TWI329918B - Semiconductor multi-package module having wire bond interconnection between stacked packages - Google Patents

Semiconductor multi-package module having wire bond interconnection between stacked packages Download PDF

Info

Publication number
TWI329918B
TWI329918B TW092125625A TW92125625A TWI329918B TW I329918 B TWI329918 B TW I329918B TW 092125625 A TW092125625 A TW 092125625A TW 92125625 A TW92125625 A TW 92125625A TW I329918 B TWI329918 B TW I329918B
Authority
TW
Taiwan
Prior art keywords
package
die
substrate
module
stacked
Prior art date
Application number
TW092125625A
Other languages
Chinese (zh)
Other versions
TW200419765A (en
Inventor
Karnezos Marcos
Original Assignee
Chippac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/632,552 external-priority patent/US20040061213A1/en
Priority claimed from US10/632,550 external-priority patent/US6972481B2/en
Priority claimed from US10/632,551 external-priority patent/US6838761B2/en
Priority claimed from US10/632,549 external-priority patent/US7064426B2/en
Priority claimed from US10/632,568 external-priority patent/US7205647B2/en
Priority claimed from US10/632,553 external-priority patent/US7053476B2/en
Application filed by Chippac Inc filed Critical Chippac Inc
Publication of TW200419765A publication Critical patent/TW200419765A/en
Application granted granted Critical
Publication of TWI329918B publication Critical patent/TWI329918B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1023All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1052Wire or wire-like electrical connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1094Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

1329918 玖、發明說明: 相關申請交互參考 此案主張於2002年9月1 7日提出之美國臨時申請編號 60/411,590之優先權,其在此引用做為參考。 此申請案亦主張以下美國申請案之優先權,其每個皆在 2003年8月2日提出:美國申請編號1〇/63 2,549,名為「堆疊 封裝間具有線接點互連之半導體多重封裝模組」("Semiconductor multi-package module having wire bond interconnection between stacked packages");美國申請編號 10/632,568,名為 「具有堆疊在球格柵陣列封裝上的封裝,與在堆疊封裝間 具有線接點互連之半導體多重封裝模組」(11S emi c〇nductor multi-package module having package stacked over ball grid array package and having wire bond interconnection between stacked packages");美國申請編號10/632,551,名為「堆疊 封裝之間具有線接點互連並具有電遮蔽之半導體多重封裝 才旲組」(Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield");美國申請編號 10/632,552,名為「具有 堆璺在晶粒朝上倒裝晶片球格棚陣列封裝之封裝,並在堆 疊封裝之間具有線接點互連之半導體多重封裝模組」 ("Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect between stacked packages") ;美國申請編號1 0/63 2,5 5 3 ’名為「具有堆疊在晶粒朝下倒 88127 -6- 1329918 裝晶片球格柵陣列封裝上之封裝,並在堆疊封裝之間具有 線接點互連之半導體多重封裝模組」("Semiconduct〇r multi-package module having package stacked over die-down flip chip ball grid array package and having wire bond interconnect between stacked packages”);美國申請編號 1 0/632,550,名為「包括堆疊晶粒封裝並在堆疊的封裝之間 具有線接點互連之半導體多重封裝模組」("Semic〇nduct()r mufti-package module including stacked-die packages and having wire bond interconnect between stacked packages") ;其每個皆在此引用做為參考。 【發明所屬之技術領域】 本發明關於半導體封裝。 【先前技術】 攜帶式電子產品’例如行動電話、行動運算器、及多種 消費性產品,其皆需要在一有限的軌跡中具有較高的半導 體功能及效能、最小厚度與重量,並具有最低的成本。此 將驅使本產業來增加在個別半導體晶片上的整合度。 最近,該產業已經開始實施在「z軸」上的整合,也就是 說’藉由堆疊晶片,並已使用在一個封裝中最多堆疊到五 個晶片。此可提供具有一單晶片封裝之軌跡之密集晶片結 構’其ί巳圍在5 X 5 mm到40 X 40 mm ’且其厚度已經連續地 由2 · 3 mm降低到〇. 5 mm。一堆疊的晶粒封裝之成本僅漸增 地咼於一單一晶粒封裝的成本,且該裝配件良率相當高, 相較於將該晶粒封裝在個別封裝中,足可保證一具競爭力 88127 1329918 的最終成本。 、實際上對於可堆疊在-堆疊的晶粒封裝中之晶片數目的 王要限制為該堆疊晶粒封裝之低最終測試良率。不可避免 地是,在該封裝中的一些晶粒具有某些缺點,因此該最软 封裝測試良率將為個別晶粒測試良率之產品,其每個皆小 於⑽%。此特別會造成一問題’即使在—封裝中僅堆:兩· 個晶粒’但其中之—由於設計複雜度或技術而具有低㈣。· 另一個限制是該封裝的低功率散失。熱量由一個晶粒傳 到另一個:除了由烊球到主機板之外,沒有明顯的教熱路φ fe。 另一個限制為該堆疊的晶粒之間的電磁干擾,特別是在 RF與數位晶粒之間’由於每個晶粒不具有電遮蔽。 —另一個方式為整合在「Z軸」上來堆疊晶粒封裝,以形成 -多重封裝模組。堆疊封裝相較於堆疊晶粒封裝可提 種好處。 ^例而g,每個具有RF晶粒之封裝可以電性測試,並在 隹瓦β等封裝〈則被剔除’除非其顯示出令人滿意的效能 因此,取終堆疊的多重封裝模組良率可以最大化。 ,堆叠封裝中可提供更為有效率的冷卻,其係藉由在該 堆疊中的封裝以及在該模組頂部之間插入一散熱器。 、封裝堆登允許RF晶粒之電磁遮蔽,並避免與模组中的其 匕晶粒之干擾。 每個日日权,或不止一個晶粒可以封裝在一個別的封裝中 在使用對於孩晶片型式及組態之最有效率的第一階互連 88127 -8 - 1329918 技街的堆璺中,·例如線接點或倒裝晶片,其可最大化效能 並最小化成本。 在堆疊多重封裝模組中封裝之間的z互連,從製造性、 又计彈丨生及成本的角度而言為關鍵的技術。已經提出的Z互 連包括周邊悍球連接,以及f曲在該底部封裝頂部之上的 可ic基板在堆登多重封裝模組中z互連之周邊焊球的使用 會限制可製作連接的數目,i限制設計彈性,並造成較厚 且較高成本的封裝。雖然使用一可撓性彎曲基板原則上可 提供設計彈性,對於該彎曲製程並無已建立之製造機制。 再者使用可撓性彎曲基板需要一兩金屬層可撓基板, 其非¥卬貝。另外,該彎取的可撓基板方法受限於低腳位 數的應用,係因為在兩金屬層基板中繞線電路之限制。 請參考圖1-4之進一步詳細說明不同的z互連結構。 圖1所717為已在業界良好建立之標準球格柵陣列(「BGA」) 之結構的截面圖’其可做為在一堆疊多重封裝模組(「MpM」) 中的底部封裝。如10所示,該BGA包括附著於具有至少一 至屬層之基板12上的一晶粒14。其可使用多種基板型式, 其包括例如:一具有2_6金屬層之壓合板、或具有4_8金屬層 之增大基板、或一具有丨_2金屬層之可撓性聚醯亞胺、或一 Π瓷夕層基板。例如藉由圖1所示之基板12具有兩個金屬層 121、123,其每個被圖案化來提供適當的電路,並藉由通 孔122來連接。該晶粒習用上係使用—黏著劑來附著於該基 板的表面,其基本上稱之為晶粒附著環氧化物,如圖}之 13所示,且在圖丨之組態中,該晶粒所附著的基板表面可稱 88127 •9- 1329918 之為該「上方」奉面,而在該表面上的金屬層可稱之為「上 方j金屬層,雖然該晶粒附著表面在使用上不需要具有任 何特定的方向。 在圖1之B G A中’該晶粒係線接點到該基板之上方金屬層 上的線接點側,以建立電連接。該晶粒14及該等線接點】6 係以一模製化合物17所包覆,其可提供對於周圍及機械應 力之保痩,以便於處理程序,並提供一表面來標示以供識 別。焊球18係回焊到該基板之下方金屬層上的接點墊之上 ’以提供互連到一最終產品之主機板(未示於圖中),例如一 電腦。焊罩125、127係圖案化到該等金屬層12ι、ι23之上 ,以暴路在接點處之下層金屬來做為電連接,例如該線接 點處及接點塾,以接合該綠接點16及烊球18。 圖2所不為一 2-堆疊MPM之範例性結構的截面圖,標示為 20,其中在該堆疊中封裝之間的z互連係藉由焊球所製成。 在此MPM中,一第-封裝(其可稱之為「底部」封裝)係類 似於一標準BGA,如圖丨所示(而使用類似的參考編號來指 到圖1與2中類似的底部封裝之特徵一第二封裝(其可稱之 為居頂邯」封裝)係堆疊在該底部封裝上,其在結構上類 似於孩展部封裝,除了在該頂部封裝中的焊球係配置在該 頂部封裝基板周邊處,所以其會影響該z互連,而不會干擾 該底部BGA之包覆。特別是,圖2中的頂部封裝包括附著在 八有土 V金屬層之基板22上的一晶粒24。藉由例如圖2所 頂部封裝基板22具有兩個金屬層Ml、切,其每個圖 案化來提供適當的電路,並藉由通孔222來連接。該晶粒習 88127 10- 1329918 用上使用一黏著·劑來附著到該基板的一表面(該「上方」表 面)’基本上稱之為該晶粒附著環氧化物,如圖2之23所」示。 在圖2之MPM中的頂部封裝中,如同在該底部封裝,該晶 粒係線接點到在該練之上方金屬㉟i的線接點處來建立 電連接。該頂部封裝晶粒24及線接點26係利用一頂部封裝 模製化合物27來包覆。焊球28係回焊到位於該頂部封裝基 板之下方金屬層之周邊空隙上的接點墊之上,以提供?互連 到該底部封裝。焊罩225、227係圖案化到該等金屬層221、 223之上,以暴露在接點處之下層金屬來做為電連接,例如 該線接點處及接點塾’以接合該線接點2 6及焊球2 8。 圖2之MPM中的z互連可藉由回焊附著在該頂部封裝基板 之下方金屬層上的周邊接點墊之焊球28到該底部BGA之上 方金屬層上的周邊接點墊上◊在此組態中,在該頂部及底 部封裝之間的距離h必須至少與該底部封裝之包覆高度一 樣大,其可為0.3 mm或更南,且基本上較少地是在mm 與1.5 mm範圍之間。該等焊球2 8因此必須在當其回焊時具 有一充份大的直徑,而可與該底部BGA之接點塾具有良好 的接觸;也就是說’該焊球28直徑必須大於該包覆高度。 一較大的球徑規定了一較大的球間距,其因此限制了可安 置在該可用空間中的球數。另外,該等焊球之周邊配置使 得該底部BGA明顯大於一標準BGA之模具蓋。在小型BGA 中,其通常稱之為晶片級封裝(「CSP」),該晶片本體尺寸 比該晶粒大7 mm。在標準BG A中,該本體尺寸約比該模 具蓋要大2 mm,在此組態中,該頂部封裝基板必須具有至 88127 -11 -。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 This application also claims the priority of the following US applications, each of which was filed on August 2, 2003: US application number 1〇/63 2,549, entitled “Semiconductor Multiples with Wire Junction Interconnects in Stacked Packages "Semiconductor multi-package module having wire bond interconnection between stacked packages"; US Application No. 10/632,568, entitled "Package with Stacked on Ball Grid Array Package, Between Packaged Packages" "11S emi c〇nductor multi-package module having package stacked over ball grid array package and having wire bond interconnection between stacked packages"; US application number 10/632,551, named "Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield"; US Application No. 10/632,552, Named "Stacking wafers with wafers facing up "Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire Bond interconnect between stacked packages"); US application number 1 0/63 2,5 5 3 'named "packages with stacked wafer flip-chip arrays stacked on the die-down 88127 -6- 1329918, and in "Semiconduct® multi-package module having package stacked over die-down flip chip ball grid array package and having wire bond interconnect between stacked packages" US Application No. 1 0/632,550, titled "Semiconductor Multi-Package Modules with Stacked Die-Chip Packages and Threaded Interconnects Between Stacked Packages" ("Semic〇nduct()r mufti- Package module including stacked-die packages and having wire bond interconnect between stacked packages") This reference is used as reference. TECHNICAL FIELD OF THE INVENTION The present invention relates to semiconductor packages. [Prior Art] Portable electronic products such as mobile phones, mobile computing devices, and a variety of consumer products all require high semiconductor function and performance, minimum thickness and weight in a limited trajectory, and have the lowest cost. This will drive the industry to increase integration on individual semiconductor wafers. Recently, the industry has begun to implement integration on the “z-axis”, that is, by stacking wafers and using up to five wafers in a single package. This provides a dense wafer structure with a single wafer package track's thickness of 5 x 5 mm to 40 X 40 mm' and its thickness has been continuously reduced from 2 · 3 mm to 〇 5 mm. The cost of a stacked die package is only incrementally at the cost of a single die package, and the assembly yield is relatively high, as compared to packaging the die in individual packages to ensure a competitive The final cost of force 88127 1329918. In fact, the number of wafers that can be stacked in a stacked-die die package is limited to the low final test yield of the stacked die package. Inevitably, some of the grains in the package have certain drawbacks, so the softest package test yield will be the product of individual die test yields, each of which is less than (10)%. This in particular poses a problem 'even in the package - only the stack: two dies" but one of them - has a low (four) due to design complexity or technology. · Another limitation is the low power dissipation of the package. Heat is transferred from one die to another: there is no obvious heat path φ fe except for the ball to the motherboard. Another limitation is the electromagnetic interference between the grains of the stack, especially between the RF and the digital die' since each die does not have electrical shadowing. - Another way is to integrate the "Z-axis" to stack the die package to form a multi-package module. Stacked packages offer advantages over stacked die packages. ^Example, g, each package with RF die can be electrically tested, and in the package such as 隹 β β, then it is rejected 'unless it shows satisfactory performance, therefore, the multi-package module of the final stack is good. The rate can be maximized. More efficient cooling can be provided in a stacked package by inserting a heat sink between the package in the stack and the top of the module. The package stack allows electromagnetic shielding of the RF die and avoids interference with its die in the module. Each day, or more than one die, can be packaged in a different package in the stack of the most efficient first-order interconnects 88127 -8 - 1329918 for the die type and configuration. • For example, wire contacts or flip chip, which maximizes efficiency and minimizes cost. The z-interconnection between packages in a stacked multi-package module is a key technology in terms of manufacturability, billing, and cost. The proposed Z interconnect includes a peripheral ball connection, and the use of a peripheral solder ball of the ic substrate on top of the bottom package in the multi-package module of the bottom package limits the number of connections that can be made. , i limits design flexibility and results in thicker and higher cost packages. Although the use of a flexible curved substrate in principle provides design flexibility, there is no established manufacturing mechanism for the bending process. Furthermore, the use of a flexible curved substrate requires one or two metal layer flexible substrates, which are not mussels. In addition, the curved flexible substrate method is limited by the low pin count application due to the limitation of the winding circuit in the two metal layer substrates. Please refer to Figures 1-4 for further details of the different z interconnect structures. 717 of Figure 1 is a cross-sectional view of a structure of a standard ball grid array ("BGA") that has been well established in the industry. It can be used as a bottom package in a stacked multi-package module ("MpM"). As shown at 10, the BGA includes a die 14 attached to a substrate 12 having at least one vestibular layer. It can use a variety of substrate types including, for example, a plywood having a 2-6 metal layer, or an enlarged substrate having a 4-8 metal layer, or a flexible polyimide having a 丨_2 metal layer, or a Π Porcelain layer substrate. The substrate 12, shown, for example, by Figure 1, has two metal layers 121, 123, each of which is patterned to provide a suitable circuit and connected by vias 122. The die is conventionally attached to the surface of the substrate using an adhesive, which is basically referred to as a die attach epoxide, as shown in FIG. 13 and in the configuration of the figure, the crystal The surface of the substrate to which the particles are attached may be referred to as 88127 • 9-1329918 as the "upper" facing surface, and the metal layer on the surface may be referred to as "the upper j metal layer, although the die attaching surface is not in use. It is necessary to have any specific direction. In the BGA of Figure 1, the die line contacts to the line contact side on the metal layer above the substrate to establish an electrical connection. The die 14 and the line contacts The 6 is coated with a molding compound 17, which provides protection against ambient and mechanical stresses to facilitate handling procedures and provides a surface for identification. The solder balls 18 are reflowed to the substrate. Above the contact pads on the lower metal layer to provide a motherboard (not shown) interconnected to a final product, such as a computer. The solder masks 125, 127 are patterned into the metal layers 12ι, ι23 Above, the violent road is used as an electrical connection under the joint, for example The line contact and the contact point 接合 are joined to the green contact 16 and the ball 18. The cross-sectional view of an exemplary structure of a 2-stack MPM is shown in FIG. 2, labeled 20, wherein the package is packaged in the stack. The z-interconnection is made by solder balls. In this MPM, a first-package (which can be called a "bottom" package) is similar to a standard BGA, as shown in Figure ( (and similar Reference numerals refer to the features of the bottom package similar to those in FIGS. 1 and 2. A second package (which may be referred to as a top package) is stacked on the bottom package, which is similar in structure to the child department. The package, except that the solder ball system in the top package is disposed at the periphery of the top package substrate, it affects the z interconnect without interfering with the cladding of the bottom BGA. In particular, the top package of Figure 2 A die 24 is attached to the substrate 22 of the octa V metal layer. The top package substrate 22 has two metal layers M1, cut, for example, as shown in FIG. 2, each of which is patterned to provide a suitable circuit, and Connected by a through hole 222. The die used 88127 10- 1329918 uses an adhesive agent A surface attached to the substrate (the "upper" surface) is substantially referred to as the die attach epoxide, as shown in Figure 2 of Figure 2. In the top package of the MPM of Figure 2, In the bottom package, the die bond contacts are electrically connected to the wire contacts of the metal 35i above the die. The top package die 24 and the wire contacts 26 utilize a top package molding compound 27 The solder balls 28 are reflowed onto the contact pads on the peripheral voids of the metal layer below the top package substrate to provide interconnection to the bottom package. The solder masks 225, 227 are patterned to Above the metal layers 221, 223, the underlying metal is exposed as an electrical connection, for example, at the line contact and the contact 塾' to bond the wire contact 26 and the solder ball 28. The z interconnect in the MPM of FIG. 2 can be soldered to the peripheral contact pad on the metal layer above the bottom BGA by reflow soldering the solder ball 28 attached to the peripheral pad on the metal layer under the top package substrate In this configuration, the distance h between the top and bottom packages must be at least as large as the cladding height of the bottom package, which may be 0.3 mm or more, and substantially less than mm and 1.5 mm. Between the ranges. The solder balls 28 must therefore have a sufficiently large diameter when reflowed, and have good contact with the contact 塾 of the bottom BGA; that is, the solder ball 28 must have a diameter larger than the package. Cover height. A larger ball diameter defines a larger ball pitch, which thus limits the number of balls that can be placed in the available space. In addition, the perimeter of the solder balls is configured such that the bottom BGA is significantly larger than the mold cover of a standard BGA. In a small BGA, which is commonly referred to as a wafer level package ("CSP"), the wafer body is 7 mm larger than the die. In standard BG A, the body size is approximately 2 mm larger than the mold cover. In this configuration, the top package substrate must have up to 88127 -11 -

I32991R 第〇92丨25625號專利申請案 中文說明書替換頁(95年9月) 少兩個金屬層來便於該電連接。 圖3所TF為一已知的2-堆疊倒裝晶片MPM之範例性結構 的截面® ’其通常表不為3〇。在此組,態中,該底部倒 裝晶片封裝包括一基板32,其具有一圖案化的金屬層31, 更 原 質 内 容 <r> 在其上菽晶粒34係由該倒裝晶片凸塊36來連接,例如焊料 凸塊、金鈕凸塊、或各向異性導電膜或膏。該等倒裝晶片 凸塊係固定到該晶粒之活性表面上的一圖案化凸塊墊之陣 列上,且因為該晶粒的活性表面對於該基板的一面向上之 圖案化金屬層係面向下,這種配置可稱之為一「向下」倒 裝晶片封裝。在晶粒與基板之間的聚合物側填滿33提供了 對於周遭的保護,並加入機械整合度到該結構。這種倒裝 晶片封裝,其中該基板僅在該上方表面上具有一金屬層, 其係藉由透過焊料通孔35連接到該金屬層之焊球38來連接 到該下層電路(例如一主機板、其未示於圖中)。 在此組態中的頂部BGA係類似於該底部bga,除了該頂 邵BGA具有僅在孩頂部基板的周圍處連接到一金屬層如 < z互連焊球338(經由在該頂部基板中的焊料通孔335) ^焊 球338係回焊到該底部基板之金屬層331上,以提供該z互連 。特別是,在此組態中,該頂部BGA包括一基板说,其具 有該圖案化的金屬層331,在其上該頂部BGA晶粒334係= 倒裝晶片凸塊336所連接。在該頂部遍晶粒與基板之間為 -聚合物側填滿333。如圖3之結構更為適合於高電效能應 用’但其與圖2中所示型式之組態具有類似的限制。其比圖I32991R Patent Application No. 92丨25625 Patent Application Replacement Page (September 95) Two metal layers are provided to facilitate the electrical connection. The TF of Figure 3 is a cross-section of the exemplary structure of a known 2-stack flip chip MPM®' which is typically not 3 Å. In this set, the bottom flip chip package includes a substrate 32 having a patterned metal layer 31, the more original content <r> on which the germanium die 34 is bonded by the flip chip Block 36 is connected, such as a solder bump, a gold button bump, or an anisotropic conductive film or paste. The flip chip bumps are attached to an array of patterned bump pads on the active surface of the die, and because the active surface of the die faces down the patterned metal layer on one side of the substrate This configuration can be referred to as a "down" flip chip package. Filling the polymer side between the die and the substrate 33 provides protection for the surrounding and adds mechanical integration to the structure. The flip chip package, wherein the substrate has a metal layer only on the upper surface, which is connected to the lower layer circuit (for example, a motherboard by solder balls 38 connected to the metal layer through the solder vias 35) It is not shown in the figure). The top BGA in this configuration is similar to the bottom bga except that the top-slung BGA has a metal layer such as <z interconnect solder ball 338 attached to the periphery of the child's top substrate (via the top substrate) Solder vias 335) ^ solder balls 338 are soldered back to the metal layer 331 of the bottom substrate to provide the z interconnect. In particular, in this configuration, the top BGA includes a substrate having the patterned metal layer 331 on which the top BGA die 334 system = flip chip bumps 336 are connected. The polymer side is filled 333 between the top pass die and the substrate. The structure of Figure 3 is more suitable for high power efficiency applications' but it has similar limitations to the configuration of the type shown in Figure 2. Ratio map

2之組態已有改良 88127-950915.DOC 其中該底部BGA沒有模製,允許在該頂 • 12 - 、 / 1329918 部BGA之周圍處使用較小直徑(h)的焊球來連接在該等封裝 之間。 圖4所不為一已知的2_堆疊彎曲可撓基板MpMi範例性 結構的截面圖,如40所示。在圖4之組態中的底部封裝具有 一 2-金屬層可撓基板,在其上該晶粒係透過小柱來接合到 該基板之第一金屬層。該底部封裝基板之第二金屬層承载 有遠等焊球來連接到該下層電路,例如一主機板(未示出) 。該基板係足夠大來折彎在該封裝的頂部,藉此向上帶入 該電互連線,其中它們可藉由在該頂部封裝上的焊球陣列 來連接到該頂部封裝(如下所述之範例)。在該晶粒周圍與該 晶粒與折彎基板之間的空間被包覆而提供保護及強度。 請參考圖4,該2-金屬層底部封裝基板42包括一第一金屬 層141及一第二金屬層143,其每個被圖案化來提供適當的 電路,藉由通孔142連接。該第一金屬層在該底部基板之— 4伤之上的部份被處理(例如使用一沖孔陣列)來呈現—辩 臂樑或片46之陣列,其配置來對應於在該底部封裝晶粒料 之活性表面上的互連墊之陣列。在該基板42的此部份上’ 其可稱之為該「晶粒附著部份」,該第—金屬層141係面向 上。該晶粒係對準在該基板之晶粒附著部份上,以活性表 面向下,並接合了该懸臂樑及相對應的互連藝,其典型例 如藉由一種使用組合了壓力、熱及超音波能量之熱音波製 程,以完成該等電連接。該晶粒44係使用一黏著劑43來固 定在該可撓基板42的晶粒附著部份上。該底部封裝基板42 之第二金屬層143係向下面向該基板的晶粒附著部份中。焊 88127 •13· 1329918 球4 8係回焊到位在該第二金屬層14 3之面向下部份的一陣 列上之接點塾’以提供該]VIPM之互連到下層電路(未示出) 。一焊罩147係圖案化到該第二金屬層143之上,以暴露該 下層金屬做為電連接之接點處’其包含藉由焊球4 8來與該 下層電路連接的接點塾’及藉由焊球連接於該頂部封裝的 接點塾’如下所述。 · 该底部封裝基板42之另一部份,延伸鄰接該晶粒附著部 . 份’其係彎折向上’並位在該底部封裝晶粒44之上。在該 可撓基板42之此彎折於上的部份之上,該第一金屬層籲 面向上。在圖4的组態中,該頂部封裝通常類似於圖1之8(}八 ’其中該晶粒係線接點到位在該基板之上方金屬層之上的 線接點處,以建丘電連接。特別是,該頂部封裝晶粒〗4係 附著在具有兩個金屬層121、123之基板12上(在此範例中) ,其每個被圖案化來提供適當的電路.,並藉由通孔122來連 接。該晶粒習用上使用一黏著劑13來附著到該頂部封裝基 板之上表面,其典型為一晶粒附著環氧化物。該晶粒14及 亥等線接點16係利用一模製化合物1 7來包覆,其可提供對鲁 於周遭及機械應力的保護,以便於處理作業,並提供一表 . 面來做標記用於辨識。焊球18係回焊到該彎折於上之底部 封裝基板的面向上金屬層之上的接點墊143,以在該頂部與 底部封裝之間的z互連。 圖4之結構的優點為該彎折於上的基板可提供在該彎折 於上之底部封裝基板的面向上表面之上的充份面積,以容 納一芫整焊球陣列在該頂部封裝中,並容納更複雜的互連 88127 •14- 1329918 在該兩個封裝之間。其亦提供了一小型封裝軌跡。此組態 的一主要缺點為該基板的成本很高,且折彎技術與設備無 法取得。 所有這些堆疊封裝組態之共同特徵為它們可以保護每個 封裝,並以較高的最終測試良率來提供生產MPM。 【發明内容】 * 本發明係關於具有堆疊封裝之多重封裝模組。根據本發 -明,在該MPM中的該等堆疊封裝之間的z互連係以線接點為 基準。一般而言,本發明之特徵在於具有多種不同堆疊封 鲁 裝之組態,及藉由線接點為主之z互連來堆疊及互連不同封 裝之方法。在根據本發明之多重封裝模組中,該封裝堆疊 可包括多種BGA封裝及/或任何一種平台格柵陣列(「LGA」) 封裝:該封裝堆疊可包括線接點及/或倒裝晶片封裝;該封 裝堆疊可包括在該堆疊中或於其上所產生的一熱性增進特 徵;該封裝堆疊可包括線接點到該BGA或LGA頂部或底部 的一倒裝晶片晶粒的一或多個封裝;該封裝堆疊可包括在 $ 該堆疊的封裝減並列的封裝中具有超過一個晶粒之一或多 個BGA及/或LGA封裝;該堆疊可包括一或多個封裝之電磁 , 遮蔽;且該堆疊可包括任何基板、壓合板或组立或陶瓷, 其提供了藉由接合在該等封裝周圍上來製成z互連墊。 在一通用方面,本發明之特徵在於具有堆疊的下方與上 方封裝之多重封裝模組,其每個封裝包括附著到一基板之 晶粒’其中該上方及下方基板係藉由線接點來互連。 本發明可提供優良的製造性、高的設計彈性,及低成本 88127 -15 - 1329918 ,以製造具有-低輪靡及小軌跡之堆叠封裝模&。該線接 點Z互連技術已在本產業中請地建立;其為最低成本的互 連技術,並且可直接應用,不、需要明顯的修改,即可用於 本發明之多重封裝模組。其對於BGA到LGA之相對尺寸提 供了設計彈性,其可由導線長度來架橋。#由可取得之技 術與設備,在一線接點中的導線最短可到0 5 mm,或最長 到)mm。琢Z互連墊之配置可以透過BGa&lga基板設計或 其中一種來實施。另外,使用根據本發明之線接點,z互連 可形成在彼此並未精確對準之墊之間,其藉由所謂的「程 序外之接合」("out of sequence bondlng”,其目前已用於本 產業中。該線接點間距在本產業中最為微細的技術目前係 在50微米,並預期可到25微米。此可造成大量的z互連。製 造性及設計彈性皆可貢獻於MPM的低成本。 一典型BGA或LGA之最小軌跡為大於晶粒尺寸的丨7 mm 。加入根據本發明之z互連接點墊將可增加BGA最少〇 8 mm。一典型的BGA厚度為1.0 mm ’且LGA厚度為0.8 mm。 一典型的黏著厚度之範圍在0.025 mm到0.100 mm之間。根 據本發明之堆疊封裝MPM之執跡與厚度對大多數應用而言 皆可落在可接受的範圍内。 在一些具體實施例中,該多重封裝模組包括三個或多個 封裝,其序列地固定來形成一堆疊。 在另一方面’本發明之特徵為一堆疊有第一(「底部」) 及第二(「頂部」)封裝的多重封裝模組,每個封裝包括附著 於/基板之晶粒,並藉由線接點來連接到該基板,其中該 88127 -16 - 頂部封裝基板及該底却&& # 低部封裝基板係藉由線接點來互連。在 二具把Λ施例中’每個封裝係、完全以—模製材科來包覆 ;在其它具體實施例中,至少-個封裝僅包覆到某個程度 在後、Λ處理及測試期間來保護該晶粒與該基板之間的 線接點。在一些旦,电、Α ,丨丄 —、& Λ钯例中,該第二封裝為一 b(}A封裝 在二k種具體貫施例十,該lga封裝基板為一單— 金屬層基板。 「万面’本發明之特徵為-堆叠有第-(「底部」) ΒΓ=(頂^」)封裝的多重封裝模組,該底部封裝為— GA封裝’每個封裝包# ^ Α 、耆;一基板之晶粒,其中該頂 ^封裝基板及該BGA封裝基板係藉由線接點來互連。 1万面本發明之特徵在於具有堆疊封裝之一多重 封裝模組’其中至少—個 的組態中,兮電d0封裝具有一電遮蔽。在一些這樣 些具體實施例中,該等且= -政“。在― ,且該迷蔽用遮蔽之封裝包括一 RF晶粒 :故用於在孩夕重封裝模組中限制該 日日粒 < 間的電磁干挵。 …、匕 具有-電遮f 施例中,該底部封裝 在另-方面’本發明之祛 及第二(「頂部如隹疊有第I「底部」) 上曰t α」’ ’的乡重封裝H該底部封裝為在- 上日日粒組態中的— 該頂部基板岭广·、片/一倒裝晶片BGA封裝,其中 與 …4邵封裝猎由線接點來互連。在-些且髀 貝她例中,該頂部封裝為— θ ^ 施例中’在兮地田 丘阳松封裝,在一些具體實 在逐堆覺的晶粒封裝中相鄰的堆疊晶粒可由間隔 88127 -17- 1329918 器來分開。在一此且 ' 、 …、μ施例中,在^部封裝上的倒裝 ::曰:、-電邋蔽。在-些具體實施例中,該底部封 ==—嵌入的接地平面,該接地平面係設置成亦用 於政…及做為一電遮蔽。 :另—「方面,本發明之特徵為-堆疊有第—(「底部」) 曰=封裝的多重封裝模組;該底部封裝為在— 下曰9 ^、’且怨中的—倒裝晶片之—倒裝晶片BGA封裝,並中 孩頂邵基板與該底部封裝藉由線接點來互連。在一些 實施例^在該底部封裝上的倒裝晶片晶粒具有—電遮蔽= 在另-万面,本發明之特徵為—堆疊有第_(底部)及第二 d)封裝的夕重封裝模組,每個封裝包括附著^ —基板之 晶粒,並藉由線接點來連接,其中該頂部封裝基板及該底 邵封裝基板係藉由線接點來互連,且其中該底部封裝與該 頂邵封裝中至少一個為一堆叠晶粒封裝。在_些具體實施 例中’該頂部封裝與該底部封裝皆為—堆疊晶粒封裝。 在另一通用方面中,本發明之特徵在於製作多重封裝模 组:万法’藉由在一第一(底部)封裝基板上包括至少一晶粒 义罘—(甩部)封裝,其置於該第一封裝之上,及一第二(頂 部)封裝,其在一第二(頂部)封裝基板上包括至少一晶粒, 並在該第-及第頂部及底部)基板之間形成線接點z互連 。較佳地是’該等封裝可在组裝之前測試,其可丟棄不滿 足效能或可靠度之封裝,所以較佳地是測試為「良好」之 第一封裝及第二封裝即用於該组裝的模組中。 在—万面,本發明之特徵在於一種製作一多重封裝模組 88127 •18- 1329918 之方法,其包括堆疊在一 BGA封裝上的LGA封裝,其中該 頂部及底部封裝藉由線接點來電互連。根據此方面,提供 一BGA封裝,其通常係在一模製BGA封裝之未分離的長條 ;較佳地是在該長條中的BGA封裝進行效能及可靠度測試 ,而辨識為「良好」之封裝即接受後續的處理;黏著劑係 分配到「良好」BGA封裝上模製之上方表面上;提供一模 擬的模製平台格栅陣列封裝;較佳地是,測試該LGA封裝 ,並辨識為「良妤」;該等「良好」的LGA封裝即置於該 「良好」BGA封裝上的模製之上的黏著劑,並固化該黏著 劑;依照需要且較佳地是,在該堆疊的頂部LGA與底部BGA 封裝之間形成線接點z互連之後即進行一電漿清洗作業;依 照需要且較佳地是,可進行一額外的電漿清洗,接著為形 成該MPM模製。進一步的步驟包括附著第二層互連烊球到 該模组之下方側;測試並分離完成的模組與該長條,例如 藉由鋸開分割或藉由沖孔分離;並對於其它用途來封裝。 在一些具體實施例中,該LGA(頂部)封裝即完全地模製成 型,具有該LGA封裝之常為平面的上方表面;在其它具體 實施例中,該等線接點,但非該LGA封裝之整個上方晶粒 表面進行模製,該LGA之模製係由僅在該晶粒的周圍及該 LGA封裝基板的間隙附近來分配有該模製化合物。 在另一方面,本發明之特徵在於為一種在一 LG A封裝堆 疊於一 B G A封裝之上的一多重封裝模組之方法,其中該頂 部及底部封裝係由線接點來電互連,且其中該底部封裝具 有一電磁遮蔽。根據此方面,提供一球格柵陣列封裝,其 88127 -19- 1329918 通常係在BGA封裝之未分離的長條;該等BGA封裝具有固 定在該晶粒之上的遮蔽;較佳地是,在該長條中的B G A封 裝進行效能及可靠度之測試,並識別為「良好」,以接受 後續的處理;黏著劑係分配在「良好」BGA封裝上之遮蔽 的上方表面之上;提供一分離的模製平台格柵陣列封裝; 較佳地是,測試該LGA封裝,並識別為「良好」;該「良 好」LGA封裝係置於該遮蔽之上的黏著劑上,並固化該黏 著劑;依照需要且較佳地是,在該堆疊的頂部LGA與底部 BGA封裝之間形成線接點z互連之後即進行一電漿清洗作 業;依照需要且較佳地是,可進行一額外的電漿清洗,接 著為形成該MPM模製。進一步的步驟包括附著第二層互連 焊球到該模組之下方側;測試並分離完成的模组與該長條 ,例如藉由鋸開分割或藉由沖孔分離;並對於其它用途來 封裝。 在一些具體實施例中,該方法包括用於提供該多重封裝 模組一散熱器之步驟。在本發明的此一方面,進行一類似 的製程,具有額外的步驟插入一「落入」模製作業到安裝 所支援的散熱器中,或插入一「落入」模製作業到安裝一 簡單的平面散熱器;或藉由施加黏著劑到該頂部封裝模製 之上方表面上、或在該頂部封裝上一間隔器的上方表面上 ,並固定該平面散熱器到該黏著劑上。 在另一方面,本發明之特徵在於一種製作一多重封裝模組 之方法,其包括堆疊在一下晶粒倒裝晶片BGA底部封裝上 的一頂部封裝,其中該等頂部及底部封裝藉由線接點來電 88127 -20 - 1329918 互連。根據此方面,提供一下晶粒倒裝晶片bga底部封裝 i視需要進行模製’通常係在下晶粒倒裝晶片球格柵陣列 底β封裝中,較佳地是在該長條中的bga封裝進行效能及 可靠度測試,而識別為「炎好」的封裝即接受後續的處理 ^黏著劑係分配在「良好」BGA封裝上該晶粒的上方表面 (背側)之上,·提供分離的頂部(例如平台格栅陣列)封裝,並 可視需要來模製;較佳地是’進行該LGa封裝的測試,並 識別為「良好」;該等「良好」⑽封裝係置於在該遮蔽 《上的黏著劑上’並固化該黏著劑;依照需要且較佳地是 ,在該堆疊的頂部LGA與底部BGA封裝之間形成線接點巧 叙後即進行一電漿清洗作業;依照需要且較佳地是,可 進行-額外的電漿清洗,接著為形成該MpM模製。進一步 的步驟包括附著第二詹互連焊球到該模組之下方側;測試 並分k成的模組與該長條’例如藉由錐開分割或藉由沖 孔分離;並對於其它用途來封裝。 在另-方面,本發明之特徵在於為—種包括在—頂部封 裝堆疊於—下晶粒倒裝晶片崎底部封裝之上的—多重封 ^模組之方法,其中該頂部及底部封裝係由線接點來電互 連,且其中該底部封裝具有—電遮蔽。根據此方面,進行 類似於前述對於未遮蔽底部的倒裝晶片底部封裝的處理, 其具有—額外的步驟來插入安裝該遮蔽到該底部封裝倒裝· 晶片晶粒。提供一下晶粒倒裝晶片bga底部封裝,視需要 ^丁模製’通常係在下晶粒倒裝晶片球格柵陣列底部封裝 中;較佳地是在該長條中的BGA封裝進行效能及可靠度測 88127 -21 - 10 試,而識另丨J A 「白此 係分配在「良好:::裝即接受後續的處理;黏著劑 杜艮好」BGA封裳上該晶粒的 ;提供分離的頂部(例如平A U側)足上 模製;較佳地是^ 柵陣列)封裝’其可視需要來 好」·梦等「、以丁孩LGA封裝的測試’並識別為「良 ^ ^ 封裝係置於在該遮蔽之上的黏著 心’並固㈣黏著劑;依照需要且較佳 : 的頂部LGA與底部BGA封 在成隹寬 # ^ 61 >成、.泉接點z互連之择gp 作業;依照需要且較佳地是,可進行1 括附接著為形成該MPM模製。進一步的步驟包 括附f罘—層互連焊玟刭兮 、 成的模纽與該長條,例如养::《下方側:測試並分離完 ’' 猎由鋸開分劃或藉由沖孔分離; 並對於其它用途來封裝。 , 在另-方面,本發明之特徵在於_種包括堆疊於一上曰 粒倒裝晶片BGA底部封裝之上的-頂部封裝之方法,其; 及I、部及;^部封裝係藉由線接點電互連0根據此方面,提 供:上晶粒倒裝晶片球格柵陣列封裝,其通常未模製,並 通系為上晶粒倒裝晶片球格柵陣列封裝之未分離長條; 較佳地是,在該長條中的BGA封裝進行效能及可靠度的測 0式且識別為「良好」的封裝即接受後續的處理;黏著劑 即分配在「良好」BGA封裝上的該基板之上表面之上;提 供一第二封裝,其在一些具體實施例中可為一堆疊的晶粒 封裝,其可視需要且通常為模製;較佳地是,測試該LGa 封裝,並識別為「良好」;該等「良好」LG A封裝即置於 在該BGA基板之上的黏著劑上,並固化該黏著劑;其視需 S8127 -22- 1329918 要而較佳地是在該堆疊的頂部LGA與底部bga封裝之間形 成,接點Z互連之後進行清洗作業;其視需要且較佳 地疋進行-額外的電衆清洗,接著形成該模製。進— 步的步驟包括附著第二層互連坪球到該模組之下方侧;測 試並分離完成的模組與該長條,例如藉由据開分割或藉由 冲孔分離;並對於其它用途來封裝。 在另一方面,本發明之特徵在於一種製作一多重封裝模 組《方法,其包括堆疊在堆疊的底部封裝之上的一頂部封 裝4中該等頂部及處部封裝藉由線接點來電互連。根據 此方面,提供一堆疊的晶粒BGA封裝,其通常為模製,且 通常提供為-堆疊的晶粒球格柵陣列封裝之未分離的長終 ;較佳地是進行在該長料BGA封㈣效能及^度測^ ’而識別為「良好」之封裝即接受後續的處理;黏著劑即 刀配到孩「良好J堆4的晶粒BGA封裝之上方表面之上· 通常是在該封裝模製的經常為平面的上方表面上·提供二 分離的第二封裝,it常為模製,其可视需要做為—堆疊的 晶粒封裝;較佳地是測試該第二封裝,並識別4「良好」 ’孩「良好J第二封裝係置於該BGA之上方表面之上的黏 著劑上’ i固化該黏著劑;其視需要而較佳地是在該堆疊 的頂部及底部封裝之間形成線接點z互連之後進行一電2 清洗作業其视需要而較佳地是進行—㈣的電漿清洗, 接著形成該MPM模製。進一步的步驟包括附著第二層互連 焊球靠模组之下方側;測試並分離完成的模組與該長條 ’例如藉由銀開分刻或藉由沖孔分離;並對於其它用途來 88127 •23 · 1329918 封裝。 在該方法的一些具體實施例中,在一未分離的長條中提 供兩個或更多的第一模製的封裝,且在該長條上進行兩個 或更多模组的组裝,並在完成該組裝之後進行該等兩個或 更多模組之分離。 在根據本發明之製作多重封裝模組的方法中,在該等堆 疊的封裝之間的電連接使用習用的線接點來在該堆疊中形 成上方及下方封裝基板之間的2互連。特殊的好處包括使用 已建立的製造架構、低生產成本、設計彈性及一薄封裝產 品。該Z互連線接點可以在多種的封裝及模組組態中實施, 其係藉由從在孩第二封裝基板上的一導電墊形成的凸塊拉 出導線到在該第一封裝基板上的一導電墊;或是,由在該 第一封裝基板上的一導電墊上形成的一凸塊拉出導線到在 该弟二封裝基板上的一導電塾。 本發明提供了以最低成本及最高的最終測試良率來在一 薄形及最小軌跡封裝中超過一個半導體之裝配件。再者, 根據本發明的一些堆疊組態允許高度熱效能、高度電效能 或一數位元件與RF元件之電性絕緣。其它的堆疊組態可提 供適用於掌上型或消費性產品之非常薄的結構。所有提供 來組裝的方法係允許該堆疊的封裝之個別測試可以最大化 該模組之最終良率。 額外的製%步驟將用來完成根據本發明之多重封裝模組 。舉例而言,其較佳地是,在該堆疊中最下方封裝之連接 用的焊球不會附著到主機板上,而是直到該MpM之分離之 88127 -24- 1329918 前的最終步驟。 的任—點來,例如電細可在製程中許多地方 1德曰六 仃,例如在黏著劑固化之後,及包覆之前, 且像疋在'互連線接點之前及/或之後。 接 邊等個別封裝可提供做為數個封裝的長條, 列冑於在製造期間來處理,且該多重封裝模組 疋’製程步驟之後來分離。在根據本發明的方法中, 孩争封裝堆疊可藉由固定 疋刀雕的罘—封裝來形成在一選擇 31 式的非單 一 av ^ ^ αλ ' ^ . 弟―封裝的—長條上,並直到完成形成該 等挺、’且之製程之後才行成咳續接赴r Α ” 丁风3、,泉接點的2互連,然後再分離該 寺模組。 根據本發明之MPM可以用來構建電腦、電信設備、及消 費性與工業電子裝置。 【實施方式】 現在本發明將參考圖面來進一步詳細說明,該等圖面說 明了本發明其它的具體實施例。該等圖面僅為圖示,說明 了本發明之特徵與其和其它特徵與結構之關係,並未依比 例續製。為了改善呈現的清晰度,在說明本發明之具體實 施例的圖面中,對應於在其它圖面中所示的元素之元素2 未皆特別·重新編號,雖然它們在所有圖面中皆可清楚辨識。 現在請參考圖5A’所示為在根據本發明一方面:心重 封裝模組之具體實施例的5〇處的截面圖,並勹化士 ’、括·有堆叠的 第一(「底部」)及第二(「頂部」)封裝,其中該等堆疊的封 裝係由線接點來互連。在圖5A所示的具體實施 、 』T ’该底 因此 部封裝400為一習用的BGA封裝,例如圖1所 8S127 -25· 1329918 此具體貫施例中,該底部封裝4〇〇包括一晶粒4丨4,其附著 於,、有土 y —金屬層的一底部封裝基板412之上。其可使用 多種基板型式中的任何-種’例如包括:—具有2_6金屬層 之壓合板、或具有4-8金屬層之建構基板、或具有卜2金屬層 足可撓聚醯亞胺帶、或一陶瓷多重層基板。藉由圖5 A之範 例所示之底部封裝基板412具有兩個金屬層42丨、423,其每 個被圖案化來提供適當的電路,並透過通孔422連接。該晶 粒在習用上係使用一黏著劑來附著於該基板的一表面上, 基本上係稱之為晶粒附著環氧化物,如圖5A中的413所示, 且在圖5A的組態中,該晶粒所附著的基板表面可稱之為「上 方」表面,且在該表面上的金屬層可稱之為「上方」金屬 層,雖然菽晶粒附著表面在使用上不需要具有任何特定的 方向性。 在圖5A之底部BGA封裝中,該晶粒係線接點到在該基板 之上金屬層的線接點處來建立電連接。該晶粒414及該線接 點416係以一模製化合物417來包覆,其可提供對於周遭及 機械應力的保護,以便於處理作業,並提供一底部封裝上 表面41 9到一可堆疊的第二(「頂部」)封裝。焊球4】8被回焊 到遠基板之下方金屬層之接點塾上,以提供互連到例如一 最終產品之主機板(未示於圖中)之下層電路,例如電腦等。 焊罩415、427係圖案化到該金屬層421、423之上來在接點 處暴露該下層金屬用於電連接,例如該線接點處,及用於 接合該等線接點416及焊球41 8之接點塾。 在圖5A所示的具體實施例中,該頂部封裝5〇〇為一平台格 88127 • 26 · 1329918 概陣列(LGA)封裝,其可以類似於一 BGA封裝,例如圖^中 所不,但;F具有;!:旱球安裝到該基板之下表面的接點塾上。 特別是在此範例中,該頂部封裝5〇〇包括附著在具有至少一 金屬層之頂部封裝基板512上的一晶粒514。其可使用多種 基板型式中的任何一種;藉由圖5八之範例所示之頂部封裝 基板512具有兩個金屬層521、523,其每個被圖案化來提供 適當的電路,並透過通孔522連接。該晶粒在習用上係使用 一黏著劑來附著於該基板的_表面上,基本上係稱之為晶 粒附著環氧化物,如圖5A中的513所示,且在圖从的组態 中,菽晶粒所附著的基板表面可稱之為「上方」表面’且 在該表面上的金屬層可稱之為「頂部」金屬層,雖然該晶 粒附著表面在使用上不需要具有任何特定的方向性。 在圖5A之具體實施例中的頂部LGA封裝,該晶粒係線接 點到該基板之上方金屬層的線接點處來建立電連接。該晶 粒5 14及该線接點5 16係以一模製化合物5丨7來包覆’其可提 供對於周遭與機械應力的保護,以便於處理作業,並具有 一頂部封裝上·表面519。該頂部封裝5〇〇係堆疊在該底部封 裝400之上,並使用一黏著劑5〇3來附著。焊罩us、係 圖案化在該等金屬層521、523之上,以在接點處來暴露該 下層金屬,用於電連接,例如該等線接點處來接合該線接 點 5 16。 在孩堆疊的頂部封裝500與底部封裝4〇〇之間的z互連係 藉由連接個別封裝基板之頂部金屬層的線接點5 1 8來製成 方面,母個線接點5 1 8係電連接到該頂部封裝基板5 ^ 2 88127 -27- 1329918 之上金屬層521上之塾的上表面’而另一方面’每個線接點 係連接到該底部封裝基板412之上金屬層421上之墊的上表 面。垓線接點可由任何在本技藝中所熟知的線接點技術來 形成,例如像是在美國專利5,226,582中所述,其在此引用 做為參考。該封裝對封裝2互連線接點係藉由圖5A中的範例 來說明,其係由形成一凸粒或凸塊在該頂部基板的上金屬 層上的塾之上表面上,然後向下拉出導線朝向並融合到 該底°卩基板之上金屬層的一塾上。如下所述,該線接點可 在反方向上冤成,也就是說,藉由形成一凸粒或凸塊在該 底部基板之上金屬層的一墊之上表面上’然後向下拉出該 導線朝向並融合到該頂部基板之上金屬層上的一墊。如下 所述,孩封裝對封裝z互連之線接點策略的選擇將根據該等 堆疊基板 < 間隙的幾何配置與在其上的接合表面來決定。 在圖5A中的堆疊封裝具體實施例中,在個別封裝基板上 的z互連墊係配置在靠近該封裝基板之間隙處的上金屬層 之上。忒z互連墊之位置及順序通常係配置來使得在該頂部 封裝基板上的z互連墊在堆疊該等封裝時大致覆蓋了在該 底部封裝上的相對應z互連墊。習用上,該頂部封裝5〇〇具 有比該底邵封裝400要較小的基板軌跡,以允許該線接點之 空隙不會造成短路到該基板之金屬層的邊緣。一旦已經形 成了該z互連線接點,即形成一模组包覆,以覆蓋及保護該 等z互連線接點,並提供所完成的模組之機械整合性。 在琢頂部及底部封裝基板上的z互連墊之配置係藉由在 圖5B及5C中的平面圖之範例來顯示,其分別是在5〇〇及4〇〇 88127 -2S- 1329918 。請參考圖5B,頂部封裝z互連墊524係由圖案化位在該頂 部封裝基板512之上表面525上的空隙501處的該上金屬層 的區域所形成。該空隙501延伸超過該頂部封裝包覆材料之 邊緣526,其具有一上表面519。現在請參考圖5c,底部封 裝z互連墊424係由圖案化位在該頂部封裝基板4丨2之上表 面425上的空隙401處的上金屬層之區域所形成。該空隙4〇1 延伸超過該堆疊之軌跡5 11之外,並覆蓋頂部封裝基板5 1 2 ,並進一步超過該底部封裝包覆材料之邊緣426,其具有一 上表面4 1 9。 如圖5A、5B及5C所示,在根據本發明之頂部及底部封裝 之間的Z互連係由在遠頂部封裝基板之空隙5 〇丨中的頂部封 裝互連墊524及該底邵封裝基板之空隙4〇1中的底部封裝互 連塾424之間(上接點或下接點)的線接點所製成。該多重封 裝模組結構係由形成一模組包覆5〇7來保護,且坪球418係 回焊到該底部封裝基板之下金·上所暴露的焊球塾,來 連接到下層電路,例如一主機板(未示於圖中)。 卜如前所述,·根據本發明之結構允許在组裝到該多重封裝 模:之前預先測試該BGA及LGA ’以允許在組裝之前排除 不苻口的封裝,藉此保證具有較高的最終模組測試良率。 為了改善來自該多重封裝模組之散熱,在該頂部封裝之 上可提供-散熱器。該頂部散熱器係由一導熱材科所形成 其〜在其上表面之中具有更多的中心區域來暴露該 的上表面到周遭環境’來更有效率地對於Μ·進行熱 叉換。例如該頂部散熱器可為一金屬片(如飼片),而其可在 88127 -29- 1329918 該模製材料固化處理期間來 散熱器可在該頂部封裝之上 及一周圍支撐的部份,或是 之上表面的支撑部件。 固定到該MPM包覆。或者,該 具有一通常為平面的部份,以 置於或靠近於該底部封裝基板 藉由範例,圖5E所示為根據本發明另一方面之堆疊的 BW則54之截面圖,其中在該MpM的上表面處提 供-「頂邵」散熱器。在MPM54中堆疊的封裝之結構通常 類似於圖5A中的該MPM5〇,而在圖中可由類似的參考編號 來識別類似的結構。在此範例中的頂部散熱器係由一導熱 材料所形成,其具有位在該頂部封裝之上的通常為平面的 中心部份544,及延伸到該底部封裝結構4u之上表面的周 圍支撐部件546。料面部份544之上表面係在該MpM上表 面來暴露到周圍,以有效率地將熱帶出MpM。例如該頂部 散熱器可藉由一金屬片(例如銅)來形成,例如藉由沖壓。該 等支撐部件5 4 6可依需要來使用一黏著劑固定到該底部封 裝基板t上表面(未示於圖中 >該多重封裝模組結構可由形 成一模組包覆507來保護,且該散熱器支撐部件在該模製材 料固化處理期間被嵌入在該MPM包覆5〇7中。在圖5E的具體 貫施例中’在該散熱器的平面上方部份5 4 4的周圍提供有一 階梯狀的凹入特徵5 4 5 ’以允許較佳的結構之機械性整合度 ,而較不會與該模製化合物分離。在此具體實施例中,該 散熱器544之下表面與該LGA模製517之上表面5 19之間的 空間係填入該MPM模製之薄層。 另外,一頂部散熱器可固定於該LGA模製之上表面,如 88127 -30· 1329918 在圖5D之截面圖中所示。在MPM 52中該堆疊的封裝之結構 通常類似於在圖5A中的MPM 50,而類似的結構可在圖面上 由類似的參考編號來識別。在圖5£>之範例中的頂部散熱器 5〇4為一通常為平面的導熱材料板,其至少具有其上表面的 一更為中心的區域來暴露到周圍環境,以更有效率地將熱 γ出MPM,如圖5E之範例中所示。例如該頂部散熱器可為 一金屬板(例如銅)。但是,在此處該頂部散熱器5〇4係使用 一黏著劑506來固定到該上方封裝包覆517之上表面519。該 黏著劑506可為一導熱黏著劑,以提供改善的散熱效果。通 t在孩頂部封裝模製已經至少部份固化之後,該頂部散熱 器即固定到該頂部封裝模製,但其係在該模製材料對於該 MPM包覆507射出之前。該頂部散熱器之周圍可以包覆該 MPM模製材料。在圖5D的具體實施财,在該散熱器5〇4 的周圍提供有一階梯狀的凹入特徵5〇5,以允許較佳的結構 之機械性整合度,而較不會與該模製化合物分離。 在另一種選擇中,如圖5A《MPM,其可具有一簡單的平 面散熱器,而.不具有支撐部#,其並P付著於該頂部封裝 模製的上表面。在這些具體實施例中,如在圖5;〇中的具體 實施例,i亥頂部散熱器可為—通常為+面的導熱材料板, 例如像是-金屬片(例如銅)’及至少該平面散熱器之上表面 的更為中心的區域係暴露到周圍來更有效率地將熱帶離該 MPM。此處,在該簡單平面散熱器之下表面與該l(}a模製 5 17之上表面51 9之間的空間係填入一薄層的MpM模製且 這種簡單的平面散熱器可在該模製材料固化處理期間來固 88127 -31 · 1329918 定於該MPM包覆507«這種未附著的簡單平面頂部散熱器之 周圍可以包覆有該MPM模製材料,如同在圖5D中所附著的 平面散熱器,並可在該周圍上提供一階梯狀的凹入特徵 ,以允許與該結構的較佳機械整合度,並較不會與該模製 化合物分離》 如圖5 D、5 E所示之具有一散熱器的MpM,其可提供改呈 的熱效能。 ° 現在請參考圖6 A,所示為根據本發明一方面之堆疊的封 裝多重封裝模組之截面圖,其在一 BGA底部封裝之上具有 一 LGA頂部封裝,其中該頂部封裝LGA被部份地包覆。也 就是說,該頂邵LGA封裝的模製材料係應用到有限的區域 ,並為有限的量,其足以在後續處理期間來保護該等線接 點,特別是在後續的效能測試期間。在其它方面,圖6八的 組態即實質上顯示在圖5A中。因此,在此具體實施例中, 該底部封裝400之結構如圖5A所述,且該頂部封裝6〇〇之結 構實質上即如圖5A所示,除了在該上方封裝包覆中的差異 。特別是,該頂部封裝600包括附著在具有至少一金屬層之 頂部封裝基板612上的一晶粒614。其可使用多種基板型式 中的任何一種;藉由圖6A之範例所示之頂部封裝基板512 具有兩個金屬層621、623,其每個被圖案化來提供適當的 黾路,並透過通孔6 2 2連接。該晶粒在習用上係使用一黏著 劑來附著於該基板的一表面上,基本上係稱之為晶粒附著 環氧化物,如圖6A中的613所示,且在圖6八的組態中,該 晶粒所附著的基板表面可稱之為「頂部」表面,且在該表 88127 -32- 1329918 頂部j金屬層,雖然 面上的金屬層可稱之為「上方」或 該晶粒附著表面在使用上不需要具有任何特定的方向性。 在圖6A之具體實施例中的頂部LGA封裝,該晶粒係線接 點到該基板之上方金屬層的線择點處來建立電連接。該晶 粒614及該線接點616係包覆一模製化合物617,其可提:: 於周遭及難應力的賴,錢於處理作業。在此且體實 施例中的包覆617之形成,係僅用來包覆該線接點及其個別 的連接到該頂㈣裝基板與㈣部封裝晶粒,所以該晶粒 、上表面大&自未被该包覆所覆蓋。該頂部封裝6⑽ 係堆疊在該底部封裝之上,並使用—黏著劑來固定在那 裏。焊罩川、627係圖案化在該金屬層621、⑶之上以 在接點處暴露該下層金屬來用於電連接,例如在該線接點 處來接合該等線接點616。 —在孩堆疊的頂部封裝_與底部封裝400之間的z互連係 藉由連接個別封裝基板之頂部金屬層的線接點61 8來製成 及少重封裝模組結構係由形成一模组包覆⑷來保護,且 ^球418係㈣縣底部封裝基板之下金屬層上所暴露的 Ό▲來連接到下層電路,例如—主機板(未示於圖中)。 6此”且心的好處在於降低成本。該部份包覆係實施成與該 接....處理致(例如藉由通過—微細喷嘴配送,如同來自 工U針e的/王射益),並因此提供了較高的流量’及使用 較乂的包设材料。在該部份包覆之後,該頂部LGA封裝可 在不而要重排成特殊的處理即可測試,以避免損傷該頂部 封裝線接點。 88127 -33- 1329918 為了改善如圖6A中的範例所示之多重封裝模組的散熱, 在及頂部封裝《上可提供一散熱器。該頂部散熱器係由一 導熱材料所形成,其具有將其上表面之更為中心的區域暴2 configuration has been improved 88127-950915.DOC where the bottom BGA is not molded, allowing the use of smaller diameter (h) solder balls around the top 12 - 12 / / 1329918 BGA Between the packages. Figure 4 is a cross-sectional view of an exemplary structure of a known 2_stacked curved flexible substrate MpMi, as shown at 40. The bottom package in the configuration of Figure 4 has a 2-metal layer flexible substrate upon which the die is bonded through the posts to the first metal layer of the substrate. The second metal layer of the bottom package substrate carries a remote solder ball for connection to the underlying circuitry, such as a motherboard (not shown). The substrate is sufficiently large to be bent over the top of the package, thereby being brought up into the electrical interconnect, wherein they can be connected to the top package by an array of solder balls on the top package (as described below) example). The space around the die and the space between the die and the bent substrate is covered to provide protection and strength. Referring to FIG. 4, the 2-metal layer bottom package substrate 42 includes a first metal layer 141 and a second metal layer 143, each of which is patterned to provide a suitable circuit, which is connected by a via 142. The first metal layer is processed over a portion of the bottom substrate (eg, using a punch array) - an array of arm beams or sheets 46 configured to correspond to the bottom package crystal An array of interconnected pads on the active surface of the pellet. On this portion of the substrate 42, which may be referred to as the "die attach portion", the first metal layer 141 is oriented upward. The die is aligned on the die attach portion of the substrate with the active surface down and joined to the cantilever beam and corresponding interconnects, typically exemplified by a combination of pressure, heat and The thermal sonic process of ultrasonic energy to complete the electrical connection. The die 44 is fixed to the die attaching portion of the flexible substrate 42 using an adhesive 43. The second metal layer 143 of the bottom package substrate 42 faces downward into the die attach portion of the substrate. Soldering 88127 • 13· 1329918 Balls 4 8 are reflowed into contacts on an array of lower facing portions of the second metal layer 14 3 to provide the interconnection of the VIPM to the underlying circuitry (not shown) ). A solder mask 147 is patterned over the second metal layer 143 to expose the underlying metal as a junction for electrical connection. 'It includes a contact 塾' connected to the underlying circuit by solder balls 48. And the contacts 塾' connected to the top package by solder balls are as follows. The other portion of the bottom package substrate 42 extends adjacent to the die attach portion. The portion is bent upwardly and positioned above the bottom package die 44. Above the portion of the flexible substrate 42 that is bent over, the first metal layer is facing upward. In the configuration of FIG. 4, the top package is generally similar to FIG. 1 (8) where the die tie contacts are in place at the line contacts above the metal layer above the substrate to In particular, the top package die 4 is attached to a substrate 12 having two metal layers 121, 123 (in this example), each of which is patterned to provide a suitable circuit. The die 122 is connected. The die is conventionally attached to the upper surface of the top package substrate by an adhesive 13, which is typically a die attach epoxide. The die 14 and the kelly contact 16 are It is coated with a molding compound 17 which provides protection against the surrounding and mechanical stresses for processing and provides a surface for marking for identification. The solder balls 18 are reflowed to the The contact pad 143 is bent over the upper metal layer of the upper bottom package substrate to interconnect the z between the top and bottom packages. The structure of FIG. 4 has the advantage that the substrate bent on the substrate can be Providing a fill area over the upwardly facing surface of the bottom package substrate that is bent over, To accommodate a stack of solder balls in the top package and accommodate more complex interconnects 88127 • 14-1329918 between the two packages. It also provides a small package trace. A major drawback of this configuration The cost of the substrate is high and the bending techniques and equipment are not available. A common feature of all of these stacked package configurations is that they protect each package and provide a production MPM with a higher final test yield. The present invention relates to a multi-package module having a stacked package. According to the present invention, the z-interconnection between the stacked packages in the MPM is based on a line contact. In general, the present invention It is characterized by a configuration having a plurality of different stacked packages, and a method of stacking and interconnecting different packages by a z-connector based on a wire contact. In the multiple package module according to the present invention, the package is stacked A variety of BGA packages and/or any platform grid array ("LGA") package may be included: the package stack may include wire bonds and/or flip chip packages; the package stack may be included in the stack or a thermal enhancement feature generated thereon; the package stack can include one or more packages of wire bumps to a flip chip die at the top or bottom of the BGA or LGA; the package stack can be included in the stack One or more BGA and/or LGA packages having more than one die in a package-inserted package; the stack may include one or more packages of electromagnetic, shadowing; and the stack may comprise any substrate, plywood or assembly Or ceramic, which provides for the formation of a z-interconnect pad by bonding around the packages. In a general aspect, the invention features a multi-package module having stacked lower and upper packages, each package including a die attached to a substrate in which the upper and lower substrates are interconnected by wire contacts. The present invention provides excellent manufacturability, high design flexibility, and low cost 88127 -15 - 1329918 for manufacturing - Stacking package & low rim and small track. The line contact Z interconnection technology has been established in the industry; it is the lowest cost interconnection technology, and can be directly applied, and does not require significant modification, and can be used in the multi-package module of the present invention. It provides design flexibility for the relative dimensions of the BGA to LGA, which can be bridged by the length of the wire. # From the available technology and equipment, the wire in the first line contact can be as short as 0 5 mm, or as long as mm. The configuration of the 琢Z interconnect pads can be implemented by a BGa&lga substrate design or one of them. In addition, using the wire contacts in accordance with the present invention, the z-interconnects can be formed between pads that are not precisely aligned with each other, by so-called "out of sequence bondlng", which is currently It has been used in the industry. The line-to-point spacing is the finest technology in the industry currently at 50 microns and is expected to reach 25 microns. This can result in a large number of z interconnects. Both manufacturability and design flexibility can contribute. The low cost of the MPM. The minimum trajectory of a typical BGA or LGA is 丨7 mm larger than the grain size. Adding the z-interconnect dot pad according to the present invention will increase the BGA by at least mm8 mm. A typical BGA thickness is 1.0. Mm 'and LGA thickness is 0.8 mm. A typical adhesive thickness ranges from 0.025 mm to 0.100 mm. The footprint and thickness of the stacked package MPM according to the present invention can be acceptable for most applications. In some embodiments, the multiple package module includes three or more packages that are sequentially fixed to form a stack. In another aspect, the present invention features a first stack ("bottom" ") and second ( "Top" packaged multi-package modules, each package comprising a die attached to a / substrate and connected to the substrate by wire contacts, wherein the 88127 -16 - top package substrate and the bottom &&#lower package substrates are interconnected by wire contacts. In each of the two embodiments, each package is completely coated with a mold material; in other embodiments, at least - The package is only coated to some extent during the post-processing, and during the test to protect the line contact between the die and the substrate. In some cases, in the case of electricity, Α, 丨丄-, & Λ palladium The second package is a b (}A package in two k specific embodiments, the lga package substrate is a single-metal layer substrate. "Wan-face" is characterized by - stacked with - (" Bottom") ΒΓ = (top ^") packaged multi-package module, the bottom package is - GA package 'each package # ^ Α, 耆; a substrate die, wherein the top package substrate and the BGA The package substrate is interconnected by wire contacts. The invention is characterized by having a multi-package module of a stacked package In the configuration of the group 'at least one of them, the xenon d0 package has an electrical mask. In some such embodiments, the <=> RF die: it is used to limit the daily grain in the babies repackaging module < between the electromagnetic drying. ..., 匕 has - electric cover f, in the case of the other side of the 'the invention' and the second ("top is folded with the first "bottom") on the αt α"' ' Package H The bottom package is in the in-day solar configuration - the top substrate is a wide-area, chip/flip-chip BGA package in which the 4th package is interconnected by wire contacts. In some cases, and in the case of mussels, the top package is - θ ^ in the example, in the case of the 田 田 丘 阳 阳 , , , , , , , , , , , , , , , , , , , , , , , , , , 88127 -17- 1329918 to separate. In this case, and in the ', ..., μ embodiment, the flip-chip on the package is ::曰:, -electrically shielded. In some embodiments, the bottom seal == - an embedded ground plane that is also configured for use as an electrical shield. : In addition, "the aspect of the invention is characterized in that - the stack has a - ("bottom") 曰 = packaged multi-package module; the bottom package is - 曰 9 ^, 'and resent' - flip chip The flip chip BGA package, and the middle sub-substrate and the bottom package are interconnected by wire contacts. In some embodiments, the flip chip die on the bottom package has an electrical mask = on the other side, and the present invention is characterized by stacking the _ (bottom) and second d) packages. a module, each of which includes a die attached to the substrate and connected by a wire contact, wherein the top package substrate and the bottom package substrate are interconnected by wire contacts, and wherein the bottom package At least one of the top-span packages is a stacked die package. In some embodiments, the top package and the bottom package are both stacked die packages. In another general aspect, the invention features a multi-package module that includes at least one die-turn package on a first (bottom) package substrate. Above the first package, and a second (top) package comprising at least one die on a second (top) package substrate and forming a line connection between the first and the top and bottom substrates Point z interconnect. Preferably, the packages can be tested prior to assembly, which can discard packages that do not meet performance or reliability, so it is preferred that the first package and the second package tested as "good" are used for the group. Installed in the module. In the present invention, the present invention features a method of fabricating a multi-package module 88127 • 18-1329918 comprising an LGA package stacked on a BGA package, wherein the top and bottom packages are electrically connected by wire contacts interconnection. In accordance with this aspect, a BGA package is provided, which is typically an undivided strip of a molded BGA package; preferably, the BGA package in the strip performs a performance and reliability test and is identified as "good" The package is subjected to subsequent processing; the adhesive is dispensed onto the upper surface of the molded "good" BGA package; a simulated molded platform grid array package is provided; preferably, the LGA package is tested and identified "good"; these "good" LGA packages are the adhesive placed over the molding of the "good" BGA package and cure the adhesive; as needed and preferably, on the stack A plasma cleaning operation is performed after the top LGA is formed with the bottom BGA package to form a wire contact z interconnection; an additional plasma cleaning can be performed as needed and preferably, followed by molding the MPM. Further steps include attaching a second layer of interconnected ball to the underside of the module; testing and separating the completed module from the strip, for example by sawing or by punching; and for other uses Package. In some embodiments, the LGA (top) package is fully molded, having a generally planar upper surface of the LGA package; in other embodiments, the line contacts, but not the LGA The entire upper die surface of the package is molded, and the LGA is molded by dispensing the molding compound only around the die and near the gap of the LGA package substrate. In another aspect, the invention features a method of stacking a multi-package module on a LG A package stacked on a BGA package, wherein the top and bottom packages are interconnected by wire contacts, and Wherein the bottom package has an electromagnetic shielding. In accordance with this aspect, a ball grid array package is provided, the 88127-19-1329918 typically being unseparated strips of a BGA package; the BGA packages having a shield secured over the die; preferably, The BGA package in the strip is tested for performance and reliability and identified as "good" for subsequent processing; the adhesive is dispensed over the upper surface of the shield on the "good" BGA package; a separate molded platform grid array package; preferably, the LGA package is tested and identified as "good"; the "good" LGA package is placed on the adhesive over the mask and the adhesive is cured Performing a plasma cleaning operation as needed and preferably after forming a wire contact z interconnection between the top LGA of the stack and the bottom BGA package; an additional may be performed as needed and preferably The plasma is cleaned and then molded to form the MPM. Further steps include attaching a second layer of interconnected solder balls to the underside of the module; testing and separating the completed module from the strip, such as by sawing apart or by punching; and for other uses Package. In some embodiments, the method includes the steps of providing a heat sink for the multiple package module. In this aspect of the invention, a similar process is performed with additional steps to insert a "drop-in" molding operation into the mounted heat sink, or to insert a "drop-in" molding operation to install a simple a planar heat sink; or by applying an adhesive to the upper surface of the top package molding, or to the upper surface of a spacer on the top package, and fixing the planar heat sink to the adhesive. In another aspect, the invention features a method of fabricating a multi-package module comprising a top package stacked on a bottom die of a lower die wafer BGA, wherein the top and bottom packages are by wire Contact 88127 -20 - 1329918 is interconnected. In accordance with this aspect, a bottom die package bga bottom package i is provided as needed to be molded 'typically in a lower die flip chip ball grid array bottom beta package, preferably a bga package in the strip. Performing performance and reliability tests, and the package identified as "good" accepts subsequent processing. The adhesive is dispensed on the upper surface (back side) of the die on a "good" BGA package. The top (eg, the platform grid array) is packaged and molded as needed; preferably 'tested for the LGa package and identified as "good"; the "good" (10) package is placed in the shadow 'On the adhesive on the 'and curing the adhesive; as needed and preferably, after the wire contacts are formed between the top LGA and the bottom BGA package of the stack, a plasma cleaning operation is performed; as needed and Preferably, an additional plasma cleaning can be performed followed by molding to form the MpM. Further steps include attaching a second Zen solder ball to the underside of the module; testing and dividing the module into a strip, such as by taper splitting or by punching; and for other uses To package. In another aspect, the present invention features a method of including a multi-capacitor module on a top-substrate package stacked on a lower-die wafer flip-chip bottom package, wherein the top and bottom packages are The wire contacts are interconnected, and wherein the bottom package has an electrical shield. In accordance with this aspect, a process similar to that described above for the unmasked bottom flip chip bottom package is performed with an additional step of inserting the shield to the bottom package flip chip die. Provide a bottom-wafer flip-chip bga bottom package, if necessary, usually in the bottom die of the lower die wafer wafer grid array; preferably the BGA package in the strip is efficient and reliable Test 88127 -21 - 10 test, and know the other 丨 JA "White is assigned in the "good::: ready to accept the subsequent treatment; adhesive agent Du Fu good" BGA seal on the grain; provide separation The top part (for example, the flat AU side) is molded on the foot; preferably, the ^ grid array package is 'good for visual needs'. · Dream, etc., "tested in DGA package" and identified as "good ^ ^ package system The adhesive center placed on the shadow is 'solidified (four) adhesive; as needed and better: the top LGA and the bottom BGA are sealed in the width of the joint #^ 61 > Gp operation; as needed and preferably, may be performed to form the MPM molding. Further steps include attaching a layer of interconnected solder joints, forming a mold and the strip, for example Raise:: "Lower side: test and separate" 'hunting by sawing or dividing by punching; and for It is used for packaging. In another aspect, the invention is characterized by a method comprising a top package stacked on a bottom package of an upper flip chip BGA, and an I, a portion, and a portion The package is electrically interconnected by wire contacts. According to this aspect, there is provided an upper die flip chip ball grid array package, which is typically unmolded and passed through an upper die flip chip ball grid array package. Preferably, the BGA package in the strip is tested for performance and reliability and the package identified as "good" is subjected to subsequent processing; the adhesive is assigned to "good" a top surface of the substrate on the BGA package; providing a second package, which in some embodiments may be a stacked die package, which may be optionally and typically molded; preferably, the test LGa package, and identified as "good"; these "good" LG A packages are placed on the adhesive on the BGA substrate and cure the adhesive; it is preferred for S8127 -22- 1329918 Ground is formed between the top LGA of the stack and the bottom bga package, The cleaning operation is performed after the contacts Z are interconnected; it is carried out as needed and preferably --additional power cleaning, followed by formation of the molding. The step of step-by-step includes attaching a second layer of interconnected ping balls to the underside of the module; testing and separating the completed module from the strip, for example by splitting or by punching; and for other Use for packaging. In another aspect, the invention features a method of fabricating a multi-package module comprising a top package 4 stacked on top of a stacked bottom package, the top and bottom packages being electrically connected by wire contacts interconnection. In accordance with this aspect, a stacked die BGA package is provided that is typically molded and is typically provided as an unseparated long end of a stacked grain ball grid array package; preferably in the long BGA The package that is identified as "good" by the (4) performance and ^^^^ is subjected to subsequent processing; the adhesive is the knife attached to the upper surface of the die BGA package of the good J stack 4. Usually it is On the often planar upper surface of the package molding, a second separate package is provided, which is often molded, which can be optionally used as a stacked die package; preferably the second package is tested and Identify 4 "good" 'child' good J second package is placed on the adhesive on the upper surface of the BGA' i cure the adhesive; it is preferably packaged on top and bottom of the stack as needed After forming a wire contact z interconnection, an electric 2 cleaning operation is performed, preferably as needed - (4) plasma cleaning, followed by formation of the MPM molding. Further steps include attaching a second layer of interconnect bonding The ball is on the lower side of the module; the test and separation of the completed mold And the strip 'is separated, for example, by silver slitting or by punching; and for other uses, 88127 • 23 · 1329918. In some embodiments of the method, provided in an undivided strip Two or more first molded packages, and assembly of two or more modules on the strip, and separation of the two or more modules after the assembly is completed. In the method of fabricating a multi-package module in accordance with the present invention, the electrical connections between the stacked packages use conventional wire contacts to form 2 interconnections between the upper and lower package substrates in the stack. Benefits include the use of established manufacturing architectures, low production costs, design flexibility, and a thin package. The Z interconnect contacts can be implemented in a variety of package and module configurations, a bump formed by a conductive pad on the two package substrate pulls the wire to a conductive pad on the first package substrate; or is pulled out by a bump formed on a conductive pad on the first package substrate Wire to the second package base A conductive raft on the present invention. The present invention provides an assembly of more than one semiconductor in a thin and minimum trace package at the lowest cost and highest final test yield. Moreover, some stack configurations in accordance with the present invention allow for height Thermal performance, high electrical performance, or electrical isolation of a digital component from an RF component. Other stacked configurations provide very thin structures for handheld or consumer products. All methods provided for assembly allow for this stacking The individual tests of the package can maximize the final yield of the module. The additional % steps will be used to complete the multiple package module in accordance with the present invention. For example, it is preferably the lowest package in the stack. The solder balls for the connection will not adhere to the motherboard, but until the final step of the separation of the MpM 88127 -24-1329918. Any point, such as electric fine can be used in many places in the process Six turns, for example, after the adhesive has cured, and before the coating, and like before and/or after the 'interconnect line junction. Individual packages, such as connectors, can be provided as strips of several packages, which are processed during manufacturing, and are separated after the multi-package module process. In the method according to the present invention, the child-filled package stack can be formed by a 疋-encapsulated 疋-package of a non-single av ^ ^ αλ ' ^ . Until the completion of the formation of these quite, 'and the process of the process, the cough will continue to go to r Α ” Ding Feng 3, the junction of the spring junction 2, and then separate the temple module. The MPM according to the present invention can be used The present invention will now be described in further detail with reference to the drawings, which illustrate other specific embodiments of the invention. The relationship between the features of the present invention and other features and structures is illustrated and not to scale. In order to improve the clarity of the presentation, in the drawings illustrating the specific embodiments of the present invention, corresponding to others The elements 2 of the elements shown in the drawing are not all specifically renumbered, although they are clearly identifiable in all of the drawings. Referring now to Figure 5A', in accordance with one aspect of the present invention: a core-packaging module specific A cross-sectional view at 5 实施 of the embodiment, and a 勹 士 ', including a stacked first ("bottom") and a second ("top") package, wherein the stacked packages are connected by wire contacts interconnection. In the embodiment shown in FIG. 5A, the bottom package 400 is a conventional BGA package, such as 8S127-25· 1329918 in FIG. 1 . In the specific embodiment, the bottom package 4 includes a crystal. The particles 4丨4 are attached to a bottom package substrate 412 having a soil y-metal layer. It can use any of a variety of substrate types, for example, including: a plywood having a 2-6 metal layer, or a construction substrate having a 4-8 metal layer, or a flexible polyimide ribbon having a 2 metal layer. Or a ceramic multiple layer substrate. The bottom package substrate 412, shown by the example of Fig. 5A, has two metal layers 42A, 423, each of which is patterned to provide a suitable circuit and connected through vias 422. The die is conventionally attached to a surface of the substrate using an adhesive, substantially referred to as a die attach epoxide, as shown at 413 in Figure 5A, and in the configuration of Figure 5A. The surface of the substrate to which the die is attached may be referred to as an "upper" surface, and the metal layer on the surface may be referred to as an "upper" metal layer, although the germanium die attach surface does not need to have any use in use. Specific directionality. In the bottom BGA package of Figure 5A, the die line contacts are connected to the line contacts of the metal layer above the substrate to establish an electrical connection. The die 414 and the wire contact 416 are coated with a molding compound 417, which provides protection against ambient and mechanical stresses for processing operations, and provides a bottom package upper surface 41 9 to a stackable The second ("top") package. The solder balls 4] 8 are reflowed onto the contacts of the metal layer below the remote substrate to provide a sub-layer circuit, such as a computer or the like, interconnected to a motherboard (not shown) such as a final product. Solder caps 415, 427 are patterned over the metal layers 421, 423 to expose the underlying metal at the contacts for electrical connection, such as at the wire contacts, and for bonding the wire bonds 416 and solder balls 41 8 contact 塾. In the embodiment shown in FIG. 5A, the top package 5A is a platform grid 88127 • 26 · 1329918 outline array (LGA) package, which can be similar to a BGA package, such as in FIG. F has;!: The dry ball is mounted to the joint of the lower surface of the substrate. Particularly in this example, the top package 5A includes a die 514 attached to a top package substrate 512 having at least one metal layer. It can use any of a variety of substrate types; the top package substrate 512 shown by the example of FIG. 5 has two metal layers 521, 523, each of which is patterned to provide appropriate circuitry and through the via 522 connection. The die is conventionally attached to the surface of the substrate using an adhesive, which is basically referred to as a die attach epoxide, as shown by 513 in Figure 5A, and in the configuration of the figure. The surface of the substrate to which the germanium grains are attached may be referred to as an "upper" surface and the metal layer on the surface may be referred to as a "top" metal layer, although the die attach surface does not need to have any use in use. Specific directionality. In the top LGA package of the embodiment of Figure 5A, the die tie contacts to the line contacts of the metal layer above the substrate to establish an electrical connection. The die 5 14 and the wire contact 5 16 are coated with a molding compound 5丨7, which provides protection against ambient and mechanical stress for processing work, and has a top package upper surface 519 . The top package 5 is stacked on top of the bottom package 400 and attached using an adhesive 5〇3. A solder mask us is patterned over the metal layers 521, 523 to expose the underlying metal at the contacts for electrical connection, such as at the line contacts, to bond the line contacts 5 16 . The z-interconnection between the top package 500 and the bottom package 4A of the child stack is made by connecting the wire contacts 5 1 8 of the top metal layer of the individual package substrate, the parent wire contact 5 1 8 Electrically connected to the top surface of the top surface of the top package substrate 5 ^ 2 88127 -27 - 1329918 on the metal layer 521 and on the other hand 'each line contact is connected to the metal layer 421 above the bottom package substrate 412 The upper surface of the pad.垓 接 接 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The package-to-package 2 interconnect line contacts are illustrated by the example in FIG. 5A by forming a bump or bump on the top surface of the top metal layer of the top substrate, and then pulling down The lead wires are oriented and fused to a stack of metal layers above the substrate. As described below, the wire contact can be twisted in the opposite direction, that is, by forming a bump or bump on the upper surface of a pad of the metal layer above the base substrate, and then pulling the wire downward A pad that faces and fuses onto the metal layer above the top substrate. As described below, the selection of the wire contact strategy for the package z interconnect will be based on the stacked substrates. < The geometric configuration of the gap is determined by the joint surface on it. In the stacked package embodiment of Figure 5A, the z interconnect pads on the individual package substrates are disposed over the upper metal layer near the gaps of the package substrate. The location and sequence of the 互连z interconnect pads are typically configured such that the z interconnect pads on the top package substrate substantially cover the corresponding z interconnect pads on the bottom package when the packages are stacked. Conventionally, the top package 5 has a smaller substrate track than the bottom package 400 to allow the gaps of the line contacts to not short the edges of the metal layer of the substrate. Once the z interconnect contacts have been formed, a module wrap is formed to cover and protect the z interconnect contacts and provide mechanical integration of the completed modules. The arrangement of the z-interconnect pads on the top and bottom package substrates of the crucible is shown by the example of the plan views in Figures 5B and 5C, which are at 5 〇〇 and 4 〇〇 88127 - 2S - 1329918, respectively. Referring to FIG. 5B, the top package z interconnect pad 524 is formed by patterning a region of the upper metal layer at the void 501 on the upper surface 525 of the top package substrate 512. The void 501 extends beyond the edge 526 of the top package cladding material and has an upper surface 519. Referring now to Figure 5c, the bottom package z interconnect pad 424 is formed by patterning the area of the upper metal layer at the void 401 on the surface 425 above the top package substrate 4''. The gap 4〇1 extends beyond the track 5 11 of the stack and overlies the top package substrate 5 1 2 and further beyond the edge 426 of the bottom package cladding material, having an upper surface 419. As shown in Figures 5A, 5B, and 5C, the Z interconnect between the top and bottom packages in accordance with the present invention is the top package interconnect pad 524 and the bottom SHAO package substrate in the gap 5 〇丨 of the top package substrate. The line contacts of the bottom package interconnects 424 (upper or lower contacts) in the gaps 4〇1 are made. The multi-package module structure is protected by forming a module cover 5〇7, and the ball 418 is reflowed to the solder ball bump exposed on the gold under the bottom package substrate to be connected to the lower layer circuit. For example, a motherboard (not shown). As previously mentioned, the structure according to the present invention allows the BGA and LGA' to be pre-tested prior to assembly into the multi-package mold: to allow for the exclusion of the unfilled package prior to assembly, thereby ensuring a higher final Module test yield. To improve heat dissipation from the multiple package modules, a heat sink can be provided on the top package. The top heat sink is formed by a heat-conducting material section having more central regions in its upper surface to expose the upper surface to the surrounding environment to more efficiently perform hot-forking for the crucible. For example, the top heat sink may be a metal sheet (such as a feeding sheet), and the heat sink may be on the top package and a surrounding support portion during the curing process of the molding material 88127 -29-1329918. Or a support member on the upper surface. Fixed to the MPM wrap. Alternatively, having a generally planar portion to be placed adjacent to or adjacent to the bottom package substrate, by way of example, FIG. 5E is a cross-sectional view of a stacked BW 54 in accordance with another aspect of the present invention, wherein A "top-shoring" heat sink is provided on the upper surface of the MpM. The structure of the package stacked in the MPM 54 is generally similar to the MPM 5 图 in Figure 5A, and similar structures can be identified by similar reference numerals in the figures. The top heat sink in this example is formed from a thermally conductive material having a generally planar central portion 544 over the top package and surrounding support members extending to the upper surface of the bottom package structure 4u. 546. The upper surface of the face portion 544 is attached to the surface of the MpM to be exposed to the surroundings to efficiently discharge the MpM from the tropics. For example, the top heat sink can be formed by a sheet of metal, such as copper, such as by stamping. The support member 546 can be fixed to the upper surface of the bottom package substrate t by an adhesive as needed (not shown in the figure); the multiple package module structure can be protected by forming a module package 507, and The heat sink support member is embedded in the MPM cladding 5〇7 during the molding material curing process. In the specific embodiment of FIG. 5E, 'providing around the planar upper portion 544 of the heat sink There is a stepped recessed feature 5 4 5 ' to allow for better mechanical integration of the structure without being separated from the molding compound. In this embodiment, the lower surface of the heat sink 544 is The space between the upper surface 5 19 of the LGA molding 517 is filled into the thin layer of the MPM molding. In addition, a top heat sink can be fixed on the upper surface of the LGA molding, such as 88127 -30· 1329918 in Figure 5D. The cross-sectional view is shown in the MPM 52. The structure of the stacked package is generally similar to the MPM 50 in Figure 5A, and similar structures can be identified on the drawing by similar reference numbers. The top heatsink 5〇4 in the example is a generally planar heat transfer A panel having at least a more central region of its upper surface to be exposed to the surrounding environment to more efficiently vent heat out of the MPM, as shown in the example of Figure 5E. For example, the top heat sink can be a A metal plate (e.g., copper). However, here the top heat sink 5〇4 is secured to the upper surface 519 of the upper package wrap 517 using an adhesive 506. The adhesive 506 can be a thermally conductive adhesive. To provide an improved heat dissipation effect. After the top package molding has been at least partially cured, the top heat sink is fixed to the top package molding, but the molding material is injected into the MPM package 507. Previously, the top surface of the top heat sink may be coated with the MPM molding material. In the specific implementation of FIG. 5D, a stepped concave feature 5〇5 is provided around the heat sink 5〇4 to allow for better. The mechanical integration of the structure is less separated from the molding compound. In another option, as shown in Figure 5A, "MPM, which may have a simple planar heat sink, without a support portion #, And P pays for the top package molding Upper surface. In these embodiments, as in the specific embodiment of Figure 5; the top surface heat sink can be - typically a + surface conductive material sheet, such as, for example, a metal sheet (e.g., copper). And at least a more central region of the upper surface of the planar heat sink is exposed to the surroundings to more effectively move the tropics away from the MPM. Here, the surface of the simple planar heat sink is molded with the l(}a The space between the upper surface 51 9 of 5 17 is filled with a thin layer of MpM molding and this simple planar heat sink can be fixed during the curing process of the molding material 88127 -31 · 1329918. The cover 507 «the unattached simple flat top heat sink may be covered with the MPM molding material, like the planar heat sink attached in FIG. 5D, and may provide a stepped recess on the circumference. Features to allow for better mechanical integration with the structure and less separation from the molding compound. MpM with a heat sink as shown in Figures 5 D, 5 E, which provides improved thermal performance . Referring now to FIG. 6A, there is shown a cross-sectional view of a packaged multi-package module in accordance with an aspect of the present invention having an LGA top package over a BGA bottom package, wherein the top package LGA is partially Covered with ground. That is, the molding material of the top-slung LGA package is applied to a limited area and is of a limited amount sufficient to protect the line contacts during subsequent processing, particularly during subsequent performance testing. In other respects, the configuration of Fig. 68 is substantially shown in Fig. 5A. Thus, in this embodiment, the structure of the bottom package 400 is as described in Figure 5A, and the structure of the top package 6A is substantially as shown in Figure 5A, except for differences in the overlying package. In particular, the top package 600 includes a die 614 attached to a top package substrate 612 having at least one metal layer. It can use any of a variety of substrate types; the top package substrate 512 shown by the example of FIG. 6A has two metal layers 621, 623, each of which is patterned to provide a suitable turn and through the via 6 2 2 connection. The die is conventionally attached to a surface of the substrate using an adhesive, substantially referred to as a die attach epoxide, as shown at 613 in Figure 6A, and in the group of Figure 6-8. In the state, the surface of the substrate to which the crystal grains are attached may be referred to as a "top" surface, and the metal layer on the top of the table 88127 - 32 - 1329918, although the metal layer on the surface may be referred to as "upper" or the crystal The particle attachment surface does not need to have any particular directionality in use. In the top LGA package of the embodiment of Figure 6A, the die tie contacts to a line select point of the metal layer above the substrate to establish an electrical connection. The crystal 614 and the wire contact 616 are coated with a molding compound 617, which can be: used in the surrounding area and difficult to stress, and the money is processed. The formation of the cladding 617 in the embodiment is only used to cover the wire contact and its individual connection to the top (four) substrate and the (four) package die, so the die and the upper surface are large. & has not been covered by this coating. The top package 6 (10) is stacked on top of the bottom package and secured there using an adhesive. A solder mask, 627, is patterned over the metal layers 621, (3) to expose the underlying metal at the contacts for electrical connection, such as at the wire contacts. - The z-interconnection between the top package of the child stack and the bottom package 400 is made by connecting the wire contacts 61 8 of the top metal layer of the individual package substrate and the less repackaged module structure is formed by a module The cover (4) is protected, and the ball 418 is connected to the lower layer circuit, for example, a motherboard (not shown), on the metal layer exposed under the bottom package substrate of the county. The benefit of this is to reduce the cost. The part of the coating is implemented in conjunction with the treatment. (for example, by passing through a fine nozzle, as if it were from the U-needle.) And therefore provide a higher flow rate' and use a more sturdy packaging material. After this part is covered, the top LGA package can be tested without having to be rearranged into special treatments to avoid damage. The top package line contacts. 88127 -33- 1329918 In order to improve the heat dissipation of the multiple package modules as shown in the example in Figure 6A, a heat sink can be provided on the top package. The top heat sink is made of a heat conductive material. Formed with a more central area of its upper surface

露該MPM的上表面到周圍環境,以更有效率地將熱由MpM 帶離。例如該頂部散熱器可為—金屬板(例如銅),且其可在 該模製材料固化處理期間固定到該MpM包覆上。或者,該 散熱器可在該頂部封裝之上具有一通常為平面的部份,及 一周圍S撐部份、或f於該底部封裝基板之上表面之上或 其附近的支撐部件。 藉由範例,圖6B所示為根據本發明另—方面之堆疊的 BGA+LGAMPM62之截面圖,其中在該MpM的上表面處提 供一「頂部」散熱器。在MPM62中堆疊的封裝之結構通常 類似於圖6At的該MPM 60,而在圖中可由類似的參考編號 來識別類似的結構。在此範例中的頂部散熱器係由一導熱 材料所形成,其具有位在該頂部封裝之上的通常為平面的 中心邵份644,及延伸到該底部封裝結構412之上表面的周 圍支撐部件6 4 ·6。該平面部份6 4 6之上表面係在該M p m上表 面來暴露到周圍,以有效率地將熱帶出MpM。例如該頂部 散熱器可藉由一金屬片(例如銅)來形成’例如藉由沖壓。該 等支撐部件646可依需要來使用一黏著劑固定到該底部封 裝基板足上表面(未示於圖中)。該多重封裝模組結構可由形 成一模組包覆607來保護,且該散熱器支撐部件在該模製材 料固化處理期間被嵌入在該MPM包覆607中。在圖6B的具 體實施例中,在該散熱器的平面上方部份644的周圍提供有 88127 •34- 1329918 一階梯狀的凹入特徵64 5 ’以允許較佳的結構之機械性整合 度’而較不會與該模製化合物分離。在此具體實施例中, 該散熱器644之下表面與該晶粒614之上表面之間的空間可 由一層MPM模製來填入,其足夠地厚,使得該散熱器644 不會干涉到該周圍LGA模製6 17。 另外,在圖6 A的此具體實施例中的MpM,其可具有一簡 單的平面散熱器,不具有支撐部件,且不附著於該頂部封 裝模製的上表面。在這些具體實施例中,如在圖5〇中的具 體實施例’該頂部散熱器可為一通常為平面的導熱材料板 ’例如像是-金屬片(例如銅),及至少該平面散熱器之上表 面的更為中心的區域轉露到肖时更有效率地將熱帶離 該MPM。此處,如圖6B的具體實施例,在該平面散熱器之 下表面與該晶粒6 14之上表面之間的空間係由一層m p m模 製所填人’其足夠地厚,使得該散熱器不會干㈣該周圍 的LGA模製617。而此處在圖6β的具體f施例中,這種簡單 的平面散熱器可在該模製材料固化處理期間來固定射 MPM包覆跡這種未附著的簡單平面頂部散熱器之周圍可 以包覆有該MPM模製材料,如 如冋在圖5D中所附著的平面散 熱器,並可找周圍上提供—階梯狀的凹人特徵,以允許 與該結構的較佳機械整人声 * U讀不會與該模製化合物分 離0 一選擇,其允許附著一簡 在孩簡單平面頂部散熱器 間可提供一間隔器。該間 如在圖6A中一具體實施例之另 單平面散熱器到該頂部封裝6〇〇, 之下表面與該晶粒614之上表面之 38127 -35· 1329918 隔器可使用一黏著劑來固定於該晶粒及該散熱器;或是, 該間隔器可形成為整體的一部份,及該散熱器的一間隔器 部份,且在這些具體實施例中,該散熱器之間隔器部份之 下表面可使用一黏著劑來固定於該晶粒的上表面。該間隔 器較佳地由導熱材料製成,且該黏著劑可為一導熱黏著劑 ,以提供改善的散熱性能。在這些具體實施例中,該頂部 · 散熱器可在該頂部封裝模製已經至少部份固化之後來固定 -到該頂部封裝,但其係在該模製材料對於該MPM包覆607 射出之前。該頂部散熱器之周圍可以包覆有該MPM模製材 籲 料。如同在圖5D的具體實施例中,在該簡單平面散熱器的 周圍提供有一階梯狀的凹入特徵,以允許較佳的結構之機 械性整合度,而較不會與該模製化合物分離。 例如圖6B所示之具有一散熱器的MPM結構,其可提供改 善的熱效能。 圖7所示為根據本發明另一方面的堆疊多重封裝模組之 截面圖,其在一 BGA底部封裝之上堆疊有一頂部LGA封裝 ,其中對於該頂部LGA封裝使用一單層金屬層基板。在其 它方面,圖7的組態即實質上顯示在圖5 A中。因此,在此具 體實施例中,該底部封裝400之結構如參考圖5A所示,而該 · 頂部封裝700之結構即實質上如圖5 A所示,除了在該頂部封 裝基板的結構有所差異。特別是,該頂部封裝700包括附著 到具有一金屬層721之頂部封裝基板712之一晶粒714,其被 圖案化來提供適當的電路。該晶粒在習用上係使用一黏著 劑來附著到該基板的表面,其基本上稱之為晶粒附著環氧 88127 -36 - 1329918 化物,如圖7之713所示,且在圖7的組態中,該晶粒所附著 的基板表面可稱之為「上表面」,因此在此基板上的金屬 層可稱之為「上方」或「頂部」金屬層,雖然該晶粒附著 表面在使用上不需要具有任何特殊的方向。 在圖7之具體實施例中的頂部LGA封裝,該晶粒係線接點 到該基板之上方金屬層的線接點處來建立電連接。該晶粒 7 14及該線接點7 16係包覆一模製化合物7】7,其可提供對於 周遭及機械應力的保護,以便於處理作業。在圖7所示之具 體貫施例中的包覆707係設置成如同圖5A中的具體實施例 ,所以忒包覆707覆蛊了該晶粒以及該等線接點及其連接, 且孩包覆在整個晶粒及互連之上具有一表面7 1 9。如下所述 ,此處的包覆另可形成如同圖6八之具體實施例,也就是說 ,其形成係僅包覆該等線接點及其個別的連接到該頂部封 裝基板及該頂部封裝晶粒,所以大部份該晶粒的上方表面 並未被该包覆所覆蓋。該頂部封裝7〇〇係堆疊在該底部封裝 400之上,並使用一黏著劑固定在那裏如在川3所示。焊 罩715被圖案化在該金屬層721之上’以在接點處暴露下層 王屬來⑯連接,例如用於接合該等線接點7 ^ 6之線接點處。 一在該堆疊的頂部封裝7〇〇與底部封裝4〇〇之間的Z互連係 藉由連接個別封裝基板之頂部金屬層的線接點718來製成 日3^重封裝楔組結構係由形成一模組包覆7〇7來保護,且 Ό41 8係回'j:T到錢部封裝基板之下金屬層上所暴露的 焊球塾二來連接到下層電路,例如~主機板(未示於圖中)。 此,且K好處在於相較於在該頂部lg八封裝中使用兩個 88127 -37· 1329918 金屬層之基板的組態可以降低成本,因為該單一金屬層基 板之成本較低。此組態可額外地提供一較低的封裝輪廓, 因為該單一金屬層基板比具有兩個或更多金屬層之基板要 薄。 圖8A所不為根據本發明另一方面之堆疊的Bga+Lga MPM 80之截面圖’其中提供一散熱器及電遮蔽給該底部封. 裝。藉由圖8 A中的範例所示之具體實施例具有一頂部平台 , 格柵陣列(「LGA」)封裝800 ,其堆疊在一底部球格栅陣列 「BGA」封裝402之上,其中該頂部lga封裝通常建構成圖鲁 5 A中的頂部LGA封裝。如下所述,一具有單一金屬層之 ,如參考圖6A所述,其另可做為圖8A之具體實施例中的頂 部LGA。請參考圖8八,該頂部LGA封裝8〇〇可類似於—bgA 封裝,例如圖1中所示,但不具有焊球來安裝在該基板之下 表面的接點墊上。特別是在此範例中,該頂部封裝8〇〇包括 附著在具有至少一金屬層之頂部封裝基板812上的一晶粒 814。其可使用多種基板型式中的任何一種;藉由圖8 a之範 例所不之頂邵封裝基板812具有兩個金屬層821、823,其每籲 個被圖案化來提供適當的電路,並透過通孔822連接。該晶 粒在習用上係使用一黏著劑來附著於該基板的一表面上,· 基本上係稱之為晶粒附著環氧化物,如圖8 A中的813所示, 且在圖8A的組態中’該晶粒所附著的基板表面可稱之為「上 万」表面,且在該表面上的金屬層可稱之為「上方」或「頂 部」金屬層,雖然該晶粒附著表面在使用上不需要具有任 何特定的方向性。 88127 -38- 在圖8 A之具體實施例中的頂部lga封裝,該晶粒係線接 點到該基板之上方金屬層的線接點處來建立電連接。該晶 粒8 14及該等線接點816係包覆有一模製化合物817,其可提 供對於周遭及機械應力的保護,以便於處理作業,並具有 —頂部封裝上表面819。焊罩815、827係圖案化在該等金屬 層821、823之上,以在接點處暴露該下層金屬來用於電連 · 接’例如用於接合該等線接點816之線接點處。 . 在圖8A中的具體實施例之底部bGa封裝402為一習用的 BGA封裝,例如在圖〗中所示,除了圖8a之底部BGA封裝並 修 未包覆有一模製化合物;而是’其具有一散熱器,其可額 外地做為一電遮蔽,如下所述。因此,在此具體實施例中 ,該底部封裝402包括一附著到具有至少一金屬層之底部封 裝基板412上的一晶粒414。其可使用多種基板型式之任何 一種,例如包括:一具有2_6金屬層之壓合板、或具有4_8 金屬層之建構基板、或具有1_2金屬層之可撓聚醯亞胺帶、 或一陶瓷多重層基板。藉由圖8A之範例所示之底部封裝基 板412具有兩個金屬層42丨、423,其每個被圖案化來提供適_ 當的電路,並透過通孔422連接。該晶粒在習.用上係使用一 黏著劑來附著於該基板的一表面上,基本上係稱之為晶粒 , 附著環氧化物’如圖8A中的413所示,且在圖8A的組態中 ’該晶粒所附著的基板表面可稱之為「上方」表面,且在 該表面上的金屬層可稱之為「上方」金屬層,雖然該晶粒 附著表·面在使用上不需要具有任何特定的方向性。 在圖8 A之底部B G A封裝中,該晶粒係線接點到該基板之 88127 -39- 1329918 上方金屬層的線接點處來建立電連接。焊球4丨8係回焊到, 基板之下金屬層上的接點墊之上,以提供互連到底部的電 路,例如一最終產品之主機板(未示於圖中),例如電腦。焊 罩415、427係圖案化在該金屬層42ι、423之上,以在接點 處暴露該下層金屬來用於電連接,例如在該線接點處來接 合該等線接點416及焊球41 8。 該多重封裝模組80之底部BGA封裝402具有一金屬化(例 如銅)散熱器,其額外可做為一電遮蔽來電性地包含任何來 自在該下方BGA中的晶粒之電磁輻射,並藉此防止干擾在 該上方封裝中的晶粒。該散熱器4〇6之「頂部」平面部份係 支撐在該基板412之上,並藉由腳或側壁407位在該晶粒414 之上。在黏著劑上的點或線408係用來固定該散熱器支撐 407到該底部基板的上方表面。該黏著劑可為一導電黏著劑 ’並可電連接到該基板412之頂部金屬層421,特別是連接 到該電路的一接地平面,並藉此建立該散熱器做為一電遮 蔽。或是,該黏著劑可為一非導電性,且在這種組態中, 該散熱器僅做為一散熱裝置。該散熱器406之支撐部份及頂 部部份包覆該晶粒414及該線接點416,並可用來對於周遭 及機械應力來保護那些結構,以便於處理作業,特別是在 該MPM組裝之前的後續測試。Expose the upper surface of the MPM to the surrounding environment to more efficiently remove heat from the MpM. For example, the top heat sink can be a metal plate (e.g., copper) and it can be secured to the MpM cover during the molding material curing process. Alternatively, the heat sink can have a generally planar portion over the top package, and a surrounding S portion, or a support member on or near the upper surface of the bottom package substrate. By way of example, Figure 6B is a cross-sectional view of a stacked BGA + LGAMPM 62 in accordance with another aspect of the present invention, wherein a "top" heat sink is provided at the upper surface of the MpM. The structure of the package stacked in the MPM 62 is generally similar to the MPM 60 of Figure 6At, and similar structures may be identified by similar reference numerals in the figures. The top heat sink in this example is formed from a thermally conductive material having a generally planar central portion 644 positioned over the top package and surrounding support members extending to the upper surface of the bottom package structure 412 6 4 · 6. The upper surface of the planar portion 649 is attached to the surface of the M p m to be exposed to the surroundings to efficiently discharge the MpM from the tropics. For example, the top heat sink can be formed by a sheet of metal (e.g., copper), e.g., by stamping. The support members 646 can be secured to the upper surface of the bottom package substrate (not shown) using an adhesive as needed. The multi-package module structure can be protected by forming a module cover 607, and the heat sink support member is embedded in the MPM cover 607 during the molding material curing process. In the embodiment of Figure 6B, a stepped recessed feature 64 5 ' is provided around the planar upper portion 644 of the heat sink to allow for a better mechanical integration of the structure. It is less separated from the molding compound. In this embodiment, the space between the lower surface of the heat sink 644 and the upper surface of the die 614 can be molded by a layer of MPM, which is sufficiently thick that the heat sink 644 does not interfere with the The surrounding LGA is molded 6 17 . Additionally, the MpM in this particular embodiment of Figure 6A can have a simple planar heat sink that does not have support members and does not adhere to the top surface of the top package molding. In these embodiments, as in the embodiment of FIG. 5A, the top heat sink can be a generally planar sheet of thermally conductive material such as, for example, a metal sheet (eg, copper), and at least the planar heat sink. The more central area of the upper surface is exposed to Shaw to more effectively remove the tropics from the MPM. Here, as in the embodiment of FIG. 6B, the space between the lower surface of the planar heat sink and the upper surface of the die 614 is filled by a layer of mpm molding, which is sufficiently thick to cause the heat dissipation. The device will not dry (d) the surrounding LGA molding 617. Here, in the specific embodiment of FIG. 6β, such a simple planar heat sink can be used to fix the MPM wrap during the curing process of the molding material, such as an unattached simple flat top heat sink. Covered with the MPM molding material, such as a flat heat sink attached to Figure 5D, and can be provided with a stepped concave feature to allow for better mechanical integrity of the structure. The read does not separate from the molding compound. It allows for a spacer to be provided between the heat sinks at the top of the simple flat surface. The other single-plane heat sink as in the embodiment of FIG. 6A is to the top package 6 〇〇, and the lower surface and the 38127 -35· 1329918 spacer on the upper surface of the die 614 can be provided with an adhesive. Fixed to the die and the heat sink; or, the spacer can be formed as a whole part, and a spacer portion of the heat sink, and in these embodiments, the heat spreader spacer A portion of the lower surface may be secured to the upper surface of the die using an adhesive. The spacer is preferably made of a thermally conductive material and the adhesive can be a thermally conductive adhesive to provide improved heat dissipation. In these embodiments, the top heat sink can be secured to the top package after the top package molding has been at least partially cured, but prior to the molding material exiting the MPM cover 607. The top of the top heat sink may be covered with the MPM molding material. As in the particular embodiment of Figure 5D, a stepped recessed feature is provided around the simple planar heat sink to allow for better mechanical integration of the structure without being separated from the molding compound. For example, the MPM structure with a heat sink shown in Figure 6B provides improved thermal performance. 7 is a cross-sectional view of a stacked multi-package module in accordance with another aspect of the present invention having a top LGA package stacked over a BGA bottom package with a single metal layer substrate for the top LGA package. In other respects, the configuration of Figure 7 is substantially shown in Figure 5A. Therefore, in this embodiment, the structure of the bottom package 400 is as shown in FIG. 5A, and the structure of the top package 700 is substantially as shown in FIG. 5A except that the structure of the top package substrate is difference. In particular, the top package 700 includes a die 714 attached to a top package substrate 712 having a metal layer 721 that is patterned to provide suitable circuitry. The die is conventionally attached to the surface of the substrate using an adhesive, which is basically referred to as die attach epoxy 88127 -36 - 1329918, as shown at 713 in Figure 7, and in Figure 7 In the configuration, the surface of the substrate to which the die is attached may be referred to as an "upper surface", so the metal layer on the substrate may be referred to as an "upper" or "top" metal layer, although the die attach surface is There is no need to have any special orientation on the use. In the top LGA package of the embodiment of Figure 7, the die line contacts are connected to the line contacts of the metal layer above the substrate to establish an electrical connection. The die 7 14 and the wire contact 7 16 are coated with a molding compound 7 7 which provides protection against ambient and mechanical stress for handling operations. The cladding 707 in the specific embodiment shown in FIG. 7 is disposed as in the specific embodiment of FIG. 5A, so the cladding 707 covers the die and the wire contacts and their connections, and the child The cladding has a surface 7 1 9 over the entire die and interconnect. As described below, the cladding herein may be formed as in the embodiment of FIG. 68, that is, it is formed to cover only the wire contacts and their individual connections to the top package substrate and the top package. The grain, so most of the upper surface of the die is not covered by the cladding. The top package 7 is stacked on top of the bottom package 400 and secured there using an adhesive as shown in Chuan 3. A solder mask 715 is patterned over the metal layer 721 to expose the underlying layer 16 at the junction, for example, to bond the line contacts 7^6. A Z-interconnect between the top package 7 〇〇 and the bottom package 4 该 of the stack is formed by connecting the line contacts 718 of the top metal layer of the individual package substrates to form a three-dimensional package wedge structure. Forming a module covering 7〇7 for protection, and the Ό41 8 is returned to the soldering ball on the metal layer under the 'j:T to the money package substrate to connect to the lower layer circuit, for example, ~ motherboard (not Shown in the picture). Thus, and the benefit of K is that the cost can be reduced compared to the configuration of the substrate using two 88127 - 37 · 1329918 metal layers in the top lg eight package because the cost of the single metal layer substrate is lower. This configuration can additionally provide a lower package profile because the single metal layer substrate is thinner than a substrate having two or more metal layers. Figure 8A is a cross-sectional view of a stacked BGA+Lga MPM 80 in accordance with another aspect of the present invention. A heat sink and electrical shield are provided to the bottom seal. The embodiment illustrated by the example in FIG. 8A has a top platform, grid array ("LGA") package 800 stacked on top of a bottom ball grid array "BGA" package 402, wherein the top The lga package is usually built into the top LGA package from Tulu 5 A. As described below, a single metal layer, as described with reference to Figure 6A, can also be used as the top LGA in the embodiment of Figure 8A. Referring to Figure 8-8, the top LGA package 8 can be similar to the -bgA package, such as shown in Figure 1, but without solder balls for mounting on the pad pads on the underside of the substrate. Particularly in this example, the top package 8A includes a die 814 attached to a top package substrate 812 having at least one metal layer. It can use any of a variety of substrate types; the top package substrate 812 of the example of FIG. 8a has two metal layers 821, 823, each of which is patterned to provide appropriate circuitry and through The through holes 822 are connected. The die is conventionally attached to a surface of the substrate using an adhesive, substantially referred to as a die attach epoxide, as shown at 813 in Figure 8A, and in Figure 8A. In the configuration, the surface of the substrate to which the die is attached may be referred to as a "ten thousand" surface, and the metal layer on the surface may be referred to as an "upper" or "top" metal layer, although the die attach surface There is no need to have any specific directionality in use. 88127 - 38- In the top lga package of the embodiment of Figure 8A, the die tie contacts to the line contacts of the metal layer above the substrate to establish an electrical connection. The granules 8 14 and the line contacts 816 are coated with a molding compound 817 which provides protection against ambient and mechanical stresses for handling operations and has a top package upper surface 819. Solder caps 815, 827 are patterned over the metal layers 821, 823 to expose the underlying metal at the contacts for electrical connection, such as wire contacts for bonding the wire contacts 816 At the office. The bottom bGa package 402 of the embodiment of Figure 8A is a conventional BGA package, as shown, for example, in the figure, except that the bottom BGA package of Figure 8a is unwrapped with a molding compound; There is a heat sink that can additionally be used as an electrical shield, as described below. Thus, in this embodiment, the bottom package 402 includes a die 414 attached to a bottom package substrate 412 having at least one metal layer. It can use any of a variety of substrate types, including, for example, a plywood having a 2-6 metal layer, or a construction substrate having a 4-8 metal layer, or a flexible polyimide layer having a 1_2 metal layer, or a ceramic multiple layer. Substrate. The bottom package substrate 412, shown by the example of Fig. 8A, has two metal layers 42A, 423, each of which is patterned to provide suitable circuitry and connected through vias 422. The die is attached to a surface of the substrate using an adhesive, substantially referred to as a die, and the attached epoxy is shown as 413 in Figure 8A, and in Figure 8A. In the configuration, the surface of the substrate to which the die is attached may be referred to as an "upper" surface, and the metal layer on the surface may be referred to as an "upper" metal layer, although the die attach surface is in use. There is no need to have any specific directionality. In the bottom B G A package of Figure 8A, the die line contacts are connected to the line contacts of the metal layer above the substrate 88127 - 39-1329918 to establish an electrical connection. The solder balls 4丨8 are reflowed over the contact pads on the metal layer below the substrate to provide circuitry to the bottom, such as a motherboard for the final product (not shown), such as a computer. Solder caps 415, 427 are patterned over the metal layers 42i, 423 to expose the underlying metal at the contacts for electrical connection, such as bonding the wire bonds 416 and soldering at the wire contacts Ball 41 8. The bottom BGA package 402 of the multi-package module 80 has a metallized (e.g., copper) heat sink that can additionally serve as an electrical shield to electrically include any electromagnetic radiation from the die in the lower BGA. This prevents interference with the grains in the upper package. The "top" planar portion of the heat sink 4〇6 is supported over the substrate 412 and is positioned over the die 414 by the foot or sidewall 407. A dot or line 408 on the adhesive is used to secure the heat sink support 407 to the upper surface of the base substrate. The adhesive can be a conductive adhesive' and can be electrically connected to the top metal layer 421 of the substrate 412, particularly to a ground plane of the circuit, and thereby establishing the heat sink as an electrical shield. Alternatively, the adhesive may be non-conductive, and in this configuration, the heat sink is only used as a heat sink. The support portion and the top portion of the heat sink 406 enclose the die 414 and the wire contact 416 and can be used to protect those structures for ambient and mechanical stresses to facilitate handling operations, particularly prior to assembly of the MPM. Follow-up testing.

該多重封裝模組80之頂部封裝800係堆疊在該散熱器/遮 蔽406之平坦表面上的底部封裝402之上,並使用一黏著劑 803固定在那裏。該黏著劑803可為導熱性,以改善散熱; 而該黏著劑803可為導電性,以建立該散熱器406與該LGA 88127 -40 - 1329918 封裝基板之下方金屬層的電連接,或其可為電絕緣,藉此 防止電連接。 根據本發明之頂部封裝800與底部封裝4〇2之間的z互連 係由在該頂部封裝基板812之空隙中的頂部封裝互連墊與 在該底部封裝基板402之空隙中底部封裝互連墊之間的線 接點叩所構成。該等線接點可以上接點或下接點的方式來 形成。孩多重封裝結構係由形成一模組包覆8〇7來保護。在 該散熱器之支撐部份4G7中可提供開口,以允許MpM模製材 料來在包覆期間填入在該包封的空間中。 焊球418係回焊到該底部封裝基板412之下金屬層上暴露 的焊球墊上,用於連接到下層電路,例如一主機板(未示於 圖中)。 如前所述,根據本發明之結構允許在組裝到該多重封裝 模组之前預先測試該BGA及LGA,以允許在組裝之前排除 不符s的封裝,藉此保證具有較高的最終模組測試良率。 為了改善來自該多重封裝模組之散熱,在該頂部封裝之 上可提供一散熱器。該頂部散熱器係由一導電材料所形成 ’其將其上方表面暴露在該MPM之上表面處的至少更為中 心的區域到周遭環境,以更有效率地將熱帶離該MPM。例 如,蔹頂部散熱器可為一金屬片(例如銅),且其可在該模製 材料固化處理期間固定到該MpM包覆。或者,該散熱器可 在居頂部封裝之上具有一通常為平面的部份,及一周圍支 樓部伤 或且於該底部封裝基板之上表面之上或其附近的 支撐部件。 88127 -41 · 1329918 藉由範例’圖8 B所不為根據本發明另一方面之堆疊的 30八+1^八]^?1^82之截面圖,其中在該^^]\/1的上表面處提 供一「頂部」散熱器。在MPM 8 2中堆疊的封裝之結構通常 類似於圖8A中的該MPM 80 ’而在圖中可由類似的參考編號 來識別類似的結構。在此範例中的頂部散熱器係由一導熱 材料所形成’其具有位在該頂部封裝之上的通常為平面的 中心部份804,及延伸到該底部封裝基板41 2之上表面的周 圍支撐邵件806。該平面部份804之上表面係在該1^1]?]^上表 面來暴露到周圍’以有效率地將熱帶出MPM。例如該頂部 散熱器可藉由一金屬片(例如銅)來形成,例如藉由沖壓。該 等支撐部件806可依需要來使用一黏著劑固定到該底部封 裝基板之上表面(未示於圖中)。該多重封裝模組結構可由形 成一模組包覆807來保護,且該散熱器支撐部件在該模製材 料固化處理期間被嵌入在該MPM包覆8〇7中。在圖8B的具 把貫施例中,在該散熱器的平面上方部份8〇4的周圍提供有 一階梯狀的凹入特徵805,以允許較佳的結構之機械性整合 度,而較不會與孩模製化合物分離。在此具體實施例中, 孩散熱器804之下表面與該LGA模製817之上表面819之間 的空間係填入該MPM模製之薄層。 另外,該頂部散熱器可為一通常為平面板的一導熱材料 ,例如像是一金屬片(例如銅),其不需要支撐部件。至少該 平面散熱器之上方表面的更為中心的區域被暴露到周遭環 境,用U更有效率地將熱帶離該肘雨。這種簡單平面散熱 器係示於圖8C中賴4’其中該散熱器_定到該頂部封裝 88127 -42· 1329918 模製之上表面。但是在圖8 B中,該散熱器並未附著到該頂 部封裝模製的上表面。而是,在該簡單平面散熱器之下表 面與該LGA模製81 7之上表面81 9之間的空間係填入—薄層 的MPM模製,且這種簡單的平面散熱器可在該模製材料固 化處理期間來固定於該MPM包覆807。一簡單平面頂部散熱 器之周圍在例如圖8B中的具體實施例,其可包覆有該MpM . 模製材料,並可在該周圍具有一階梯狀的凹入特徵(在圖8c , 中的簡單平面散熱器844中稱之為凹入特徵845),以允許該 結構具有較佳的機械整合度,而較不會與該模製化合物脫鲁 離。 另外’一頂部散熱器可固定於該LGA模製之上表面,如 在圖8C之截面圖中所示。在MPM 84中堆疊的封裝之結構通 常類似於圖8A中的該MPM 80 ’而在圖中可由類似的參考編 號來識別類似的結構。在圖8(:之範例中的頂部散熱器844 為一導熱材料之通常為平面的板,其將其至少上表面之更 為中心的區域暴露到周遭來更有效率地將熱帶離,如 同在圖SB中的·範例。例如該頂部散熱器可為一金屬片(例如春 銅)。但是,在此處該頂部散熱器804係使用一黏著劑846來 固定到該上方封裝包覆817之上表面819。該黏著劑846可為 -一導熱黏著劑,以提供改善的散熱效果。通常在該頂部封 裝模製已經至少部份固化之後,該頂部散熱器即固定到該 了/、部封取模氣,但其係在該模製材料對於該Mpm包覆μ? 射出之則。孩頂部散熱器之周圍可以包覆該MpM模製材料 。在圖8C的具體實施例中,在該散熱器844的周圍提供有一 88127 •43 - 1329918 階梯狀的凹入特徵845’以允許較佳的結構之機械性整合度 ,而較不會與該模製化合物脫離。 在圖8A、8B、8C中所示之結構的好處為明顯的熱效能, 並可視需要,在該底部封裝處有電遮蔽,例如其在組合了 RF及數位晶片之MPM中更為特別重要的關鍵。對於所有的 應用,其不需要同時具有一底部封裝散熱器及一頂部散熱 器。另外,根據終端產品的需求,有幾種之一為適當。 圖9A所示為根據本發明另一方面之多重封裝模組的截面 圖’其中一下晶粒之倒裝晶片BGA堆叠於—lga。在該下 方BGA中,該晶粒為連接到該基板之倒裝晶片,且該晶粒 與該基板之間的空間為側填滿。此BGA可在組裝到該MpM 中之前進行測試。該晶粒的背面可用來以黏著劑附著該頂 部LGA。該頂部LGA與該模組基板的2互連係透過線接點, 而該MPM被模製。此組態的一主要好處為在該BGA上的倒 裝晶片連接提供了高的電效能。 請參考圖9A,該底部BGA倒裝晶片封裝包括一基板312 ’其具有該晶粒3 14藉由倒裝晶片凸塊3 1 6連接於其上的一 圖案化金屬層32 1,例如焊料凸塊、金凸點凸塊、或各向異 性導電膜或膏。其可使用任何的基板型式;藉由圖9A之範 例所示的底部封裝基板312具有兩個金屬層321、323,其每 個被圖案化來提供適當的電路,並透過通孔3 22連接。該等 倒裝晶片凸塊係固定到在該晶粒之活性表面上的一圖案化 凸塊墊陣列’且做為該晶粒的活性表面,其對於該基板之 面向上的圖案化金屬層而面朝下,這種配置可稱之為一「下 88127 -44 - 1329918 晶粒」倒裝晶片封裝。在晶粒與基板之間的一聚合物側填 滿提供了對於周遭的防護,並加入機械整合度到該結構。 該多重封裝模組90之頂部LGA封裝900通常建構成類似 於圖7之多重封裝模組70之頂部LGA封裝700。特別是,該 頂部封裝900包括附著到具有一金屬層92丨之頂部封裝基板 9 12之一晶粒914,其被圖案化來提供適當的電路。該晶粒 在習用上係使用一黏著劑來附著到該基板的表面,其基本The top package 800 of the multi-package module 80 is stacked on top of the bottom package 402 on the flat surface of the heat sink/mask 406 and secured thereto using an adhesive 803. The adhesive 803 can be thermally conductive to improve heat dissipation; and the adhesive 803 can be electrically conductive to establish electrical connection between the heat sink 406 and the underlying metal layer of the LGA 88127 - 40 - 1329918 package substrate, or It is electrically insulated, thereby preventing electrical connections. The z-interconnect between the top package 800 and the bottom package 4〇2 in accordance with the present invention consists of a top package interconnect pad in the gap between the top package substrate 812 and a bottom package interconnect pad in the gap between the bottom package substrate 402. The line junction between the two is formed. The line contacts can be formed by means of a contact or a lower contact. The multi-package structure of the child is protected by forming a module covering 8〇7. An opening may be provided in the support portion 4G7 of the heat sink to allow the MpM molding material to be filled in the enclosed space during the coating. Solder balls 418 are reflowed onto the exposed solder ball pads on the metal layer below the bottom package substrate 412 for connection to a lower layer circuit, such as a motherboard (not shown). As previously mentioned, the structure according to the present invention allows the BGA and LGA to be pre-tested prior to assembly into the multi-package module to allow for the exclusion of packages that do not conform to s prior to assembly, thereby ensuring a good final module test. rate. To improve heat dissipation from the multi-package module, a heat sink can be provided on the top package. The top heat sink is formed of a conductive material that exposes its upper surface to at least a more central region at the upper surface of the MPM to the surrounding environment to more effectively move the tropics away from the MPM. For example, the crucible top heat sink can be a sheet of metal (e.g., copper) and it can be secured to the MpM cladding during the molding material curing process. Alternatively, the heat sink can have a generally planar portion over the top package and a support member that is damaged by a surrounding portion or on or near the upper surface of the bottom package substrate. 88127 -41 · 1329918 A cross-sectional view of a stack of 30 VIII^8]^?1^82 according to another aspect of the present invention by way of example 'BB', wherein in the ^^]\/1 A "top" heat sink is provided on the upper surface. The structure of the package stacked in the MPM 8 2 is generally similar to the MPM 80' in Figure 8A and a similar structure can be identified by similar reference numerals in the figures. The top heat sink in this example is formed of a thermally conductive material having a generally planar central portion 804 positioned over the top package and surrounding support extending to the upper surface of the bottom package substrate 41 2 Shao 806. The upper surface of the planar portion 804 is attached to the surface of the surface 804 to expose the surrounding portion to efficiently discharge the MPM. For example, the top heat sink can be formed by a sheet of metal, such as copper, such as by stamping. The support members 806 can be secured to the upper surface of the bottom package substrate (not shown) using an adhesive as needed. The multi-package module structure can be protected by forming a module cover 807, and the heat sink support member is embedded in the MPM cladding 8〇7 during the molding material curing process. In the embodiment of Figure 8B, a stepped recessed feature 805 is provided around the upper portion 8〇4 of the planar surface of the heat sink to allow for better mechanical integration of the structure, rather than Will separate from the child's molding compound. In this embodiment, the space between the lower surface of the heat sink 804 and the upper surface 819 of the LGA molded 817 is filled into the MPM molded thin layer. Alternatively, the top heat sink can be a thermally conductive material, typically a flat sheet, such as, for example, a sheet of metal (e.g., copper) that does not require a support member. At least a more central region of the upper surface of the planar heat sink is exposed to the surrounding environment, and the U is more efficiently removed from the elbow by U. This simple planar heat sink is shown in Figure 8C, where the heat sink is molded onto the top surface of the top package 88127 - 42 · 1329918. However, in Figure 8B, the heat sink is not attached to the top surface of the top package molding. Rather, the space between the lower surface of the simple planar heat sink and the upper surface 81 9 of the LGA molding 81 7 is filled with a thin layer of MPM molding, and such a simple planar heat sink can be The MPM cladding 807 is fixed during the molding material curing process. A simple planar top heat sink is surrounded by, for example, the embodiment of Figure 8B, which may be coated with the MpM. molding material and may have a stepped recessed feature around the perimeter (in Figure 8c, The simple planar heat sink 844 is referred to as a recessed feature 845) to allow for better mechanical integration of the structure without detachment from the molding compound. Alternatively, a top heat sink can be attached to the upper surface of the LGA molding as shown in the cross-sectional view of Figure 8C. The structure of the package stacked in the MPM 84 is generally similar to the MPM 80' in Figure 8A and a similar structure can be identified in the figure by similar reference numerals. The top heatsink 844 in the example of Figure 8 is a generally planar plate of thermally conductive material that exposes at least a more central region of the upper surface to the surrounding to more effectively remove the tropics as if An example of Figure SB. For example, the top heat sink can be a metal sheet (such as spring copper). However, here the top heat sink 804 is secured to the upper package cover 817 using an adhesive 846. Surface 819. The adhesive 846 can be a thermally conductive adhesive to provide improved heat dissipation. Typically, after the top package molding has been at least partially cured, the top heat sink is secured to the /. Mold gas, but it is attached to the Mpm coating of the molding material. The MpM molding material may be coated around the top of the heat sink. In the embodiment of Fig. 8C, the heat sink is A circumscribed recessed feature 845' is provided around the 844 to allow for better mechanical integration of the structure without being detached from the molding compound. In Figures 8A, 8B, 8C The benefits of the structure shown are obvious Performance, and if necessary, electrical shielding at the bottom package, such as the more critical key in MPMs combining RF and digital chips. For all applications, it is not necessary to have a bottom package heatsink and A top heat sink. In addition, depending on the needs of the end product, one of several is appropriate. Figure 9A is a cross-sectional view of a multi-package module according to another aspect of the present invention. Stacked in -lga. In the lower BGA, the die is a flip chip connected to the substrate, and the space between the die and the substrate is filled side. This BGA can be assembled into the MpM The back side of the die can be used to attach the top LGA with an adhesive. The top LGA interconnects with the module substrate through the wire contacts, and the MPM is molded. A major benefit of this configuration is The flip chip connection on the BGA provides high electrical efficiency. Referring to Figure 9A, the bottom BGA flip chip package includes a substrate 312' having the die 3 14 by flip chip bumps 3 1 6 a picture attached to it The metal layer 32 1 is, for example, a solder bump, a gold bump bump, or an anisotropic conductive film or paste. Any substrate type can be used; the bottom package substrate 312 shown by the example of FIG. 9A has two Metal layers 321, 323, each patterned to provide appropriate circuitry, are connected through vias 32. The flip chip bumps are attached to a patterned bump on the active surface of the die. The pad array 'and as the active surface of the die, facing downward facing the patterned metal layer of the substrate, this configuration can be referred to as a "lower 88127 -44 - 1329918 die" flip-chip Wafer encapsulation. Filling a polymer side between the die and the substrate provides protection against the surrounding and incorporating mechanical integration into the structure. The top LGA package 900 of the multi-package module 90 is typically constructed as a top LGA package 700 similar to the multi-package module 70 of FIG. In particular, the top package 900 includes a die 914 attached to a top package substrate 91 having a metal layer 92, which is patterned to provide suitable circuitry. The die is conventionally attached to the surface of the substrate using an adhesive, which is basically

上稱之為晶粒附著環氧化物,如圖9 a之913所示,且在圖9A 的組態中,該晶粒所附著的基板表面可稱之為「上」表面 ,因此在此基板上的金屬層可稱之為「上方」或「頂部」 金屬層,雖然該晶粒附著表面在使用上不需要具有任何特 殊的方向。 在圖9A之具體實施例中的頂部LGA封裝,該晶粒係線接 點到該基板之上方金屬層的線接點處來建立電連接。該晶 粒914及該線接點916係包覆一模製化合物917,其可提供Z 於周遭及機械應力的保護,以便於處理作業。在圖9A所示 的具體實施例中的包覆9〇7覆蓋了該晶粒以及該線接點及 其連接’且該包覆具有-表面919在整個晶粒與互連之上。 如下所述,此處的包覆另可形虏印 々成同圖6A又具體實施例。其 可形成像是來僅包覆該等線接點, 任,.,占及其個別的連接到該頂 部封裝基板及該頂部封裝晶粒,所 所以大邯份該晶粒的上表 面並未被該包覆所覆蓋。該頂部封 衣㈣係堆璺在蔹履邵封 裝300之上,並使用一黏著劑固定 <在那夏,如在903所示。 焊罩91 5被圖案化在該金屬層921 1又上,以在接點處暴露下 88127 -45- 1329918 層至屬來電連接’例如用於接合該等線接點91 6之線接點 處。 在該堆疊的頂部封裝9〇〇與底部封裝300之間的z互連係 藉;由連接個別封裝基板之頂部金屬層的線接點9 i 8來製成 該夕重封裝模組結構係由形成一模組包覆9〇7來保護,且 咩求1 8係回焊到該底邯封裝基板之下金屬層上所暴露的 焊球墊,來連接到下層電路,例如—最終產品之主機板(未 示於圖中),像是一電腦。焊罩315、奶係圖案化在該金屬 層321、323之上,以在接點處暴露該下層金屬來用於電連 接例如表該線接點處來接合該等線接點91 8及焊球3 1 8。 八有堆宜在一具有下晶粒之倒裝晶片BGA上之LGA的結 構,例如參考圖9A所示,其可組合一散熱器與電遮蔽,如 圖:B或圖8C所示。因此’圖9B所示為根據本發明另一方面 之多重封裝模組之截面圖,其中下晶粒之倒裝晶片BGA係 隹JU LGA,如圖9A之具體實施例,且其中該下方BGA具 有一散熱器/遮蔽。 特別是,請參考圖9B,該多重封裝模組92之底部BGA封 裝300具有一金屬化(例如銅)散熱器,其額外地做為一電遮 蔽來電性地包含任何來自在該下方BGA中的晶粒之電磁輻 射,並猎此防止干擾在該上方封裝中的晶粒。該散熱器9〇6 之「頂部」平面部份係支撐在該基板312上,並由腳或側壁 909支撐在該晶粒3M上。一黏著劑之點或線9〇8用來固定該 政器支擇9 0 9到遠底部基板之上表面。該黏著劑可為一導 電黏著劑,並可電連接到該基板312之頂部金屬層321,特 88127 -46· 1329918 別是連接到該電路之一 一接地平面,並藉此建立該散熱器做It is referred to as a grain-attachment epoxide, as shown in 913 of FIG. 9a, and in the configuration of FIG. 9A, the surface of the substrate to which the die is attached may be referred to as an "upper" surface, and thus the substrate is The upper metal layer may be referred to as an "upper" or "top" metal layer, although the die attach surface does not need to have any particular orientation in use. In the top LGA package of the embodiment of Figure 9A, the die tie contacts to the line contacts of the metal layer above the substrate to establish an electrical connection. The crystal 914 and the wire contact 916 are coated with a molding compound 917 which provides protection of the Z and surrounding mechanical stresses to facilitate handling operations. The cladding 9〇7 in the embodiment shown in Fig. 9A covers the die and the wire contacts and their connections' and the cladding has a surface 919 over the entire die and interconnect. As described below, the cladding herein can be formed into the same embodiment as Figure 6A. The image may be formed to cover only the wire contacts, and may be connected to the top package substrate and the top package die, so that the upper surface of the die is not large. Covered by the cover. The top seal (4) is stacked on top of the sloping seal 300 and secured with an adhesive <at that summer, as indicated at 903. A solder mask 91 5 is patterned over the metal layer 921 1 to expose a layer of 88127 - 45 - 1329918 at the junction to an incoming call connection, such as a line contact for bonding the line contact 91 6 . The z-interconnect between the top package 9 〇〇 and the bottom package 300 of the stack is formed by a line contact 9 i 8 connecting the top metal layers of the individual package substrates. A module is covered with 9〇7 for protection, and the 188 is soldered to the solder ball pad exposed on the metal layer under the bottom package substrate to connect to the underlying circuit, for example, the motherboard of the final product. (Not shown in the picture), like a computer. A solder mask 315 and a milk system are patterned on the metal layers 321, 323 to expose the underlying metal at the contacts for electrically connecting, for example, the line contacts to bond the line contacts 91 8 and solder Ball 3 1 8. The configuration of the LGA on a flip chip BGA having a lower die, such as shown in Fig. 9A, can be combined with a heat sink and electrical shield as shown in Fig. B or Fig. 8C. Thus, FIG. 9B is a cross-sectional view of a multiple package module in accordance with another aspect of the present invention, wherein the lower die flip chip BGA system JU LGA, as in the specific embodiment of FIG. 9A, and wherein the lower BGA has A radiator / shade. In particular, referring to FIG. 9B, the bottom BGA package 300 of the multi-package module 92 has a metallized (eg, copper) heat sink that additionally serves as an electrical shield to include any of the BGAs in the lower BGA. The electromagnetic radiation of the grains is hunted to prevent interference with the grains in the upper package. The "top" planar portion of the heat sink 9〇6 is supported on the substrate 312 and supported on the die 3M by the foot or sidewall 909. An adhesive dot or line 9〇8 is used to secure the actuator to the surface of the far bottom substrate. The adhesive may be an electrically conductive adhesive and may be electrically connected to the top metal layer 321 of the substrate 312. The special 88127-46· 1329918 is connected to one of the ground planes of the circuit, and the heat sink is constructed

應力來保護那些結構,以Stress to protect those structures to

為一散熱裝置。該散熱器906之支撐 日日粒3 14 ’並可用來對於周遭及機械 以便於處理作業,特別是在該MPM 組裝之前的後續測試。 該多重封裝模組92之頂部封裝900係堆疊在該散熱器/遮 蔽906之平坦表面上的底部封裝3〇〇之上,並使用一黏著劑 903固足在那裏。該黏著劑9〇3可為導熱性以改善散熱, 而該黏著劑903可為導電性,以建立該散熱器9〇6與該lga 封裝基板之下方金屬層的電連接,或其可為電絕緣,藉此 防止電連接。 根據本發明之頂部封裝9〇〇與底部封裝3〇〇之間的z互連 係由在該頂邵封裝基板9丨2之空隙中的頂部封裝互連墊與 在蓀底部封裝基板3〇〇之空隙中底部封裝互連墊之間的線 接點918所構成。該等線接點可以上接點或下接點的方式來 形成。該多重封裝模組結構係由形成一模組包覆9〇7來保護It is a heat sink. The support of the heat sink 906, the day pellets 3 14 ' can be used for peripheral and mechanical work to facilitate handling operations, particularly for subsequent testing prior to assembly of the MPM. The top package 900 of the multi-package module 92 is stacked on top of the bottom package 3 on the flat surface of the heat sink/mask 906 and secured there using an adhesive 903. The adhesive 9〇3 may be thermally conductive to improve heat dissipation, and the adhesive 903 may be electrically conductive to establish an electrical connection between the heat sink 9〇6 and a metal layer under the lga package substrate, or it may be electrically Insulate, thereby preventing electrical connections. The z-interconnect between the top package 9 〇〇 and the bottom package 3 根据 according to the present invention is formed by the top package interconnection pad in the space between the top package substrate 9 丨 2 and the package substrate 3 at the bottom of the package. A line contact 918 between the bottom package interconnect pads in the gap is formed. The line contacts can be formed by means of a contact or a lower contact. The multi-package module structure is protected by forming a module covering 9〇7

。在該散熱器之支撐部份907中提供開口,以允許該MPM 模製材料來在包覆期間填入在該包封的空間中。 悍球3 1 8係回焊到該底部封裝基板3〇〇之下金屬層上暴露 的焊球墊上,用於連接到下層電路,例如一主機板(未示於 圖中)。 如前所述’根據本發明之結構允許在組裝到該多重封裝 模組之前預先測試該Bg A及LG A,以允許在組裝之前排除 88127 -47- 1329918 不符合的封裝,藉此保證具有較高的最終模組測試良率。 在根據本發明此方面之倒裝晶片底部封裝中的處理器晶 片可為例如ASIC、GPU或CPU,通常為ASIC ;且該頂部封 裝可為一記憶體封裝或一 ASIC封裝。其中當該頂部封裝為 一記憶體封裝時,其可為一堆疊的晶粒記憶體封裝。一遮 敝的倒裝晶片下晶粒底部封裝特別適用於較高速的應用,· 特別是射頻處理,例如在行動通訊應用中。 % 其視需要,在一下晶粒組態中具有一倒裝晶片底部封裝 、 的MPM(例如圖9A或圖9B中所示)可具有一散熱器。 馨 為了改善如圖9A或9B中的範例所示之多重封裝模組的 散熱,在該頂部封裝之上可提供一散熱器。該頂部散熱器 係由-導電材料所形成,其將其上方表面暴露在該MpM之 上表面處的至少更為中心的區域到周遭環境,以更有效率 地將熱帶離該MPM。例如,該頂部散熱器可為—金屬片(例 如銅),且其可在該模製材料固化處理期間固定到該MpM包 覆。或者,該散熱器可在該頂部封裝之上具有一通常為平 面的部份’及-周圍支撲部份、或置於該底部封裝基板之_ 上表面之上或其附近的支撐部件。 藉由範例’圖9C所示為根據本發明另_方面之堆疊的 BGA+LGAMPM94之截面圖,其中在該MpM的上表面處提 供-「頂部」散熱器。在MPM 94中堆疊的封裝之結構通常 類似於圖9B中的該MPM92,而在圖中可由類似的參考編號 來識別類似的結構。在此範例中的頂部散埶器係由一導散 材料所形成,其具有位在該頂部封裝之上的通常為平面: 88127 •48 - !329918 中心部份944,及延伸到該底部封裝基板3丨2之上表面的周 圍支撐部件946。該平面部份944之上表面係在上表 面來暴露到周圍,以有效率地將熱帶出MpM。例如該頂部 散熱益可藉由一金屬片(例如銅)來形成,例如藉由沖壓。該 等支撐部件946可依需要來使用一黏著劑固定到該底部封 裝基板之上表面(未示於圖中)。該多重封裝模組結構係由形 成一模组包覆907來保護,且該散熱器支撐部件係在該模製 材料固化處理期間被嵌入在該MPM包覆907中。在圖9C之 具體實施例中,在該散熱器之平面上方部份944之周圍上提 供一階梯狀的凹入特徵945,以允許該結構具有較佳的機械 整合度,並較不會與該模製化合物脫離。在此具體實施例 中,該散熱器944之下表面及該晶粒914之上表面之間的空 間係填入一層MPM模製,其足夠厚,所以該散熱器944並不 會干涉該周圍的LGA模製917。 另外,如同9A或圖9B之具體實施例中的MPM可具有一簡 單平面欢熱器,其不具有支撐部件。這種簡單平面散熱器 可使用一黏著劑來固定到該頂部封裝模組5丨7之上表面5】9 。或者另外’圖9A或圖9B之具體實施例中的MPM可具有一 簡單平面散熱器’其並不附著於該頂部封裝模製之上表面 。在這些具體實施例中,如在圖5〇中的具體實施例,該頂 部散熱器可為一通常為平面的導熱材料板,例如像是一金 屬片(例如鋼)’及至少該平面散熱器之上表面的更為中心的 區域係暴露到周圍來更有效率地將熱帶離該MPM。此處, 在圖9C之具體實施例中,該平面散熱器之下表面與該頂部 88127 -49· 1329918 封裝900之間的空間可填入一層mpm。且如同圖9C之具體 實施例中的這種簡單平面散熱器,其可在該模製材料固化 處理期間固定到該MPM包覆907。這種未附著的簡單平面頂 部散熱器之周圍可以包覆有該MPM模製材料,如同在圖5D 中所附著的平面散熱器,並可在該周圍上提供一階梯狀的 凹入特徵,以允許與該結構的較佳機械整合度,並較不會 與該模製化合物分離。 例如圖9C所示之具有一散熱器的mpm,其可提供改善的 熱效能。 根據本發明之MPM的底部封裝可為在一上晶粒組態中的 一倒裝晶片封裝,其中該底部封裝晶粒係承載於該底部封 I基板之下表面上。通常在這種組態中的該底部封裝晶粒 附著S域係位在大約該基板區域的中心,且該第二階互連 球可在周邊上配置靠近於兩個或通常更多的該基板邊緣。 β上晶粒倒裝晶片及其倒裝晶片互連結構係位在該第二階 互連結構之停駐高度内’且因此在這種組態中的底部封裝 晶粒對於該ΜΡΜ之整體厚度沒有貢獻。再者,該上晶粒組 態可避免一網列反轉效應,其基本上為一下晶粒組態之結 果。 。 特別是,藉由範例,圖10 Α所示為根據本發明另一方面之 多重封裝模組101之截面圖,其中一堆疊的晶粒平台格栅陣 列封裝1000在一上晶粒組態302中堆疊在一倒裝晶片bGa 之上,且該等堆疊的封裝係由線接點來互連。在該底部B g a 封裝302中,該晶粒344係附著在該BGA基板342之下方側。 S8127 -50- 1329918 如圖所7F,此結構提供一較薄的MPM,因為該底部封裝 曰日粒係在m底部封裝的底側在位在焊球的周圍之間的區域 中,这種組態可具有一較高的電效能,不僅因為其使用一 倒裝晶片連接,但亦因為其提供該晶粒的更為直接之電連 接到該等秌球,對於該晶粒與該等焊球之間的連接,其具 有較短的金屬跡線,且不需要通孔(如在圖9 A或中的組態 所需要)。另外,該上晶粒組態使得此封裝在網列上可相容 於線接點’如同在—些應用中所需。網列為該晶粒與該等 焊球之間所有連接㈣的總和。#該晶粒面向上「下晶粒」 時’其即具有一連接型態,其為當該晶粒面向下「上晶粒」 時,在相同晶粒中的相同型態的鏡像影像。 在圖1 〇 A的組態中’該頂部L G A封裝係以黏著劑附著到該 BGA的上方側,然後即線接點及模製。在圖i〇a到i〇e之範 例所示之具體實施例中,在該頂部封裝中堆疊了超過—個 的晶粒(兩個或更多)。堆疊的晶粒封裝在本產業中已良好地 建立,這些版本在封裝中最高可達到5個堆疊的晶粒。該晶 粒具有不,同的尺寸,且在一堆疊的晶粒封裝中的晶粒可具 有相同或不同的相對尺寸。該晶粒基本上為正方形或長方 形,而不同尺寸之長方形與正方形晶粒可堆叠在一堆疊的 晶粒封裝中。當該晶粒為長方形或具有不同的尺寸時,該 晶粒即可堆疊,所以在該堆疊中—下方晶粒的空隙突出超 過一堆疊於其上的上方晶粒之空隙。圖1〇A所示為在該堆疊 中兩個晶粒為相同尺寸之範例。在這些具體實施例中,或 在田及堆豐中±方晶粒大於一下方晶㊆的具體實施例中, 88127 -51 - 1329918 -間隔器組裝在該晶粒之間來構成所有晶粒之線接點到該 LGA基板。圖10B所示為在該堆疊中的上方晶粒小於下方晶 粒之範例;或者另夕卜,該晶粒係堆疊成該上方堆疊之空: 會哭出超過該下方晶粒的空隙。在像是在圖1〇B之具體膏施 例中,不需要有間隔器,因為在該下方晶粒之突出^的 線接點處可允許線接點不會干擾堆疊於其上的晶粒。 請參考圖10A,該底部倒裝晶片BGA封裝3〇2包括—具有 一圖案化金屬層353之基板342,其為該晶粒344藉由倒裝晶 片凸塊346連接之部份,例如焊料凸塊、金點凸塊或各向異 性導電膜或膏。其可使用多種基板型式中的任何—種;在 圖10A之範例所示之底部封裝基板342具有兩個金屬層^ 、353,其每個被圖案化來提供適當的電路。底部封裝基板 342額外地具有一金屬層355,其夹在介電層354、356之間 。金屬層355在選擇的位置處具有空洞,以允許該等金屬層 351、353透過通孔之連接,因此該圖案化的金屬層35卜3 之選擇的部份係藉由通孔連接通過該等基板層354、356, 及通過在該等·夾在其中的金屬層355中的空洞。該圖案化的 金屬層353之選擇的部份係藉由通孔連接通過基板層356到 夹住的金屬層3 5 5。 倒裝晶片凸塊346係附著到該晶粒之活性表面上的一圖 案化的凸塊墊,且因為該晶粒的活性表面對於一面向下的 遠基板之圖案化的金屬層來面向上,這種配置可稱之為一 上曰曰粒」倒裝晶片封裝。在晶粒與該基板的晶粒附著區 域之間的一聚合物侧填滿343提供了對於周遭的防護,並加 88127 -52- 1329918 入機械整合度到該結構。 如上所述,該等金屬層351、353被圖案化來提供適當的 電路’且該夹住的金屬層355在選擇的位置處具有空洞,以 允許在該上方及下方金屬層35丨、353上選擇的跡線之間允 許互連(並不接觸該夾住的金屬層355)。特別是,例如該下 万金屬層被圖案化在該晶粒附著區域來提供該倒裝晶片互 連凸塊343之附著處;及例如該下方金屬層被圖案化到較為 靠近該底部封裝基板342之空隙來提供該第二階互連焊球 348之附著處,藉此該完成的MpM由焊料回焊附著到下層電 路(未不出)。例如,特別是該上方金屬層被圖案化到靠近該 底部封裝基板342之空隙,以提供線接點之附著處連接該頂 邵封裝到該底部封裝。在該金屬層353之電路中的接地線透 過通孔連接到該夾住的金屬層355 ;該等焊球348中選擇的 一些為接地球,其在當安裝MPM時即附著到該下層電路中 的接地線。因此,該夾住的金屬層355做為該河15]^之接地平 面。該等焊球348中所選擇的為輸入/輸出球或電源球’因 此,這些在該金屬層353之電路中分別附著到輸入/輸出或 電源線上的焊球處。 仍參考圖10A’該頂部封裝1000為一堆疊的晶粒平台格柵 陣列封裝,其中晶粒1014、1024係由一間隔器1015分離, 且堆登在一頂部封裝基板上。該頂部封裝基板包括一介電 層1〇12,其在該上方基板表面上具有一金屬層,並圖案化 來提供跡線,例如1031,其具有附著處用於該頂部封裝基 板,,泉接點互連於該堆疊晶粒,並用於該頂部封裝之線接點 88127 -53 - 1329918 互連於該底部封裝基板。下方晶粒1014係使用—黏著劑 HH3附著到該頂部封裝基板的一晶粒附著區域,例如一晶 粒附著環氧化物。晶粒1014係藉由線接點1〇16電連接到該 頂部基板’連接在該晶粒之活性表面上的線接點處與在選 擇的跡線1011上的線接點處。一間隔器1015使用—黏著劑 (未示於圖中)來固定到該下方晶粒1014之上表面,而上方晶、 粒1024使用一黏著劑(圖中未示出)來固定到該間隔器ίου · 之上表面。該間隔器被選擇具有充份的厚度,以提供空隙 * ,所以該上方晶粒1024之突出空隙不會侵犯到該等線接點鲁 1016。晶粒1024藉由線接點1026連接到該頂部基板,其連 接在孩晶粒之活性表面上的線接點處與選擇的跡線】上 的線接點處。該堆疊的晶粒與在該頂部封裝基板之上的線 接點之裝配件被包覆在一模製材料1〇17中,提供一頂部封 裝上表面1019,並留下所暴露的該等互連跡線1〇u之空隙 部份。該頂部封裝1〇〇〇在此時可被測試,然後堆疊到該底 部封裝基板之上表面的晶粒附著區域,並使用—黏著劑 1003來固定於玆處。該等頂部及底部封裝之電互連會受到籲 在該頂部封裝基板之跡線1〇11上所暴露的線接點處與該底 部封裝基板之上方金屬層的跡線351上的線接點處之線接 · 點1018所影響。然後該MPM裝配件即包覆在—模製1〇〇7中 ,以保邊封裝對封裝之線接點,並在該完成的MpM ] 〇】中 提供機械整合度。 如上所述,在這些具體實施例中堆疊在該上晶粒倒裝晶 片BGA封裝之上的堆疊晶粒頂部封裝可具有多種組態其 88127 -54- 1329918 係根據例如在該堆疊中的晶粒數目、並根據該晶粒的尺寸 舉例而。在截面圖中,圖_所示為另一⑽Μ組態 ⑽,其t該LGA具有兩個堆疊的晶粒,且其中該上方晶粒 购之尺寸比該下方晶粒1()34要小,至少在該截面圖的平 面上。在這種組態中,名^Γ . n ,、、 — ^下万日曰粒之空隙中的線接點附 著處之上沒有上方晶粒之空隙突出,所以不需要包括__間 隔器。在圖_之MPM 103中的底部封裝3〇2實質上類似於 圖10 A之MPM 101中的底却私牡 „ . . 氐唓封裝,且相對應的部份係類似於 圖面_所示。在MPM 1G3中的頂部封裝刪為_堆叠的晶 粒平台格柵陣列封裝,其具有晶粒1〇34、1〇44堆疊在一頂 料裝基板之上。該頂部封裝基板包括—介電層⑻2,其 在该上万基板表面上具有—金屬層,並圖案化來提供跡線 ,例如则,其具有附著處用於該頂料裝基板線接點互 連於該堆疊的晶粒,並用於該頂部封裝之線接點互連㈣ 底邵封裝基板。下方晶粒1034係使用一黏著劑則附著到 孩頂邵封裝基板的-晶粒附著區域,例如一晶粒附著環氧 化物。晶粒1034藉由線接點1036電連接到該頂部基板,其 連接在該晶㈣活性表面上的線接點處與在選擇的跡線 顧上的線接點處。上方晶粒1〇44係使用一黏著劑咖固 足到孩下方晶粒刪之上表面。晶㈣44藉*線接點ι〇46 電連接到該頂部基板,其連接在該晶粒的活性表面上之線 接點處與選擇的跡線1〇31上的線接點處。在該頂部封裝基 板足上的堆宜晶粒與線接點之裝配件係包覆在提供一項部 封裝上表面1039之模製材料则中,並留下暴露的互連跡 88127 -55- 1329918 線1〇31<空隙部份。該頂部封裝1030在此時可被測試,然 後堆登到孩底部封裝基板之上表面的晶粒附著區域,並使 用黏著劑1003來固定於該處。該等頂部及底部封裝之電 互連會艾到在該頂部封裝基板之跡線丨〇3丨上所暴露的線接 點處與泫底部封裝基板之上方金屬層的跡線35 1上的線接 點處 < 線接點1 〇 1 8所影響。然後該MpM裝配件即包覆在一 梃製1007中,以保護封裝對封裝之線接點,並在該完成的 MPM 103中提供機械整合度。 在根據本發明此方面之倒裝晶片底部封裝中的處理器晶 片可為例如ASIC、GPU或CPU,·且該頂部封裝可為一記憶 體封裝,特別是例如在圖丨〇 A及圖丨〇B中所示之一堆疊晶粒 記憶體封裝。該底部封裝之倒裝晶片上晶粒組態可提供一 非常薄的模組,並特別適用於較高速的應用,例如行動通 訊。 如下所述,在像是MPM 101或1〇3之具體實施例中該底部 封t基板中的接地平面3 5 5额外地做為—電磁遮蔽來顯著 地降低該BGA晶粒與該覆蓋的LGA晶粒之間的干擾,且像 是MPM可特別應用在該底部封裝晶粒為一高頻晶粒(例如 射頻)的應用中。 在些應用中’其亦品要來遮叙在該底部封裝中的bga 晶粒與該MPM所附著的該下層電路。圖1 〇c所示為一多重 封裝模組1 0 5之挑例’其中一堆璺晶粒平台格柵陣列封裝 1000在一上晶粒組態302中堆疊在一倒裝晶片bga之上,其 中該等堆疊的封裝係由線接點來互連,其中在該倒裝晶片 88127 -56- 1329918 BGA處提供-電磁遮蔽’以限制輻射向下朝向下層 示出)。 在圖H)C的職105中,該頂部封裝刪與該底部封裝 302實質上係構建成如同圖1()Α<ΜρΜ⑻,且相對應的特 徵可相對應地在圖中辨識。該MPMl〇5之底部封裝如即且 有一金屬化(例如銅)電遮蔽來電性地包含來自在該下方 BGA中的晶粒之電磁輕射,並藉此防止干擾在該安裝的 ΜΡΜ之下的電路。該遮蔽綱的下方平面部份係由腳或側壁 305所支撐…黏著劑的點或線3()6用來固定該散熱器支撐 3〇5到該底部基板之下表面。該黏著劑可為—導電黏著劑, 並可電連接到該基板之下金屬層中的跡線,特別是連接到 該電路之接地跡線。該支撐部份及該遮蔽的下方平面部份 包覆該晶粒344,且除了遮蔽在該完成的裝置中之下方晶粒 ,其可用來對於周遭及機械應力來保護該下方晶粒,以便 方' 處理作業’且特別是在組裝該MPM之前的後續測試期間 、或在安裝之前。 另外,如下所述,參考圖1〇c所述之遮蔽可用來遮蔽在 MPM中的一上晶粒倒裝晶片底部封裝3〇2,其具有其它堆疊 曰日粒頂部封裝組態。例如該堆疊晶粒頂部封裝在相鄰晶粒 之間不具有間隔器,如圖10B之1030中所示。 且另外’如參考圖l〇C所述之遮蔽可用來遮蔽在mpm中 之上η曰粒倒裝晶片底部封裝3〇2,其除了堆疊晶粒頂部封裝 义外的頂部封裝。例如該頂部封裝可為一平台格柵陣列封 裝,例如像是圖5Α中的500所示之bGA頂部封裝。 88127 -57- 1329918 再者,為了改善通常設置在圖10A中的一多重封裝模組之 散熱作用,在該頂部封裝之上可提供—散熱器。該頂部散 熱器係由一導電材料所形成,其將其上方表面暴露在該 MPM之上表面處的至少更為中心的區域到周遭環境,以更 有效率地將熱帶離該MPM。例如,該頂部散熱器可為一金 屬片(例如銅),且其可在該模製材料固化處理期間固定到該 MPM包覆。或者,該散熱器可在該頂部封裝之上具有一通 常為平面的部份’及一周圍支撐部份、或置於該底部封裝 基板之上表面之上或其附近的支撐部件。 藉由範例,圖10E所示為包括堆疊在一上晶粒倒裝晶片底 邛BGA之上的一堆疊的晶粒頂部封裝之MpM !⑽之截面圖 ,其中在該MPM的上表面處提供—「頂部」散熱器。在MpM 中的頂部及底部封裝之結構通常類似於在圖i〇c中的 MPM 1G5 ’且藉由類似的參考編號可在圖面中辨識類似的 結構。在此範例中的頂部散熱器係由一導熱材料所形成, 其具有位在該頂部封裝1000之上的通常為平面的中心部份 1004 ’及延伸到該底邵封裝基板342之上表面的周圍支撐部 件1046。該平面部份1004之上表面係在該MpM上表面來暴 心到周圍,以有政率地將熱帶出Mpm。例如該頂部散熱器 可由金屬片(例如銅)所形成,例如藉由沖壓。該等支撐部 件1046可依需要來使用一黏著劑固定到該底部封裝基板之 上表面(未示於圖中)。該多重封裝模組結構可由形成一模組 包復1007來保護,且該散熱器支撐部件在該模製材料固化 處理期間被嵌入在該MPM包覆1〇07中。在圖1〇E的具體實施 88127 •58- I32991& 〇92125625號專利申請案 中文說明書替換頁(95年9月) 的碌 例中’在該散熱器的平面上方部份1044^^-^有一階 梯狀的凹入特⑴045, 〃允許較佳的結構之機械性整合度 ’而較不會與該模製化合物脫離。在此具體實施例中,該 散熱器1044之下表面與該LGA模製1〇17之上表面1〇丨9之間 的空間係填入該MPM模製之薄層。 另外,該頂部散熱器可為一通常為平面板的—導熱材料 ,例如像是一金屬片(例如銅),其不需要支撐部件。至少該 平面散熱器之上方表面的更為中心的區域被暴露到周遭環 境,用以更有效率地將熱帶離該MPM。這種簡單平面散熱 器係示於圖U)D中的1004,其中該散熱器係固定到該頂部封 裝模製之上表面。在MPM107中堆疊的封裝之結構通常類似 於圖10E中的該MPM1G9,而在圖中可由類似的參考編號來 識別類似的結構。在圖10D之範例中的頂部散熱器1〇〇4為一 通常為平面的導熱材料板,其至少具有其上表面的一更為 中心的區域來暴露到周圍環境,以更有效率地將熱帶出 MPM ’如圖i〇E之範例中所示。例如該頂部散熱器可為一金 屬片(例如銅但是,此處該頂部散熱器1〇〇4係使用一黏著 劑1〇〇6固定到該上方封裝包覆1017之上表面1〇19上。該黏 著劑1006可為一導熱黏著劑來提供改良的散熱作用。通常 在該頂部封裝模製已經至少部份固化之後,該頂部散熱器 即固足到孩頂部封裝模冑,但其係纟該模製材料對於該 MPM包覆1〇07射出之前。該頂部散熱器之周圍可以包覆該 MPM模製材料。在圖的具體實施例中,在該散熱器議 以允許較佳的結. An opening is provided in the support portion 907 of the heat sink to allow the MPM molding material to be filled in the enclosed space during cladding. The Ryukyu 3 18 is reflowed onto the exposed solder ball pads on the metal layer below the bottom package substrate for connection to a lower layer circuit, such as a motherboard (not shown). As previously described, the structure according to the present invention allows the Bg A and LG A to be pre-tested prior to assembly into the multi-package module to allow for the exclusion of packages not covered by 88127 - 47 - 1329918 prior to assembly, thereby ensuring High final module test yield. The processor wafer in the flip chip bottom package in accordance with this aspect of the invention can be, for example, an ASIC, GPU or CPU, typically an ASIC; and the top package can be a memory package or an ASIC package. Wherein the top package is a memory package, it can be a stacked die memory package. A concealed flip-chip under-wafer bottom package is particularly suitable for higher speed applications, especially RF processing, such as in mobile communications applications. % The MPM (e.g., as shown in Figure 9A or Figure 9B) having a flip-chip bottom package in a lower die configuration may have a heat sink, as desired. In order to improve the heat dissipation of the multiple package modules as shown in the example of FIG. 9A or 9B, a heat sink may be provided on the top package. The top heat sink is formed of a conductive material that exposes its upper surface to at least a more central region at the upper surface of the MpM to the surrounding environment to more effectively displace the tropic from the MPM. For example, the top heat sink can be a sheet metal (e.g., copper) and it can be secured to the MpM cladding during the molding material curing process. Alternatively, the heat sink can have a generally planar portion &/or a peripheral portion of the top package or a support member disposed on or near the upper surface of the bottom package substrate. A cross-sectional view of a stacked BGA + LGAMPM 94 in accordance with another aspect of the present invention is shown by way of example 'Fig. 9C, wherein a "top" heat sink is provided at the upper surface of the MpM. The structure of the package stacked in the MPM 94 is generally similar to the MPM 92 in Figure 9B, and similar structures may be identified by similar reference numerals in the figures. The top diffuser in this example is formed of a dispersive material having a generally planar surface over the top package: 88127 • 48 - !329918 central portion 944, and extending to the bottom package substrate The surrounding support member 946 of the upper surface of the 3丨2. The upper surface of the planar portion 944 is attached to the upper surface to be exposed to the surroundings to efficiently discharge the MpM from the tropics. For example, the top heat dissipation can be formed by a metal sheet such as copper, for example by stamping. The support members 946 can be secured to the upper surface of the bottom package substrate (not shown) using an adhesive as needed. The multi-package module structure is protected by the formation of a module cover 907, and the heat sink support member is embedded in the MPM cover 907 during the molding material curing process. In the embodiment of Figure 9C, a stepped recessed feature 945 is provided around the planar upper portion 944 of the heat sink to allow for better mechanical integration of the structure and less The molding compound is detached. In this embodiment, the space between the lower surface of the heat sink 944 and the upper surface of the die 914 is filled with a layer of MPM molded, which is thick enough that the heat sink 944 does not interfere with the surrounding. LGA molded 917. Additionally, the MPM in a particular embodiment like 9A or 9B can have a simple planar heater that does not have a support member. This simple planar heat sink can be attached to the upper surface 5 of the top package module 5丨7 using an adhesive. Alternatively, the MPM of the particular embodiment of Figure 9A or Figure 9B can have a simple planar heat sink that does not adhere to the top surface of the top package molding. In these embodiments, as in the embodiment of FIG. 5A, the top heat sink can be a generally planar sheet of thermally conductive material, such as, for example, a sheet of metal (eg, steel) and at least the planar heat sink. The more central region of the upper surface is exposed to the surroundings to more effectively remove the tropics from the MPM. Here, in the embodiment of Fig. 9C, the space between the lower surface of the planar heat sink and the top 88127 - 49 · 1329918 package 900 may be filled with a layer of mpm. And such a simple planar heat sink as in the embodiment of Figure 9C, which can be secured to the MPM cladding 907 during the molding material curing process. The unattached, simple planar top heatsink can be wrapped around the MPM molding material, as in the planar heatsink attached in Figure 5D, and can provide a stepped recessed feature on the perimeter to Better mechanical integration with the structure is allowed and less separated from the molding compound. For example, the mpm with a heat sink shown in Figure 9C provides improved thermal performance. The bottom package of the MPM according to the present invention may be a flip chip package in an upper die configuration, wherein the bottom package die is carried on the lower surface of the bottom package I substrate. Typically the bottom package die attach S-domain is in the center of the substrate region in such a configuration, and the second-order interconnect ball can be disposed on the perimeter close to two or more of the substrate edge. The β-upper wafer flip-chip and its flip-chip interconnect structure are within the landing height of the second-order interconnect structure' and thus the bottom package die in this configuration is for the overall thickness of the germanium No contribution. Moreover, the upper die configuration avoids a net column reversal effect, which is essentially the result of the lower die configuration. . In particular, by way of example, FIG. 10A is a cross-sectional view of a multiple package module 101 in accordance with another aspect of the present invention, wherein a stacked die platform grid array package 1000 is in an upper die configuration 302. Stacked on a flip chip bGa, and the stacked packages are interconnected by wire contacts. In the bottom B g a package 302, the die 344 is attached to the lower side of the BGA substrate 342. S8127 -50- 1329918 As shown in Figure 7F, this structure provides a thinner MPM because the bottom package is in the region between the solder ball and the bottom of the m bottom package. State can have a higher electrical efficiency, not only because it uses a flip chip connection, but also because it provides a more direct electrical connection of the die to the ball, for the die and the solder balls The connection between them has a shorter metal trace and does not require a via (as required in the configuration of Figure 9A or in). In addition, the upper die configuration allows the package to be compatible with wire contacts on the grid as is required in some applications. The mesh is the sum of all connections (4) between the die and the solder balls. # When the grain faces up "lower grain", it has a connected pattern, which is a mirror image of the same type in the same grain when the grain faces down "upper grain". In the configuration of Figure 1 〇 A, the top LG package is attached to the upper side of the BGA with an adhesive, then the wire contacts and molded. In the specific embodiment shown in the example of Figures i〇a to i〇e, more than one die (two or more) are stacked in the top package. Stacked die packages have been well established in the industry, and these versions can achieve up to five stacked dies in the package. The crystal grains have the same size and the grains in a stacked die package may have the same or different relative sizes. The grains are substantially square or rectangular, and rectangular and square grains of different sizes can be stacked in a stacked die package. When the crystal grains are rectangular or have different sizes, the crystal grains can be stacked, so that in the stack, the voids of the lower crystal grains protrude beyond the gap of the upper crystal grains stacked thereon. Figure 1A shows an example in which the two grains are the same size in the stack. In these embodiments, or in the embodiment where the ± square grains are larger than the lower crystal grains in the field and the heap, 88127 - 51 - 1329918 - spacers are assembled between the grains to form all the grains. Wire contacts to the LGA substrate. Fig. 10B shows an example in which the upper crystal grains in the stack are smaller than the lower crystal grains; or alternatively, the crystal grains are stacked in the upper stacked space: a void exceeding the lower crystal grains is cried. In the specific paste embodiment as shown in Fig. 1B, there is no need for a spacer because at the line contact of the lower die, the wire contact can be allowed to not interfere with the die stacked thereon. . Referring to FIG. 10A, the bottom flip chip BGA package 3〇2 includes a substrate 342 having a patterned metal layer 353, which is a portion of the die 344 connected by flip chip bumps 346, such as solder bumps. A block, a gold dot bump or an anisotropic conductive film or paste. It can be used in any of a variety of substrate types; the bottom package substrate 342 shown in the example of Figure 10A has two metal layers ^, 353, each of which is patterned to provide a suitable circuit. The bottom package substrate 342 additionally has a metal layer 355 sandwiched between the dielectric layers 354, 356. The metal layer 355 has voids at selected locations to allow the metal layers 351, 353 to pass through the via connections, such that selected portions of the patterned metal layer 35 are connected by vias. The substrate layers 354, 356, and the voids in the metal layer 355 sandwiched therein. The selected portion of the patterned metal layer 353 is connected through the via layer 356 to the sandwiched metal layer 355 via vias. Flip-chip bumps 346 are attached to a patterned bump pad on the active surface of the die, and because the active surface of the die faces upward with respect to a patterned metal layer of a far-down substrate, This configuration can be referred to as an upper wafer "flip-chip package. A polymer side fill 343 between the die and the die attach region of the substrate provides protection against the surrounding and adds 88127 - 52 - 1329918 into the mechanical integration to the structure. As described above, the metal layers 351, 353 are patterned to provide a suitable circuit ' and the sandwiched metal layer 355 has voids at selected locations to allow over the upper and lower metal layers 35, 353. Interconnection is allowed between the selected traces (not touching the sandwiched metal layer 355). In particular, for example, the tens of thousands of metal layers are patterned in the die attach regions to provide adhesion of the flip chip interconnect bumps 343; and for example, the lower metal layer is patterned closer to the bottom package substrate 342 The gaps provide the attachment of the second-order interconnect solder balls 348, whereby the completed MpM is reflow soldered to the underlying circuitry (not shown). For example, in particular, the upper metal layer is patterned adjacent to the void of the bottom package substrate 342 to provide attachment of the wire contacts to the bottom package to the bottom package. A ground line in the circuit of the metal layer 353 is connected to the sandwiched metal layer 355 through a via hole; some of the solder balls 348 are selected as ground balls, which are attached to the lower layer circuit when the MPM is mounted. Ground wire. Therefore, the sandwiched metal layer 355 serves as the ground plane of the river 15]. The input/output balls or power balls are selected in the solder balls 348. Therefore, these are attached to the solder balls of the input/output or power lines in the circuits of the metal layer 353, respectively. Still referring to FIG. 10A', the top package 1000 is a stacked die platform grid array package in which the dies 1014, 1024 are separated by a spacer 1015 and stacked on a top package substrate. The top package substrate includes a dielectric layer 112 having a metal layer on the surface of the upper substrate and patterned to provide traces, such as 1031, having an attachment for the top package substrate, A dot is interconnected to the stacked die, and line contacts 88127-53 - 1329918 for the top package are interconnected to the bottom package substrate. The lower die 1014 is attached to a die attach region of the top package substrate using an adhesive HH3, such as a grain adhesion epoxide. The die 1014 is electrically connected to the top substrate by wire bonds 1 〇 16 at the line contacts on the active surface of the die and at the line contacts on the selected trace 1011. A spacer 1015 is attached to the upper surface of the lower die 1014 using an adhesive (not shown), and the upper crystal, the 1024 is fixed to the spacer using an adhesive (not shown). Υου · The upper surface. The spacer is selected to have a sufficient thickness to provide voids* so that the protruding voids of the upper die 1024 do not invade the wire contacts 1016. The die 1024 is connected to the top substrate by wire contacts 1026 which are connected at the line contacts on the active surface of the child die to the line contacts on the selected trace. The stacked die and the wire contact assembly on the top package substrate are wrapped in a molding material 1 〇 17 to provide a top package upper surface 1019 and leave the exposed mutual Connect the gap of the trace 1〇u. The top package 1 can be tested at this time, and then stacked to the die attach area of the upper surface of the bottom package substrate, and is fixed at the place using the adhesive 1003. The electrical interconnections of the top and bottom packages are subject to line contacts on the traces 351 of the metal layer above the bottom package substrate at the line contacts exposed on the traces 1〇11 of the top package substrate. The line is connected to point 1018. The MPM assembly is then wrapped in a molded 1〇〇7 to enclose the wire contacts of the package and provide mechanical integration in the completed MpM]. As noted above, stacked die top packages stacked on top of the upper die-wafer BGA package in these embodiments can have a variety of configurations, such as 88127 - 54 - 1329918, depending on, for example, the die in the stack The number is exemplified by the size of the crystal grain. In the cross-sectional view, FIG. 3 shows another (10) Μ configuration (10), where the LGA has two stacked dies, and wherein the upper dies are purchased in a smaller size than the lower dies 1 () 34, At least in the plane of the cross-sectional view. In this configuration, the name of the line 接 Γ n n 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下 下The bottom package 3〇2 in the MPM 103 of FIG. 10 is substantially similar to the bottom of the MPM 101 of FIG. 10A, and the corresponding part is similar to the figure _ The top package in the MPM 1G3 is a _stacked die platform grid array package having a die 1 〇 34, 1 〇 44 stacked on top of a top package substrate. The top package substrate includes - dielectric a layer (8) 2 having a metal layer on the surface of the tens of thousands of substrates and patterned to provide traces, for example, having an attachment for the top-loading substrate line contacts interconnecting the stacked die, And used for the top package of the wire contact interconnection (4) bottom SHA package substrate. The lower die 1034 is attached to the die attach region of the shoal package substrate using an adhesive, such as a die attach epoxide. The die 1034 is electrically connected to the top substrate by wire contacts 1036 which are connected at the line contacts on the active surface of the crystal (4) to the line contacts on the selected trace. The upper die 1〇44 Use an adhesive to fix the surface of the child below the surface of the child. Crystal (four) 44 borrow * line contact ι 46 electrically connected to the top substrate, which is connected at a line junction on the active surface of the die to a line contact on the selected trace 1 〇 31. The stack of dies on the top of the package substrate The assembly with the wire contacts is wrapped in a molding material that provides a portion of the package upper surface 1039, leaving the exposed interconnect traces 88127 - 55 - 1329918 lines 1 〇 31 < void portion. The package 1030 can be tested at this point and then stacked on the die attach area on the top surface of the bottom package substrate and secured thereto using an adhesive 1003. The electrical interconnections of the top and bottom packages are At the line junction exposed on the trace 丨〇3丨 of the top package substrate and the line contact on the trace 35 1 of the upper metal layer of the bottom package substrate, <line contact 1 〇1 8 The MpM assembly is then wrapped in a tantalum 1007 to protect the package-to-package wire contacts and provide mechanical integration in the finished MPM 103. Flip-chip in accordance with this aspect of the invention The processor chip in the bottom package can be, for example, an ASIC, a GPU, or a CPU, and The top package can be a memory package, in particular one of the stacked die memory packages shown in, for example, Figure A and Figure B. The bottom package of the flip chip on the die configuration provides a very Thin module, and is particularly suitable for higher speed applications, such as mobile communication. As described below, in a specific embodiment such as MPM 101 or 1〇3, the ground plane 355 in the bottom-sealed t-substrate additionally As electromagnetic shielding, the interference between the BGA die and the covered LGA die is significantly reduced, and the MPM, such as MPM, can be particularly useful in applications where the bottom package die is a high frequency die (e.g., radio frequency). In some applications, it is also intended to obscure the bga die in the bottom package and the underlying circuitry to which the MPM is attached. Figure 1 〇c shows a multi-package module 105 selection. One of the stacked die platform grid array packages 1000 is stacked on top of a flip-chip bga in an upper die configuration 302. Where the stacked packages are interconnected by wire contacts, wherein - electromagnetic shielding is provided at the flip chip 88127 - 56 - 1329918 BGA to limit the radiation downwardly toward the lower layer). In the job 105 of Figure H)C, the top package and the bottom package 302 are substantially constructed as in Figure 1() < ΜρΜ(8), and the corresponding features can be correspondingly identified in the figure. The bottom package of the MPM 105 has, for example, a metallized (e.g., copper) electrical shield that electrically includes electromagnetic light from the die in the lower BGA, and thereby prevents interference under the installed beak Circuit. The lower planar portion of the mask is supported by the foot or side wall 305... the point or line 3 of the adhesive is used to secure the heat sink support 3〇5 to the lower surface of the base substrate. The adhesive can be a conductive adhesive and can be electrically connected to traces in the metal layer beneath the substrate, particularly to the ground traces of the circuit. The support portion and the lower planar portion of the shield enclose the die 344, and in addition to shielding the underlying die in the finished device, it can be used to protect the underlying die for ambient and mechanical stresses. 'Processing jobs' and especially during subsequent testing prior to assembly of the MPM, or prior to installation. Additionally, as described below, the masking described with reference to Figures 1〇c can be used to mask an upper die-flip wafer bottom package 3〇2 in the MPM with other stacked stack top package configurations. For example, the stacked die top package does not have a spacer between adjacent dies, as shown in 1030 of Figure 10B. And additionally, the masking as described with reference to Figures 〇C can be used to mask the n-grain flip-chip bottom package 3〇2 above the mpm, which is in addition to the top package of the stacked die top package. For example, the top package can be a platform grid array package such as the bGA top package shown at 500 in Figure 5A. 88127 -57- 1329918 Furthermore, in order to improve the heat dissipation of a multi-package module generally provided in Fig. 10A, a heat sink can be provided on the top package. The top heat sink is formed of a conductive material that exposes its upper surface to at least a more central region at the upper surface of the MPM to the surrounding environment to more effectively move the tropics away from the MPM. For example, the top heat sink can be a metal sheet (e.g., copper) and it can be secured to the MPM cladding during the molding material curing process. Alternatively, the heat sink can have a generally planar portion & a surrounding support portion or a support member disposed on or near the upper surface of the bottom package substrate over the top package. By way of example, FIG. 10E is a cross-sectional view of a stacked die top package MpM! (10) stacked on top of an upper die-flip wafer bottom BGA, where the upper surface of the MPM is provided - "Top" radiator. The structure of the top and bottom packages in MpM is generally similar to MPM 1G5' in Figure i〇c and a similar structure can be identified in the drawing by similar reference numbers. The top heat sink in this example is formed from a thermally conductive material having a generally planar central portion 1004' overlying the top package 1000 and extending around the upper surface of the bottom package substrate 342. Support member 1046. The upper surface of the planar portion 1004 is attached to the upper surface of the MpM to violently surround the surface, so as to continually release the tropics out of the Mpm. For example, the top heat sink can be formed from sheet metal (e.g., copper), such as by stamping. The support members 1046 can be secured to the upper surface of the bottom package substrate (not shown) using an adhesive as needed. The multi-package module structure can be protected by forming a module package 1007, and the heat sink support member is embedded in the MPM cladding 1〇07 during the molding material curing process. In the example of the replacement of the Chinese version of the patent application 88127 • 58- I32991 & 92122625, in the example of the replacement of the Chinese version of the specification (September 95), the portion above the plane of the heat sink is 1044^^-^ The stepped recess (1) 045 allows the mechanical integrity of the preferred structure to be less detached from the molding compound. In this embodiment, the space between the lower surface of the heat sink 1044 and the upper surface 1〇丨9 of the LGA molded 1〇17 is filled into the MPM molded thin layer. Alternatively, the top heat sink can be a generally planar sheet of thermally conductive material such as, for example, a sheet of metal (e.g., copper) that does not require a support member. At least a more central region of the upper surface of the planar heat sink is exposed to the surrounding environment for more efficient removal of the tropics from the MPM. This simple planar heat sink is shown at 1004 in Figure U) D, wherein the heat sink is secured to the top surface of the top package molding. The structure of the package stacked in the MPM 107 is generally similar to the MPM1G9 in Fig. 10E, and similar structures can be identified by similar reference numerals in the drawings. The top heat sink 1〇〇4 in the example of Fig. 10D is a generally planar sheet of thermally conductive material having at least a more central region of its upper surface exposed to the surrounding environment to more efficiently tropic. The MPM is shown in the example of Figure i〇E. For example, the top heat sink can be a metal sheet (e.g., copper. However, the top heat sink 1〇〇4 is attached to the upper surface 1〇19 of the upper package cover 1017 by an adhesive 1〇〇6. The adhesive 1006 can provide a thermally conductive adhesive to provide improved heat dissipation. Typically, after the top package molding has been at least partially cured, the top heat sink is secured to the top package, but it is The molding material is coated with the MPM molding material around the top heat sink before the MPM cladding 1 〇 07. In the specific embodiment of the figure, the heat sink is allowed to allow a better junction.

的周圍提供有一階梯狀的凹入特徵1〇〇5 88127-950915.DOC cQ 1329918 構<機械性整合度,而較不會與該模製化合物脫離 一簡單平面散熱器,像是圖10D中的1004,其不需要附著 該頂部封裝模製之上表面。而是,在該簡單平面散熱器 到 之下表面與該LGA模製1017之上表面1〇19之間的空間係填 入一薄.層的MPM模製,且這種簡單的平面散熱器可在該模 製材科固化處理期間來固定於該MPM包覆1〇〇7。—簡單平 面頂部散熱器之周圍在這種具體實施例中,其可包覆有該 MPM模製材料’並可在該周目具有一階梯狀的凹入特徵(二 圖10D中的簡單平面散熱器1〇〇4中稱之為凹入特徵1〇〇5), 以允許該結構具有較佳的機械整合度,而較不會與該模製 化合物脫離。 如同在圖10D、10E中的結構之優點為可改善熱效能。對 於所有的應用,其不需要同時具有一底部封裝遮蔽及一頂 #散熱益。另外,根據終端產品的需求,有幾種之一為適 當。 圖11所示為根據本發明之MPM(即110)的另—個具體實 施例之截面圖,其中一堆疊晶粒LGA頂部封裝1〇〇〇係堆疊 在—堆疊晶粒BGA底部封裝408之上,且該頂部與底部封裝 由線接點來互連。在圖11所示的具體實施例中,該底部bga 封裝408在該堆疊中具有兩個晶粒,且該頂部lga封裝在該 堆疊中具有兩個晶粒。 例如具有此组態之結構特別適用於在一固定的轨跡内需 要高記憶體密度之應用。該堆疊的晶粒可為相同或不同的 °己憶體型式,其包括快閃、SRAM、PSRAM等。 88127 -60- 1329918 請參考圖η,頂部封裝丨_實f上係建構成類似於圖i〇a 中的頂部封裝1_,且類似的特徵係由類似的參考編號所 辨識。特別是,該頂部封裝i綱為—堆疊的晶粒平台格撕 陣列封裝,其中晶粒1〇14、1〇24係由一間隔器⑻$分離, 且堆疊在-頂部封裝基板上。該頂部封裝基板包括一介電 層1012,其在該上方基板表面上具有一金屬層,並圖案化 來提供跡線,例如1011,其具有附著處,用於該上方封裝 基板線接點互連於該堆疊的晶粒,並用於該上方封裝之線 接點於該底部封裝基板。下方晶粒1〇14使用一黏著劑丨Ο。 附著到孩頂邵封裝基板的一晶粒附著區域,例如一晶粒附 著環氧化物。晶粒1〇14係藉由線接點1〇16電連接到該頂部 基板,連接在該晶粒之活性表面上的線接點處與在選琿的 跡線1011上的線接點處。一間隔器1〇15使用—黏著劑(未示 於圖中)來固定到該下方晶粒1014之上表面,而上方晶粒 1024使用一黏著劑(;未示出)來固定到該間隔器ι〇ι5之上表 面。該間隔器被選擇具有充份的厚度,以提供空隙’所以 孩上万晶粒1024之突出空隙不會侵犯到該等線接點ι〇ΐ6。 晶粒1024藉由線接點1026連接到該頂部基板,其連接在該 晶粒之活性表面上的線接點處與選擇的跡線1〇1 ]上的線接 點處。該堆疊的晶粒與在該頂部封裝基板之上的線接點之 裝配件被包覆在一模製材料1017中,提供一頂部封裝上表 面1019,並留下所暴露的該等互連跡線1〇u之空隙部份。 該頂部封裝1〇〇〇在此時被測試,然後堆疊在該底部封裝4〇8 之上,如以下之詳細說明。 88127 -61· 1329918 該MPM no之底部封裝4〇8之結構類似於該頂部封裝 麵。特料’該底部封裝彻為—堆疊的平台格柵陣列封 裝’其將晶粒444、454由—間隔器分離,並堆疊在一底部 封裝基板之上。該底部封裝基板做為該完成的MPM之互連 基板,且其可用例如類似於圖5AfMpM5〇〇之底部封裝4〇〇 之底部基板412的方式來構建。特別是,在此具體實施例中 ,該底料裝_包括具有至少—金屬層之底部封裝基板 442。其可使用多種基板型式中的任何—種,例如包括··一 具有2-6金屬層之壓合板、或具有4,8金屬層之建構基板或 具有卜2金屬層之可撓聚醯亞胺帶、或—陶瓷多重層基板。 藉由圖11之範例所示的底部封裝基板442具有兩個金屬層 451、453,其每個被圖案化來提供適當的電路,並藉由通 孔452來連接。該下方晶粒444在習用上使用一黏著劑443附 著到該基板的-「上方」表自,其基本上稱之為該晶粒附 著環氧化物,如圖11中的443所示。該下方晶粒係藉由線接 點446電連接到該底部基板,其連接在該晶粒444之活性表 面中的線接點處與在選擇的跡線451上的線接點處。一間隔 器係使用一黏著劑(未示出)來固定到該下方晶粒444之上表 面’且該上方晶粒454係堆疊於其上,並使用一黏著劑(未 不出)固定於該間隔器之上表面。該間隔器被選擇為足夠地 厚來提供空隙’所以該上方晶粒454之突出空隙不會衝突於 孩線接點446。該上方晶粒454藉由線接點456連接到該底部 基板’其連接在該晶粒454之活性表面中的線接點處與在選 擇的跡線45 1上之線接點處。該底部封裝下方晶粒444及上 88127 -62- 1329918 方晶粒454,及該線接點446、456係包覆有一模製化合物447 其長:供對於周遭及機械應力的保護,以便於處理作業, 並提供該頂部堆疊的晶粒封裝1000可堆疊於其上之底部封 裝上表面。焊球418係回焊到該基板之下金屬層上的接點墊 之上以知·供互連到底部的電路,例如一最終產品之主機 板(未示於圖中)。焊罩455、457係圖案化在該金屬層451、 453之上,以在接點處暴露該下層金屬來用於電連接,例如 在該線接點處來接合該等線接點及焊球41 8。 該頂部封裝1000可被測試,然後堆疊到該底部封裝基板 心上表面的晶粒附著區域,並使用一黏著劑丨丨们來固定於 該處。該等頂部及底部封裝之電互連會受到在該頂部封裝 基板之跡線1011上所暴露的線接點處與該底部封裝基板之 上方金屬層的跡線451上的線接點處之線接點1118所影響 °然後該MPM裝配件即包覆在-模製H07中,以保護封i 對封裝之線接點,並在該完成的MpM ug中提供機械整合 度。 在占頂4封裝與在該底部封裝、或同時在該頂部與底部 封裝中的ΜΡΜ可特別適用於高記憶體小軌跡的應用。例如 圖11之:多重封裝模組可在—㈣的^職部封裝之上包 :一堆疊^晶粒記憶體頂部封裝;或是,頂部及底部封裝 自可t的晶粒記憶體封裝,構成—高密度記憶體模組。 其它的堆叠晶粒封裝組態根據本發明此方面可應用在 則中的底部或頂部堆疊的晶粒封裝,其係根據例如在該 k中的阳权數目’並根據在該堆疊中的晶粒尺寸。舉例 88127 -63 - 1329918 而言’在-底部封裝堆疊中的—上方晶粒可具有比 晶粒要小的尺寸。在這種組態中,在該下方晶粒之空隙中 的隸點附著處之上沒有上方晶粒之空隙突出,所以在該 堆疊中相鄰晶粒之間不需要包括—間隔器。 «本發明此方面’其它頂部封裝組態可堆疊在—堆疊 的晶粒底邵封裝之上。例如在圖从之具體實施例中所示, -懸頂料裝可以堆疊在—堆#的晶粒底部封裝之上。 為了改善來自具有堆疊的晶粒底部封裝之—多㈣㈣ 組惑散熱’例如在圖n之範例中所示,在該頂部封裝之上 可提供-散熱器。該頂部散熱ϋ係由_導熱材料所形成, 其至少在其上表面之中具有更多的中心區域來暴露該ΜρΜ 的上表面到周遭環境,來更有效率地將熱帶離該μρμ。例 如該頂部散熱器可為一金屬片(如銅片),而其可在該模製材 料固化處理期間來固定到該ΜΡΜ包覆。或者,該散熱器可 在該上方封裝之上具有一通常為平面的部份,以及一周圍 支撐的部份’或是置於或靠近於該底部封裝基板之上表面 的支撐部件。 藉由圖5D及圖5Ε之範例所示之頂部散熱器亦可適用於 在具有一堆璺晶粒底邵封裝之ΜΡΜ中的頂部ΜΡΜ散熱器 。(或具有堆疊的晶粒底部及頂部封裝) 例如參考圖11之ΜΡΜ結構及圖5Ε中的散熱器,該頂部散 熱器係由一導熱材料所形成’其具有位在該頂部封裝之上 的通常為平面的中心部份544,及延伸到該底部封裝基板 442之上表面的周圍支撐部件546。該平面部份544之上表面 88127 -64- 1329918 係在該MPM上表面來暴露到周圍,以有效率地將熱帶出 MPM。例如該頂部散熱器可由一金屬片(例如銅)所形成, 例如藉由沖壓。該等支撐部件546可依需要來使用一黏著劑 固疋到該底部封裝基板之上表面。該多重封裝模組結構可 由形成一模組包覆11〇7來保護,且該散熱器支撐部件在該 模製材料固化處理期間被嵌入在該MPM包覆1107中。在該 散熱器的平面上方部份544的周圍提供有一階梯狀的凹入 特徵545,以允許較佳的結構之機械性整合度,而較不會與 該模製化合物脫離。在此具體實施例中’該散熱器544之下 表面與該頂部封裝模製1〇17之上表面1〇19之間的空間係填 入該MPM模製之薄層。 另外,一頂部散熱器可固定到該頂部封裝模製之上表面 。請參考圖U之MPM結構,並參考圖5D中的散熱器,例如 孩頂部散熱器504可為一導熱材料之通常為平面的板,其至 少將其上方表面之更為中心的區诂I愈5|丨# 、.=,The surrounding is provided with a stepped concave feature 1〇〇5 88127-950915.DOC cQ 1329918 constituting <mechanical integration without being separated from the molding compound by a simple planar heat sink, as shown in Fig. 10D 1004, which does not need to be attached to the top surface of the top package molding. Rather, the space between the surface of the simple planar heat sink and the surface of the upper surface of the LGA molding 1017 is filled with a thin layer of MPM molding, and the simple planar heat sink can be used. The MPM coating 1〇〇7 is fixed during the molding material curing process. - the periphery of a simple planar top heat sink in this embodiment, which may be coated with the MPM molding material 'and may have a stepped recessed feature in the perimeter (two simple planar heat dissipation in Figure 10D) The recessed features 1〇〇5) are referred to in the device 1〇〇4 to allow the structure to have better mechanical integration without being detached from the molding compound. An advantage of the structure as in Figures 10D, 10E is that thermal performance can be improved. For all applications, it does not need to have both a bottom package mask and a top heat sink. In addition, depending on the needs of the end product, one of several is appropriate. 11 is a cross-sectional view of another embodiment of an MPM (ie, 110) in accordance with the present invention, wherein a stacked die LGA top package 1 is stacked on top of a stacked die BGA bottom package 408 And the top and bottom packages are interconnected by wire contacts. In the particular embodiment illustrated in Figure 11, the bottom bga package 408 has two dies in the stack, and the top lig package has two dies in the stack. For example, a structure with this configuration is particularly suitable for applications requiring high memory density in a fixed track. The stacked dies may be of the same or different hexon type, including flash, SRAM, PSRAM, and the like. 88127 -60- 1329918 Referring to Figure η, the top package 丨_实f is constructed similar to the top package 1_ in Figure i〇a, and similar features are identified by similar reference numbers. In particular, the top package i is a stacked die plate tear-off array package in which the dies 1 〇 14, 1 〇 24 are separated by a spacer (8) $ and stacked on a top package substrate. The top package substrate includes a dielectric layer 1012 having a metal layer on the surface of the upper substrate and patterned to provide traces, such as 1011, having attachments for the upper package substrate line contact interconnection The stacked die and the line for the upper package are connected to the bottom package substrate. The lower die 1〇14 uses an adhesive 丨Ο. A die attach region attached to the shoal package substrate, such as a die attaching an epoxide. The die 1 〇 14 is electrically connected to the top substrate by wire contacts 1 〇 16 connected at the line contacts on the active surface of the die to the line contacts on the selected trace 1011. A spacer 1〇15 is attached to the upper surface of the lower die 1014 using an adhesive (not shown), and the upper die 1024 is attached to the spacer using an adhesive (not shown). The top surface of ι〇ι5. The spacer is selected to have a sufficient thickness to provide a void so that the protruding voids of 10,000 grains 1024 do not invade the wire contacts ι6. The die 1024 is connected to the top substrate by wire bonds 1026 which are connected at line contacts on the active surface of the die to the line contacts on the selected trace 1〇1]. The stacked die and the wire bond assembly on the top package substrate are wrapped in a molding material 1017 to provide a top package upper surface 1019 and leave the interconnected traces exposed The gap between the lines 1〇u. The top package 1 is tested at this point and then stacked over the bottom package 4〇8 as detailed below. 88127 -61· 1329918 The bottom package of the MPM no package 4〇8 is similar in structure to the top package. The 'substrate' is a completely-stacked platform grid array package' which separates the dies 444, 454 from the spacer and is stacked on top of a bottom package substrate. The bottom package substrate serves as the interconnect substrate for the completed MPM, and it can be constructed, for example, in a manner similar to the bottom substrate 412 of the bottom package 4A of Figure 5A. In particular, in this embodiment, the primer package includes a bottom package substrate 442 having at least a metal layer. It can be used in any of a variety of substrate types, including, for example, a plywood having a 2-6 metal layer, or a structured substrate having a 4,8 metal layer or a flexible polyimine having a 2 metal layer. Tape, or - ceramic multiple layer substrate. The bottom package substrate 442 shown by the example of Fig. 11 has two metal layers 451, 453, each of which is patterned to provide appropriate circuitry and connected by vias 452. The lower die 444 is conventionally attached to the "upper" surface of the substrate using an adhesive 443, which is substantially referred to as the die attach epoxide, as shown at 443 in FIG. The lower die is electrically coupled to the base substrate by wire bonds 446 that are connected at line contacts in the active surface of the die 444 to line contacts on the selected trace 451. A spacer is secured to the upper surface ′ of the lower die 444 using an adhesive (not shown) and the upper die 454 is stacked thereon and secured thereto using an adhesive (not shown) The upper surface of the spacer. The spacer is selected to be sufficiently thick to provide a gap' so that the protruding gap of the upper die 454 does not conflict with the child contact 446. The upper die 454 is connected by wire bonds 456 to the bottom substrate ' which is connected to the line contacts in the active surface of the die 454 and to the line contacts on the selected trace 45 1 . The bottom package has a lower die 444 and an upper 88127-62-1329918 square die 454, and the wire contacts 446, 456 are coated with a molding compound 447. The length is: for protection against ambient and mechanical stress, for processing Working, and providing an upper surface of the bottom package on which the top stacked die package 1000 can be stacked. Solder balls 418 are reflowed onto the pad pads on the metal layer below the substrate to provide circuitry for interconnection to the bottom, such as a host board of the final product (not shown). Solder caps 455, 457 are patterned over the metal layers 451, 453 to expose the underlying metal at the contacts for electrical connection, such as bonding the wire contacts and solder balls at the wire contacts 41 8. The top package 1000 can be tested and then stacked onto the die attach area of the upper surface of the bottom package substrate and secured thereto using an adhesive. The electrical interconnections of the top and bottom packages are routed at line contacts on the traces exposed on traces 1011 of the top package substrate and traces on traces 451 of the metal layer above the bottom package substrate. The contact 1118 is then affected. The MPM assembly is then wrapped in a molded H07 to protect the wire contacts of the package and provide mechanical integration in the completed MpM ug. The use of the top 4 package and the bottom package, or both in the top and bottom packages, is particularly well suited for high memory small trace applications. For example, in Figure 11, the multi-package module can be packaged on the (4) part package: a stacked ^ die memory top package; or the top and bottom package can be packaged in a die memory package. - High density memory modules. Other stacked die package configurations may be applied to the bottom or top stacked die package in accordance with this aspect of the invention, depending on, for example, the number of positives in the k' and according to the grains in the stack size. Examples 88127 - 63 - 1329918 The upper die in the 'in-bottom package stack' may have a smaller size than the die. In this configuration, the voids of the upper die are not protruded above the attachment point of the lands in the gap of the lower die, so that it is not necessary to include a spacer between adjacent dies in the stack. «This aspect of the invention" other top package configurations can be stacked on top of a stacked die bottom package. For example, as shown in the specific embodiment of the drawings, the suspension material can be stacked on top of the die bottom package of the stack #. In order to improve the multiple (four) (four) heat dissipation from the bottom package of the stacked die, as shown in the example of Figure n, a heat sink can be provided over the top package. The top heat sink is formed of a thermally conductive material having at least more central regions in its upper surface to expose the upper surface of the 到ρΜ to the surrounding environment to more effectively deviate the tropic from the μμμ. For example, the top heat sink can be a sheet of metal (e.g., a copper sheet) that can be secured to the crucible during the curing process of the molding material. Alternatively, the heat sink can have a generally planar portion over the upper package, and a surrounding support portion or a support member placed on or near the upper surface of the bottom package substrate. The top heat sink shown by the examples of Figures 5D and 5B can also be applied to a top turn heat sink in a stack of germanium die bottom packages. (or having a stacked die bottom and top package). For example, referring to the structure of FIG. 11 and the heat sink of FIG. 5A, the top heat sink is formed of a thermally conductive material that has a common location on the top package. It is a planar central portion 544 and a surrounding support member 546 that extends to the upper surface of the bottom package substrate 442. The upper surface 88127 - 64 - 1329918 of the planar portion 544 is attached to the upper surface of the MPM to be exposed to the surroundings to efficiently discharge the tropical MPM. For example, the top heat sink can be formed from a sheet of metal, such as copper, for example by stamping. The support members 546 can be secured to the upper surface of the bottom package substrate using an adhesive as needed. The multi-package module structure can be protected by forming a module cover 11〇7, and the heat sink support member is embedded in the MPM cover 1107 during the molding material curing process. A stepped recessed feature 545 is provided around the planar upper portion 544 of the heat sink to allow for better mechanical integration of the structure without being detached from the molding compound. In this embodiment, the space between the lower surface of the heat sink 544 and the upper surface 1〇19 of the top package molding 1〇17 is filled into the MPM molded thin layer. Additionally, a top heat sink can be attached to the top surface of the top package molding. Referring to the MPM structure of FIG. U, and referring to the heat sink of FIG. 5D, for example, the child top heat sink 504 can be a generally planar plate of a thermally conductive material, which at least has a more central region on the upper surface thereof. 5|丨# ,.=,

該散熱器的504的周圍提供有— 允許較佳的結構之機械性整合度, 〔包覆該MPM模製材料。在 階梯狀的凹入特徵505,以 而較不會與該模製化合 88127 -65- 1329918 物脫離。 做為另一種選擇,如在圖丨丨中的MPM可以具有一簡單平 面散熱器,其不具有支撐部件,其並不附著到該頂部封裝 模製的上表面。在這些具體實施例中,該頂部散熱器可為 一導熱材料之通常為平面的板,例如像是一金屬片(例如銅) ’及至少將泫平面散熱器之上表面的更為中心區域係暴露 到周遭來更有效率地將熱帶離該MPM。此處,在該簡單平 面散熱器之下表面與該LGA模製1017之上表面1〇19之間的 空間係填入一薄層的MPM模製,且這種簡單的平面散熱器 可在該模製材料固化處理期間來固定於該MPM包覆11 〇7。 這種未附著的簡單平面頂部散熱器之周圍可以包覆有該 MPM模製材料,如同在圖5D中所附著的平面散熱器,並可 在該周圍上提供一階梯狀的凹入特徵5〇5,以允許與該結構 的較佳機械整合度,並較不會與該模製化合物分離。 如由如述所瞭解’在所有不同的方面中,本發明之特徵 在於做為堆疊的封裝之間的z互連方法之線接點。概言之, 堆登在一下方BGA上的所有LGA對於該等線接點必須小於 該BGA(在該χ-y平面上至少一個尺寸)來允許在周圍處有空 間。該導線直徑通常層級在〇 〇25 mm (0.050到0.01 〇mni的範 圍)°到該LGA基板邊緣之導線距離在許多具體實施例中不 同,但並不小於一導線直徑。該BGA及LGA之相對尺寸主 要係由其每個之最大晶粒尺寸所決定。該晶粒厚度與模具 蓋厚度主要係決定了有多少晶粒可堆疊在一個封裝中。 用於製作在本發明中所使用之BGA封裝與LGA封裝的製 88127 -66 - 1329918 程係同時對於該線接點及該倒裝晶片型式的封裝在本產業 中已良好地建立。 BGA的測試已在本產業中良好地建立,且基本上藉由進 接觸到該等焊球塾來完成?該等LGA可以用兩種^式之 來測試,㈣由存取到該基板之LGA的下表面上的心 塾,其類似於在-BGA中的焊轉;或藉由接近在該基板 之上表面上的z互連塾。該等完成的MpM裝配件可用測試 BGA相同的方式測試。 該Μ P Μ裝配件處理對於根據本發明不同方㈣組態皆類 似。概言之,該處理包括以下步驟:提供包括一第一封裝 基板及至少-個晶粒附著到該第—封裝基板之第_模製封 裝、分配黏著劑到該第一模製封裝的上表面之上、放置包 括-第二封裝基板及至少—個晶粒之第二模製封裝,使得 在黏著期間該第二基板的下表面可接觸在該第—封裝之上 表面之上的黏著劑 '並在該第一及第二基板之間形成ζ互連 。較佳地是,該等封裝可在組裝之前測試,其可丟棄不滿 足效能或可靠度需求之封裝,所以測試為「氣好」之第一 封裝及第二封裝即用於該組裝的模组中。 圖12所示為例如圖5八或圖7中所示之多重封裝模組的組 裝處理之流程圖。在步驟12〇2中,其提供一球格柵陣列封 裝之未分離長條。在該球格栅陣列封裝上的晶粒及線接點 係由-模製保護。在該長條中的BGA封裝較佳地是在其進 订IU王中的後%步驟之前進行效能及可靠度的測試(如圖 中*所示)。僅有識別為「良好」的封裝會接受後續處理。 88127 -67· 1329918 在步驟1204中,黏著劑被分配在「良好」BGA封裝上該模 製的上表面之上。在步驟1206中,提供了分離的平台格柵 陣列封裝。該分離的LGA封裝係由一模製保護,且較佳地 疋被測試(=〇,並識別為「良好」。在步驟12〇8中,進行一 撿選及放置作業,以放置「良好」的LGA封裝在該Γ良好」 BGA封裝上的模製之上的黏著劑上。在步驟ΐ2ι〇中,該黏 著劑即被固化。在步驟1212中,在預備步驟1214時進行1 電漿清洗作業,其中在該堆疊的頂部LGA及底部BGA封裝 之間形成線接點z互連。在步驟1216中,可進行一額外的電 漿清洗,接著在步驟1218中形成該MPM模製。在步驟122〇 中及第一階互連焊球即附著到該模組之底側。在步驟〗 中,該完成的模組即進行測試(*),並由該長條分離,例如 藉由鋸開分離或藉由沖孔分離,並被封裝來做進一步使用。 圖13所示為-種例如示於圖6A中的—多重封裝模組之組 裝製程的流程圖。在步驟13〇2中,提供—球格柵陣列封裝 的未分離長條。在該球格柵陣列封裝上的晶粒及線接點結 構即由-製來保護。在該長條中的BGA封㈣佳地是在 其採取製程中的後續步驟之前進行效能及可#度的測試(如 圖中標TF者)。僅有識別為「良好」的封裝會接受後續處 里在乂驟1304中’黏煮劑被分配在「良好」a封裝上 該模製的上表面之上。在步W則中,提供了分離的平台 格栅陣列封裝Ή離的LGA封裝係由—周圍模製保護, 以保護該線接點,且較佳地是被測試⑺,並識別為「良好」 。在步驟1308中’進行—撿選及放置作業,以放置「 88127 -68 - 1329918 的 LG A刮裝^ 在該「念 jj-t- ό a u. 艮好」BGA封裝上的模製之上的黏著劑 上。在步驟1310中,該黏著劑即被固化。在步驟叫中, 在預備步驟1314時進行—電浆清洗作業,其中在該堆疊的 頂部LGA及底部BGA封裝之間形成線接點z互連。在步驟 1316中,可進行—額外的電漿清洗,接著在步驟1318中形 成該MPM模製。在步驟132〇中,第二階互連焊球即附著到 該模組之底側。在步驟1322中,該完成㈣組即進行測試 (” ’並由孩長條分離,例如藉由鋸開分離或藉由沖孔分離 ’並被封裝來做進一步使用。 圖HA所示為-種例如示於圖8八中的一多重封裝模組之 組裝製程的流程圖。在步驟购中,提供—球格栅陣列封 裝的未分離長條。該等BGA封裝具有固定於該晶粒之上的 遮蔽。料遮蔽可保護在該球格柵陣列_裝上6勺晶粒及線 接點結構,因此不需要封裝模製。在該長條中的bga封裝 較佳地是在其進行製程中的後續步驟之前進行效能及可靠 度的測試(如圖中以*指示)。僅有識別為「良好」的封裝會 接受後續處理。在步驟剛中,黏著劑被分配在「良好」曰 BGA封裝上又遮蔽的上表面之上。在步驟中提供分 離的平台格栅陣列封裝。該分離的LGA封裝係由—模製: 謾,且較佳地是被測試(*),並識別為「良好」。在步驟】4⑽ 中,進行一撿選及放置作業,以放置「良好」MGA封裝 在該「良好」BGA封裝上的模製之上的黏著劑上。在步驟 14丨〇中,固化該黏著劑❶在步驟丨412中,在預備步騾“Μ 時進行-電漿清洗作業’其中在該堆疊的頂部L(m及底部 88127 -69- 1329918 BGA封裝之間形成線接點z互連。在步驟i4i时進行—额 外的電漿清洗,接著在步驟1418中形成該MpM模製。在步 驟1420中’進仃—去光作業,以分解及移除不想要的有機 物質。該去光係由雷射递杆、七^ . 田耵運仃或可精由化學或電漿清洗。 在步驟1422中’第二階互連焊球可附著到該模組之底側。 在步驟1424中’該完成的模組即進行測試⑺,並由該長條 分離’例如藉由錄開分離或藉由沖孔分離,並被封裝來做 進一步使用。 圖14B所示為一種例如示於圖卯中的一多重封裝模組之 組裝製程的流程圖。此處理係類似於圖14八中所示,其具有 额外的步驟插人在安裝該散熱器之前,進行_「落模 具作業。在該製程中類似的步驟係由圖中類似的參考編號 來識別。在步驟M02中’提供—球格栅陣列封裝之未分離 的長條。該等BGA封裝具有固定於該晶粒之上的遮蔽。該 等遮蔽保護了在該球格柵陣列封裝上的該晶粒及線接點結 構,因此不需要封裝模製。在該長條中的bga封裝較佳地 是在其採取製程中的後續步驟之前進行效能及可靠度的測 試(如圖中標示*者)。僅有識別為「良好」的封裝會接受後 續處理。在步驟丨404中,黏著劑被分配在「良好」8(}八封 裝上該遮蔽的上表面之上》在步驟丨4〇6中,提供了分離的 平台格栅陣列封裝。該分離的LGA封裝係由—模製保護, 且較佳地是被測試(*),並識別為「良好^在步驟剛中 ,進行-撿選及放置作業,以放置「良好」的lga封裝在 孩「良好」BGA封裝上的遮蔽之上的黏著劑上。在步騾141〇 88127 -70· 1329918 中:該黏著劑即被固化。在步驟1412中,在預備步驟i4i4 亍$ h洗作業’其中在該堆疊的頂部lga及底部 GA封裝<間形成線接點z互連。在步驟“Μ中可進行一 j外的電漿清洗。在步驟1415中,—散熱器被落人到一模 穴模製裝置中的每個模穴中。在步驟1417中,來自步驟⑷6 之清洗封裝堆#即落人在該散熱器之上的模穴。在步驟 1419中’-包覆材料被射入該模穴中,並固化來形成該^刚 模製。在步驟1421巾,可進行—去光作業,以分解及移除 不想要的有機物質。該去光係由雷射進行、或可藉由化學 或私名β洗在步驟! 422中,第二階互連坪球可附著到該 杈組〈底側。在步驟丨424中,該完成的模組即進行測試(” ’並由孩長條分離’例如藉由鋸開分離或藉由沖孔分離, 並被封裝來做進—步使用。 圖c所示為種例如示於圖8C中的一多重封裝模組之 組裝製程的流程圖°此處理係類似於圖14A中所示,其在安 裝平面政熱斋前插入了附著到該頂部封裝之額外的步驟 。在該處理中類似的步驟係由圖面中類似的參考編號來識 々J在步知1402中,提供一球格柵陣列之未分離的長條。 該等BGA封裝具有固定於該晶粒之上的遮蔽。該等遮蔽可 保疫在该球格柵陣列封裝上的晶粒及線接 點結構,因此不 需要封裝挺製。在該長條中的BGA封裝較佳地是在其進行 製权中的後續步驟之前進行效能及可靠度的測試(如圖中* 所不)僅有識別為「炎好」的封裝會接受後續處理。在步 跟1404中’黏著劑被分配在「复好」bga封裝上該遮蔽的 88127 71 1329918 上^面《上。在步驟1406中,提供了分離的平台格拇陣列 封裝。該分離的LGA封裝係由一模製保護,且較佳地是被 測試(),並識別為「良好」。在步驟14〇8中,進行—檢選 及放置作業’以放置「良好」的⑽封裝在該「良好」罐 =裝上的遮蔽之上的黏著劑上。在步驟14財,固化該黏 著劑。在步驟1412中,在預備步驟1414前進行一電浆清洗 作業〃中在这堆疊的頂部LGA及底部BGA封裝之間形成 、-泉接點z互連,然後進行一額外的電聚清洗。在步驟⑷1中 ,分配黏著劑到該頂部LGA封裝模製的上表面之上,且在 步驟14 3 3中,進杆__格4堅其φ 退仃撿壤及放置作業,以放置一平面散熱 器到該頂部封裝模製的黏著劑之上。在步驟〗435中,該黏 著劑即被固化。在步驟1416’進行额外的電衆清洗,且在 步驟1418中,形成該ΜΡΜ模製。在步_2〇中可進行一 去光作業’以分解及移除不想要的有機物質。該去光可由 雷射或化學及電漿清洗來進行。在步驟1422中,第二階互 連焊球可附著到該模組之底側。在步驟1424中,該完成的 模^即進订測試(*),並由該長條分離’例如藉由錄開分離 或藉由冲孔分離,並被封裝來做進一步使用。 圖15所不為例如在圖9Α中所示之一多重封裝模組的組裝 處理之流程圖。在步驟15〇2中,提供—下晶粒倒裝晶片球 格柵陣列底部封裝的一未分離的長條。該BGA封裝可以1 有模製,也可不具有,並可以不具有第二階互連焊球^ 孩長條中的BGA封裝較佳地是在其進行製程中的後續步驟 <前進行效能及可靠度的測試(如圖中*所示)。僅有識別為 88127 •72- 1329918 良好」的封裝會接受後續處理。在步驟1504中’黏著劑 被刀配在良好」BGA封裝上該晶粒的上表面(背側)之上。 在步驟1506中,提供了分離的平台格栅陣列封裝。該分離 的LG續裝係由—模製保護,且較佳地是被測試⑺,並識 I為良好」。在步驟1508中,進行一撿選及放置作業, 以放置「良好」的LGA封裝在該「良好」BGa封裝上的晶 粒之上的黏著劑上。在步驟151〇中,該黏著劑即被固化。 在v馭1 5 12中,在預備步驟丨5〗4時進行一電漿清洗作業, 其中在該堆#的頂部LGA及底部BGA封裝之間形成線接點 z互連。在步驟1516中,可進行—額外的電衆清洗,接著在 步驟1518中形成該MPM模製。在步驟⑸时,第二階互連 悍球即附著到該漁之底側。在步·22中,該完成的模 ^即進行測試⑺,並由該長條分離,例如藉由錄開分離或 藉由沖孔分離,並被封裝來做進一步使用β 圖⑽示為例如圖9Β所示之多封裝模組之组裝處理的流 程圖。此處理係類似於圖15所示’其有一額外的步驟插入 在安裝該遮蔽在該底部封裝倒裝晶片晶粒之上。在該製程 中類似的步驟係由圖中類似的參考編號來識別。在步驟 1602中’提供一下晶粒倒裝晶片球格柵陣列底部封裝之未 分離的長條。該BGA封裝可以具有模製,也可不具有,並 p、不,、有第—階互連焊球。在該長條中的A封裝較佳 地是在其進行製程中的後續步驟之前進行效能及可靠度的 測試(如圖中的*所示)。僅有識別為「良好」的封裝會接受 後續處理。在步驟则中,該電遮蔽係固定於「良好」底 88127 -73- 1329918 部BGA封裝上的晶粒之上。在步驟丨6〇4中黏著劑被分配 在良好」BGA封裝上該遮蔽的上表面之上。在步驟 中,提供了分離的平台格柵陣列封裝。該分離的LGA封裝 係由-模製保護’且較佳地是被測試⑺,並識別為「反好」 。在步驟1608中,進行—撿選及放置作業,以放置「良好」 々GA封裝在該(好」BGA封裝上的遮蔽之上的黏著劑 上。在步驟16 10中,該黏著劑即被固化。在步驟“^中, 在預備步驟1614時進行—電聚清洗作業,其中在該堆疊的 頂部LGA及底邵BGA封裝之間形成線接點z互連。在步驟 1616中’彳進行—額外的電漿清洗,接著在步驟1618中形 成該譲模製。在步驟1620中,第二階互連焊球即附著到 該模組之底侧。在步驟1622中’該完成的模組即進行測試 η,並由孩長條分離,例如藉由錄開分離或藉由沖孔分離 ’並被封裝來做進一步使用。 圖17所示為例如在圖1〇Α或圖1〇Β中所示之—多重封 模組的組裝處理之流程圖。在步驟17〇2中,提供—上晶| 倒裝晶片球格栅陣列底部封裝的_未分離的長條。該^ 晶片互連係由該晶粒與該底部基板之晶粒附著表面:心 —側填滿或模製來保護,所以^ Α 4而要覆盅杈製。在該長4 中的黯封裝較佳地是在其進行製程中的料步驟之^ 仃效能及可靠度的測試(如圖中的* Τ』所不)。僅有識別為「ί J的封裝會接受後續處理。在步驟〗 乂驟1704中,黏著劑被4 配到「1好」BGA封裝上該基板的上表 衣命又上。在步驟170 中,提供分離的第二封裝,盆可五始田 ,、了為堆$的晶粒封裝,例士 88127 -74· 1329918 在圖_0B中所示。該分離的第二封裝係由一模製來保 瘦,較佳地是被測試⑺,並識別為「免好」。在步驟17〇8 中,進行-撿選及放置作業,以放置「良好」的封裝在該 「良好」BGA封裝上基板之上的黏著劑上。在步㈣= ^黏著劑即固化。在步驟1712中,在預備步驟⑽時進 订包名凊洗作業,其中在該堆叠的頂部(堆叠的晶粒)虫底 邵上晶粒倒裝晶片BGA封裝之間形成線接&互連。在牛驟 ⑺6中’可進行—額外的電漿清洗,接著在步驟⑺时形 成該ΜΡΜ模製。在步驟⑽中,第二階互連坪球即附著到 ^模組之底側。在步驟1722中,該完成的模組即進行測試 ()’並由孩長條分離,例如藉由鋸開分離或藉由沖孔分離 ,並被封裝來做進一步使用。 圖18所示為例如圖U中所示之多重封裝模組之組裝處理 Ρ程圖。在步驟1802中’提供一堆疊的晶粒球格柵陣列 未分離的長條。該堆叠的晶粒職封裝即被模製, —上方封裝表面。在該長條中的驗封裝較佳地是 1圖V!製程中的後續步驟之前進行效能及可靠度的測試 所7^)。僅有識別》「良好」的封裝會接受後續處 '風1804中’黏著劑被分配在「良好」堆疊晶粒舰 第裝^基板的上表面之上。在步驟蘭中,提供分離的 乐—封裝,其可為堆疊的晶粒封裝,例如在圖丨丨中所示。 該分離的第-, ―,裝可由一模製保護’且較佳地是進行測試 1乍蓄「反好」。在步驟1808中,進行一檢選及放 且作菜,以放罾「自征 丄狀 」々弟二封裝在該Γ良好」BGA封 88127 •75· 1329918 裝上的基板之上的黏著劑上。在步驟181〇中,該黏著劑即 被固化。在步驟1812中,在預備步驟1814時進行—電聚清 洗作業’其中在該堆疊的頂部(堆疊晶粒)及底部上晶粒倒裝 晶片驗封裝之間形成線接點2互連。在步驟咖中可進 行-額外的電漿清洗,接著在步驟1818中形成該議模製 。在步驟刪中’第二階互連坪球即附著到該模組之底側 。在步驟1822中’該完成的模組即進行測試⑺,並由該長 條分離,例如藉由锯開分離或藉由沖孔分離,並被封裝來 做進一步使用。 如下所述,可進行根據本發明之製程巾許多步驟之個別 步驟,其係根據此處所述的方法,使用了實質上為習用的 技術’但如此處所述,利用直接修正的習用製造設施。這 些習用技術之變化,以及習用製造設備的修正,其可在使 用此處所描述的方法來完成,並不需要再經過實驗。 其它的具體實施例皆在以下的中請專利範圍中陳述。 【圖式簡單說明】 圖1所示為通過一習用球格柵陣列半導體封裝之截面圖。 圖2所示為通過在堆疊的球格柵陣列半導體封裝之間具 有焊球z互連之習用多重封裝模組之截面圖。 圖3所示為通過在堆疊的倒裝晶片半導體封裝之間具有 烊球z互連之Μ倒裝晶片多重封裝模組之截面圖。 圖4所示為通過在堆疊的半㈣封裝之間具有—彎折可 撓基板與焊球ζ互連之習用多重封裝模紅之截面圖。 圖5Α所示為通過根據本發明—方面在堆叠的bga與Β 88127 -76 - 1329918 半導體封裝之間具有線接點Z互連的一多重封裝模組之具 體實施例的截面圖。 圖5B所示為在適用於圖5 A所示之本發明具體實施例中 的配置之具有z互連接點墊之底部BGA基板的平面圖。 圖5C所示為在適用於圖5A所示之本發明具體實施例中 的配置之具有z互連接點塾之頂部LGA基板的平面圖。 圖5D所示為通過根據本發明一方面之在堆疊的BGA與 LGA半導體封裝之間具有線接點z互連之多重封裝模組之 具體實施例的截面圖,其並具有固定於一該頂部封裝的上 表面之散熱器。 圖5E所示為在堆疊的BGA與LGA半導體封裝之間具有線 接點z互連的一多重封裝模組之具體實施例的截面圖且根 據本發明另一方面具有一散熱器。 圖6 A所示為通過根據本發明一方面在堆疊的BGA與LGA 半導體封裝之間具有線接點z互連的一多重封裝模組之另 一具體實施例的截面圖,其中該頂部封裝具有周圍模製。 圖6B所示為通過根據本發明一方面在堆疊的BGA與LGA 半導體封裝之間具有線接點z互連的一多重封裝模組之另 一具體實施例的截面圖,其中該頂部封裝具有周圍模製, 且該模組具有一散熱器。 圖7所示為通過根據本發明一方面在堆疊的BGA與LGA 半導體封裝之間具有線接點z互連的一多重封裝模組之另 一具體實施例的截面圖,其中該頂部封裝基板具有一金屬 層基板。 88127 •ΊΊ - 1329918 圖8 A所示為通過根據本發明另外一方面在堆疊的BGA與 LGA半導體封裝之間具有線接點z互連的一多重封裝模組 之一具體實施例的截面圖,其中在底部封裝上提供一電遮 蔽。 圖8B所示為通過根據本發明一方面在堆疊的BGA與LGA 半導體封裝之間具有線接點z互連的一多重封裝模組之另 一具體實施例的截面圖,其中在該底部封裝之上提供一電 遮蔽,且該模組具有一散熱器。' 圖8C所示為通過根據本發明一方面在堆疊的BGA與LGA 半導體封裝之間具有線接點z互連的一多重封裝模組之另 一具體實施例的截面圖,其中在該底部封裝之上提供一電 遮蔽,且該模組具有固定於該頂部封裝的一上表面之散熱 器。 圖9A所示為通過根據本發明另外一方面在堆疊的倒裝晶 片BGA(下晶粒)與LGA半導體封裝之間具有線接點z互連的 一多重封裝模組之截面圖。 圖9B所示為遍過根據本發明另外一方面在堆疊的倒裝晶 片BGA(下晶粒)與LGA半導體封裝之間具有線接點z互連的 一多重封裝模組之截面圖,其中在該底部封裝上提供一電 遮蔽。 圖9C所示為通過根據本發明另外一方面在堆疊的倒裝晶 片BGA(下晶粒)與LGA半導體封裝之間具有線接點z互連的 一多重封裝模組之截面圖,其中在該底部封裝上提供一電 遮蔽,且該模組具有一散熱器。 88127 -78- Ϊ329918 圖10A所示為通過根據本發明另外一方面在堆疊的倒裝 晶片B G A (上晶粒)與堆疊的晶粒L G A半導體封裝之間具有 線接點z互連的-多重封裝模組之截面圖,其中在該第二封 裝中相鄰堆疊的晶粒係由一間隔器所分離。 , 圖10B所示為通過根據本發明另夕卜一方面在堆叠的倒裝 晶片BGA(上晶粒)與堆疊的晶粒LGA半導體封裝之間具有 線接點z互連的一多重封裝模組之截面圖,其中在該第二封 裝中相鄰堆疊的晶粒具有不同的尺寸。 圖10C所示為通過根據本發明另外一方面在堆疊的倒裝 晶片B G A (上晶粒)與堆疊的晶粒L G八半導體封裝之間复有 線接點z互連的-多重封裝模組之截_,且其中在該底部 封裝上提供一電遮蔽。 圖讀斤示為通過根據本發明另外一方面在堆疊的倒裝 晶片BGA(上晶粒)與堆疊@晶粒LGA半導體封裝之間具有 線接點z互連的-多重封裝模組之截面圖,且其中在該底部 封裝上提供—電遮蔽,並具有固定於該頂部封裝的上表面 之一散熱器。 圖10E所示為通過根據本發明另外一方面在堆叠的倒裝 晶片BGAU晶粒)料疊的晶粒LGa半導體封裝之間具有 線接點z互連的-多重封裝模組之截面圖,其中在該底部封 裝上提供-電遮蔽,並具有根據本發明另—方面而具有— 散熱器。The periphery of the heat sink 504 is provided with - allowing for a mechanical integration of the preferred structure, [covering the MPM molding material. The stepped recessed feature 505 is less detached from the molded compound 88127 - 65 - 1329918. Alternatively, the MPM as in the figure may have a simple planar heat sink that does not have a support member that does not adhere to the top surface of the top package molding. In these embodiments, the top heat sink can be a generally planar plate of thermally conductive material, such as, for example, a sheet of metal (eg, copper) and at least a more central region of the upper surface of the planar heat sink. Exposure to the surrounding area to more effectively remove the tropics from the MPM. Here, the space between the lower surface of the simple planar heat sink and the upper surface 1〇19 of the LGA molding 1017 is filled with a thin layer of MPM molding, and the simple planar heat sink can be The MPM cladding 11 〇 7 is fixed during the molding material curing process. The unattached, simple planar top heat sink can be wrapped around the MPM molding material, as in the planar heat sink attached in Figure 5D, and can provide a stepped recessed feature on the periphery. 5 to allow for better mechanical integration with the structure and less separation from the molding compound. As is understood from the foregoing, in all of the various aspects, the invention features a line contact as a z-interconnect method between stacked packages. In summary, all LGAs stacked on a lower BGA must be smaller than the BGA (at least one dimension on the χ-y plane) for the line contacts to allow space around. The wire diameter is typically at a level of 〇 25 mm (range of 0.050 to 0.01 〇 mni). The wire distance to the edge of the LGA substrate is different in many embodiments, but not less than a wire diameter. The relative size of the BGA and LGA is primarily determined by the maximum grain size of each of them. The thickness of the die and the thickness of the mold cover primarily determine how many grains can be stacked in one package. The fabrication of the BGA package and the LGA package used in the present invention has been well established in the industry for both the wire contact and the flip chip type package. BGA testing has been well established in the industry and is basically accomplished by accessing such solder balls. The LGAs can be tested in two ways, (iv) by a palpitations on the lower surface of the LGA accessed to the substrate, similar to the soldering in the -BGA; or by being close to the substrate The z interconnect on the surface. These completed MpM assemblies can be tested in the same way as the BGA. The Μ P armor assembly treatment is similar for different (four) configurations in accordance with the present invention. In summary, the process includes the steps of: providing a first package substrate and at least one die attaching to the first package of the first package substrate, dispensing an adhesive to an upper surface of the first molded package And placing a second molded package including the second package substrate and the at least one die such that the lower surface of the second substrate can contact the adhesive on the upper surface of the first package during adhesion And forming a germanium interconnect between the first and second substrates. Preferably, the packages can be tested prior to assembly, and the package that does not meet the performance or reliability requirements can be discarded, so the first package and the second package that are tested as "good" are the modules used for the assembly. in. Fig. 12 is a flow chart showing the assembly process of the multi-package module shown in Fig. 5 or Fig. 7, for example. In step 12A2, it provides an undivided strip of ball grid array package. The die and wire contacts on the ball grid array package are protected by -molding. The BGA package in the strip is preferably tested for performance and reliability prior to the last % of steps in the IU King (as shown in Figure *). Only packages identified as "good" will be processed. 88127 - 67· 1329918 In step 1204, the adhesive is dispensed over the molded upper surface of the "good" BGA package. In step 1206, a separate platform grid array package is provided. The separate LGA package is protected by a mold and is preferably tested (=〇 and identified as "good". In step 12〇8, a selection and placement operation is performed to place "good" The LGA is packaged on the adhesive over the molding of the good BGA package. In step ΐ2, the adhesive is cured. In step 1212, a plasma cleaning operation is performed at preliminary step 1214. Wherein a line junction z interconnection is formed between the top LGA of the stack and the bottom BGA package. In step 1216, an additional plasma cleaning can be performed, followed by forming the MPM molding in step 1218. The middle and first-order interconnecting solder balls are attached to the bottom side of the module. In the step, the completed module is tested (*) and separated by the strip, for example by sawing. Or by punching separation, and being packaged for further use. Figure 13 is a flow chart showing, for example, the assembly process of the multi-package module shown in Figure 6A. In step 13〇2, provide - An undivided strip of ball grid array package on the ball grid array package The die and wire contact structure is protected by the system. The BGA seal (4) in the strip is preferably tested before the next step in the process and can be tested (as shown in the figure TF) Only the package identified as "good" will be accepted in the subsequent step in step 1304, where the binder is dispensed onto the upper surface of the molded "good" package. In step W, The separate platform grid array package is separated from the LGA package by a peripheral molding to protect the line contacts, and is preferably tested (7) and identified as "good". In step 1308, ' - Select and place the work to place the LG A scraper of "88127 -68 - 1329918" on the adhesive on the molding of the "jj-t- ό a u. 」" BGA package. In step 1310, the adhesive is cured. In the step, at the preliminary step 1314, a plasma cleaning operation is performed in which a line junction z interconnection is formed between the top LGA of the stack and the bottom BGA package. In step 1316, an additional plasma cleaning can be performed, followed by forming the MPM in step 1318. In step 132, the second-order interconnect solder ball is attached to the bottom side of the module. In step 1322, the completed (four) group is tested ("' and separated by the child strip, for example by The sawing is separated or separated by punching and packaged for further use. Figure HA shows a flow chart of an assembly process such as the one of the multiple package modules shown in Figure 8-8. Providing an undivided strip of a ball grid array package. The BGA packages have a shield fixed on the die. The material shield protects the ball grid array from 6 scoops of die and wire contacts The structure, therefore, does not require package molding. The bga package in the strip is preferably tested for performance and reliability before the subsequent steps in the process (as indicated by * in the figure). Only packages identified as "good" will be processed. In the first step, the adhesive is dispensed over the masked upper surface of the "good" 曰 BGA package. A separate platform grid array package is provided in the step. The separate LGA package is molded by: 谩, and is preferably tested (*) and identified as "good". In step 4(10), a selection and placement operation is performed to place the "good" MGA package on the adhesive over the molding of the "good" BGA package. In step 14A, the adhesive is cured in step 丨 412, in a preliminary step "进行 - plasma cleaning operation" where the top L of the stack (m and bottom 88127 - 69 - 1329918 BGA package A line junction z interconnection is formed between them. At step i4i, an additional plasma cleaning is performed, followed by formation of the MpM molding in step 1418. In step 1420, 'into the de-lighting operation to decompose and remove Unwanted organic matter. The light removal system is cleaned by a chemical transfer or plasma by a laser transfer rod, a cymbal, or a fine. In step 1422, a second-order interconnected solder ball can be attached to the mold. The bottom side of the set. In step 1424, the completed module is tested (7) and separated by the strip', for example by separation or by punching, and packaged for further use. Figure 14B Shown is a flow chart of an assembly process of a multiple package module, such as shown in Figure 。. This process is similar to that shown in Figure 14 and has additional steps to insert before installing the heat sink. Carry out _ "drop mold operation. Similar steps in the process are shown in the figure Identified by reference numerals. In step M02, 'provide' the undivided strips of the ball grid array package. The BGA packages have a shadow fixed on the die. The masks protect the cells. The die and wire contact structure on the gate array package, therefore, does not require package molding. The bga package in the strip is preferably tested for performance and reliability before it takes the next step in the process ( As indicated in the figure, only the package identified as "good" will undergo subsequent processing. In step 404, the adhesive is dispensed on the "good" 8 (} eight package above the upper surface of the mask) In step 〇4〇6, a separate platform grid array package is provided. The separate LGA package is protected by -mold, and is preferably tested (*) and identified as "good ^ in step just To perform a selection and placement operation to place a "good" lga package on the adhesive over the shadow of the "good" BGA package. In step 141〇88127 -70· 1329918: the adhesive That is, it is solidified. In step 1412, in the preliminary step The i4i4 亍$h washing operation is in which a line contact z is interconnected between the top lga of the stack and the bottom GA package. In the step "Μ, a plasma cleaning can be performed. In step 1415, - The heat sink is dropped into each of the cavities in a cavity molding apparatus. In step 1417, the cleaning package stack # from step (4) 6 falls into the cavity above the heat sink. In step 1419 '-The cladding material is injected into the cavity and solidified to form the die. In step 1421, a light removal operation can be performed to decompose and remove unwanted organic matter. The laser is performed by a laser, or may be washed by a chemical or private name β in step 422, and the second-order interconnected ball may be attached to the bottom side of the stack. In step 424, the completed module is tested ("' and separated by the child strip'", for example by sawing apart or by punching, and being packaged for further use. Figure c A flow chart showing, for example, an assembly process of a multi-package module shown in FIG. 8C. This process is similar to that shown in FIG. 14A, which is inserted into the top package before the installation plane is hot. Additional steps. Similar steps in this process are identified by similar reference numerals in the drawing, in step 1402, to provide an undivided strip of a ball grid array. The BGA packages are fixed to Shielding over the die. The masking protects the die and wire contact structure on the ball grid array package, thus eliminating the need for package trimming. The BGA package in the strip is preferably The performance and reliability tests are performed before the subsequent steps in the weighting process (as shown in the figure). Only those packages identified as "good" will be subject to subsequent processing. In step 1404, the adhesive is assigned. On the "Rehabilitation" bga package on the shaded 88127 71 1329918 ^ In step 1406, a separate platform lattice array package is provided. The separate LGA package is protected by a mold, and is preferably tested () and identified as "good". In 14〇8, carry out the “selection and placement operation” to place the “good” (10) package on the “good” canister=installed on the adhesive. In step 14, the adhesive is cured. In step 1412, a plasma cleaning operation is performed before the preliminary step 1414, and a --contact z-interconnection is formed between the stacked top LGA and the bottom BGA package, and then an additional electro-polymer cleaning is performed. In (4) 1, the adhesive is dispensed onto the upper surface of the top LGA package molding, and in step 143, the rod __ grid 4 is firmly φ retracted and placed to place a flat radiator Adhesive is applied over the top package. The adhesive is cured in step 435. Additional power cleaning is performed in step 1416', and in step 1418, the mold is formed. _2〇 can perform a light removal operation to decompose and remove Desirable organic material. The de-lighting can be performed by laser or chemical and plasma cleaning. In step 1422, a second-order interconnect solder ball can be attached to the bottom side of the module. In step 1424, the completion is completed. The mold is ready for the test (*) and is separated by the strip 'for separation, for example, by separation or by punching, and is packaged for further use. Figure 15 is not shown, for example, in Figure 9 A flow chart showing the assembly process of one of the multiple package modules. In step 15〇2, an undivided strip of the bottom package of the lower die wafer wafer grid array is provided. The BGA package can have Molded, or not, and may not have a second-order interconnected solder ball. The BGA package in the strip is preferably tested for performance and reliability before the subsequent steps in the process. * shown in the figure). Only packages identified as 88127 • 72-1329918 Good are subject to subsequent processing. In step 1504, the adhesive is placed over the upper surface (back side) of the die on a good BGA package. In step 1506, a separate platform grid array package is provided. The separate LG continuation is protected by -molding, and is preferably tested (7) and identified as "good". In step 1508, a selection and placement operation is performed to place a "good" LGA package on the adhesive over the grains on the "good" BGa package. In step 151, the adhesive is cured. In v 驭 1 5 12, a plasma cleaning operation is performed at a preliminary step 丨5 _4, wherein a wire contact z interconnection is formed between the top LGA of the stack # and the bottom BGA package. In step 1516, an additional battery cleaning can be performed, followed by forming the MPM molding in step 1518. At the step (5), the second-order interconnected ball is attached to the bottom side of the fish. In step 22, the completed module is tested (7) and separated by the strip, for example by recording separation or by punching, and is packaged for further use. The figure (10) is shown as, for example, A flow chart of the assembly process of the multi-package module shown in FIG. This process is similar to that shown in Figure 15 which has an additional step of inserting the mask over the bottom package flip chip die. Similar steps in the process are identified by similar reference numerals in the figures. In step 1602, the undivided strips of the bottom package of the die-flip wafer ball grid array are provided. The BGA package may or may not have, and does not have, a first-order interconnect solder ball. The A package in the strip is preferably tested for performance and reliability prior to its subsequent steps in the process (shown as * in the figure). Only packages identified as "good" will be processed later. In the step, the electrical shield is attached to the die on the "good" bottom 88127 - 73 - 1329918 BGA package. In step 丨6〇4 the adhesive is dispensed over the upper surface of the shield on a good BGA package. In the steps, a separate platform grid array package is provided. The separate LGA package is protected by -mold and is preferably tested (7) and identified as "reverse". In step 1608, a selection and placement operation is performed to place a "good" 々GA packaged on the adhesive over the mask on the (good) BGA package. In step 1610, the adhesive is cured. In step "^, at preparatory step 1614, an electro-convex cleaning operation is performed in which a line junction z interconnection is formed between the top LGA and the bottom-shortage BGA package of the stack. In step 1616, '彳-- The plasma cleaning is followed by the stencil molding in step 1618. In step 1620, the second-order interconnect solder balls are attached to the bottom side of the module. In step 1622, the completed module is performed. η is tested and separated by a child strip, for example by separation or by punching and is packaged for further use. Figure 17 is shown, for example, in Figure 1 or Figure 1 a flow chart of the assembly process of the multi-package module. In step 17〇2, an undivided strip of the bottom package of the flip-chip wafer grid array is provided. The wafer interconnect is composed of the crystal Grain-attachment surface of the grain and the bottom substrate: heart-side filled or molded to protect Therefore, it is necessary to cover the system. The 黯 package in the length 4 is preferably tested in the process of the material process and reliability (as shown in the figure * Τ 』 No. Only the package identified as "ί J will undergo subsequent processing. In step 1704, the adhesive is assigned to the "1 good" BGA package on the upper surface of the substrate. In the 170, a separate second package is provided, the basin can be a five-field, and a chip package for the stack $, as shown in Fig. _0B. The second package is separated by a Molded to keep it thin, preferably tested (7) and identified as "free". In step 17〇8, perform a -selection and placement operation to place a "good" package in the "good" BGA The adhesive is applied on the upper substrate. In step (4) = ^ the adhesive is cured. In step 1712, the package name is washed in the preliminary step (10), at the top of the stack (stacked grains) A wire-bonded & interconnect is formed between the BGA packages on the bottom of the die bottom wafer. In the cattle (7) 6 'can be carried out - additional electricity Cleaning, then forming the dies in step (7). In step (10), the second-order interconnected ping balls are attached to the bottom side of the module. In step 1722, the completed module is tested () ' And separated by a child strip, such as by sawing apart or by punching, and being packaged for further use. Figure 18 shows the assembly process of the multi-package module shown in Figure U, for example. In step 1802, 'a strip of undivided strips of stacked die grid arrays is provided. The stacked die package is molded, the upper package surface. The package is better in the strip. The ground is a test of performance and reliability before the subsequent steps in the process of Figure V! 7(). Only the package that identifies "good" will accept that the adhesive in the 'wind 1804' is dispensed on the upper surface of the "good" stacked die carrier. In the step, a separate music package is provided, which may be a stacked die package, such as shown in Figure 。. The separated -, ", can be protected by a molding" and preferably tested 1 "reversely good". In step 1808, a check and a dish are prepared for placing the "self-defective" brother 2 on the adhesive on the substrate of the good BGA seal 88127 • 75 · 1329918. . In step 181, the adhesive is cured. In step 1812, at the preliminary step 1814, an electro-agglomeration process is performed in which a wire contact 2 interconnection is formed between the top of the stack (stacked die) and the bottom die-chip wafer package. An additional plasma cleaning can be performed in the step coffee, followed by the formation molding in step 1818. In the step of deleting, the second-order interconnected ping pong is attached to the bottom side of the module. In step 1822, the completed module is tested (7) and separated by the strip, for example by sawing apart or by punching, and packaged for further use. The individual steps of the various steps of the process towel according to the present invention can be carried out as follows, using a substantially conventional technique in accordance with the methods described herein, but using a directly modified conventional manufacturing facility as described herein. . Variations in these conventional techniques, as well as modifications to conventional manufacturing equipment, can be accomplished using the methods described herein without further experimentation. Other specific embodiments are set forth in the following patent claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view through a conventional ball grid array semiconductor package. Figure 2 is a cross-sectional view of a conventional multi-package module with solder ball z interconnections between stacked ball grid array semiconductor packages. Figure 3 is a cross-sectional view of a flip chip multi-package module with a ball z-interconnect between stacked flip-chip semiconductor packages. Figure 4 is a cross-sectional view of a conventional multi-package mode red by interconnecting a flexible substrate and solder balls between the stacked half (four) packages. Figure 5A is a cross-sectional view showing a specific embodiment of a multi-package module having a wire contact Z interconnection between a stacked bga and a Β 88127 - 76 - 1329918 semiconductor package in accordance with the present invention. Figure 5B is a plan view of a bottom BGA substrate having z-interconnect dot pads in a configuration suitable for use in the embodiment of the invention illustrated in Figure 5A. Figure 5C is a plan view of a top LGA substrate having a z-interconnect point 适用 in a configuration suitable for use in the embodiment of the invention illustrated in Figure 5A. 5D is a cross-sectional view of a particular embodiment of a multi-package module having wire bonds z interconnects between stacked BGA and LGA semiconductor packages in accordance with an aspect of the present invention, having a top to be attached to the top A heat sink on the upper surface of the package. Figure 5E shows a cross-sectional view of a particular embodiment of a multi-package module having a wire j interconnect between stacked BGA and LGA semiconductor packages and having a heat sink in accordance with another aspect of the present invention. 6A is a cross-sectional view of another embodiment of a multi-package module having a wire bond z interconnect between stacked BGA and LGA semiconductor packages in accordance with an aspect of the present invention, wherein the top package It has a molding around. 6B is a cross-sectional view of another embodiment of a multi-package module having a wire bond z interconnect between stacked BGA and LGA semiconductor packages in accordance with an aspect of the present invention, wherein the top package has Molded around, and the module has a heat sink. 7 is a cross-sectional view of another embodiment of a multi-package module having a wire bond z interconnect between stacked BGA and LGA semiconductor packages in accordance with an aspect of the present invention, wherein the top package substrate There is a metal layer substrate. 88127 • ΊΊ - 1329918 FIG. 8A is a cross-sectional view of one embodiment of a multi-package module having a wire bond z interconnection between stacked BGA and LGA semiconductor packages in accordance with another aspect of the present invention. Where an electrical shield is provided on the bottom package. 8B is a cross-sectional view of another embodiment of a multi-package module having a wire bond z interconnect between stacked BGA and LGA semiconductor packages in accordance with an aspect of the present invention, wherein the bottom package is An electrical shield is provided thereon, and the module has a heat sink. Figure 8C is a cross-sectional view showing another embodiment of a multi-package module having a wire bond z interconnection between stacked BGA and LGA semiconductor packages in accordance with an aspect of the present invention, wherein at the bottom An electrical shield is provided over the package, and the module has a heat sink secured to an upper surface of the top package. Figure 9A is a cross-sectional view of a multi-package module having interconnects with wire bonds z between stacked flip-chip BGA (lower die) and LGA semiconductor packages in accordance with another aspect of the present invention. 9B is a cross-sectional view of a multi-package module having a wire bond z interconnect between a stacked flip chip BGA (lower die) and an LGA semiconductor package in accordance with another aspect of the present invention, wherein An electrical shield is provided on the bottom package. 9C is a cross-sectional view of a multi-package module having interconnects between the stacked flip chip BGA (lower die) and the LGA semiconductor package in accordance with another aspect of the present invention, wherein An electrical shield is provided on the bottom package, and the module has a heat sink. 88127 - 78- Ϊ 329918 FIG. 10A shows a multi-package with a wire contact z interconnection between a stacked flip chip BGA (upper die) and a stacked die LGA semiconductor package in accordance with another aspect of the present invention. A cross-sectional view of a module in which adjacent stacked crystal grains are separated by a spacer in the second package. Figure 10B shows a multi-package mode with interconnects z between the stacked flip chip BGA (upper die) and the stacked die LGA semiconductor package on the one hand in accordance with the present invention. A cross-sectional view of a group in which adjacent stacked grains in the second package have different sizes. Figure 10C is a cross-sectional view of a multi-package module interconnected by a stacked wire bond z between a stacked flip chip BGA (upper die) and a stacked die LG eight semiconductor package in accordance with another aspect of the present invention. _, and wherein an electrical shield is provided on the bottom package. The figure is shown as a cross-sectional view of a multi-package module having a wire contact z interconnection between a stacked flip chip BGA (upper die) and a stacked @ die LGA semiconductor package in accordance with another aspect of the present invention. And wherein the bottom package is provided with electrical shielding and has a heat sink secured to the upper surface of the top package. 10E is a cross-sectional view of a multi-package module having a wire contact z interconnect between die LGA semiconductor packages of stacked flip chip BGAU die according to another aspect of the present invention, wherein An electrical shield is provided on the bottom package and has a heat sink in accordance with another aspect of the invention.

圖11所示為通過根據本發明另外—方面在堆疊繼⑽ 晶粒)與LGA(堆疊晶粒)半導體封裝之間具有線接點2互 88127 •79- 1329918 連的一多重封裝模組之截面圖。 圖12所示為一種例如示於圖5A或圖7中的一多重封裝模 組之組裝製程的流程圖。 圖13所示為一種例如示於圖6八中的一多重封裝模組之組 裝製程的流程圖。 圖14A所示為一種例如示於圖8八中的一多重封裝模組之 組裝製程的流程圖。 圖14B所示為一種例如示於圖8B中的一多重封裝模組之 組裝製程的流程圖。- 圖14C所示為一種例如示於圖8(:中的一多重封裝模組之 組裝製程的流程圖。 圖15所示為一種例如示於圖9八中的一多重封裝模組之組 裝製程的流程圖。 圖16所示為一種例如示於圖叩中的一多重封裝模組之組 裝製程的流程圖。 圖17所示為_種例如示於圖1〇八或圖i〇b中的一多重封 裝模組之組裝製程的流程圖。 圖18所示為一種例如示於,中的一多重封裝模組之組 裝製程的流程圖。 【圖式代表符號說明】 10 MPM底部封裝 12 ' 22 基板 13 23 晶粒附著環氧化物 88127 -80 - 1329918 14、 24 ' 34 '44 晶粒 16' 26 線接點 17 > 27 > 47 模製化合物 18 ' 28、 38 、48 焊球 20 堆疊MPM 30 2-堆疊倒裝晶片MPM 33 聚合物側填滿 35 通孑L 36 凸塊 40 2-堆疊彎曲可撓基板MPM 42 金屬層底部封裝基板 43 黏著劑 46 懸臂樑 50 ' 52、 60 > 70 > 84 多重封裝模組 54、 62 ' 82 '94 BGA+LGA多重封裝模組 90 ' 92、 101 、 103 多重封裝模組 105 、107 N 109 、 110 多重封裝模組 121 、123 金屬層 122 、142 通孑L 125 ' 127 、 147 焊罩 141 第一金屬層 143 第二金屬層 88127 -81 - 1329918 221 ' 223 金屬層 222 通孔 225 、 227 焊罩 300 底部封裝 302 底部BGA封裝 304 遮蔽 305 側壁 306 線 312 底部封裝基板 314 晶粒 315 ' 327 焊罩 316 倒裝晶片凸塊 318 焊球 321 、 323 金屬層 322 通孔 331 金屬層 332 基板 333 聚合物側填滿 334 晶粒 335 通孔 336 凸塊 338 z互連焊球 -82 - 88127 1329918 342 BGA基板 343 互連凸塊 344 晶粒 346 倒裝晶片凸塊 348 第二階互連烊球 351 金屬層 353 圖案化金屬層 354 ' 356 介電層 355 金屬層 400 底部封裝 401 空隙 402 底部球格柵陣列(BGA)封裝 406 散熱器/遮蔽 407 側壁 408 線 412 底部封裝基板 413 晶粒附著環氧化物 414 晶粒 415 ' 427 焊罩 416 線接點 417 模製化合物 418 焊球 88127 -83 - 1329918 419 底部封裝上表面 421 、 423 金屬層 422 通孔 424 底部封裝z互連墊 425 上表面 426 上表面 442 底部封裝基板 443 黏著劑 444 、 454 晶粒 446 、 456 線接點 447 模製化合物 448 焊球 451 、 453 金屬層 452 通孔 455 ' 457 烊罩 500 頂部封裝 501 空隙 503 > 506 黏著劑 505 、 545 凹入特徵 507 模組包覆 511 軌跡 512 頂部封裝基板 -84- 88127 1329918 513 晶粒附著環氧化物 514 晶粒 515 焊罩 516 線接點 517 模製化合物 518 線接點 519 上表面 521 金屬層 522 通孔 523 金屬層 524 頂部封裝z互連墊 525 上表面 526 邊緣 527 焊罩 544 、 504 . 散熱器 546 支撐部件 600 頂部封裝 607 模組包覆 612 頂部封裝基板 613 晶粒附著環氧化物 614 晶粒 615 焊罩 -85 - 88127 1329918 616 線接點 617 模製化合物 618 線接點 621 金屬層 622 通孔 623 金屬層 627 焊罩 644 散熱器 645 凹入特徵 646 支撐部件 700 頂部封裝 707 模組包覆 712 頂部封裝基板 713 晶粒附著環氧化物 714 晶粒 715 焊罩 716 線接點 717 模製化合物 718 線接點 719 表面 721 金屬層 800 頂部平台格柵陣列(LGA)封裝 88127 -86- 1329918 803 黏著劑 804 散熱器 805 凹入特徵 806 支撐部件 807 模組包覆 812 頂部封裝基板 813 晶粒附著環氧 814 晶粒 815 、 827 烊罩 817 模製化合物 818 、 816 線接點 819 上表面 821 金屬層 822 通孔 823 金屬層 844 散熱器 845 凹入特徵 846 黏著劑 847 包覆 900 頂部LGA封裝 903 黏著劑 907 模組包覆 -87- 88127 1329918 908 線 909 側壁 912 頂部封裝基板 913 晶粒附著環氧化物 914 晶粒 915 焊罩 917 模製化合物 918 ' 916 線接點 919 表面 921 金屬層 944 散熱器 945 凹入特徵 946 支撐部件 1000 晶粒平台格柵陣列封裝 1003、1006. 黏著劑 1004 散熱器 1005 凹入特徵 1007 模組包覆 1011 跡線 1012 介電層 1013 黏著劑 1014 晶粒 88127 -88- 1329918 1015 間隔器 1017 模製材料 1018 、 1016 、 1026 線接點 1019 上表面 1024 晶粒 1030 頂部封裝 1031 跡線 1033 黏著劑 1034 晶粒 1035 黏著劑 1036 線接點 1037 模製材料 1039 上表面 1044 晶粒 1045 凹入特徵 1046 線接點 1103 黏著劑 1107 模製 1118 線接點 88127 -89-Figure 11 is a multi-package module having a wire contact 2 mutual 88127 • 79-1329918 between a stacked (10) die) and an LGA (stacked die) semiconductor package in accordance with another aspect of the present invention. Sectional view. Figure 12 is a flow chart showing an assembly process of a multi-package module such as that shown in Figure 5A or Figure 7. Figure 13 is a flow chart showing a packaging process of a multi-package module such as that shown in Figure 68. Figure 14A is a flow chart showing an assembly process of a multi-package module such as that shown in Figure 8-8. Figure 14B is a flow chart showing an assembly process of a multi-package module such as that shown in Figure 8B. - Figure 14C is a flow chart showing, for example, an assembly process of a multi-package module shown in Figure 8; Figure 15 is a multi-package module such as shown in Figure 9 Flowchart of the assembly process. Fig. 16 is a flow chart showing an assembly process of a multi-package module, for example, shown in Fig. 17. Fig. 17 is a diagram showing, for example, Fig. 1 or Fig. A flow chart of an assembly process of a multi-package module in b. Figure 18 is a flow chart showing an assembly process of a multi-package module, for example, shown in Figure 1. [Illustration of symbolic representation] 10 MPM Bottom package 12 ' 22 substrate 13 23 die attach epoxide 88127 -80 - 1329918 14, 24 ' 34 '44 die 16' 26 wire contact 17 > 27 > 47 molding compound 18 ' 28, 38 , 48 solder balls 20 stacked MPM 30 2-stack flip chip MPM 33 polymer side filled 35 pass L 36 bump 40 2-stack curved flexible substrate MPM 42 metal layer bottom package substrate 43 adhesive 46 cantilever beam 50 ' 52, 60 > 70 > 84 Multiple Package Modules 54, 62 ' 82 '94 BGA+LGA Multi-Package Module 90' 92, 101, 103 Multiple Package Module 105, 107 N 109, 110 Multi-Package Module 121, 123 Metal Layer 122, 142 Through L 125 ' 127 , 147 Solder Cover 141 First metal layer 143 second metal layer 88127 -81 - 1329918 221 ' 223 metal layer 222 via 225 , 227 solder mask 300 bottom package 302 bottom BGA package 304 shield 305 sidewall 306 line 312 bottom package substrate 314 die 315 ' 327 Solder Mask 316 Flip Chip Bump 318 Solder Ball 321 , 323 Metal Layer 322 Through Hole 331 Metal Layer 332 Substrate 333 Polymer Side Filled 334 Die 335 Through Hole 336 Bump 338 z Interconnect Solder Ball -82 - 88127 1329918 342 BGA Substrate 343 Interconnect Bump 344 Die 346 Flip Chip Bump 348 Second Order Interconnect Ball 351 Metal Layer 353 Patterned Metal Layer 354 ' 356 Dielectric Layer 355 Metal Layer 400 Bottom Package 401 Void 402 Bottom Ball Grid Array (BGA) Package 406 Heat Sink/Mask 407 Sidewall 408 Line 412 Bottom Package Substrate 413 Grain Attachment Epoxide 414 Grain 415 '427 Solder 416 wire contact 417 molding compound 418 solder ball 88127 -83 - 1329918 419 bottom package upper surface 421, 423 metal layer 422 through hole 424 bottom package z interconnection pad 425 upper surface 426 upper surface 442 bottom package substrate 443 adhesive 444 454 die 446, 456 wire contact 447 molding compound 448 solder ball 451, 453 metal layer 452 through hole 455 '457 烊 cover 500 top package 501 void 503 > 506 adhesive 505, 545 concave feature 507 module Wrap 511 Trace 512 Top Package Substrate -84- 88127 1329918 513 Die Attachment Epoxide 514 Die 515 Solder Cover 516 Line Contact 517 Molding Compound 518 Line Contact 519 Upper Surface 521 Metal Layer 522 Through Hole 523 Metal Layer 524 Top Package z Interconnect Pad 525 Upper Surface 526 Edge 527 Solder Mask 544, 504. Heat Sink 546 Support Component 600 Top Package 607 Module Cover 612 Top Package Substrate 613 Die Attachment Epoxide 614 Die 615 Solder Mask - 85 - 88127 1329918 616 Line contact 617 Molding compound 618 Line contact 621 Metal layer 622 Through hole 623 Substructure layer 627 solder mask 644 heat sink 645 recessed feature 646 support member 700 top package 707 module package 712 top package substrate 713 die attach epoxide 714 die 715 solder mask 716 wire contact 717 molding compound 718 wire Contact 719 Surface 721 Metal Layer 800 Top Platform Grid Array (LGA) Package 88127 -86- 1329918 803 Adhesive 804 Heat Sink 805 Recessed Feature 806 Support Member 807 Module Wrap 812 Top Package Substrate 813 Die Attachment Epoxy 814 die 815, 827 8 8 817 molding compound 818, 816 wire contact 819 upper surface 821 metal layer 822 through hole 823 metal layer 844 heat sink 845 concave feature 846 adhesive 847 cladding 900 top LGA package 903 adhesive 907 Module Wrap-87- 88127 1329918 908 Wire 909 Sidewall 912 Top Package Substrate 913 Grain Attachment Epoxide 914 Die 915 Solder Mask 917 Molding Compound 918 ' 916 Line Contact 919 Surface 921 Metal Layer 944 Heat Sink 945 Recessed feature 946 support member 1000 die platform grid array package 1003, 1006. Adhesive 1004 Heatsink 1005 Recessed Features 1007 Module Cover 1011 Trace 1012 Dielectric Layer 1013 Adhesive 1014 Grain 88127 -88- 1329918 1015 Spacer 1017 Molding Material 1018, 1016, 1026 Line Contact 1019 Upper Surface 1024 Crystal 1030 Top Package 1031 Trace 1033 Adhesive 1034 Die 1035 Adhesive 1036 Wire Contact 1037 Molding Material 1039 Upper Surface 1044 Die 1045 Recessed Feature 1046 Wire Contact 1103 Adhesive 1107 Molded 1118 Wire Contact 88127 - 89-

Claims (1)

13299181329918 第092125625號專利申請案 中文申請專利範圍替換本(99年3月) 拾、申請專利範圍: 1. 一種包含堆疊下方及上方封裝之多重封裝模組,該上方 封裝包括一附著且電互連到一上方封裝基板之一晶粗 附著側的上方封裝晶粒,以及該下方封裝包括一附著且 電互連到一下方封裝基板之一晶粒附著側的下方封裝 晶粒,每個封裝基板包括至少一金屬層與至少一介電層 ,且每個封裝基板經配置以在該晶粒附著側之該基板的 相對側處提供與該金屬層之電接觸,該模組進一步包括 在該下方封裝基板之下方側處的第二階互連球墊,其中 介於每個該晶粒及該基板之間的該電互連被保護,且其 中該上方及該下方基板藉由導線結合而互連。 2‘如申請專利範圍第1項之多重封裝模組,其中至少一該 封裝具有言玄晶粒的導線結纟互連到該基板,且其中藉由 囊封而保護該導線結合互連。 1 3·如申請專利範圍第2項之多重封裝模組,其中該封裝被 完全囊封。 4. 如申請專鄉圍第2項之多重封裝模組,其中該封裝僅 以種足以保護該晶粒與該基板之間的該等導線結合 之範圍而囊封。 1 . 如申請專利範圍第1項之多重封裝模組,其中至少一該 封裝為一球格栅陣列封裝。 6·如中請專利範圍第i項之多重封裝模組其中至少一該 封裝為一平台格柵陣列封裝。 申叫專利範圍第1項之多重封裝模組其中至少一該 88127-9903l7.doc 封裝具有該晶粒的覆晶互連到該基板,且其中藉由一底 部填充而保護該覆晶互連。 - 8. 如申請專利範圍第丨項之多重封裝模組,進一步包含— 散熱器。 9. 如申請專利範圍第!項之多重封裝模組,進一步包含對 於該等封裝的至少一者之電磁遮蔽。 1〇·如申請專利範圍第i項之多重封裝模組,其包含—第三 堆疊封裝。 — 11 -種衣造一多重封裝模组的方法,其包括·· 提供一第-封裝,該第-封裝包括具有第—與第二表 面及附著在該第一封裝基板之該第一表面處的至少一 a曰粒之-第-封裝基板,該第—封裝基板包含用於該模 組之互連在該第二表面處可存取的互連部位,該第一封 裝包括一具有一囊封劑表面之囊封劑, 放置-第二封裝在該第一封襄之上,該第二封裝包括 具有第—與第二表面及附著在該第m板之該第 :表至少一晶粒之一第二封裝基板,其中放置該 封裝在該第一封裝之上包括施加-黏著劑至該第 =裝之違囊封劑表面上且放置該第二封裝至該黏著 7,以及在該第—及第二基板之間形成導線結合z互 連0 12. 如申請專利範圍第_之方法,其中提供該第 含提供一未分離長條之封裝。 一封裝包 13.如申請專利範圍苐11項 之方法,其中該黏著劑為一 可固 •2· 1329918 14. 15. 16. 17. 化黏著劑,且進一步包含固化該黏著劑。 如申請專利範圍第⑽之方法,其中提供該第 含對於—效能及可靠度需求來測試封裝,並選擇該第^ 封裝而可滿足該需求。 X 一 如申請專利範圍第11項之方法,其中放置該第二封裝在 該第—封裝之上包含對於一效能及可靠度需求來測試 封裝,並選擇該第二封裝而可滿足該需求。 如申請專利範圍第1 1項之方法,進一步包含附著第二階 互連球到該第一封裝基板上。 如申請專利範圍第11項之方法,進一步包含囊封該等堆 疊的封裝在一多重封裝模組模製中。Patent Application No. 092125625 (Replacement of Patent Application Scope (March 99) Pickup, Patent Application Range: 1. A multi-package module comprising a package below and above the stack, the upper package including an attached and electrically interconnected An upper package die on a coarse-grained side of an upper package substrate, and the lower package includes an underlying package die attached and electrically interconnected to a die attach side of a lower package substrate, each package substrate including at least a metal layer and at least one dielectric layer, and each package substrate is configured to provide electrical contact with the metal layer at an opposite side of the substrate on the die attach side, the module further comprising a lower package substrate a second-order interconnect ball pad at a lower side, wherein the electrical interconnection between each of the die and the substrate is protected, and wherein the upper and lower substrates are interconnected by wire bonding. [2] The multiple package module of claim 1, wherein at least one of the package has a wire bond interconnected to the substrate, and wherein the wire bond is interconnected by encapsulation. 1 3. The multiple package module of claim 2, wherein the package is completely encapsulated. 4. If applying for a multi-package module of the second item of the hometown, wherein the package is only encapsulated in a range sufficient to protect the wires from bonding between the die and the substrate. 1 . The multiple package module of claim 1 , wherein at least one of the packages is a ball grid array package. 6. At least one of the multi-package modules of the scope of claim i is a platform grid array package. The multi-package module of claim 1 wherein at least one of the 88127-9903l7.doc packages has a flip chip interconnect of the die to the substrate, and wherein the flip chip interconnect is protected by a bottom fill. - 8. If the multi-package module of the scope of the patent application is further included, the heat sink is further included. 9. If you apply for a patent scope! The multi-package module of the item further includes electromagnetic shielding for at least one of the packages. 1. A multi-package module as claimed in claim i, which includes a third stacked package. - 11 - A method of fabricating a multi-package module, comprising: providing a first package comprising a first and second surface and attached to the first surface of the first package substrate At least one a-grain-package substrate, the first package substrate includes an interconnection portion for accessing the module at the second surface, the first package includes a An encapsulating agent on the surface of the encapsulant, the second package is disposed on the first package, the second package includes at least one crystal having the first and second surfaces and the first surface attached to the mth plate a second package substrate, wherein the package is disposed on the first package, including an application-adhesive to the surface of the tamper-evident agent and the second package is placed to the adhesive 7, and A wire bond z-interconnect is formed between the first and second substrates. 12. The method of claim </RTI> wherein the first package provides an undivided strip. A package 13. The method of claim 11, wherein the adhesive is a solid. 2. 1329918 14. 15. 16. 17. An adhesive, and further comprising curing the adhesive. For example, the method of claim (10), wherein the first-to-performance and reliability requirements are provided to test the package, and the second package is selected to meet the demand. X. The method of claim 11, wherein placing the second package on the first package includes testing the package for a performance and reliability requirement, and selecting the second package satisfies the requirement. The method of claim 11, further comprising attaching a second-order interconnecting ball to the first package substrate. The method of claim 11, further comprising encapsulating the stacked packages in a multi-package module molding.
TW092125625A 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages TWI329918B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US41159002P 2002-09-17 2002-09-17
US10/632,552 US20040061213A1 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect between stacked packages
US10/632,550 US6972481B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module including stacked-die package and having wire bond interconnect between stacked packages
US10/632,551 US6838761B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield
US10/632,549 US7064426B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having wire bond interconnect between stacked packages
US10/632,568 US7205647B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having package stacked over ball grid array package and having wire bond interconnect between stacked packages
US10/632,553 US7053476B2 (en) 2002-09-17 2003-08-02 Semiconductor multi-package module having package stacked over die-down flip chip ball grid array package and having wire bond interconnect between stacked packages

Publications (2)

Publication Number Publication Date
TW200419765A TW200419765A (en) 2004-10-01
TWI329918B true TWI329918B (en) 2010-09-01

Family

ID=32034538

Family Applications (3)

Application Number Title Priority Date Filing Date
TW098139252A TWI378548B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages
TW092125625A TWI329918B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages
TW100113640A TWI469301B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW098139252A TWI378548B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100113640A TWI469301B (en) 2002-09-17 2003-09-17 Semiconductor multi-package module having wire bond interconnection between stacked packages

Country Status (6)

Country Link
EP (1) EP1547141A4 (en)
JP (3) JP4800625B2 (en)
KR (1) KR101166575B1 (en)
AU (1) AU2003272405A1 (en)
TW (3) TWI378548B (en)
WO (1) WO2004027823A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406377B (en) * 2010-12-27 2013-08-21 Powertech Technology Inc Ball grid array package with three-dimensional pin 1 mark and its manufacturing method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858854B2 (en) * 2003-06-24 2006-12-20 富士通株式会社 Multilayer semiconductor device
US7429787B2 (en) * 2005-03-31 2008-09-30 Stats Chippac Ltd. Semiconductor assembly including chip scale package and second substrate with exposed surfaces on upper and lower sides
US7364945B2 (en) 2005-03-31 2008-04-29 Stats Chippac Ltd. Method of mounting an integrated circuit package in an encapsulant cavity
US7394148B2 (en) 2005-06-20 2008-07-01 Stats Chippac Ltd. Module having stacked chip scale semiconductor packages
SG130055A1 (en) 2005-08-19 2007-03-20 Micron Technology Inc Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices
SG130066A1 (en) 2005-08-26 2007-03-20 Micron Technology Inc Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices
JP5522561B2 (en) * 2005-08-31 2014-06-18 マイクロン テクノロジー, インク. Microelectronic device package, stacked microelectronic device package, and method of manufacturing microelectronic device
US8198735B2 (en) 2006-12-31 2012-06-12 Stats Chippac Ltd. Integrated circuit package with molded cavity
US8124451B2 (en) 2007-09-21 2012-02-28 Stats Chippac Ltd. Integrated circuit packaging system with interposer
KR20110124063A (en) * 2010-05-10 2011-11-16 하나 마이크론(주) Stack type semiconductor package
KR101688005B1 (en) * 2010-05-10 2016-12-20 삼성전자주식회사 Semiconductor package having dual land and related device
KR20110124065A (en) 2010-05-10 2011-11-16 하나 마이크론(주) Stack type semiconductor package
US9165906B2 (en) 2012-12-10 2015-10-20 Invensas Corporation High performance package on package
JP6128993B2 (en) 2013-06-28 2017-05-17 キヤノン株式会社 Multilayer semiconductor device, printed circuit board, electronic device, and method of manufacturing multilayer semiconductor device
KR101563910B1 (en) * 2013-10-24 2015-10-28 앰코 테크놀로지 코리아 주식회사 EMI shielding device for semiconductor package and method for manufacturing the same
US9995641B2 (en) * 2013-10-30 2018-06-12 Honeywell International Inc. Force sensor with gap-controlled over-force protection
JP6357371B2 (en) * 2014-07-09 2018-07-11 新光電気工業株式会社 Lead frame, semiconductor device, and lead frame manufacturing method
US9666730B2 (en) * 2014-08-18 2017-05-30 Optiz, Inc. Wire bond sensor package
KR101961377B1 (en) * 2015-07-31 2019-03-22 송영희 Land Grid Array semiconductor package
KR101799668B1 (en) * 2016-04-07 2017-11-20 앰코 테크놀로지 코리아 주식회사 Semiconductor package and manufacturing method thereof
WO2018125242A1 (en) * 2016-12-30 2018-07-05 Intel Corporation Microelectronic devices designed with 3d stacked ultra thin package modules for high frequency communications
KR102283390B1 (en) 2019-10-07 2021-07-29 제엠제코(주) Semiconductor package for multi chip and method of fabricating the same
KR102325217B1 (en) 2020-05-18 2021-11-11 제엠제코(주) Multi die stack semiconductor package

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222014A (en) * 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
JPH05283608A (en) * 1992-03-31 1993-10-29 Toshiba Corp Resin-sealed semiconductor device and manufacture thereof
US5247423A (en) * 1992-05-26 1993-09-21 Motorola, Inc. Stacking three dimensional leadless multi-chip module and method for making the same
FR2694840B1 (en) * 1992-08-13 1994-09-09 Commissariat Energie Atomique Three-dimensional multi-chip module.
US5436203A (en) * 1994-07-05 1995-07-25 Motorola, Inc. Shielded liquid encapsulated semiconductor device and method for making the same
US5652185A (en) * 1995-04-07 1997-07-29 National Semiconductor Corporation Maximized substrate design for grid array based assemblies
US6075289A (en) * 1996-10-24 2000-06-13 Tessera, Inc. Thermally enhanced packaged semiconductor assemblies
JP3644662B2 (en) * 1997-10-29 2005-05-11 株式会社ルネサステクノロジ Semiconductor module
JPH11243175A (en) * 1998-02-25 1999-09-07 Rohm Co Ltd Composite semiconductor device
JPH11265975A (en) * 1998-03-17 1999-09-28 Mitsubishi Electric Corp Multi-layer integrated circuit device
JP2000058691A (en) * 1998-08-07 2000-02-25 Sharp Corp Millimeter wave semiconductor device
US6201302B1 (en) * 1998-12-31 2001-03-13 Sampo Semiconductor Corporation Semiconductor package having multi-dies
JP2000269411A (en) * 1999-03-17 2000-09-29 Shinko Electric Ind Co Ltd Semiconductor device and manufacture thereof
JP4075204B2 (en) * 1999-04-09 2008-04-16 松下電器産業株式会社 Multilayer semiconductor device
JP4284744B2 (en) * 1999-04-13 2009-06-24 ソニー株式会社 High frequency integrated circuit device
JP2000340736A (en) * 1999-05-26 2000-12-08 Sony Corp Semiconductor device, packaging structure thereof and manufacturing method of them
JP2001127246A (en) * 1999-10-29 2001-05-11 Fujitsu Ltd Semiconductor device
JP2001223326A (en) * 2000-02-09 2001-08-17 Hitachi Ltd Semiconductor device
JP2001358280A (en) * 2000-04-12 2001-12-26 Sony Corp Lead frame, its manufacturing method, semiconductor integrated circuit device, and its manufacturing method
JP3916854B2 (en) * 2000-06-28 2007-05-23 シャープ株式会社 Wiring board, semiconductor device, and package stack semiconductor device
JP2002040095A (en) * 2000-07-26 2002-02-06 Nec Corp Semiconductor device and mounting method thereof
JP4570809B2 (en) 2000-09-04 2010-10-27 富士通セミコンダクター株式会社 Multilayer semiconductor device and manufacturing method thereof
JP2002158326A (en) * 2000-11-08 2002-05-31 Apack Technologies Inc Semiconductor device and manufacturing method thereof
JP3798620B2 (en) * 2000-12-04 2006-07-19 富士通株式会社 Manufacturing method of semiconductor device
US6340846B1 (en) * 2000-12-06 2002-01-22 Amkor Technology, Inc. Making semiconductor packages with stacked dies and reinforced wire bonds
JP2002184936A (en) * 2000-12-11 2002-06-28 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2002217354A (en) * 2001-01-15 2002-08-02 Shinko Electric Ind Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406377B (en) * 2010-12-27 2013-08-21 Powertech Technology Inc Ball grid array package with three-dimensional pin 1 mark and its manufacturing method

Also Published As

Publication number Publication date
TW201131731A (en) 2011-09-16
AU2003272405A1 (en) 2004-04-08
JP2005539403A (en) 2005-12-22
WO2004027823A2 (en) 2004-04-01
TW200419765A (en) 2004-10-01
JP5602685B2 (en) 2014-10-08
TW201017853A (en) 2010-05-01
JP4800625B2 (en) 2011-10-26
WO2004027823A3 (en) 2004-05-21
JP2013211589A (en) 2013-10-10
TWI469301B (en) 2015-01-11
EP1547141A2 (en) 2005-06-29
KR20050044925A (en) 2005-05-13
EP1547141A4 (en) 2010-02-24
AU2003272405A8 (en) 2004-04-08
KR101166575B1 (en) 2012-07-18
JP5856103B2 (en) 2016-02-09
TWI378548B (en) 2012-12-01
JP2011181971A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
TWI329918B (en) Semiconductor multi-package module having wire bond interconnection between stacked packages
TWI296151B (en) Methods and apparatuses for providing stacked-die devices
TWI331392B (en) Module having stacked chip scale semiconductor packages
TWI322448B (en) Semiconductor stacked multi-package module having inverted second package
TWI482261B (en) Three-dimensional system-in-package package-on-package structure
TWI322489B (en) Semiconductor package assembly
US7528007B2 (en) Methods for assembling semiconductor devices and interposers
JP5197961B2 (en) Multi-chip package module and manufacturing method thereof
TWI355034B (en) Wafer level package structure and fabrication meth
TWI442520B (en) Semiconductor assembly including chip scale package and second substrate and having exposed substrate surfaces on upper and lower sides
US7763963B2 (en) Stacked package semiconductor module having packages stacked in a cavity in the module substrate
US8659151B2 (en) Semiconductor device and manufacturing method thereof
JP5280014B2 (en) Semiconductor device and manufacturing method thereof
TW200818454A (en) Interconnect structure and formation for package stacking of molded plastic area array package
TW200818435A (en) Metal core foldover package structures, systems including same and methods of fabrication
US20070164411A1 (en) Semiconductor package structure and fabrication method thereof
TW200913207A (en) Semiconductor package and method for manufacturing the same
TW200816440A (en) Leaded stacked packages having integrated upper lead
TWI231017B (en) Heat dissipation apparatus for package device
US20100219524A1 (en) Chip scale package and method of fabricating the same
US20080237831A1 (en) Multi-chip semiconductor package structure
CN113410215B (en) Semiconductor packaging structure and preparation method thereof
KR20070090618A (en) Method of manufacturing stack package
TWI297538B (en) Thermally and electrically enhanced stacked semiconductor package and fabrication method thereof
JP2001007255A (en) High-efficiency heat radiating type chip dimension package method and device