TWI377864B - Light emitting diode (led) driving device - Google Patents

Light emitting diode (led) driving device Download PDF

Info

Publication number
TWI377864B
TWI377864B TW096133036A TW96133036A TWI377864B TW I377864 B TWI377864 B TW I377864B TW 096133036 A TW096133036 A TW 096133036A TW 96133036 A TW96133036 A TW 96133036A TW I377864 B TWI377864 B TW I377864B
Authority
TW
Taiwan
Prior art keywords
circuit
signal
driving device
feedback
transformer
Prior art date
Application number
TW096133036A
Other languages
Chinese (zh)
Other versions
TW200913764A (en
Inventor
Yi Shan Chu
Hsing Kuo Chao
Original Assignee
Leadtrend Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leadtrend Tech Corp filed Critical Leadtrend Tech Corp
Priority to TW096133036A priority Critical patent/TWI377864B/en
Publication of TW200913764A publication Critical patent/TW200913764A/en
Application granted granted Critical
Publication of TWI377864B publication Critical patent/TWI377864B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

I3?7864 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光二極體驅動裝置, 極體驅動裝置,適用於高功率輸出,以驅動2別疋一種發光二 組。 夕發光二極體模 【先前技術】 裎之發光元件,不 高發光效率、驅動 ,目前已逐漸取代I3?7864 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode driving device, a polar body driving device, which is suitable for high-power output to drive two types of light-emitting groups.夕LED Diode Mode [Prior Art] The illuminating element of 裎, not high luminous efficiency, driving, has gradually replaced

發光·一極體(led)係由半導體材料所擎 同於傳統照明,其係屬冷發光,具有高亮度、 電路簡單、耗電量低、反應速度快等多項優點 傳統照明。 於發光二極體驅動電路的設計上,—般為了安全 ―、二次侧隔離設計。參照「第1圖」,輪入賴%經== 流電路110整流後產生-次側電屢V1。於此,—次側電塵V】5 為輸入錢Vin的倍;舉例來說,當輸入輕νώ約為11〇取 特)之交流電歷’經橋式整流電路11〇整流後,產生之一次側電 壓VI約為156V之直流電壓,脈寬調變(pwM)控制器12〇透過 輪出脈寬”周私號Vg控制功率開關的切換,致使變塵器13〇 的-人側電;1 VI轉換至變壓器13〇的二次側,而產生輸出電壓 Vo,以點壳串接於輸出端上的發光二極體LED。以返馳式架構 CFlyback Topology)為例,當功率開關Q1導通(〇n)時,能量 儲存於變壓器130 —次側的激磁電感Lp,此時二次側不導通;而 备功率開關Q1戴止(0ff)時,儲存於變壓器ls〇 一次側之激磁 電感LP内的能量釋放至二次側,進而產生輸出電壓v〇。於此, 7 1377864 輸出電壓Vo係為直流(DC)電壓。 流經發光一極體LED的電流訊號ILED,可透過線性穩壓哭了^ • 和光耦合器(photo coupler) 140,決定脈寬調變控制器12〇的補 .債接腳COMP的電壓準位。脈寬調變控制器12〇根據補償接腳 . C0MP的電壓準位來調整脈寬調變信號vg,即調整功率開關Qi 的責任週期(duty cycle)大小。換句話說,將依據線性穩壓器 的準位電壓(Vref)及電阻(RLED)穩定電流訊號Iled,即 Vref/RLK)。因此,當輸出端上之發光二極體LED越多顆時,輪出 *功率越大,則控制功率開關Q1之脈寬調變信號Vg的責任週期會 越大;反之亦然。 冨應用於咼功率輸出(即,輸出端連接非常多個發光二極體 LED) %,為了滿足電流諸波規範,一般會於前級加入功率因數 修正電路(powerfactorcorrecti〇n (PEC) ckcuit) 15〇,如「第 2 圖 所示。 請參照「第2圖」,交流之輸入電壓vin經由橋式整流電路11〇 籲整流和功率因數修正電路⑼調整後,產生直流之一次側電壓 V2。舉例來說,若輸入電壓Vin約為n〇v (交流),產生之—次 -側電壓V2約為200V (直流);而若輸入電壓Vin約為220V (交 . 流),產生之一次侧電壓V2則約為400V (直流)。 於功率因數修正電路150内部會有兩組迴授路徑。一為電流 回授路徑152,用以使輸入電流Iin的波形能夠追隨輪入電壓 的波形且與輸入電壓Vin同相位,以提高功率因素進而滿足電流 諧波規範。另一為電壓回授路徑154,係透過一次側電壓v2回授 調整輸入電流Bn大小,進而穩住—次側電壓%。 然而,此些驅動電路的設計必須使用線性 •做一、二次側隔離。再者, 。。及无揭口裔 用拄 、问力率輪出(一般大於15〇w)的庫 .配適用大尺寸的變壓器,導致成本增加,且佔: 且不㈣決伴隨而來的散朗題。此 出的應用,整個驅動電路必需 魏5问功伟 m B 而使用到兩顆獨立的控制Ic ( 路),即PFC控制器和PWM控制 觀電 本也較為昂貴。 :t ’不僅線路設計較為複雜,成 【發明内容】 鑒於以上的問題,本發明的 體驅動裝置,藉以解決先纟在於提供-種發光二極 問題。猎场决先讀術所存在線路設計複雜且高成本的 本發明所揭露之發光二極體 (吹)電路、橋式開關電路,電路置’:;括:功率因數修正 .* _. 振電路、變壓器和回授電路。 力率因數修正電路會根據一回授 〇 開關電路連接功率因&amp; σ “正八輸出訊號。橋式 電路的的輸出端、其可將功率因數修正 、輸出訊5虎切換成一脈波訊號 的輪出端,其可根據脈波訊號麵接橋式開關電路 器一次側之第-端連振電路,以接收弦波訊號。魏 接至變壓器-次側之第二端,其訊號。回授電路連 回授訊號至功率因數修正電路的轉端。勺一二人侧電流而輸出 關元==可=橋式開關電路,其包括-對串聯之開 此對開關爾接於功率因數修正電路之輸出端和接地 1377864 之間,且兩開關元件之間的串聯接點連接至諧振電路。 對互:此:Ϊ橋式開關電路之兩開關元件的驅動控制訊號可為- .卿咖⑽帽元件的 .控㈣。其中’此對互補式控制訊號可具有5〇%責任週期。 諧振電路可包括電容_電感所組成之諳振槽。 電路可包括電阻和整流元件。回授電路的電阻連接於變 = 端和接地之間。其中,麵器的—次側電流流 成-交流跨·電阻上,且回授電路將此交流跨驗 灯正〜以產生回授訊號。 嘴:授電路蚵包括渡波元件,以將回授訊號進行濾波,並將 /‘^後之回授訊號提供給功率因數修正電路。 變墨器之二次側更輕接至少一發光二極體模組,且回授電路 中之電阻的阻仙應於發光二極體模組的亮度。 於根據本案之發光二極體驅動裝置中,係_變壓器的一次 =電流來進行_制,因此不_錄_ =塵器的一次側和二次側,以避免更換輸出發光二極體時 =險,且可降低成本。再者,於根據本案之發光二極 體轉裝置中,係透過調整回授電路的阻值,例如:調整電阻此 ^電阻值’來調整輸出電流(即,題器的二次侧電流),進而控 2先二極體模組的發光亮度,相較於習知技術,控制方式較為 =早。此外,根據本案之發光二極體驅動裝置適用於高功率輸出 例如.&gt;2_〇。並且’於根縣案之發光二赌购裝置中, 到單一具有回授功能之控制器(即,功率因數修正電路), 1377864 其控制線路較為簡單且整體價格較為便宜。 【實施方式】 • · 明參~、「第3 ®」’係顯示根據本發明-實施例之發光二極體 .驅動裝置。根擄本發明一實施例之發光二極體驅動裝置,包括: .橋式開關電路挪、類器230、諧振電路、功率因數修正(pFC) 電路250和回授電路26〇。 功率因數修正電路250输於橋式整流電路21〇和橋式開關 籲電路220之間。證振電路24〇輕接於橋式開關電路和變摩器 230 -人側的第一端之間。回授電路260耦接於變壓器230 —次側 的第二端和功率因數修正電路25〇的電壓回授端之間。 輸入電壓Vin經橋式整流f路21G整流後,輸人至功率因數 修正電路250功率因數修正電路250具有兩組迴授路徑。電流回 授路徑252連接至橋式開關電路22〇,以使輸入電流如的波形能 夠追隨輸入電壓Vin的波形且與輸入電壓Vin同相位。電壓回授 φ 路徑254接收來自回授電路260的回授訊號CS,並根據回授訊號 CS調整輸入電流Bn的大小,據以調整功率因數修正電路25〇的 • 輸出訊號V3。換言之,功率因數修正電路250可根據回授訊號 CS調整其輸出訊號V3。 橋式開關電路220可將功率因數修正電路250的輸出訊號V3 切換成脈波訊號Sa。脈波訊號Sa經由諧振電路240振盪後,於變 . 壓器230的一攻側產生一弦波訊號Sb,且變壓器23〇的一次側電 流Ipri亦為一弦波訊號。換言之’諧振電路24〇可根據脈波訊號 1377864 她确—娜號Sb _應於軸 …人側鼓Ipri,而輸出回觀號cs。 其中’橋式開關電路22G可為全橋式開關電路或半橋式開關 电。以半橋式開關電路為例,橋式開關電路22〇包括—對 之開關元件Q2、Q3。於此’開關元件Q2、⑺串接於功率因數: 正電路250的輸出端和接地之間,且兩開關元件⑦之間的 串聯接點連接至諧振電路240的輸入端。 • 於此,可藉由一對控制訊號Sc、&amp;,來控制兩開關元件Q2、 Q3的運作。此對控制訊號Sc、Sc,較佳可為一對互補之脈波訊 號。將此對互補式控制訊號Sc、Sc,分別輸入至開關元件Q2' Q3的控制端,致使兩開關元件Q2、Q3根據此對互補式控制訊號 Sc、Sc’《錯開關’以將功率因數修正電路25〇㈣出訊號% 切換成脈波訊號Sa。於此,可採用責任週期為5〇%之互補式控制 訊號 Sc、Sc’ 。 • 此外,可於發光二極體驅動裝置内設置一訊號產生器280,以 產生控制訊號來驅動橋式開關電路220。 諧振電路240可包括電容Cr和電感Lr。電容Cr的一端連接 至橋式開關電路220 ’另一則連接至電感Lr。而電感Lr相對電 容Cr的一端則連接至變壓器230 —次側之第一端。換言之,諸振 電路240可包括電容-電感組成之諧振槽。 於一實施例中,電容Cr係連接於兩開關元件q2、q3之間的 串接接點和電感Lr之間’以接收經由開關元件q2、q3的切換而 12 1377864 產成之脈波訊號Sa。 回授電路260可包括電阻Res和整流元件Dcs。電阻Rcs耗接 於變壓&amp; 230 —次側的第二端和接地之間。整流元件Dcs耦接於 •電阻Res相對接地的一端和功率因數修正電路25〇之間。 . 變壓器230的一次側電流Ipri流經電阻RCS,會形成一交流跨 - 壓於電阻Rcs上,並且此電阻Res的交流跨壓經由整流元件Dcs 的整流後,產生回授訊號CS。 • 於此’回授電路260更可包括一濾波元件Ccs,因此電阻Rcs 的交流跨壓經由整流元件DCS整流及遽波元件Ccs的渡波後,產 生回授訊號CS給功率因數修正電路250。 於此,變壓态230可為順向式亦或返馳式。再者,於變壓器 230的兩側之電路中可採用不同的接地。 於發光二極體驅動裝置的輸出端,即變壓器23〇之二次側, 可耦接至少一個由一個或多個發光二極體乙^^所構成之發光二極 •體模組290。並且,可透過調整回授電路260,即調整電阻^^的 阻值’控制之發光二極體模組290的亮度。換言之,電阻如的 - 阻值係相應於發光二極體模組290的亮度。 於此’若調整電阻Res的阻值,相應地,回授訊號cs的電壓 值Vcs會隨著電阻Res的阻值改變。而功率因數修正電路25〇係 根據回授訊號CS而調整其輸出訊號V3,因此其輸出訊號%則 會相應回授訊號CS的改變而被改變,進而影響了脈波訊號以的 電壓峰值,並改變弦波訊號Sb的電壓峰值。根據變壓器23U〇的特 13 1377864 性,變墨器230的二次側電流Isec係為一次側電流iprj乘上變壓 态230之—次侧和二次侧的匝數比(NP/NS)。因此,改變變壓器 • · 23〇的一次側電流lpri等效上相當於改變變壓器23〇的二次側電流 • Isec。舉例來說’若增加電阻Res的阻值,回授訊號cs的電壓值 . Vcs會隨之上升,致使功率因數修正電路250的輪出訊號的電 • 壓值下降’進而導致變壓器230的一次側電流Ipri下降,相應於 一次側電流Ipri的二次侧電流Isec則會隨之下降。並且,因變壓 φ 盗230的一次侧電流ΐρΓί下降,回授訊號cs的電壓值vcs則會隨 之下降’最後回授訊號CS的電壓值Ves會穩定於一定值。於此,. 電阻Res可採用可變電阻,以便於進行發光亮度的調整。 換句話說,可藉由改變回授電路260的電阻RCS阻值來調控 發光二極體模組290的發光亮度。 此外,由於諸振電路240的譜振頻率是以上的頻率,因 此對人眼來說,並不會感受到發光二極體模組29〇有閃爍的現象。 瞻以返馳式架構為例,脈波訊號Sa、回授訊號cs、流經發光二 極體模組的電流訊號ILED、及變塵器230之一次側電流和二次 侧電流Isec的訊號波形如「第4圖」所示。 在另一貫施例中,參照「第5圖」,於發光二極體驅動裝置的 輸出端,即變壓器230之二次側,可耦接至少一第一發光二極體 模組292和至少一第二發光二極體模組294。並且,第一發光二極 體模組292和第二發光二極體模組294反向並聯,即,第一發光 二極體模組292和第二發光二極體模組294反向耦接於變壓器23〇 14 1377864 之二次侧的_。於此’鍾器23G會根據—次側電流批,而於 其二次側提供出電壓V。’以驅動第—發光二極體模組攻和 第二發光二極體模組辦。此輪出轉v。係為—交流弦波,且於 輸出電壓v〇的正半週可驅動第—發光二極體模组292,負半週則 可驅動第二發光二極體模組294。換言之,變塵器23〇會根據一次 側電流Ipri交替驅動第-發光二極體模組况和第二發光二極體 模組294。並且,電阻Rcs的阻值係相應於兩發光二極體模組 (292、294)的亮度。 於根據本案之發光二極體驅動褒置中,由於係利用變塵 -次侧電流來進行回授控制,變壓器的兩端―、二次側為互_ 離,因此可節省線性穩壓器及光輕合器元件的成本以及签體空^ 也可峨換發光:鋪時發蝴犧。再者,㈣ :本案之發光二極體驅動㈣,僅需調整回授電路的阻值,例 批調整電阻Res的電阻值,即可調整_的二次側電流,進 控制發光一極體模組的發光亮 較為簡單。此外’根攄水牵控制方式 輸出(例如:&gt;2_)。並且,於根據 丰 中,僅使用Si〜 之發光-極體驅動農置 路)I 有賴魏御11 (即,綱數修正電 、控制線路較為簡單且整體倾較為便宜。 雖然譜_前収較佳實_縣 疋本發明,任何熟習相像技蔽者 …、_用以限 内,所為之更動句m = _本發明之精神和範圍 、㈣,均屬本發明之專利保護範圍,因此本發 15 1377864 明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為 準。 【圖式簡單說明】 第1圖係為習知之發光二極體驅動裝置的示意圖; 第2圖係為另一習知之發光二極體驅動裝置的示意圖; 第3圖係為根據本發明一實施例之發光二極體驅動裝置的示 意圖, 第4圖係為「第3圖」中,各個訊號的波形圖;以及 第5圖係為根據本發明另一實施例之發光二極體驅動裝置的 示意圖。 【主要元件符號說明】 110 橋式整流電路 120 脈寬調變(PWM)控制器 130 變壓器Luminous and LED (LED) is the same as traditional lighting, which is a kind of cold illumination. It has many advantages such as high brightness, simple circuit, low power consumption and fast response. Traditional lighting. In the design of the LED driver circuit, generally for safety - secondary side isolation design. Referring to "Fig. 1", the turn-by-turn %=== stream circuit 110 rectifies and generates a secondary side power V1. Here, the secondary side electric dust V]5 is a multiple of the input money Vin; for example, when the input AC volt is about 11 〇 ) 之 之 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经 经The side voltage VI is about 156V DC voltage, and the pulse width modulation (pwM) controller 12 controls the switching of the power switch through the wheel pulse width "week private number Vg", so that the dust collector 13 is turned off - the human side is charged; The VI is switched to the secondary side of the transformer 13〇 to generate the output voltage Vo, which is connected in series with the LED of the LED on the output end. Taking the CFlyback Topology as an example, when the power switch Q1 is turned on ( 〇n), the energy is stored in the transformer 130 - the secondary side of the magnetizing inductance Lp, at this time the secondary side is not conducting; and when the standby power switch Q1 is worn (0ff), stored in the transformer ls 〇 primary side of the magnetizing inductance LP The energy inside is released to the secondary side, and the output voltage v〇 is generated. Here, 7 1377864 The output voltage Vo is a direct current (DC) voltage. The current signal ILED flowing through the LED of the light emitting body can be crying through the linear voltage regulator. ^ and photo coupler 140, determine pulse width modulation control The voltage level modulation controller 12 调整 adjusts the pulse width modulation signal vg according to the voltage level of the compensation pin. C0MP, that is, adjusts the duty cycle of the power switch Qi. (duty cycle) size. In other words, it will stabilize the current signal Iled according to the linear voltage regulator's level voltage (Vref) and resistance (RLED), ie Vref/RLK). Therefore, when the LED is on the output terminal The more LEDs, the greater the power of the turn-out*, the greater the duty cycle of controlling the pulse width modulation signal Vg of the power switch Q1; vice versa. 冨Applies to the 咼 power output (ie, the output is connected very much) A light-emitting diode LED) %, in order to meet the current wave specifications, generally add power factor correction circuit (powerfactorcorrecti〇n (PEC) ckcuit) 15〇 in the front stage, as shown in Figure 2. Please refer to 2, the AC input voltage vin is adjusted by the bridge rectifier circuit 11 and the power factor correction circuit (9) to generate a DC primary side voltage V2. For example, if the input voltage Vin is approximately n〇v (AC), the resulting secondary-side voltage V2 is approximately 200V (DC); and if the input voltage Vin is approximately 220V (AC current), the primary side is generated. Voltage V2 is approximately 400V (DC). There are two sets of feedback paths inside the power factor correction circuit 150. A current feedback path 152 is used to enable the waveform of the input current Iin to follow the waveform of the wheel-in voltage and be in phase with the input voltage Vin to increase the power factor and thereby satisfy the current harmonic specification. The other is the voltage feedback path 154, which adjusts the magnitude of the input current Bn through the primary side voltage v2, thereby stabilizing the secondary side voltage %. However, the design of these driver circuits must use linearity • for primary and secondary isolation. Again, . . And uncovering the 拄, the question rate of the round out (generally greater than 15〇w) of the library. With the application of large-sized transformers, resulting in increased costs, and accounted for: and not (d) the accompanying scattered questions. For this application, the entire driver circuit must be used to two independent control Ic (road), that is, the PFC controller and PWM control are also expensive. Not only the circuit design is complicated, but also in view of the above problems, the body drive device of the present invention solves the problem of providing a light-emitting diode. The light-emitting diode (blow) circuit and the bridge switch circuit disclosed in the present invention have complicated circuit design and high cost, and the circuit is set to include:: power factor correction. * _. Transformer and feedback circuit. The force rate correction circuit will connect the power factor & σ "positive eight output signal" according to the feedback switch circuit. The output of the bridge circuit can be used to switch the power factor correction and the output signal to a pulse wave. The output terminal can receive the sine wave signal according to the first-end vibration-suppling circuit on the primary side of the pulse-wave signal bridge-connecting switch circuit. The Wei is connected to the second end of the transformer-secondary side, and the signal is sent back. The feedback signal is sent to the turn end of the power factor correction circuit. The spoon and the two side currents are output and the output element is == can be = bridge switch circuit, which includes - the pair is connected to the switch and the switch is connected to the power factor correction circuit. The output terminal is connected to the grounding 1378864, and the series connection between the two switching elements is connected to the resonant circuit. To each other: This: the driving control signal of the two switching elements of the Ϊ bridge type switching circuit can be -. Control (4), wherein 'the complementary control signal can have a 5〇% duty cycle. The resonant circuit can include a resonant tank composed of a capacitor_inductor. The circuit can include a resistor and a rectifying element. The resistance of the feedback circuit is connected to Change = Between the terminal and the ground, wherein the secondary-side current flows into the --AC cross-resistance, and the feedback circuit positively senses the AC cross-detection lamp to generate a feedback signal. The mouth: the circuit includes the wave wave component The filter signal is filtered, and the feedback signal after /'^ is supplied to the power factor correction circuit. The secondary side of the ink changer is lightly connected to at least one light-emitting diode module, and is returned to the circuit. The resistance of the resistor should be based on the brightness of the LED module. In the LED driving device according to the present invention, the current_current of the transformer is performed, so that it is not recorded once. The side and the secondary side are used to avoid the replacement of the output light-emitting diode, and the cost can be reduced. Furthermore, in the light-emitting diode rotating device according to the present invention, the resistance value of the feedback circuit is adjusted, for example: Adjust the resistance of this ^ resistance value to adjust the output current (ie, the secondary side current of the detector), and then control the brightness of the light of the second diode module. Compared with the conventional technology, the control mode is earlier = early. According to the case, the LED driving device is suitable for The power output is, for example, &gt;2_〇. And in the illuminating two gambling device of the Yugen County case, to a single controller with feedback function (ie, power factor correction circuit), 1377864 its control circuit is relatively simple and overall [Embodiment] • The light-emitting diodes and the driving device according to the present invention are shown. An LED driving device according to an embodiment of the present invention includes: a bridge switch circuit, a class 230, a resonance circuit, a power factor correction (pFC) circuit 250, and a feedback circuit 26A. The power factor correction circuit 250 is coupled between the bridge rectifier circuit 21A and the bridge switch circuit 220. The snubber circuit 24 is lightly connected between the bridge switch circuit and the first end of the variator 230 - the human side. The feedback circuit 260 is coupled between the second end of the transformer 230 and the voltage feedback terminal of the power factor correction circuit 25A. After the input voltage Vin is rectified by the bridge rectifier f path 21G, the input power factor correction circuit 250 power factor correction circuit 250 has two sets of feedback paths. The current feedback path 252 is coupled to the bridge switch circuit 22A such that the waveform of the input current, such as, can follow the waveform of the input voltage Vin and be in phase with the input voltage Vin. The voltage feedback φ path 254 receives the feedback signal CS from the feedback circuit 260, and adjusts the magnitude of the input current Bn according to the feedback signal CS to adjust the output signal V3 of the power factor correction circuit 25A. In other words, the power factor correction circuit 250 can adjust its output signal V3 according to the feedback signal CS. The bridge switch circuit 220 can switch the output signal V3 of the power factor correction circuit 250 to the pulse signal Sa. After the pulse signal Sa is oscillated via the resonant circuit 240, a sine wave signal Sb is generated on one side of the transformer 230, and the primary side current Ipri of the transformer 23 is also a sine wave signal. In other words, the 'resonant circuit 24' can output the view number cs according to the pulse signal 1377864. Wherein the bridge switching circuit 22G can be a full bridge switching circuit or a half bridge switching power. Taking a half bridge switching circuit as an example, the bridge switching circuit 22 includes a pair of switching elements Q2 and Q3. The 'switching elements Q2, (7) are connected in series between the power factor: the output of the positive circuit 250 and ground, and the series junction between the two switching elements 7 is connected to the input of the resonant circuit 240. • Here, the operation of the two switching elements Q2, Q3 can be controlled by a pair of control signals Sc, &amp; Preferably, the pair of control signals Sc, Sc may be a pair of complementary pulse signals. The complementary control signals Sc and Sc are respectively input to the control terminals of the switching elements Q2 ′ Q3, so that the two switching elements Q2 and Q3 correct the power factor according to the pair of complementary control signals Sc, Sc′ “wrong switch”. The circuit 25 〇 (4) output signal % is switched to the pulse signal Sa. Here, the complementary control signals Sc, Sc' having a duty cycle of 5% can be used. • In addition, a signal generator 280 can be disposed in the LED driver to generate a control signal to drive the bridge switch circuit 220. The resonant circuit 240 can include a capacitor Cr and an inductor Lr. One end of the capacitor Cr is connected to the bridge switch circuit 220' and the other is connected to the inductor Lr. The end of the inductor Lr relative to the capacitor Cr is connected to the first end of the transformer 230 - the secondary side. In other words, the vibration circuit 240 can include a resonant tank composed of a capacitor-inductor. In one embodiment, the capacitor Cr is connected between the series contact between the two switching elements q2 and q3 and the inductor Lr to receive the pulse signal Sa generated by the switching of the switching elements q2 and q3 and 12 1377864. . The feedback circuit 260 can include a resistor Res and a rectifying element Dcs. The resistor Rcs is depleted between the second end of the transformer side and the ground. The rectifying element Dcs is coupled between the end of the resistor Res opposite to the ground and the power factor correction circuit 25A. The primary side current Ipri of the transformer 230 flows through the resistor RCS, forming an alternating current cross-voltage on the resistor Rcs, and the alternating current cross-voltage of the resistor Res is rectified by the rectifying element Dcs to generate a feedback signal CS. The feedback circuit 260 may further include a filter component Ccs. Therefore, the AC cross-voltage of the resistor Rcs is rectified by the rectifier element DCS and the ripple of the chopper component Ccs, and the feedback signal CS is generated to the power factor correction circuit 250. Here, the transformed state 230 can be either a forward or a flyback. Furthermore, different groundings can be used in the circuits on both sides of the transformer 230. At the output end of the LED driver, that is, the secondary side of the transformer 23A, at least one LED module 290 composed of one or more LEDs can be coupled. Moreover, the brightness of the LED module 290 can be controlled by adjusting the feedback circuit 260, that is, adjusting the resistance of the resistor. In other words, the resistance - such as the resistance corresponds to the brightness of the LED module 290. Here, if the resistance of the resistor Res is adjusted, accordingly, the voltage value Vcs of the feedback signal cs changes with the resistance of the resistor Res. The power factor correction circuit 25 adjusts the output signal V3 according to the feedback signal CS, so that the output signal % is changed according to the change of the feedback signal CS, thereby affecting the voltage peak of the pulse signal, and Change the voltage peak of the sine wave signal Sb. According to the characteristic of the transformer 23U, the secondary side current Isec of the ink changer 230 is the primary side current iprj multiplied by the turns ratio (NP/NS) of the secondary side and the secondary side of the transformed state 230. Therefore, changing the transformer • · 23 〇 primary side current lpri equivalently equivalent to changing the secondary side current of the transformer 23 • • Isec. For example, if the resistance of the resistor Res is increased, the voltage value of the feedback signal cs. Vcs will rise accordingly, causing the voltage value of the turn-off signal of the power factor correction circuit 250 to decrease, which in turn causes the primary side of the transformer 230. When the current Ipri falls, the secondary side current Isec corresponding to the primary side current Ipri decreases. Further, since the primary side current ΐρΓί of the transformer Φ thief 230 decreases, the voltage value vcs of the feedback signal cs decreases accordingly. The voltage value Ves of the last feedback signal CS is stabilized at a constant value. Here, the resistor Res may employ a variable resistor to facilitate adjustment of the luminance of the light. In other words, the luminance of the light-emitting diode module 290 can be adjusted by changing the resistance RCS resistance of the feedback circuit 260. Further, since the spectral frequency of the vibration circuit 240 is the above frequency, the human eye does not feel the phenomenon that the light-emitting diode module 29 is flickering. Taking the flyback architecture as an example, the pulse signal Sa, the feedback signal cs, the current signal ILED flowing through the LED module, and the signal waveform of the primary side current and the secondary side current Isec of the dust collector 230 As shown in Figure 4. In another embodiment, referring to FIG. 5, at least one first LED module 292 and at least one can be coupled to the output end of the LED driver, that is, the secondary side of the transformer 230. The second LED module 294. The first LED module 292 and the second LED module 294 are connected in anti-parallel, that is, the first LED module 292 and the second LED module 294 are coupled in opposite directions. _ on the secondary side of the transformer 23〇14 1377864. Here, the clock 23G supplies a voltage V to the secondary side thereof according to the secondary side current batch. </ br> to drive the first-light diode module attack and the second light-emitting diode module. This round is out of v. The system is an AC sine wave, and the first light-emitting diode module 292 can be driven in the positive half cycle of the output voltage v ,, and the second light-emitting diode module 294 can be driven in the negative half cycle. In other words, the dust filter 23A alternately drives the first-light-emitting diode module condition and the second light-emitting diode module 294 according to the primary side current Ipri. Moreover, the resistance of the resistor Rcs corresponds to the brightness of the two LED modules (292, 294). In the light-emitting diode driving device according to the present invention, since the dust-sub-current is used for the feedback control, the both ends of the transformer and the secondary side are mutually separated, thereby saving the linear regulator and The cost of the light and light combiner components and the sign body can also be replaced by illuminating: Furthermore, (4): In this case, the LED driver (4), only need to adjust the resistance of the feedback circuit, and adjust the resistance value of the resistor Res, then adjust the secondary current of _, and control the illuminating one-pole phantom The illuminating light of the group is relatively simple. In addition, the root water control mode is output (for example: &gt; 2_). Moreover, according to Fengzhong, only the light-polar body of Si~ is used to drive the farm road. I depends on Wei Yu 11 (that is, the number of correction electric and control lines is relatively simple and the overall tilt is relatively cheap.佳实_县疋本发明, any familiar with the likes of the technology..., _ used within the limits, the more verbs m = _ the spirit and scope of the invention, (4), are within the scope of patent protection of the present invention, therefore the present 15 1377864 The patent protection scope is defined by the scope of the patent application attached to this specification. [Simplified illustration] Figure 1 is a schematic diagram of a conventional light-emitting diode driving device; Figure 2 is another A schematic diagram of a conventional light-emitting diode driving device; FIG. 3 is a schematic diagram of a light-emitting diode driving device according to an embodiment of the present invention, and FIG. 4 is a waveform diagram of each signal in "3rd drawing" And Fig. 5 is a schematic diagram of a light emitting diode driving device according to another embodiment of the present invention. [Main component symbol description] 110 bridge rectifier circuit 120 pulse width modulation (PWM) controller 130 transformer

140 光耦合器 150 功率因數修正電路 152 電流回授路徑 154 電壓回授路徑 210 橋式整流電路 220 橋式開關電路 230 變壓器 240 諧振電路 16 1377864140 Optocoupler 150 Power Factor Correction Circuit 152 Current Feedback Path 154 Voltage Feedback Path 210 Bridge Rectifier Circuit 220 Bridge Switch Circuit 230 Transformer 240 Resonant Circuit 16 1377864

250 功率因數修正電路 252 電流回授路徑 254 電壓回授路徑 260 回授電路 280 訊號產生器 290 發光二極體模組 292 第一發光二極體模組 294 第二發光二極體模組 VI 一次側電壓 Vin 輸入電壓 Q1 功率開關 Vg 脈寬調變信號 Vo 輸出電壓 LP 變壓器一次側激磁電感 NP 變壓器一次侧匝數 NS 變壓器二次側匝數 Iled 電流訊號 TL 線性穩壓器 COMP 補償接腳 Vref 準位電壓 Rled 電阻 V2 一次侧電壓 17 1377864250 power factor correction circuit 252 current feedback path 254 voltage feedback path 260 feedback circuit 280 signal generator 290 light emitting diode module 292 first light emitting diode module 294 second light emitting diode module VI once Side voltage Vin Input voltage Q1 Power switch Vg Pulse width modulation signal Vo Output voltage LP Transformer primary side magnetizing inductance NP Transformer primary side turns NS Transformer secondary side turns Iled Current signal TL Linear regulator COMP Compensation pin Vref Bit voltage Rled resistance V2 primary side voltage 17 1377864

Iin 輸入電流 CS 回授訊號 V3 PFC電路的輸出訊號 Sa 脈波訊號 Sb 弦波訊號 Ipri 一次侧電流 - Isec 二次側電流 Q2 開關元件 Q3 開關元件 Sc 控制訊號 Sc 控制訊號 Cr 電容 Lr 電感 Res 電阻 Dcs 整流元件 Ccs 滤波元件 Yes 回授訊號的電壓值 18Iin input current CS feedback signal V3 PFC circuit output signal Sa pulse signal Sb chord signal Ipri primary current - Isec secondary current Q2 switching element Q3 switching element Sc control signal Sc control signal Cr capacitance Lr inductance Res resistance Dcs Rectifier component Ccs filter component Yes feedback signal voltage value 18

Claims (1)

1377864 十、申請專利範圍: 1. 一種發光二極體驅動裝置,包括·· 功率因數修正電路,用以根據一回授訊號調整一輸出訊 · * 一橋式開關電路’連接該功率因數修正電路,以將該功率 因數修正電路之該輸出訊號切換成一脈波訊號,· 一諧振電路,連接該橋式關電路(220),肋根據該脈 波訊號輪出一弦波訊號; 、一變壓H’該變壓器之-次側之第—端連接觸振電路, 以接收該弦波訊號;以及 -回授電路’連接該難器之—次侧之第二端,以輸出相 應該變壓器之-次側電流的該回授訊號。 如申請專纖_丨摘述之發光二極體驅動裝置,其中該橋 ^開關電路係為—半橋式開關電路,包括—對串聯之開關元 ^該對開關元件連接於該功率_修正電路之輸出端和一接 i之間’且該對開關元件的串聯接點連接至該譜振電路。 ^申請專__ 2項所述之發光:極體驅動裝置,其中 開關元件係以一對互補式控制訊號驅動。 ’、〇x 4·如申料利範圍第2項所述之發光二極體驅動裝置,更包括· —訊缝生器,連接該對_元件的 _ .開關元件_換。 %仰制該對 5.如申請專利範圍第4項所述之發光二極體驅 號產生器產生-對互補綱訊號以控制該軸树中該訊 19 如申。月專利範圍第3項所述之發光二極體驅動裝置,其中該對 互補式控制訊號具有50%之責任週期。 7·如申。月專利乾圍第i項所述之發光二極體驅動裝置,更包括: 訊號產生器,連接該橋式開關電路,以驅動該橋式開關 電路。 8.如申請專利範圍第J項所述之發光二極體驅動裝置,其中該譜 振電路包括: 一電容’該電容的一端連接至該橋式開關電路,以接收該 脈波訊號;以及 一電感,連接於該電容的另一端和該變壓器之一次侧之第 一端之間’以輸出該弦波訊號。 9_如申請專利範圍第1項所述之發光二極體驅動裝置,其中該回 授電路包括: 電阻’該電阻連接於該變壓器之一次側之第二端和一接 地之間’其中該一次側電流流經該電阻而形成一交流跨壓於該 電阻上;以及 一整流元件,以將該電阻的該交流跨壓進行整流據以產生 該回授訊號。 10. 如申請專利範圍第9項所述之發光二極體驅動裝置,其中該回 授電路更包括一濾波元件,以將該回授訊號進行濾波,濾波後 提供給該功率因數修正電路。 11. 如申請專利範圍第9項所述之發光二極體驅動裝置,其中該變 廢态之二次侧更輕接一第一發光二極體模組,且該電阻的阻值 201377864 X. Patent application scope: 1. A light-emitting diode driving device, comprising: a power factor correction circuit for adjusting an output signal according to a feedback signal. * A bridge switching circuit is connected to the power factor correction circuit. The output signal of the power factor correction circuit is switched into a pulse signal, and a resonant circuit is connected to the bridge circuit (220), and the rib rotates a sine wave signal according to the pulse signal; 'The first-end of the transformer-to-secondary side is connected to the sinusoidal circuit to receive the sine wave signal; and the feedback circuit 'connects the second end of the dynamometer to the second end of the transformer to output the corresponding transformer-time The feedback signal of the side current. For example, the light-emitting diode driving device of the special fiber _ 丨 , , , , , 开关 开关 开关 开关 开关 开关 开关 开关 开关 开关 半 半 半 半 半 半 半 半 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光The output terminal and the connection between the terminals and the series of contacts of the pair of switching elements are connected to the spectral circuit. ^Application of the __2 item of illumination: a polar body drive device in which the switching elements are driven by a pair of complementary control signals. </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; %Put the pair 5. The illuminating diode generator as described in claim 4 of the patent application generates a pair-complement signal to control the signal in the axis tree. The illuminating diode driving device of claim 3, wherein the pair of complementary control signals have a duty cycle of 50%. 7.·If Shen. The LED driving device of the invention of the present invention further comprises: a signal generator connected to the bridge switching circuit to drive the bridge switching circuit. 8. The LED driving device of claim J, wherein the spectral circuit comprises: a capacitor having one end connected to the bridge switch circuit for receiving the pulse signal; and a An inductor is coupled between the other end of the capacitor and the first end of the primary side of the transformer to output the sine wave signal. The light-emitting diode driving device of claim 1, wherein the feedback circuit comprises: a resistor connected to the second end of the primary side of the transformer and a ground between the grounds A side current flows through the resistor to form an alternating current across the resistor; and a rectifying element rectifies the alternating voltage across the resistor to generate the feedback signal. 10. The illuminating diode driving device of claim 9, wherein the feedback circuit further comprises a filtering component for filtering the feedback signal and filtering the signal to the power factor correction circuit. 11. The illuminating diode driving device of claim 9, wherein the secondary side of the variably waste state is lightly connected to a first illuminating diode module, and the resistance of the resistor is 20
TW096133036A 2007-09-05 2007-09-05 Light emitting diode (led) driving device TWI377864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096133036A TWI377864B (en) 2007-09-05 2007-09-05 Light emitting diode (led) driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096133036A TWI377864B (en) 2007-09-05 2007-09-05 Light emitting diode (led) driving device

Publications (2)

Publication Number Publication Date
TW200913764A TW200913764A (en) 2009-03-16
TWI377864B true TWI377864B (en) 2012-11-21

Family

ID=44725237

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096133036A TWI377864B (en) 2007-09-05 2007-09-05 Light emitting diode (led) driving device

Country Status (1)

Country Link
TW (1) TWI377864B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407833B (en) * 2009-07-15 2013-09-01 Richtek Technology Corp Driver circuit and method for driving load circuit
TWI426826B (en) * 2009-11-02 2014-02-11 Sunonwealth Electr Mach Ind Co Driving and control circuit for lamp
TWI513362B (en) * 2010-05-06 2015-12-11 Novatek Microelectronics Corp Method and device for driving light-emitting diode
TWI760068B (en) * 2021-01-18 2022-04-01 龍華科技大學 A LED driver with multiplex current balance control

Also Published As

Publication number Publication date
TW200913764A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
US7772782B2 (en) Light emitting diode (LED) driving device
TWI586216B (en) Improvements relating to lighting systems
RU2504930C2 (en) Improvement of lighting systems
TWI404452B (en) Current supply circuit and current control circuit for led
TWI424788B (en) Driving apparatus for light emitting diodes
EP2496056B1 (en) Constant-current-drive led module device
KR20130129957A (en) Synchronous regulation for led string driver
TWI451807B (en) Driving circuit structure
TWI414206B (en) Light adjustment circuit for alternating-current light emitting diode
TW200950589A (en) Light emitting diode driving circuit and controller thereof
TW200411614A (en) High efficiency driver for color light emitting diodes (LED)
CN104904314B (en) Reduce the LED driver circuit of Observable optical flicker using flyback converter by reducing rectification AC power network ripple
JPWO2011148590A1 (en) LED lighting circuit, lamp and lighting device
TW201111931A (en) Lighting apparatus and method for using the same
CN103813585A (en) Apparatus for controlling light emitiing devices
US20100214210A1 (en) Current balancing device, led lighting apparatus, lcd backlight module, and lcd display unit
CN115802546B (en) Dual-mode output dimming power supply
TWI377864B (en) Light emitting diode (led) driving device
JP5528883B2 (en) LED drive circuit
TWI607667B (en) Dimmable led with constant voltage plus constant current drive circuitry
CN101394699A (en) LED driving device
CN101893167B (en) Direct-current power supply for lamp
KR101092218B1 (en) LED Driving Circuit using Sumple Current Source
CN102045911B (en) Light source regulation circuit for alternating current light-emitting diode
TW201249248A (en) Light source driving device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees