TWI324002B - Methods and apparatus for circulation transmissions for ofdm-based mimo systems - Google Patents

Methods and apparatus for circulation transmissions for ofdm-based mimo systems Download PDF

Info

Publication number
TWI324002B
TWI324002B TW95136751A TW95136751A TWI324002B TW I324002 B TWI324002 B TW I324002B TW 95136751 A TW95136751 A TW 95136751A TW 95136751 A TW95136751 A TW 95136751A TW I324002 B TWI324002 B TW I324002B
Authority
TW
Taiwan
Prior art keywords
frequency division
orthogonal frequency
orthogonal
output
symbol
Prior art date
Application number
TW95136751A
Other languages
Chinese (zh)
Other versions
TW200721756A (en
Inventor
Jeng Hong Chen
Pansop Kim
Original Assignee
Integrated System Solution Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/244,607 external-priority patent/US7593472B2/en
Application filed by Integrated System Solution Corp filed Critical Integrated System Solution Corp
Publication of TW200721756A publication Critical patent/TW200721756A/en
Application granted granted Critical
Publication of TWI324002B publication Critical patent/TWI324002B/en

Links

Description

13.24002 ,九、發明說明: 【發明所屬之技術領域】 • 本發明係關於一種無線通訊,尤其有關於一種含有 . 多數個傳輸及接收天線之多輸入多輸出(ΜΙΜΟ)系統循 環傳輸。 【先前技術】 φ 一種多輸入多輸出系統,其優點為使用多個傳輸及 接收天線以同時傳輸及(或)接收多個資料流,多輸入多輸 . 出系統因而可在相同時間内將資料總處理的總速率增加 數倍。一多輸入多輸出系統的系統性能可藉由傳輸高斯分 佈貧料流進行優化。此多個傳輸之貢料流必須為獨立且有 零相關。一種達到此一獨立性的方法為當傳輸資料流時, 試著利用所有可利用的分集(多樣性),亦即:頻率,時 間及空間的分集(多樣性)。 鲁 因此,一多輸入多輸出系統性能的優化,可由利用 傳輸資料流於頻率,時間及空間中的最大隨機性(或最小 關連性)來達成。 由於設備大小限制,天線時常必須緊密排列。不幸 的,此一緊密排列造成傳輸及接收資料流具有高度關連 性,從而降低系.統性能。因此,有必要將傳輸資料流的關 連性最小化,由此增進一個多輸入多輸出系統的性能。13.24002, IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a wireless communication, and more particularly to a multi-input multiple-output (ΜΙΜΟ) system cyclic transmission including a plurality of transmission and reception antennas. [Prior Art] φ A multi-input multi-output system has the advantage of using multiple transmission and reception antennas to simultaneously transmit and/or receive multiple data streams, and multiple input and multiple output systems can thus be used in the same time. The total rate of total processing is increased several times. The system performance of a multiple input multiple output system can be optimized by transmitting a Gaussian distributed lean stream. The tributary streams of this multiple transmissions must be independent and have zero correlation. One way to achieve this independence is to try to exploit all available diversity (diversity), ie frequency, time and space diversity (diversity) when transmitting data streams. Therefore, the optimization of the performance of a multi-input multi-output system can be achieved by utilizing the maximum randomness (or minimum correlation) in the frequency, time and space of the transmitted data stream. Due to device size limitations, antennas must often be closely packed. Unfortunately, this tight alignment results in a high degree of correlation between the transmitted and received data streams, thereby reducing system performance. Therefore, it is necessary to minimize the connectivity of the transport stream, thereby enhancing the performance of a multiple input multiple output system.

6 ISS-P060039-TW 【發明内容】 經由對頻率’時間及/或空間分集之較佳利用,本發 明提供增進多輸入多輸出系統性能之具體方法。舉例來 二,依據本發明其中一具體實施例,一多輸入多輸出系統 可利用循環傳輸,使傳輸資料流關連性最小化,藉此增進 此多輸入多輸出系統之性能。 其中一具體實施例,本發明為一種使用於無線系統 之裝置。該裝置包含一迴旋碼(又名卷積碼)編碼器,用 二輸入資料及輸出編碼資料位元;及一交錯器(又名交織 厂)用以輸入編碼資料位元及輸出交織後叉資料位元。 該交錯ϋ藉由將迴旋編碼輸出的編碼位元,進行有效交 ,’使緊鄰的編碼位it ’經過交織後,儘量間的分離開, 2加多樣性(分集)。-或多個正交調幅映像器(又名 子映將交織後的叉編碼位元,對映至多個次(子)載 5。夕複數個反向快速傅立葉轉換(丨眶se FFT或 理器,根據次子載波的調制,產生正交分頻多 工訊號符號。此正交分頻多 哭只夕工付唬,經由循環傳輸處理 器,末儘H:提高分集。本發明的— ^ 個具體實施例,該循環 傳輸處理态,完成以正交分頻多工 ag ΑΑ σ 得就為基礎的循每。本 發明的另一個實施例,該循環傳 + 恭:古或宜# 、處理器,完成以子(次) 載波為基礎的循環,多個天線 料流。 果傳輪此分集優化後的資 另一個實施例,本發明糸—仏 訊的方法。本方法包含肺人\ I線通訊系統傳輪資 、輸入貝料,編碼成輸出編碼資料6 ISS-P060039-TW SUMMARY OF THE INVENTION The present invention provides a specific method of improving the performance of a multiple input multiple output system via better utilization of frequency 'time and/or spatial diversity. For example, in accordance with one embodiment of the present invention, a multiple input multiple output system can utilize cyclic transmission to minimize transmission data flow affinity, thereby enhancing the performance of the multiple input multiple output system. In one embodiment, the invention is an apparatus for use in a wireless system. The device comprises a whirling code (also known as a convolutional code) encoder, which uses two input data and an output encoded data bit; and an interleaver (also known as an interleaving factory) for inputting the encoded data bit and outputting the interleaved back data. Bit. The interleaving is performed by the coding bits output by the convolutional coding, and the adjacent coding bits it' are interleaved and separated as much as possible, and the diversity (diversity) is added. - or multiple quadrature amplitude modulation mappers (also known as sub-images, interleaved cross-coded bits, mapped to multiple sub-sub-carriers. 5. Multiple complex fast Fourier transforms (丨眶se FFT or processor) According to the modulation of the secondary subcarrier, an orthogonal frequency division multiplexing signal symbol is generated. This orthogonal frequency division is more than a crying only, and the loop is transmitted to the processor, and the end is H: the diversity is improved. The present invention - ^ In a specific embodiment, the cyclic transmission processing state is completed based on the orthogonal frequency division multiplexing ag ΑΑ σ. According to another embodiment of the present invention, the loop transmission + Christine: Gu Yiyi #, processor , completing the sub- (sub) carrier-based cycle, multiple antenna streams. The other embodiment of the present invention is the method of the present invention. The method includes the lung person\I line. The communication system transmits the wheel, inputs the material, and encodes the output code data.

ISS-P060039-TW 7 位元及交織該輸出編碼位元。該方法進一步包含對映交織 ,碼位元至多數個子載波及從子載波產生正交分頻多工 符號。另外,根據本發明一些具體實施例的方法包含傳輸 子載波及符號以便將時間、空間及頻率的分集優化。 為讓本發明之上述和其他目的、特徵、和優點能更 月顯易懂,下文特舉數個較佳實施例,並配合所 作詳細說明如下。 式 【實施方式】 -雖然本發明可表現為不同形式之實施例,但附圖所 不者及於下文中說明者’係為用以了解本發明之較佳 請了解本文所揭#係考量為本發狀_範例:且 :::列;圖用以將本發明限制於圖示及/或所描述之特定實 專有名詞 下列解釋將適用於整份說明書: 從^旋碼編碼器輸出之正交分頻多工符號數 1母-個立體結合交錯器之正交分頻多工符號數 同時傳輸之正交分頻多工符號數 •傳輸天線數⑽nofdm) 少系統.一同時傳輸n〇fdm訊號的多輸入 讀出系統(含有M個傳輸天線) N·接收天線數 系、,先.-種有M個傳輪及N個接收天線的多賴ISS-P060039-TW 7-bit and interleave the output encoding bit. The method further includes entropy interleaving, code bit to a plurality of subcarriers, and generating orthogonal frequency division multiplex symbols from the subcarriers. Additionally, methods in accordance with some embodiments of the present invention include transmitting subcarriers and symbols to optimize diversity of time, space, and frequency. The above and other objects, features, and advantages of the present invention will become more fully understood from MODES FOR CARRYING OUT THE INVENTION - While the invention may be embodied in various forms, the drawings are not described in the following description. The present invention is intended to limit the invention to the specific real nouns described and/or described. The following explanations will apply to the entire specification: output from the ^-spin encoder Orthogonal frequency division multiplexing symbol number 1 female-one stereo combined interleaver orthogonal frequency division multiplexing symbol number simultaneous transmission orthogonal frequency division multiplexing symbol number • transmission antenna number (10) nofdm) less system. one simultaneous transmission n〇 Multi-input readout system for fdm signals (including M transmit antennas) N·Receiving antenna number system, first.--Multiple types with M transmit wheels and N receive antennas

ISS-P060039-TW 8 入多輸出系統 N〇FDM (M)xN系統:一種同時傳輸N0FDM訊號的多 輸入多輸出系統(含有Μ個傳輸及N個接收天線) Ncbps :每一個正交分頻多工符號之編碼位元數 Nsc :每一個正交分频多工符號所含的子載波數 Nbpsc :每一個子載波編碼位元數 圃丨a局很據本發明一具體實施例之說明一種使用 於無線通訊之多輸入多輸出傳輸器流程圖。儘管有多個傳 輸及接收天線’-般-個多輪人多輸出祕不會同時傳輪 及接收#料。因此’❹多輪人多輸出系統被設計共用相 同天線來傳輸及接收純。如圖1a所示…個迴旋石馬編 ,斋(CE)將資料塊編碼,如⑽Q位元的資料。一個 父錯器將迴旋碼編碼後的:#料位元作交織處理。—個平行 ^正乂調幅(QAM)映像||將交織後的位元對映至次载 在111a㈣之多輪人多輸出系統,正交調幅映像器 理:出端制-個平行反向快速制葉轉換(丨FFT)處 =。該反向快速傅利葉轉換處理器,根據其輸入,以產 ί =分頻多卫符號。為了提供空間分集…個正交分頻 循環器(詳細描述於下)在平行反向快速傅利葉 羥過循環後的資料。如付賴環…組天線傳輸 圖化為根據本發明另一 多輪its傳輪# /、跽貝她例之種夕輸入 中,=輸:私圖。於圖1b說明之多輸入多輸出系統 二間为集由次載波猶環器提供。如τ所述,次載波循ISS-P060039-TW 8-input multi-output system N〇FDM (M)xN system: a multi-input multi-output system that transmits N0FDM signals simultaneously (containing one transmission and N receiving antennas) Ncbps: each orthogonal frequency division Number of coded bits of the symbol Nsc: number of subcarriers included in each orthogonal frequency division multiplex symbol Nbpsc: number of coded bits per subcarrier 圃丨a according to a description of a specific embodiment of the present invention Multi-input multi-output transmitter flow chart for wireless communication. Although there are multiple transmission and receiving antennas, the multi-output multi-output secret will not transmit and receive at the same time. Therefore, the multi-wheel multi-output system is designed to share the same antenna for transmission and reception. As shown in Figure 1a... a whirlwind horse, the fast (CE) encodes the data block, such as (10) Q bit data. A parent errorer encodes the convolutional code: ## bits are interleaved. A parallel ^ positive amplitude modulation (QAM) image || to map the interleaved bits to the multi-wheel multi-output system of the sub-transmission in 111a (four), quadrature amplitude modulation image processing: the end system - a parallel reverse fast Leaf transformation (丨FFT) =. The inverse fast Fourier transform processor, based on its input, produces a ί = crossover multi-symbol symbol. In order to provide spatial diversity... an orthogonal frequency divider circulator (detailed below) is the data after the parallel inverse fast Fourier hydroxy over-cycle. Such as the pay ring... group antenna transmission is shown as another multi-round its transmission wheel according to the present invention # /, mussel her example of the input of the evening, = input: private map. The multiple input multiple output system illustrated in Figure 1b is provided by a secondary carrier looper. Subcarrier tracking as described in τ

ISS-P060039-TW 9 環器於正交調幅映像器組 反向快速傅·_處㈣“轉,且提健環資料至 產生正交分,=讀反向快速傅利葉轉換, 、夕付號,思給天線傳輸。 口為迴旋編碼器將輸入資 輯進行編碼操作,其輸出位元間遲 =:此’增加任何兩個編碼位元間在傳輪時 的關連性。伴隨著紋的間隔,_ 2以被忽略。至於多少間隔才構成充足間隔,可以忽略 =性’則取決於迴旋編碼器的選擇。該交錯器將所有編 碼後原本臨近的位元之間隔最大化,_是編碼後緊 位元。 ^ 另一個多輸入多輸出系統考慮點,為多個天線不能夠 保也同時從所有天線成功傳輪及接收資料流。舉例,若在 接文器前端的訊號雜訊比(SNR)不足時,可成功傳輪 及接收資料流數小於可利用之天線總數。舉例,當一個四 天線多輸入多輸出系統的訊號雜訊比太低時,其可能僅傳 輸一個,兩個或三個獨立的資料流至接受器。 訊息理論預測一個多輸入多輸出系統可從全部可利 用的天線傳輸相同的資料以達到最佳性能。因此,在—個 四天線多輸入多輸出系統中’理論上最好使用四個天線傳 輸資料流而不是使用二個天線。尤其是使用於無線通訊的 多輪入多輸出系統,其傳輸資料流,在被目標的(多輪入 多輪出)接收器接收之時,資料常先得通過多徑傳播通道 及遭遇空氣中其他無線訊號之干擾。在此一案例中,從全ISS-P060039-TW 9 ring in the quadrature amplitude modulation mapper group fast fast Fu·_ (four) "turn, and improve the ring data to generate orthogonal points, = read reverse fast Fourier transform,, Xifu number, The antenna is transmitted. The port is a cyclotron encoder that encodes the input code, and the output bit is delayed =: this 'increased the correlation between any two coded bits in the transfer wheel. With the interval of the lines, _ 2 is ignored. As for how many intervals constitute sufficient interval, negligible = 'dependence' depends on the choice of the cyclotron encoder. The interleaver maximizes the interval between all adjacent bits after encoding, _ is tight after encoding Bits. ^ Another multi-input and multi-output system considers that multiple antennas cannot be guaranteed to transmit and receive data streams from all antennas at the same time. For example, if the signal-to-noise ratio (SNR) at the front end of the interface is Insufficient, the number of successfully transmitted and received data streams is less than the total number of available antennas. For example, when the signal-to-noise ratio of a four-antenna multiple-input multiple-output system is too low, it may only transmit one, two or three. Independent information To the receiver. The message theory predicts that a MIMO system can transmit the same data from all available antennas for optimal performance. Therefore, in a four-antenna multiple-input multiple-output system, it is theoretically best to use four. The antenna transmits the data stream instead of using two antennas, especially for the multi-wheeled multi-output system used for wireless communication, which transmits the data stream when it is received by the target (multiple rounds of multiple rounds) receivers. Often through the multipath propagation channel and encountering interference from other wireless signals in the air. In this case, from the whole

10 ISS-P060039-TW 1324002 部可利用的天線傳輪相同資料可再次提供最大的傳輸分 集(多樣性)。為增進空間分集(多樣性),所有可利用的 天線,由少於天雜的㈣流輪賴環用於傳輸。舉例, 圖1a及1b綱二個根縣發明具體實補可被使用的 =:盾環傳輸。圖1a說明一個正交分頻多工符號循環 傳輸的闕。圖1b說明—個次紐循環傳輸的範例。 個正交分頻多工符號多輸入多輸出系統,一般10 ISS-P060039-TW 1324002 The same information available on the antenna wheel can again provide maximum transmission diversity (diversity). To enhance spatial diversity (diversity), all available antennas are used for transmission by less than a few (four) flow-wheels. For example, Figure 1a and 1b can be used in the two root county inventions: the shield ring transmission. Figure 1a illustrates the 循环 of an orthogonal frequency division multiplex symbol cyclic transmission. Figure 1b illustrates an example of a secondary loop transmission. Orthogonal frequency division multiplexing symbol multi-input multi-output system, generally

=個反向料傅鄉轉鋪,每―個元線上有一個。 貫般每-個反向快速傅㈣轉換时多個頻域輸 入及時域輸出。舉例,如圖1a及1b 、一 快速傅利苹轉所7F ’母—個反向 “、:就有一(或多)個頻域輸入端,這- 艺夕)個輸人端在每-單位時間’將對映到的一個次載 波的正交調幅調制輸入給反向快速傅利葉轉換器。當一快 ,傅利葉轉換ϋ得知每-個次載波的正交調幅調制值 即可用以產出-個正交分頻多工符號以供對 輸出。= a reverse material Fuxiang turn shop, one on each of the yuan lines. Throughout each of the inverse fast (four) conversions, multiple frequency domain inputs are output in time domain. For example, as shown in Figures 1a and 1b, a fast Fu Li Ping transfer 7F 'mother-reverse", there is one (or more) frequency domain input, this - Yi Xi) input end in every unit time The quadrature amplitude modulation of one subcarrier to be mapped is input to the inverse fast Fourier converter. When a fast, Fourier transform ϋ knows the quadrature amplitude modulation value of each subcarrier can be used to generate a positive Cross the frequency multiplex symbol for the output.

通常全部可利用頻寬,會被等分成多個頻道,每個 頻道可驗傳鮮個:域波。雜-個乡輪Μ輸出系統 可使用每—個次載波(sc)以傳輸正交調幅對映訊號, 但是為了避免鄰近頻道干擾(ACI),通常數個_道邊 緣的次載波不會被使用來傳輸數據。此外,一小部分欠载 波會被保留為用來同步的導頻訊號。舉—個特別°的=, 一個使用64個反向快速傅利葉轉換器的多輪入多輸出系 統可僅使用48個次載波傳輸數據。 ^ ''Usually all available bandwidth, will be divided into multiple channels, each channel can pass a small: domain wave. The hybrid-single-wheel rim output system can use each sub-carrier (sc) to transmit quadrature amplitude modulation and mapping signals, but in order to avoid adjacent channel interference (ACI), usually several sub-carriers at the edge of the channel are not used. To transfer data. In addition, a small portion of the underloaded waves are reserved for the pilot signals used for synchronization. A special multi-input multi-output system using 64 inverse fast Fourier converters can transmit data using only 48 subcarriers. ^ ''

ISS-P060039-TW 11 圖2為一多輸入多輸出系統(2〇〇)示範例的概要圖 不’其包含三個可以使用正交分頻多工符號循環傳輸的傳 輸天線(202a)’(202b)及(202c)。此多輸入多輸出 糸統(200)包含一編碼器(FEC)(2〇4)。在一個多輸 入多輸出系、统(200)範例中,該編瑪器(2〇4)輸出18 個正交分頻多工符號。一交錯器(2〇6)交織由該前向糾 錯碼(FECl/2&puncture)(2〇4)輸出的叫固正交分 頻多工符號。舉例,該交錯器(206)可以6個正交分頻 多工符號為單位,將18個正交分财工賴分3次交 ,。已交織之正交分頻乡卫符號輸人至—組正交調幅映像 斋(208a) ’( 208b)及(2〇8c)。為了避免鄰近頻道干 擾’和提供導頻次载波(同步性),64個可利用次載波僅 48個被使絲傳輪資料。除了資料及導頻次載波外,未 使用之次載波歸零。因此,該些正交調幅映像器(2〇8a), (208b)及(208c)控制交織資料進入48個次載波反向 快速傅利葉轉換器(2i〇a),(21〇b)及(21〇c)可操作 該些正交調幅映像器(208a),(208b)及(208c)輸出 的貝料。天線(202a),(202b)及(202c)傳輸由該些 反向快速傅利葉轉換器(210a),(210b)及(210c)輸 出的資料。 如圖2所示’在該多輸入多輸出系統(200)範例中, 3個可利用天線僅2個可同時使用來傳輸資料。剩下的】 個天線元全關。g為並未同時使用所有的天線,循環傳 輸可提供空間多樣性。如圖2所示,總傳輸需要 9個正ISS-P060039-TW 11 Figure 2 is a schematic diagram of an example of a multiple-input multiple-output system (2〇〇) that does not contain three transmit antennas (202a) that can be cyclically transmitted using orthogonal frequency division multiplexing symbols ( 202b) and (202c). This multiple input multiple output system (200) includes an encoder (FEC) (2〇4). In a multi-input multiple-output system (200) paradigm, the coder (2〇4) outputs 18 orthogonal frequency division multiplex symbols. An interleaver (2〇6) interleaves the fixed orthogonal frequency division multiplex symbol output by the forward error correcting code (FECl/2 & puncture) (2〇4). For example, the interleaver (206) can divide the 18 orthogonal divisions into three units by means of six orthogonal frequency division multiplex symbols. The interleaved orthogonal crossovers are input to the group of quadrature amplitude modulation images (208a) ‘(208b) and (2〇8c). In order to avoid adjacent channel interference' and to provide pilot subcarriers (synchronization), only 64 of the 64 available subcarriers are used to transmit the data. The unused subcarriers are zeroed except for the data and pilot subcarriers. Therefore, the quadrature amplitude modulation mappers (2〇8a), (208b) and (208c) control the interleaved data into 48 subcarrier inverse fast Fourier transformers (2i〇a), (21〇b) and (21). 〇c) The output of the quadrature amplitude modulation mappers (208a), (208b) and (208c) can be operated. Antennas (202a), (202b) and (202c) transmit data output by the inverse fast Fourier transformers (210a), (210b) and (210c). As shown in Figure 2, in the MIMO (200) paradigm, only two of the three available antennas can be used simultaneously to transmit data. The remaining antenna elements are all off. g is that all antennas are not used at the same time, and cyclic transmission provides spatial diversity. As shown in Figure 2, the total transmission requires 9 positive

12 ISS-P060039-TW 1324002 交分頻多工符號時間。一個示範正交分頻多工符穿為正交 分頻多工符號(212)。可以觀察到—個固定的模式,被 應用來從Μ(此處M=3)個可用天線中,選擇(此處 N〇fdm=2)個天線來傳輸。12 ISS-P060039-TW 1324002 Cross-frequency multiplex symbol time. An exemplary orthogonal frequency division multiplexer is used as an orthogonal frequency division multiplex symbol (212). It can be observed that a fixed pattern is applied to transmit (here N〇fdm=2) antennas from Μ(here M=3) available antennas.

每-個正交分頻多工符號包含從迴旋碼編瑪器(如 前向糾錯碼FEC(204))來的Ν_個編碼位元。舉例, 在該多輸入多輸出系統(咖)+,ν_=48。此正交分 頻多工符號的對映,根據正交調幅映像器調制而定。舉 '在卢1制中〜BPSK,1位元可對映1個BPSK :二 ==調制’如_,2位元可對映1個 QPSK訊號。同樣的,在 制及⑽_湘,如16正交振幅調 交好洲及= 及6位元分別對映一個16正Each of the orthogonal frequency division multiplex symbols includes Ν_coded bits from a whirling code coder (such as the forward error correction code FEC (204)). For example, in the MIMO system (coffee) +, ν_=48. The mapping of this orthogonal frequency division multiplex symbol is based on quadrature amplitude modulation mapter modulation. In the case of Lu 1 system ~ BPSK, 1 bit can map 1 BPSK: 2 == modulation 'such as _, 2 bits can map 1 QPSK signal. Similarly, in the system (10)_Xiang, such as 16 orthogonal amplitudes, the convergence of good continents and = and 6 bits, respectively, a 16 positive

1巾田5周制及64正交振幅調制的訊號。總結,1個BPSK1 towel field 5-week and 64 quadrature amplitude modulated signals. Summary, 1 BPSK

碼位元。同樣n:QPSK包含從交錯器來之48x1個編 包含從交錯器來之:=調制的正交分頻多工符號’ 調制的正交分· τ編碼位元。1個彳6正交振幅 位元彳個夕付旒包含從交錯器來之48x4個編碼 位7L。1個64正交锢Φ5袖針 交錯器來之48X6個整的正交分頻多工獅 器的輸出#成1^1;°°母—鼓交振幅調制對映 载波)。 向快速傅利葉轉換器的一個輸入(次 線可以rmSf多卫多輸人多輸出系統有_傳輸天 EH_ M «工«’每1個天線傳 輪1個正父分頻^符號。為達到最大的多樣性,Code bit. Similarly, the n:QPSK contains 48x1 coded interleaver τ-coded bits from the interleaver including the interleaver:=modulated orthogonal frequency division multiplex symbol' modulation. One 彳6 quadrature amplitude bit 彳 夕 旒 contains 48x4 code bits 7L from the interleaver. 1 64 orthogonal 锢 Φ5 sleeve pin The output of the 48X6 integer orthogonal frequency division multiplexer from the interleaver is #1 1; ° ° mother-drum intersection amplitude modulation mapping carrier). One input to the fast Fourier converter (the secondary line can be rmSf multi-industry multi-input multi-output system has _ transmission day EH_ M «work «' every 1 antenna transmission 1 positive father crossover ^ symbol. To achieve maximum Diversity,

ISS-P060039-TW 13ISS-P060039-TW 13

即 NcbpsxN〇fdm 因此,交錯器大小(N|) 當4個BPSK調制的正交分頻多工 分頻多工符號的整數倍。 48χ4位元的隨機化可以增加多樣性。 (Νι)必須為同時傳輸的n〇fdm個正交 “夕輸人夕輪出系統(2。。)範例中,總編碼位元 包:18個正父分頻多上符號。理論上,騎有編碼位元 帔^織和傳輸,可獲預期巾最理想的性能,亦即理想的交 錯器大小為18個正交分頻多卫符號。^雖如此,在一些 案例中’此-交錯器的大小會導致太長的接受器遲延及太 大的解碼緩衝區。該接受ϋ在解碼之前必須接收及去交織 所有18個正交分頻多卫符號。_個多輸人錄出系統, 每秒傳輸數百萬個位元組(Mbps),此一設計可能難以執 行。一個選擇’可試著任意排列全部同時傳輸的資料,亦 即NrN0FDM個正交分頻多工符號。另一個選擇為增加交 錯器大小至多個(整數倍)N0FDM正交分頻多工符號,因此 包含更多排列及多樣性。在圖2,舉例,2個正交分頻多 工符號同時傳輸且交錯器大小為6個正交分頻多工符 號’即三倍N〇fdm值。 如圖2所示正交分頻多工的多輸入多輸出系統的一 些可能的優點,說明於下。舉例,其具有48xNOFDM個自 由度可用來提供較佳的空間與頻率分集(多樣性)。其具 有3個可用傳輸天線來提供較佳的空間分集(多樣性)。 當訊號傳輸於不同的時間點(圖2之t1至t9),可用來提That is, NcbpsxN〇fdm Therefore, the interleaver size (N|) is an integer multiple of four BPSK modulated orthogonal frequency division multiplexing crossover symbols. Randomization of 48χ4 bits can increase diversity. (Νι) must be for the simultaneous transmission of n〇fdm orthogonal "evening in the eve of the system" (2..), the total coding bit packet: 18 positive father crossover and more symbols. In theory, riding With the coding bit 织 织 传输 and transmission, the ideal performance of the expected towel can be obtained, that is, the ideal interleaver size is 18 orthogonal frequency division multi-guard symbols. However, in some cases, this-interleaver The size will cause too long receiver delay and too large decoding buffer. The receiver must receive and deinterleave all 18 orthogonal frequency division multi-guard symbols before decoding. _ Multiple input recording system, each The transmission of millions of bytes (Mbps) in seconds, this design may be difficult to implement. One option 'try to arbitrarily arrange all the simultaneously transmitted data, that is, NrN0FDM orthogonal frequency division multiplexing symbols. The other option is Increasing the interleaver size to multiple (integer multiple) N0FDM orthogonal frequency division multiplex symbols, thus including more permutations and diversity. In Figure 2, for example, two orthogonal frequency division multiplexing symbols are transmitted simultaneously and the interleaver size is The six orthogonal frequency division multiplex symbols 'is three times the N〇fdm value. Some of the possible advantages of a multiplexed multiplexed multiple input multiple output system as shown in Figure 2 are illustrated below. For example, having 48xN OFDM degrees of freedom can be used to provide better spatial and frequency diversity (diversity). It has 3 available transmit antennas to provide better spatial diversity (diversity). When signals are transmitted at different points in time (t1 to t9 in Figure 2), they can be used to

14 ISS-P060039-TW 供較佳的時間分集(多樣性)。額外的時間及空間分集(多 樣性)由傳輸器及接收器間多徑傳播通道提供,此時不同 遲延及方向的傳輸訊號,被接收器的天線加起來接收。 儘管循環傳輪提供增加時間、空間及頻率上的多樣 性的優點,一個多輸入多輸出系統還可進一步進行優化。 舉例,從迴旋編碼器輸出訊號具有高度關連性,特別在緊 鄰編碼位元間。而且,在相同正交分頻多工符號的緊鄰次 載波,不論是否經過多徑傳播通道,在頻域上仍常有高度 關連性。此外,因為所有天線緊密設立在一個相同的設備 上,母一個天線的傳輸及接收訊號可有高度關連性。舉 例,若所有天線設立在一個1英吋寬的設備上,且2個 多輸入多輸出系統間的距離約10或20公尺,此時所有 天線的訊號傳輸或接收’在頻率及空間上可能有高度關連 性。如此-來’雖然、這個正交分頻多卫多輸人多輸^統 看起來有相當多可利用的頻率、空間及時間分集(多樣 性),但是所有接收到的訊號,在頻率及空間上有高度關 連性。此時,增加一個多輸入多輸出系統的頻率或空間分 集(多樣性)的益處便不能夠如願完全實現。然而,使用 方法將關連性最小化可以恢復多祕的益I舉例,本發 明具體實侧提及讀輸方法,可料相具高度關 連性的編碼位元,以利用全部可用的頻率、空間及時間分 集(多樣性)。.此循環傳輸方法之關鍵,在於交錯器及二 核傳輸處理H的設計。此交錯H及循環傳 施例詳細描述於下。 》八體貝14 ISS-P060039-TW for better time diversity (diversity). Additional time and space diversity (diversity) is provided by the multipath propagation channel between the transmitter and the receiver. In this case, the transmission signals of different delays and directions are received by the antenna of the receiver. A multi-input multi-output system can be further optimized, although the cycle provides the advantage of increased time, space and frequency. For example, output signals from a whirling encoder are highly correlated, especially between adjacent coded bits. Moreover, in the immediate subcarriers of the same orthogonal frequency division multiplex symbol, there is often a high degree of correlation in the frequency domain whether or not it passes through the multipath propagation channel. In addition, because all antennas are closely located on the same device, the transmission and reception signals of one antenna can be highly correlated. For example, if all antennas are set up on a 1 inch wide device and the distance between two MIMO systems is about 10 or 20 meters, then the signal transmission or reception of all antennas may be 'frequency and space'. There is a high degree of relevance. So-today, although this orthogonal crossover, multi-input, multi-input and multi-output system seems to have quite a lot of available frequency, space and time diversity (diversity), but all received signals, in frequency and space There is a high degree of relevance. At this point, the added benefit of increasing the frequency or spatial diversity (diversity) of a MIMO system cannot be fully realized. However, the method of using the method to minimize the relevance can restore the multi-secret benefit. For example, the specific aspect of the present invention refers to the read-and-write method, and the highly-coded bit can be used to utilize all available frequencies and spaces. Time diversity (diversity). The key to this cyclic transmission method is the design of the interleaver and the binary transmission processing H. This interleaved H and cyclical embodiments are described in detail below.八八贝

ISS-P060039-TW 15 除了=交錯器結構外’系统性能亦可以由循環 傳輸(CT)改善。在此介紹2個財輕方法。一 入多輸出系統’在有或沒有上述交錯器下1可進行购 傳輸。然而,較佳的系統性能可以於同時採用j個交錯 器及循環傳輸來達成。 a 如上,有多個天線不能保障能從所有天線同時成功 傳輸及接收資料流。亦’若資料流由全部天線傳輸及接收 則系統性能可被改善。在案财,若同時傳輪之資料流數 曰(No圓)少於傳輪之天線數(M),循環傳輪可用以達到 取佳系統性能。當贿傳輸被使料,交錯器大小可相當 於N0FDM個或整數倍的n〇fdm個正交分頻多工符號。 圖3a-bf明本發明具體實施例提及之1種環狀空間 偟仏ϋ後提及如每狀SMX)多輸入多輪出系統的循環 3a 〇: = 2及13)方法,2(3)環狀SMX。圖 m現—種以正交分頻多卫符號循環(s—Bc) 二土礎的,傳輸形式,將詳細描述於下,在S=BC, 之系έ固正又刀頻多工符號有自己的1種循環模示。圖3b 呈現1種稱為次載波循環(Sub-Bc)的循環傳 二二I _詳細描述於下’在Sub—Bc,每1個次載 波有其自己的-種猶環模示。 八 D a,3個天線中僅2個天線同時傳輸2個正交 二^二工符號。然而,不同的一對天線可以選擇在不同的 =傳輸不_1衫分頻多工符號。舉例,第i,2 x分頻多工符號(#。及#υ由#〇及#1天線傳輸,ISS-P060039-TW 15 In addition to the =interleaver structure, system performance can also be improved by cyclic transmission (CT). Introduce two financial methods here. One-to-multiple output systems can be purchased with or without the above interleaver. However, better system performance can be achieved with both j interleavers and cyclic transmissions. a As above, multiple antennas are not guaranteed to successfully transmit and receive data streams from all antennas simultaneously. Also, system performance can be improved if the data stream is transmitted and received by all antennas. In the case of the case, if the number of data streams (No circle) at the same time is less than the number of antennas (M) of the transmission wheel, the cycle wheel can be used to achieve better system performance. When the bribe transmission is made, the interleaver size can be equivalent to N0FDM or integer multiples of n〇fdm orthogonal frequency division multiplex symbols. Figures 3a-bf illustrate a loop space referred to in a particular embodiment of the invention, followed by a loop of 3D 多: = 2 and 13) for a multi-input multi-round system such as SMX), 2 (3) ) Ring SMX. Figure m is now a kind of orthogonal frequency division multi-guard symbol cycle (s-Bc) two soil-based, transmission form, will be described in detail below, in S = BC, the system is fixed and the knife frequency multiplex symbol has One of his own cycle models. Figure 3b presents a cyclical transmission called Sub-Bc (II-Bc). The details are described below. In Sub-Bc, each sub-carrier has its own quaternary mode. Eight D a, only two of the three antennas transmit two orthogonal two-two symbols at the same time. However, different pairs of antennas can be selected at different = transmissions without dividing the multiplexer symbol. For example, the ith, 2 x frequency division multiplex symbol (#. and #υ are transmitted by #〇 and #1 antennas,

ISS-P060039-TW 1324002 公=^分頻多工符號由#〇及#2天線傳輸,且 -僅Γ2個二分頻多工符號由#1及#2天線傳輸。雖 分頻多卫符號同時傳輪,但是使用1個 3有6個正乂分頻多卫符號的交錯器,在Η 輸出系統中,可充分而平均的利用全部傳輪天線,將傳二 的編碼位元隨機化。 天線’將傳輸ISS-P060039-TW 1324002 Male = ^ frequency division multiplex symbol is transmitted by #〇 and #2 antennas, and - only two two-way multiplex symbols are transmitted by #1 and #2 antennas. Although the crossover and multi-guard symbols are transmitted at the same time, but an interleaver with three 3 crossover and multi-guard symbols is used, in the Η output system, all the transmission antennas can be fully and evenly used, and the second transmission will be used. The coding bits are randomized. Antenna' will transmit

於入天線_2個正交分頻多工符號的多 」二輸出錢比較,使用此—循環傳輪可以改善系統性 月W而’為得到此錢,其代價為將交錯器大小從2 m] 6個正交分頻多卫符號,伴之而來的是更大的 儲存工間1個較大的交錯器…般帶來較長的解碼時間 遲延’因為接收n必須等到其接收足_正交分頻多工符 號後,才能執行去交義程(本範例為6個正交分頻多 工符號)。此一遲延可能對彳個高速資料數率傳輸(數百 個Mbps)之多輪入多輸出系統造成影響甚至問題。Comparing the multi-"two-output money into the antenna _2 orthogonal frequency division multiplex symbols, using this - loop-passing wheel can improve the systemic monthly W and 'for this money, at the cost of the interleaver size from 2 m 6 orthogonal crossover multi-guard symbols, accompanied by a larger interleaver in a larger storage room...which results in a longer decoding time delay 'because receiving n must wait until it receives enough _ After the orthogonal frequency division multiplexing symbol, the de-interleave can be performed (this example is 6 orthogonal frequency division multiplexing symbols). This delay may affect or even cause problems with multiple round-robin multi-output systems for high-speed data rate transmission (hundreds of Mbps).

先前描述使用1個固定天線循環模式的SJBC循環 傳輸範例’即天線#0及#1,#〇及#2,#1及#2。該模式 重複直到最後一對正交分頻多工符號被傳輸。在一範例 中,1個完整的天線循環模式需要3對傳輸,或6個正交 分頻多工符號。正交分頻多工符號總數,不必要剛好為6 個正交分頻多工符號的整數倍’即傳輸動作可以在傳送最 後1對正交分頻多工符號後停止。此外,正交分頻多工 符號總數亦不必要為偶數。在此例中,最後1個正交分 頻多工符號’可由最後1對天線中之任1個天線傳輸。The SJBC cyclic transmission example using one fixed antenna cycle mode has been previously described as antennas #0 and #1, #〇 and #2, #1 and #2. This mode is repeated until the last pair of orthogonal frequency division multiplex symbols are transmitted. In one example, a complete antenna loop pattern requires 3 pairs of transmissions, or 6 orthogonal frequency division multiplex symbols. The total number of orthogonal frequency division multiplexing symbols is not necessarily exactly an integer multiple of six orthogonal frequency division multiplexing symbols. That is, the transmission action can be stopped after transmitting the last one pair of orthogonal frequency division multiplexing symbols. In addition, the total number of orthogonal frequency division multiplex symbols is not necessarily an even number. In this example, the last one orthogonal frequency division multiplex symbol' may be transmitted by any one of the last one pair of antennas.

ISS-P060039-TW 17 1324002 圖3b為根據本發明一具體實施例, 環傳輸增加分集(多樣性)的 人)戟相 圖示。從交織(錯)器輸出的2個固/六輸夕夕^系統概要 由子(次)載波循環傳輸,將每二:工付號’將經 3個可以用來傳輸的路徑中:子(:)载波重新映射到 分頻多工符號,交由3二:二生3個正交 子(次)載波編碼位元,可同時=用X 、5之’ 2x48個 子(次)載㈣輸。在本發明細實闕巾 過的每個正交分頻多工符梦, ' '斤映像 為〇(亦即沒有用來傳輸數^有;次載波的調制 中同時傳輸的編敬元數(° 3b 月之系統 然而’在圖3b子(次)载皮 低至2個正交分頻多y梓射’父錯11大小從6個降 充分利用天線分集(多樣性)U,而且所有天線同時傳輸, 生的電腦模擬 線傳輸2個正交分頻多工 /、攸2個固疋天 B夺’以圖3為根據的循軸^的夕輸人多輸出系統比較 的循環傳輸(S—BC)及子⑴包含正交分頻多工符號 系統性能均有顯著改善。;^波的循環傳輸(Sub-叫的 及Sub_BC的性能從電’在大多數的案例中,S-BC 種方法撕細,㈣ 及本個S-BC系統 pattern)。圖4b提供圖4 ::::模式(—— 所不之相關糸統循環模式及交 18ISS-P060039-TW 17 1324002 Figure 3b is a graphical representation of the phase of the loop transmission increasing diversity (diversity), in accordance with an embodiment of the present invention. The two solid/six-element system outputs from the interleaved (wrong) device are cyclically transmitted by the sub- (sub)carriers, and each of the two: pay-numbers will pass through three paths that can be used for transmission: sub (: The carrier is remapped to the frequency division multiplex symbol, which is assigned by 3 2: 2 raw orthogonal (secondary) carrier coded bits, which can be simultaneously = 2 x 48 sub (times) (4). In each of the orthogonal frequency division multiplexer dreams of the present invention, the ''jin image is 〇 (that is, there is no transmission number; the number of edited elements simultaneously transmitted in the modulation of the secondary carrier ( ° 3b month system however 'in Figure 3b sub (sub) carrier skin as low as 2 orthogonal frequency division multiple y shot 'parent error 11 size from 6 drops make full use of antenna diversity (diversity) U, and all antennas Simultaneous transmission, raw computer analog line transmission 2 orthogonal frequency division multiplexing /, 攸 2 疋 疋 B 夺 ' 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以-BC) and sub-(1) contain orthogonal frequency division multiplex symbol system performance has been significantly improved.; ^ wave cyclic transmission (Sub-called and Sub_BC performance from electricity 'in most cases, S-BC species Method tearing, (d) and this S-BC system pattern). Figure 4b provides the Figure 4:::: mode (- not related to the system cycle mode and pay 18

ISS-P060039-TW < S ) Π二在:4a及4b中,該多輸入多輸出系統視為 個=二:,1個2⑺多輪入多輸出系統,用3 六八二」相自於未_環傳輪處理過之前的2個正 又分頻多工符號所含的數據量。 從總Μ個天線巾選擇Nqfdm 循環模式總數為, i s艾尸汀令 N pattern:ISS-P060039-TW < S ) Π 2: In 4a and 4b, the MIMO system is treated as a = two:, a 2 (7) multi-wheeled multi-output system, with 3 682" The amount of data contained in the two positively-divided multiplex symbols before the _ring transmission has been processed. Select the total number of Nqfdm loop patterns from the total antenna towel, i s Ai Ting Ting N pattern:

V ^ OFDM J Μ ] Μ! 根據本發明之一且體訾& /、骽只鼽例,欲保證一個交織(錯) 斋可以千__财傳輸天線 入多輸出系統的交織_用S-BC之夕輸 正交m f 項至少為NPa_xN0個 出系統的交織(錯)器,僅須^用Sub—Bc之多輸入多輸 可提供和1個採用SBC多^^交分頻多工符號,即 分集(多樣性)。對—個N i夕輪出糸統相同的傳輸 出系統,用#〇,#1,_ M)的〇0多輸入多輸 個天線,所提供的所有選擇模^)來表示—組心_ 狀·系統,可有3種m舉例,1種2(3)環 -次選擇N0FDM個天線)。這些:::3 )天線的核式(每 模式#0 :天線#〇及#1 模式#1 :天線#2及#1 ;及 模式#2 :天線#2及#〇。 1個S—BC環狀SMX系續,细 多工符號為單位,輪户更以N〇FDM個正交分頻 #1, #(M c t IL使用環狀模式#0, ……_「η·1),㈣時傳輪__個正交分頻V ^ OFDM J Μ ] Μ! According to one of the inventions and the 訾 & /, 骽 only examples, to ensure that an interlaced (wrong) fast can be used to interleave the multi-output system into the multi-output system _ with S- In the BC, the orthogonal mf term is at least the interleaving (error) of the NPa_xN0 out system, and only the multi-input and multi-transmission of the Sub-Bc can be provided and one SBC multi-^ cross-frequency multiplex symbol is used. That is, diversity (diversity). For the same transmission system of the same system, use #〇,#1,_M) 〇0 more input and multiple input antennas, all the selection modes provided ^) to represent - group core _ For the system, there are three types of m, one type of 2 (3) ring-time selection of N0FDM antennas). These:::3) Antenna core type (per mode #0: antenna #〇 and #1 mode #1: antenna #2 and #1; and mode #2: antenna #2 and #〇. 1 S-BC The ring-shaped SMX system continues, the fine multiplex symbol is the unit, and the wheel is more N〇FDM orthogonal frequency division #1, #(M ct IL uses the ring pattern #0, ... _ "η·1), (4) Time pass __ orthogonal frequency division

ISS-P060039-TW 19 夕工符號。該傳輸可停止在對應於傳輪 工符號之任意模式#丨,㈣,彳, 制正父分頻多 不必要正好是―個的正交符:後: 〇 X疋J個(j_1,...,,N〇FDM)正交分頻多工符六' 斋大小為NpattemxNQFDM正交分頻多織(錯)ISS-P060039-TW 19 Xigong symbol. The transmission can be stopped in any mode corresponding to the wheeler symbol #丨, (4), 彳, the system is not necessary to be exactly one of the orthogonal characters: :X疋J (j_1,.. .,,N〇FDM) orthogonal frequency division multiplexer six 'fast size NpattemxNQFDM orthogonal frequency division multi-weaving (wrong)

CixN0FDM+j)^^^ ;符,’故交織(錯)器在最後的傳輸時,通常不‘= 滿個數據包最後的傳輸大小,可以由每一個 、 出之位元總數,及數據調制方式等相關資= 异出。因此,傳輸器及接收器皆可以在開始傳二:十 據包時,計算出最後的傳輸大小,使相關織 織器可以正常操作。 -織器或去交 圖5a為本發明一具體實施例,使用如圖4a 示範2 ( 3) S—BC環狀SMX系統。1個迴旋 之 、·扁碼器(未顯示在圖中)將數據傳給1個交織(錯)器 (2002)。該交織後之數據由映像器(又名對映器)( 對映到子(次)载波。對映後之數據通過1個丨FFTs组 (2006)。以正交分頻多工符號為基礎之循環傳輸,由循 環單位(2008)根據圖5b之循環模式提供。 父織(錯)大小為NpatternXN〇FDM或6個正交分頻多 工符號如圖4b表中所示。這6個正交分頻多工符號分別 根據圖5b中之模式#0,#1及#2在3個時間點t〇, 傳輸。 根據本發明一具體實施例,圖6a提及一種SubCixN0FDM+j)^^^ ;;, 'The interleaving (wrong) is usually not '= the last transmission size of the full packet, which can be modulated by each, the total number of bits, and the data. Ways and other related assets = different. Therefore, both the transmitter and the receiver can calculate the final transmission size at the beginning of the transmission of the second: ten packets, so that the relevant weaving device can operate normally. - Weaving or De-crossing Figure 5a is an embodiment of the invention using a 2 (3) S-BC ring SMX system as shown in Figure 4a. A whirling, flat coder (not shown) transfers data to an interleaved (wrong) device (2002). The interleaved data is represented by a mapper (aka actor) (opposite to the sub (secondary) carrier. The mapped data is passed through a set of 丨 FFTs (2006). Based on orthogonal frequency division multiplex symbols. The cyclic transmission is provided by the cyclic unit (2008) according to the cyclic mode of Fig. 5b. The parental (error) size is NpatternXN〇FDM or 6 orthogonal frequency division multiplexing symbols as shown in the table of Fig. 4b. These 6 positive The crossover frequency multiplex symbols are transmitted at three time points t〇 according to modes #0, #1 and #2 in Fig. 5b, respectively. According to an embodiment of the invention, Fig. 6a refers to a Sub.

ISS-P060039-TW 20 (3)環狀SMX祕。—個迴旋碼(卷積碼)編碼哭將 數據傳給一個交織(錯)器(⑽)。根據本發明一且 施例’圖此提及一種交織(錯)器(2102)之示範交織(錯) 器對映表。該交織位元由對映(映像)器(21〇4)對映至子 (次)載波。在圖6a說明的示範具體實施例,該對映(映像 斋(2104)為一 BPSK對映(映像)器。在圖⑯說明的且 體實施例中,此BPSK映像純出2個正交分頻多工符 每個正交分頻h符號包含I個數據子(次)載波的 BPSK調制值(對映器的輸出),以下用Cq⑷及^⑷ 來表不’其中下標〇或代表兩個不同的正交分頻多工 ,號,s為子(次)載波指數。子(次)載波循環由循環處理 器Sub—BC (2106)提供。在第六a圖說明的具體實施 例中,循裱處理器(-2106)將2個BPSK映像器(21〇4) 的輸出,根據子(次)載波循環模式,產生3個丨FF丁的子(次 載波輸入’即D〇⑷,D1(S)&D2⑷。此處3個丨fft 輸出’代表同時傳輸3個正交分頻多工符號。 對於第#s個子(次)載波,“一扣將2個輪入的 BPSK對映值’即C〇 (s)及Ci (s),根據顯示於第四g 圖中可用於-個2(3)系統的循環模示,產生]個輸出模 式。該輸出模示之選擇,P (s),為子(次)載波指數s之 函數,如下方程式定義: PW = [fl_/N J冶 m〇d u 福 &福(?) 其中S-0 ’ 1 ’ 2…·· Nsc-1 ’且f|00r(x)為小於或等 於X的最大整數。ISS-P060039-TW 20 (3) Ring SMX secret. A whirling code (convolution code) encodes the data and passes it to an interleaved (wrong) device ((10)). An exemplary interleaved (wrong) mapping table of an interleaving (2102) is referred to in accordance with the present invention. The interleaved bit is mapped by an entropy (image) (21〇4) to a sub (sub)carrier. In the exemplary embodiment illustrated in Figure 6a, the mapping (image 1304) is a BPSK mapping (image). In the embodiment illustrated in Figure 16, the BPSK image is purely 2 orthogonal. Frequency multiplexer Each orthogonal frequency division h symbol contains the BPSK modulation value of the I data sub (secondary) carrier (the output of the imager). The following uses Cq(4) and ^(4) to indicate 'where the subscript 〇 or two A different orthogonal frequency division multiplexing, number, s is the sub (sub)carrier index. The sub (secondary) carrier cycle is provided by the cyclic processor Sub_BC (2106). In the specific embodiment illustrated in the sixth a diagram The loop processor (-2106) generates the outputs of the two BPSK mappers (21〇4) according to the sub (sub)carrier cycle mode, and generates three sub-carrier inputs (ie, D〇(4), D1(S)&D2(4). Here, 3 丨fft outputs 'represents simultaneous transmission of 3 orthogonal frequency division multiplex symbols. For the #sth (secondary) carrier, "one button will have 2 rounded BPSK pairs The mapping values 'C〇(s) and Ci(s) are generated according to the cyclical modes shown in the fourth g-picture that can be used for a 2(3) system. The output mode is selected. P (s) , is a function of the sub (sub)carrier index s, as defined by the following equation: PW = [fl_/NJ 冶 m〇du Fu & Fu (?) where S-0 ' 1 ' 2...·· Nsc-1 'and f |00r(x) is the largest integer less than or equal to X.

ISS-P060039-TW 21 根據本發明一具體實施例’圖6c提及1種次載波猶 環模示的方式。如圖6c所示,每1個選擇的模示僅列出 2個數字,亦即在以下3 (M=3)個可用的IFFT途捏, D〇 (s),Di (s)及D2 (s) ’被選中用來傳送#s子^欠> 載波的2個(N〇fdm=2)丨FFT途徑。相較之下,—個 〜「口1\/1(1\/1)的S_BC系統’將N〇fdm個正交分頻多工符號, 根據循環模示,輪流使用Μ個天線其中之N0FDM個來傳 輪。而一個N〇fdm(M)的Sub一BC系統,將對應於同—個 子(次)載波的N〇fdm個正交調幅樣品,根據子(次)載波之 循環模示,將其輪流分配給Μ個可能用來傳輸的途和, 再由Μ個IFFT,根據所分配到的正交調幅樣品(其中有 的為〇),產生給Μ個正交分頻多工符號。當圖的系 統,採用圖6b的交織器,和圖6c的子(次)载波之循環才莫 示’便可得到如圖6d之傳輸結果。 、 上述P (s)方程式之物理意義說明如下。在全部子 (-人)載波中,將母Ncarrier個子(次)載波看成一組來輪流循 %使用包含所有傳輸天線的叱如抑個環狀循環模示。當 進入下一組Ncarrier子(次)載波時,第一個模數操作,使的 這組心*子(次)載波,第一個用到的模式會與前一組不 同。這樣可以保證經過編碼後原本相_位元,如圖如 中的A(0)及A(1)’在傳輸時的不會用同一個天線。這裡 -組子(次)載波數量’ 彳個設計參數。上述範例 中Ncarrier選擇3 ’簡證經過編碼後原本相鄰的位元,如 圖如中的A(〇)及A(1),在傳輸時的頻域間隔不小於3ISS-P060039-TW 21 In accordance with an embodiment of the present invention, Figure 6c refers to a manner of one subcarrier helium mode. As shown in Figure 6c, only one number is listed for each selected model, that is, 3 (M=3) available IFFTs, D〇(s), Di(s) and D2 ( s) 'Selected to transmit #s子^欠> 2 (N〇fdm=2) 丨 FFT paths of the carrier. In contrast, the "S_BC system of port 1\/1(1\/1) will N〇fdm orthogonal frequency division multiplex symbols, according to the cyclical mode, one of the antennas is used in turn, N0FDM A Sub-BC system of N〇fdm(M) will correspond to N〇fdm quadrature amplitude modulated samples of the same sub (sub)carrier, according to the cyclic mode of the sub (sub)carrier. It is assigned to one of the possible sums of transmissions, and then by an IFFT, according to the assigned quadrature amplitude modulated samples (some of which are 〇), one orthogonal frequency division multiplex symbol is generated. When the system of the figure uses the interleaver of Fig. 6b and the cycle of the sub (secondary) carrier of Fig. 6c, the transmission result of Fig. 6d can be obtained. The physical meaning of the above P(s) equation is as follows. In all sub- (personal) carriers, the parent Ncarrier sub- (sub)carriers are treated as a group to take turns using % of all transmission antennas, such as a ring cycle. When entering the next group of Ncarriers (times) When the carrier is used, the first modulo operation makes the set of heart* sub (secondary) carriers, the first used mode will be different from the previous one. It can guarantee that the original phase _ bit after encoding, as shown in the figure, A(0) and A(1)' will not use the same antenna during transmission. Here - the number of subcarriers (sub) carriers ' Parameter: In the above example, Ncarrier selects 3' short-coded original adjacent bits, such as A(〇) and A(1) in the figure, and the frequency domain interval during transmission is not less than 3.

ISS-P060039-TW 22 個子(次)載波。 當同時傳輸的正交分财玉符少域傳輸天線 數h S_BC及Sub—BC還與各式時空塊碼(SpaceTjme B丨〇CkC〇de,STBC)共同應用。,個著名^tbc為阿 拉幕提(Alamouti)碼。_ 7a為—個根據本發明具體實施 例,使用阿拉幕提密碼之2⑶S—BC多輸入多輸出系 統概要圖7F。圖7€b為-個根據本發明具體實施例,使 用阿拉幕提密碼之2(3) Sub_BC多輸人多輸出系統概 要圖示。如圖7a-b所示,2健過阿拉幕提編碼後的正 ^分頻多工符號’經由循環後同時傳輸。在圖7a中,循 環功能由S—BC循環單位(22Q2)提供。在圖^中,循 環功能由Sub—BC循環單位(22Q4)提供。圖沾為包含 根據本發明最佳具體實施例可被循環單位(22犯)及 (2204)使用之循環模式表。圖卟為根據本發明具體實 施例可被使用之交錯器大小表。 、 之循環傳輸阿 下列關係可適用於圖7a-b及圖8a-b 拉幕提碼系統: Μ _ Γ Μ λ L J =S-BC及Sub、BC魏模式數 M=N0FDMXNpattern(S一BC 之 CALA 系统) M=Nofdm (Sub_BC 之 CALA 系統) 卟為交織(錯)器大小,較大的交織(錯)器意 大的設備及較長的編碼遲延。由上可見,不論是環狀 或環狀阿拉幕提的多輸人多輸出系統,兩者㈣織⑹ISS-P060039-TW 22 sub (secondary) carriers. When the simultaneous transmission of the orthogonal wealth, the number of small-area transmission antennas, h S_BC and Sub-BC, are also applied together with various space-time block codes (SpaceTjme B丨〇CkC〇de, STBC). A famous ^tbc is the Alamouti code. _ 7a is a schematic diagram of a 2(3)S-BC multiple input multiple output system using Figure 7F in accordance with an embodiment of the present invention. Figure 7 is a schematic representation of a 2(3) Sub_BC multi-input multiple output system using Alabaster passwords in accordance with an embodiment of the present invention. As shown in Fig. 7a-b, 2 positive-frequency division multiplex symbols after the Alabaster coding are transmitted simultaneously through the loop. In Figure 7a, the loop function is provided by the S-BC cycle unit (22Q2). In Figure ^, the loop function is provided by the Sub-BC cycle unit (22Q4). The figure is a circulation mode table containing the cycle units (22 guilty) and (2204) according to the preferred embodiment of the present invention. Figure 2 is an interleaver size table that can be used in accordance with a particular embodiment of the present invention. The following relationship can be applied to Figure 7a-b and Figure 8a-b to enhance the code system: _ _ Γ λ λ LJ = S-BC and Sub, BC Wei mode number M = N0FDMXNpattern (S-BC CALA system) M=Nofdm (CALA system of Sub_BC) 卟 is the size of the interleaved (wrong) device, the larger interleaved (wrong) device and the longer coding delay. It can be seen from the above that whether it is a multi-input multi-output system with a ring or a ring, the two (4) weaving (6)

ISS-P060039-TW 23 器大小及循環模示都一樣。其他採用非阿拉幕提碼的時空 塊碼之傳輸正交分頻多工符號的多輸入多輸出系統,均可 利用S_BC或Sub_BC以達到優化分集之目的。 總之,根據本發明一具體實施例,一種子(次)载波猶 環傳輸(Sub__BC )可以參考圖4a-b及圖8a_b。當N〇Fdm S Μ時,Nofdm個正交分頻多工符號,可用一 Μ個傳輪 天線的多輸入多輸出系統同時傳輸。在經過子(次)载波循 環傳輸處理之前的一個正交分頻多工符號’對映於每〜個 子(次)載波,均有一個調制值不為〇的一個正交調幅樣品 (為正交調幅對映器的輸出)作為其輸入值。此每一個正 交分頻多工符號包含Nsc個子(次)載波,s=0,1, 2...Nsc-1。子(次)載波循環傳輸將N〇fdm個正交分頻多工 符號的輸入訊號(如C〇 ’ Cl,……Cn〇fdm-i),轉換成Μ 個正交分頻多工(N〇FDM< Μ )符號的輪入訊號(如D〇, h,......Dm-i)。以下提供範例敘述。 在經過子(次)載波循壤傳輸處理之前’有N〇fdm個正 交分頻多工符號,亦即對每一個子(次)载波S,有NOFDm 個不為 0 的正交調幅樣品,c0(s), C^s) J ......Cn〇fdm-1⑻。當傳輸天線(亦即傳輸途徑)Μ > N〇fdm時’利用子(次)載波循環傳輸處理’可產生供Μ個 傳輸途徑所需的Μ個正交分頻多工符號。此時,在Μ個 傳輸天線(亦即傳輸途徑)中,按照子(次)載波循環模式所 指定,選出Nofdm個天線’將第i個天線的Di(s)值,設 為第j個Cj(s)(以上假設子(次)載波循環模式這樣指定)。The ISS-P060039-TW 23 has the same size and cycle pattern. Other multi-input and multi-output systems that use non-A-Audio coded space-time block code transmission orthogonal frequency division multiplexing symbols can use S_BC or Sub_BC to achieve optimal diversity. In summary, in accordance with an embodiment of the present invention, a sub-subcarrier transmission (Sub__BC) can be referred to Figures 4a-b and 8a-b. When N〇Fdm S Μ, the Nofdm orthogonal frequency division multiplex symbols can be simultaneously transmitted by a multiple input multiple output system with one transmission antenna. An orthogonal frequency division multiplex symbol 'before each sub- (sub)carrier is subjected to sub- (sub)carrier cyclic transmission processing, and has one quadrature amplitude modulation sample whose modulation value is not ( (for orthogonal The output of the amplitude modulator is used as its input value. Each of the orthogonal crossover multiplex symbols includes Nsc sub (secondary) carriers, s = 0, 1, 2, ... Nsc-1. The sub (sub)carrier cyclic transmission converts the input signals of N〇fdm orthogonal frequency division multiplex symbols (such as C〇' Cl, ... Cn〇fdm-i) into two orthogonal frequency division multiplexing (N轮FDM< Μ ) symbol of the round signal (such as D〇, h, ... Dm-i). An example description is provided below. There are N〇fdm orthogonal frequency division multiplex symbols before the sub- (sub)carrier-passing transmission processing, that is, for each sub- (sub)carrier S, there are NOFDm quadrature amplitude modulation samples that are not 0. C0(s), C^s) J ... Cn〇fdm-1(8). When the transmission antenna (i.e., transmission path) Μ > N 〇 fdm 'utilizes the sub (sub)carrier cyclic transmission process', one orthogonal frequency division multiplex symbol required for one transmission path can be generated. At this time, in one of the transmission antennas (that is, the transmission path), the Nofdm antennas are selected as the sub (secondary) carrier cycle mode, and the Di(s) value of the i-th antenna is set as the jth Cj. (s) (The above assumes that the sub (sub)carrier cycle mode is specified as such).

24 ISS-P060039-TW 1324002 之後,再將剩下的M-Nofdm個傳輸天線的D(s)值設為0。 當意義明確時,以下將用C’s及D,s來簡化我們的討論。 圖4a定義可選擇之子(次)載波循環模示,用以從將 處理前之N0FDM個正交調幅樣品的c,s值,對映至處理後 之Μ個正交調幅樣品的D’s值。根據圖4a定義選擇之模 示# ’ P(s),可由下列方程式定義: P(S)= S m〇d Npattern (8)After 24 ISS-P060039-TW 1324002, set the D(s) value of the remaining M-Nofdm transmission antennas to 0. When the meaning is clear, the following will use C's and D, s to simplify our discussion. Figure 4a defines a selectable sub- (sub)carrier cycle pattern for mapping the c, s values of the NOFDM quadrature amplitude modulated samples prior to processing to the D's values of the processed quadrature amplitude modulated samples. The selection of the selected model # ′ P(s) according to Figure 4a can be defined by the following equation: P(S)= S m〇d Npattern (8)

其中s=0,1,2 ’……Nsc-1,為子(次)載波指數。 換言之’每一個子(次)載波s之選擇P(s) ’由方程 式(8)確定。該選擇P(s)在〇,1,2,......,M-1中, 指定N0FDM個不同的數字。根據每一個子(次)載波s選擇 之P(s) ’將處理前的N〇fdm個正交調幅樣品的C’s對映 到指定的處理後的N〇fdm個正交調幅樣品的D’s。剩下的 (M-N〇fdm)個不在指定的P(s)指定内,將其D值設為〇。 在完成所有子(次)載波對映後,(s = 〇,1,2,......Nsc-1 ),Where s = 0, 1, 2 '... Nsc-1 is the sub (sub) carrier index. In other words, the selection of each sub (secondary) carrier s P(s) ' is determined by equation (8). The selection P(s) in 〇, 1, 2, ..., M-1, specifies N0FDM different numbers. The C's of the N〇fdm orthogonal amplitude modulated samples before processing are mapped to the D's of the designated N〇fdm orthogonal amplitude modulated samples according to P(s)' selected for each sub (secondary) carrier s. The remaining (M-N〇fdm) are not within the specified P(s) specification, and their D value is set to 〇. After completing all sub (sub)carrier mappings, (s = 〇, 1, 2, ... Nsc-1 ),

Μ個正交分頻多工符號所需的d,s值,由處理前的N0FDm 個正交分頻多工符號的C’s值構成。因為以上方程式(8) 中Npattern模數的操作,P(S)之值,從〇至,隨著 S值增大不斷循環》 1個N0FDM ( Μ)系統之所有可能的模示數,Npattem 由下列方程式給予:.Μ 、 ΝThe d, s values required for one orthogonal frequency division multiplex symbol are composed of the C's values of the N0FDm orthogonal frequency division multiplex symbols before processing. Because of the operation of the Npattern modulus in equation (8) above, the value of P(S), from 〇 to , as the value of S increases, circulates all possible modulo of a N0FDM (Μ) system, Npattem The following equations are given: .Μ, Ν

Pattern vnofdmPattern vnofdm

Ml N〇fdm !(M -N〇fdm )! (9)Ml N〇fdm !(M -N〇fdm )! (9)

25 ISS-P060039-TW 1324002 1個完整的循環模示包含所有可能的模示,模示#0,# 1 …’ #Npattenr1。在,個完整模示後,相當數量的非〇及〇 值的子(次)載波平均分佈於心_⑽多輸入多輪出系統中 骑個正交分頻W符號所需D,S。該選擇之模示數p⑻從〇 至Npattem-1循環重複。舉例,若Npattem=3,次載波指數s=〇, 1 ’ 2 ’ 3,4,5,…則 P⑻=0,1,2,0,1,2, 〇,1, 2,…。 .. 方程式(8)可以修改如下:25 ISS-P060039-TW 1324002 A complete cycle representation contains all possible modes, mod #0, # 1 ...' #Npattenr1. After a complete modulo, a significant number of non-〇 and 子 sub- (sub)carriers are evenly distributed in the heart_(10) multi-input multi-rounder system. D, S is required to ride an orthogonal crossover W symbol. The selected modulus p(8) is repeated from 〇 to Npattem-1. For example, if Npattem=3, the subcarrier index s=〇, 1 ′ 2 ′ 3,4,5,... then P(8)=0,1,2,0,1,2, 〇,1, 2,... .. Equation (8) can be modified as follows:

Pattern⑷’。0韓一 )+ 〇5 _ Nj]m〇d ⑽) 於方程式(10)中’ s為次載波指數且Ν_為1設計參 數。方程式(1〇)基本上將每Ν_個次載波歸為一群組。 , 經此修改後,選擇之模示數仍為從G至Npattem_1循環重複, 但從-個次载波組至另一組時,會先採用下一個模示(亦即跳 k個模式)。舉例,若Ncarrier=3且Npattem=3 ’該3個次載波 為1組且循環模示數P⑻為〇,1,及2。若使用方程式(1〇), • 次載波指數S=Q,1,2 ’ 3,4,5 ’ 6,7,8.·.之替換循環模 示變成=G,彳,2,1,2,Q,2,Q,彳。上例中可以看 到,在每3個次載波後,會先跳過一個模式,採用下一個模示。 本發明其他具體實施例,為執行上述系統之變化。舉例, 本發明可替換之具體實施例可包含彳個或多個下列設備·· ⑴方程式(7)中,,fl〇〇r()”函數,提供每Ncam.er個次 載波組間的模示平移,任何對此,,此〇「(),,函數或組間的之模 示平移的修改。 (H) 1循環模示數可以使用部分或全部可能之Npattem個Pattern(4)’. 0 Han 1 ) + 〇 5 _ Nj] m 〇 d (10)) In equation (10), ' s is the subcarrier index and Ν _ is 1 design parameter. The equation (1〇) basically groups each _ subcarriers into a group. After this modification, the selected modulus is still repeated from G to Npattem_1, but from the subcarrier group to the other group, the next mode is first used (that is, k modes are skipped). For example, if Ncarrier=3 and Npattem=3', the three subcarriers are one group and the cyclic modulus number P(8) is 〇, 1, and 2. If equation (1〇) is used, • Sub-carrier index S=Q,1,2 '3,4,5 ' 6,7,8.·. The replacement cycle mode becomes =G,彳,2,1,2 , Q, 2, Q, 彳. As you can see in the above example, after every 3 subcarriers, one mode will be skipped first, and the next mode will be used. Other embodiments of the invention are those that perform the above described changes. For example, an alternative embodiment of the present invention may include one or more of the following devices: (1) In equation (7), the fl〇〇r() function provides a mode between each Ncam.er subcarrier group. Show translation, any of this, this 〇 "(), function or the modification of the model translation between the groups. (H) 1 cycle modulus can use some or all of the possible Npattem

ISS-P060039-TW 26 模示。舉例’ 1個2 (4)多輸入多輪出系統,&_為6(即 有模示#〇, #1,…,#5)。舉例’根據本發明一具體實施例, 可僅採用部分模示,如模示#0,#1,及#2。完整模示之部 分包含從總Npattern模示之小部分模示〇 1種以方程式(7),(g) 及(10)修飾之方程式如下:ISS-P060039-TW 26 Moulding. For example, a 1 (4) multi-input multi-round system, &_ is 6 (that is, there are modifies #〇, #1,...,#5). By way of example, in accordance with an embodiment of the present invention, only partial modalities, such as stencils #0, #1, and #2, may be employed. The part of the complete model contains a small part of the model from the total Npattern model. The equations modified by equations (7), (g) and (10) are as follows:

Pattern⑺,獅 xfl。。巾/Ν_) + Ν_χ(ί _ N_)]m〇d (11) 其中Nshift定義模示數變化,N_t為次載波偏移量,及 Npartial指從可能的模示中包含部分或全部模示之循環模示。 > (丨丨丨)nofdm正交分頻多工符號c,s“平均的”傳輸入从個 正父分頻多符號D’S,該全部c’s及D,S非〇次載波總數相 同。額外的,(丨丨丨)中每1個正交分頻多工符號%非〇次載 波總數相同。 雖然本發明已以前述較佳實施例揭示,然其並非用以 限林發明’任何熟習此技藝者,在不脫離本發明之精神 ^範圍内’當可作各種之更動與修改。如上述的解釋,都 可以作各型式的修頌變化’而不會破軌發明的精神。 t本發明之保護範圍當視後附之申請專利範圍所界定者Pattern (7), lion xfl. . Towel/Ν_) + Ν_χ(ί _ N_)]m〇d (11) where Nshift defines the modulus change, N_t is the subcarrier offset, and Npartial refers to the inclusion of some or all of the modalities from the possible modes. Cyclic mode. > (丨丨丨) nofdm orthogonal frequency division multiplex symbol c, s "average" transmission into a positive father frequency division multi-symbol D'S, the total c's and D, S non-〇 total number of carriers are the same. In addition, (1) each of the orthogonal frequency division multiplex symbols has the same number of non-〇 carriers. While the present invention has been disclosed in its preferred embodiments, it is not intended to be construed as As explained above, it is possible to make various types of repair changes without derailing the spirit of the invention. The scope of protection of the present invention is defined by the scope of the appended patent application.

ISS-P060039-TW 27 【圖式簡單說明】 圖1a根據本發明—具體實施例之流程圖說明—種使用於 正交分頻多工符號為基礎的循環傳輸無線通訊之多輪 入多輸出傳輸器。 夕@ 圖1b根據本發明一具體實施例之流程圖說明一種使用於 次載波為基礎的循環傳輸無線通訊之多輸入多輪出傳 輸器。 圖2根據本發明一具體實施例說明一個示範多輪入多 輸出系統從3個傳輸天線傳輸彳8個正交分頻多工 號。 圖33根據本發明—具體實施例之流程圖說明在-種多輸 入多輸出傳輸系統中使用訊號循環。 圖3b根據本發明一具體實施例之流程圖說明在一種多輸 ~多輸出傳輸系統中使用次載波循環。 圖知根據本發明—具體實施例說明-種S_BC系統至一 種Sub—BC系統的循環參數。 圖4b為提供關於圖h說明之系統的循環參數數量及交 錯器大小。 圖53根據本發明一具體實施例之-種示範2(3)S_BC系 統概要圖示。 圖邱為一說明圖5a之―種示範2(3)S_BC系統示範循環 參數表ύ 圖63根據本發明一具體實施例之-種示範Sub一BC2(3) 糸統概要圖不。ISS-P060039-TW 27 [Simplified Schematic Description] FIG. 1a illustrates a multi-wheeled multi-output transmission of cyclic transmission wireless communication based on orthogonal frequency division multiplexing symbols according to the flow chart of the present invention. Device. </ RTI> Figure 1b illustrates a multi-input multi-round transmission for cyclic transmission wireless communication based on subcarriers in accordance with a flow chart of an embodiment of the present invention. 2 illustrates an exemplary multi-wheeled multiple output system transmitting 个8 orthogonal frequency division multiplex numbers from three transmit antennas in accordance with an embodiment of the present invention. Figure 33 illustrates the use of a signal loop in a multi-input multiple-output transmission system in accordance with a flow chart of the present invention. Figure 3b illustrates a use of a subcarrier cycle in a multi-transmission-multiple output transmission system in accordance with an embodiment of the present invention. The cycle parameters of the S_BC system to a Sub-BC system are illustrated in accordance with the present invention. Figure 4b is a graph showing the number of loop parameters and the size of the interleaver for the system illustrated in Figure h. Figure 53 is a schematic illustration of an exemplary 2(3)S_BC system in accordance with an embodiment of the present invention. FIG. 5A illustrates an exemplary 2(3)S_BC system exemplary cycle parameter table of FIG. 5a. FIG. 63 is a schematic diagram of an exemplary Sub-BC2(3) system according to an embodiment of the present invention.

28 ISS-P060039-TW 132400228 ISS-P060039-TW 1324002

206 interleaver 交錯器 208a QAM mapper 正交調幅映像器 208b QAM mapper 正交調幅映像器 208c QAM mapper 正交調幅映像器 210a IFFTs 反向快速傅利葉轉換器 210b IFFTs 反向快速傅利葉轉換器 210c IFFTs 反向快速傅利葉轉換器 212 OFDM symbol 正交分頻多工符號 2002 interleaver 交錯器 2004 mapper 映像器 2006 IFFTs 反向快速傅利葉轉換器 2008 circulation unit 循環單位 2102 interleaver 交錯器 2104 mapper 映像器 2106 circulation unit Sub_BC 循環單位Sub_BC 2202 S_BC circulation unit 循環單位 2204 Sub_BC circulation unit Sub__BC循環單位206 interleaver interleaver 208a QAM mapper quadrature amplitude modulation mapper 208b QAM mapper quadrature amplitude modulation mapper 208c QAM mapper quadrature amplitude modulation mapper 210a IFFTs inverse fast Fourier transformer 210b IFFTs inverse fast Fourier transformer 210c IFFTs inverse fast Fourier Converter 212 OFDM symbol Orthogonal Frequency Division Multiplex Symbol 2002 interleaver Interleaver 2004 mapper Imager 2006 IFFTs Reverse Fast Fourier Transformer 2008 circulation unit Loop Unit 2102 interleaver Interleaver 2104 mapper Imager 2106 circulation unit Sub_BC Loop Unit Sub_BC 2202 S_BC Circulation unit 2204 Sub_BC circulation unit Sub__BC cycle unit

ISS-P060039-TW 30ISS-P060039-TW 30

Claims (1)

1324002 十、申請專利範圍: • 1. 一種使用三個傳輸天線於正交分頻多工多輸入多輸出系 統傳輸二個正交分頻多工符號之方法,包含一個第一正交 分頻多工符號CO及一個第二正交分頻多工符號C1,及 ' 一個第一,第二及第三傳輸天線其中每一個天線有48個 次載波,以S=0,1,2,...,47標出,且每一個正交分 頻多工符號有48個與48個次載波有關之正交調幅對映 樣品 CO(s)及 C1(s),分別以 C0(0),C0(1),C0(2),.·., • CO (47)及 C1 (0),C1 ( 1 ),C1 (2),…,C1 (47) 標出,該方法包含: 形成三輸出正交分頻多工符號,DO,D1及D2,每一個 • 有相當於48個次載波s以2個正交分頻多工符號C0及 C1之正交調幅對映樣品D0(s),D1(s)為基礎之48個正 交調幅對映樣品D0(s),D1(s)及D2(s),其中D0正交調 幅對映樣品設計為C0 (0),C0 (1 ),…,C0 (47),D1 正交調幅對映樣品設計為C1(0),C1(1),…,C1(47), •且D2正交調幅對映樣品設計為C2 (0),C2 (1),…, C2 (47);以及 該三個輸出正交分頻多工符號DO, D1及D2同時由三天 線傳輸。 2.如申請專利範圍第1項所述之方法,其中形成該三個輸 出正交分頻多工符號進一步包含: 針對每一個次通道s ’ s=0 ’ 1 ’ 2 ’ ...,47 ’ 31 ISS-P060039-TW 1324002 從DO(s),D1(s)及D2(s)中選擇一個第一部分; • 指定D0(s)至該選擇之第一部分; 從DO(s),D1(S)及D2(s)中選擇一個該第一部分不同之一 個第二部分; 指定C1(s)至該選擇之第一部分;以及 指定一個0數字至DO(s),D1(s)及D2(s)之第三部分。 3_如申請專利範圍第1項所述之方法,其中形成該三個輸 • 出正交分頻多工符號進一步包含: 針對每一個次通道s,s=0,1,2,…,47, 指定CO(s)至DO(s),D1(s)及D2(s)中選擇之一個第一部 . 分; 指定C1(s)至DO(s),D1(s)及D2(s)中二個未選擇部分之 一個部分;以及 指定一個0數字至DO(S),D1(s)及D2(s)之第三部分。 春 4.如申請專利範圍第1項所述之方法,其中形成該三個輸 出正交分頻多工符號進一步包含: 开&gt; 成二組g(〇),g(1),及g(2)分別為三個正交調幅對映樣 品’其中 g(0)={C0(s),C1(s),〇},g(i)={ 〇,C1(s), co(s) },及 g(2)={C1(s),Ο,CO(S) },且其中 0 指定為 正交調幅對映樣品〇值; 形成一 48 連續群組 p(k),k=0,1 ’ 2,…,47,其中 p(k)=g(k m〇d 3);以及 32 ISS-P060039-TW =對每—個次通道s,s=〇,1,2,...,47,指定三個相 田於輸出正交分頻多工符號D〇(s),D1(s)及D2(s)之正交 調幅對映樣品之正交調幅對映樣品於p(s)群組,根據連續 群組f中p⑻為9(0),9(1),及g(2)之一,其中p⑻第一 位置指定到D0⑻,P⑻第二位置指定到D1(S),且p(s) 第三位置指定到D2(s)。 5’如申睛專利範圍第彳項所述之方法,其中形成該三個輸 出正交分頻多工符號進一步包含: 形成二組正交調幅對映樣品’ g(m),m=〇,1,2,其中 每一個g(m)為一個獨特連續包含C〇(s),C1(s)及0之三 正交調幅對映樣品,且其中G指定為G正交調幅對映樣 α · 口 〇 , 形成一 48連續群組p(k),k=〇,1,2, ,47,其中p(k) 擇自 g(m),m=〇,1,2 ;以及 2對每一個次通道s,s=0,1,2,.·.,47,指定三個相 當於輸出正交分頻多工符號D〇(s),D1 (匀及D2(s)之正交 調幅對映樣品之正交調幅對映樣品於p(s)群組,根據連 、’只群組其中P(S)為g(〇) ’ g(1),及g(2)之一,其中p(s) 第一位置指定到D0(s),p(s)第二位置指定到D1(s),且 P(s)第三位置指定到D2(s)。 6.如申請專利範圍第5項所述之方法,其中形成三組正交 調幅對映樣品’ g(m),m=0,1,2進一步包含: ISS-P060039-TW 33 1324002 指定 g(0)={C〇(s),C1 (s),〇},g⑴〇 及 g(2)={C1(s),0,CO(s)}。 s) ’ C0(s)} ’ 7·如申請專利範圍第5項所述之方法,其 調幅對映樣品,g(m),m=0,1,2、/、形成二組正交 ^運一步包含: 指定 g(o)={C〇(s),C1(S),0},g⑴4 及 g(2)={C1 (s),0,C0(s)}。 (s) ’ C1 (S)} ’1324002 X. Patent application scope: • 1. A method for transmitting two orthogonal frequency division multiplex symbols in an orthogonal frequency division multiplexing multiple input multiple output system using three transmission antennas, including a first orthogonal frequency division multiple a symbol CO and a second orthogonal frequency division multiplex symbol C1, and 'a first, second and third transmission antenna each of which has 48 subcarriers, with S=0, 1, 2, .. , 47, and each orthogonal frequency division multiplex symbol has 48 orthogonal modulation amplitude samples CO(s) and C1(s) related to 48 subcarriers, respectively, C0(0), C0 (1), C0(2), .., • CO (47) and C1 (0), C1 (1), C1 (2), ..., C1 (47) indicate that the method includes: forming three outputs Orthogonal crossover multiplex symbols, DO, D1 and D2, each • has a quadrature amplitude modulation multiplex symbol C0 and C1 equivalent to 48 subcarriers s with orthogonal modulo mapping D0(s), D1(s)-based 48 quadrature amplitude modulation imaging samples D0(s), D1(s) and D2(s), wherein the D0 quadrature amplitude modulation enantiomeric sample is designed as C0 (0), C0 (1), ..., C0 (47), D1 The quadrature amplitude modulation imaging sample is designed as C1(0), C1(1) ..., C1(47), • and the D2 quadrature amplitude modulation imaging samples are designed as C2 (0), C2 (1), ..., C2 (47); and the three output orthogonal frequency division multiplex symbols DO, D1 And D2 is transmitted by three antennas at the same time. 2. The method of claim 1, wherein forming the three output orthogonal frequency division multiplexing symbols further comprises: s 's=0 ' 1 ' 2 ' ..., 47 for each secondary channel ' 31 ISS-P060039-TW 1324002 Select a first part from DO(s), D1(s) and D2(s); • Specify D0(s) to the first part of the selection; From DO(s), D1( S) and D2(s) select a second part different from the first part; specify C1(s) to the first part of the selection; and specify a 0 number to DO(s), D1(s) and D2( The third part of s). 3_ The method of claim 1, wherein forming the three output orthogonal frequency division multiplexing symbols further comprises: for each secondary channel s, s=0, 1, 2, ..., 47 Specify one of the first parts of CO(s) to DO(s), D1(s) and D2(s). Specify C1(s) to DO(s), D1(s) and D2(s a portion of the two unselected portions; and a third digit assigned to a 0 number to DO(S), D1(s), and D2(s). The method of claim 1, wherein the forming the three output orthogonal frequency division multiplexing symbols further comprises: opening &gt; into two groups g(〇), g(1), and g( 2) Three orthogonal amplitude-modulated enantiomer samples, respectively, where g(0)={C0(s), C1(s), 〇}, g(i)={ 〇, C1(s), co(s) }, and g(2)={C1(s),Ο,CO(S) }, and where 0 is specified as the quadrature amplitude modulation entropy sample ; value; forming a 48 consecutive group p(k), k=0 , 1 ' 2,...,47, where p(k)=g(km〇d 3); and 32 ISS-P060039-TW = for each-time channel s, s=〇, 1, 2,... , 47, specify three phase fields in the output orthogonal frequency division multiplex symbol D 〇 (s), D1 (s) and D2 (s) orthogonal amplitude modulation of the sample of the orthogonal amplitude modulation of the sample in p (s) Group, according to p(8) in the continuous group f is one of 9(0), 9(1), and g(2), wherein the first position of p(8) is assigned to D0(8), and the second position of P(8) is assigned to D1(S), and The third position of p(s) is assigned to D2(s). The method of claim 3, wherein the forming the three output orthogonal frequency division multiplex symbols further comprises: forming two sets of orthogonal amplitude modulated pairs of samples 'g(m), m=〇, 1, 2, wherein each g(m) is a unique continuous C 〇(s), C1(s) and 0 Orthogonal Amplitude Alignment sample, and wherein G is designated as G Orthogonal Amplitude Alignment α · Oral, forming a 48 consecutive group p(k), k = 〇, 1, 2, , 47, where p(k) is selected from g(m), m = 〇, 1, 2; and 2 pairs per A secondary channel s, s = 0, 1, 2, . . . , 47, specifies three equivalent orthogonal output frequency division multiplex symbols D 〇 (s), D1 (even and D2 (s) quadrature amplitude modulation The orthogonal amplitude-amplified enantiomeric sample of the enantiomeric sample is in the p(s) group, according to the connection, 'only the group where P(S) is g(〇) 'g(1), and g(2), wherein p(s) The first position is assigned to D0(s), the second position of p(s) is assigned to D1(s), and the third position of P(s) is assigned to D2(s). The method of item 5, wherein three sets of orthogonal amplitude-modulated enantiomeric samples 'g(m) are formed, m=0, 1, 2 further comprising: ISS-P060039-TW 33 1324002 Specify g(0)={C〇(s), C1 (s), 〇}, g(1)〇 and g(2)={C1(s), 0,CO(s)}. s) ' C0(s) } ' 7 · As described in the scope of claim 5, the amplitude-modulated enantiomeric sample, g (m), m = 0, 1, 2, /, form two sets of orthogonal ^ transport one step contains: specify g ( o)={C〇(s), C1(S), 0}, g(1)4 and g(2)={C1 (s), 0, C0(s)}. (s) ’ C1 (S)} ’ ’其中形成一 48連 進一步包含: 8·如申請專利範圍第5項所述之方法 續群組 p(k),k=0,1,2,...,47, 指定 p(s)=g(s mod 3)。 9.如申請專利範圍第5項所述之方法,复 續群組 p(k),k=0,1,2,_,47,/、中形成一 48 連 P(k)=g([fl〇〇r(k/3)+(k mod 3)] m〇d 3〉。 匕 3 .'The formation of a 48-connection further includes: 8. The method described in item 5 of the patent application continuation group p(k), k=0, 1, 2, ..., 47, designation p(s)= g(s mod 3). 9. As in the method of claim 5, the reciprocal group p(k), k=0, 1, 2, _, 47, /, forms a 48-joint P(k)=g([ Fl〇〇r(k/3)+(k mod 3)] m〇d 3>. 匕3 . 1〇· —種在包含三個傳輸天線正交分頻多工夕 系統中傳輸二個輸入正交分頻多$ 夕雨入多輸出 丄付現之方— 一個天線有48個次载波且每—個輸入正交分頻,多= 號有與48個次載波有關之48個正交調幅對映樣品,該 方法包含: 從該二個輸人正交分頻多卫符號之正交調幅對映樣品形 成三個輸出正交分頻多卫符號,其中每—個輸出正交分 頻多工符號有與48個次載波有關之48自正交調幅對映 ISS-P060039-TW 34 以及 樣品,且其中每一個輸出正交分頻多工符號包含從每一 個輪入正交分頻多工符號之複數個正交調幅對映樣品· 工符號 從該三個天線同時傳輸三個輸出正交分頻多 11·如申請專利範圍帛10項所述之方法,其中 輸出正交分頻多工符號進一步包含: 成该二個 48個次载波之每一個, ”三個輸出正交分頻多工符號之二個; 輸入正交分頻多工符號之該二個正交調幅對 至該二個選擇之輸出正交分頻多工符號;以: 日疋一個〇正交調幅口 分頻多工符號。㈣樣°°至該一個存留之輪出正交 12·如申請專利範圍第”項所述之方法, 之二個輸*正交分頻多工符號進-步包;Λ擇該二個 形成三個區間結合該三個之 號; 别出正父分頻多工符 ^該二個區間結合形成二輸出正交 48結合;以及 夕工付唬一連續 根據該連續序列指定一個結合模示至次裁波。 13·如申請專利範圍第12項 形成進—步包 固^其中該連續序列 個固足才日令下重複該三個區間結 ISS-P060039-TW 35 1324002 合0 14.如申請專利範圍第12項所述之方法,其中該連續序列 ^成’如P⑻標示,S=0,1,2,···,47,進-步包含扑 ^ P(s) g(m&gt; ’ m-〇 ’ j ’及2 ’其中g(m)為從該三個輸 出正交分頻多工符號選擇之二個輪出正交分頻多工符號 之該二個間結合且其中m= s (m〇d 3丨。1〇·—A method of transmitting two input orthogonal frequency divisions in an orthogonal frequency division multiplexing system including three transmission antennas. The antenna has 48 subcarriers and each antenna has The input is orthogonally divided, and the multiple = number has 48 orthogonal amplitude-modulated mapping samples related to 48 subcarriers, and the method includes: orthogonally amplitude-modulating mapping from the two input orthogonal orthogonal frequency multi-guard symbols The sample forms three output orthogonal frequency division multi-guard symbols, wherein each of the output orthogonal frequency division multiplexing symbols has 48 self-quadrature amplitude modulation pairs ISS-P060039-TW 34 and samples related to 48 subcarriers, and Each of the output orthogonal frequency division multiplexing symbols includes a plurality of orthogonal amplitude-modulated imaging samples from each of the round-crossing orthogonal frequency division multiplexing symbols. The three-output orthogonal frequency division is simultaneously transmitted from the three antennas. 11. The method of claim 10, wherein the output orthogonal frequency division multiplexing symbol further comprises: forming each of the two 48 subcarriers, "three output orthogonal frequency division multiplexing symbols Two; input the orthogonal frequency division multiplex symbol Two orthogonal amplitude modulation pairs to the two selected output orthogonal frequency division multiplexing symbols; to: a day 〇 a quadrature amplitude modulation port frequency division multiplexing symbol. (4) sample ° ° to the one of the remaining rounds orthogonal 12. If the method described in the patent application scope item, the two transmission * orthogonal frequency division multiplexing symbol into the step package; select the two to form three intervals combined with the three number; The parent frequency division multiplexer ^the two intervals combine to form a two output orthogonal 48 combination; and the evening work assigns a combined mode to the secondary cut according to the continuous sequence. 13. If the patent application scope item 12 is formed into a step-by-step encapsulation, wherein the continuous sequence is fixed, the three interval sections are repeated. ISS-P060039-TW 35 1324002 and 0 14. As claimed in claim 12 The method of the item, wherein the continuous sequence is 'as indicated by P(8), S = 0, 1, 2, ..., 47, and the step comprises: P (s) g (m &gt; 'm-〇' j ' and 2 ' where g(m) is the combination of the two round-off orthogonal frequency division multiplex symbols selected from the three output orthogonal frequency division multiplex symbols and wherein m = s (m〇 d 3丨. 15.如申請專利範圍第12項所狀妓,其中該連續序列 形成,如P⑻標示,3=0,12,···,47,進一步包含於 定P(s)=_,m=〇小及2,其中_為從該三個^ 出正交分頻多玉符號選擇之二個輪出正交分頻多工符號 之該三個間結合,且其十m=[f|〇〇r(s/3)+(sm〇d^m〇d 3 〇 • 1=申請專利範圍第11項所述之方法,其中指定該二個 輸入正交分頻多功狀二個正交對映樣品至該二 個選擇之輸出正交分頻多工符號進一步包含: 從該第-輸出正交分鮮工符號指定敍交調幅對映樣 品至該第一選擇輸出正交分頻多工符號, ·以及 從該第二輸出正交分頻多工符號指定該正交調幅對映樣 品至該第二選擇輸出正交分頻多工符號。 17_-種在—她含M _輸天線之正交分财工符號多15. In the case of claim 12, wherein the continuous sequence is formed, as indicated by P(8), 3=0, 12, ..., 47, further included in the definition P(s) = _, m = 〇 small And 2, wherein _ is the combination of the three rounded orthogonal frequency division multiplex symbols selected from the three orthogonal frequency division multi-yu symbol, and its ten m=[f|〇〇r (s/3)+(sm〇d^m〇d 3 〇• 1 = the method described in claim 11, wherein the two input orthogonal frequency division multi-function two orthogonal enantiomeric samples are specified The output orthogonal frequency division multiplexing symbol to the two selections further includes: designating a symmetric amplitude modulation mapping sample from the first output orthogonal symbol to the first selection output orthogonal frequency division multiplexing symbol, And specifying the quadrature amplitude modulated multiplex symbol from the second output orthogonal frequency division multiplex symbol to the second selected output orthogonal frequency division multiplex symbol. 17_- species--the orthogonal segment of the M_transmit antenna More financial symbols ISS-P060039-TW 36 1324002 輸入多輸出系統中傳輸N〇FDM輸入正交分頻多工符號之 方^ ’其中Nofdm&lt;M且其中該Μ個天線每一個有Nsc 個··人載波且母一個該n〇fdm個輸入正交分頻多工符號有 符合Nse個次载波之Ns。個正交調幅對映樣品,該方法°包 含: ,該NQFDM赌人正交分頻多工符號之正交調幅對映樣 =形成Μ個輪出正交分頻多卫符號,其中每—個該m個ISS-P060039-TW 36 1324002 In the input multi-output system, the N 〇 FDM input orthogonal frequency division multiplex symbol is transmitted ^ ' where Nofdm &lt; M and wherein the two antennas each have Nsc · human carrier and one The n〇fdm input orthogonal frequency division multiplexing symbols have Ns that conform to Nse secondary carriers. A quadrature amplitude modulation mapping sample, the method ° includes: , the orthogonal amplitude modulation pair of the NQFDM gamblers orthogonal frequency division multiplex symbol = forming a round-off orthogonal frequency division multi-wei symbol, each of which The m 3出正父分頻多工符號有符合Ns。個次載波之心個正交 =幅對映樣品,且-個該M個輸出正交分頻多工符號包 =數個從該Ν刪個輸人正交分頻多謂號之正交調 鴨對映樣品;以及 從該三個天線同時傳輸該三個輸出正交分頻多工符號。 18·如申JI專鄉㈣彳7_述之枝,射形_個輸 出正父分頻多工符號進一步包含:The 3 positive father crossover multiplex symbol has Ns. The subcarriers are orthogonal = amplitude-amplified samples, and - the M output orthogonal frequency division multiplex symbol packets = several orthogonal transforms from which the input orthogonal quadrature frequency division multiple predicates are deleted Duck mapping samples; and transmitting the three output orthogonal frequency division multiplex symbols simultaneously from the three antennas. 18·If Shen JI special hometown (four) 彳 7_ described in the branch, the shape _ one output positive father crossover multiplex symbol further contains: Nsc個次載波之每一個, ,擇該Μ個輸出正交分頻多工符號之n〇fdm個; 二該nqfdm域人正交分鮮卫符號之該個正 =幅對映樣品至該N_個選擇之輸出正交分頻多工 付現,以及 M-N〇fdm個存留之輸 指定一個0正交調幅對映樣品至該 出正交分頻多工符號。 其中選擇該Μ個 19.如申請專利範圍第18項所述之方法 37 ISS-P060039-TW S 1324002 之nofdm個輪出正交分頻多 形成 Npattern = Μ 工符號進一步包含 Μ! N0FDM!(M_ Ν⑽Μ!)個區間結合該Μ 個之N0FDM個輪出正交分頻多工符號; 形成一個Nsc個連元件續 NPa«ern區間結合之一;以及I、中母一個元件為該 根據該連續序列指定一個結合模示至該次載波。 2〇·如申請專利範圍第19項所述之方法,其中 形成進一步包含在一個固定指令下重複豸 ,序列 N Pattern N OFDM Μ! Nofdm!(Μ - Ν〇_!)個區間結合 •如申請專鄕圍第19韻紅妓,其中 形成’如p(s)標示,s=0,j,2, ”績序; 含指定P⑻=g⑽,m = 〇 n ΚΙ ’進一步启 5關輸出正交分頻以符號選擇之^個^ 乂刀頻夕工付號之該Npattem個間結合,且並中 (mod NPattem) 〇 '、 ' 22.如申請專利範圍第19項所述之方法,其中該連續 形成,如P⑻標示,网小之,U,進」 含指定p⑻=g⑽,㈣小2, ⑽盆中 g⑽為從該μ個輸出正交分頻多卫符號選擇之n麵個 輸出正交分頻多工符號之該Npattem_結合,且里中 ISS-P060039-TW 38 巾、[floor(s/ NPattem)+(s mod NPattern)】 mod NPattem。 23.如申請專利範圍第19項所述之方法,其中該連續序列 I成,如P(s)標示,s=0,1,2,·.·u,進一步包 含指定P⑻=g⑽,m=〇,1’ 2,·.·,Νρ_η,盆中 為㈣μ個輸出正交分财碍_擇之n〇fd_ 剧出正交分⑽功號之該Νρ_η烟結合,且盆中 ^ [Nshift X f,〇〇r(s/ Ncarrier)+(s m〇d Ncarrjer)] ;〇d ::咖,其中N漏定義模示數改變且&amp;咖指示一個週 指不位置僅包含全部可能模示之整數個模示。 交分頻多讀鮮輸人多輸“ _環 法,包含: 時傳輸正交分頻多工符號(N_)多之傳輸 交分頻多工符號㈣個輸出正交分 如此全部正交分頻多工。之全部資料 訊號包含於輸出正交分财id’s中·以及 從Μ個傳輸天線同時傳輸_正交分頻多工符號。 25·如申請專利範圍第24 多輪入夕认山/ ~ 之之一種正父分頻多工符號 自統循環傳輸方法,其中個正交分 二料訊號平均分散至_輸出正交分頻 付被’其中母—個輸出正交分頻k符號D,s之資 ISS-P060039-TW 39 料訊號數相同且其中-個模型資料訊號被使用來填滿該 Μ個正交分頻多工符號d,s。 冰·-種使用於正交分頻多工符❹輸人多輸出無線系統 之裝置,包含: 個迴旋編碼器以輸入資料及輸出編碼資料位元; 一個父錯器用以輸入該編碼資料位元及輸出交織資料位 元; ' -個或多個iL交娜映像縣對映該交織倾位元至複 數個次載波; 複數個反向快速傅利葉轉換處理器連結從該次載波產生 訊號; 複數個天線;以及 … -個循環傳輸H持續多樣性進行資訊訊號傳輸。 。如申明專利範圍第26項所述之裝置,其中該循環傳輸 器結合至該複數個反向快速_葉轉減理器及該複數 個天線,且其巾賴環傳輸器在天線間循環該訊號用以 傳輸。 扣.如申請專利範圍第26項所述之裝置,其中該循環傳輸 =、、’&quot;口該映像器及該複數個反向快速傅利葉轉換處理 °°且其中在傳輸過程前該循環傳輸器於將訊號傳送至 反向陕連傅利葉轉換處理器前重新排觸訊號。 ISS-P060039-TW 40Each of the Nsc subcarriers, n 〇 fdm of the output orthogonal frequency division multiplex symbols; and the nqfdm domain orthogonal symmetry symmetry symbol of the positive = amplitude mapping sample to the N _ a selected output orthogonal frequency division multiplexing payout, and MN 〇 fdm remaining outputs specify a 0 quadrature amplitude modulated pair of samples to the orthogonal frequency division multiplex symbol. Among them, the method is as follows: 19. The method described in claim 18 of the patent application 37 ISS-P060039-TW S 1324002 nofdm round-out orthogonal frequency division multi-form Npattern = Μ symbol further includes Μ! N0FDM! (M_ Ν(10)Μ!) an interval combined with the N0FDM rounds of orthogonal frequency division multiplexing symbols; forming one Nsc connected elements continued one of the NPa«ern interval combinations; and I, the middle mother and one element are according to the continuous sequence Specify a combined mode to the secondary carrier. 2. The method of claim 19, wherein the forming further comprises repeating 豸 under a fixed command, the sequence N Pattern N OFDM Μ! Nofdm!(Μ - Ν〇_!) Specializes in the 19th rhyme red 妓, which forms 'such as p (s) mark, s = 0, j, 2, "performance order; with the specified P (8) = g (10), m = 〇n ΚΙ ' further open 5 off output orthogonal The division of the frequency is selected by the symbol of the ^ ^ 频 频 工 工 工 工 该 mod mod mod mod mod mod mod mod mod mod mod 、 、 、 、 、 、 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. 22. Continuously formed, as indicated by P(8), the net is small, U, and contains the specified p(8)=g(10), (4) small 2, and (10) the g(10) in the basin is the n-sided output orthogonal selected from the μ output orthogonal frequency division multi-guard symbols. The Npattem_ combination of the frequency division multiplex symbol, and the ISS-P060039-TW 38 towel, [floor(s/ NPattem)+(s mod NPattern)] mod NPattem. 23. The method of claim 19, wherein the continuous sequence I, as indicated by P(s), s = 0, 1, 2, . . . u, further comprises specifying P(8) = g(10), m = 〇,1' 2,····,Νρ_η, in the basin is (four)μ output orthogonal 财 碍 _ 之 〇 〇 〇 〇 〇 〇 〇 〇 正交 正交 正交 正交 正交 正交 10 10 10 10 10 10 10 10 10 10 10 10 10 10 且 N N N N N N N N N N N f, 〇〇r(s/ Ncarrier)+(sm〇d Ncarrjer)] ;〇d ::Caf, where N-leak defines the modulus change and & coffee indicates that a week-finger not only contains all possible modes An integer number of mods. Cross-frequency and multi-read fresh input and multi-transmission " _ ring method, including: time transmission orthogonal frequency division multiplex symbol (N_) more transmission cross-frequency multiplex symbol (four) output orthogonal division so all orthogonal frequency division Multi-work. All data signals are included in the output orthogonal wealth id's and transmitted from one transmission antenna simultaneously _ orthogonal frequency division multiplex symbol. 25 · If the patent application scope is more than 24 rounds, recognize the mountain / ~ One of the positive-family crossover multiplex symbol self-loop transmission methods, in which one orthogonal split two-signal signal is evenly dispersed to _output orthogonal frequency-divided pay--the mother-output cross-frequency k-symbol k, s ISS-P060039-TW 39 The number of signal signals is the same and one of the model data signals is used to fill the two orthogonal frequency division multiplex symbols d, s. Ice type is used in orthogonal frequency division multiplexing The device for inputting a multi-output wireless system comprises: a whirling encoder for inputting data and outputting encoded data bits; a parent error device for inputting the encoded data bit and outputting interleaved data bits; '- or more iL Jiaona County counts the intertwined tilting elements to a plurality of Subcarrier; a plurality of inverse fast Fourier transform processors are coupled to generate signals from the subcarrier; a plurality of antennas; and - a cyclic transmission H continues to diversity for information signal transmission. The device, wherein the cyclic transmitter is coupled to the plurality of reverse fast-leaf-return handlers and the plurality of antennas, and the towel-receiving loop transmitter circulates the signal between the antennas for transmission. The device of item 26, wherein the cyclic transmission =, , '&quot; the porter and the plurality of inverse fast Fourier transform processes and wherein the loop transmitter transmits the signal to the reverse before the transmission process Re-discharge the signal before the Shanli Fourier transform processor. ISS-P060039-TW 40
TW95136751A 2005-10-06 2006-10-03 Methods and apparatus for circulation transmissions for ofdm-based mimo systems TWI324002B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/244,607 US7593472B2 (en) 2004-10-22 2005-10-06 Methods and apparatus for circulation transmissions for OFDM-based MIMO systems

Publications (2)

Publication Number Publication Date
TW200721756A TW200721756A (en) 2007-06-01
TWI324002B true TWI324002B (en) 2010-04-21

Family

ID=38907095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95136751A TWI324002B (en) 2005-10-06 2006-10-03 Methods and apparatus for circulation transmissions for ofdm-based mimo systems

Country Status (2)

Country Link
CN (1) CN101079861B (en)
TW (1) TWI324002B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526510B1 (en) * 2002-09-30 2005-11-08 삼성전자주식회사 Signal transmitting/receiving apparatus and method over multiple antennas in a mobile communication system
US7002900B2 (en) * 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
KR100552680B1 (en) * 2003-02-17 2006-02-20 삼성전자주식회사 PAPR reduction method for multiple antenna OFDM communication systems and multiple antenna OFDM communication systems using the same method

Also Published As

Publication number Publication date
CN101079861B (en) 2012-02-08
TW200721756A (en) 2007-06-01
CN101079861A (en) 2007-11-28

Similar Documents

Publication Publication Date Title
TWI339057B (en) Transmit diversity processing for a multi-antenna communication system
US7593472B2 (en) Methods and apparatus for circulation transmissions for OFDM-based MIMO systems
CN101005301B (en) The coded method of wireless communication system and system
KR101321023B1 (en) Multidimensional constellations for coded transmission
RU2368079C2 (en) Separation in transmission and spatial expansion for communication system with multiple antennas, using multiplexing with orthogonal frequency separation
KR101299386B1 (en) Advanced mimo interleaving
TWI383628B (en) Method and apparatus for data processing in a multi-channel communication system
JP4787272B2 (en) Parser for multiple data streams in a communication system
CN107409113A (en) Efficient WLAN(WLAN)In downlink signaling
JP5431970B2 (en) Method and system for interleaving a multi-input multi-output multi-band OFDM communication system
US9954709B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
CN107113450A (en) Broadcast singal dispensing device, broadcast receiver, broadcast singal sending method and broadcast signal received method
CN105359510B (en) The device and method for transmitting broadcast singal, the device and method for receiving broadcast singal
WO2006002550A1 (en) System and method for mapping symbols for mimo transmission
TW200904089A (en) Methods and apparatus to improve performance and enable fast decoding of transmissions with multiple code blocks
TW200522566A (en) Incremental redundancy transmission in a MIMO communication system
TW201138384A (en) Transmitter and method for transmitter, method in which subcarrier pairs are paired, a computer-readable medium storing instructions
KR102079265B1 (en) Method and device for data transmission
CN108923888A (en) Transmission and device, transmission and the method for receiving broadcast singal for receiving broadcast singal
US10237590B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
JP5722359B2 (en) Method, apparatus, and system for using protection tones in an OFDM system to increase data rate and improve reliability
TWI324002B (en) Methods and apparatus for circulation transmissions for ofdm-based mimo systems
CN101378283A (en) Diversity method for MIMO-OFDM system base on null-frequency encode
CN101374132B (en) Multiplex transmission method and system for multi-input multi-output OFDM system open loop space
Shwetha et al. The performance analysis of MIMO OFDM system with different M-QAM modulation and Convolution channel coding