障定位器5所執行的本發明故障定位方法之第一較佳實施例包含圖5的以下步驟:The first preferred embodiment of the fault location method of the present invention performed by the measurement modules 11, 21 and the fault locator 5 includes the following steps of FIG. 5:

步驟70:第一量測模組11接收由GPS系統200傳來的一同步時間kΔt ,而據以測得第一參考電壓V1 (k)、V1 (k-1)、V1 (k-2)與第一參考電流I1 (k)、I1 (k-1)。另一方面,第二量測模組21也接收該同步時間,而據以測得第二參考電壓V2 (k)、V2 (k-1)、V2 (k-2)與第二參考電流I2 (k)、I2 (k-1)。Step 70: The first measurement module 11 receives a synchronization time kΔ t transmitted by the GPS system 200, and measures the first reference voltages V 1 (k), V 1 (k-1), and V 1 ( K-2) and the first reference current I 1 (k), I 1 (k-1). On the other hand, the second measurement module 21 also receives the synchronization time, and accordingly measures the second reference voltages V 2 (k), V 2 (k-1), V 2 (k-2) and the second Reference currents I 2 (k), I 2 (k-1).

步驟71:設定單元51為故障參數d設定一初始值。Step 71: The setting unit 51 sets an initial value for the fault parameter d.

步驟72:阻抗計算單元59在式(1)、(2)、(5)的基礎下,基於輸電線3的長度W、特徵阻抗Zc和傳播常數γ以及故障參數d,得到第一組阻抗和第二組阻抗。Step 72: The impedance calculation unit 59 obtains the first set of impedance sums based on the length W of the power transmission line 3, the characteristic impedance Zc, the propagation constant γ, and the fault parameter d based on the equations (1), (2), and (5). The second set of impedances.

亦即,求得第一阻抗Z1(d)、第二阻抗Y1(d)、電感L1(d)、電容C1(d),以及第一阻抗Z2(d)、第二阻抗Y2(d)、電感L2(d)、電容C2(d)。That is, the first impedance Z1(d), the second impedance Y1(d), the inductance L1(d), the capacitance C1(d), and the first impedance Z2(d), the second impedance Y2(d), Inductor L2 (d), capacitor C2 (d).

步驟73:運算模組52~53基於方程式(2)~(4),利用第一參考電壓V1 (k)、V1 (k-1)、V1 (k-2)和第一參考電流I1 (k)、I1 (k-1)和第一組阻抗,求出第一故障電壓VF1 (k,d);並且運算模組55~56基於方程式(5)~(7),利用第二參考電壓V2 (k)、V1 (k-1)、V1 (k-2)和第二參考電流I2 (k)、I2 (k-1)和第二組阻抗,求出第二故障電壓VF2 (k,d)。Step 73: The operation modules 52 to 53 use the first reference voltages V 1 (k), V 1 (k-1), V 1 (k-2), and the first reference current based on equations (2) to (4). I 1 (k), I 1 (k-1) and the first set of impedances, the first fault voltage V F1 (k, d) is obtained; and the operation modules 55-56 are based on equations (5) to (7), Utilizing a second reference voltage V 2 (k), V 1 (k-1), V 1 (k-2), and a second reference current I 2 (k), I 2 (k-1), and a second set of impedances, The second fault voltage V F2 (k, d) is obtained.

而步驟73包括圖6的以下子步驟:And step 73 includes the following sub-steps of Figure 6:

子步驟731:第一電流運算模組52基於方程式(2)和(4),使電流I1 (k)、I1 (k-1)分別扣除「流到第二阻抗Y1(d)的穩態與暫態電流」,來求出流往第一阻抗Z1(d)的電流Iz1 (k,d)、Iz1 (k-1,d)。Sub-step 731: The first current calculation module 52 subtracts the currents I 1 (k) and I 1 (k-1) from the steady flow to the second impedance Y1 (d) based on equations (2) and (4). The state and the transient current are used to find the currents I z1 (k, d) and I z1 (k-1, d) flowing to the first impedance Z1 (d).

詳細來說,本例的實施態樣是:先藉由一穩態單元SU算出V1 (k)和V1 (k-1)的平均結果並放大Y1(d)倍,再藉由一暫態單元TU算出V1 (k)和V1 (k-1)兩個相減除以Δt 的結果並放大C1(d)倍,然後再利用一擷取單元PU使電流I1 (k)扣除穩態單元SU與暫態單元TU的輸出,而得到電流Iz1 (k,d)。In detail, the embodiment of the present embodiment is: first calculating the average result of V 1 (k) and V 1 (k-1) by a steady-state unit SU and amplifying Y1 (d) times, and then by a temporary The state unit TU calculates the result of dividing the two subtractions V 1 (k) and V 1 (k-1) by Δ t and amplifying C1 (d) times, and then using a picking unit PU to make the current I 1 (k) The output of the steady state unit SU and the transient unit TU is subtracted to obtain a current I z1 (k, d).

請注意,隨著時間過去,第一電流運算模組52能依序為索引值k=1,2,3...做計算,因此不但可根據V1 (k)、V1 (k-1)、I1 (k)求得電流Iz1 (k,d),也能根據V1 (k-1)、V1 (k-2)、I1 (k-1)求得電流Iz1 (k-1,d)。Please note that as time passes, the first current calculation module 52 can calculate the index values k=1, 2, 3... in order, so that not only V 1 (k), V 1 (k-1) ), I 1 (k) to obtain a current I z1 (k, d), also), V 1 (k-2 ), I 1 (k-1) obtained according to the current I z1 V 1 (k-1 ( K-1, d).

子步驟732:第一電壓運算模組53基於方程式(2)和(3),使電壓V1 (k)扣除「第一阻抗Z1(d)的穩態與暫態壓降」,來求出第一故障電壓VF1 (k,d)。Sub-step 732: The first voltage calculation module 53 calculates the steady state and transient voltage drop of the first impedance Z1(d) by subtracting the voltage V 1 (k) based on equations (2) and (3). The first fault voltage V F1 (k, d).

詳細來說,本例的實施態樣是:先藉由一穩態單元SU算出Iz1 (k,d)和Iz1 (k-1,d)的平均結果並放大Z1(d)倍,再藉由一暫態單元TU算出Iz1 (k,d)和Iz1 (k-1,d)兩個相減除以Δt 的結果並放大L1(d)倍,然後再利用一擷取單元PU使電壓V1 (k)扣除穩態單元SU與暫態單元TU的輸出,而得到電壓VF1 (k,d)。In detail, in this embodiment, the average result of I z1 (k,d) and I z1 (k-1,d) is first calculated by a steady-state unit SU and amplified by Z1(d) times. Calculating the result of dividing the two subtraction of I z1 (k,d) and I z1 (k-1,d) by Δ t by a transient unit TU and amplifying L1(d) times, and then using a capture unit The PU subtracts the output of the steady state unit SU and the transient unit TU from the voltage V 1 (k) to obtain the voltage V F1 (k, d).

子步驟733:第二電流運算模組55基於方程式(5)和(7),使電流I2 (k)、I2 (k-1)分別扣除「流到第二阻抗Y2(d)的穩態與暫態電流」,來求出流往第一阻抗Z2(d)的電流Iz2 (k,d)、Iz2 (k-1,d)。Sub-step 733: The second current calculation module 55 subtracts the currents I 2 (k) and I 2 (k-1) from the flow to the second impedance Y2 (d) based on equations (5) and (7), respectively. The state and the transient current are used to find the currents I z2 (k, d) and I z2 (k-1, d) flowing to the first impedance Z2 (d).

子步驟734:第二電壓運算模組56基於方程式(5)和(6),使電壓V2 (k)扣除「第一阻抗Z2(d)的穩態與暫態壓降」,來求出第二故障電壓VF2 (k,d)。Sub-step 734: The second voltage calculation module 56 derives the voltage V 2 (k) from the steady state and transient voltage drop of the first impedance Z2 (d) based on equations (5) and (6). The second fault voltage V F2 (k, d).

本例中,該等電壓運算模組52、55的實施態樣相似,該等電流運算模組53、56的實施態樣也相似。而子步驟733~734的執行順序不限於在子步驟731~732之後,為了爭取更短的定位時間,較佳地子步驟733~734會與子步驟731~732平行執行。In this example, the implementations of the voltage computing modules 52, 55 are similar, and the implementations of the current computing modules 53, 56 are similar. The execution order of the sub-steps 733-734 is not limited to after sub-steps 731-732. In order to obtain a shorter positioning time, sub-steps 733-734 are preferably performed in parallel with sub-steps 731-732.

步驟74:設定單元51使一比較參數設定為:「故障參數」加上「一逼近步階δ」,即d+δ。Step 74: The setting unit 51 sets a comparison parameter to: "fault parameter" plus "one approach step δ", that is, d + δ.

步驟75:運算模組52~53、55~56基於方程式(2)~(7),求出電力信號於「與變電器2距離(d+δ)W」處的一第一比較電壓VF1 (k,d+δ)和一第二比較電壓VF2 (k,d+δ)。Step 75: The computing modules 52-53, 55-56 obtain a first comparison voltage V F1 of the power signal at the distance (d+δ) W from the transformer 2 based on equations (2) to (7). (k, d + δ) and a second comparison voltage V F2 (k, d + δ).

由於此步驟的執行方式類似於步驟73,故不再贅述。Since this step is performed in a similar manner to step 73, it will not be described again.

步驟76:逼近模組57計算該第一、第二故障電壓的差值f (k ,d ),並利用該差值來更新該故障參數d,並基於更新後的故障參數d重複步驟73~76,直到更新後的故障參數d使該第一、第二故障電壓趨於接近,就令一定位參數dopt 等於d。Step 76: The approach module 57 calculates the difference f ( k , d ) of the first and second fault voltages, and uses the difference to update the fault parameter d, and repeats step 73 based on the updated fault parameter d. 76. Until the updated fault parameter d causes the first and second fault voltages to approach, a positioning parameter d opt is equal to d.

也就是說,逼近模組57會根據一非線性函數f (k ,d )=V F 1 (k ,d )-V F 2 (k ,d )=0來進行逼近。為了儘快求出符合這個非線性函數f(k,d)的解,本實施例選用前述Numerical Methods for Engineers 一書提到的改良式正割(secant)法來實現。根據此法,逼近模組57包括一演算單元572及一判斷單元573,而步驟76包括圖7的以下子步驟:That is to say, the approximation module 57 performs approximation according to a nonlinear function f ( k , d )= V F 1 ( k , d )− V F 2 ( k , d )=0. In order to find a solution that satisfies this nonlinear function f(k,d) as quickly as possible, this embodiment is implemented by the improved secant method mentioned in the aforementioned Numerical Methods for Engineers . According to this method, the approximation module 57 includes a calculation unit 572 and a determination unit 573, and step 76 includes the following sub-steps of FIG. 7:

子步驟761:演算單元572計算該等故障電壓VF1 (k,d)、VF2 (k,d)的差異而得到一逼近前信號f (k ,d ),並計算該等比較電壓VF1 (k,d+δ)、VF2 (k,d+δ)的差異而得到一比較信號f (k ,d +δ),然後藉由正割法建議的式子(8),求取一逼近後參數dNEWSub-step 761: The calculating unit 572 calculates the difference between the fault voltages V F1 (k, d) and V F2 (k, d) to obtain a pre-approximation signal f ( k , d ), and calculates the comparison voltage V F1 (k, d + δ), the difference V F2 (k, d + δ ) to obtain a comparison signal f (k, d + δ) , then the secant method proposed by the equation (8), one obtains The parameter d NEW is approximated.

子步驟762:判斷單元573比較是否滿足|d NEW -d |<ε,ε是一誤差容忍值,|x |代表x的絕對值。當判斷結果為否,則執行子步驟763;若為真,則跳到子步驟764。Sub-step 762: The judging unit 573 compares whether | d NEW - d | < ε, ε is an error tolerance value, and | x | represents an absolute value of x. When the result of the determination is no, sub-step 763 is performed; if true, then sub-step 764 is skipped.

子步驟763:判斷單元573比較「已執行子步驟761的次數」是否等於一計次容忍值η。若是,則執行子步驟764,若否,則使下一個故障參數d設定為這個dNEW ,並跳回步驟73。Sub-step 763: The judging unit 573 compares whether "the number of times the sub-step 761 has been executed" is equal to a count-tolerance value η. If so, sub-step 764 is performed, and if not, the next fault parameter d is set to this d NEW and jumps back to step 73.

子步驟764:設定單元51使定位參數dopt 設定為該逼近後參數dNEW ,至此達成逼近模組57的目的。Sub-step 764: The setting unit 51 sets the positioning parameter d opt to the post-approximation parameter d NEW , and thus achieves the purpose of the approach module 57.

步驟77:定位模組58更使定位參數dopt 乘上輸電線總長W,且將「與變電器2距離d opt ‧W 遠」的輸電線位置當作發生故障的位置,而結束本次故障定位法的流程。Step 77: The positioning module 58 further multiplies the positioning parameter d opt by the total length W of the power transmission line, and regards the position of the power transmission line that is "distance from the power converter 2 by d opt ‧ W " as the position where the fault occurs, and ends the fault. The process of the positioning method.

值得注意的是,相較於習知技術總是試圖忽略或移除那些例如衰減直流成分的暫態成分,本例的運算模組52、53、55、56則是以動態相量描述方式保留了由電容C1(d)、C2(d)和電感L1(d)、L2(d)造成的暫態成分,所以相較於習知技術,逼近模組57所根據的函數f (k ,d )=V F 1 (k ,d )-V F 2 (k ,d )=0更能貼切表達實際電路情形,使得故障定位精確度獲得大幅改善。It is worth noting that the computational modules 52, 53, 55, 56 of this example are retained in a dynamic phasor description as compared to conventional techniques that always attempt to ignore or remove transient components such as attenuating DC components. The transient components caused by the capacitors C1(d), C2(d) and the inductors L1(d), L2(d), so the function f ( k , d ) according to the module 57 is approached compared to the prior art. ) = V F 1 ( k , d ) - V F 2 ( k , d ) = 0 can more closely express the actual circuit situation, so that the accuracy of fault location is greatly improved.

此外,運算模組52、53、55、56的動態相量描述方式單純,加上逼近模組57採用較為簡易的改良式正割法,因此電路實現成本遠比習知DFT技術具備優勢。而且,子步驟763中,判斷單元573會對「重複執行子步驟761的次數」把關,更可有效確保本例故障定位器5能如期地在系統要求的時間內,找出輸電線3的故障位置。In addition, the dynamic phasor description mode of the computing modules 52, 53, 55, 56 is simple, and the approaching module 57 adopts a relatively simple modified secant method, so the circuit implementation cost is far superior to the conventional DFT technology. Moreover, in the sub-step 763, the judging unit 573 checks the "number of times of repeating the sub-step 761" to ensure that the fault locator 5 can find the fault of the power line 3 in the time required by the system as scheduled. position.

第二較佳實施例之原理介紹與推導Introduction and derivation of the principle of the second preferred embodiment

一般來說,少於80公里(km)的輸電線稱為短程輸電線,80~250km稱中程,而多於250km則稱長程。基本上,第一較佳實施例適用於任何短、中、長程的輸電線。而為了提供更經濟快速的做法,第二較佳實施例更揭露了一種短程與中程輸電線專用的故障定位器及方法。In general, transmission lines of less than 80 km (km) are called short-distance transmission lines, 80 to 250 km are called medium-range, and more than 250 km are called long-range. Basically, the first preferred embodiment is applicable to any short, medium, and long-range power transmission line. In order to provide a more economical and rapid practice, the second preferred embodiment further discloses a fault locator and method dedicated to short-range and medium-range transmission lines.

前述Power System Analysis 一書中,已證明:當使用一中程輸電線時,sinh(x )會近似x,tanh(x )也會近似x。因此,第一阻抗Z2(d)與第二阻抗Y2(d)可趨近如式(9),且式(9)更將Z2(d)解釋成「一第一阻抗因子ZE 」的d倍,並將Y2(d)解釋成「一第二阻抗因子YE 」的d倍。其中,各因子由於對應元件的非線性特性而呈現複數(complex number)型態,並具有一實部與一虛部。In the aforementioned Power System Analysis book, it has been shown that when using a medium-range transmission line, sinh( x ) approximates x, and tanh( x ) also approximates x. Therefore, the first impedance Z2(d) and the second impedance Y2(d) may approach the equation (9), and the equation (9) further interprets Z2(d) as "a first impedance factor Z E ". Times, and Y2(d) is interpreted as d times the "a second impedance factor Y E ". Wherein, each factor exhibits a complex number type due to the nonlinear characteristic of the corresponding element, and has a real part and an imaginary part.

故,電感L2(d)與電容C2(d)可整理成式(10),並且,式(10)更將L2(d)解釋成「一電感因子LE 」的d倍,並將C2(d)解釋成「一電容因子CE 」的d倍。Therefore, the inductance L2(d) and the capacitance C2(d) can be organized into the equation (10), and the equation (10) further interprets L2(d) as d times the "one inductance factor L E " and C2 ( d) is interpreted as d times the "one capacitance factor C E ".

以此類推,可求得電感L1(d)相當於「電感因子LE 」的(1-d)倍,電容C1(d)相當於「電容因子CE 」的(1-d)倍。By analogy, the inductance L1(d) is equivalent to (1-d) times the "inductance factor L E ", and the capacitance C1 (d) is equivalent to (1-d) times the "capacitance factor C E ".

進一步將這些等效元件Z1(d)、L1(d)、Y1(d)、C1(d)、Z2(d)、L2(d)、Y2(d)、C2(d)代入f (k ,d )=V F 1 (k ,d )-V F 2 (k ,d )=0,就會整理出一個變數為d的二次多項式(12),且其解如式(13)。Further, these equivalent elements Z1(d), L1(d), Y1(d), C1(d), Z2(d), L2(d), Y2(d), C2(d) are substituted into f ( k , d )= V F 1 ( k , d )- V F 2 ( k , d )=0, a quadratic polynomial (12) with a variable d is prepared, and its solution is as in equation (13).

A ×d 2 +B ×d +C =0 (12) A × d 2 + B × d + C =0 (12)

其中,多項式的係數A、B、C也導入了動態相量描述方式,分別如下:Among them, the coefficients A, B, and C of the polynomial are also introduced into the dynamic phasor description, as follows:

I z 1_ E (k )代表著:在索引值k時,將因子YE 、CE 代入式(4)所得結果。I z 2_ E (k )代表著:在索引值k時,將因子YE、 CE 代入式(7)所得結果。另外,由於所有因子皆屬複數型態,故可預期地該等係數信號A、B、C與「式(13)的可能解d」都會是複數。And I z 1_ E ( k ) represents the result of substituting the factors Y E and C E into the equation (4) at the index value k. I z 2_ E ( k ) represents the result of substituting the factors Y E and C E into the equation (7) at the index value k. In addition, since all factors are in a complex form, it is expected that the coefficient signals A, B, C and "the possible solution d of the equation (13)" will be plural.

再者,利用這樣的解二次方程式法,就可直接以求出的d當作定位參數dopt ,而不需要像第一較佳實施例進行反覆的迭代運算,故第二實施例可更有效地縮短找出故障位置的時間。Furthermore, with such a solution to the quadratic equation method, the obtained d can be directly used as the positioning parameter d opt without the repeated iterative operation as in the first preferred embodiment, so the second embodiment can be further Effectively shorten the time to find the location of the fault.

此外,係數信號A、B、C不但相關於電壓V1 (k)、V2 (k)於二個取樣時間的電壓變化,也會相關於電流I z 1_ E (k )、I z 2_ E (k )於二個取樣時間的變化,所以本例也能達到貼切地描繪電路暫態特性的目的。In addition, the coefficient signals A, B, and C are related not only to the voltage changes of the voltages V 1 (k), V 2 (k) at two sampling times, but also to the currents I z 1_ E ( k ), I z 2_ E ( k ) The change in the two sampling times, so this example can also achieve the purpose of aptly depicting the transient characteristics of the circuit.

第二較佳實施例之實現方式Implementation of the second preferred embodiment

參閱圖8,本發明故障定位器6之第二較佳實施例適用於耦接一內建於變電器1的第一量測模組11,並耦接一內建於變電器2的第二量測模組21。故障定位器6包括一因子產生單元61、一第一電流運算模組62、一第二電流運算模組63、一係數產生單元64、一求解單元65及一定位模組66。Referring to FIG. 8 , the second preferred embodiment of the fault locator 6 of the present invention is adapted to be coupled to a first measurement module 11 built in the transformer 1 and coupled to a second built in the transformer 2 . Measurement module 21. The fault locator 6 includes a factor generating unit 61, a first current computing module 62, a second current computing module 63, a coefficient generating unit 64, a solving unit 65, and a positioning module 66.

而故障定位器6所執行的本發明故障定位方法之第二較佳實施例包含圖9的以下步驟:The second preferred embodiment of the fault location method of the present invention performed by the fault locator 6 includes the following steps of FIG. 9:

步驟80:第一量測模組11接收由GPS系統200傳來的一同步時間kΔt ,而據以測得第一參考電壓V1 (k)、V1 (k-1)、V1 (k-2)與第一參考電流I1 (k)、I1 (k-1)。另一方面,第二量測模組21也接收該同步時間,而據以測得第二參考電壓V2 (k)、V2 (k-1)、V2 (k-2)與第二參考電流I2 (k)、I2 (k-1)。Step 80: The first measurement module 11 receives a synchronization time kΔ t transmitted by the GPS system 200, and measures the first reference voltages V 1 (k), V 1 (k-1), and V 1 ( K-2) and the first reference current I 1 (k), I 1 (k-1). On the other hand, the second measurement module 21 also receives the synchronization time, and accordingly measures the second reference voltages V 2 (k), V 2 (k-1), V 2 (k-2) and the second Reference currents I 2 (k), I 2 (k-1).

步驟81:因子產生單元61產生一組因子,包括了第一阻抗因子ZE 、第二阻抗因子YE 、電感因子LE ,與電容因子CE 。產生方式為:使輸電線的傳播常數γ與總長W相乘,再乘上特徵阻抗Zc,而得到第一阻抗因子ZE ;使輸電線的傳播常數γ與總長W相乘,再除以兩倍的特徵阻抗Zc,而得到第二阻抗因子YE ;取出第一阻抗因子ZE 的虛部,再除以角頻率ω1 來得到電感因子LE ;及取出第二阻抗因子YE 的虛部,再除以角頻率ω1 來得到電容因子CEStep 81: The factor generating unit 61 generates a set of factors including a first impedance factor Z E , a second impedance factor Y E , an inductance factor L E , and a capacitance factor C E . The production method is: multiplying the propagation constant γ of the transmission line by the total length W, and multiplying the characteristic impedance Zc to obtain the first impedance factor Z E ; multiplying the propagation constant γ of the transmission line by the total length W, and dividing by two The characteristic impedance Zc is multiplied to obtain a second impedance factor Y E ; the imaginary part of the first impedance factor Z E is taken out, divided by the angular frequency ω 1 to obtain the inductance factor L E ; and the virtual value of the second impedance factor Y E is taken out Then, divide by the angular frequency ω 1 to obtain the capacitance factor C E .

步驟82:第一電流運算模組62在式(4)的基礎下,以因子YE 、CE 來分別調整第一參考電流I1 (k)、I1 (k-1),而產生一第一因子電流Iz1_E (k)、Iz1_E (k-1)。Step 82: The first current calculation module 62 adjusts the first reference currents I 1 (k) and I 1 (k-1) by the factors Y E and C E respectively on the basis of the equation (4) to generate one. The first factor current I z1_E (k), I z1_E (k-1).

詳細來說,本例的實施態樣是:先藉由一穩態單元SU算出V1 (k)和V1 (k-1)的平均結果並放大YE 倍,再藉由一暫態單元TU算出V1 (k)和V1 (k-1)兩個相減除以Δt 的結果並放大CE 倍,然後再利用一擷取單元PU使電流I1 (k)扣除穩態單元SU與暫態單元TU的輸出,而得到第一因子電流Iz1_E (k)。且以類似的方式由V1 (k-1)、V1 (k-2)和I1 (k-1)算出Iz1_E (k-1)。In detail, in this embodiment, the average result of V 1 (k) and V 1 (k-1) is first calculated by a steady-state cell SU and amplified by Y E times, and then by a transient unit. The TU calculates the result of dividing the two subtractions V 1 (k) and V 1 (k-1) by Δ t and amplifying the C E times, and then deducting the steady state unit from the current I 1 (k) by using a pumping unit PU. SU and the output of the transient unit TU, and the first factor current I z1_E (k) is obtained. And I z1_E (k-1) is calculated from V 1 (k-1), V 1 (k-2), and I 1 (k-1) in a similar manner.

步驟83:第二電流運算模組63在式(7)的基礎下,以因子YE 、CE 來分別調整第二參考電流I2 (k)、I2 (k-1),而產生一第二因子電流Iz2_E (k)、Iz2_E (k-1)。Step 83: The second current calculation module 63 adjusts the second reference currents I 2 (k) and I 2 (k-1) by the factors Y E and C E respectively on the basis of the equation (7) to generate one. The second factor current I z2 — E (k), I z2 — E (k-1).

實施態樣類似步驟82,且較佳地與步驟82平行執行。The embodiment is similar to step 82 and is preferably performed in parallel with step 82.

步驟84:係數產生單元64根據參考電壓V1 (k)、V1 (k-1)、V2 (k)、V2 (k-1)與因子電流Iz1_E (k)、Iz1_E (k-1)、Iz2_E (k)、Iz2_E (k-1),並且結合步驟81得到的所有因子,而在式(14)的基礎下,產生三個分別代表係數A、B、C的係數信號。Step 84: The coefficient generating unit 64 is based on the reference voltages V 1 (k), V 1 (k-1), V 2 (k), V 2 (k-1) and the factor currents I z1_E (k), I z1_E (k -1), I z2_E (k), I z2_E (k-1), and in combination with all the factors obtained in step 81, on the basis of equation (14), three coefficients representing coefficients A, B, and C, respectively, are generated. signal.

步驟85:求解單元65將這三個係數信號代入方程式(13)計算出兩個分別具有一實部和一虛部的可能解,並進一步選出那個虛部趨近於0的可能解,來使其實部當作定位參數doptStep 85: The solving unit 65 substitutes the three coefficient signals into the equation (13) to calculate two possible solutions having a real part and an imaginary part, and further selects a possible solution in which the imaginary part approaches 0, so that In fact, the department is used as the positioning parameter d opt .

步驟86:定位模組66以「與變電器2距離d opt ‧W 遠」的輸電線3位置當作發生故障的位置。Step 86: The position of the power transmission line 3 of the positioning module 66 "distance from the transformer 2 by d opt ‧ W " is regarded as the position where the failure occurs.

會選用虛部趨近於0的可能解,是因為:用以描述故障位置F的「距離d opt ‧W 」必定是一個實數,故此參數dopt 的虛部肯定較佳為0,礙於第二較佳實施例是以近似值為出發點,所以選擇虛部趨近於0者即可。The possible solution that the imaginary part approaches 0 is selected because the "distance d opt ‧W " used to describe the fault location F must be a real number, so the imaginary part of the parameter d opt is definitely preferably 0, The second preferred embodiment is based on the approximation, so that the imaginary part is selected to be close to zero.

綜上所述,前述實施例中,該等運算模組52~53、55~56、62~63導入了動態相量描述方式,使逼近模組57與求解單元65得以在保留暫態成分的條件下算出定位參數dopt ,所以故障定位精確度比習知佳,且所使用的電路也比DFT單純,故確實能達成本發明之目的。In summary, in the foregoing embodiment, the computing modules 52-53, 55-56, and 62-63 introduce a dynamic phasor description mode, so that the approximating module 57 and the solving unit 65 can retain the transient components. The positioning parameter d opt is calculated under the condition, so the accuracy of the fault location is better than that of the prior art, and the circuit used is also simpler than the DFT, so the object of the present invention can be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

100...三相電力系統100. . . Three-phase power system

200...全球定位衛星系統200. . . Global positioning satellite system

1、2...變電器1, 2. . . G

11...第一量測模組11. . . First measurement module

21...第二量測模組twenty one. . . Second measurement module

3...輸電線3. . . Power line

5、6...故障定位器5, 6. . . Fault locator

50...運算裝置50. . . Arithmetic device

51...設定單元51. . . Setting unit

52、62...第一電流運算模組52, 62. . . First current computing module

53...第一電壓運算模組53. . . First voltage computing module

55、63...第二電流運算模組55, 63. . . Second current computing module

56...第二電壓運算模組56. . . Second voltage computing module

57...逼近模組57. . . Approach module

572...演算單元572. . . Calculation unit

573...判斷單元573. . . Judging unit

58、66...定位模組58, 66. . . Positioning module

59...阻抗計算單元59. . . Impedance calculation unit

61...因子產生單元61. . . Factor generation unit

64...係數產生單元64. . . Coefficient generating unit

65...求解單元65. . . Solution unit

SU...穩態單元SU. . . Steady state unit

TU...暫態單元TU. . . Transient unit

PU...擷取單元PU. . . Capture unit

C1(d)、C2(d)...電容C1(d), C2(d). . . capacitance

G1(d)、G2(d)...電導G1(d), G2(d). . . Conductance

L1(d)、L2(d)...電感L1(d), L2(d). . . inductance

R1(d)、R2(d)...電阻R1(d), R2(d). . . resistance

Y1(d)、Y2(d)...第二阻抗Y1(d), Y2(d). . . Second impedance

Z1(d)、Z2(d)...第一阻抗Z1(d), Z2(d). . . First impedance

70~77...第一實施例的執行步驟70~77. . . Implementation steps of the first embodiment

731~734...求取故障電壓的步驟731~734. . . Steps to find the fault voltage

761~764...逼近模組的執行步驟761~764. . . Approaching module execution steps

80~86...第二實施例的執行步驟80~86. . . Implementation steps of the second embodiment

圖1是一示意圖,說明輸電線在兩變電器間發生了故障;Figure 1 is a schematic view showing that a power line has failed between two transformers;

圖2是一方塊圖,說明第一變電器與故障位置間的等效電路;Figure 2 is a block diagram showing the equivalent circuit between the first power transformer and the fault location;

圖3是一電路圖,說明故障位置與第二變電器間的等效電路;Figure 3 is a circuit diagram illustrating the equivalent circuit between the fault location and the second transformer;

圖4是一方塊圖,說明本發明故障定位器之第一較佳實施例;Figure 4 is a block diagram showing a first preferred embodiment of the fault locator of the present invention;

圖5是一流程圖,說明本發明故障定位方法之第一較佳實施例;Figure 5 is a flow chart showing a first preferred embodiment of the fault location method of the present invention;

圖6是一流程圖,說明求得故障電壓的流程;Figure 6 is a flow chart illustrating the flow of obtaining a fault voltage;

圖7是一流程圖,說明逼近模組的執行步驟;Figure 7 is a flow chart illustrating the execution steps of the approaching module;

圖8是一方塊圖,說明本發明故障定位器之第二較佳實施例;及Figure 8 is a block diagram showing a second preferred embodiment of the fault locator of the present invention;

圖9是一流程圖,說明本發明故障定位方法之第二較佳實施例。Figure 9 is a flow chart showing a second preferred embodiment of the fault location method of the present invention.

11...第一量測模組11. . . First measurement module

21...第二量測模組twenty one. . . Second measurement module

5...故障定位器5. . . Fault locator

50...運算裝置50. . . Arithmetic device

51...設定單元51. . . Setting unit

52...第一電流運算模組52. . . First current computing module

53...第一電壓運算模組53. . . First voltage computing module

55...第二電流運算模組55. . . Second current computing module

56...第二電壓運算模組56. . . Second voltage computing module

57...逼近模組57. . . Approach module

572...演算單元572. . . Calculation unit

573...判斷單元573. . . Judging unit

58...定位模組58. . . Positioning module

59...阻抗計算單元59. . . Impedance calculation unit

SU...穩態單元SU. . . Steady state unit

TU...暫態單元TU. . . Transient unit

PU...擷取單元PU. . . Capture unit

Claims (14)

一種故障定位方法,適用於為聯繫一第一變電器和一第二變電器間的一輸電線,計算出一故障位置,包含以下步驟:(A)分別量測於該第一變電器處的一第一參考電壓與一第一參考電流和該第二變電器處的一第二參考電壓與一第二參考電流;(B)設定一故障參數的初始值,該故障參數是該故障位置與該第二變電器的距離之於該輸電線總長的比例;(C)基於該輸電線的一總長、一特徵阻抗和一傳播常數以及該故障參數,得到一第一組阻抗,該第一組阻抗表示了位於該故障位置與該第一變電器之間的該輸電線的等效電路模型;(D)利用該第一參考電壓和該第一參考電流和該第一組阻抗得到一第一故障電壓;(E)基於該輸電線的總長、該特徵阻抗和該傳播常數以及該故障參數,得到一第二組阻抗,該第二組阻抗表示了位於該故障位置與該第二變電器之間的輸電線的等效電路模型;(F)利用該第二參考電壓、該第二參考電流和該第二組阻抗得到一第二故障電壓;(G)計算該第一、第二故障電壓的差值,並利用該差值來更新該故障參數,並基於更新後的故障參數重複步驟(C)~(G),直到更新後的故障參數使該第一、第二故障電壓趨於接近;及(H)利用更新完成的該故障參數求出該故障位置。A fault locating method is adapted to calculate a fault location for contacting a power line between a first power transformer and a second power transformer, comprising the following steps: (A) separately measuring at the first power transformer a first reference voltage and a first reference current and a second reference voltage and a second reference current at the second power transformer; (B) setting an initial value of a fault parameter, the fault parameter being the fault location and a ratio of the distance of the second power transformer to the total length of the power line; (C) obtaining a first set of impedances based on a total length of the power line, a characteristic impedance and a propagation constant, and the fault parameter, the first group The impedance represents an equivalent circuit model of the power line between the fault location and the first power transformer; (D) using the first reference voltage and the first reference current and the first set of impedances to obtain a first a fault voltage; (E) obtaining a second set of impedances based on the total length of the power line, the characteristic impedance and the propagation constant, and the fault parameter, the second set of impedances indicating the fault location and the second power transformer Power line (F) using the second reference voltage, the second reference current, and the second set of impedances to obtain a second fault voltage; (G) calculating the difference between the first and second fault voltages, and utilizing The difference is used to update the fault parameter, and steps (C) to (G) are repeated based on the updated fault parameter until the updated fault parameter causes the first and second fault voltages to approach; and (H) utilize The fault parameter is updated to find the fault location. 根據申請專利範圍第1項所述之故障定位方法,其中,該第一組阻抗包括一跨接於該故障位置與該第一變電器之間的第一阻抗及一跨接於該第一變電器與地間的第二阻抗,且該第二阻抗具有一電容;而步驟(D)是使該第一參考電流扣除流到該第二阻抗的電流,以求出流經該第一阻抗的電流,進而得到該第一故障電壓,其中流到該第二阻抗的電流包含有該電容的跨壓變化。The fault locating method of claim 1, wherein the first set of impedances includes a first impedance across the fault location and the first power transformer and a crossover of the first variable a second impedance between the electrical device and the ground, and the second impedance has a capacitance; and step (D) is to subtract the current flowing to the second impedance by the first reference current to determine a current flowing through the first impedance The current, in turn, obtains the first fault voltage, wherein the current flowing to the second impedance includes a change in voltage across the capacitor. 根據申請專利範圍第1項所述之故障定位方法,其中,該第一組阻抗包括一跨接於該故障位置與該第一變電器之間的第一阻抗及一跨接於該第一變電器與地間的第二阻抗,且該第一阻抗具有一電感;且步驟(D)是使該第一參考電壓扣除該第一阻抗的壓降來得到該第一故障電壓,其中該第一阻抗的壓降包含有流經該電感的電流變化。The fault locating method of claim 1, wherein the first set of impedances includes a first impedance across the fault location and the first power transformer and a crossover of the first variable a second impedance between the electrical device and the ground, and the first impedance has an inductance; and the step (D) is to subtract the voltage drop of the first impedance from the first reference voltage to obtain the first fault voltage, wherein the first The voltage drop across the impedance includes a change in current through the inductor. 根據申請專利範圍第1項所述之故障定位方法,其中,步驟(D)更利用相關一比較參數的第一組阻抗,得到一第一比較電壓,且步驟(F)更利用相關該比較參數的第二組阻抗,得到一第二比較電壓;步驟(G)則計算該第一、第二故障電壓的差值,並計算該第一、第二比較電壓的差值,來逼近出一逼近後參數。According to the fault location method of claim 1, wherein the step (D) further utilizes a first set of impedances associated with a comparison parameter to obtain a first comparison voltage, and step (F) further utilizes the correlation parameter. The second set of impedances obtains a second comparison voltage; the step (G) calculates a difference between the first and second fault voltages, and calculates a difference between the first and second comparison voltages to approximate an approximation After the parameter. 根據申請專利範圍第4項所述之故障定位方法,其中,當該逼近後參數與該故障參數的差異不小於一誤差容忍值,以該逼近後參數當作下一個故障參數,來重複步驟(C)~(G);當該逼近後參數與該故障參數的差異小於該誤差容忍值,則以該逼近後參數來更新該故障參數。The method for fault location according to claim 4, wherein when the difference between the parameter after the approximation and the fault parameter is not less than an error tolerance value, the step is repeated as the next fault parameter after the approximation parameter ( C)~(G); when the difference between the parameter and the fault parameter is less than the error tolerance value, the fault parameter is updated by the approximated parameter. 根據申請專利範圍第1項所述之故障定位方法,其中,步驟(A)在目前取樣時間、前一取樣時間以及前二取樣時間,量測出該第一參考電壓和該第二參考電壓;且步驟(D)和(F)是根據該三個取樣時間的該等參考電壓,來分別計算出該第一故障電壓和該第二故障電壓。According to the fault location method of claim 1, wherein the step (A) measures the first reference voltage and the second reference voltage at the current sampling time, the previous sampling time, and the first two sampling times; And steps (D) and (F) are respectively calculating the first fault voltage and the second fault voltage according to the reference voltages of the three sampling times. 根據申請專利範圍第1項所述之故障定位方法,其中,步驟(H)是將該故障參數乘上該輸電線的總長,以得到該故障位置距離該第二變電器的距離。The fault location method according to claim 1, wherein the step (H) is to multiply the fault parameter by the total length of the power line to obtain the distance of the fault location from the second power transformer. 一種故障定位方法,適用於為聯繫一第一變電器和一第二變電器間的一輸電線,計算出一故障位置,包含以下步驟:(A)分別量測於該第一變電器處的一第一參考電壓與一第一參考電流和該第二變電器處的一第二參考電壓與一第二參考電流;(B)基於該輸電線的一總長、一特徵阻抗和一傳播常數,得到一組因子,該組因子表示了位於該故障位置與該第一變電器之間的該輸電線的等效阻抗相對於一故障參數的比例,且該故障參數是該故障位置與該第二變電器的距離之於該輸電線總長的比例;(C)基於該等參考電壓、該等參考電流以及該組因子,計算出滿足一第一故障電壓等於一第二故障電壓的故障參數,其中該第一故障電壓是指該故障位置處基於該第一參考電壓的電壓,該第二故障電壓是指該故障位置處基於該第二參考電壓的電壓;及(D)利用該故障參數求出該故障位置。A fault locating method is adapted to calculate a fault location for contacting a power line between a first power transformer and a second power transformer, comprising the following steps: (A) separately measuring at the first power transformer a first reference voltage and a first reference current and a second reference voltage and a second reference current at the second power transformer; (B) based on a total length of the power line, a characteristic impedance, and a propagation constant, Obtaining a set of factors representing a ratio of an equivalent impedance of the power line between the fault location and the first power transformer to a fault parameter, and the fault parameter is the fault location and the second The ratio of the distance of the transformer to the total length of the power line; (C) calculating, based on the reference voltage, the reference currents, and the set of factors, a fault parameter that satisfies a first fault voltage equal to a second fault voltage, wherein The first fault voltage refers to a voltage based on the first reference voltage at the fault location, the second fault voltage refers to a voltage based on the second reference voltage at the fault location; and (D) utilizes the fault parameter The fault location. 根據申請專利範圍第8項所述之故障定位方法,其中,步驟(C)會為一代表該第一故障電壓等於該第二故障電壓的函數,計算多個分別具有一實部和一虛部的可能解,並取出那個虛部趨近於零的可能解,來使其實部當作該故障參數。According to the fault location method of claim 8, wherein the step (C) is a function representing that the first fault voltage is equal to the second fault voltage, and the plurality of calculations respectively have a real part and an imaginary part. The possible solution, and take out the possible solution that the imaginary part is close to zero, so that the actual part is regarded as the fault parameter. 根據申請專利範圍第9項所述之故障定位方法,其中,步驟(C)所根據的該函數相關於該第一參考電壓於二個取樣時間的電壓變化,且相關於該第二參考電壓於二個取樣時間的電壓變化。The fault locating method according to claim 9, wherein the function according to the step (C) is related to a voltage change of the first reference voltage at two sampling times, and is related to the second reference voltage. The voltage change of the two sampling times. 根據申請專利範圍第9項所述之故障定位方法,其中,該組因子包括一第一阻抗因子及一第二阻抗因子,且該第二阻抗因子具有一電容因子,而步驟(C)包括以下子步驟:(c-1)利用該第一參考電壓、該第一參考電流以及該第一阻抗因子和該電容因子來調整該第一參考電流,而得出一第一因子電流;(c-2)利用該第二參考電壓、該第二參考電流以及該第二阻抗因子和該電容因子來調整該第二參考電流,而得出一第二因子電流;及(c-3)以該函數來計算該故障參數,且該函數受該等因子電流控制。The fault location method according to claim 9, wherein the set of factors includes a first impedance factor and a second impedance factor, and the second impedance factor has a capacitance factor, and step (C) includes the following Sub-step: (c-1) adjusting the first reference current by using the first reference voltage, the first reference current, and the first impedance factor and the capacitance factor to obtain a first factor current; (c- 2) using the second reference voltage, the second reference current, and the second impedance factor and the capacitance factor to adjust the second reference current to obtain a second factor current; and (c-3) to the function The fault parameter is calculated and the function is controlled by the factor currents. 根據申請專利範圍第11項所述之故障定位方法,其中,步驟(C)所根據的該函數受控於該第一因子電流於二個取樣時間的變化,且受控於該第二因子電流於二個取樣時間的變化。The fault location method according to claim 11, wherein the function according to step (C) is controlled by the change of the first factor current at two sampling times and is controlled by the second factor current. Changes in two sampling times. 根據申請專利範圍第8項所述之故障定位方法,其中,步驟(A)在目前取樣時間、前一取樣時間以及前二取樣時間,量測出該第一參考電壓和該第二參考電壓;且步驟(C)是根據該三個取樣時間的該等參考電壓,來計算出該故障參數。According to the fault location method of claim 8, wherein the step (A) measures the first reference voltage and the second reference voltage at the current sampling time, the previous sampling time, and the first two sampling times; And step (C) is to calculate the fault parameter according to the reference voltages of the three sampling times. 根據申請專利範圍第8項所述之故障定位方法,其中,步驟(D)是將該故障參數乘上該輸電線的總長,以得到該故障位置距離該第二變電器的距離。The fault location method according to claim 8, wherein the step (D) is to multiply the fault parameter by the total length of the power line to obtain the distance of the fault location from the second power transformer.
TW98144186A 2009-12-22 2009-12-22 Fault location method TWI383162B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98144186A TWI383162B (en) 2009-12-22 2009-12-22 Fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98144186A TWI383162B (en) 2009-12-22 2009-12-22 Fault location method

Publications (2)

Publication Number Publication Date
TW201122503A TW201122503A (en) 2011-07-01
TWI383162B true TWI383162B (en) 2013-01-21

Family

ID=45046192

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98144186A TWI383162B (en) 2009-12-22 2009-12-22 Fault location method

Country Status (1)

Country Link
TW (1) TWI383162B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW423191B (en) * 1998-02-19 2001-02-21 Square D Co Electrical fault detection system
TW475991B (en) * 1998-12-28 2002-02-11 Nippon Kouatsu Electric Co Ltd Fault point location system
TWM299853U (en) * 2006-01-27 2006-10-21 Sui-Chan Kao Circuit error indicator
TW200837368A (en) * 2006-12-22 2008-09-16 Gen Electric Multi-ended fault location system
US20090115426A1 (en) * 2007-11-02 2009-05-07 Cooper Technologies Company Faulted circuit indicator apparatus with transmission line state display and method of use thereof
WO2009097207A2 (en) * 2008-01-29 2009-08-06 Advanced Energy Industries, Inc. System and method for ground fault detection and interruption

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW423191B (en) * 1998-02-19 2001-02-21 Square D Co Electrical fault detection system
TW475991B (en) * 1998-12-28 2002-02-11 Nippon Kouatsu Electric Co Ltd Fault point location system
TWM299853U (en) * 2006-01-27 2006-10-21 Sui-Chan Kao Circuit error indicator
TW200837368A (en) * 2006-12-22 2008-09-16 Gen Electric Multi-ended fault location system
US20090115426A1 (en) * 2007-11-02 2009-05-07 Cooper Technologies Company Faulted circuit indicator apparatus with transmission line state display and method of use thereof
WO2009097207A2 (en) * 2008-01-29 2009-08-06 Advanced Energy Industries, Inc. System and method for ground fault detection and interruption

Also Published As

Publication number Publication date
TW201122503A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
Aboshady et al. A new single end wideband impedance based fault location scheme for distribution systems
Filomena et al. Fault location for underground distribution feeders: An extended impedance-based formulation with capacitive current compensation
Evrenosoglu et al. Travelling wave based fault location for teed circuits
US9316673B2 (en) Method for determining capacitance of a device
Ahsaee et al. A novel fault-location algorithm for long transmission lines compensated by series FACTS devices
CN107525526B (en) Device and method for providing a measurement of the uncertainty of a transfer function
Chothani et al. New algorithm for current transformer saturation detection and compensation based on derivatives of secondary currents and Newton's backward difference formulae
US20170030958A1 (en) Transformer parameter estimation using terminal measurements
KR101616036B1 (en) Inductor simulation method and nonlinear equivalent circuit model for inductor
CN111141995B (en) Line double-end steady-state distance measuring method and system based on amplitude comparison principle
CN107272792B (en) A kind of constant-current source device for breaker test
CN108414838B (en) Method for measuring line impedance of inverter parallel system
CN108196217A (en) A kind of DC measurement method and system for showing school instrument for off-board charger
Calderon-Mendoza et al. Series arc fault location algorithm based on impedance parameters and fault map trace generation
KR101299610B1 (en) Adaptive Estimation Method of Local Source Impedance for Double-Circuit Transmission Line Systems
Saied Capacitor switching transients: analysis and proposed technique for identifying capacitor size and location
CN110287648B (en) Thin film capacitor parameter testing method
TWI383162B (en) Fault location method
RU2683999C1 (en) Method for digital correction of effect of current transformer mechanical saturation
Zadeh et al. A compensation scheme for CVT transient effects using artificial neural network
Bishnoi et al. EMI modeling of buck converter using a generalized terminal model
CN110083992B (en) Boost converter fault diagnosis method based on multi-innovation recursion least square
Chen et al. An improved numerical distance relay based on CCVT transient characteristic matching
EP2130054B1 (en) Iterative method for characterizing the frequency dependence of the linear properties of an electrical component
Das et al. Robust algorithm to estimate fault synchrophasor from fault‐transient synchrophasor in phasor data concentrator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees