TWI377856B - Precise sleep timer using a low-cost and low-accuracy clock - Google Patents

Precise sleep timer using a low-cost and low-accuracy clock Download PDF

Info

Publication number
TWI377856B
TWI377856B TW098102096A TW98102096A TWI377856B TW I377856 B TWI377856 B TW I377856B TW 098102096 A TW098102096 A TW 098102096A TW 98102096 A TW98102096 A TW 98102096A TW I377856 B TWI377856 B TW I377856B
Authority
TW
Taiwan
Prior art keywords
wtru
low power
rtc
update
mode
Prior art date
Application number
TW098102096A
Other languages
Chinese (zh)
Other versions
TW200950541A (en
Inventor
Aykut Bultan
John W Haim
Leonid Kazakevich
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200950541A publication Critical patent/TW200950541A/en
Application granted granted Critical
Publication of TWI377856B publication Critical patent/TWI377856B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Telephone Function (AREA)

Description

六、發明說明: 【發明所屬之技術領域】 本發明係關於無線通信I罟 此種參考振細功亀控制。、考咖,珊別是關於 【先前技術】 存在以關於高精確性時鐘# 鐘的演算法。此允許低準確性’校正低精確性時 計時,這些技術具-件共同的事,产=乎與主時鐘一樣精確的 確性時鐘。 錯〜疋期地關於主時鐘校正低精 穿置在=2如無線傳送/接收單元(WTRUs)及其他移動VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to wireless communication I罟 such reference vibratory power control. , Kao, Shane is about [previous technology] There is an algorithm for the high-precision clock # clock. This allows low accuracy to calibrate low accuracy timings, and these techniques have the same thing, producing = as accurate as the master clock. Wrong ~ 疋 about the master clock correction low precision wear at = 2 such as WTRUs and other mobile

IrU 2 延長電鱗奴㈣重料。應設計在 yRu的糾法及硬如最小化辨雜,亦可由林活動時間 曰=間降低的功率消耗而延長電池壽命,在此時間間隔期間某 些功月m皮關斷或是以一些降低的功率模式之形式操作。構形 UMTS使得WTRU在*_時_隔_可崎㈣功能操 作,當傳呼或其他專屬連接未進行時,WTRu僅需要偶爾地執行 某些功能以維持同步化及與其相關基地台的通信,此提供允許 WTRU最小赠_肖耗的秘動隔。此係由制不連續 接收(DRX)操作的WTRU而達到,其中該wtru職性地在” 睡眠”及”喚醒”期間之間循環。在睡眠期間,不需要的功率消耗方 法及硬體被_。在倾_,需要維制步化及與其相關基地 台通信的這些方法及硬體被暫時回復為開啟。 現今大多數手持WTRUs除了高精確性主鐘還包括低精確性 1377856 即時時鐘(RTC)。主時鐘典型上使用溫度控制晶體振盪器(TCX〇) 進行。RTC典型上消耗遠較TCXO所消耗能量為少的能量,此 使得希望使用RTC取代TCXO以在DRX期間提供計時功能。然 而’在DRX期間使用RTC於計時存在四個問題,第一,RTC 典型上於與tcxo相較顯著降低的速度(如32,768千赫茲比76 8 百萬赫茲)操作。第二,RTC的頻率精確性與TCX〇的頻率準確 性相較為非常低的。第三,因不同環境原因如溫度變化,rtc的 頻移大於tcxo的頻移。第四,RTC典型上與TCX〇不同步地 操作。因為這些原因,在DRX期間典型的RTC不足以單獨提供 計時功能。 【發明内容】 WTRU包括高功率消耗、高速度、高準確性及高穩定性參考 振盧器如TCXO與較低功率消耗、較低速度、較鮮確性及較低 穩定性RTC。TCXO象徵性地提供WTRU的計時功能。聊本 身無法提供WTRU足夠精確及準確的計時舰。為最小化功率 ^耗並使用不連續接收_〇操作,TCX〇被周雛地關斷,在 k些關斷次數期間RTC提供WTRU的計時功能。在tcx〇及 =之間的校正及同步化方法確保在嫩期間經齡提供的 計時功能為足夠精確及準確的。 【實施方式】 如此處所使用,謂,錄軸純單 限於用戶賴、站、移動站、固定< 1 化括仁不 夠在無線域下__他料的裝置。名稱,,基地台,,包括 1377856 =不限於Β·_ '基站控織、接人點或在無線環境下的 他里式的接_裝置。雖然—些具體實施例係以第三代夥伴幸 WPP)系統合併轉’它們可於其他無線系統。 ” 及㈣’高功率及高準雜紐器麵觀式期間關斷 。。,、_sf時…寅异法合併的#代低辨及低準確性振盈 益。由使用低功率振㈣,可_較長的電池壽命。典型上,低IrU 2 extended the electric scale slave (four) heavy material. Should be designed in yRu correction and hard as minimal as possible, can also extend the battery life by the reduced power consumption of the forest activity time , = during this time interval, some power months m skin off or some reduction The operation of the power mode. Configuring the UMTS allows the WTRU to operate in a *_____ 可 ( (4) function, when a paging or other proprietary connection is not in progress, the WTRu only needs to perform certain functions occasionally to maintain synchronization and communication with its associated base station. Provides a secret interval that allows the WTRU to minimize the amount of money. This is achieved by a WTRU that performs a discontinuous reception (DRX) operation, where the wtru cycles between "sleep" and "wake-up" periods. Unwanted power consumption methods and hardware are _ during sleep. In the process of dumping, these methods and hardware that require maintenance and communication with their associated base stations are temporarily turned back on. Most handheld WTRUs today include a low accuracy 1377856 instant clock (RTC) in addition to the high accuracy master clock. The main clock is typically implemented using a temperature controlled crystal oscillator (TCX〇). RTC typically consumes far less energy than the TCXO consumes, which makes it desirable to use RTC instead of TCXO to provide timing functionality during DRX. However, there are four problems with the use of RTC during DRX. First, RTC is typically operated at a significantly reduced rate (e.g., 32,768 kHz to 76 8 megahertz) compared to tcxo. Second, the frequency accuracy of the RTC is very low compared to the frequency accuracy of the TCX〇. Third, due to different environmental reasons such as temperature changes, the frequency shift of rtc is greater than the frequency shift of tcxo. Fourth, RTC typically operates asynchronously with TCX〇. For these reasons, the typical RTC during DRX is not sufficient to provide timing functionality separately. SUMMARY OF THE INVENTION WTRUs include high power consumption, high speed, high accuracy, and high stability reference resonators such as TCXO with lower power consumption, lower speed, lesser accuracy, and lower stability RTC. The TCXO symbolically provides the timing function of the WTRU. Chatter is unable to provide a timed ship with sufficient accuracy and accuracy for the WTRU. To minimize power consumption and use discontinuous reception_〇 operations, TCX〇 is turned off, and the RTC provides the WTRU's timing function during some of these shutdown times. The correction and synchronization method between tcx〇 and = ensures that the timing function provided by the age during tenderness is sufficiently accurate and accurate. [Embodiment] As used herein, the recording axis is purely limited to the device of the user, the station, the mobile station, and the fixed <1> Name, base station, including 1377856 = not limited to Β·_ 'base station control weaving, pick-up point or in the wireless environment. Although some of the specific embodiments are combined with the third generation partner (WPP) system, they can be used in other wireless systems. ” and (4) “High power and high-precision hybrids are turned off during the face-to-face mode.., _sf... The combination of different methods and low-accuracy vibrations. By using low-power vibration (4), _Long battery life. Typically, low

^及低準雜㈣H操作於較高功率高準確性振盈器為低的 頻率數量級。例如,在-舞體實施财,用做低功率時鐘 的„RTC操作於工業鮮32.768千_ ’與高功率及高準確性振 盪器相較’該RTC操作於降低速度。齡RTC料持wTRUs 的使用為普遍的’此具體實施鑛供使用RTC於喊模式操作 的能力。 睡眠計時器(ST)演算法被用於進行DRX計時及允許主 TCXO被關斷’為降低備用WTRU的功率消耗,Tcx〇在順 睡眠時間間隔期間可被晴。當TCX0被關斷,低功率晶體振盈 器或RTC被用於控❹狀計時直到TCX〇再次開機。為進行此 目的ϋ標準水晶絲礎的即時時鐘或其他標料鐘電路用 做RTC。該RTC與睡眠計時器演算法合併,其克服在使用於歷 模式的RTC之_ ’ _計喃演算法之使用由顧頻率測量 及調度解決麵_題。RTC可為任何合適賴Μ或是時鐘, 此不改變演算法;僅改變其參數。 本發明應用剌於DRX敘述之,翻確地提供用於^ and low-precision (4) H operate at higher power and high accuracy vibrators for lower frequency orders of magnitude. For example, in the dance industry, the "RTC operation of the low-power clock is used in industrial fresh 32.768 thousand _ ' compared with the high-power and high-accuracy oscillators. 'The RTC operates at a reduced speed. The aged RTC holds the wTRUs. Use the ability to use the RTC for shout mode operation for the general 'this implementation. The sleep timer (ST) algorithm is used to perform DRX timing and allow the primary TCXO to be turned off' to reduce the power consumption of the standby WTRU, Tcx 〇 It can be cleared during the sleep interval. When TCX0 is turned off, the low-power crystal oscillator or RTC is used to control the timing until the TCX is turned on again. For this purpose, the standard crystal silk-based instant clock Or other standard clock circuits are used for RTC. The RTC is combined with the sleep timer algorithm, which overcomes the use of the RTC algorithm used in the calendar mode by the frequency measurement and scheduling solution. The RTC can be any suitable or clock, which does not change the algorithm; only its parameters are changed. The invention is applied to the DRX statement and is provided for

UMTS 標準。然* ’本發啊祕紗鮮域的醜獻的wtru, 1377856 例如DRX的具财婦彳及麟標準為基咖睡晴_隔的另 一種具體實施例。 第1圖為顯示在主動11及DRX 12的操作模式的WRU操 作之流程圖’在主動模式1卜WTRU提供由通信裝置13所表示 的全通信魏。儘管在躲通信酿_存在省賴式,一般, WTRU元全操作的、主動地使用τ〇ωΐ7由同步化裝置μ具其 由計時裝置15計時。可操作由rtc裝置18所猜的 RTC功能’但通信裝置13主要是依賴Tcx〇 17。 田WTRU為DRX模式12,同步化及計時功能為由同步化 二置24及物裝置25所說明但在降低位準而表示。必須 ^夠辨識f要主_操作模式之事件,及由通信裝置23維持通 T以降低的同步化及計時能力而完成,此降低 # β的而求’及使得可依賴RTC28。第1圖表示相同 、的不_作模式’及所以說明的不同Tcx〇s 17、27及灯Ο 18、28的物理組件係由相同物理裝置執行。 傳愤、執行胞元再 式及進___=在傳呼,則嫩u賴睡眠模 ,主動及DRX組件及根據演算法進人 “ 醜树赠算法包括主賴雜件,-般係盥主 峨與DRX操作-时主動循環 之2恤件維持在TCXO下的操作及維持轉移至RTC的操作 1377856UMTS standard. However, * Å Å Å Å Å Å 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 Figure 1 is a flow chart showing the operation of the WRU in the active mode of the active 11 and the DRX 12. In the active mode 1, the WTRU provides the full communication Wei represented by the communication device 13. In spite of the reliance on the communication, in general, the WTRU element is fully operational, actively using τ 〇 ΐ ΐ 7 by the synchronization device μ with its timing device 15 timing. The RTC function guessed by the rtc device 18 can be operated 'but the communication device 13 is primarily dependent on Tcx 〇 17. The field WTRU is in DRX mode 12, and the synchronization and timing functions are illustrated by the synchronized two-way device 25 but are shown at a reduced level. It is necessary to recognize the event of the master_operation mode, and the communication device 23 maintains the pass T with reduced synchronization and timing capabilities, which reduces the #β's and makes it dependent on the RTC 28. The first figure shows the same non-operation mode' and the physical components of the different Tcx〇s 17, 27 and the lamps 18, 28 thus described are executed by the same physical device. Infuriate, execute the cell and re-enter the ___= in the paging, then the tenderness depends on the sleep mode, the active and DRX components and according to the algorithm into the "ugly tree gift algorithm including the main affair, the general system Operation with DRX operation - active cycle 2 shirts maintained under TCXO operation and maintenance transfer to RTC operation 1377856

主動循環組件包括同步化更新’及WTRU是否應進入DRX 模式之決定〇 WTRU是否應進入DRX模式之決定係依據預先決 定的不活鱗職;^,進人DRX模式的糊之實例包括對話的 結束、預定時間間_不活動、未定位足夠信號的胞元搜尋活動 的預定時間間隔及連續未成功胞元搜尋活動的預定次數。特定準 則為WTRU的函數。The decision that the active-cycle component includes the synchronization update' and whether the WTRU should enter the DRX mode determines whether the WTRU should enter the DRX mode is based on a predetermined inactive rule; ^, the example of entering the DRX mode includes the end of the session. The predetermined time interval between the scheduled time _ inactivity, the cell search activity for which no sufficient signal is located, and the predetermined number of consecutive unsuccessful cell search activities. A particular criterion is a function of the WTRU.

在特定具體實關巾’ RTC辭測量魏行。^而,RTC 頻率測量可被避免因為此可在DR組件執行。當在決定時相對不 活動時間間隔係由WTRU辨識時WTRU進入DRX模式。 在DRX組件’ RTC鮮測量以周期基準執行以維持同步 化,及進行關於是否回到主動模式之決定。In a specific specific customs towel 'RTC's measurement of Wei Xing. ^, RTC frequency measurement can be avoided because this can be performed in the DR component. The WTRU enters the DRX mode when the relative inactivity interval is determined by the WTRU when deciding. The DRX component' RTC fresh measurements are performed on a periodic basis to maintain synchronization and a decision as to whether to return to active mode.

第3及4圖的組件可使用積體電路,如依特殊應用所訂製的 積體電路(ASIC)、多重ICs、分離元件、或IC(极分離元件的組 合:而實現。第2圖為睡眠計時器演算法⑽所使㈣輪入及輸 出信號之方麵,料鐘及DRX觸長度為輸人崎取τ 率測量83 ’計算沾接著為喚醒及睡眠位置而執行,其最铁用於 產生喚醒次數93〇TCXO_、TCX〇關機及下一轉呼機、 或同步化更新為演算法80的輸出。 θ ) 睡眠計時H與其他接㈣演算㈣交互侧被㈣ 圖的方塊®。_計時H本身係根據於後文敘述的_計時 ^控制,第3圖的方塊圖顯示睡眠計時器與其他接收器同純 ^的交互作用。組件包括計時管理員⑴、歡電路ΐΐ2 ”路113、接收遽波器電路114、頻率估計電路出、迴路渡波器 7 1377856 116、數位類比轉換器(DAC)117及TCXO 118。亦示出訊框計時 修正(FTC)電路121,及主時鐘126、RTC 127及睡眠計時器128。 此電路實現負責獲得及維持接受器的訊框同步化之演算法。ADC 電路112、AGC電路113、接收濾波器電路114、頻率估計電路 115、迴路濾波器116、DAC 117及TCXO 118形成頻率估計迴 路131。計時管理員m、adc電路.112、aGC電路113、接收 濾波器電路114及FTC電路121提供訊框同步化迴路132。在此 特別具體實施例中’睡眠計時器128接收來自主時鐘126及rtc 127的信號,其最終提供開起及關斷TCX〇 118的信號。 輸入係如下.1)主時鐘(MC)如具76 8百萬赫兹(皿晶片率) 標稱頻率’·及2)RTC如具32,768赫茲標稱頻率。控制方面係如 下:⑽訊框方摘DRX翻長度被提贿為法之輸入; 2)下二個事件為傳呼區塊或同步化更新區塊的二進輸人及 起始為PO的第一 Mc脈衝。 褕出係如下 CXC)電職被關斷_ 間’ 2)tcxo開機顯示以RTC脈衝方式的 及3)下-個!>〇或同步更新位置 電源__ 個喚醒時間可為P〇或同步化更ft的傳呼區塊,下一 晶片率财式_些_=獨,h MC脈衝⑽ 在睡眠模式_所執行嶋作 選擇測量及檢查用戶活性 获料通道、執订胞兀月 式及進入主_心航再 WTRU離開睡眠損 間測量最強胞元的連續方法,如第塊_於任何已㈣ 第4圖為在DRX模式中層j DRX循環_操作。該演舰叫相,睡眠計時器在 分’第一部分為RTC頻率測量:、此操作的兩個不同部 新時間間隔操作,苴示於第4圍此〜法部分在每一個同步更 聰循環軸作,演細二僅在魏U進入 新位置,此部分在嫩循環朗對树化更 演算法被視鱗算上轉有 ® PQ #作。此兩部分 - 的〜开法,雖然可使用其他演算 門,财實例中,訊框偏移之後為同步化更新期 門八之後朗步化更_幻64。— f 示出’許多RX預熱期购83被示出,其—般在其他活動2 ==72'173或同步_塊⑹之前。睡眠期間,如睡眠 』B 預熱期之前。同步化更新期間 162在 同步化更新區塊164之前。 RX—預熱為用於提早約5毫秒财TCXO的參數贿TCX〇 預熱,其約略等於在5毫秒的MC(20X)脈衝數,在此具體實施例 的脈衝數被設定為384,〇〇〇。 DRX意欲辨識相對不活動的期間,其由關斷在WTRU的各 種面板組件及進到”睡眠,,而提供保存功率的機會eWTRU被告知 其必須喚醒以接收傳輸資料的時機。 DRX被用於空閒模式及用於經連接模式的CELL_PCH及 URA_PCH狀態的連接模式。在DRX期間,當由RRC(無線電資 源控制器)基於系統資料設定命令時,WTRU必須在P〇s喚醒。 1377856 久騎些倾峰—個,臟負責調度 _的時,對特定一^ 二個二對應於—轉呼區塊,傳呼區塊係由許多框架組成 2或4個射指引⑺推框舰成的料指引通道 次)區塊;2)由2、4、或8個訊框所組成的間隙期,於此物理 貝源:由其他通道使用;及3)由—至八個傳糾的2至16個傳 呼内容的訊框所組成的傳呼通道(pCH)區塊。 當使用DRX時,已提供WTRU在每嫩循環僅需要監測 -個P0中的-個PI ’傳呼區塊的時序圖係示於第4圖。皿^ 周期長度可自8至512個訊框變化,如在空閒模式,可能DRx 周期長度為G.64、1.28、2.56及5.12秒;及在CELL/URA—歷 狀態’可能DRX周期長度為0.08、〇16、〇 32、〇 64、丨28、2 % 及5.12秒。The components of Figures 3 and 4 can be implemented using integrated circuits, such as integrated circuits (ASICs), multiple ICs, discrete components, or ICs (a combination of pole discrete components) tailored to a particular application. Figure 2 The sleep timer algorithm (10) makes (4) the aspect of the round-in and output signals, the clock and the DRX touch length are measured by the input τ rate 83' calculation is performed for the wake-up and sleep position, and the most iron is used to generate The number of wakeups 93〇TCXO_, TCX〇shutdown and next pager, or synchronization update is the output of algorithm 80. θ) Sleep timer H and other connections (4) calculus (4) Interaction side is (4) Graph box®. The _ timing H itself is based on the _ timing control described later, and the block diagram of the third figure shows the interaction of the sleep timer with other receivers. The components include a timing manager (1), a circuit ΐΐ 2 ” path 113, a receiving chopper circuit 114, a frequency estimation circuit, a circuit waver 7 1377856 116, a digital analog converter (DAC) 117, and a TCXO 118. A timing correction (FTC) circuit 121, and a master clock 126, an RTC 127, and a sleep timer 128. This circuit implements an algorithm responsible for obtaining and maintaining frame synchronization of the receiver. ADC circuit 112, AGC circuit 113, and receive filter Circuit 114, frequency estimation circuit 115, loop filter 116, DAC 117, and TCXO 118 form frequency estimation loop 131. Timing manager m, adc circuit 112, aGC circuit 113, receive filter circuit 114, and FTC circuit 121 provide frames. Synchronization loop 132. In this particular embodiment, 'sleep timer 128 receives signals from master clock 126 and rtc 127, which ultimately provide a signal to turn TCX 〇 118 on and off. The input system is as follows. 1) Master clock (MC) If there is 76 8 megahertz (the wafer rate), the nominal frequency '· and 2) RTC has a nominal frequency of 32,768 Hz. The control aspect is as follows: (10) The frame is extracted from the DRX and the length is taken as a method. Input; 2) under The event is the binary input of the paging block or the synchronization update block and the first Mc pulse starting from PO. The output is as follows: CXC) The electric service is turned off _ between '2) tcxo boot display with RTC pulse Mode and 3) next--! gt or synchronous update location power __ wake-up time can be P〇 or synchronized ft paging block, next chip rate _ some _= alone, h MC Pulse (10) in sleep mode _ performed a selection measurement and checks the user activity of the acquisition channel, the implementation of the cell cycle and enter the main _ heart and then the WTRU leaves the sleep loss to measure the strongest cell, such as the first block _ In any of the four (4), Figure 4 shows the layer j DRX cycle_operation in the DRX mode. The ship is called the phase, and the sleep timer is measured in the first part of the RTC frequency: the two different parts of the operation are operated at new intervals.苴 第 第 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在® PQ #作. These two parts - the ~ opening method, although other calculations can be used, in the example of wealth After the frame offset is synchronized, the update step is eight, and the step is further _ 幻 64. — f shows that 'many RX warm-up period 83 is shown, which is generally in other activities 2 == 72'173 or Synchronization_block (6) before. During sleep, such as sleep, before the B warm-up period, the synchronization update period 162 is before the synchronization update block 164. RX-preheating is a parameter bribe TCX〇 for early 5 msec TCXO Preheating, which is approximately equal to the number of MC (20X) pulses at 5 milliseconds, the number of pulses in this particular embodiment is set to 384, 〇〇〇. The DRX is intended to identify periods of relative inactivity, which are turned off by the various WTRU components and go to sleep, providing the opportunity for the power to be saved. The eWTRU is informed that it must wake up to receive the transmission of the data. DRX is used for idle. Mode and connection mode for the CELL_PCH and URA_PCH states of the connected mode. During DRX, when the command is set by the RRC (Radio Resource Controller) based on the system data, the WTRU must wake up at P〇s. 1377856 One, when the dirty is responsible for scheduling _, the specific one ^ two two corresponds to the - call block, the paging block is composed of many frames 2 or 4 shot guides (7) push the frame into the material guide channel times) Block; 2) a gap period consisting of 2, 4, or 8 frames, where the physical source is used by other channels; and 3) from 2 to 16 pages of paging content The paging channel (pCH) block consisting of frames. When DRX is used, the timing diagram of the pi-blocks that have been provided by the WTRU to monitor only one P0 in each tender cycle is shown in Figure 4. The length of the dish ^ can vary from 8 to 512 frames, such as in the empty Mode, possible DRx cycle lengths are G.64, 1.28, 2.56, and 5.12 seconds; and in CELL/URA-calendar state 'possible DRX cycle lengths are 0.08, 〇16, 〇32, 〇64, 丨28, 2%, and 5.12 second.

在DRX期間WTRU應定期更新其訊框及計時同步化以能夠 成功讀取Pis及執行胞元再選擇測量。所以,層i的周期DRX 活動包括胞元再選擇及相關測量,監測pis ;及維持訊框及計時 同步化。 右該WTRU彳貞測到其經由相關pi被傳呼,其讀取 pcH以存 取傳呼内容,否則,其返回睡眠。 若TCXO連續操作,其會自3.0伏特標稱DC電源供應器或 6·〇宅瓦特電源消耗2.0耄安培最大電流。為額外省電,tcx〇可 在DRX睡眠期間關斷。當TCXO關斷’使用睡眠計時器以對p〇s 或同步化更新期間的開始調度TCXO的嗔醒次數。與TCXO相 較RTC的功率消耗典型上為不顯著的,在i毫安培大小自丄〇 伏特DC供應II或3 Q毫瓦特。 使用RTC伴隨著二個問題,首先,的分辨率不滿足一 些無線^_要求’例如寬齡玉多重存取(w cdma)時分雙工 (TDD)权式’ RTC❺典義率為32 768祕此職於3㈣微 =最小分辨率或ln i9晶片或以3』個通樣品⑽百萬 赫錄)°第—綱料RTC賴轉確性’ rt 稱頻率不同,差距多至⑽百萬分之—的最大偏差。第三 的頻率穩疋性為低的。因此問題,假設頻移率不會較[+/_]〇.3百 萬刀之每为鐘或0.005百萬分之一每秒鐘為快此頻移率典型 上為室溫㈣振i離ΤΧΟ)的最壞情況,其因較差的溫度敏感 度而使用特別切割的晶體。因為這些振遭器並未如TCXO具特別 外殼’故它們成本較低。 睡眠計時H演算法包括兩個部分1TC鮮啦及睡眠計時 器排程。頻率測量在DRX循環期間周期地執行以克服頻率準確 性及頻率穩紐關題,部分符合WTRU齡辨率要求以 當TCXO關斷時準確地調度DRX事件。 對RTC不需要任何頻率校正’僅必須準確地測量RTC的頻 率,在主動連接模式不需要進行RTC解測量,因為似〇一 直為ON ’ RTC鮮·僅在_職彳練之前及在順期間 為需要的。更新率應為使得總鮮準確性應在約G1百萬分之_。 睡眠計時器演算法與計時管理員魏交互_,下一個ρ〇 1377856 或同步化更新輸出辨識與喚醒之後的PO或同步化更新的開始同 時的計時管理員MC脈衝。自計時管理員的PO開始輸入辨識喚 醒之後的p〇開始至睡眠計時器演算法,若FTC在同步更新之後 改變訊框計時,則所指示P0開始時間係關於該經更新計時。 睡眠計時器演算法比較即時時鐘頻率測量及睡眠計時器調 度。關於即時時鐘頻率測量,第5圖為根據本發明RTC頻率估 計窗的時序圖。為準確地測量RTC頻率主鐘脈衝271的數目於 長的時間期間272計算。主鐘具76.8百萬赫茲的頻率,其為2〇χ 晶片率,因為此鐘係鎖相至TCX〇,其最差的準確性為〇1百萬 分之一 ’因為沒有至RTC的校正,TCX〇的準確性不會影響rtc 頻率測量準確性’結果,RTC頻率測量準確性可由增加頻率估計 窗大小而依所欲增加。對〇.1百萬分之一的RTC頻率估計準確 性’必須計量⑴百萬的主鐘(MC)脈衝271。During DRX, the WTRU should periodically update its frame and timing synchronization to be able to successfully read Pis and perform cell reselection measurements. Therefore, the periodic DRX activity of layer i includes cell reselection and related measurements, monitoring pis; and maintaining frame and timing synchronization. Right the WTRU detects that it is paged via the associated pi, which reads pcH to access the paging content, otherwise it returns to sleep. If the TCXO is operated continuously, it will consume 2.0 amps maximum current from a 3.0 volt nominal DC power supply or a 6 wattage power supply. For additional power savings, tcx〇 can be turned off during DRX sleep. When the TCXO is turned off, the sleep timer is used to schedule the number of wake-ups of the TCXO for the start of the p〇s or synchronization update. The power consumption of the RTC compared to the TCXO is typically insignificant, with an i milliampere size from the volts DC supply of II or 3 Q milliwatts. The use of RTC is accompanied by two problems. First, the resolution does not satisfy some wireless ^_ requirements. For example, the wide-age jade multiple access (w cdma) time division duplex (TDD) weights 'RTC ❺ 义 义 rate is 32 768 secret Jobs at 3 (four) micro = minimum resolution or ln i9 wafers or 3" pass samples (10) million mega records) ° - syllabus RTC depends on the accuracy ' rt called the frequency is different, the gap is as much as (10) parts per million - Maximum deviation. The third frequency stability is low. Therefore, the problem is that the frequency shift rate is not higher than [+/_]〇.3 million knives per clock or 0.005 millionths per second. This frequency shift rate is typically room temperature (four) The worst case of ΤΧΟ), which uses specially cut crystals due to poor temperature sensitivity. Because these shakers are not as special as the TCXO, they are less expensive. The sleep timing H algorithm consists of two parts, 1TC Fresh and Sleep Timer Schedule. Frequency measurements are performed periodically during the DRX cycle to overcome frequency accuracy and frequency stability issues, and are partially compliant with WTRU age requirements to accurately schedule DRX events when the TCXO is turned off. No need for any frequency correction for RTC' only need to accurately measure the frequency of RTC. In active connection mode, RTC solution measurement is not required, because it seems to be ON' RTC freshly only before and during the training period. For what is needed. The update rate should be such that the total fresh accuracy should be around G1 parts per million. The sleep timer algorithm interacts with the timing manager _, the next ρ〇 1377856 or the synchronized update output identifies the timing administrator MC pulse at the same time as the start of the PO or synchronized update after wakeup. Since the PO of the timing administrator starts to input the p〇 after the recognition wakeup to the sleep timer algorithm, if the FTC changes the frame timing after the synchronization update, the indicated P0 start time is related to the updated timing. The sleep timer algorithm compares instant clock frequency measurements with sleep timer scheduling. Regarding the instant clock frequency measurement, Fig. 5 is a timing chart of the RTC frequency estimation window according to the present invention. To accurately measure the number of RTC frequency master clock pulses 271 is calculated over a long period of time 272. The main clock has a frequency of 76.8 megahertz, which is a 2 晶片 chip rate. Because this clock is phase-locked to TCX 〇, its worst accuracy is 〇 1 part per million 'because there is no correction to RTC. The accuracy of the TCX〇 does not affect the accuracy of the rtc frequency measurement. The accuracy of the RTC frequency measurement can be increased as desired by increasing the frequency estimation window size. The accuracy of the RTC frequency estimate for .1 million is required to measure (1) millions of master clock (MC) pulses 271.

當選擇該頻率估計窗長度為4096 RTC脈衝("tics”),其對 32,768赫茲的標稱RTC頻率及76 8百萬赫茲的主鐘頻率包括 9,600娜MC脈衝。醉估計窗的開始及結束皆由脈衝η 觸,RTC脈衝271❾開始起始MC脈衝計數〇在帛4096個RTC 脈衝271的開始,Mc計數停止,及使用Mc計數器值於頻率估 計。 頻率估计窗維持約125毫秒或13個訊框,在主動連接模式, 此頻率=計未執行’除了僅在進人順循環之前。在此情況下, 頻率測里在進人DRX循環之前於最後_個贿的任何地方發 在DRX循環期間,頻率測量在每一個同步更新期間内執行, 12 1377856 頻率測量及妓應在同步化更新_的最後i3個訊框發生,使 得tcxo具最大可能_以確定。該蚊新鮮料用於下一個 傳呼區塊。When the frequency estimation window is selected to be 4096 RTC pulses ("tics"), it has a nominal RTC frequency of 32,768 Hz and a main clock frequency of 76 8 megahertz including 9,600 nano MC pulses. The beginning and end of the drunk estimation window The pulse η touches, the RTC pulse 271 ❾ starts the initial MC pulse count 〇 at the beginning of 帛 4096 RTC pulses 271, the Mc count stops, and the Mc counter value is used for frequency estimation. The frequency estimation window is maintained for about 125 milliseconds or 13 Frame, in active connection mode, this frequency = count is not executed 'except only before entering the human cycle. In this case, the frequency measurement is sent to the DRX cycle anywhere in the last _ bribe before entering the DRX cycle. During the period, the frequency measurement is performed during each synchronization update period, 12 1377856 frequency measurement and 妓 should occur in the last i3 frame of the synchronization update _, so that tcxo has the greatest possible _ to determine. The mosquito fresh material is used for the next Paging block.

關於睡眠冲時盗排程,第6圖為顯示睡眠計時器調度的時序 圖睡眠冲%益決定每一個DRX循環的兩個周期事件;TCX〇 的下-個喚醒時間;及下一個P〇或下一個同步化更新區塊開 始,無論哪-個是下-個事件,的時間(特定MC脈衝),為在I 情況下定位這些事件’存在—_量及許多方法以應用簡 單計鼻方法。在第6圖下方示出事件的時序圖。 TIC A : P0 後的第一個 RTCTic。 TIC b=brtc :開機 TCX0 的 RTC tic,Brtc 訂定自 p〇 開始 的RTC tics s目(所計算每一個同步化更新或DRx周期長度變 TIC OCRTC :在用於定位下一個p〇或同步化更新區塊開始 的DRX期間的rTc tic(每一個同步化更新所計算)。 KRTC(=4096) mTC tics數目的方式表示的頻率估 期間(常數)。 DRXP :此參數表示以訊框方式的自目前p〇至下一個事件 的距離’其錄下-轉件輸人及DRX周期長度而具不同值, 這些值提供於表1。 DRX周期長 KMC :每DRX期間的MC(20X)脈衝數(對所有 度列表)。 KRTC :在頻率估計期間所使用的RTC脈衝數,其被設定為 13 1377856 4096。Regarding sleep piracy scheduling, Figure 6 shows the timing chart of the sleep timer scheduling. The sleep cycle determines the two cycle events of each DRX cycle; the next wake-up time of TCX〇; and the next P〇 or The next synchronized update block begins, no matter which one is the next event, the time (specific MC pulse), to locate these events in the case of I's exist - the amount and many methods to apply the simple method. A timing diagram of the event is shown at the bottom of Figure 6. TIC A : The first RTCTic after P0. TIC b=brtc : Turn on RTC tic of TCX0, Brtc sets RTC tics s starting from p〇 (calculate each synchronization update or DRx cycle length change TIC OCRTC: used to locate the next p〇 or synchronization Update the rTc tic during the DRX start of the block (calculated for each synchronization update). KRTC (= 4096) The number of mTC tics indicates the frequency estimation period (constant). DRXP: This parameter indicates the frame-by-frame method. The current distance from the next event to the next event's record-transfer input and DRX cycle lengths have different values. These values are provided in Table 1. DRX cycle length KMC: MC (20X) pulses per DRX period ( For all degrees list) KRTC : The number of RTC pulses used during frequency estimation, which is set to 13 1377856 4096.

Mmc :在RTC頻率估計窗的經測量MC脈衝數目(每一個同 步更新期間所測量)。 amc:自目前p〇的開始至TicA的經測量]^(:脈衝數目(每 一個DRX循環所測量)。Mmc: The number of measured MC pulses in the RTC frequency estimation window (measured during each synchronization update). Amc: measured from the beginning of the current p〇 to TicA]^(: number of pulses (measured per DRX cycle).

Brtc :在下一個P〇或同步化更新區塊開始前,以RTC脈衝 的方式表示的tcxo姐時間,其約略等於5毫秒(表示為164 RTC tics)。 CMc.自Crtc(TicC)至下一個傳呼區塊或同步化更新區塊開 始的經計昇MC tics數目,cMC脈衝的開始與下一個傳呼區塊或 同步化更新區塊的第一晶片之開始幾乎同時。 在母個傳呼區塊開始時,下一個喚醒時間被計算,此可如 下完成:1)測量自p〇至下-個RTC脈衝(TIC入)的MC脈衝數 目,AMC;2)由表1發現DRXp;及3)使用在方程式的公式計算 Brtc、CRTC 及 CMC。 第7圖為在DRX期間TCX〇關機步驟的流程圖3〇〇。在傳 呼區塊_(倾301)之後為測量Amg(倾3G2),之後為Brtc、 cRTC及cMC之計算(步驟3〇3),這些計算之後為讀取picH(步驟 304) ’接著為決定傳呼拍示器⑼是否為正值(步驟狗若朽 為正值’該WTRU被傳呼或是在一些由BCCH指示的設定改變, 所以’若pi為正值該WTRU會讀取PCH通道以發現ρι正值所 指為何。若PI為正值’ PCH被讀取(步驟3 j υ,及進行關於自該 PCH所讀取資料是否指示經傳呼或Β(Χη修正之決定(步^ 1377856 312)。右自該pCH所讀取資料指示經傳呼❹CCH 丫多正如在步 驟312所決定,TCX0 ,维持操作,或是DRX模式結束(步驟313)。 若Π不為正值如在步驟3〇5所決定,或是pcH未指示經料或 BCCH修正如在步驟312所決定,則進行關於目前阳是否正確 地依循同步更新之決定(步驟321),若目前P0正確地依循同步更 新,該方法等待直到AFC及TFC收斂(步驟322),及當AFC及 现收敛決定是否自规/顶㈣聲明至下—個事件開始的距 離大於1個訊框(步驟323)。若自AFC/TFC收斂聲明至下一個事 件開始的距離大於1個訊框,則TCXO關斷及DRX模式繼續(步 驟324) 1自AFC/TFC收斂聲明至下—個事件開始的距離不二 於1個訊框如在步驟323所決定,則TCX0維持操作但drx模 式繼續。 若該目前P0未依循同步化更新,如在步驟321所決定,進 行鄰近搜尋測量直到完成(步驟341),及進行關於是否自目前?0 至下一個同步更新開始的距離小於17個訊框之決定(步驟342), 若自目前P0至下一個同步更新開始的距離小於17個訊框則 TCXO關斷及Drx模式繼續(步驟324),若自目前?〇至下一個 同步更新開始的距離不小於17個訊框,則TCXO維持操作但 DRX模式繼續。 在操作時,下一個睡眠計時器事件為調度TCX〇關斷,其略 述於流程圖。如在流程圖所見’每一個drx循環有三個最後調 度狀況:l)TCXO關斷,WTRU維持在DRX及應用睡眠計時器 演算法;2)TCX0因為在流程圖所示條件而維持操作及WTRU維 15 1377856 持在DRX,所使用時脈參考為TCX〇及未使用睡眠計時器演算 法;及3)TCX〇維持操作及WTRU必須離開DRX。在此情況下, WTRU已被傳呼或BCCH修正資料存在。 表1 DRXp比下一個事件 DRX期間長度(訊框) 下一個事件DRXP(訊框) 32,64 ’ 128 ’ 256 ’ 512傳呼區塊 DRX周期長度·16 8,16 同步化更新區塊 DRX周期長度 傳呼區塊 DRX周期長度 同步化更新區塊 Ν/Α〇*〇 (*)如上所解釋對此情況TCX〇為已開機 該方法的最後步驟為下一個事件的喚醒,喚醒方法係如下·· 1)於時間Brtc開啟TCX0,Brtc在最後一個ρ〇後脈衝^等待 直到時間CRT(: ; 3)自CRTC:開始計算cM(:主時鐘脈衝;4)在& 主時鐘脈衝’時間約略與下—個事件的開始相同,亦即下一個事 2第-時間插槽的第-晶片;及5)重複每一個祖循環的方 法直到WTRU離開DRX循環。 , ^發·—個優點為其實猶錢單的方法,此方法避免實 正的需求,計時準確性可由改變測量時間間隔長度或是 >考4•鐘頻率而控制。此簡易係來自該方法具 低準確度時鐘而是僅測量其頻率之事實。、貝 ^ 16Brtc: The tcxo sister time expressed as an RTC pulse before the start of the next P〇 or synchronization update block, which is approximately equal to 5 milliseconds (expressed as 164 RTC tics). CMc. The number of counted MC tics from Crtc (TicC) to the next paging block or synchronization update block, the start of the cMC pulse and the start of the first paging block or the first wafer of the synchronization update block Almost at the same time. At the beginning of the parent paging block, the next wake-up time is calculated, which can be done as follows: 1) measure the number of MC pulses from p〇 to the next RTC pulse (TIC in), AMC; 2) found in Table 1. DRXp; and 3) Calculate Brtc, CRTC, and CMC using the equations in the equation. Figure 7 is a flow chart of the TCX〇 shutdown procedure during DRX. After the paging block _ (dip 301) is measured Amg (pour 3G2), followed by the calculation of Brtc, cRTC and cMC (step 3 〇 3), these calculations are followed by reading picH (step 304) 'and then for the decision paging Whether the patrol (9) is positive (the step dog is positive or not) the WTRU is paged or changed in some settings indicated by the BCCH, so 'if pi is positive, the WTRU will read the PCH channel to find ρι positive What is the value? If PI is positive, 'PCH is read (step 3 j υ, and whether the data read from the PCH indicates paging or Β (Β^ 1377856 312). Right The data read from the pCH indicates that the paging CCH 经 is as determined in step 312, TCX0, the maintenance operation, or the DRX mode ends (step 313). If Π is not positive, as determined in step 3〇5, Or if pcH does not indicate that the material or BCCH correction is determined as determined in step 312, then a decision is made as to whether the current positivity correctly follows the synchronous update (step 321). If the current P0 correctly follows the synchronous update, the method waits until the AFC and TFC converges (step 322), and when AFC and current convergence decide whether to self-regulate / (4) Declare that the distance from the beginning of the event is greater than 1 frame (step 323). If the distance from the AFC/TFC convergence statement to the start of the next event is greater than 1 frame, the TCXO is turned off and the DRX mode continues (step 324) 1 from the AFC/TFC convergence statement to the next event start distance is not less than 1 frame as determined in step 323, then TCX0 maintains operation but drx mode continues. If the current P0 does not follow the synchronization update, As determined in step 321, the proximity search measurement is performed until completion (step 341), and a decision is made as to whether the distance from the current 0 to the next synchronization update is less than 17 frames (step 342), if from the current P0 The TCXO is turned off and the Drx mode continues until the next synchronous update start distance is less than 17 frames (step 324). If the distance from the current 〇 to the next synchronous update is not less than 17 frames, the TCXO maintains the operation. However, the DRX mode continues. In operation, the next sleep timer event is scheduled TCX 〇 shutdown, which is outlined in the flowchart. As seen in the flowchart, 'every drx cycle has three final scheduling conditions: l) TCXO shutdown , WTR U maintains the DRX and applies the sleep timer algorithm; 2) TCX0 maintains operation due to the conditions shown in the flowchart and the WTRU dimension 15 1377856 is held in DRX, the clock reference used is TCX〇 and the unused sleep timer algorithm ; and 3) TCX maintains operation and the WTRU must leave DRX. In this case, the WTRU has been paged or BCCH correction data is present. Table 1 DRXp is longer than the next event DRX period (frame) Next event DRXP (frame) 32,64 '128 ' 256 ' 512 paging block DRX cycle length ·16 8,16 Synchronization update block DRX cycle length The paging block DRX cycle length synchronization update block Ν / Α〇 * 〇 (*) as explained above for this situation TCX 〇 is the last step of the method is the wake of the next event, the wake-up method is as follows 1 Turn on TCX0 at time Brtc, Brtc waits for the last ρ〇 pulse ^ wait until time CRT (: ; 3) from CRTC: start calculating cM (: main clock pulse; 4) at & main clock pulse 'time approximate and lower - The beginning of an event is the same, that is, the next-to-time slot of the second-time slot; and 5) the method of repeating each of the ancestor cycles until the WTRU leaves the DRX cycle. , ^ Fa · - The advantage is actually the method of judging the money, this method avoids the real demand, timing accuracy can be controlled by changing the length of the measurement interval or > test 4 • clock frequency. This simplicity comes from the fact that the method has a low accuracy clock but only measures its frequency. , Bay ^ 16

Λ/OJO 【圖式簡單說明】 程圖圖為顯不在主動U及順12的操作模式的酬操作之流 ^圖2。圖為睡眠料器演算法所使用的輸人及輸出信號之方 器與其他接收器同步演算法的交互 第3圖為顯示睡眠計時 作用之方塊圖。 第4圖為層1處理的時序圖。 第5圖為RTC頻率估計窗的圖。 第6圖為睡眠<時賴度事件的時序圖。 第7圖為在DRX期間錄器關機步驟的流程圖。Λ/OJO [Simple diagram of the diagram] The diagram of the scheme is a flow of remuneration operations that are not in the active U and Shun 12 modes of operation. The picture shows the interaction between the input and output signals used by the sleeper algorithm and the synchronous algorithms of other receivers. Figure 3 is a block diagram showing the effect of sleep timing. Figure 4 is a timing diagram of Layer 1 processing. Figure 5 is a diagram of the RTC frequency estimation window. Figure 6 is a timing diagram of the sleep & time lag event. Figure 7 is a flow chart showing the steps of the recorder shutdown during DRX.

Tics 脈衝 Amc 自目前P0的開始至Tic A的經測量MC脈衝數目(每—個 DRX循環所測量)。 【主要元件符號說明】 DAC 數位類比轉換器 FTC 訊框計時修正電路 PCH傳呼通道 PICH傳呼指引通道 RTC 即時時鐘 TCXO溫度控制晶體振盪器 DRX不連續接收 MC 主時鐘 pi 傳呼指引 P0 傳呼機會 WTRU無線傳送/接收單元Tics Pulse Amc The number of measured MC pulses from the beginning of P0 to Tic A (measured per DRX cycle). [Main component symbol description] DAC digital analog converter FTC frame timing correction circuit PCH paging channel PICH paging guidance channel RTC instant clock TCXO temperature control crystal oscillator DRX discontinuous reception MC master clock pi paging guidance P0 paging opportunity WTRU wireless transmission / Receiving unit

BrTc 在下一個PO或同步更新區塊開始前,以RTC脈衝的方式 17 1377856 表示的tcxo喚醒時間,其約略等於5毫秒(表示為164 RTC tics)。BrTc The tcxo wake-up time represented by the RTC pulse 17 1377856 before the start of the next PO or synchronous update block, which is approximately equal to 5 milliseconds (expressed as 164 RTC tics).

Cmc自CRTC(Tic C)至下一個傳呼區塊或同步更新區塊開始 的經s·}*异14(: tics數目,CMC脈衝的開始與下一個傳呼區 塊或同步更新區塊的第一晶片之開始幾乎同時。 DRXP此參數表示以訊框方式的自目前p〇至下一個事件的距 離,其依據下一個事件輸入及DRX周期長度而具不同 值,這些值提供於表1。Cmc from CRTC (Tic C) to the next paging block or synchronous update block starting with s·}* different 14 (: tics number, the beginning of the CMC pulse and the first paging block or the first update block The beginning of the chip is almost simultaneous. DRXP This parameter indicates the distance from the current p〇 to the next event in frame mode, which has different values depending on the next event input and the length of the DRX cycle. These values are provided in Table 1.

Kmc 每DRX期間的MC(20X)脈衝數(對所有DRX周期長度列 表)。Kmc MC (20X) pulse number per DRX (listed for all DRX cycle lengths).

Krtc 在頻率估計期間所使用的RTC脈衝數’其被設定為4〇96。 Mmc 在RTC頻率估計窗的經測量MC脈衝數目(每一個同步更 新期間所測量)。 TIC A P0後的第一個 RTC Tic。 TIC B=BRTC 開機TCXO的RTC tic,BRTC訂定自 p〇開始的^;!^ tics數目(所計算每一個同步更新或DRX周期長度變化)。 TIC C=CRTC在用於定位下一個P0或同步更新區塊開始的drx 期間的RTC tic(每一個同步更新所計算)。 11 主動模式 12 DRX模式 13、23 通信裝置 14、24 同步化裝置 1377856The number of RTC pulses used by Krtc during frequency estimation' is set to 4〇96. Mmc The number of measured MC pulses in the RTC frequency estimation window (measured during each synchronization update). The first RTC Tic after TIC A P0. TIC B=BRTC Turns on the RTC tic of the TCXO. The BRTC sets the number of ^;!^ tics starting from p〇 (each synchronous update or DRX cycle length change calculated). TIC C = CRTC RTC tic (calculated for each synchronization update) during the drx used to locate the next P0 or synchronous update block. 11 Active mode 12 DRX mode 13, 23 communication device 14, 24 synchronization device 1377856

15 ' 25 計時裝置 17、 27 TCXO 18、28 RTC裝置 80 睡眠計時器演算法 83 RTC頻率測量 88 計算喚醒及睡眠位置 93 產生喚醒次數 111 計時管理員 112 ADC電路 113 AGC電路 114 接收濾波器電路 115 頻率估計電路 116 迴路濾波器 117 DAC 118 TCXO 121 FTC 126 主時鐘 127 RTC 128 睡眠計時器 131 頻率估計迴路 132 訊框同步化迴路 164 同步化更新區塊 171-174 傳呼區塊 181- -183 RX預熱期間 191 睡眠期間 271 主鐘脈衝 272 長的時間期間 1915 ' 25 Timing device 17, 27 TCXO 18, 28 RTC device 80 Sleep timer algorithm 83 RTC frequency measurement 88 Calculation of wake-up and sleep position 93 Generation of wake-up times 111 Timing administrator 112 ADC circuit 113 AGC circuit 114 Receive filter circuit 115 Frequency Estimation Circuit 116 Loop Filter 117 DAC 118 TCXO 121 FTC 126 Master Clock 127 RTC 128 Sleep Timer 131 Frequency Estimation Loop 132 Frame Synchronization Loop 164 Synchronization Update Block 171-174 Paging Block 181--183 RX Pre Hot period 191 during sleep 271 main clock pulse 272 long time period 19

Claims (1)

^//856 功率操作模式; 該參考振盪器是一高功率及高準確性振盪器; 該控制器被配置用於在該低功率操作模式期間使用該參考 振蓋盗以進行同步化更新;以及 該控制器被配置用於根據一自動頻率控制(AFC)以及一訊 框計時修正(FTC)的收斂來判定—同步化更新的完成,以及用於 利用一個時間訊框作為該選定的臨界值。 如申叫專利範圍第3項所述的無線傳送/接收單元(WTRU),其中 k,考振堡器疋一溫度控制的晶體振璗器;該包括 7至溫晶體紐離TXO);以及該控制||她置在該低功 率操作模式期間使用該TCX0以回應一傳呼機會(P0)或是一同 步化更新。 5. 如申請專利賴第1項的無線傳送/接收單元(WTRU),其中該控 制器被配置用於在該低功率操作模式期間使用該參考振盛器以 執行一胞元再選擇測量。 6. 如申請專利絶圍第5項所述的無線傳送/接收單元⑽叫,該 WTRU被配置用於使用格式化的時間訊框來建立無線通信,= 中: ’、 該控制器被配置用於在該低功率操作模式期間使用該來考 振盪器以進行同步化更新;以及 / 21 1377856 該控制器被配置用於根據一自動頻率控制(AFC)以及一訊 框計時修正(FTC)的收斂來判定一同步化更新的完成,以及用於 針對該同步化更新的完成與要求使用該參考振盛器的一下一個 程序之間的差異而利用一個時間訊框作為該選定的臨界值,且 用於針對該胞元再選擇測量的完成與要求使用該參考振盛器的 一下一個程序之間的差異而利用十七個時間訊框作為該選定的 臨界值。 7. 如申請專利範圍第6項所述的無線傳送/接收單元(WTRU),其中 該參考振盛器是一溫度控制的晶體振盈器(TCXO);該RTC包括 一室溫晶體振盪器(RTXO);以及該控制器被配置用於在該低功 率操作模式期間使用該TCXO以回應一傳呼機會(PO)。 8. 如申請專利範圍第丨_7項中任一項所述的無線傳送/接收單元 (WTRU),其中該WTRU被配置為用於一第三代夥伴專案(3Gpp) 相容系統的一使用者設備。 9·一種無線通信的方法,包括: 提供一無線傳送/接收單元(WTRU),該WTRU具有用於同 步化通信的一參考振盪器、一即時時鐘(RTC)、一主動操作模式 及低功率操作模式,其中,於該主動操作模式中使用該參考 振盪器’以及在該低功率操作模式中使用該RTC並選擇性地使 用該參考振蓋器;以及 22 1377856 在該低功率操作模式期間,藉由判定使 ’且在該判定的差異大於 一程序的完成與要求使用該參考顧下-個程序Γ間的 -差異來·性地_該參考麵胃 序之門的 一選定的臨界值時,_該參考振蘯器。 =_觸9項所撕法,射,提細瞻-溫度 控制的晶mmii(TCX_作鱗料振盡器。 11.如申請專利範圍第9項所述的方法,其中· 以格式化的時間訊框來建立該無線通信; 該低功率操作料包括—不連續触(DRX); 該參考振魅在該低功率操作模執間用於同步化更新. 根,一自動頻率控制(AFC)以及—訊框計時修正(FTC)的收 傲來判疋一同步化更新的完成;以及 5 b更新&成後,使用—個時間訊框作為該選定的 fe界值以判定關閉該參考 以如申請專利範圍第η項所述的方法,其中,提供娜则一溫 度控制的晶體振盪器(TCX〇)以作為該參考振盪器;以及在該低 功輪作模式期間使用該皿〇以回應一傳啤 同步化更新。 13.如申^概轉9_綠,其巾在該低轉 用該參考振心崎行—胞元再選擇測量。 以間使 23 1377856 14.如申請專利範圍第13項所述的方法,其令·· 以格式化的時間訊框來建立該無線通信; 在該低功率操作模式期間,使用該參考振盈器以進行同步 化更新; 根據-自動頻率控制(AFC⑽及一訊框計時修正(FTC)的收 斂來判定一同步化更新的完成; 針對該同步化更新的完成與要求使用該參考振堡器的一下 -個程序之_差異’錢—個時間訊框作為該選定的臨界 值;以及 針對該胞元再選擇測量的完成與要求使用該參考振盈器的 -下-個程序之_差異,使斜七個_訊框作為該選定的 臨界值。 15. 如申請糊細第14機賴綠,其巾,提傾wtru一溫 度控制的晶體缝器(TCXO)以作為該參考振盈器;以及在該低 功率操作模式期間使用該TCX0以回應一傳呼機會(p〇)。 16. 如申請專利範圍第9-15項中任-項所述的方法,其中該WTRU 被提供為用於-第三代夥伴專案(3〇ΡΡ)相容系統的一使用者設 備0 24^// 856 power mode of operation; the reference oscillator is a high power and high accuracy oscillator; the controller is configured to use the reference capping during the low power mode of operation for synchronization updates; The controller is configured to determine the completion of the synchronization update based on an automatic frequency control (AFC) and a frame timing correction (FTC) convergence, and to utilize a time frame as the selected threshold. A wireless transmit/receive unit (WTRU) as claimed in claim 3, wherein k, a temperature-controlled crystal oscillator; the 7-to-temperature crystal pull-off TXO); Control|| She uses the TCX0 during this low power mode of operation in response to a paging opportunity (P0) or a synchronized update. 5. The wireless transmit/receive unit (WTRU) of claim 1, wherein the controller is configured to use the reference oscillator during the low power mode of operation to perform a cell reselection measurement. 6. The WTRU is configured to use the formatted time frame to establish wireless communication, as in the application for the wireless transmission/reception unit (10) described in item 5, where the controller is configured. The reference oscillator is used during the low power mode of operation for synchronization update; and / 21 1377856 the controller is configured to converge according to an automatic frequency control (AFC) and a frame timing correction (FTC) Determining the completion of a synchronized update and utilizing a time frame as the selected threshold for the difference between the completion of the synchronized update and the next program requiring the use of the reference oscillator, and for Seventeen time frames are utilized as the selected threshold for the difference between the completion of the cell reselection measurement and the next procedure requiring the use of the reference oscillator. 7. The wireless transmit/receive unit (WTRU) of claim 6, wherein the reference oscillator is a temperature controlled crystal oscillator (TCXO); the RTC comprises a room temperature crystal oscillator (RTXO) And the controller is configured to use the TCXO during the low power mode of operation in response to a paging opportunity (PO). 8. The wireless transmit/receive unit (WTRU) of any one of clauses, wherein the WTRU is configured for use by a third generation partner project (3Gpp) compatible system. Equipment. 9. A method of wireless communication, comprising: providing a wireless transmit/receive unit (WTRU) having a reference oscillator for synchronizing communications, a real time clock (RTC), an active mode of operation, and low power operation a mode in which the reference oscillator is used in the active mode of operation and using the RTC in the low power mode of operation and selectively using the reference capper; and 22 1377856 during the low power mode of operation, When the decision is made and the difference between the determination is greater than the completion of the procedure and the difference between the use of the reference and the program is used, the selected threshold value of the gate of the reference surface is sequentially _ The reference vibrator. =_Touch the 9 items of the tearing method, shoot, and draw a closer look - temperature controlled crystal mmii (TCX_ as a quenching vibrator. 11. The method described in claim 9 of the patent, wherein · formatted Time frame to establish the wireless communication; the low power operation material includes - discontinuous touch (DRX); the reference vibrating is used for synchronization update between the low power operation modes. Root, an automatic frequency control (AFC) And - frame timing correction (FTC) to determine the completion of a synchronization update; and 5 b update & after the use of a time frame as the selected fe boundary value to determine to close the reference The method of claim n, wherein a temperature controlled crystal oscillator (TCX〇) is provided as the reference oscillator; and the dish is used in response to the low power wheel mode The beer is synchronized and updated. 13. If the application is turned to 9_green, the towel is used in the low-turning of the reference, and the cell is re-selected for measurement. In order to make 23 1377856 14. The method described in the item, which is constructed by a formatted time frame Wireless communication; during the low power operation mode, the reference oscillator is used for synchronization update; determining the completion of a synchronization update according to convergence of automatic frequency control (AFC (10) and frame timing correction (FTC); For the completion of the synchronization update and the use of the reference engine, the difference _ difference 'money-time frame as the selected threshold; and the selection and completion of the measurement for the cell The reference vibrator-down-program _ difference makes the oblique seven-frame as the selected critical value. 15. If the application of the paste 14th machine is green, its towel, lifting wtru a temperature control a crystallizer (TCXO) as the reference oscillator; and use the TCX0 during the low power mode of operation in response to a paging opportunity (p〇). 16. As claimed in claim 9-15 The method of the item, wherein the WTRU is provided as a user equipment for a third-generation partner project (3〇ΡΡ) compatible system.
TW098102096A 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock TWI377856B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53176203P 2003-12-22 2003-12-22

Publications (2)

Publication Number Publication Date
TW200950541A TW200950541A (en) 2009-12-01
TWI377856B true TWI377856B (en) 2012-11-21

Family

ID=44871367

Family Applications (4)

Application Number Title Priority Date Filing Date
TW098102096A TWI377856B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW094123814A TWI327038B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW093139916A TWI307245B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW094123814A TWI306718B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW094123814A TWI327038B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW093139916A TWI307245B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock
TW094123814A TWI306718B (en) 2003-12-22 2004-12-21 Precise sleep timer using a low-cost and low-accuracy clock

Country Status (1)

Country Link
TW (4) TWI377856B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2958395T3 (en) 2007-01-30 2018-05-30 Interdigital Technology Corporation Implicit drx cycle length adjustment control in lte_active mode

Also Published As

Publication number Publication date
TWI327038B (en) 2010-07-01
TWI306718B (en) 2009-02-21
TW200526053A (en) 2005-08-01
TWI307245B (en) 2009-03-01
TW200950541A (en) 2009-12-01
TW200633555A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
JP4503616B2 (en) Precise sleep timer using low-cost and low-accuracy clock
TW527840B (en) Synchronization of a low power oscillator with a reference oscillator in a wireless communication device utilizing slotted paging
KR100514569B1 (en) Methods and apparatus for generating timing signals in a radiocommunication unit
US8188782B1 (en) Clock system and method for compensating timing information of clock system
US8872548B2 (en) Method and apparatus for calibrating low frequency clock
US6311081B1 (en) Low power operation in a radiotelephone
EP2195930A1 (en) Single multi-mode clock source for wireless devices
JP2005500745A (en) Dual mode Bluetooth / wireless device with power conservation characteristics
WO2001033870A3 (en) Method and apparatus for reactivating a mobile station following a sleep period
US20180176864A1 (en) Method and apparatus to controlling sleep time for bluetooth device and bluetooth enabled device
TW200830899A (en) Dynamic warm-up time for a wireless device in idle mode
US9307571B2 (en) Communication device and frequency offset calibrating method
KR101939379B1 (en) Method and Apparatus for Wireless Communication with Low Power Mode
KR20040111608A (en) Synchronizing clock enablement in an electronic device
CN110352614B (en) Low-power synchronization method in wireless communication and electronic equipment
CN101155355A (en) Control method, device and equipment for sleeping mode of user's set
JP3636097B2 (en) Wireless communication apparatus and reception timing estimation method thereof
US7496774B2 (en) Method and system for generating clocks for standby mode operation in a mobile communication device
JP2000078073A (en) Cdma receiver and intermittent receiving method in the same
TWI377856B (en) Precise sleep timer using a low-cost and low-accuracy clock
WO2020221659A1 (en) A nb-iot user equipment, ue, and a method for operating the nb-iot ue
US6176611B1 (en) System and method for reducing power consumption in waiting mode
TW201334432A (en) Timing calibration method and apparatus
KR101125406B1 (en) Apparatus and Method for controlling RF system
JP2003023369A (en) Device and method for communication for performing intermittent transmitting/receiving

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees