TWI356415B - Method of operating non-volatile storage and non-v - Google Patents

Method of operating non-volatile storage and non-v Download PDF

Info

Publication number
TWI356415B
TWI356415B TW96127570A TW96127570A TWI356415B TW I356415 B TWI356415 B TW I356415B TW 96127570 A TW96127570 A TW 96127570A TW 96127570 A TW96127570 A TW 96127570A TW I356415 B TWI356415 B TW I356415B
Authority
TW
Taiwan
Prior art keywords
level
storage elements
reverse bias
resistance
state
Prior art date
Application number
TW96127570A
Other languages
Chinese (zh)
Other versions
TW200830315A (en
Inventor
Roy E Scheuerlien
Tanmay Kumar
Original Assignee
Sandisk 3D Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/461,424 external-priority patent/US7495947B2/en
Priority claimed from US11/461,431 external-priority patent/US7492630B2/en
Application filed by Sandisk 3D Llc filed Critical Sandisk 3D Llc
Publication of TW200830315A publication Critical patent/TW200830315A/en
Application granted granted Critical
Publication of TWI356415B publication Critical patent/TWI356415B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5685Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3404Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
    • G11C16/3413Circuits or methods to recover overprogrammed nonvolatile memory cells detected during program verification, usually by means of a "soft" erasing step
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/009Write using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/564Miscellaneous aspects
    • G11C2211/5641Multilevel memory having cells with different number of storage levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/33Material including silicon
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/34Material includes an oxide or a nitride
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Static Random-Access Memory (AREA)

Description

•九、發明說明: 【發明所屬之技術領域】 依據本揭示内容之具體實施例係關於包含非揮發性記憶 體單元陣列而特定言之係該些併入被動元件記憶體單元的 陣列之積體電路。 【先前技術】 使用具有一可偵測位準的狀態變化(例如一電阻或相變) 之材料來形成各類基於非揮發性半導體之記憶體裝置。例 如,簡單的反熔絲係用於一次場可程式化(〇τρ)記憶體陣 列中的二進制資料儲存,此係藉由將一記憶體單元之一較 低電阻初始實體狀態指派給一第一邏輯狀態(例如邏輯”〇") 而將該單A之一較高電阻實體狀態指派給一第二邏輯狀態 (例如邏輯Μ 1 Μ) Ο某些材料可以在其初始電阻之方向上往回 切換其電阻。此等材料可用於形成可重寫的記憶體單元。 材料令夕個位準的可偵測電阻可進一步用於形成可能可以 或可能不可以重寫之一多狀態裝置。 具有5己憶體效果(例如一可偵測的電阻位準)之材料常 *係與弓j導兀件串聯放置以形成一記憶體裝置。具有一 非線隹傳導電流之二極體或其他裝置一般係用作該引導元 件在許多實施方案中,一組字元線與位元線係配置為一 實質上垂直的組態,而一記憶體單元處於每一字元線與位 ^線之父又點。可以將兩終端之記憶體單元構造於該等交 ^點’其中—終端(例如,該單元之終端部分或該單元之 分離層)與形成個別字元線的導體㈣而另-終端與㈣ 123008.doc 1356415 個別位元線之導體接觸。 在此類情況下,在將具有包含可切換電阻材料或相變材 料的被動元件記憶體單元之非揮發性記憶體陣列實施為該 狀態改變元件時’讀取及寫入操作期間的偏壓條件係一重 • 要考量因素。在嘗試生產包含可以可靠地製造、程式化及 / - 讀取的一或多個被動元件記憶體單元陣列之一記憶體裝置 • 時’高洩漏電流、程式干擾、讀取干擾等可能造成困難。 Φ 例如’此等因素常常藉由減少可以同時定址的單元數目而 限制系統性能,以便讓洩漏電流保持於可接受的位準。在 嘗試針對尚頻寬讀取與程式操作而個別或同時定址多個單 元時,個別記憶體單元之間微小的差異可能亦造成困難。 特定單元可能具有可能導致電阻超出與此等操作後之一對 應資料狀態之相關聯的範圍的特性。例如,與經受相同偏 壓條件之其他單元相比,特定的單元可以經歷不同數量的 電阻偏移。 • 【發明内容】 本發明揭示一種針對非揮發性記憶體系統的重新設定狀 態之反向偏壓調整操作。包括一電阻改變元件之非揮發性 記憶體S元經歷-&向偏M重新言史定操 <乍以將丨電阻從處 於一第一電阻位準之一設定狀態改變為處於一第二電阻位 準之一重新設定狀態。可以將一已重新設定的單元集合中 之特定記憶體單元深度重新設定為超出—針對該重新設定 狀態的目標位準之-電阻位準。向該記憶體單元集合^ ―第二反向偏壓以將已深度重新設^的每—單元之電阻朝 123008.doc 1356415 該重新設定狀態之目標位準移動。與用於該重新設定操作 的反向偏廢相比之一更小的反向偏壓可以將該等單元之雷 阻朝該設定位準往回偏移而脫離其深度重新設定條件。兮 操作係自我限制性,因為單元在到達該目標位準之際停I 其電阻偏移。未深度重新設定之單元不受影響。 在-具體實施例中,提供一種操作非揮發性儲存之方 法,其包括向複數個非揮發性儲存元件施加一第一位準的 反向偏麗以在一第-方向上將每一儲存元件t一電阻從一 第一電阻狀態移動至一第二電阻狀態。該方法接著包括向 該複數個非揮發性儲存元件施加1二位準的反向偏壓1 以將具有超出-針對該第二電阻狀態的目標電阻位準之一 電阻的該複數個儲存元件之一子集之一電阻在—第二方向 上朝該目標電阻位準移動。 在-具體實施例中,提供一種操作非揮發性儲存之方 法,其包括藉由向複數個非揮發性儲存元件施加一第—位 準的反向偏壓而將該等儲存元件從一較低電阻狀態切換為 一較高電阻狀態。在切換後接著向該等儲存元件施加一第 二位準的反向偏壓《降低具有冑出一對應於該第二電阻狀 態的目標位準之一電阻的該等儲存元件之一子集之一 阻。 在一具體實施例中提供-種非揮發性記憶㈣統,、包 括具有i少一電阻改變元件以及與該複數個非揮發性儲5 元件通信的控制電路之複數個非揮發性健存元件。該控制 電路執行-重新設定操作,其包括:藉由向該複數個_ 123008.doc 1356415 .發性儲存元件施加至少一反向偏壓重新設定電壓來將該等 儲存元件從一較低電阻設定狀態重新設定為一較高電阻重 新設定狀態;以及向該複數個非揮發性儲存元件施加至少 , ―反^壓調整電壓卩降低具有s出一針對該第二較高電 ·. p且重新言史定狀㈣目標值之一電阻的該複數個非揮發性儲 •- 存元件之一子集之一電阻。 * 【實施方式】 • 圖1說明可依據本揭示内容之具體實施例使用之一非揮 發性5己憶體單元之一範例性結構。如圖i所示之一兩終端 記憶體單元100包括連接至—第一導體1]〇之一第一終端部 为與連接至一第二導體112之一第二終端部分。該記憶體 單元包括與一狀態改變元件104及一反熔絲106串聯之一引 導兀件102以提供非揮發性資料儲存。該引導元件可以採 取呈現一非線性傳導電流特徵之任何合適的裝置(例如一 簡單的二極體)為形式。該狀態改變元件將隨具體實施例 • @變化並且可以包括諸多類型的材料來經由代表性的實體 狀態儲存資料。狀態改變元件104可以包括電阻改變材 料、相變電阻材料等。例如,在一具體實施例中使用具有 ' 至少兩個位準的可偵測電阻變化(例如,從低至高與從高 ••至低)之一半導體或其他材料來形成一被動儲存元件1〇〇。 藉由將邏輯資料值指派給可以設定並從電阻改變元件104 讀取之各種位準的電阻,記憶體單元1〇〇可以提供可靠的 資料讀取/寫入能力。反熔絲106可以進一步提供可以運用 於非揮發性資料儲存之電阻狀態改變能力。反溶絲係製造 123008.doc 丄356415 . ;尚電阻狀態而且可以係跳脫或溶合成一較低電阻狀 *態。反熔絲在處於其初始狀態時一般係非導電,而在處於 其跳脫或溶合狀態的低電阻條件下呈現高導電率。由於一 ; 離散裝置或元件可以具有一電阻及不同的電阻狀態,因此 •. 術語電阻率及電阻率狀態係用來表示材料本身之特性。因 此儘g'電阻改變元件或裝置可以具有電阻狀態,但一 電阻率改變材料可以具有電阻率狀態。 • 反熔絲106可以向記憶體單元1〇〇提供超出其狀態變化能 力之優點。例如,反熔絲可用於相對於與該單元相關聯的 讀取寫入電路而將該記憶體單元之開啟電阻設定於一適當 位準。此等電路一般係用於跳脫該反熔絲且具有一相關聯 的電阻。由於此等電路驅動電壓及電流位準以跳脫該反熔 絲,因此在隨後的操作期間,該反熔絲傾向於將該記憶體 單元設定於針對此等相同電路之一適當的開啟電阻狀態。 應明白,可以在具體實施例中使用其他類型的兩終端非 • 揮發性圮憶體單元。例如,一具體實施例不具有一反熔絲 106而僅包括狀態改變元件1〇4與引導元件1〇2。其他具體 實施例可以包括額外的狀態改變元件作為該反熔絲之替代 • 元件或額外元件。在名稱為"垂直堆疊的塲可程式化非揮 • 發性記憶體及製造方法"之美國專利案第0,034,882號中說 明各類合適的記憶體單元。可以使用各種其他類型的單 7L,包括以下專利案中說明的該些單元:美國專利案第 6,420,215號及美國專利申請案序列號〇9/897,7〇5,其名稱 為"併入串聯鏈式二極體堆疊之三維記憶體陣列",申請於 123008.doc 1356415 年6月29曰,以及美國專利申請案序列號㈣560 626, /、名稱為。維記憶體陣列及製造方法”其係中請於編 曰上述各案之全部内容皆係以引用的方式併入 於此。 依據本揭禾内容之具體實施例,各種材料呈現適用於實 施狀態改變7〇件1〇4之電阻率改變特性。適用於電阻狀態 改變7L件1G4之村料之ϋ例包括但不限於摻雜的半導體(例 如’多晶II的@、更__般而言係多晶碎)' 過渡金屬氧化 物、複合金屬氧化物、可程式化金屬化連接、相變電阻元 件、有機材料可變電阻器、碳聚合物膜、摻雜的硫屬化合 物玻璃及包含改變電阻的行動原子之肖特基(Sch〇t㈣阻 障二極體。在某些情況τ,此等材料之電阻率可以係僅設 定於一第一方向(例如,從高到低),而在其他情況下,該 電阻率可以係從一第一位準(例如,較高電阻)設定為一第 二位準(例如,較低位準)而接著重新設定回到該第—電阻 率位準。 可以將一電阻值範圍指派給一實體資料狀態以適應裝置 之間的差異以及在設定及重新設定循環後裝置内的變化。 術語設定與重新設定一般係分別用於表示將一元件從一高 電阻實體狀態改變為一低電阻實體狀態(設定)與將—元件 從一低電阻實體狀態改變為一高電阻實體狀態(重新設定) 之程序。依據本揭示内容之具體實施例可用於將記憶體單 元設定為一較低電阻狀態或將記憶體單元設定為一較高電 阻狀態。儘管可相對於設定或重新設定操作提供特定範 123008.doc •12- 例’但應明白此等範例僅係範例而本揭示内容不受此限 制。 導體110及112—般係彼此正交而形成用以存取一記憶體 單元陣列1 00之陣列終端線。處於一層的陣列終端線(亦稱 為陣列線)可稱為字元線或X線《處於一垂直相鄰層之陣列 線可稱為位元線或Y線。一記憶體單元可以係形成於每一 字元線與每一位元線之凸出的交叉點,並連接於個別交叉 字元線與位元線之間(如圖中針對記憶體單元100之形成所 不)。具有至少兩個記憶體單元層級(即,兩個記憶體平面) 之一三維記憶體陣列可以利用一層以上之字元線及/或一 層以上之位元線。一單石三維記憶體陣列係一其中在一單 一基板(例如’一晶圓)上形成多個記憶體層級之陣列,其 中無插入的基板。 圖2A及2B係對可用於各項具體實施例之範例性記憶體 單元之更詳細的說明。圖2A中,在第一及第二金屬導電層 110與112之間形成記憶體單元120 ^該記憶體單元包括具 有一重度摻雜的η型區域122、本質區域124及一重度摻雜 的ρ型區域126之一 p-i-n型二極體。在其他具體實施例中, 區域122可以係p型,而區域126係η型。區域124係本質 的’或並非故意摻雜’但在某些具體實施例中其可為輕度 摻雜。未摻雜區域可能並非係極佳的電性中性,而產生缺 陷、污染物等使其性能如同輕度η摻雜或ρ摻雜一般。吾等 仍將此一一極體視為具有一本質中間層之一 p_i_n型二極 體。還可以使用其他類型的二極體,例如接面二極 123008.doc -13- 介於摻雜的p型區域126與導體110之間的係一反溶絲 128。反熔絲128在其初始狀態中呈現實質上非導電的特性 而在其設定狀態中呈現實質上導電的特性。可以依據具體 實施例而使用各類型反熔絲。在一般製造之反熔絲中橫 跨該反熔絲而施加之一較大偏壓將熔合形成材料而使得該 反熔絲變成實質上導電。此操作一般係稱為跳脫該反熔 絲0 記憶體單元120進一步包括由該二極體之一或多層形成 之一狀態改變元件。頃發現,用於在某些記憶體單元中形 成二極體之材料本身呈現電阻改變能力。例如,在一具體 實施例中,該二極體之本質區域係由多晶矽形成,該多晶 矽經證實具有從一較高電阻率狀態設定為一較低電阻率狀 態而接著從該較低電阻率狀態設定回到一較高電阻率狀態 之能力。因此,該一極體本身或其一部分還可以形成如圖 1所示之狀態改變元件104。在其他具體實施例中,可以將 一或多個額外層包括於記憶體單元120中以形成如圖i所示 之一狀態改變元件。例如,可以將如上所述的多晶矽、過 渡金屬氧化物等之一額外層包括於該單元中以提供一狀態 改變記憶體效果。可以將此額外層包括於該二極體與導體 112之間、該二極體與該反熔絲128之間或該反熔絲與導體 110之間。 圖2B解說一其中不存在一反溶絲128之簡單的記憶體單 元組態。記憶體單元140僅包括重度摻雜的^型區域丨42、 123008.doc -14- 1356415 本質區域144及重度摻雜的p型區域146。由此等區域形成 的二極體之-或多層时如±所述針對該單元之記憶體效 果。在-具體實施例中,記憶體單元⑽還可以包括其他 層以形成用於該單元之一額外的狀態改變元件。IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION [0002] Embodiments in accordance with the present disclosure are directed to an array comprising a non-volatile memory cell array and, in particular, an array of passive component memory cells incorporated Circuit. [Prior Art] Materials having a detectable level change (e.g., a resistance or phase change) are used to form various types of non-volatile semiconductor based memory devices. For example, a simple antifuse is used for binary data storage in a field programmable (〇τρ) memory array by assigning a lower resistance initial physical state of a memory cell to a first A logic state (eg, logic "〇") assigns one of the higher resistance entity states of a single A to a second logic state (eg, logic Μ 1 Μ) Ο some material can be back in the direction of its initial resistance Switching its resistance. These materials can be used to form a rewritable memory cell. The material can be used to form a multi-state device that may or may not be rewriteable. The material of the recall effect (for example, a detectable resistance level) is often placed in series with the lead member to form a memory device. A diode or other device having a non-linear conduction current is generally used. Used as the guiding element. In many embodiments, a set of word lines and bit lines are configured in a substantially vertical configuration, and a memory unit is in the parent of each word line and bit line. Point. You can put two The memory unit of the terminal is constructed at the intersection of the terminal (eg, the terminal portion of the unit or the separated layer of the unit) and the conductor (4) forming the individual word line and the other terminal (4) 123008.doc 1356415 Conductor contact of individual bit lines. In such cases, when a non-volatile memory array having a passive element memory cell including a switchable resistive material or a phase change material is implemented as the state change element, 'read and Bias conditions during write operations are a factor to consider. When attempting to produce a memory device that includes one or more passive component memory cell arrays that can be reliably fabricated, programmed, and/or read. High leakage currents, program disturbances, read disturbances, etc. can cause difficulties. Φ For example, 'These factors often limit system performance by reducing the number of cells that can be addressed simultaneously to keep the leakage current at an acceptable level. Small differences between individual memory cells may also result when multiple cells are individually or simultaneously addressed for frequent bandwidth read and program operations Difficulties. A particular unit may have characteristics that may cause the resistance to exceed a range associated with a data state corresponding to one of the operations. For example, a particular unit may experience a different number than other units that are subject to the same bias conditions. Resistance Deviation. SUMMARY OF THE INVENTION The present invention discloses a reverse bias adjustment operation for a reset state of a non-volatile memory system. A non-volatile memory S-element including a resistance-changing element undergoes -& The M is re-stated to change the state of the 丨 resistor from one of the first resistance levels to one of the second resistance levels to reset the state. The specific memory cell depth is reset to exceed - the resistance level for the target level of the reset state. The second reverse bias is set to the memory cell set to re-set each depth of the cell The resistance moves toward the target level of the reset state of 123008.doc 1356415. A smaller reverse bias than one of the reverse offsets used for the reset operation may offset the lightning resistance of the cells toward the set level from their depth reset conditions.兮 The operation is self-limiting because the unit stops its resistance offset when it reaches the target level. Units that are not re-set in depth are not affected. In a specific embodiment, a method of operating a non-volatile storage is provided, comprising applying a first level of reverse bias to a plurality of non-volatile storage elements to store each storage element in a first direction The t-resistor moves from a first resistance state to a second resistance state. The method then includes applying a two-level reverse bias 1 to the plurality of non-volatile storage elements to: the plurality of storage elements having a resistance that exceeds a target resistance level for the second resistance state A resistor of a subset moves in the second direction toward the target resistance level. In a specific embodiment, a method of operating a non-volatile storage is provided, comprising applying a storage element from a lower portion by applying a first level of reverse bias to a plurality of non-volatile storage elements The resistance state is switched to a higher resistance state. Applying a second level of reverse bias to the storage elements after switching, "reducing a subset of the storage elements having a resistance corresponding to a target level of the second resistance state" One resistance. In one embodiment, a non-volatile memory (four) system is provided, comprising a plurality of non-volatile storage elements having i less than one resistance changing element and a control circuit in communication with the plurality of non-volatile storage 5 elements. The control circuit performs a reset operation, comprising: setting the storage elements from a lower resistance by applying at least one reverse bias voltage to the plurality of sigma storage elements to reset the voltage Resetting the state to a higher resistance reset state; and applying at least the "non-voltage" adjustment voltage to the plurality of non-volatile storage elements, having a s-out for the second higher power. The history of one of the target values of one of the plurality of non-volatile storage resistors is one of a subset of the resistance values. * [Embodiment] Figure 1 illustrates an exemplary structure that can be used in accordance with one embodiment of the present disclosure for a non-volatile 5 memory unit. A two-terminal memory unit 100 as shown in Fig. i includes a first terminal portion connected to one of the first conductors 1 and a second terminal portion connected to a second conductor 112. The memory unit includes a boot device 102 in series with a state change element 104 and an antifuse 106 to provide non-volatile data storage. The guiding element can take the form of any suitable device (e.g., a simple diode) that exhibits a non-linear conduction current characteristic. The state change element will vary with the particular embodiment and may include many types of materials to store data via a representative entity state. The state changing element 104 may include a resistance change material, a phase change resistance material, or the like. For example, in one embodiment a passive storage element is formed using a semiconductor or other material having a detectable resistance change of at least two levels (eg, from low to high and from high to low). Hey. The memory unit 1 can provide reliable data read/write capability by assigning logic data values to various levels of resistors that can be set and read from the resistance change element 104. The anti-fuse 106 can further provide a resistance state change capability that can be utilized for non-volatile data storage. The anti-solving wire system is made of 123008.doc 丄356415. It is still in a state of resistance and can be tripped or dissolved into a lower resistance state. The antifuse is generally non-conductive when in its initial state and exhibits high conductivity under low resistance conditions in its tripped or fused state. Since a discrete device or component can have a resistance and a different resistance state, the term resistivity and resistivity states are used to indicate the properties of the material itself. Therefore, the resistance changing element or device may have a resistive state, but a resistivity changing material may have a resistivity state. • The anti-fuse 106 can provide the memory unit 1 with the advantage of exceeding its state change capability. For example, an anti-fuse can be used to set the on-resistance of the memory cell to an appropriate level relative to a read write circuit associated with the cell. These circuits are typically used to trip the antifuse and have an associated resistance. Since the circuits drive voltage and current levels to trip the antifuse, the antifuse tends to set the memory cell to an appropriate turn-on resistance state for one of the same circuits during subsequent operations. . It should be understood that other types of two-terminal non-volatile memory units can be used in a particular embodiment. For example, a particular embodiment does not have an antifuse 106 and only includes state changing element 1〇4 and guiding element 1〇2. Other embodiments may include additional state changing elements as an alternative to the antifuse • element or additional element. Various suitable memory cells are described in U.S. Patent No. 0,034,882, the entire disclosure of which is incorporated herein by reference. A variety of other types of single 7L can be used, including those described in the following patents: U.S. Patent No. 6,420,215 and U.S. Patent Application Serial No. 9/897, the entire disclosure of which is incorporated herein. A three-dimensional memory array of a chained diode stack is applied at 123008.doc, June 29, pp. 1556415, and U.S. Patent Application Serial No. (4) 560 626, /. The present invention is incorporated herein by reference in its entirety. The resistivity change characteristic of 7〇1〇4. Suitable for the change of resistance state 7L parts of 1G4 include, but not limited to, doped semiconductors (eg 'polycrystalline II', @ __ Polycrystalline) 'transition metal oxides, composite metal oxides, programmable metallization junctions, phase change resistors, organic material variable resistors, carbon polymer films, doped chalcogenide glasses, and contain varying resistance Action of the atomic Schottky (Sch〇t (four) barrier diode. In some cases τ, the resistivity of these materials can be set only in a first direction (for example, from high to low), while in other In this case, the resistivity can be set from a first level (eg, higher resistance) to a second level (eg, a lower level) and then reset back to the first resistivity level. A range of resistance values can be referred to Give an entity data status to accommodate differences between devices and changes in the device after setting and resetting cycles. The term setting and resetting are generally used to indicate that a component is changed from a high resistance solid state to a low resistance. The physical state (set) and the procedure for changing the component from a low resistance physical state to a high resistance physical state (reset). Embodiments in accordance with the present disclosure may be used to set the memory cell to a lower resistance state Or set the memory unit to a higher resistance state. Although a specific specification can be provided with respect to the setting or resetting operation, the example is only an example and the disclosure is not limited by this example. The conductors 110 and 112 are generally orthogonal to each other to form an array termination line for accessing a memory cell array 100. The array termination lines (also referred to as array lines) in one layer may be referred to as word lines or X. Line "Array lines in a vertical adjacent layer may be referred to as bit lines or Y lines. A memory cell may be formed on each word line and each bit line. The convex intersections are connected between the individual cross-character lines and the bit lines (as shown for the formation of the memory unit 100 in the figure). There are at least two memory unit levels (ie, two memories) Body plane) A three-dimensional memory array can utilize more than one word line and/or more than one bit line. A single-crystal three-dimensional memory array is formed on a single substrate (eg, a wafer) An array of multiple memory levels, with no intervening substrates. Figures 2A and 2B are more detailed illustrations of exemplary memory cells that may be used in various embodiments. In Figure 2A, in the first and second metals A memory cell 120 is formed between the conductive layers 110 and 112. The memory cell includes a pin-type diode having a heavily doped n-type region 122, an intrinsic region 124, and a heavily doped p-type region 126. In other embodiments, region 122 may be p-type and region 126 is n-type. Region 124 is essentially 'or not intentionally doped' but in some embodiments it may be lightly doped. The undoped regions may not be excellent in electrical neutrality, but defects, contaminants, etc., which cause their properties to be as mild as η doping or p doping. We still consider this one-pole as one of the essential intermediate layers of p_i_n type dipole. Other types of diodes can also be used, such as junction diode 123008.doc -13 - a solution-dissolving filament 128 between the doped p-type region 126 and the conductor 110. The anti-fuse 128 exhibits substantially non-conductive characteristics in its initial state and exhibits substantially conductive characteristics in its set state. Various types of antifuse can be used in accordance with specific embodiments. Applying a large bias across the antifuse in a generally fabricated antifuse will fuse the forming material such that the antifuse becomes substantially electrically conductive. This operation is generally referred to as tripping the antifuse. The memory unit 120 further includes a state changing element formed by one or more of the diodes. It has been found that the material used to form the diode in some memory cells exhibits a resistance change capability. For example, in one embodiment, the essential region of the diode is formed of polysilicon, which is shown to have a lower resistivity state from a higher resistivity state and then from the lower resistivity state. Set the ability to return to a higher resistivity state. Therefore, the one body itself or a part thereof can also form the state changing element 104 as shown in FIG. In other embodiments, one or more additional layers may be included in memory unit 120 to form a state change element as shown in FIG. For example, an additional layer of polysilicon, a transition metal oxide, or the like as described above may be included in the cell to provide a state change memory effect. This additional layer may be included between the diode and conductor 112, between the diode and the antifuse 128 or between the antifuse and conductor 110. Figure 2B illustrates a simple memory unit configuration in which no anti-solvent filaments 128 are present. The memory unit 140 includes only heavily doped regions 丨 42, 123008.doc -14 - 1356415, an intrinsic region 144, and a heavily doped p-type region 146. The memory effect of the diodes formed by the regions or the layers formed by such regions is as described in ±. In a particular embodiment, the memory unit (10) may also include other layers to form additional state changing elements for one of the units.

圖3A至3B說明可用於一具體實施例之一範例性單石三 維記憶體陣列之-部分。但是,可以依據各項具體實施例 而使用其他記憶體結構,包括製造於一半導體基板上面、 上方或内部之二維記憶體結構。但是,該等字元線與位元 線層係在圖3 A之透視圖所說明結構中的記憶體單元之間共 享。此組態常常係稱為一完全鏡射結構。複數個實質上平 打及共面的導體在一第一記憶體層級L〇形成一第一位元線 集合162。在此等位元線與相鄰的字元線之間形成處於層 級L0之記憶體單元152。在圖从至3B之配置中字元線 164係在記憶體層l〇與L1之間共享,而因此進一步連接至 處於記憶體層級L1之記憶體單元17〇。一第三導體集合形 成針對此等處於層級L1的單元之位元線174。此等位元線 174進而係在記憶體層級L1與記憶體層級[2之間共享,如 圖3B之斷面圖所說明。記憶體單元ι78係連接至位元線174 及字疋線176以形成第三記憶體層級L2,記憶體單元182係 連接至子元線176及位元線18〇以形成第四記憶體層級L3, 而§己憶體單元186係連接至位元線180及字元線184以形成 第五記憶體層級L5。該等二極體的極性之配置及該等字元 線與位元線之個別配置可隨具體實施例而變化。此外,可 以使用多於或少於五個記憶體層級。 123008.doc •15· 1356415 若在圖3A之具體實施例中使用p_i_n二極體作為該等記 憶體單元之引導元件,則記憶體單元17〇之二極體可以係 相對於該第一層級的記憶體單元丨52之p-i-n二極體而顛倒 形成。例如,若單元152包括一n型底部重度摻雜區域與一 Ρ型頂部重度掺雜區域,則在第二層級的單元丨7〇中,該底 部重度掺雜區域可以係ρ型而該頂部重度摻雜區域係η型。 在一替代性具體實施例中,可以在相鄰的記憶體層級之 間形成一層間介電質。在記憶體層級之間不共享任何導 體。用於三維單石儲存記憶體之此類結構常常係稱為一非 鏡射結構。在某些具體實施例中,共享導體之相鄰記憶體 層級與不共享導體之相鄰記憶體層級可以係堆疊於同一單 石三維記憶體陣列中。在其他具體實施例中,某些導體係 共享而其他導體並非共享。例如,在某些組態中可以共享 僅該等字元線或僅該等位元線。一第一記憶體層級L〇可以 包括介於一位元線層級BL〇與字元線層級WL〇之間的記憶 體單元。處於層級WL0之字元線可以係共享以在一記憶體 層級L1形成連接至一第二位元線BL1之單元。該等位元線 層並非共享,因此接下來的一層可以包括一層間介電質以 將位元線BL1與接下來之一層級的導體分離。此類組態常 常稱為半鏡射。記憶體層級不必皆形成為具有同類記憶體 單元。若需要,使用電阻改變材料之記憶體層級可以與使 用其他類型記憶體單元之記憶體層級等交替。 在如美國專利案第7,054,219號(其名稱為"針對緊密間距 的記憶體陣列線之電晶體佈局組態”)所說明之一具體實施 123008.doc •16· 1356415 例中,使用置放於該陣列的不同字元線層上之字 來形成字讀。可以藉由’ 成一個別字元線。各字元線皆駐留=该等片段連接成形 予70線身駐留於—分離層上且實質上 垂直對齊(儘管在某些層上存在較 買 ^ ^ J粞向偏移)之一群組的 子凡線可統稱為-列。在一列内的字元線較佳的係共享該 列位址之至少一部分。同樣,各位元線皆駐留於一分離層 上且實質上垂直對齊(同樣,儘管在某些層上存在較小橫 向偏移)之-群組的位元線可統稱為—行。在—行内的位 元線較佳的係共享該行位址之至少一部分。 圖4係包括一記憶體陣列2〇2之一積體電路之一方塊圖。 記憶體陣列202之陣列終端線包括组織為列的各層字元線 與組織為行的各層位元線。該積體電路200包括列控制電 路220,該列控制電路22〇之輸出2〇8係連接至該記憶體陣 列202之個別字元線。該列控制電路接收一群組M個列位 址信號與一或多個各種控制信號,而且一般可以包括諸如 列解碼器222、陣列終端驅動器224及區塊選擇電路226之 類兼用於讀取及寫入(即,程式化)操作之電路。該積體電 路200還包括行控制電路21〇,該行控制電路21〇之輸入/輸 出206係連接至該記憶體陣列2〇2之個別位元線。該行控制 電路206接收一群組Ν個行位址信號與一或多個各種控制信 號,而且一般可以包括諸如行解碼器212、陣列終端接收 器或驅動器214、區塊選擇電路216以及讀取/寫入電路及 I/O多工器之類電路。諸如列控制電路220及行控制電路 210之類電路可統稱為控制電路,或因其係連接至該記憶 123008.doc 17- 1356415 體陣列2G2之各個陣列終端而稱㈣列終端電路。Figures 3A through 3B illustrate portions of an exemplary single stone three dimensional memory array that can be used in an embodiment. However, other memory structures can be used in accordance with various embodiments, including two-dimensional memory structures fabricated on, above, or within a semiconductor substrate. However, the word line and bit line layers are shared between the memory cells in the structure illustrated in the perspective of Figure 3A. This configuration is often referred to as a fully mirrored structure. A plurality of substantially flush and coplanar conductors form a first set of bit lines 162 at a first memory level L. A memory cell 152 at level L0 is formed between the bit lines and adjacent word lines. In the configuration from the figure to 3B, the word line 164 is shared between the memory layers 10 and L1, and thus further connected to the memory unit 17A at the memory level L1. A third set of conductors forms a bit line 174 for the cells of level L1. These bit lines 174 are in turn shared between the memory level L1 and the memory level [2, as illustrated in the cross-sectional view of Figure 3B. The memory cell ι78 is connected to the bit line 174 and the word line 176 to form a third memory level L2, and the memory unit 182 is connected to the sub-element 176 and the bit line 18A to form a fourth memory level L3. And the hex memory cell 186 is connected to the bit line 180 and the word line 184 to form a fifth memory level L5. The configuration of the polarities of the diodes and the individual configuration of the word lines and bit lines can vary from embodiment to embodiment. In addition, more or less than five memory levels can be used. 123008.doc • 15· 1356415 If a p_i_n diode is used as the guiding element of the memory cells in the embodiment of FIG. 3A, the diode of the memory cell 17 can be relative to the first level. The pin diode of the memory cell 丨52 is formed upside down. For example, if the cell 152 includes an n-type bottom heavily doped region and a doped top heavily doped region, the bottom heavily doped region may be p-type and the top is severe in the second-level cell 丨7〇 The doped region is n-type. In an alternate embodiment, an interlevel dielectric can be formed between adjacent memory levels. No conductors are shared between memory levels. Such structures for three-dimensional single stone storage memories are often referred to as a non-mirror structure. In some embodiments, adjacent memory levels of shared conductors and adjacent memory levels of unshared conductors may be stacked in the same single-crystal three-dimensional memory array. In other embodiments, some of the conductive systems are shared while other conductors are not shared. For example, only some of these word lines or only those bit lines can be shared in some configurations. A first memory level L〇 may comprise a memory cell between a bit line level BL〇 and a word line level WL〇. The word lines at level WL0 may be shared to form a unit connected to a second bit line BL1 at a memory level L1. The bit line layers are not shared, so the next layer can include an interlevel dielectric to separate the bit line BL1 from the next level of conductor. This type of configuration is often referred to as semi-mirror. The memory levels do not have to be formed to have the same type of memory unit. If desired, the memory level of the resistor-changing material can be alternated with the memory level of other types of memory cells. In one example, as described in U.S. Patent No. 7,054,219 (the name is "Transistor Layout Configuration for Closely Spaced Memory Array Lines), in the example of 123008.doc •16·1356415, the use of The words on the different word line layers of the array form a word read. It can be made into a different word line. Each word line is resident = the segments are connected to form a 70 line body that resides on the separation layer and substantially The sub-line of the vertical alignment (although there are some offsets on some layers) can be collectively referred to as a - column. The word lines in a column preferably share the column. At least a portion of the address. Similarly, the individual lines reside on a separate layer and are substantially vertically aligned (again, although there is a small lateral offset on some layers) - the group of bit lines can be collectively referred to as - Preferably, the bit lines in the row share at least a portion of the row address. Figure 4 is a block diagram of one of the integrated circuits including a memory array 2〇2. Lines consist of columns of columns and columns organized into columns The integrated circuit 200 includes a column control circuit 220, and the output 2〇8 of the column control circuit 22 is connected to individual word lines of the memory array 202. The column control circuit receives a group M column address signals and one or more various control signals, and may generally include both read and write (ie, stylized) such as column decoder 222, array terminal driver 224, and block selection circuit 226. The integrated circuit 200 further includes a row control circuit 21, and the input/output 206 of the row control circuit 21 is connected to individual bit lines of the memory array 2〇 2. The row control circuit 206 receives A group of row address signals and one or more various control signals, and generally may include, for example, a row decoder 212, an array terminal receiver or driver 214, a block selection circuit 216, and a read/write circuit and Circuits such as /O multiplexers, such as column control circuit 220 and row control circuit 210, may be collectively referred to as control circuits, or as they are connected to respective array terminals of memory 123008.doc 17-1356415 body array 2G2 (Iv) a column termination circuit.

併入—記憶體陣列之積體電路-般將該陣列細分成有時 數目較大的子陣列或區塊。可以將區塊進_步—起分組成 包含(例如)16、32個或一不同數目的區塊之機架。就常用 清况而言,子陣列係一連續的記憶體單元群組,其具有— 般不會因解碼器、驅動器、感測放大器及輸入/輸出電路 而斷開之連續的字元及位域此係基於各種原因中的任 何原因而實行。例如,因字元線及位元線之電阻及電容而 產生的沿該等線橫越之信號延遲(即,RC延遲)在一大陣列 中可能相當明顯。可藉由將一較大陣列細分成一群組較小 的子陣列以使得每一字元線及/或每一位元線之長度減 小’從而減小此等RC延遲。作為另一範例’與存取一群 組記憶體單元相關聯之功率可以指示在一給定的記憶體楯 環期間可以同時存取的記憶體單元數目之一上限。因此, 一較大的記憶體陣列常常係細分成較小的子陣列以減少同 時存取的記憶體單元數目《然而,為便於說明,還可以與 子陣列同義地使用陣列來表示具有一般不因解碼器、驅動 器、感測放大器及輸入/輸出電路而斷開的連續字元及值 元線之一連續的群組記憶體單元。一積體電路可以包括— 或一個以上記憶體陣列。 圖5係說明依據一具體實施例針對在一非揮發性記憶體 系統中之一記憶體單元集合之狀態之電阻分佈之一曲線 圖。圖5所描繪的範例性記憶體系統利用四個電阻狀維, 但可以結合利用不同數目及/或組合的電阻狀態之系統來 123008.doc -18- 1356415 使用依據本揭示内容之具體實施例。以線250來說明該記 憶體單元集合之原始(或初始)狀態。針對此等在製造後處 於其初始狀態的單元之電阻分佈係顯示為基於在一選定電 壓偏壓(例如,2 V)下該單元的傳導電流之一機率函數。該 等單元在製造後之原始狀態係一較高電阻狀態,其在該選 定電壓下具有約1〇-1ϋΑ至1〇-9a之一傳導電流。 該裝置之一跳脫狀態係說明於線252。狀態252對應於該 裝置之一最低電阻狀態。處於狀態252之裝置在圖5所說明 的2 V所施加電壓位準下呈現約1〇-5a之一傳導電流。在一 具體實細例中,可以藉由跳脫一反熔絲將記憶體單元係從 其最尚電阻初始狀態設定為最低電阻跳脫狀態。在其他具 體實施例中,可以將諸如多晶矽或一金屬氧化物之類的一 電阻改變材料之一電阻率切換成將單元設定成此較低電阻 狀癌。在一具體實施例中,跳脫一反熔絲以將裝置設定成 如線252所說明之一跳脫狀態包括向該等單元施加一較大 的正向偏壓,例如約8 V。還可以針對此等操作使用其他 技術、偏壓條件及/或電壓位準^ 線254說明針對該記憶體單元集合在從線252所說明的較 低電阻狀態重新設定為一較高電阻重新設定狀態後之電阻 分佈。處於此重新設定狀態之記憶體單元在所施加的2V 電壓位準下呈現約10、至1〇-、之一傳導電流。該重新設 定狀態與該較高電阻初始狀態相比處於一較低電阻,但在 其他具體實施例t可處於—較高電阻。在—具體實施例 中,如下所述之一反向偏壓重新設定操作可用於將該等記 123008.doc -19- 1356415 .憶體單元之電阻從狀態252重新設定為狀態254。例如,在 一具體實施例中,可以藉由讓該等記憶體單元經受 約-10V至-12 v等級之一反向偏壓來增加每一單元十之一 電阻率改變材料之電阻率。 • 線256說明該等記憶體單元之一設定狀態。可以將記憶 ' 體單元從其較高電阻重新設定狀態254設定為一較低電阻 設定狀態256。處於設定狀態256之記憶體單元在所施加的 • 2V電壓位準下具有約ι〇·6α之-傳導電流。處於設定狀態 256之單儿電阻比該等單元處於跳脫狀態252時之電阻更 南’但比該等單元處於重新設定狀態254時的電阻更低。 在一具體實施例中可以使用約+8 乂之一正向偏壓將一記憶 體單元之電阻從重新設定狀態254切換為設定狀態256。在 其他具體實施例中,可以使用其他偏壓條件及/或電壓位 準來設定該等記憶體單元。 圖5所說明之四個電阻狀態可用於形成各種類型的記憶 • 冑系統。在一具體實施例中,該重新設定狀態轉換係用於 在 次可程式化記憶體陣列中進行一場程式化操作。併 入一電阻改變元件之一記憶體單元係從初始狀態25〇工廠 • 設定為較低電阻狀態252。接著將包括該記憶體單元之記 • 憶、體陣列提供給-終端使用者。藉由在製造期間將該單元 從其較高電阻初始狀態進行設定而獲得之較低電阻狀態對 於該單元之一格式化或未程式化狀態。將該記憶體陣列 提供給電路以依據從與該記憶體單元通信之一終端使用者 或主機裝置接收的資料將選定記憶體單元重新設定為較高 123008.doc •20- 1356415 電阻狀態254。 在另一具體實施例中,該等四個電阻狀態係用於形成一 多狀態記憶體系統。可以依據使用者資料將記憶體單元從 初始狀態250程式化為狀態252、254或256中的任一狀態 (或保留於狀態250)。在一此類具體實施例中,每一單元可 以儲存2位元的資料β在另一具體實施例中可以形成一可 重寫記憶體系統。可以將單元設定為狀態256而接著多次 重新設定回到狀態254以形成一位元的可重寫陣列。還可 以依據具體實施例使用其他類型的記憶體系統,以非限制 性範例而言包括:美國專利申請案第__ 號 (MD-294Y,律師檔案號碼10519·141),其名稱為"多用途 記憶體單元及記憶體陣列”;美國專利申請案 第一-號(MD-296Y律師檔案號碼10519·142),其 名稱為"混合使用記憶體陣列";美國專利申請案 第---號(MD_31〇Y律師檔案號碼10519-149),其 名稱為"具有不同資料狀態之混合使用記憶體陣列";以及 美國專利中請案第-_號(律師檔案號碼M D · 163-υ,其名稱為"使用包含具有可調式電阻的可切換半導 體記憶體元件之一記憶體單元的方法,^ 針對讀取、設定或重新設定㈣而偏壓兩終端記憶體單 =陣列’可以產生程式干擾、讀取干擾以及可能影響功 ’肖耗以及該等讀取及程式化操作的可靠性之高洩漏電 :二例如,當選擇在一陣列内的特定記憶體單元用於特定 呆令時,該等偏壓條件可以引起無意中經由未選定記憶體 123008.doc •21 1356415 早%之&漏電流。儘管在該記憶體陣列内使用引導元件,The integrative-integrated circuit of the memory array generally subdivides the array into a sometimes larger number of sub-arrays or blocks. The blocks can be grouped into blocks containing, for example, 16, 32 or a different number of blocks. In the case of common conditions, a sub-array is a continuous group of memory cells with consecutive characters and bit fields that are generally not broken by decoders, drivers, sense amplifiers, and input/output circuits. This is done for any of a variety of reasons. For example, signal delays (i.e., RC delays) that traverse along the lines due to the resistance and capacitance of the word lines and bit lines can be quite significant in a large array. These RC delays can be reduced by subdividing a larger array into a smaller group of sub-arrays such that the length of each word line and/or each bit line is reduced. As another example, the power associated with accessing a group of memory cells can indicate an upper limit on the number of memory cells that can be simultaneously accessed during a given memory ring. Therefore, a larger memory array is often subdivided into smaller sub-arrays to reduce the number of memory cells accessed simultaneously. However, for convenience of explanation, the array can be used synonymously with the sub-array to indicate that there is a general cause. A continuous group of memory cells separated by a decoder, a driver, a sense amplifier, and an input/output circuit. An integrated circuit can include - or more than one memory array. Figure 5 is a graph illustrating a resistance distribution for a state of a set of memory cells in a non-volatile memory system, in accordance with an embodiment. The exemplary memory system depicted in FIG. 5 utilizes four resistive dimensions, but may be combined with a system utilizing different numbers and/or combinations of resistive states. 123008.doc -18-1356415 uses specific embodiments in accordance with the present disclosure. Line 250 is used to illustrate the original (or initial) state of the set of memory cells. The resistance distribution for the cells in their initial state after fabrication is shown as a function of the probability of the conduction current of the cell at a selected voltage bias (e.g., 2 V). The original state of the cells after fabrication is a relatively high resistance state having a conduction current of about 1 〇 -1 ϋΑ to 1 〇 -9 a at the selected voltage. One of the trip states of the device is illustrated on line 252. State 252 corresponds to one of the lowest resistance states of the device. The device in state 252 exhibits a conduction current of about 1 〇 -5 a at the voltage level of 2 V as illustrated in Figure 5. In a specific example, the memory cell can be set from its initial state of resistance to the lowest resistance trip state by tripping an antifuse. In other embodiments, the resistivity of one of the resistance change materials, such as polysilicon or a metal oxide, can be switched to set the unit to the lower resistance cancer. In one embodiment, tripping an antifuse to set the device to one of the trip states as illustrated by line 252 includes applying a greater forward bias to the cells, such as about 8 volts. Other techniques, bias conditions, and/or voltage leveling lines 254 may also be used for such operations to indicate that the lower resistance state illustrated by line 252 is reset to a higher resistance reset state for the set of memory cells. After the resistance distribution. The memory cell in this reset state exhibits a conduction current of about 10, to 1 〇 - at the applied 2V voltage level. The reset state is at a lower resistance than the higher resistance initial state, but may be at a higher resistance in other embodiments. In a particular embodiment, a reverse bias reset operation as described below can be used to reset the resistance of the memory cell from state 252 to state 254. For example, in one embodiment, the resistivity of one of the tenth resistivity changing materials can be increased by subjecting the memory cells to one of a reverse bias of about -10V to -12v. • Line 256 indicates one of the memory unit setting states. The memory 'body unit can be set from its higher resistance reset state 254 to a lower resistance set state 256. The memory cell in the set state 256 has a conduction current of about ι 〇 6α at the applied voltage level of 2V. The individual resistances in the set state 256 are more south than the resistance of the cells in the tripped state 252 but lower than the resistance of the cells in the reset state 254. In one embodiment, a resistance of a memory cell can be switched from a reset state 254 to a set state 256 using a forward bias of about +8 乂. In other embodiments, other bias conditions and/or voltage levels can be used to set the memory cells. The four resistance states illustrated in Figure 5 can be used to form various types of memory systems. In one embodiment, the reset state transition is used to perform a stylized operation in the secondary programmable memory array. One of the memory change cells is connected to the memory cell from the initial state 25 〇 factory • set to the lower resistance state 252. The memory and body array including the memory unit are then provided to the end user. The lower resistance state obtained by setting the cell from its higher resistance initial state during manufacture is for a formatted or unprogrammed state of the cell. The memory array is provided to circuitry to reset the selected memory unit to a higher resistance state 254 in accordance with data received from an end user or host device in communication with the memory unit. In another embodiment, the four resistance states are used to form a multi-state memory system. The memory unit can be programmed from the initial state 250 to any of the states 252, 254, or 256 (or retained in state 250) based on the user profile. In one such embodiment, each unit can store a 2-bit data. In another embodiment, a rewritable memory system can be formed. The cell can be set to state 256 and then reset multiple times back to state 254 to form a one-bit rewritable array. Other types of memory systems may also be used in accordance with specific embodiments, including, by way of non-limiting example: US Patent Application No. __ (MD-294Y, attorney docket number 10519.141), entitled "" "Usage memory unit and memory array"; US Patent Application No. 1 (MD-296Y lawyer file number 10519·142), whose name is "mixed memory array"; US patent application No.-- - (MD_31〇Y lawyer file number 10519-149), whose name is "mixed memory array with different data status"; and US patent application number -_ (lawyer file number MD · 163- υ, the name is " using a memory cell containing one of the switchable semiconductor memory elements with adjustable resistors, ^ for reading, setting or resetting (4) and biasing the two terminal memory banks = array 'can Generating program disturb, read disturb, and high leakage power that may affect the power consumption and the reliability of such read and program operations: for example, when selecting a particular memory bank within an array When stay for a particular order, these conditions may cause unintended bias via the unselected memory 123008.doc • 21 1356415 of earlier% & Although the leakage current in the memory array guide element.

.-線至字元線組態之條件下,藉由向-選定的位元線施加-較大電壓而向一選定的字元線施加一低電壓或接地條件來 • 產生一較大的正偏壓6未選定的位元線可處於一較小正偏 壓而未選定的字元線處於 該記憶體陣列之條件下, 選定字元線或位元綠夕主 一較大正偏壓。在以此方式偏壓 在某些情況下可能存在經由沿該 &疋子元線或位元線之半選定的單元以及經由沿一未選定 的字元線及位元線之未選定單元的不可接受位準之電流洩 漏。同樣,在一正向偏壓設定操作(可用於程式化一記憶 體單元陣列)期間可能發生不可接受位準之洩漏電流。經 由未選定單元之較小洩漏電流之累積效應限制在一時間可 以操作的選定記憶體單元之數目。 頃發現,可以向具有電阻改變元件之記憶體單元施加一 反向偏壓以改變該單元之一可偵測的電阻。例如,可以藉 由讓諸如上述金屬氧化物、多晶矽之類材料經受一產生橫 跨該材料之一反向偏壓的電壓脈衝,來將此類材料從一較 低電阻率狀態重新設定為一較高電阻率狀態。在一具體實 &例中在一重新设定操作期間施加一反向偏壓以使得經 由該記憶體陣列之洩漏電流最小化。在某些實施方案中, 可以將一本質上為零之偏壓提供給特定的未選定記憶體單 123008.doc -22· 元。由於該等4啦 1 /属電流係最小化,因此可以選擇更大數目 的記憶體單元用认去* β於重新設定操作。此藉由減小程式化及/ 或抹除時間而g 敌供刼作說明書之一改良。此外,該等低洩 漏電流可以藉由 土 田使侍裝置性能正規化於預期位準内來促進Under the condition of line-to-character line configuration, a low voltage or ground condition is applied to a selected word line by applying a -large voltage to the selected bit line to generate a larger positive The unselected bit line of bias voltage 6 can be at a relatively small positive bias and the unselected word line is under the condition of the memory array, with the selected word line or bit green being a large positive bias. Bias in this manner may, in some cases, be present via a cell selected along the half of the < 疋 元 线 or bit line and via unselected cells along an unselected word line and bit line Unacceptable level current leakage. Similarly, an unacceptable level of leakage current may occur during a forward bias setting operation (which can be used to program a memory cell array). The number of selected memory cells that are operational at a time is limited by the cumulative effect of the smaller leakage current of the unselected cells. It has been found that a reverse bias can be applied to a memory cell having a resistance changing element to change the detectable resistance of one of the cells. For example, such materials can be reset from a lower resistivity state to a lower voltage by subjecting a material such as the above-described metal oxide, polysilicon, to a voltage pulse that produces a reverse bias across one of the materials. High resistivity state. In a specific embodiment, a reverse bias is applied during a reset operation to minimize leakage current through the memory array. In some embodiments, an essentially zero bias voltage can be provided to a particular unselected memory bank 123008.doc -22. Since these 4/1 current systems are minimized, a larger number of memory cells can be selected to recognize the *β in the reset operation. This is improved by reducing the stylization and/or erasing time. In addition, these low leakage currents can be promoted by normalizing the performance of the service unit to the expected level.

Λ的操作。名稱為"併入可逆極性的字元線及位元線 解碼器之祐叙-/1L 散動疋件記憶體陣列••之美國專利申請案 第 0 -一~ --~~~~號(MD-273律師檔案號碼023-0048)揭示可 用於使得經由未選定及半選定的記憶體單元之洩漏電流最 小化之一反向偏壓操作。 圖6係依據一具體實施例在一反向偏壓操作期間一記憶 體陣列之一部分之一電路圖。該等反向偏壓條件可用於將 記憶體單元設定為一低電阻狀態或將記憶體單元重新設定 為一高電阻狀態。下面可為方便起見而對一重新設定操作 作一特定參考’但此並不表示對應用所揭示的偏壓及技術 之一限制。一或多個選定字元線處於一正偏壓而一或多個 選定位元線處於一負偏壓β例如,該等選定字元線可以接 收+1/2 VRR之一重新設定電壓信號Vwr,而透過重新設定 電壓信號VBR以約-1/2 VRR之一負偏壓驅動該等選定位元 線* VRR係重新設定該記憶體所需要的反向偏壓(或負電 壓)數量並且可以隨具體實施例而變化。在一範例性實施 方案中,VRR約為12V而使得該等選定字元線接收+6V而 該等選定位元線接收-6V來產生12 V反向偏壓位準。未選 定的字元線及位元線皆係接地。用於該等選定記憶體單元 (表示為S)之引導元件受到反向偏壓,而讓一反向電流穿 123008.doc •23· 1356415Awkward operation. The name is " incorporated into the reversible polarity of the word line and the bit line decoder of the Youxu - / 1L scatter device memory array • • US patent application No. 0 -1 ~ --~~~~ (MD-273 attorney docket number 023-0048) discloses a reverse bias operation that can be used to minimize leakage current through unselected and semi-selected memory cells. Figure 6 is a circuit diagram of a portion of a memory array during a reverse bias operation in accordance with an embodiment. These reverse bias conditions can be used to set the memory cell to a low resistance state or to reset the memory cell to a high resistance state. A specific reference to a reset operation may be made below for convenience', but this does not indicate one of the biases and techniques disclosed in the application. One or more selected word lines are at a positive bias and one or more selected bit lines are at a negative bias voltage. For example, the selected word line can receive one of +1/2 VRR to reset the voltage signal Vwr And driving the selected positioning element line by resetting the voltage signal VBR with a negative bias of about -1/2 VRR. * VRR is the number of reverse bias (or negative voltage) required to reset the memory and can It varies depending on the specific embodiment. In an exemplary embodiment, the VRR is about 12V such that the selected word lines receive +6V and the selected positioning lines receive -6V to produce a 12V reverse bias level. Unselected word lines and bit lines are grounded. The guiding elements for the selected memory cells (denoted S) are reverse biased, allowing a reverse current to pass through 123008.doc • 23· 1356415

訊’請見美國專利申請案第 * — _ 師標案號碼023-0048),其名稱為"併入 及位元線解碼器之被動元件記憶體陣列 過用於該等選定單元之電阻改變材料。在此反向偏壓條件 下’該電阻改變材料從一第一電阻狀態切換到一第二電阻 狀態°圖6所說明之偏壓條件有利地提供針對該等未選定 單元(表示為U)之一零偏壓條件。因此,可以獲得在程式 操作期間經由未選定與半選定的記憶體單元之低茂漏電 流。?表示沿一選定位元線之半選定的記憶體單元,而η表 不沿一選定字元線之半選定的記憶體單元。此外,針對該 等選定陣列線之+/· 1 /2 VRR的選定位準在該驅動器電路上 提供較小的負載便可產生用於該反向偏壓重新設定操作的 電壓位準之需要。藉由橫跨該等陣列線使用正與負電壓位 準來分割該等偏壓,該驅動器電路僅需要產生在某些實施 方案中所需要的總電壓位準之一半。 還可以使用其他偏壓條件來反向偏壓該等選定記憶體單 7L以進行一重新設定操作。例如,在一具體實施例中,可 以向接地的選定字元線及選定位元線施加一正電壓偏壓 (例如’ vRR)。未選定的字元及位元線各可以接收 + 1/2 VRR。此偏壓情形還將向選定的記憶體單元提供一反 向偏壓,該反向偏壓可用於在一設定操作後將該等單元重 新設定回到較高電阻狀態。關於反向偏壓操作之更多資 -_號(MD-273 律 可逆極性的字元線 有可能在某些記憶體實施方 定狀態的記憶體單元陣列之一 案中,針對一處於一重新設 電阻分佈可能過寬或者包括 123008.doc •24· 1356415 . 與所需範圍相比之一更大範圍的電阻》例如,針對處於圖 5之線252所示重新設定狀態中的記憶體單元之電阻分佈包 括一相對較大範圍的電阻。某些記憶體單元在所施加的電 • 壓位準下呈現約ι〇·8α之一傳導電流,而其他處於相同實 體狀態之記憶體單元呈現約1 〇-7a之一較大傳導電流。此 ' 等傳導電流證明在皆希望處於相同重新設定實體狀態的單 . 元之間存在一較大的電阻差異。重要的係,深度重新設定 φ 為一極高電阻的記憶體單元(較接近一 10-8A之傳導電流的 該些記憶體單元)與處於原始或初始狀態250的記憶體單元 並無較寬之分離。在某些實施方案中,此等兩個實體狀態 之間缺少限度可能會在讀取及寫入操作期間證明有問題。 較大範圍的電阻可能導致對儲存於該等記憶體單元中的資 料之錯誤讀數。例如,深度重新設定為一極高電阻之單元 在施加一讀取參考電壓之情況下可能不會充分傳導,從而 指不其處於重新設定實體狀態。可能會誤認為此等單元處 • 力初始或原始狀態250。在諸如程式化之類的其他操作期 間,可忐在一驗證步驟期間不正確地讀取此等單元,從而 導致錯誤施加可能不需要的額外程式化電壓。 • 依據—具體實施例,-調整操作係用於或併人-重新設 ▼ (操作,以針對處於-重新設狀態之記憶體單元提供一 較J的電阻刀佈。可以在記憶體單元重新設定後向其施加 一調整偏壓來朝與該等重新設定單S相關聯之—所需或目 =準偏移回深度重新設定的單元。在重新設定後具有比 1位準更大的電阻之記憶體單元可以使其電阻降低以 123008.doc -25- 1356415 與處於該重新设疋狀態之其他單元更相近地匹配。 在具體實施例中使用一自我限制反向偏壓調整操作。 員發現,向記憶體單元施加一小反向偏壓可以增加其電 阻,而不像在針對該重新設定操作施加一較大反向偏壓之 情況下一樣減小其電阻。 圖5說明將一反向偏壓調整操作用於一反向偏壓重新設 疋操作之效果。線258表示處於該重新設定狀態254的記憶 體單兀之一目標電阻(或所需平均電阻不同的電阻材料 可以依據其個別特性提供不同的目標電阻位準。針對該重 新設定狀態之目標電阻可由傾向於指示該材料之一在最自 然情況下的重新設定位準之此等特性決定。特定數目之單 元使其電阻低於圖5中的目標位準,而其他單元使其電阻 高於該目標位準。施加比該反向偏壓重新設定位準ν⑽更 低之一數量的反向偏壓,從而導致具有高於所需位準258 之一電阻的記憶體單元偏移至一較低電阻。頃發現,相對 較小數量的反向偏壓會以一自我限制的方式減小電阻改變 材料之電阻。具有一處於或高於一特定位準的電阻之單元 在經受一較小反向偏壓時會令其電阻增加。但是,低於該 特定電阻位準之單元不受該反向偏壓之影響。在一實施方 案中’已顯示針對該反向偏壓之一範圍内的位準對單元電 阻產生類似的影響。例如,在從狀態252至狀態254之一重 新设定操作期間’約10V至12V之一反向偏壓可以將一選 定記憶體單元之電阻增加約如圖5所示之數量。等於在該 重新設定操作期間所施加的反向偏壓約5〇%至6〇0/〇(例如, 123008.doc -26- 1356415 如,6 V至7 V)之一反向偏壓可用於增加該等記憶體單元 中電阻高於一特定位準之特定記憶體單元之電阻。 在該調整操作中的電阻增加具有自我限制性,因為在達 到特疋的電阻數董時該等單元停止減小電阻。此外,僅且 有尚於臨界位準之一電阻的該些單元受該調整操作之影 響。已經處於適當電阻範圍之單元不會經歷一電阻偏移, 即使其經受該反向偏壓調整電壓亦如此。因此,如圖5所 示具有一低於該目標位準258的電阻之該些單元不受針對 該調整操作的反向偏壓之影響。 圖7係說明依據一具體實施例針對一非揮發性記憶體系 統的重新設定狀態之一反向偏壓調整操作之一電路圖。以 一正電壓位準+vTT將一調整電壓信號Vwt提供給一或多個 選定的字元線以施加一用於該調整操作之反向偏壓。在一 具體實施例中,VTT係在調整期間向該等選定單元施加的 反向偏壓數量。在圖7所示偏壓情形中,選定的位元線係 接地,因此以+VTT將完全數量的調整偏壓施加於選定的字 兀線,以產生與此數量相等之一橫跨每一選定單元的反向 偏壓。在一具體實施例中,調整反向偏壓之數量Vtt等於 VRR的總反向重新設定偏壓位準之約6〇%。繼續結合以上 範例,若該反向偏壓重新設定電位等於約12 V,則該反向 偏壓調整位準VTT可約為6乂或7乂。因此,在一具體實施 例中向該等選定字元線施加+6 V或+7 V。 依據本揭示内容之一或多項具體實施例中可以針對一調 整操作使用其他偏壓條件。例如,在一具體實施例中,向 123008.doc -27· ^56415 .該等選定的字元線施加+1/2Vtt之一電壓而向該等選定的 位元線施加-1/2Vtt之一電麼。橫跨每—單元所產生的反 向偏壓與先前所述之(Vtt)相同,但是,已橫跨不同類型的 陣列線而分佈個別偏壓。 .· 由於僅該些需要電阻偏移之單元受該反向偏壓調整之影 •-帛’因此該操作與資料無“可以係針對高頻寬應用來實 施。在-具體實施例中使用一高頻寬操作來同時調整一較 • A群組的記憶體單元。在一範例中,一次性針對該調整操 作選擇-記憶體單元區塊之各個位元線。選擇來自該區塊 之一字元線並針對每一字元線重複該操作。此外,可以在 該調整操作期間同時選擇在一陣列内的多個區塊,但在一 具,實施例中選擇一單一區塊。利用此技術,一次性調整 大量單元以不對該重新設定操作之頻寬產生不合理的影 響。在其他具體實施例中,可使用其他群組。在—具體實 施例中,可以選擇來自橫跨該陣列的多個 ❹ •位元線及一或多個字元線。 &多個 圖8係依據一具體實施例用於重新設定一記憶體單元之 方法之一流程圖,其併入一反向偏壓調整操作。在步驟 ' 中用於5己憶體單元陣列之列與行控制電路接收指定 、 帛於重新設定的選定單元之位址及控制資m。例如,:一 可重寫陣列中1以接收針對該等選定單元之一抹除請求, *在-多狀態陣列中可以接收—寫人請求。収該寫入或 抹除凊求可包括如圖所示重新設定該等選定單元。 在步驟302中,向重新設定的單元施加一或多個重新設 123008.d〇< •28· 1356415 定電壓脈衝信號。 元線上使用一電壓 新設定偏壓。例如 vWR可以包括一正電壓脈衝(例如, 壓信號Vbr包括一負電壓脈衝(例如 可以藉由如上所述在該等選定字元及位 組合來橫跨該等選定單元施加該反向重 ’在-具體實施例t該字元線電壓信號 該等選定單元。 +1 /2 vrr)而該位元線電 ’ 4/2 VRR)以反向偏壓 在步驟304令,若仍有欲重新設定之記憶體單元,則該 方法返回施加-(或多個)額外脈衝,或者,若所有欲重新 設定之單元皆已接收到一會翻·讯々恭阳〆 董新《ς疋電壓脈衝則繼續到步驟 3〇6。在-具體實施例中,可以讓該陣列之較小部分經受 個別的ί新設定脈衝以使得、經由半選定或未選定翠元之线 漏電流最小化。例如,在一實施方案中,步驟3〇2與3〇4之 每一迭代可以向來自該記憶體内的許多機架(例如,“至 2024個機架或更多)之每—機架之—(或者在其他情況下的 一個以上)區塊施加一脈衝直至每一選定位元線皆已接收 到一重新設定電壓脈衝。在其他具體實施例中,可以在步 驟302中選擇其他數目之位元線及/或字元線。名稱為"併 入用於記憶體陣列區塊選擇的兩個資料匯流排之記憶體陣 列”之美國專利申請案第--號(MD-303律師檔 案號碼023-0052)及名稱為"用於區塊可選擇的記憶體陣列 之階層式位元線偏壓匯流排"之美國專利申請案 第-號(MD-307律師檔案號碼023-0053)說明用 於對一記憶體陣列(例如陣列302)進行增加的平行存取之技 術。 123008.doc •29- 1356415'Please see US Patent Application No.* — _ Teacher's Standard No. 023-0048, whose name is "Incorporated and Bit Line Decoder's Passive Component Memory Array Used for Resistance Change of These Selected Units material. Under this reverse bias condition, the resistance change material switches from a first resistance state to a second resistance state. The bias conditions illustrated in FIG. 6 are advantageously provided for the unselected cells (denoted as U). A zero bias condition. Thus, low leakage current through unselected and semi-selected memory cells during program operation can be obtained. ? Represents a memory cell selected along half of a selected bit line, and n represents a selected memory cell along a half of a selected word line. In addition, the selection of +/· 1 /2 VRR for the selected array lines requires a smaller load on the driver circuit to create the voltage level for the reverse bias reset operation. By dividing the bias voltages across the array lines using positive and negative voltage levels, the driver circuit only needs to produce one-half of the total voltage level required in certain embodiments. Other bias conditions can also be used to reverse bias the selected memory banks 7L for a reset operation. For example, in one embodiment, a positive voltage bias (e.g., 'vRR) can be applied to selected ground and selected bit lines of ground. Unselected characters and bit lines can each receive + 1/2 VRR. This biasing condition will also provide a reverse bias to the selected memory cells that can be used to reset the cells back to a higher resistance state after a set operation. Regarding the reverse bias operation, more resources - _ (MD-273 law reversible polarity character line may be in a memory cell array in some memory implementation state, for one in a reset The resistance distribution may be too wide or include 123008.doc • 24· 1356415 . A larger range of resistance than the desired range. For example, the resistance of the memory cell in the reset state shown in line 252 of Figure 5 The distribution includes a relatively large range of resistance. Some memory cells exhibit a conduction current of about ι 〇 8α at the applied voltage level, while other memory cells in the same physical state exhibit about 1 〇. One of the large conduction currents of -7a. This 'constant conduction current proves that there is a large difference in resistance between the single elements that are expected to be in the same reset physical state. The important system is that the depth is reset to a very high The memory cells of the resistor (the memory cells that are closer to a 10-8A conduction current) do not have a wider separation from the memory cells in the original or initial state 250. In some embodiments The lack of limits between these two entity states may prove problematic during read and write operations. A larger range of resistance may result in erroneous readings of data stored in the memory cells. For example, depth A unit that is reset to a very high resistance may not conduct sufficiently when a read reference voltage is applied, thereby indicating that it is in a reset physical state. It may be mistaken for the unit's initial or original state. During other operations, such as stylization, these cells may be incorrectly read during a verification step, resulting in an erroneous application of an additional stylized voltage that may not be needed. • According to a particular embodiment, - adjustment The operation system is used for or the person-reset ▼ (operation to provide a more J resistance knife for the memory unit in the -reset state. An adjustment bias can be applied to the memory unit after resetting it. Units that are associated with the re-settable S—required or target=quad offset back to depth. After resetting, have more than 1 level The memory cell of the resistor can have its resistance reduced to match more closely with other cells in the reset state at 123008.doc -25 - 1356415. A self-limiting reverse bias adjustment operation is used in the specific embodiment. It has been found that applying a small reverse bias to the memory cell increases its resistance without reducing its resistance as if a large reverse bias was applied to the reset operation. Figure 5 illustrates a The reverse bias adjustment operation is used for the effect of a reverse bias reset operation. Line 258 represents one of the target resistors of the memory unit in the reset state 254 (or a resistor material having a different average resistance) may be used. The individual characteristics provide different target resistance levels. The target resistance for this reset state can be determined by such characteristics that tend to indicate a resetting level of one of the materials in the most natural case. A certain number of cells have their resistance lower than the target level in Figure 5, while other cells have their resistance above the target level. A reverse bias is applied that is lower than the reverse bias reset level ν(10), resulting in a memory cell having a resistance higher than the desired level 258 being shifted to a lower resistance. It has been found that a relatively small number of reverse biases reduces the resistance of the material in a self-limiting manner. A cell having a resistance at or above a particular level will increase its resistance when subjected to a small reverse bias. However, cells below this particular resistance level are not affected by this reverse bias. In an embodiment, it has been shown that a level in the range of one of the reverse biases has a similar effect on the cell resistance. For example, a reverse bias of about 10V to 12V during a reset operation from state 252 to state 254 can increase the resistance of a selected memory cell by an amount as shown in FIG. A reverse bias equal to one of the reverse bias applied during the reset operation of about 5〇% to 6〇0/〇 (eg, 123008.doc -26-1356415, eg, 6 V to 7 V) can be used Increasing the resistance of a particular memory cell in the memory cell that has a higher resistance than a particular level. The increase in resistance in this adjustment operation is self-limiting because the cells stop reducing the resistance when the number of resistors is reached. In addition, only those cells that are still at a critical level of resistance are affected by the adjustment operation. A cell that is already in the proper resistance range does not experience a resistance offset, even if it is subjected to the reverse bias regulation voltage. Thus, the cells having a resistance below the target level 258 as shown in Figure 5 are unaffected by the reverse bias for the adjustment operation. Figure 7 is a circuit diagram showing one of the reverse bias adjustment operations for a non-volatile memory system reset state in accordance with an embodiment. An adjusted voltage signal Vwt is supplied to one or more selected word lines at a positive voltage level + vTT to apply a reverse bias for the adjustment operation. In a specific embodiment, the VTT is the amount of reverse bias applied to the selected cells during the adjustment. In the biasing case shown in Figure 7, the selected bit line is grounded, thus applying a full amount of adjustment bias to the selected word line at +VTT to produce one of the same number across each selected Reverse bias of the unit. In one embodiment, the number of adjusted reverse bias voltages Vtt is equal to about 6% of the total reverse reset bias level of VRR. Continuing with the above example, if the reverse bias reset potential is equal to about 12 V, the reverse bias adjustment level VTT can be about 6 or 7 乂. Thus, in a particular embodiment, +6 V or +7 V is applied to the selected word lines. Other bias conditions can be used for an adjustment operation in accordance with one or more embodiments of the present disclosure. For example, in one embodiment, a voltage of +1/2 Vtt is applied to the selected word line and one of -1/2 Vtt is applied to the selected bit line to 123008.doc -27. What about electricity? The reverse bias generated across each cell is the same as previously described (Vtt), however, individual biases have been distributed across different types of array lines. Since only those units requiring resistance offset are affected by the reverse bias adjustment, the operation and the data are not "can be implemented for high frequency wide applications. In a specific embodiment, a high frequency operation is used. To adjust the memory cells of a group A at the same time. In an example, each bit line of the memory cell block is selected for the adjustment operation at one time. Select one of the word lines from the block and target The operation is repeated for each word line. In addition, multiple blocks within an array can be simultaneously selected during the adjustment operation, but in a single embodiment, a single block is selected. With this technique, one-time adjustment A large number of units may not have an unreasonable effect on the bandwidth of the reset operation. In other embodiments, other groups may be used. In a particular embodiment, multiple locations from across the array may be selected. a line and one or more word lines. & Figure 8 is a flow diagram of a method for resetting a memory unit in accordance with an embodiment incorporating a reverse bias adjustment operation In step ', the column and row control circuit for the array of 5 memory cells receives the address and control element of the selected unit that is specified, and is reset. For example, a rewritable array 1 is received for the One of the selected cells erases the request, * can receive - write the request in the multi-state array. Receiving the write or erase request can include resetting the selected cells as shown. In step 302, The reset unit applies one or more reset 123008.d〇<28. 1356415 constant voltage pulse signals. A new voltage is used to set the bias voltage on the line. For example, vWR can include a positive voltage pulse (eg, voltage signal Vbr) Including a negative voltage pulse (eg, the reverse weight can be applied across the selected cells by the selected characters and bit combinations as described above) - in particular embodiment t, the word line voltage signal is selected Unit +1 /2 vrr) and the bit line '4/2 VRR' is reverse biased in step 304. If there is still a memory unit to be reset, the method returns to apply - (or more Extra pulse, or, if The unit to be reset has received a message. The signal voltage continues to step 3〇6. In a specific embodiment, the smaller part of the array can be subjected to individual The pulse is set to minimize leakage current through the line of semi-selected or unselected Cuiyuan. For example, in one embodiment, each iteration of steps 3〇2 and 3〇4 can be from the memory. Many racks (for example, "to 2024 racks or more" - each rack - (or in more than one other) blocks apply a pulse until each selected location line has been received A reset voltage pulse is reset. In other embodiments, other numbers of bit lines and/or word lines may be selected in step 302. U.S. Patent Application Serial No. (MD-303 attorney docket number 023-0052) entitled "Incorporating Memory Arrays for Two Data Bus Arrays for Memory Array Block Selection" and entitled "" U.S. Patent Application Serial No. (MD-307 attorney docket number 023-0053) for a block selectable memory array is described for use with a memory array ( For example, array 302) performs techniques for increased parallel access. 123008.doc • 29- 1356415

在向每一選定記憶體單元施加一反向偏壓電壓脈衝後, 藉由在步驟306中讀回該等裝置之電阻狀態來執行一驗證 操作。步驟306可以包括決定一記憶體單元之電阻是否已 增加到處於或高於一最小臨界電阻。在步驟3〇6中可以使 用包括感測一選定單元在一組參考偏壓條件下的電流或電 壓在内之各種技術來決定是否充分地重新設定一記憶體單 70。名稱為"用以讀取一多層級被動元件記憶體單元陣列After applying a reverse bias voltage pulse to each selected memory cell, a verify operation is performed by reading back the resistance states of the devices in step 306. Step 306 can include determining whether the resistance of a memory cell has increased to be at or above a minimum critical resistance. Various techniques, including sensing the current or voltage of a selected cell under a set of reference bias conditions, can be used in step 3-6 to determine whether to fully reset a memory bank 70. The name is " used to read a multi-level passive component memory cell array

之設備"之美國專利申請案第__ 師檔案號碼023-0049)說明可用於讓 --—_號(MD-274律 一讀回操作驗證該重新 設定狀態之合適的讀取技術。在步驟3〇8中,該重新設定 操作針對具有_未充分重新設定的記憶體單元之該些位元 線而分支進行。在選用步驟310中向利用該等字元及/或位The device "US Patent Application No. __ Division File Number 023-0049) describes the appropriate reading technique that can be used to have the ---_ number (MD-274 law read back operation verify the reset state). In step 3-8, the resetting operation is performed for the bit lines having the memory cells that are not fully reset. In the optional step 310, the characters and/or bits are utilized.

凡線電壓信號VWR&amp; VBR的該些記憶體單元施加一重試脈 衝。在-具體實施例中向具有一未充分重新設定的記憶體 單元之各個位元線同時施加該脈衝。可以使用該等位元線 之各種群組而施加個別脈衝。在―具體實施例中,不施加 任何重試脈衝。若使用—重試脈衝,則在步驟3以中針對 。等單元執行驗迅操作。若在步驟3 &quot;中決定未充分重 新》又定丄歷該重試操作之單元,則在步驟中使用錯誤 校正碼來f理該等早元或以冗餘的記憶體單元來加以替換 由於在步驟302及314中施加的重新設定電壓,因此可能 已如上所述將特定單元深度重新設定為—高電阻狀態。針 對I重U狀態之—更緊密的電阻分佈將在狀態之間提 123008.doc 1356415 .供-更大的限度,而因此提供一更可靠的裝置。因此在 步驟308及3U中成功驗證單元後或在步驟316中處置未重 新設定的任何單元後,在步驟3㈣針對欲重新設定的翠 疋執行一調整操作。 t . 在—具體實施例中針對經歷該重新設定操作的各個單元 .- ㈣執行步驟318。由於該操作係自我限制性,因此還可 • 卩讓未完全或深度重新設定之單元經受該調整偏壓而不會 • 有負面影響。此等單元不會經歷進-步的電阻偏移。此 外,調整至一較低電阻的該些單元在其到達與該調整偏壓 相關聯之一位準時將停止其電阻變化。 如上所述,在一具體實施例中向該等單元施加一反向偏 壓調整電壓VTT。在一具體實施例中施加一較小數量的反 向偏壓以減小在一調整操作期間的電阻而非增加在一重新 設定操作期間的電阻。在向每一單元施加該反向偏壓調整 電壓VTT後,在步驟320中完成該重新設定操作。可以依據 驗具體實施例對圖8所示方法作諸多變化。例如,在針對所 有重新設定的單元完成步驟302及3 04之後而在步驟306中 進行驗證之前,可以併入步驟318中的調整操作。 ‘ 圖9A說明亦可用於施加圖6之反向偏壓重新設定條件之 列控制電路220之一部分之一具體實施例。列解碼器422在 該重新設定脈衝期間對應於一選定字元線並向 NMOS/PMOS字元線驅動器電路(例如,圖4中的224)輸出 接地。針對該驅動器電路之接地輸入開啟上部PM〇s裝置 402及404。該接地輸入使得該驅動器電路分別將反向源極 12300S.doc •31· 1356415 選擇匯流排信號VWR及GND傳遞至該選定字元線及與解碼 器422相關聯之每半選定字元線。對應於一未選定字元線 的每一列解碼器423向其個別驅動器電路輸出VwR,如圖 9B所示。VWR之正偏壓開啟該等未選定字元線之驅動器電 路之NMOS裝置416及418。據此,選擇源極選擇匯流排位 準(兩者皆為GND)並在每一對應的未選定字元線上加以驅 動。在一具體實施例中’如前所述,該字元線反向重新設 定電壓VWR等於約+1/2 VRR。VWR還可以提供其他電壓位 準。例如’可以針對該重新設定操作提供如下所述具有一 傾斜脈衝(例如,開始K+1/2Vrr而然後增加)之一或多個 反向重新設定電壓脈衝。 圖10A及10B係可用於施加針對該反向重新設定操作的 偏壓條件之行控制電路210之一部分之電路圖。行解碼器 5 12控制一選定的位元線驅動器來提供選定的位元線電壓 脈衝VBR。在一具體實施例中,vBR提供_1/2 Vrr之一電壓 脈衝。行解碼器512可以係橫跨多個位元線驅動器(例如, 24個)而共享而且還在即將施加該重新設定脈衝之前將該 等半選定的位元線連接至接地偏壓。在施加該脈衝期間, 該等半選定的位元線浮動於接地附近。半選定的位元線上 大量未選定單元提供使得半選定的位元線保持為接近接地 之一洩漏電流《在一具體實施例中,在一重新設定操作期 間與該選定位元線共享一行解碼器之記憶體單元可以係半 選定的記憶體單元《例如,在該重新設定操作期間該等單 兀可以連接至該選定字元線。該選定行解碼器512將gnd 123008.doc -32- 1356415 輸出至用於該行解碼器的驅動器電路之輸入。在該驅動器 電路之NMOS/PMOS對處的GND輸入將開啟下部NMOS裝 置506。將該反向源極選擇匯流排位準VBR傳遞至該選定位 元線。未選定的列解碼器513向其個別驅動器電路之閘極 提供VBR,從而選擇在每一驅動器對的頂部之PMOS裝置。 將源極選擇匯流排信號位準(皆處於GND)提供給對應於解 碼器513的每一未選定字元線。 圖11A說明可用於施加圖7之反向偏壓調整條件之列控制 電路220之一部分之一具體實施例。選定的列解碼器422向 該NMOS/PMOS字元線驅動器電路輸出一字元線調整電壓 脈衝VWT。Vwt係一正電壓並開啟下部NMOS裝置406及 408。該驅動器電路將該源極選擇匯流排信號VWT傳遞至該 等選定的字元線。每一未選定的列解碼器423向其個別的 驅動器電路輸出GND,如圖11B所示。開啟上部PMOS裝置 412及414,並將來自該反向源極選擇匯流排之GND信號傳 遞給每一未選定的字元線。 圖10A係可用於施加針對該反向偏壓調整操作的偏壓條 件之行控制電路210之一部分之一電路圖。選定的行解碼 器5 12控制一選定的位元線驅動器,開啟該等上部PMOS裝 置並將GND傳遞給選定用於該重新設定操作之每一位元 線。該調整操作與資料無關,而在該操作之該自我限制性 質之條件下可以一次性選擇大量單元。因此,在一選定區 塊中的每一位元線接收該GND位準信號以施加該反向偏壓 調整電壓位準。 123008.doc -33- 1356415 與圖9A至10B所示列與行解碼器相關聯之驅動器電路可 以包括形成用於額外字元線及位元線的驅動器選擇電路之 ’額外的NMOS/PMOS裝置對。例如,用於該列控制電路之 每一驅動器集合可以包括16個NM〇s/pM〇s對該等16個 . NM〇S/PMOS對係連接至該陣列之16個不同的字元線且係 • 與一單一列解碼器相關聯。用於該行控制電路之每一驅動 ‘ 器集合可以包括12個NMOS/PMOS對,該等12個 φ NMOS/PMOS對得、連接至該陣列之12個不同的字元線且係 與一單一的行解碼器相關聯。此組態係範例性的,而可以 依據具體實施例使用其他組態。但是,如上所述之此一組 態可以有利地在每一記憶體層級提供該等陣列線之一合理 的扇出。其還促進以與該驅動器電路相關聯的陣列線相同 之間距來放置該驅動器電路。除適應大量陣列線外,此配 置可以避免各種驅動器電壓位準向該陣列之長距傳輸而因 此提高功率效能。關於用以控制一記憶體陣列的驅動器及 • 控制電路之更多細節(在一具體實施例中包括適用於實施 與資料相關的對選定與未選定字元及/或位元線之選擇之 一雙重匯流排架構)’可參見R0y E. Scheuerlein及Luca G. • Fasoli的美國專利申請案第_一_____號(MD_295律 師檔案號碼023-0051),其名稱為&quot;用於將讀取/寫入電路耦 ° 合至一記憶體陣列之與資料相關的雙重匯流排”。 裝置特徵之差異可以影響在適才說明的反向重新設定操 作期間記憶體陣列202内的個別記憶體單元之特性。記情 體單元可以具有因該製程而產生之不同尺寸。裝置之間在 123008.doc •34- 比 6415The memory cells of the line voltage signals VWR &amp; VBR apply a retry pulse. In a particular embodiment, the pulse is applied simultaneously to individual bit lines having a memory unit that is not sufficiently reset. Individual pulses can be applied using various groups of the bit lines. In a particular embodiment, no retry pulses are applied. If the - retry pulse is used, it is targeted in step 3. The unit performs the verification operation. If it is determined in step 3 &quot; that the unit is not fully re-established, the error correction code is used in the step to replace the early elements or replace them with redundant memory units. The reset voltages applied in steps 302 and 314 may therefore have been reset to a high resistance state as described above. The tighter resistance distribution for the I-heavy U state will provide a greater limit between the states and thus provide a more reliable device. Therefore, after successfully verifying the unit in steps 308 and 3U or after disposing of any unit that has not been reset in step 316, an adjustment operation is performed for the emerald to be reset in step 3 (4). t. In the specific embodiment, for each unit undergoing the reset operation. - (d) Step 318 is performed. Since this operation is self-limiting, it is also possible to subject the unit that is not fully or deeply reset to the adjustment bias without negative effects. These units do not experience the resistance offset of the advance step. In addition, the cells adjusted to a lower resistance will stop their resistance change when they reach a level associated with the adjustment bias. As described above, in a specific embodiment, a reverse bias voltage VTT is applied to the cells. A small amount of reverse bias is applied in a particular embodiment to reduce the resistance during an adjustment operation rather than increasing the resistance during a reset operation. After the reverse bias adjustment voltage VTT is applied to each cell, the reset operation is completed in step 320. Many variations can be made to the method illustrated in Figure 8 in accordance with a particular embodiment. For example, the adjustment operations in step 318 may be incorporated after steps 302 and 307 are completed for all of the reconfigured units and before verification is performed in step 306. </ RTI> Figure 9A illustrates one embodiment of a portion of the control circuit 220 that can also be used to apply the reverse bias reset conditions of Figure 6. Column decoder 422 corresponds to a selected word line during the reset pulse and outputs a ground to the NMOS/PMOS word line driver circuit (e.g., 224 in Figure 4). The upper PM 〇s devices 402 and 404 are turned on for the ground input of the driver circuit. The ground input causes the driver circuit to pass the reverse source 12300S.doc • 31· 1356415 select bus signal VWR and GND to the selected word line and each semi-selected word line associated with decoder 422, respectively. Each column decoder 423 corresponding to an unselected word line outputs VwR to its individual driver circuit as shown in Figure 9B. The positive bias of VWR turns on the NMOS devices 416 and 418 of the driver circuits of the unselected word lines. Accordingly, the source select bus level (both GND) is selected and driven on each corresponding unselected word line. In one embodiment, the word line reverse reset voltage VWR is equal to about +1/2 VRR as previously described. VWR can also provide other voltage levels. For example, one or more reverse reset voltage pulses having a tilt pulse (e.g., start K + 1/2 Vrr and then increase) can be provided for the reset operation as described below. 10A and 10B are circuit diagrams of portions of a row control circuit 210 that can be used to apply bias conditions for the reverse reset operation. Row decoder 5 12 controls a selected bit line driver to provide the selected bit line voltage pulse VBR. In one embodiment, the vBR provides a voltage pulse of _1/2 Vrr. Row decoder 512 may be shared across a plurality of bit line drivers (e.g., 24) and will also connect the semi-selected bit lines to a ground bias just prior to application of the reset pulses. During the application of the pulse, the semi-selected bit lines float near ground. A plurality of unselected cells on the semi-selected bit line provide a leakage current that causes the semi-selected bit line to remain close to ground. In one embodiment, a row of decoders is shared with the selected bit line during a reset operation. The memory unit can be a half-selected memory unit "e.g., the unit can be connected to the selected word line during the reset operation. The selected row decoder 512 outputs gnd 123008.doc -32 - 1356415 to the input of the driver circuit for the row decoder. The GND input at the NMOS/PMOS pair of the driver circuit will turn on the lower NMOS device 506. The reverse source select bus level VBR is passed to the selected bit line. The unselected column decoder 513 provides VBR to the gates of its individual driver circuits to select the PMOS device at the top of each driver pair. The source select bus signal levels (both at GND) are provided to each unselected word line corresponding to decoder 513. Figure 11A illustrates one embodiment of a portion of a column control circuit 220 that can be used to apply the reverse bias adjustment conditions of Figure 7. The selected column decoder 422 outputs a word line adjustment voltage pulse VWT to the NMOS/PMOS word line driver circuit. Vwt is a positive voltage and turns on the lower NMOS devices 406 and 408. The driver circuit passes the source select bus signal VWT to the selected word line. Each unselected column decoder 423 outputs GND to its individual driver circuit as shown in Figure 11B. The upper PMOS devices 412 and 414 are turned on and the GND signal from the reverse source select bus is passed to each of the unselected word lines. Figure 10A is a circuit diagram of one portion of a row control circuit 210 that can be used to apply bias conditions for the reverse bias adjustment operation. The selected row decoder 5 12 controls a selected bit line driver, turns on the upper PMOS devices and passes GND to each bit line selected for the reset operation. This adjustment operation is independent of the data, and a large number of units can be selected at one time under the self-limiting condition of the operation. Thus, each bit line in a selected block receives the GND level signal to apply the reverse bias to adjust the voltage level. 123008.doc -33- 1356415 The driver circuit associated with the column and row decoders illustrated in Figures 9A through 10B may include additional NMOS/PMOS device pairs forming driver select circuits for additional word lines and bit lines . For example, each driver set for the column control circuit can include 16 NM 〇 s / pM 〇 s for the 16 . NM 〇 S / PMOS pairs are connected to the 16 different word lines of the array and Department • Associated with a single column decoder. Each driver set for the row control circuit can include 12 NMOS/PMOS pairs that are connected to the 12 different word lines of the array and tied to a single The row decoder is associated. This configuration is exemplary and other configurations may be used depending on the particular embodiment. However, this set of states as described above can advantageously provide a reasonable fanout of one of the array lines at each memory level. It also facilitates placing the driver circuit at the same distance from the array lines associated with the driver circuit. In addition to adapting to a large number of array lines, this configuration avoids the long-distance transmission of various driver voltage levels to the array and thus improves power efficiency. More details regarding the driver and control circuitry used to control a memory array (including, in one embodiment, one of the choices for implementing selected and unselected characters and/or bit lines associated with the data) "Double busbar architecture" can be found in R0y E. Scheuerlein and Luca G. • Fasoli's US Patent Application No. ____ (MD_295 attorney number 023-0051), whose name is &quot;for reading The / write circuit is coupled to a data-dependent dual bus of a memory array. The difference in device characteristics can affect the characteristics of individual memory cells within the memory array 202 during a reverse reset operation as described. The sensible unit can have different sizes due to the process. The device is between 123008.doc • 34- than 6415.

材料成分(例如多晶石夕姑M 由此可導致,”鱼 可能缺少特定的均勻性。 導肖該陣財之—平料元之標稱位準相比, &gt;、二早兀可以在一較低電 时一 電⑽。為依據本揭1 以在一較高 &lt;中 據本揭不内谷之一具體實施例充分地重新 -定-記憶體單元陣列(包括個別記憶體單先之間的變 ,)’在-重新設定操作期間向該陣列的選定記憶體單元 施加之至&gt; t遷脈衝具有一有變化斜率之振幅,從而逐The composition of the material (for example, polycrystalline stone 姑 M M can be caused by this," the fish may lack specific uniformity. Guided by the money - the nominal level of the flat element compared to the standard, &gt; A lower power (1). According to the disclosure of the present invention, in a higher embodiment, the memory cell array (including individual memory singles) is fully re-defined. Between the changes, the 'applied to the selected memory cell of the array during the reset operation, the &gt; t-shift pulse has an amplitude with a varying slope, thereby

漸增加向該等選定記憶體單元施加之反向偏壓。需要一較 大重新設定電壓位準之單元將在該電壓脈衝之振幅已改變 後重新設定於較高的反向偏壓,而僅需要—較低重新設定 電塵位準之單元將重新設定於一較小位準的反向偏壓。此 技術適應裝置之間的變化而同時還提供不會損害重新設定 的裝置之一高效率程序。由於可以施加一單一的重新設定 電壓脈衝以產生一反向偏壓重新設定條件範圍,因此使得 耗時的驗證操作得到避免或最小化。可以橫跨每一單元而 施加該單一脈衝而該振幅變化以增加該反向偏壓。在該重 新設定電壓脈衝之較低值重新設定之單元在其重新設定為 該較高電阻狀態時將自動關閉。重新設定後的較高電阻將 減小或停止經由此等裝置之電流流動’從而確保其不因較 高值的重新設定電壓而受到損害。 圖13A至13B說明依據一具體實施例可在如圖6所示之一 重新設定操作期間分別施加於選定字元線及位元線之重新 6又疋電壓彳§號。圖13A說明一字元線重新設定電壓信镜 VwR,其在所說明操作之部分之持續時間期間升高至約 123008.doc -35· 1356415 + 1/2 VRR之一最大值(例如’ +6 V)。圖13B中說明針對每一 重新設定電壓脈衝具有一 -1/2 VRR的起始值之一位元線重 新設定電壓信號VBR。該位元線上的重新設定信號具有一 依據一實質上不變的斜率而改變之振幅。圖13B中,該位 • 元線重新設定電壓信號從約-1/2 VRR之一初始值增加至 . 約_(1/2 VRR+2V)之一終止值。針對每一負位元線脈衝的 ' 振幅幅度增加約2 V(例如,達到-8 V)以使得橫跨該陣列的 鲁 選定部分而施加之反向偏壓逐漸增加。藉由如圖丨〇B所示 之一電荷幫浦電路之輸出將該VBR脈衝之振幅限制於圖13B 中虛線所示之VBR偏壓位準。該VBR偏壓位準藉由控制圖 14B中的計數器712而在施加該等VBR脈衝之間返回其初始 值。在母一 §己憶體早元之一極體如圖6所示從位元線至字 元線對齊之條件下’該字元線重新設定電壓之不變值與該 位元線重新設定電壓信號之增加的負電壓使得向沿該選定 位元線及選定字元線的每一記憶體單元施加之反向偏壓增 • 加。針對該位元線重新設定電壓信號,顯示多個脈衝,其 可用於個別地重新設定該陣列之較小部分。例如,可以向 在數個選定區塊(子陣列)的每一區塊内之一位元線施加一 . 第一重新設定電壓脈衝,而向在數個選定區塊的每一區塊 内之一第二位元線施加一第二脈衝。向更多位元線施加更 ‘ 多重新設定脈衝直至將該使用者提供的所有資料編碼。此 技術可能需要與為儲存一頁面的使用者資料而使用的區塊 數目成反比例關係之16至64個或更多的重新設定電壓脈 衝。 123008.doc -36- 1356415 針對vBR之起始及終止值可以隨實施方案而改變。在一 具體實施例令,使用統計資料或實驗來針對每—脈衝選擇 最佳的起始與終止值。例如,可以將該脈衝之初始值選擇 成產生一反向偏壓,該反向偏壓係決定為任何單元在從該 較低電阻狀態重新設定為該較高電阻狀態之前將會需要的 最小值。每一脈衝之终止值可以係選擇成產生為重新設定 該陣列的任何單元而一般需要的最大反向偏壓。藉由逐漸 施加一增加的反向偏壓,重新設定於一較低重新設定反向 偏壓位準之記憶體單元可以避免在增加的反向偏壓位準受 到損害《當一記憶體單元重新設定為該較高電阻重新設定 狀態時,其將傳導較少的電流並以一自我限制的方式表 現。在其已成功地重新設定時,其會自行關閉或在一足夠 的程度上停止傳導。此自我限制截止點將避免在該等反向 偏壓條件下受損。應注意,將一重新設定脈衝之振幅從一 起始值逐漸增加到一較大的終止值以由此增加針對選定記 憶體單元之反向偏壓不會具有與施加具有一較大起始值的 不變脈衝相同之電性效應。具有一較大起始值之一脈衝可 能扣害形成該電阻改變元件的材料或引起電阻之一永久偏 移。因此,所揭示技術之一具體實施例利用一傾斜反向重 新設定脈衝來成功而安全地抹除具有不同裝置特徵之記憶 體單元。 圖12A&amp;i2B分別說明在一具體實施例中可以提供重新 «Λ疋電壓彳g號的列控制電路與行控制電路之一部分。圖 14A中之一電荷幫浦7〇6透過包括—反向源極選擇匯流排脈 123008.doc -37· 1356415 衝產生器之列控制電路將反向重新設定VwR偏壓位準提供 給該反向源極選擇匯流排(例如,圖9A至12中的匯流排 430)並直接提供給列解碼器電路(例如,圖4中的解碼器 322)。參考電壓產生器702接收一供應電壓vcc並將一參考 電壓Vref提供給電何幫浦控制器704。使用來自電荷幫浦 7〇6的輸出之一回授信號,該控制器可以按需要提供約 i/2 vRR之一起始vWR偏壓位準。 圖12B所說明的行控制電路利用一計數器712及數位至類 比轉換器714來產生具有一負傾斜脈衝輸出(負位準及斜率) 之位元線重新設定電壓VBR偏壓位準。計數器712接收一脈 衝開始時間並使用一時脈信號,向DAC 714提供一脈衝輸 入來產生一類比傾斜脈衝輸出。DAC 714接收該數位輸入 並向該電荷幫浦控制器提供電壓位準。電荷幫浦718產生 依據一由該計數器產生的實質上不變且係負斜率而增加之 一負位元線重新設定電壓VBR。該負電壓Vbr偏壓位準之振 幅依據所定義的斜率而增加以逐漸增加橫跨該記憶體陣列 而施加的反向偏壓。 圖15A及15B說明用以施加圖6之反向偏壓之一替代的電 壓信號集合。一正電壓脈衝VWR係施加於該(等)選定的字 元線並依據一正斜率而增加。在該(等)選定的位元線上施 加一負位元線電壓脈衝vBR。每一字元線電壓脈衝開始於 約+5 V之一起始值而增加2 V至約+7Ve該VwR脈衝之幅度 受限於來自該電荷幫浦電路的輪出之vWR偏壓位準且係顯 示為圖15A中的虛線》該等字元線與位元線重新設定脈衝 123008.doc • 38 · 1356415 之組合將橫跨每一選定記憶體單元提供一增加的反向偏 壓。額外的位元線重新設定電壓脈衝係說明為可用於設定 或重新設定額外的位元線群組。如圖9A至9B所示,在某 些具體實施例中圖11A至11B之脈衝可用於產生一正向偏 壓。在另一具體實施例中’該等脈衝並非傾斜的。例如, 可以向一第一陣列線施加具有一負極性之一第一電壓脈 衝’而向一第一'陣列線施加具有一正極性之一第二電壓脈 衝以產生一反向偏壓。此配置還可以切換該等記憶體單元 之電阻’但不包括在該等脈衝上之一斜率或在所施加的偏 壓中之一所產生的偏移。 圖15A及15B之具體實施例包括一重試技術,該技術針 對在施加該初始電壓脈衝時不重新設定的記憶體單元使用 由該VwR偏壓位準決定之一略微更高的重新設定脈衝位 準。例如,可以在施加最後的重新設定電壓脈衝8〇4及814 後驗β亥陣列之一選定部分之重新設定之結果。一驗證操 作可以包括讀回該記憶體單元之電阻狀態並將其與針對該 重新δ又疋狀態的預定義位準相比較。可以讓不重新設定的 任何行或位元線經受一更高位準之一重試脈衝。該字元線 電壓脈衝806之起始值係增加至7v並增加至一 9V之位 準。任何重試脈衝之值可隨具體實施例而變化且可以係如 先前所述依據統計資.料及/或測試來選擇。在圖15Α及15Β 中’向未通過針對一重新設定狀態的驗證之陣列之每一位 元線施加該重試脈衝。在其他具體實施例中,可以在個別 施加該等初始重新設定電壓脈衝後施加一重試脈衝(或多 123008.doc -39- 1356415 個脈衝)。若一行或其他群組的單元在一重試脈衝(或多個 重試脈衝)後未通過針對該目標電阻狀態之驗證,則可以 使用錯誤校正控制技術來對其加以處置或以冗餘的記憶體 單元來加以替換。 圖16A及16B說明依據一具體實施例可用於提供圖i3A及 13B之脈衝的列及行控制電路之部分。該等選定的字元線 提供一在此具體實施例中具有依據一正斜率而增加之一振 幅的正重新設定信號。在驅動電荷幫浦控制器9〇8時利用 一計數器904及數位至類比轉換器9〇6。控制器9〇8使用 DAC 906之類比輸出並經由電荷幫浦91〇產生一正傾斜 偏壓位準。將電荷幫浦910之輸出直接施加於該等字元線 解碼器並經由反向源極選擇匯流排脈衝產生電路施加於該 反向源極選擇匯流排線。圖16B說明用以提供負Vbr偏壓位 準之行控制電路210之一部分。一參考電壓產生器914將— 參考電壓Vref輸送至電荷幫浦控制器916。該控制器利用來 自電荷幫浦918的輸出之一回授迴路來保持針對該位元線 重新設定電壓信號的VBR偏壓之一穩定值。 前述關於本發明的詳細說明係基於圖解及說明之目的而 提出。其並不希望飽攬無遺或將本發明限於所揭示的精確 形式。根據以上原理,可進行許多修改及變更。選擇所述 具體實施例係為了最佳地說明本發明之原理及其實際鹿 用’從而使其他熟習此項技術者能將本發明最佳地應用於 各種具體實施例中並作出適合特定預期用途的各種修改。 希望本發明之範疇由本文隨附申請專利範圍加以定義。 123008.doc -40· 1356415 【圖式簡單說明】 圖1說明依據一具體實施例之— _ - 範例性非揮發性記憶體 單7G。 性非揮發性記 圖2A及2B說明依據一具體實施例之範例 憶體單元。The reverse bias applied to the selected memory cells is gradually increased. A unit that requires a large reset voltage level will be reset to a higher reverse bias after the amplitude of the voltage pulse has changed, and only the lower-reset unit that resets the dust level will be reset. A smaller level of reverse bias. This technique accommodates changes between devices while also providing an efficient procedure for one of the devices that does not compromise resetting. Since a single reset voltage pulse can be applied to generate a reverse bias reset condition range, time consuming verify operations are avoided or minimized. The single pulse can be applied across each cell and the amplitude changes to increase the reverse bias. The cell reset at the lower value of the reset voltage pulse will automatically turn off when it is reset to the higher resistance state. The higher resistance after reset will reduce or stop the current flow through these devices' to ensure that it is not damaged by the higher value of the reset voltage. Figures 13A through 13B illustrate re-voltages applied to selected word lines and bit lines, respectively, during a reset operation as shown in Figure 6, in accordance with an embodiment. Figure 13A illustrates a word line reset voltage mirror VwR that rises to a maximum of about 123008.doc - 35 · 1356415 + 1/2 VRR during the duration of the portion of the illustrated operation (eg, ' +6 V). A bit line re-set voltage signal VBR having a start value of one -1/2 VRR for each reset voltage pulse is illustrated in Fig. 13B. The reset signal on the bit line has an amplitude that varies according to a substantially constant slope. In Figure 13B, this bit • the meta-reset voltage signal is increased from an initial value of approximately -1/2 VRR to an end value of approximately _(1/2 VRR + 2V). The amplitude amplitude of each negative bit line pulse is increased by about 2 V (e.g., up to -8 V) such that the reverse bias applied across the selected portion of the array is gradually increased. The amplitude of the VBR pulse is limited to the VBR bias level shown by the dashed line in Figure 13B by the output of one of the charge pump circuits as shown in Figure 丨〇B. The VBR bias level returns to its initial value between the application of the VBR pulses by controlling the counter 712 of Figure 14B. In the condition that one of the mothers and the first element of the body is aligned from the bit line to the word line as shown in FIG. 6 'the constant value of the word line reset voltage and the bit line reset voltage The increased negative voltage of the signal causes the reverse bias applied to each of the memory cells along the selected bit line and the selected word line to increase. A voltage signal is reset for the bit line, and a plurality of pulses are displayed that can be used to individually reset a smaller portion of the array. For example, a first reset voltage pulse can be applied to one of the bit lines in each of the plurality of selected blocks (sub-arrays) to each of the plurality of selected blocks. A second bit line applies a second pulse. Apply more 'reset pulses' to more bit lines until all the data provided by the user is encoded. This technique may require 16 to 64 or more reset voltage pulses in inverse proportion to the number of blocks used to store user data for one page. 123008.doc -36- 1356415 The starting and ending values for vBR can vary from implementation to implementation. In a specific embodiment, statistics or experiments are used to select the optimal start and end values for each pulse. For example, the initial value of the pulse can be selected to produce a reverse bias that is determined to be the minimum value that any cell would need before resetting from the lower resistance state to the higher resistance state. . The end value of each pulse can be selected to produce the maximum reverse bias typically required to reset any cells of the array. By gradually applying an increased reverse bias, resetting the memory unit at a lower reset reverse bias level can avoid damage to the increased reverse bias level "When a memory cell is re- When set to this higher resistance reset state, it will conduct less current and behave in a self-limiting manner. When it has been successfully reset, it shuts itself down or stops conduction to a sufficient extent. This self-limiting cutoff point will avoid damage under these reverse bias conditions. It should be noted that the amplitude of a reset pulse is gradually increased from a starting value to a larger terminating value to thereby increase the reverse bias for the selected memory cell without having a larger starting value with the application. The same electrical effect of the constant pulse. A pulse having a larger starting value may detract from the material forming the resistance changing element or cause a permanent deflection of one of the resistors. Accordingly, one embodiment of the disclosed technology utilizes a tilt reverse reset pulse to successfully and safely erase memory cells having different device characteristics. 12A &amp; i2B illustrate portions of a column control circuit and a row control circuit that can provide a re-sampling voltage 彳g number, respectively, in a particular embodiment. In FIG. 14A, a charge pump 7〇6 transmits a reverse-reset VwR bias level to the counter by including a-reverse source selection bus line 123008.doc -37· 1356415. A bus bar (e.g., bus bar 430 in Figures 9A through 12) is selected to the source and provided directly to the column decoder circuit (e.g., decoder 322 in Figure 4). The reference voltage generator 702 receives a supply voltage vcc and provides a reference voltage Vref to the electric pump controller 704. Using one of the outputs from the charge pump 7〇6, the controller can provide an initial vWR bias level of about i/2 vRR as needed. The row control circuit illustrated in Figure 12B utilizes a counter 712 and a digital to analog converter 714 to generate a bit line reset voltage VBR bias level having a negative ramp output (negative level and slope). Counter 712 receives a pulse start time and uses a clock signal to provide a pulse input to DAC 714 to produce an analog skew output. The DAC 714 receives the digital input and provides a voltage level to the charge pump controller. The charge pump 718 generates a negative bit line reset voltage VBR that is increased by a substantially constant and negative slope generated by the counter. The amplitude of the negative voltage Vbr bias level is increased in accordance with the defined slope to gradually increase the reverse bias applied across the memory array. Figures 15A and 15B illustrate a set of voltage signals instead of one of the reverse biases of Figure 6. A positive voltage pulse VWR is applied to the selected word line and increases in accordance with a positive slope. A negative bit line voltage pulse vBR is applied to the (equal) selected bit line. Each word line voltage pulse begins at a start value of about +5 V and increases by 2 V to about +7 Ve. The amplitude of the VwR pulse is limited by the rounded vWR bias level from the charge pump circuit and is Shown as the dashed line in Figure 15A, the combination of the word line and bit line reset pulses 123008.doc • 38 · 1356415 will provide an increased reverse bias across each selected memory cell. Additional bit line reset voltage pulses are described as available for setting or resetting additional bit line groups. As shown in Figures 9A through 9B, the pulses of Figures 11A through 11B can be used to generate a forward bias in some embodiments. In another embodiment, the pulses are not oblique. For example, a first voltage pulse having a negative polarity can be applied to a first array line and a second voltage pulse having a positive polarity can be applied to a first 'array line to generate a reverse bias. This configuration can also switch the resistance of the memory cells' but does not include the slope of one of the pulses or the offset produced by one of the applied biases. The embodiment of Figures 15A and 15B includes a retry technique for using a reset pulse level that is slightly higher by one of the VwR bias levels for a memory cell that is not reset when the initial voltage pulse is applied. . For example, the result of the resetting of a selected portion of the beta array can be applied after applying the last reset voltage pulses 8〇4 and 814. A verify operation can include reading back the resistance state of the memory cell and comparing it to a predefined level for the re-δ state. Any row or bit line that is not reset can be subjected to a higher level one retry pulse. The initial value of the word line voltage pulse 806 is increased to 7v and increased to a level of 9V. The value of any retry pulse can vary from embodiment to embodiment and can be selected based on statistical information and/or testing as previously described. The retry pulse is applied to each bit line of the array that has not passed the verification for a reset state in Figs. 15A and 15B. In other embodiments, a retry pulse (or more than 123008.doc - 39 - 1356415 pulses) may be applied after each of the initial reset voltage pulses is applied. If a cell or group of cells fails verification of the target resistance state after a retry pulse (or multiple retry pulses), it can be processed using error correction control techniques or redundant memory. Replace the unit. Figures 16A and 16B illustrate portions of a column and row control circuit that can be used to provide the pulses of Figures i3A and 13B in accordance with an embodiment. The selected word lines provide a positive reset signal having an amplitude that is increased in accordance with a positive slope in this embodiment. A counter 904 and a digital to analog converter 9〇6 are utilized when driving the charge pump controller 9〇8. Controller 9〇8 uses the analog output of DAC 906 and generates a positive tilt bias level via charge pump 91〇. The output of charge pump 910 is applied directly to the word line decoders and applied to the reverse source select bus line via a reverse source select bus pulse generation circuit. Figure 16B illustrates a portion of a row control circuit 210 for providing a negative Vbr bias level. A reference voltage generator 914 delivers the reference voltage Vref to the charge pump controller 916. The controller utilizes one of the outputs from the charge pump 918 to return the loop to maintain a stable value of the VBR bias for resetting the voltage signal for the bit line. The foregoing detailed description of the invention has been presented for purposes of illustration It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above principles. The specific embodiments are chosen to best explain the principles of the invention and its actual deer'''''''''' Various modifications. It is intended that the scope of the invention be defined by the scope of the appended claims. 123008.doc -40· 1356415 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates an exemplary non-volatile memory single 7G in accordance with one embodiment. Sexual Nonvolatile Tables 2A and 2B illustrate an example memory unit in accordance with an embodiment.

圖3A及3B係依據一具體實施例之_ _ 個別透視圖及斷面圖。 圖4係依據一具體實施例之—非揮發十生 方塊圖。 維記憶體陣列之 記憶體系統之一 圖5係說明依據一具體實施例針對 統的各種狀態之電阻分佈之一曲線圖 圖6係解說依據-具體實關㈣—反向偏壓重新設定 操作的偏壓條件之一記憶體陣列之一簡化電路圖。 圖7係解說依據-具體實施例針對一反向偏壓調整操作 的偏壓條件之一記憶體陣列之—簡化電路圖。3A and 3B are individual perspective and cross-sectional views of a particular embodiment. Figure 4 is a block diagram of a non-volatile tenant according to a specific embodiment. FIG. 5 is a graph showing the resistance distribution of various states according to a specific embodiment. FIG. 6 is a diagram illustrating the basis of the specific reverse (four)-reverse bias reset operation. One of the bias conditions is one of the memory arrays that simplifies the circuit diagram. Figure 7 is a simplified circuit diagram of a memory array in accordance with a bias condition for a reverse bias adjustment operation in accordance with an embodiment.

一非揮發性記憶體系 圖8係依據一具體實施例用於重新設定一記憶體單元陣 列之一方法之一流程圖,其併入一調整操作。 圖9A及9B係可以依據一具體實施例用於提供圖6之反向 偏壓重新設定條件之列控制電路之一部分之電路圖β 圖10Α及1 OB係可以依據一具體實施例用於提供圖6之反 向偏壓重新設定條件之行控制電路之一部分之電路圖。 圖11A及11B係可以依據一具體實施例用於提供圖7之反 向偏壓調整條件之列控制電路之一部分之電路圖。 圖12係可以依據一具體實施例用於提供圖7之反向偏壓 123008.doc •41 - ^56415 調整條件之行控制電路之一部分之一電路圖。 圖13A及13B說明依據一具體實施例用以在重新設定操 作期間產生一增加的反向偏壓之範例性位元線及字元線重 新設定電壓信號。 圖14A及14B係可用於產生如圖11A及11B所示的傾斜脈 衝重新設定電壓信號之控制電路之一部分之電路圖。 圖15A及15B說明依據一具體實施例用以在重新設定操 作期間產生一增加的反向偏壓之其他範例性位元線及字元 線重新設定電壓。 圖16A及16B係可用於產生如圖9A及9B所示的傾斜重新 設定脈衝信號之控制電路之一部分之電路層級圖。 【主要元件符號說明】 100 記憶體單元/被動儲存元件 102 引導元件 104 狀態改變元件 106 反熔絲 110 第一導體/第一金屬導電層 112 第二導體/第二金屬導電層 120 記憶體單元 122 重度摻雜的η型區域 124 本質區域 126 重度換雜的Ρ型區域 128 反溶絲 140 記憶體單元 123008.doc -42· 1356415 142 重度摻雜的η型區域 144 本質區域 146 重度摻雜的ρ型區域 152 記憶體單元 162 第一位元線集合 164 字元線 170 記憶體單元A Non-Volatile Memory System Figure 8 is a flow diagram of one method for resetting a memory cell array in accordance with an embodiment incorporating an adjustment operation. 9A and 9B are circuit diagrams of a portion of a control circuit for providing a reverse bias reset condition of FIG. 6 in accordance with an embodiment. FIGS. 10A and 1B can be used to provide FIG. 6 in accordance with an embodiment. The reverse bias voltage resets the circuit diagram of a portion of the conditional control circuit. 11A and 11B are circuit diagrams of a portion of a control circuit for providing a reverse bias adjustment condition of FIG. 7 in accordance with an embodiment. Figure 12 is a circuit diagram of one portion of a row control circuit for providing a reverse bias voltage of 123008.doc • 41 - ^56415 of Figure 7 in accordance with an embodiment. 13A and 13B illustrate exemplary bit line and word line reset voltage signals for generating an increased reverse bias during a reset operation in accordance with an embodiment. 14A and 14B are circuit diagrams of portions of a control circuit that can be used to generate a ramp pulse reset voltage signal as shown in Figs. 11A and 11B. 15A and 15B illustrate other exemplary bit line and word line reset voltages used to generate an increased reverse bias during a reset operation in accordance with an embodiment. Figures 16A and 16B are circuit level diagrams of portions of a control circuit that can be used to generate the ramp reset pulse signals as shown in Figures 9A and 9B. [Main Element Symbol Description] 100 Memory Unit/Passive Storage Element 102 Guide Element 104 State Change Element 106 Anti-Fuse 110 First Conductor/First Metal Conductive Layer 112 Second Conductor/Second Metal Conductive Layer 120 Memory Unit 122 Heavily doped n-type region 124 essential region 126 heavily mixed Ρ-type region 128 anti-solvent filament 140 memory unit 123008.doc -42· 1356415 142 heavily doped n-type region 144 essential region 146 heavily doped ρ Type area 152 memory unit 162 first bit line set 164 word line 170 memory unit

174 位元線 176 字元線 178 記憶體單元 180 位元線 182 記憶體單元 184 字元線 186 記憶體單元 200 積體電路174 bit line 176 word line 178 memory unit 180 bit line 182 memory unit 184 word line 186 memory unit 200 integrated circuit

202 記憶體陣列 206 行控制電路210之輸入/輸出 208 列控制電路220之輸出 210 行控制電路 212 行解碼器 214 陣列終端接收器或驅動器 216 區塊選擇電路 220 列控制電路 222 列解碼器 123008.doc -43 - 1356415 224 陣列終端驅動器 226 區塊選擇電路 250 線/狀態 252 線/狀態 254 線/狀態 256 線/狀態 258 線/目標位準 402 上部PMOS裝置 404 上部PMOS裝置 406 下部NMOS裝置 408 下部NMOS裝置 412 上部PMOS裝置 414 上部PMOS裝置 416 NMOS裝置 418 NMOS裝置 422 列解碼器 423 列解碼器 430 匯流排 506 下部NMOS裝置 512 行解碼器 513 未選定的列解碼器 702 參考電壓產生器 704 電荷幫浦控制器 706 電荷幫浦 -44- 123008.doc 1356415 712 計數器202 memory array 206 row control circuit 210 input/output 208 column control circuit 220 output 210 row control circuit 212 row decoder 214 array terminal receiver or driver 216 block selection circuit 220 column control circuit 222 column decoder 123008. Doc -43 - 1356415 224 Array Terminal Driver 226 Block Selection Circuit 250 Line / State 252 Line / State 254 Line / State 256 Line / State 258 Line / Target Level 402 Upper PMOS Device 404 Upper PMOS Device 406 Lower NMOS Device 408 Lower NMOS device 412 upper PMOS device 414 upper PMOS device 416 NMOS device 418 NMOS device 422 column decoder 423 column decoder 430 bus 506 lower NMOS device 512 row decoder 513 unselected column decoder 702 reference voltage generator 704 charge help Pu controller 706 charge pump -44- 123008.doc 1356415 712 counter

714 數位至類比轉換器/DAC 716 電荷幫浦控制電路 718 電荷幫浦 804 重新設定電壓脈衝 806 字元線電壓脈衝 814 重新設定電壓脈衝 904 計數器714 Digital to Analog Converter / DAC 716 Charge Pump Control Circuit 718 Charge Pump 804 Reset Voltage Pulse 806 Word Line Voltage Pulse 814 Reset Voltage Pulse 904 Counter

906 數位至類比轉換器/DAC 908 電荷幫浦控制器 910 電荷幫浦 914 參考電壓產生器 916 電荷幫浦控制器 918 電荷幫浦906 Digital to Analog Converter / DAC 908 Charge Pump Controller 910 Charge Pump 914 Voltage Generator 916 Charge Pump Controller 918 Charge Pump

123008.doc -45 -123008.doc -45 -

Claims (1)

1356415 第096127570號專利申請案 中文申請專利範圍替換本(1〇〇年8月) 十、申請專利範圍: 1. 一種操作非揮發性儲存之方法,其包含: ㈣年令月以日修正本 藉由施加第一位準的反向偏壓至複數個非揮發性儲 存元件,將該等儲存元件從一較低電阻狀態切換為一較 高電阻狀態;以及 在切換該等儲存元件後向該等儲存元件施加一第二位 準之反向偏壓以降低具有超出一對應於該較高電阻狀態 的目標位準之一電阻的該等儲存元件之一子集之一電 阻。 2.如請求項1之方法,其中: 該第一位準的反向偏壓高於該第二位準的反向偏壓。 3·如請求項2之方法,其中: 該第二位準的反向偏壓約為該第一位準的反向偏壓之 該位準之60%。 4_如請求項1之方法,其中: 知加該第一位準的反向偏壓包含向與該等儲存元件通 ^之Γ第—陣列線施加&quot;&quot;正電壓脈衝而向與該等儲存元 件通L之-第二陣列線施加一負電壓脈衝;以及 施加該第二位準的反向偏屋包含向該第一陣列線施加 正電壓脈衝而向該第二陣列線施加一固定偏塵。 5·如請求項1之方法,其中·· 電阻 §亥複數個非揮發性儲存元件之每一元件皆包括 率改變材料,· 施加該第 位準的反向偏壓而增加用於該複數個儲存 123008-looo8i9.doc ' =7存元件的該電阻率改變材料之-電阻率; X第一'位準的反向偏壓而減小用於 儲存元件的访+ 、邊于m之每一 、、電阻率改變材料之該電阻率。 6·如請求項5之方法,其中: 該電阻率改變材料係多晶石夕。 7·如請求項5之方法,其中: 該電阻率改變材料係-金屬氧化物。 8.如請求項5之方法,其中· 該複數個非揮發㈣存 率改變材料电跑, f疋件包括與該電阻 該引導:引導元件,該電阻率改變材料形成 5丨導70件之至少一部分。 9·如請求項5之方法,其中: 阻==發性储存元件之每一元件皆包括與該電 午文變材枓亊聯之一反熔絲。 i〇.如請求項1之方法,其中: 維單石記憶體陣列 該複數個非揮發性儲存元件係一 之部分。 11,如請求項10之方法,其中: &quot;亥陣列包括第一複數個陣 it叙加a 干W貫質上垂直於該第一 複數個陣列線之第二複數個陣H以及 該第-複數個陣列線與該第二複數個陣列線之至少一 12 該三維陣列的記憶體層級之間共享的個別線。 12·如明求項丨之方法,其中: 該較低電阻狀態對應於針對該等儲存元件之—設定狀 123008-1000819.doc •2- 態;以及 該較高電阻狀態對庙 定狀熊。 Μ ;針對該等儲存元件之一重新設 13.如請求項12之方法,其中: 該較低電阻肤能# 化狀 態 ‘€係針對料料元件之-程式 14.如請求項13之方法,其中: 15如:Ϊ數個非揮發性儲存元件包括兩個以上的狀態。 5.如請求項13之方法,其中: 該複數個非揮發性儲存元件係多狀態儲存 16·如請求項12之方法,其中: 該複數個非揮發性儲存 ^ 仔70件係形成--次場可程式化 兄憶體之一陣列之部分; °亥較低電阻狀態係針對 _ T这專儲存凡件之一格式化狀 態。 17.如請求項1之方法,其中: 施加該第二位準的反1m ^讲 夂向偏壓不貫質上改變具有在該目 標位準内之一電阻的該複數個儲存元件之一電阻。 U· —種非揮發性記憶體系統,其包含: 複數個非揮發性儲存元件,其包括一電阻改變元件, 。專非揮發性儲存元件各包含一二極體;及 控制電路’其與該複數個非揮發性儲存元件通信,該 控制電路藉由施加-第—位準的反向㈣將該等健存元 件從—較低電阻狀態切換為一較高電阻狀態來重新設定 123008-1000819.doc 1356415 該複數個非揮發性儲存元件,在切換該等儲存元件後該 控制電路向該等儲存元件施加一第二位準的反向偏壓, 以降低具有超出一對應於該較高電阻狀態的目標位準之 一電阻的該等儲存元件之一子集之一電阻。 19. 如請求項18之非揮發性記憶體系統其中: 該第一位準的反向偏壓高於該第二位準的反向偏壓。 20. 如請求項19之非揮發性記憶體系統其中: δκ第一位準的反向偏壓約為該第一位準的反向偏壓之 該位準之60%。 21. 如凊求項1 8之非揮發性記憶體系統,其中: 該控制電路藉由向與該等儲存元件通信之一第一陣列 線施加一正電壓脈衝而向與該等儲存元件通信之一第二 陣列線施加一負電壓脈衝來施加該第一位準的反向偏 壓;以及 該控制電路施加該第二位準的反向偏壓包含向該第一 陣列線施加一正電麼脈衝而向該第二陣列線施加一固定 偏壓。 22·如凊求項1 8之非揮發性記憶體系統,其中: 該複數個非揮發性健存元件之每一元件皆包括-電阻 率改變材料; 施力該第位準的反向偏壓而增加用於該複數個儲存 兀件之每—儲存元件_電阻率改變材料卜電阻率. 施加該第二位準的反向偏壓而減小用於該子隼之每一 儲存元件的該電阻率改變材料之一電阻率。、 123008-1000819.doc •4- 1.356415 23.如請求項22之非揮發性記憶體系統,其中: 該電阻率改變材料係多晶矽。 24·如請求項22之非揮發性記憶體系統,其中: 該電阻率改變材料係一金屬氧化物。 25. 如請求項22之非揮發性記憶體系統,其中: 該複數個非揮發性館存元件之每一元件皆包括與該電 阻率改變材料串聯之—引導元件,該電阻率改變材料形 成該引導元件之至少一部分。 26. 如請求項22之非揮發性記憶體系統,其中: 該複數個非揮發性儲存元件之每一元件皆包括與該電 阻率改變材料串聯之一反熔絲。 27. 如請求項18之非揮發性記憶體系統,其進_步包含: -三維單石記憶料列,其包括該複數個非揮發性儲 存元件。1356415 Patent Application No. 096127570 Replacement of Chinese Patent Application (August 1st) X. Patent Application Range: 1. A method for operating non-volatile storage, which includes: (4) The annual order is revised by day Transmitting a first level of reverse bias to a plurality of non-volatile storage elements, switching the storage elements from a lower resistance state to a higher resistance state; and switching the storage elements to the The storage element applies a second level of reverse bias to reduce a resistance of a subset of the storage elements having a resistance that exceeds a target level corresponding to the higher resistance state. 2. The method of claim 1, wherein: the reverse bias of the first level is higher than the reverse bias of the second level. 3. The method of claim 2, wherein: the second level of reverse bias is about 60% of the level of the first level of reverse bias. 4) The method of claim 1, wherein: the knowing that the reverse bias of the first level comprises applying a &quot;&quot; positive voltage pulse to the first array line of the storage element The storage element passes through the second array line to apply a negative voltage pulse; and the reverse biasing of applying the second level includes applying a positive voltage pulse to the first array line and applying a fixed to the second array line Dust. 5. The method of claim 1, wherein each of the plurality of non-volatile storage elements includes a rate change material, and the reverse bias is applied to the plurality of levels to increase the number of the plurality of non-volatile storage elements. Store 123008-looo8i9.doc '=7 The resistivity of the memory component changes the resistivity of the material; X reverses the bias of the first 'level to reduce the access + for the storage component, and the side of m The resistivity changes the resistivity of the material. 6. The method of claim 5, wherein: the resistivity change material is polycrystalline. 7. The method of claim 5, wherein: the resistivity changes the material system - the metal oxide. 8. The method of claim 5, wherein: the plurality of non-volatile (four) rate-changing materials are electrically run, and the component includes the guiding: the guiding element, the resistivity changing material forming at least 70 of the portion. 9. The method of claim 5, wherein: each of the components of the resistance storage component comprises an anti-fuse coupled to the electrical lunch variant. The method of claim 1, wherein: the virtuosome memory array is a portion of the plurality of non-volatile storage elements. 11. The method of claim 10, wherein: the &quot;Hai array comprises a first plurality of arrays, a sum of which is perpendicular to the second plurality of arrays H of the first plurality of array lines and the first An individual line shared between a plurality of array lines and at least one of the second plurality of array lines of memory levels of the three-dimensional array. 12. The method of claim </ RTI> wherein: the lower resistance state corresponds to a set state 123008-1000819.doc • 2-state for the storage elements; and the higher resistance state is for the temple shaped bear. The method of claim 12, wherein: the method of claim 12, wherein: the lower resistance state is a state of the material element. : 15 such as: a number of non-volatile storage elements include more than two states. 5. The method of claim 13, wherein: the plurality of non-volatile storage elements are multi-state storage. 16. The method of claim 12, wherein: the plurality of non-volatile storage elements are formed into - The field can be programmed as part of one of the arrays of the brothers; the lower resistance state of the field is for one of the formatted states of the _T. 17. The method of claim 1, wherein: applying a reverse level of the second level, the bias voltage does not qualitatively change one of the plurality of storage elements having a resistance within the target level . A non-volatile memory system comprising: a plurality of non-volatile storage elements including a resistance change element. The non-volatile storage elements each comprise a diode; and a control circuit that communicates with the plurality of non-volatile storage elements, the control circuit by means of applying a -first level of the reverse (four) of the storage elements Resetting 123008-1000819.doc 1356415 from a lower resistance state to a higher resistance state, the control circuit applies a second to the storage elements after switching the storage elements A level of reverse bias is applied to reduce a resistance of a subset of the storage elements having a resistance that exceeds a target level corresponding to the higher resistance state. 19. The non-volatile memory system of claim 18 wherein: the first level of reverse bias is higher than the second level of reverse bias. 20. The non-volatile memory system of claim 19 wherein: the reverse bias of the first level of δκ is about 60% of the level of the reverse bias of the first level. 21. The non-volatile memory system of claim 18, wherein: the control circuit communicates with the storage element by applying a positive voltage pulse to a first array line in communication with the storage elements A second array line applies a negative voltage pulse to apply the reverse bias of the first level; and the control circuit applies the second level of reverse bias to apply a positive charge to the first array line A fixed bias is applied to the second array line by a pulse. 22. The non-volatile memory system of claim 18, wherein: each of the plurality of non-volatile storage elements comprises a resistivity change material; applying a reverse bias of the first level And increasing each of the storage elements for the plurality of storage elements - the resistivity changing material resistivity. applying the second level of reverse bias to reduce the each of the storage elements for the sub-port The resistivity changes the resistivity of one of the materials. 23. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> A non-volatile memory system of claim 22, wherein: the resistivity change material is polycrystalline germanium. 24. The non-volatile memory system of claim 22, wherein: the resistivity changing material is a metal oxide. 25. The non-volatile memory system of claim 22, wherein: each of the plurality of non-volatile library elements comprises a guiding element in series with the resistivity changing material, the resistivity changing material forming the At least a portion of the guiding element. 26. The non-volatile memory system of claim 22, wherein: each of the plurality of non-volatile storage elements comprises an anti-fuse in series with the resistivity change material. 27. The non-volatile memory system of claim 18, wherein the step comprises: - a three-dimensional single stone memory train comprising the plurality of non-volatile storage elements. 28.如請求項27之非揮發性記憶體系統,其進一步包含 第一複數個陣列線;以及 質上垂直於該第一複數個陣 第二複數個陣列線,其實 列線; 少 線 其中該第一複數個陣列線與該 一者包括在該三維陣列的記憶 第二複數個陣列線之至 體層級之間共享的個別 29.如請求項18之非揮發性記憶體系統,其中: 設 該較低電阻狀態對應於針對該等儲存元件之 態;以及 123008-1000819.doc -5- 1356415 元件之一重新設 該較高電阻狀態對應於針對該等儲存 定狀態。 30.如請求項29之非揮發性記憶體系統其中: 該較低電阻狀態係針對續笪妙+ 了忑等儲存元件之一程式化狀 態 3 1.如請求項30之非揮發性記憶體系統其中 該複數個非揮發‘_存元件係可重寫的儲存元件。 32.如請求項30之非揮發性記憶體系統其中: 該複數個非揮發性儲存元件包括兩個以上的狀態。 33_如請求項29之非揮發性記憶體系統,其中: 該L㈣魏料場可程式化 記憶體之一陣列之部分; 該較低電阻狀態係針對該等儲存元件之—格式化狀 態。 34. 如凊求項18之非揮發性記憶體系統,其中: 施加該第二位準的反向偏壓不實質上改變具有在該目 標位準内之一電阻的該複數個儲存元件之一電阻。 35. 如切求項18之非揮發性記憶體系統,其中: 該控制電路包括列控制電路與行控制電路之至少一 者。 123008-1000819.doc28. The non-volatile memory system of claim 27, further comprising a first plurality of array lines; and a second plurality of array lines qualitatively perpendicular to the first plurality of arrays, in fact column lines; a first plurality of array lines and the one comprising an individual shared between the second plurality of array lines of the three-dimensional array and the body level. 29. The non-volatile memory system of claim 18, wherein: The lower resistance state corresponds to the state for the storage elements; and 123008-1000819.doc -5 - 1356415 one of the components resets the higher resistance state corresponding to the stored state for the storage. 30. The non-volatile memory system of claim 29, wherein: the lower resistance state is for one of the storage elements of the sequel + 忑, etc. 3. The non-volatile memory system of claim 30 Wherein the plurality of non-volatile elements are rewritable storage elements. 32. The non-volatile memory system of claim 30 wherein: the plurality of non-volatile storage elements comprises more than two states. 33. The non-volatile memory system of claim 29, wherein: the L(tetra)Wei field can program a portion of one of the arrays of memory; the lower resistance state is for a formatted state of the storage elements. 34. The non-volatile memory system of claim 18, wherein: applying the second level of reverse bias does not substantially alter one of the plurality of storage elements having a resistance within the target level resistance. 35. The non-volatile memory system of clause 18, wherein: the control circuit comprises at least one of a column control circuit and a row control circuit. 123008-1000819.doc
TW96127570A 2006-07-31 2007-07-27 Method of operating non-volatile storage and non-v TWI356415B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/461,424 US7495947B2 (en) 2006-07-31 2006-07-31 Reverse bias trim operations in non-volatile memory
US11/461,431 US7492630B2 (en) 2006-07-31 2006-07-31 Systems for reverse bias trim operations in non-volatile memory

Publications (2)

Publication Number Publication Date
TW200830315A TW200830315A (en) 2008-07-16
TWI356415B true TWI356415B (en) 2012-01-11

Family

ID=38863123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96127570A TWI356415B (en) 2006-07-31 2007-07-27 Method of operating non-volatile storage and non-v

Country Status (2)

Country Link
TW (1) TWI356415B (en)
WO (1) WO2008016844A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480980B (en) * 2012-09-26 2015-04-11 Lin Chrong Jung Memory array and non-volatile memory device of the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719874B2 (en) 2006-07-31 2010-05-18 Sandisk 3D Llc Systems for controlled pulse operations in non-volatile memory
WO2008016833A2 (en) * 2006-07-31 2008-02-07 Sandisk 3D Llc Increasing write voltage pulse operations in non-volatile memory
US7522448B2 (en) 2006-07-31 2009-04-21 Sandisk 3D Llc Controlled pulse operations in non-volatile memory
US7978507B2 (en) 2008-06-27 2011-07-12 Sandisk 3D, Llc Pulse reset for non-volatile storage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818749A (en) * 1993-08-20 1998-10-06 Micron Technology, Inc. Integrated circuit memory device
US6483734B1 (en) * 2001-11-26 2002-11-19 Hewlett Packard Company Memory device having memory cells capable of four states
WO2003085675A2 (en) * 2002-04-04 2003-10-16 Kabushiki Kaisha Toshiba Phase-change memory device
JP4129170B2 (en) * 2002-12-05 2008-08-06 シャープ株式会社 Semiconductor memory device and memory data correction method for memory cell
US6813177B2 (en) * 2002-12-13 2004-11-02 Ovoynx, Inc. Method and system to store information
US7800932B2 (en) * 2005-09-28 2010-09-21 Sandisk 3D Llc Memory cell comprising switchable semiconductor memory element with trimmable resistance
US20050226067A1 (en) * 2002-12-19 2005-10-13 Matrix Semiconductor, Inc. Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US6930909B2 (en) * 2003-06-25 2005-08-16 Micron Technology, Inc. Memory device and methods of controlling resistance variation and resistance profile drift
KR100682895B1 (en) * 2004-11-06 2007-02-15 삼성전자주식회사 Nonvolitile Memory Device Using Resistance Material Having Mulistate Resistance and Function Method for the Same
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480980B (en) * 2012-09-26 2015-04-11 Lin Chrong Jung Memory array and non-volatile memory device of the same

Also Published As

Publication number Publication date
WO2008016844A3 (en) 2008-03-27
TW200830315A (en) 2008-07-16
WO2008016844A2 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US7492630B2 (en) Systems for reverse bias trim operations in non-volatile memory
US7495947B2 (en) Reverse bias trim operations in non-volatile memory
US7499355B2 (en) High bandwidth one time field-programmable memory
US7499304B2 (en) Systems for high bandwidth one time field-programmable memory
US10374014B2 (en) Multi-state phase change memory device with vertical cross-point structure
US7522448B2 (en) Controlled pulse operations in non-volatile memory
US7646630B2 (en) Programmable matrix array with chalcogenide material
US7719874B2 (en) Systems for controlled pulse operations in non-volatile memory
US9251893B2 (en) Multiple-bit programmable resistive memory using diode as program selector
JP5297525B2 (en) Simultaneous writing and verification in non-volatile memory
US9418738B2 (en) Apparatuses and methods for efficient write in a cross-point array
JP5301662B2 (en) Short reset pulse for non-volatile memory
TWI412038B (en) Reverse set with current limit for non-volatile storage
US8885400B2 (en) Compensation scheme for non-volatile memory
TWI397924B (en) Method for controlled pulse operations in non-volatile memory and non-volatile memory
US20060097342A1 (en) Programmable matrix array with phase-change material
KR20120039528A (en) Programming reversible resistance switching elements
TW201106370A (en) Reduced complexity array line drivers for 3D matrix arrays
JP2011526402A (en) Capacitive discharge method for writing non-volatile memory
TWI356415B (en) Method of operating non-volatile storage and non-v
JP2013520761A (en) Step software program for reversible resistive switching devices
WO2014039115A1 (en) Multilevel differential sensing in phase change memory
TW200826279A (en) Non-volatile memory system and method of forming one time field-programmable memory
US9786368B2 (en) Two stage forming of resistive random access memory cells
TW200811864A (en) Multi-use memory cell and memory array and method for use therewith

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees