TWI323479B - Devices having horizontally-disposed nanofabric articles and methods of making the same - Google Patents

Devices having horizontally-disposed nanofabric articles and methods of making the same Download PDF

Info

Publication number
TWI323479B
TWI323479B TW93103122A TW93103122A TWI323479B TW I323479 B TWI323479 B TW I323479B TW 93103122 A TW93103122 A TW 93103122A TW 93103122 A TW93103122 A TW 93103122A TW I323479 B TWI323479 B TW I323479B
Authority
TW
Taiwan
Prior art keywords
nanotube
gap
nanotube structure
electromechanical device
patch
Prior art date
Application number
TW93103122A
Other languages
Chinese (zh)
Other versions
TW200511364A (en
Inventor
Venkatachalam C Jaiprakash
Jonathan W Ward
Thomas Rueckes
Brent M Segal
Original Assignee
Nantero Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantero Inc filed Critical Nantero Inc
Publication of TW200511364A publication Critical patent/TW200511364A/en
Application granted granted Critical
Publication of TWI323479B publication Critical patent/TWI323479B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Semiconductor Memories (AREA)

Description

11323479 : A7 B7 五、發明說明(1) 【相關申請案之交互參照資料】 下述申請案係讓渡給本發明之受讓人,其全部係 於此列入作參考,且本發明係在35 U.S.C. §119或§ 120之規定下適當地主張優先權: 5 Nanotube Films and Articles(奈米管薄膜與物 件),美國專利申請序號1〇/128,118,申請曰為2002 年4月23曰;11323479: A7 B7 V. INSTRUCTIONS (1) [Reciprocal References in Related Applications] The following application is assigned to the assignee of the present application, the entire disclosure of which is incorporated herein by reference. Priority is appropriately claimed under 35 USC § 119 or § 120: 5 Nanotube Films and Articles, US Patent Application Serial No. 1/128,118, filed on April 23, 2002 ;

Methods of Making Carbon Nanotube Films, Layers, Fabrics, Ribbons, Elements and Articles(奈米 10 碳管薄膜、層、結構、絲帶、元件以及物件之製造方 法),美國專利申請序號10/341,005,申請曰為2003 年1月13日;Methods of Making Carbon Nanotube Films, Layers, Fabrics, Ribbons, Elements and Articles, U.S. Patent Application Serial No. 10/341,005, filed on 2003 January 13th;

Electromechanical Memory Array Using Nanotube Ribbons and Method for Making Same(使用奈米管絲 15 帶之機電記憶體陣列及其製造方法),美國專利申請 序號09/915,093,申請曰為2001年7月25曰; 經濟部智慧財產局員工消費合作社印製Electromechanical Memory Array Using Nanotube Ribbons and Method for Making Same, U.S. Patent Application Serial No. 09/915,093, filed on July 25, 2001; Intellectual Property Bureau employee consumption cooperative printing

Electromechanical Three-Trace Junction Devices(機電三線連接裝置),美國專利申請序號 10/033,323,申請曰為2001年12月28曰;以及 20 Electro-Mechanical Switches and Memory CellsElectromechanical Three-Trace Junction Devices, US Patent Application Serial No. 10/033,323, filed on December 28, 2001; and 20 Electro-Mechanical Switches and Memory Cells

Using Vertically-Disposed Nanofabric Articles and Methods of Making the Same(使用直立排列之奈米結 構物件之機電開關與記憶體單元及其製造方法),美 本纸張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 11323479 A7 . B7 五、發明說明(2) 國臨時專利申請序號60/446,786,申請曰為2003年2 月12日。 本發明在美國專利申請案號60/446,783之35 USC 119(e)之規定下主張優先權,申請曰為2003年2 5 月 12 日,名稱為「Electro-Mechanical Switches and Memory cells Using Horizontally-Disposed Nanofabric Articles and Methods of Making the Same(使用水平排 列之奈米結構物件之機電開關與記憶體單元及其製造 方法)」。 10 【發明所屬之技術領域】 本發明係關於具有水平排列之奈米結構物件的裝 置及其製造方法。 【先前技術】 經濟部智慧財產局員工消費合作社印製 過去已提出使用例如單壁奈米碳管之奈米級配線 15 之記憶體裝置,用以形成交錯式接面以作為記憶體單 元。(參見 WO 01/03208,Nanoscopic Wire-Based Devices,Arrays,and Methods of Their Manufacture(奈 米級配線式裝置、陣列及其製造方法):以及Thomas Rueckes 等人,"Carbon Nanotube-Based Nonvolatile 20 Random Access Memory for Molecular Computing(供分 子計算用之奈米碳管式非揮發性隨機存取記憶體)", 2000年7月7曰,Science(科學期刊)第289卷,第 94-97頁。在下文中,這些裝置被稱為奈米管配線交 -4- 本紙張尺度適用中國國家標準(CNS)A4規格(210x 297公釐) 1323479 Α7 五、發明說明(3) 5 10 15 經濟部智慧財產局員工消費合作社印製 20 錯式記憶體(NTWCM)。在這些提案之下,懸浮在复 他配線上面之個別的單壁奈米管配線定義出複數個:己 憶體單元。電氣信號係被寫入至一條或兩條配線,以 使它們在物理上彼此吸引或排斥。每個物理狀離(亦 即’吸引或排斥配線)係對應至_個電氣狀態。排斥 配線係為一開路接面。吸弓丨配線係為形成一整流接面 之一封閉狀態。當從此接面移除電力時,這些配線維 持它們的物理(從而是電氣)狀態,藉以形成二非揮發 性記憶體單元。 NTWCM提議依靠定向成長或化學自我組合技 術,以使記憶體單元所需要的個別奈米管成長。於使 用現代技術之商業規模下,這些技術現在被認為難以 採用。此外,它們可包含例如可能藉由舞用這些技術 而確實成長之奈米管之長度4固有㈣】,且其可能難 以控制如此成長之奈米管配線之幾何之統計變量。因 此,期望有改良的記憶體單元設計。 美國專利公開號2003·0021966尤其揭露例如記 憶體單7C之機電電路,其中此等電路包含一具有從一 基板之一表面延伸之導電線路與支撐物之構造。奈米 管絲帶係藉由橫越這些導電線路之支撐物而懸浮。每 個絲帶包含一個或多個奈米管。這些絲帶係由從一層 或奈米管之毛面結構選擇性移除材料所形成。 舉例而s ’如在美國專利申請公開號2〇〇3·Using Vertically-Disposed Nanofabric Articles and Methods of Making the Same, using the Chinese National Standard (CNS) A4 specification (210x297) PCT 11323479 A7 . B7 V. INSTRUCTIONS (2) The Provisional Patent Application No. 60/446,786, filed on February 12, 2003. The present invention claims priority under 35 USC 119(e) of U.S. Patent Application Serial No. 60/446,783, filed on May 12, 2003, entitled "Electro-Mechanical Switches and Memory Cells Using Horizontally-Disposed Nanofabric Articles and Methods of Making the Same (Electro-Mechanical Switch and Memory Units and Their Manufacturing Methods Using Horizontally Arranged Nanostructured Objects). TECHNICAL FIELD OF THE INVENTION The present invention relates to a device having a horizontally arranged nanostructured article and a method of manufacturing the same. [Prior Art] Printed by the Intellectual Property Office of the Ministry of Economic Affairs, the Consumers' Cooperatives. A memory device using nanowires 15 such as single-walled carbon nanotubes has been proposed in the past to form a staggered junction as a memory cell. (See WO 01/03208, Nanoscopic Wire-Based Devices, Arrays, and Methods of Their Manufacture: and Thomas Rueckes et al., "Carbon Nanotube-Based Nonvolatile 20 Random Access Memory for Molecular Computing ", July 7, 2000, Science, Vol. 289, pp. 94-97. In the following, these devices are called the wiring of the nanotubes. The paper size applies to the Chinese National Standard (CNS) A4 specification (210x 297 mm). 1323479 Α7 V. Invention description (3) 5 10 15 Ministry of Economics intellectual property The Bureau of Staff Consumer Cooperatives printed 20 Wrong Memory (NTWCM). Under these proposals, the individual single-walled nanotube wirings suspended above the complex wiring define a number of: the memory unit. Write to one or both wires so that they physically attract or repel each other. Each physical separation (ie, 'attract or repel the wiring') corresponds to _ electrical states. The wire is an open junction. The suction wire is a closed state that forms a rectifying junction. When the power is removed from the junction, the wires maintain their physical (and thus electrical) state, thereby forming a second Volatile Memory Units NTWCM proposes to rely on directed growth or chemical self-assembly techniques to grow the individual nanotubes required for memory cells. These technologies are now considered to be difficult to adopt at commercial scale using modern technology. They may include, for example, the length 4 of the nanotubes that may actually grow by dancing with these techniques (4), and it may be difficult to control the geometrical variables of the geometry of the nanotube wiring so grown. Therefore, improved memory is desired. In particular, U.S. Patent Publication No. 2003-0021966 discloses an electromechanical circuit such as a memory cell 7C, wherein the circuit comprises a structure having a conductive trace and a support extending from a surface of a substrate. Suspended by a support that traverses these conductive traces. Each ribbon contains one or more nanotubes. The bands are formed by the structure from the matte side selectively removing material of one or more nanotubes. By way of example and s' as described in U.S. Patent Application Publication No. 2〇〇3 ·

五、發明說明(4) 0021966中所揭露的,一奈米结構可能被圖案化成絲 帶,而這些絲帶可被使用作為一組件以建構非揮發性 機電記憶體單元。此絲帶係可機電偏移的,以因應控 制線路及/或絲帶之電刺激源。此絲帶之偏移的物理 5狀態可被製作成用以表示一對應的資訊狀態。偏移的 物,狀態具有非揮發性,意思為即使移除供應給記憶 ^早兀之功率,絲帶仍維持其物理(從而是資訊)狀 匕、如在美國專利申請公開號2003-0124325中所說 明的,二線構造可能供機電記憶體單元使用其中兩 10個線路為電極以控制絲帶之偏移。 【發明内容】 本發明提供具有水平排列之奈米結構物件的新裝 置及其製造方法。 15 20 在本發明之某些樣態之下,—種分離式機電裝置 13具有一導電線路之構造。一奈米管結構之界定 片(patch)係以與该線路呈隔開關排列·而該奈米管 :構之界定補片係可在一第一與第二狀態之間機電偏 =在該第-狀態中,該奈米管物件係相對於該線路 :開關係’而在該第二狀態中,該奈米管物件係與 二:路接冑-低電阻信號路徑係與該奈米結構之界 疋補片電氣連通。 ’該構造包含一當中 該界定間隙具有一界 在本發明之另一個樣態之下 排列有該導電線路之界定間隙。V. INSTRUCTIONS (4) As disclosed in 002,1966, a nanostructure may be patterned into ribbons, and these ribbons may be used as a component to construct a non-volatile electromechanical memory unit. This ribbon is electromechanically offset to accommodate the electrical stimulation source of the circuit and/or ribbon. The physical 5 state of the offset of the ribbon can be made to represent a corresponding information state. Offset, the state is non-volatile, meaning that the ribbon retains its physical (and thus information) state even if the power supplied to the memory is removed, as in U.S. Patent Application Publication No. 2003-0124325. Explain that the two-wire configuration may be used by an electromechanical memory unit in which two of the 10 lines are electrodes to control the offset of the ribbon. SUMMARY OF THE INVENTION The present invention provides a new device having a horizontally arranged nanostructured article and a method of manufacturing the same. 15 20 In some aspects of the invention, a separate electromechanical device 13 has a configuration of electrically conductive lines. A patch of a nanotube structure is arranged in a switch with the line. The nanotube can define a patch between the first and second states. In the state, the nanotube object is in relation to the line: an open relationship 'in the second state, the nanotube object and the second: the junction-low resistance signal path system and the nanostructure The boundary patch is electrically connected. The configuration includes a defined gap in which the defined gap has a boundary in which the conductive line is arranged under another aspect of the invention.

本纸張尺她 五 '發明說明(5) 疋見度’且該奈米管結構之界定補片跨越該間隙並具 有一略比該間隙之該界定寬度長之縱向範圍。 在本發明之另一個樣態之下,該裝置包含另一個 與該奈米管結構之補片呈隔開關係之導電線路。 5 10 在本發明之另一個樣態之下’ -夾板(damp)係 排列於該奈米管結構段之兩端之每—端,且實質上排 列於該奈米管結構段之界定職隙之該等邊緣之至少 一部分上。 在本發明之另-個樣態之下,該爽板係由導 料所構成。 # 在本發明之另-個樣態之下,該夾板係由具有— 通孔(via)之電氣絕緣材料所構成,該通孔係以導電材 料填滿’用以提供—與該奈米管結構段電氣連通之路 控。 15 纟本發明之另-個樣態之下,該奈米管結構段係 由一具有-多孔部分之奈米結構所構成,且其中填滿 该通孔之該導電材料亦填滿該奈米管結構段之至 些毛細孔。 $ 在本發明之另—個樣態之下,該奈米管結構段呈 20有一平版印刷界定的形狀。 ” 在本發明之另—個樣態之下,在該奈米管補片與 該線路之間的該接觸係為一非揮發性狀態。 、 在本發明之另—個樣態之下,在該奈米管補片與 本纸張尺度適用中國國家標準(CNS}A4規格(21〇 X 297公釐) 1323479The paper ruler describes the (5) visibility and the defined patch of the nanotube structure spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap. In another aspect of the invention, the apparatus includes another electrically conductive circuit in spaced relationship with the patch of the nanotube structure. 5 10 In another aspect of the invention, a - damp is arranged at each end of the two ends of the nanotube structure and substantially aligned with the defined gap of the nanotube structure At least a portion of the edges. In another aspect of the invention, the slab is comprised of a material. In another aspect of the invention, the splint is comprised of an electrically insulating material having a via that is filled with a conductive material to provide - with the nanotube Road control for electrical connection of structural sections. According to another aspect of the invention, the nanotube structure is composed of a nanostructure having a porous portion, and the conductive material filling the through hole also fills the nanometer. The capillary section of the tube structure. In another aspect of the invention, the nanotube structure segment has a shape defined by a lithographic pattern. In another aspect of the invention, the contact between the nanotube patch and the line is in a non-volatile state. In another aspect of the invention, The nanotube patch and the paper scale apply to the Chinese national standard (CNS}A4 specification (21〇X 297 mm) 1323479

該線路之間的該接觸係為—揮發性狀態。 在本發明之另一個樣態之下,該至少一導電線路 具有一介面材料以改變該奈米管結構段與該導電線路 之間的吸引力。 5【實施方式】 經濟部智慧財產局員工消費合作社印製 本發明之較佳實施例提供具有水平排列之奈米管 物件之新物件,並提供其製造方法。某些實施例提供 箝制或夾住懸浮奈米管物件以改善它們的性能與製造 能力之改良方法。其他實施例提供可能是分離式或嵌 10入式機電s己憶體單元。在某些實施例之下,分離式記 憶體單元使用新方法以連接至其他電路或單元,其降 低線路至記憶體單元之電阻率。又其他實施例提供具 有揮發性資訊狀態(亦即,當電力被中斷時,資訊狀 悲會遺失)之記憶體單元。某些其他實施例使用類似 15於美國專利申請公開號2003-0124325之三線構造。 然而,這些實施例可利用揮發性與非揮發性特徵之組 合;舉例而言,資訊狀態可能是非揮發性的,但此裝 置可使用二線構造’於其中奈米管物件之偏移可能由 具有揮發性狀態特徵之線路所導致。 20 這些較佳實施例係藉由使用奈米管薄膜、層或不 織布而完成,俾能使它們形成或可能被製造以形成各 種有用圖案化組件、元件或物件(以下"薄膜”、”層"、 或”不織布"係以"結構••或••奈米結構•,表示)。由奈米結 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 1^23479 A7 五 10 15 20 、發明說明(7) 構所建構之組件維持奈米管及/或奈米結構之期望的 物理特性’這些組件係由奈米管及/或奈米結構所形 成。此外’較佳實施例允許待採用之現代化製造技術 (例如’使用於半導體製造的那些技術)利用奈米結構 物件與裝置。 本發明之較佳實施例包含增加奈米結構之應變之 物件與方法’因此可選擇包含具有揮發性與非揮發性 狀態兩者之三態或三線開關之揮發性與非揮發性機電 開關之構造。某些實施例中之奈米結構亦提供待製造 之例如記憶體單元之分離式蜂巢物件。 總之,圖2 A-D顯示具有相對於兩個控制電極而 懸浮之奈米管物件之分離式裝置。在製造期間,電極 與奈米管物件之間的間隙距離可能受到控制,以導致 邊裝置之不同的作用情形。以下更詳細討論這些實施 例。 圖3-6顯不一個裝置之各種平面圖與剖面視圖, 用以S兄明供既定單元或裝置用之控制電極與奈米管物 件之間的相交與間隔關係。 較佳的情況是,將奈米管補片或區段箝制(斧上 與往下)直到如此懸浮的奈米結構物件之部分。此 外,奈米結構物件較佳是連接或結合至高導電氣信號 路徑。 13 ~ 圖1A-P顯示具有奈米結構物件之個別的分離式 -9- 本纸張尺度適用中國g家標準(CNS)A4規格⑵G XU?公爱) 1323479 五、發明說明 裝置或單s可以如何依據本發明之較佳實施例而製成 (這些圖並非按照一定比例繪製)。個別單元包含—縣 浮在以與補片或區段排列成相交關係之兩個其他線ς 之間的奈米結構之補片或區段。 5 參見圖1Α,提供一種具有絕緣或氧化層1〇2之 矽晶圓基板100。(或者,基板可能由任何適合與平版 印刷姓刻與電子設備一起使用之材料所製成,而氧化 層可以是任何適當的絕緣材料)t>氧化層1〇2具有一 上表面104。氧化層102之厚度較佳是幾毫微米但 可能是厚。氧化層1〇2係被圖案化並餘刻以產 生形成支撐構造108之複數個孔穴i 〇6。 孔八106之寬度W取決於所使用的平版印刷圖 案化之型式。舉例而言,以目前光刻技辦而言,這個 孔穴可能是大約180 nm寬。對其他方法而言,寬度 15可像大約20 nm 一樣窄或更小。剩下的氧化層材料 界疋出位於孔穴106之任一側上之支撐〖丨〇。 參見圖1B’材料係被沈積在這些孔穴1〇6中, 經濟部智慧財產局員工消費合作社印製 用以形成下電極112,此電極材料可以從任何適當的 導體或半導體中選取。下電極丨12係被平坦化,以使 20其上表面實質上與氧化層1〇2之上表面ι〇4 一樣高, 藉以形成中間構造114。下電極i 12可以是預製的接 觸插塞或通孔(via)。又,可利用其他方法沈積或製造 下電極112,包括藉由形成在基板1〇2之表面上。 -10- 本纸張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐 1323479 A7 B7The contact between the lines is in a volatile state. In another aspect of the invention, the at least one electrically conductive track has an interface material to modify the attractive force between the nanotube structure segment and the electrically conductive trace. 5 [Embodiment] Ministry of Economic Affairs Intellectual Property Office Staff Consumer Cooperative Printing The preferred embodiment of the present invention provides a new article having horizontally aligned nanotube articles and provides a method of manufacturing the same. Certain embodiments provide an improved method of clamping or clamping suspended nanotube articles to improve their performance and manufacturing capabilities. Other embodiments provide a separate or embedded electromechanical s-resonance unit. In some embodiments, the split memory cell unit uses a new method to connect to other circuits or cells that reduces the resistivity of the line to the memory cell. Still other embodiments provide a memory unit having a volatile information state (i.e., information loss will be lost when power is interrupted). Some other embodiments use a three-wire configuration similar to that of U.S. Patent Application Publication No. 2003-0124325. However, these embodiments may utilize a combination of volatile and non-volatile features; for example, the information state may be non-volatile, but the device may use a two-wire configuration where the offset of the nanotube article may be Caused by the line of volatile state characteristics. 20 These preferred embodiments are accomplished by the use of nanotube films, layers or nonwovens which enable them to be formed or possibly fabricated to form various useful patterned components, elements or articles (hereinafter "film","", or "Non-woven" "Structure•••••Nemi Structure•,). From the nano-scale paper scale to the Chinese National Standard (CNS) A4 specification (210x297 mm) 1^23479 A7 5 10 15 20 , invention description (7) The constructed component maintains the desired physical properties of the nanotube and/or nanostructures. These components are formed by nanotubes and/or nanostructures. Embodiments allow for modern manufacturing techniques to be employed (e.g., those used in semiconductor fabrication) to utilize nanostructured articles and devices. Preferred embodiments of the present invention include articles and methods that increase the strain of the nanostructures. A construction of a volatile and non-volatile electromechanical switch comprising a tri-state or three-wire switch having both volatile and non-volatile states. The nanostructures of some embodiments are also provided. A separate honeycomb article, such as a memory cell. In summary, Figure 2 AD shows a separate device having a nanotube article suspended relative to two control electrodes. During manufacture, between the electrode and the nanotube article The gap distance may be controlled to cause different action scenarios for the edge devices. These embodiments are discussed in more detail below. Figure 3-6 shows various plan and cross-sectional views of a device for use with a given unit or device The intersection and spacing relationship between the control electrode and the nanotube article. Preferably, the nanotube patch or section is clamped (up and down) to the portion of the nanostructured article so suspended. In addition, the nanostructured article is preferably connected or bonded to the high conductive gas signal path. 13 ~ Figure 1A-P shows the individual separation of the nanostructured object -9- This paper scale applies to the Chinese g standard (CNS) A4 Specification (2) G XU? Publicity) 1323479 V. Description of the Invention How a device or a single s can be made in accordance with a preferred embodiment of the present invention (these figures are not drawn to scale). The element contains a patch or section of the nanostructure between two other turns that are arranged in an intersecting relationship with the patch or section. 5 Referring to Figure 1 , an insulating or oxide layer is provided. 2 wafer substrate 100. (Alternatively, the substrate may be made of any material suitable for use with lithographic printing and electronic devices, and the oxide layer may be any suitable insulating material) t> oxide layer 1〇2 There is an upper surface 104. The thickness of the oxide layer 102 is preferably a few nanometers but may be thick. The oxide layer 1 2 is patterned and left to create a plurality of holes i 〇 6 forming the support structure 108. The width W of 106 depends on the type of lithographic patterning used. For example, in the current lithography office, this hole may be approximately 180 nm wide. For other methods, the width 15 can be as narrow or smaller as about 20 nm. The remaining oxide layer material exits the support on either side of the cavity 106. Referring to Figure 1B', material is deposited in these cavities 1 and 6 and printed by the Ministry of Economic Affairs Intellectual Property Office Staff Cooperatives to form the lower electrode 112, which may be selected from any suitable conductor or semiconductor. The lower electrode 12 is planarized such that its upper surface is substantially as high as the surface ι 4 above the oxide layer 1 , 2, thereby forming the intermediate structure 114. The lower electrode i 12 may be a prefabricated contact plug or via. Further, the lower electrode 112 may be deposited or fabricated by other methods, including by being formed on the surface of the substrate 1〇2. -10- This paper scale applies to China National Standard (CNS) A4 specification (210 x 297 mm 1323479 A7 B7)

參見圖1C,氮化層Π6(或任何適當的絕緣材料) 係被沈積在構造114之表面上,藉以形成令間構造 118。氮化層116具有上表面120。以〇 18微米基本 原則(GR)來說,一非限制例之氮化層厚度大約為2〇 nm。氮化層厚度可依據期望的最終產品之基本原則 而改變。如以下所說明的,這些尺寸會影響裝置之某 些特徵;舉例而言,在分離式記憶體單元的情況下, 這些參數可決定開關是否為非揮發性的或揮發性的, 並可影響使奈米結構物件偏移之與vQff電;t。 10 15 經濟部智慧財產局員Η消費合作社印製 20 參見圖1D,構造118之氮化層116係接著被圖 案化並钱刻以產生複數個孔穴122。孔穴122之尺寸 與形狀係被製成以對應至最後將變成奈米管活性區域 (亦即,可能使奈米結構物件偏移之區域)之尺寸與形 狀。孔穴122實質上係形成在下電極ip之上,並遺 留剩下的氮化層124且形成中間構造126。 參見圖1E,多晶體之犧牲層128(具有上表面 131)係沈積在中間構造126之表面上,藉以形成中間 構造130。多晶體層128之厚度τ之非限制參數係大 約 100 至 200 nm。 參見圖1F’中間構造130之上表面13ι係被平 坦化。錯此’剩下的多晶體層132之表面133實質上 係與剩下的IL化層124之上表面120 一樣高,從而形 成中間構造134。 -11- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 11323479 A7 B7 五、發明說明 10 15 20 參見圖1G,奈米管結構136係被塗敷至中間構 造134之表面或形成於其上,從1而形成中間構迭 138。塗敫這種結構U6之非限制方法係藉由旋轉塗 佈預先形成的奈米管,粒子(aerosol)施加,沈浸或藉 由化學氣相沈積。這種方法係說明於上述所列出並併 入之參考文獻中。 參見圖1H,光阻層140係被塗敷至中間構造 138之上表面,藉以形成中間構造142。 接著,光阻層140之區域係被圖案化。該區域應 該在被任命為奈米管活性區域之面積上面,且應該大 於那個面積❶如圖Π所示,光阻層14〇可能藉由 先平版印刷圖案化此光阻層14〇而被圖案化,藉以 成中間構造144。構造144具有位於圖案化的光 148之任一側上之奈米結構之露出部分146。 然後,如圖υ所示,露出的奈米管結構146 ^ 能被蝕刻掉,藉以形成中間構造15〇。蝕刻奈米管結 構之非限制方法係藉由電漿灰化。構造15〇具有圖案 化的光阻148以及在其之下同樣被圖案化的奈米 部分141 〇 參見圖ικ,將圖案化的光阻層148移除藉 形成具有奈米管結#之圖案化區段或補4 154之 構以152。補片154係在犧牲材料之區域132上面, 而區域U2係在電極材料112上面。補片係略長於多 罈 i 首 形 阻 可 以 間 訂 •12- 五、發明說明(η) 曰曰體區域132之寬度。 參見圖1L,多晶體層156係沈積於中間構造152 之上表面上’用以形成中間構造158。多晶體層156 之厚度Τ之非限制範圍係在大約2〇至50 nm之間。 5 參見圖1M,多晶體層150係被圖案化,藉以形 成中間構造162。構造162具有在奈米管結構154之 補片上面的剩下的多晶體層部分16〇,如上所述其係 位於將是奈米管活性區域之部分中。多晶體層部分 16〇係大於將是奈米管活性區域122之部分,且係與 10下層的圖案化奈米管結構154具有相同的尺寸或大於 奈米管結構154。 多見圖1N,上部電極材料164係沈積於中間構 造162之上表面上,藉以形成中間構造_ 166。電極材 料164之非限制厚度τ大約為35〇 nm。供使用作為 b上:電極164之材料可從任何適合電子成分之金屬或 導體選出。或者’依據所製造之裝置之最終使用目 的例如’要是被使用作為奈米管保護層,此種讨料 可以疋一種絕緣材料。上部電極亦可被定義為一行或 一插槽軟性著陸料(standing pad)或其他適合互 連之構造。Referring to Figure 1C, a nitride layer 6 (or any suitable insulating material) is deposited on the surface of the structure 114 to form the inter-structure 118. The nitride layer 116 has an upper surface 120. In the 〇 18 micron basic principle (GR), a non-limiting example of a nitride layer thickness is about 2 〇 nm. The thickness of the nitride layer can vary depending on the basic principles of the desired end product. As explained below, these dimensions can affect certain features of the device; for example, in the case of a split memory unit, these parameters can determine whether the switch is non-volatile or volatile and can affect Nanostructure object offset and vQff electricity; t. 10 15 Ministry of Economic Affairs Intellectual Property Officer Η Consumer Cooperative Print 20 Referring to Figure 1D, the nitride layer 116 of the structure 118 is then patterned and engraved to produce a plurality of holes 122. The size and shape of the aperture 122 is made to correspond to the size and shape that will eventually become the active area of the nanotube (i.e., the area where the nanostructure is likely to be offset). The aperture 122 is formed substantially above the lower electrode ip and leaves the remaining nitride layer 124 and forms an intermediate formation 126. Referring to FIG. 1E, a polycrystalline sacrificial layer 128 (having an upper surface 131) is deposited on the surface of the intermediate structure 126 to form an intermediate structure 130. The non-limiting parameter of the thickness τ of the polycrystalline layer 128 is about 100 to 200 nm. Referring to Fig. 1F', the upper surface 13 of the intermediate structure 130 is flattened. The surface 133 of the remaining polycrystalline layer 132 is substantially as high as the upper surface 120 of the remaining IL layer 124, thereby forming the intermediate structure 134. -11- This paper scale applies to China National Standard (CNS) A4 specification (210 X 297 mm) 11323479 A7 B7 V. Inventive Note 10 15 20 Referring to Figure 1G, the nanotube structure 136 is applied to the intermediate structure 134 The surface is formed thereon or formed from 1 to form an intermediate formation 138. A non-limiting method of applying this structure U6 is by spin coating a preformed nanotube, aerosol application, immersion or chemical vapor deposition. This method is illustrated in the references listed above and incorporated herein by reference. Referring to FIG. 1H, a photoresist layer 140 is applied to the upper surface of the intermediate structure 138 to form an intermediate structure 142. Next, the area of the photoresist layer 140 is patterned. The area should be above the area of the active area of the nanotube, and should be larger than that area. As shown in FIG. 光, the photoresist layer 14 may be patterned by lithographic patterning of the photoresist layer 14〇. In order to become an intermediate structure 144. The configuration 144 has an exposed portion 146 of the nanostructure on either side of the patterned light 148. Then, as shown in FIG. ,, the exposed nanotube structure 146^ can be etched away, thereby forming an intermediate structure 15〇. The non-limiting method of etching the nanotube structure is by plasma ashing. Constructing a patterned photoresist 148 and a nano-portion 141 that is also patterned below it, see Figure ι, removing the patterned photoresist layer 148 to form a pattern with a nanotube junction # Section or complement 4 154 is constructed as 152. The patch 154 is attached over the region 132 of the sacrificial material and the region U2 is over the electrode material 112. The patch is slightly longer than the multi-album i. The first shape resistance can be ordered. • 12- 5. Inventive Note (η) The width of the body region 132. Referring to Figure 1L, a polycrystalline layer 156 is deposited on the upper surface of the intermediate structure 152 to form an intermediate formation 158. The non-limiting range of the thickness 多 of the polycrystalline layer 156 is between about 2 〇 and 50 nm. 5 Referring to Figure 1M, polycrystalline layer 150 is patterned to form intermediate structure 162. The configuration 162 has a remaining polycrystalline layer portion 16A above the patch of the nanotube structure 154 which, as described above, is located in a portion that will be the active region of the nanotube. The polycrystalline layer portion 16 is more than a portion of the nanotube active region 122 and has the same dimensions or greater than the nanotube structure 154 of the lower layer patterned nanotube structure 154. Referring more to Fig. 1N, upper electrode material 164 is deposited on the upper surface of intermediate structure 162 to form intermediate structure 166. The unrestricted thickness τ of the electrode material 164 is approximately 35 〇 nm. For use as b: the material of electrode 164 can be selected from any metal or conductor suitable for the electronic component. Alternatively, depending on the intended use of the device to be manufactured, for example, if it is used as a protective layer for a nanotube, such a material may be an insulating material. The upper electrode can also be defined as a row or a socket of a standing pad or other suitable interconnect structure.

-13- 規格(210 X 297公爱) 本紙張尺度適用中國國家標準 丨1323479 A7 B7 五、發明說明(12) 15 經濟部智慧財產局員工消費合作社印製 20 見,圖10並未顯示上部封裝材料。 參見圖1P,剩下的多晶體層部分16〇與剩下的 多晶體132係被蝕刻掉以建立構造176。電極168與 U2相對於該頁面而垂直延伸,並被支撐於遠離其/中 懸浮有奈米結構之補片132之奈米管活性區域之末 端。補#154係、因為由被移除之犧牲材料之厚度(例 如_)所界定之間隙(例如174)而懸浮。為了清楚起 見,圖1P並未顯示上部封裝材料。然而,圖2a_d 顯示上部材料178如何用以包封此構造,並用以協助 箝制懸浮的奈米管結構物件。 上述製程可利用多S方法來變t。舉例而言,對 應於圖U.L之步驟可被取代如下。參見圖h,(其將接 在對應於圖1H之步驟後)’光阻層14〇(參見圖ih)係 被圖案化以留下光⑯149 1具有露出的奈米管部分 147 ’藉以形成中間構造U5。 參見圖U、多晶體層151係沈積於曾經是露出 的奈来管區域U7上(參見圖1Γ)以及沈積至剩下的光 阻層Μ9之上,藉以形成中間構造多晶體層 151可以是在CM〇S製程方面有用的任何材料,只要 它可在光阻層刚與露出的奈米管上方受到不同㈣ 即可。 然後,參見圖1K,,剩下的光阻層149係在剝落 W)製程中被移除,藉以形成具有露出的奈米管-13- Specifications (210 X 297 public) This paper scale applies to Chinese national standard 丨 1323479 A7 B7 V. Invention description (12) 15 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 20 See, Figure 10 does not show the upper package material. Referring to FIG. 1P, the remaining polycrystalline layer portion 16A and the remaining polycrystal 132 are etched away to establish configuration 176. Electrodes 168 and U2 extend perpendicularly relative to the page and are supported at the end of the nanotube active region away from the patch 132 in which the nanostructure is suspended. Supplement #154 is suspended because of the gap (e.g., 174) defined by the thickness of the sacrificial material being removed (e.g., _). For the sake of clarity, Figure 1P does not show the upper packaging material. However, Figures 2a-d show how the upper material 178 can be used to encapsulate this configuration and to assist in clamping the suspended nanotube structure article. The above process can be changed by using the multiple S method. For example, the steps corresponding to Figure U.L can be replaced as follows. Referring to Figure h, (which will follow the step corresponding to Figure 1H), the photoresist layer 14A (see Figure ih) is patterned to leave light 16149 1 with exposed nanotube portions 147 'to form the middle Construct U5. Referring to FIG. U, a polycrystalline layer 151 is deposited on the exposed Neil tube region U7 (see FIG. 1A) and deposited on the remaining photoresist layer ,9, thereby forming an intermediate structure polycrystalline layer 151. Any material useful in the CM〇S process, as long as it is different from the exposed nanotubes just above the exposed nanotubes (4). Then, referring to FIG. 1K, the remaining photoresist layer 149 is removed during the peeling W) process to form an exposed nanotube.

本纸張尺度適用中國國家標準(CNS)A4規格This paper scale applies to China National Standard (CNS) A4 specifications.

1323479 五 發明說明(13 ) 5 10 15 20 結構部分157之構造155。此製程接著繼續上述以圖 1M之說明開始之製程。 露出的奈米管結構部分157可能在灰化處理中被 移除,將多晶體層丨5丨殘留在奈米管結構段i 54上 面,藉以形成構造162。剩下的多晶體部分151係大 於將成為奈米管活性區域之部分,類似於上述情況, 而可執行類似的後來步驟以完成此構造。 圖2A-C顯示對圖1P之構造176而言可使用之 金屬化與封裝機制。具體言之,構造176已被絕緣材 料178所包裹。依據所採用之技術,懸浮有奈米結構 物件之區域可能是真空。 如此形成之構造係為一種三穩或三線裝置。舉例 而言,上述所標示與併入之某些專利申請案說明可能 使用三穩或三線裝置之各種方法。在其他方法之間, 三線裝置可被使用作為啟動懸浮的奈米管物件之冗餘 方法;可能用以編碼第三資訊;可能被使用以與懸浮 物件成推挽排列。此外,其可能被使用俾能使一個線 路用以將奈米管物件偏移成與—電極接觸,而另_個 線路可能用以從接觸部釋放奈米管物件。 構造182中之奈米開關已被絕緣材料178所包 裹’並具有-間隙高度18〇。在某些實施例中間 高度180係為犧牲多晶體層132、16〇之厚卢之^备 (參見上方之圖1(0))。在偏移之時’奈米結^接觸下 -15- 本纸張尺國國家標準(CNS)A4規格(21〇以97公幻 1323479 A7 _____ B7 五、發明說明(14) 電極112’藉以形成產生非揮發性開關之穩定的凡得 瓦爾交互作用。 構造183顯示具有位在一個電極上面之一絕緣層 185之奈米結構式開關。(這種氧化電極之製造係說明 5於以下之例3中)。絕緣層185可能用以改變待成為 揮發性開關之特徵或用以提供期望作用情形之更進一 步的保證。絕緣層(其或者可能已被置於電極168之 面對表面上)可能用以防止來自奈米結構元件之不同 纖維在狀態轉變期間同時電氣接觸兩個電極(丨丨2、 10 168)。這種接觸可避免或妨礙狀態之間的結構的轉 換。 經濟部智慧財產局員工消費合作社印製 將可能使用作為非揮發性開關之構造〗82與183 與顯示揮發性開關之構造18 8作比較。在構造18 8 中,已增加奈米結構172與下層電極1丨2之間的間隙 15高度186,以使延伸的奈米結構之應變能克服在結構 與電極之間的凡得瓦爾吸引力。奈米結構形成封閉電 路之一部分’並回復至其非偏移之斷路狀態。吾人應 /主意到奈米結構與其他元件之間的凡得瓦爾交互作用 在它們的介面處之效應可受到影響。此效應可被提高 2〇或減少;例如,吸引力可藉由以一薄層之氡化層或其 他適當材料來塗佈電極之表面而減少。這種減少吸引 力之目的可能用以建構揮發性奈米開關;這種揮發性 開關可能在例如繼電器、感測器、電晶體等之應 -16- B7 五、發明說明(15) 面特別有用。 於圓2A之實施例中,這一個 ^ 徊屯極或這些電極可 能相對於補片154而被啟動,用 散级勁用以使補片154偏移 並接觸下電極112。於此愔.π下 % 此if况下,廷會形成穩定的凡 10 15 經濟部智慧財產局員工消費合作社印製 20 得瓦爾交互作用。補片之偏移亦建立一種回復力以 使補片恢復至圖2A所示之水平(非偏移)狀態。此種 回復力尤其係為裝置之幾何尺寸(例如,補片154偏 移之距離(180))之函數。於本實施例中,維持補片 154與電極112接觸之凡得瓦爾力係大於由圖21之 幾何形狀所產生的回復力,藉以產生非揮發性開關。 亦即,當移除電力時,使補片154與電極112接觸之 凡得瓦爾力大於補片154上之回復力,從而補片將維 持於偏移狀態。 將這種情況與圖2C之構造188作比較。在圖2C 中’間隙距離186係較大的,藉以建立較大的回復 力。藉由適當控制間隙距離(經由犧牲材料之創造), 此種間隙可能被做成大到足以建立大於凡得瓦_力之 回復力。因此’圖2C之裝置將是揮發性的。如果中 斷電力的話’補片154可類似於上述被偏移,但司復 力將大到足以使補片154回復至水平狀態。奈米絲帶 可經由靜電吸引而偏移,但凡得瓦爾力本身並不足以 使其保持在那裡。在構造188令,已增加補片154與 下層電極112之間的間隙高度186,以使延伸的奈米 -17- 本纸張尺度適用中國國家標準(CNS)A4規格(210χ297公釐) 五、發明說明(16) ’·。構之應變月b克服在結構與電極之間的凡得瓦爾吸引 力。奈米結構形成封閉電路之_部分並回復至 偏移之斷路狀態。 圖2D顯不構造192。構造192顯示非揮發性開 5關於此偏移的奈米結構154接觸封閉__電路之下電 極U2並繼續以接觸方式維持電路無期限地被封閉。 如果構造192之間隙高度18〇像在構造188令一樣是 足夠大的,則奈米結構172之偏移狀態將不會無期限 地維持。 1〇 藉由適當地支撐奈米結構154,可影響奈米結構 154之形變量。舉例而言,如圖2(A)所示,奈米結構 154可能在之前顯示於圖1(〇)中的犧牲多晶體層Η】 移除之後,於剩餘的開放區域194之邊緣處被“夾 住。使上部與下部夾住支撐部圍繞奈米結構154可 15增加奈米結構154上之應變。在某些實施例中,此種 型式之位於開放區域194之邊緣的夾住支榜部建立在 其他狀態下將是非揮發性的揮發性開關。藉由控制如 於此所說明的奈米開關組件之設計與製造,可能可選 擇地提供三態非揮發性的構造及/或揮發性的構造。 -〇 以此方式使用分離式奈米結構物件與電極允許分 離式裝置與單元之形成。舉例而言,這些單元可能使 用於數位記憶體裝置_。奈米結構(例如154)與電極 (例如168)可延伸在基板及/或支撐部102之上,足以 •18- 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 五、發明說明(17) 允許電氣連接至奈米結構154與電極168被完成。這 種連接可能藉由任何適當的方法來完成,例如藉由餘 刻或曝光以形成連接奈米結構154與一啟動電氣信號 之一通道196(未按照—定比例)或通孔。 5 通道196係用來將開關之-元件(例如奈米处構 叫電連接至-啟動(讀取/寫入)線。通道196接= 以-導體填滿以達成啟動連接,或可能藉由某些盆他 技術而形成。 〃 本發明之-個樣態係針對導電組合接面之形成, 1〇藉以將適當的基質材料排列在奈米管或奈米結構之纖 、·隹或其他多孔性奈米材料之内與在其周圍。這種接面 可提供需要的機械及/或電氣特性。舉例而言,可提 高奈米結構與金屬連接或啟動點之間的電氣i觸,或 可藉由應用金屬接觸以作為浸潰奈米結構管之基質材 15料來減少接觸電阻。又,因為奈米管與基質材料之間 的接觸增加之結果,可增加機械接觸與應變。 舉例而言,參考圖2D,啟動連接通道196向下 延伸至奈米結構154。然後,可將填滿通道196之金 屬更進-步導入在區域194中之奈米結構154之毛細 20孔。基質材料向下延伸至奈米結構154下方之下層氮 化層(或任何其他層)。這種連接之效果可用以固ϋ 未結構154並增加奈米結構154上之應變。又,增加 了奈米結構154與啟動連接之間的電氣連接。將奈米 -19. 核規格(21〇 χ 297-^~---— >1323479 A7 B7 五、發明說明(18) ’。構©定至支樓部之其他方法係可想像的而一個方 法係說明於以下之例2中。 幾乎任何材料(絕緣或傳導)可被製成以滲入或通 ㈣如奈米結構之多孔性的薄物件。這可被執行用以 5 &善機械閉合接觸並增加可靠度與製造能力,或用以 &善與奈米結構之電氣連接並減少對奈米物件之接觸 電阻依據所使用的材料,―接合狀態可形成在渗透 I貝材料與奈米結構下方之材料之間。依此方式可用 _定㈣結構之材料之例子包含金屬與遙晶石夕晶體 &種接面可能有其他用途’例如用於能渗透的 餘電晶體之製造上。值得注意的是上述之組合接面 錢接並未導致其中導人有浸潰基f材料之奈米結構 材料之結構的破裂。亦即,連接通道196本身並未穿 ㉟奈米結構154’反而只允許填料基f材料流入與流 〗5經奈米結構154並將其連接至裝置之其他組件。在某 些情況下,可能需要使用導電填料以減少奈米結構之 電阻或與奈米結構之接觸。 | 圖3顯示直接來自上方的中間構造176(參見圖 I 1P)之視圖。氧化層it撐奈米結構154,而氮化 J 20層116支撐電極168。顯示橫剖面Α·Α,、B_B,與c_c, I 以供參考。為了清楚起見,省略上部封裝材料178(參 消| 見圖2A)。 | 圖4係為沿著圖3所示之橫剖面A_A,之中間構 印 "(__.0- 1本紙張尺度適用中國國家規格⑵0x297公龙) ' -----1323479 5 Description of invention (13) 5 10 15 20 Construction 155 of structural portion 157. This process then continues with the process described above with reference to Figure 1M. The exposed nanotube structure portion 157 may be removed during the ashing process, leaving the polycrystalline layer 丨5丨 on the nanotube structure segment i 54 to form the structure 162. The remaining polycrystalline portion 151 is larger than the portion that will be the active area of the nanotube, similar to the above, and a similar later step can be performed to complete the configuration. 2A-C show metallization and packaging mechanisms that can be used with the construction 176 of FIG. 1P. In particular, construction 176 has been wrapped by insulating material 178. Depending on the technique employed, the area in which the nanostructured object is suspended may be a vacuum. The structure thus formed is a three- or three-wire device. For example, some of the patent applications identified and incorporated above may describe various methods of using a three- or three-wire device. Between other methods, a three-wire device can be used as a redundant method of initiating a suspended nanotube article; it may be used to encode a third message; it may be used to be in a push-pull arrangement with a suspended object. In addition, it may be used to enable one line to deflect the nanotube object into contact with the electrode, while another line may be used to release the nanotube article from the contact. The nanoswitch in construction 182 has been wrapped by insulating material 178 and has a gap height of 18 〇. In some embodiments, the height 180 is the thickness of the sacrificial polycrystalline layer 132, 16 (see Figure 1 (0) above). At the time of the offset 'nano junction ^ contact -15- this paper country national standard (CNS) A4 specification (21 〇 97 9713 13479 A7 _____ B7 5, invention description (14) electrode 112' by which A stable van der Waals interaction of the non-volatile switch is produced. Structure 183 shows a nanostructured switch having an insulating layer 185 positioned over an electrode. (This oxidized electrode is manufactured in accordance with Example 3 below) The insulating layer 185 may be used to change the characteristics of the volatile switch to be used or to provide a further guarantee of the desired action. The insulating layer (which may or may have been placed on the facing surface of the electrode 168) may be used. To prevent the different fibers from the nanostructured components from simultaneously electrically contacting the two electrodes during the state transition (丨丨2, 10 168). Such contact can avoid or hinder the structural transition between states. The consumer cooperative printing will compare the constructions 82 and 183 that are used as non-volatile switches with the configuration 18 8 that displays the volatile switches. In configuration 18 8 , the nanostructures 172 and under have been added. The gap 15 between the electrodes 1丨2 is at a height 186 such that the strain of the extended nanostructure overcomes the Van der Waals attraction between the structure and the electrode. The nanostructure forms part of the closed circuit and returns to its non- The state of the open circuit of the offset. We should / idea that the effect of the Van der Waals interaction between the nanostructure and other components at their interface can be affected. This effect can be increased by 2〇 or reduced; for example, attractive This can be reduced by coating the surface of the electrode with a thin layer of deuterated layer or other suitable material. This purpose of reducing attraction may be used to construct a volatile nanoswitch; such a volatile switch may be, for example, a relay , sensors, transistors, etc. - 16 - B7 5. The invention (15) is particularly useful. In the embodiment of circle 2A, the one or the electrodes may be relative to the patch 154 Start, use the leveling force to make the patch 154 offset and contact the lower electrode 112. Under this 愔.π%% under this condition, the court will form a stable 10 15 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 20 Deval Interaction. The offset of the patch also establishes a restoring force to restore the patch to the horizontal (non-offset) state shown in Figure 2A. This restoring force is especially the geometry of the device (eg, patch 154 partial In the present embodiment, the Van der Waals force that maintains the patch 154 in contact with the electrode 112 is greater than the restoring force generated by the geometry of FIG. 21, thereby producing a non-volatile switch. That is, when the power is removed, the Van der Waals force that causes the patch 154 to contact the electrode 112 is greater than the restoring force on the patch 154, so that the patch will remain in an offset state. This is the configuration of Figure 2C. 188 for comparison. In Figure 2C, the 'gap distance 186 is larger, thereby creating a greater restoring force. By properly controlling the gap distance (via the creation of the sacrificial material), such a gap may be made large enough to establish a restoring force greater than the Van der Waals force. Thus the device of Figure 2C will be volatile. If the power is interrupted, the patch 154 can be offset similar to that described above, but the resultant force will be large enough to return the patch 154 to a horizontal state. The nano-ribbon can be deflected by electrostatic attraction, but Van Valli itself is not enough to keep it there. In the configuration 188, the gap height 186 between the patch 154 and the lower electrode 112 has been increased so that the extended nano-17-sheet size is applicable to the Chinese National Standard (CNS) A4 specification (210χ297 mm). Description of the invention (16) '·. The strain month b overcomes the van der Waals attraction between the structure and the electrode. The nanostructure forms part of the closed circuit and returns to the off-state of the offset. Figure 2D shows no construction 192. The configuration 192 shows a non-volatile opening. The nanostructure 154 with respect to this offset contacts the electrode U2 under the closed__ circuit and continues to maintain the circuit in an indefinite manner in a contact manner. If the gap height 18 of the configuration 192 is sufficiently large as in the construction 188, the offset state of the nanostructure 172 will not be maintained indefinitely. The shape variable of the nanostructure 154 can be affected by appropriately supporting the nanostructure 154. For example, as shown in FIG. 2(A), the nanostructure 154 may be "at the edge of the remaining open region 194 after being removed from the sacrificial polycrystalline layer previously shown in FIG. 1 ("). The clamping of the upper and lower portions of the support portion around the nanostructures 154 can increase the strain on the nanostructures 154. In some embodiments, this type of clamping portion is located at the edge of the open region 194. Establishing a non-volatile volatile switch that would otherwise be non-volatile. By controlling the design and manufacture of the nanoswitch assembly as described herein, it is possible to optionally provide a tri-state non-volatile construction and/or volatility. Construction - The use of separate nanostructures and electrodes in this manner allows for the formation of separate devices and units. For example, these units may be used in digital memory devices - nanostructures (eg 154) and electrodes ( For example, 168) can be extended on the substrate and / or support portion 102, enough to be 18 - the paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm). 5. Invention Description (17) Allow electrical connection To nanostructure 154 Electrode 168 is completed. This connection may be accomplished by any suitable method, such as by engraving or exposing to form a connection nanostructure 154 with a start electrical signal channel 196 (not scaled) or through Hole 5 Channel 196 is used to connect the switch-component (such as the nano-structure to the - start (read / write) line. Channel 196 connection = with - conductor fill to achieve the start connection, or maybe Formed by certain potting techniques. 〃 The present invention is directed to the formation of conductive composite joints, whereby the appropriate matrix material is arranged in the fiber of the nanotube or nanostructure, Within and around other porous nanomaterials. Such junctions provide the desired mechanical and/or electrical properties. For example, electrical contact between the nanostructures and the metal connection or activation point can be improved, Alternatively, the contact resistance can be reduced by applying metal contact as the substrate material 15 for impregnating the nanostructure tube. Also, mechanical contact and strain can be increased as a result of increased contact between the nanotube and the matrix material. For the sake of reference 2D, the activation connection channel 196 extends down to the nanostructure 154. The metal filling the channel 196 can then be introduced further into the capillary 20 holes of the nanostructure 154 in the region 194. The matrix material extends downwardly. Up to the nitride layer (or any other layer) below the nanostructure 154. The effect of this connection can be used to solidify the unstructure 154 and increase the strain on the nanostructure 154. Again, the nanostructure 154 is added and activated. The electrical connection between the connections. Will be nano-19. Nuclear specifications (21〇χ 297-^~---- >1323479 A7 B7 V. Invention description (18) '. Construct © to the branch department The method is conceivable and one method is illustrated in Example 2 below. Almost any material (insulating or conducting) can be made to infiltrate or pass through (iv) a thin article of porosity such as a nanostructure. This can be performed to 5 & good mechanical closure contact and increase reliability and manufacturing capabilities, or to use & good electrical connection with the nanostructure and reduce the contact resistance of the nano object according to the material used, The joined state can be formed between the material that penetrates the shell material and the material below the nanostructure. Examples of materials which can be used in this manner include metal and telecrystalline crystals and may have other uses, such as for the manufacture of permeable, residual crystals. It is worth noting that the combination of the above junctions did not result in cracking of the structure of the nanostructured material in which the conductor was impregnated with the base material. That is, the connecting passage 196 itself does not pass through the 35 nm structure 154' but instead allows only the packing base f material to flow into and out of the nanostructure 154 and connect it to other components of the apparatus. In some cases, conductive fillers may be required to reduce the electrical resistance of the nanostructure or contact with the nanostructure. Figure 3 shows a view directly from the upper intermediate configuration 176 (see Figure I 1P). The oxide layer is supported by the nanostructure 154 and the nitrided J 20 layer 116 supports the electrode 168. The cross sections Α·Α, B_B, and c_c, I are shown for reference. For the sake of clarity, the upper encapsulating material 178 is omitted (see | see Figure 2A). Figure 4 is the cross-sectional A_A shown in Figure 3, the middle of the structure " (__.0-1 paper size applies to China's national specifications (2) 0x297 male dragon) ' -----

經濟部智慧財產局員工消費合作社印製 1323479 kl76之立體圖。圖5與6係為沿著橫剖面與 C-C之中間構造182之立體圖(為清楚起見,構造I% 係為具有被移除之上絕緣層之構造182)。(在圖4 6 中,係顯示上部材料178)。 5 目4係、為圖3之裝置之元件之圖例,其係、沿著於 A A之松剖面看到的。(為清楚起見,係從此圖再度 移除封裝材料178)。於遠離奈米管活性區域之構造之 這個部分,係將上部電極168排列在氮化層116之 上面。 1〇 圖5(A)-(B)顯示沿著橫剖面B-B,看到的構造之兩 個視圖。在這些實例中,構造182包含封裝材料178 並對應至圖2A-B之視圖。圖5A顯示沿著橫剖面B_ 之視圖而圖5B顯示沿著橫剖面b-B,且又顯示沿 著C-C·之橫剖面之視圖。 15 這些圖顯示出懸浮在上部電極168與下電極U2 之間的活性區域中之補片154。如上所述,且說明於 標示與併入的專利申請案中,這些電極可能用以使補 片154向上或向下偏移。補片154係被材料從上方與 下方箝制至奈米管活性區域之邊緣,於此補片154係 被懸浮且可能導致偏移,如圖2C所示。於本實施例 中,實質上已移除圖2C之位移D。基板層100支撐 ^化層102。下電極112係被排列在下方,且未與固 定至絕緣層178之奈米結構154接觸,而絕緣層ιΐ6The Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printed a stereogram of 1323479 kl76. Figures 5 and 6 are perspective views of the intermediate configuration 182 along the cross-section and C-C (for clarity, the construction I% is constructed 182 with the insulating layer removed). (In Figure 46, the upper material 178 is shown). Figure 5 is a diagram of the components of the device of Figure 3, which is seen along the A A's pine profile. (For clarity, the encapsulation material 178 is removed again from this figure). In this portion of the configuration away from the active area of the nanotube, the upper electrode 168 is arranged above the nitride layer 116. 1 〇 Figures 5(A)-(B) show two views of the structure seen along the cross section B-B. In these examples, construction 182 includes encapsulation material 178 and corresponds to the views of Figures 2A-B. Fig. 5A shows a view along the cross section B_ and Fig. 5B shows a view along the cross section b-B and again shows a cross section along C-C. 15 These figures show a patch 154 suspended in the active area between the upper electrode 168 and the lower electrode U2. As noted above, and as illustrated and described in the incorporated patent application, these electrodes may be used to bias the patch 154 up or down. The patch 154 is clamped from above and below the material to the edge of the active area of the nanotube where the patch 154 is suspended and may cause an offset, as shown in Figure 2C. In the present embodiment, the displacement D of Fig. 2C has been substantially removed. The substrate layer 100 supports the chemical layer 102. The lower electrode 112 is arranged below and is not in contact with the nanostructure 154 fixed to the insulating layer 178, and the insulating layer ι 6

-21- 1323479 A7 ΒΊ 五、發明說明(2〇 15 經濟部智慧財產局員工消費合作社印製 20 支撐電極材料168。為了清楚起見,並未顯示具有電 氣接觸之補片154,但可能採用例如結合圖2(:所說 明的那些金屬化技術。如上所述,補片154與對應電 極之間的間隙可能被控制以建立揮發性或非揮發性狀 態。 圖6顯示沿著橫剖面c_c,看到的構造182之元 件。於此橫剖面中之補片154似乎未接觸任何其他元 件,但在圖5A-B中可看出,補片正接觸其他元件(例 如絕緣層178 (未顯示於圖6中))並被這些元件所箝 制。分解圖(虛線内所示)顯示基板j 〇〇 '絕緣層 102 '氮化層U6與電極112和168之相互關係以 及補片158與前述元件相關的位置。 上述所描繪的這些構造可被使用作為奈米機電開 關,並可依據長度a與b之縱橫比而被建構,以具有 揮發性或非揮發性狀態(如由補片154之偏移狀態所 顯不的),其中a係為未偏移奈米結構與電極之間的 距離(亦即’圖2A_B之間隙18〇或186),而b係為 偏移之奈米結構之長度。如果偏移的奈米結構之應變 迠係小於維持奈米結構與下電極接觸之凡得瓦爾力, 則開關將是非揮發性的。然而,如果應變能可克服凡 得瓦爾吸彳丨力,則開關將以揮發性方式運轉且一電路 將只是短暫封閉。 再者,開關關於上部電極168可能是揮發性的, -22- 本纸張尺度相巾國目家標準(CNS)A4規格⑵〇以7公爱)-21- 1323479 A7 ΒΊ V. Description of invention (2〇15 Ministry of Economic Affairs Intellectual Property Office Staff Consumer Cooperative Printed 20 Support Electrode Material 168. For the sake of clarity, patch 154 with electrical contact is not shown, but may for example In conjunction with Figure 2 (the metallization techniques illustrated. As described above, the gap between the patch 154 and the corresponding electrode may be controlled to establish a volatile or non-volatile state. Figure 6 shows along the cross-section c_c, see The resulting component of structure 182. The patch 154 in this cross-section does not appear to be in contact with any other components, but as can be seen in Figures 5A-B, the patch is in contact with other components (e.g., insulating layer 178 (not shown) 6))) and clamped by these components. The exploded view (shown in dashed lines) shows the substrate j 〇〇 'insulating layer 102' and the relationship between the nitride layer U6 and the electrodes 112 and 168 and the patch 158 associated with the aforementioned components. The above-described configurations can be used as nanoelectromechanical switches and can be constructed in accordance with the aspect ratios of lengths a and b to have a volatile or non-volatile state (e.g., offset by patch 154). Notable), where a is the distance between the unmetset nanostructure and the electrode (ie, 'the gap of FIG. 2A_B is 18〇 or 186), and b is the length of the offset nanostructure. The strained lanthanum of the shifted nanostructure is less than the Van der Waals force that maintains the nanostructure in contact with the lower electrode, then the switch will be non-volatile. However, if the strain energy can overcome the van der Waals suction, the switch will Operating in a volatile manner and a circuit will only be briefly closed. Furthermore, the switch may be volatile with respect to the upper electrode 168, -22- This paper scales the National Standard (CNS) A4 specification (2) Love)

I 訂 1323479 A7 五、發明說明( 21 10 15 經濟部智慧財產局員工消費合作社印製 20I Book 1323479 A7 V. Description of the invention ( 21 10 15 Printed by the Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative 20

而關於下電極112可能是非揮發性的,或者兩個都是 揮發性的或兩個都是非揮發性的。 圖7係為工作奈米結構式開關之實際顯微圖片。 開關之製造係說明於以下之例2中。於此顯微圊片 令’只有一些既定補片之奈米管顯得清晰,但可被看 出跨越所形成之通道。(如圖2A所示,此裝置省略上 部封裝材料178)。 例1 為了製造非揮發性奈米管開關,係採用具有熱成 長氧化層(0_5//m)之矽晶圓。 埋入電極係以聚甲基丙烯酸甲酯(PMMA)作為光 阻而由電子束微影術(EBL)所構成。在將電極圖案界 定在光阻中之後’反應性離子蝕刻(RIE)係採用chf3 氣體以在氧化層中建構渠溝。埋入電極係藉由將電極 沈積在電子束蒸發器中以填滿渠溝,然後,於70°C 下剝去N-曱基砒喀烷酮(N_methyl pyrr〇Hd〇ne)之光阻 (Shipley 1165)之剝落製程所構成。這些電極為 〇.18±0.02//m寬’並包含85〇埃之金屬(鈦' Ti)以及 200埃之犧牲材料(氧化铭、八丨2〇3)。在電極與迄今還 沈積的SWNT之間的垂直間隙係被調整於2〇〇±5〇 埃’以產生機電可切換位元’如理論上所預測的。這 個200±50埃之間隙係對應至處於on狀態之奈米管 之etensile = 0.9±0.5%之張應變,其正好位在SWNT -23- 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公芨) 1323479 A7 B7 五、發明說明(22 ) 之彈性限内。然而,矽或金屬離子束無法抵抗這種張 應變而不會永久塑性變形。 在創造埋入電極之後,建構出奈米碳管結構。奈 米管結構係藉由將1,2二氣苯(鄰二氯苯(ortho-5 dichlorobenzene) ' ODCB)之 SWNT 之溶液旋轉塗佈 在裝置晶圓上而產生。奈米管溶液之濃度係為30±3 mg/L。此溶液係在超音波槽中受到聲處理(70 W聲處 理功率)持續90分,用以完全分散至奈米管。在聲處 理之後,奈米管溶液係利用典型的光阻旋轉技術而旋 10 轉至晶圓之上。產生< 100 kQ/平方之SWNT結構之 期望薄片電阻係需要多數旋轉。奈米管單層之薄片電 阻可藉由調整奈米管溶液之濃度與旋轉塗佈步驟之數 目而在10 kQ/平方與幾個ΜΩ/平方之間確實改變。 關於於此所討論的裝置,係選擇75 k Ω /平方之 15 SWNT薄片電阻。 經濟部智慧財產局員工消費合作社印製 一旦獲得期望的奈米管結構薄片電阻與密度,正 I線型(i-line)光阻就會旋轉塗佈在SWNT上(例如 Shipley 1805光阻)。然而,奈米管之圖案化並未受限 於所採用之光阻之型式,其乃因為已使用各種型式之 20 光阻。接著,使光阻塗佈晶圓曝光並顯影以形成期望 圖案。在此圖案顯影之後,暴露的奈米碳管可藉由以 氧電漿等向性灰化而被移除乾淨,而在光阻之下的奈 米管係受到保護免於氧化。一般300 W功率之等向 -24- 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 1323479 A7 B7 五、發明說明(23 ) 性氧電漿係於270 mtorr之壓力與9分之灰化時間下 用來移除露出的SWNT。然後,隨後以N甲基咯烷酮 (NMP)剝去光阻,並使SWNT薄膜圖案露出。雖然亦 已製造出具有像0.25/zm —樣小的寬度之條帶,但圖 5 案化的SWNT條帶一般為100/zm長與寬。 在隨後的對準EBL步驟中,箝制線(Ti、1000埃 厚' 0.18土0.02//m寬)係由SWNT條帶(平行於埋入電 極(到電極1000埃之距離;〇之頂端上的PMMA光阻的 剝落所界定。在下一個步驟之移除犧牲層之時,係需 10 要這些夾板(clamp)以避免SWNT不受控制的黏著至 下電極。接著,此裝置電極與SWNT條帶係互相連 接至焊墊,俾能使晶粒上的個別接面可受到電氣測 試。在SWNT條帶金屬化與開關接面之間的距離係 為3//m。最後,圖案化的SWNT係藉由以水鹼(氫氧 15 化銨、NH40H)濕化學移除A1203犧牲層而懸浮,接 著以去離子水(DI)與異丙醇(IPA)沖洗掉。然後,密封 地封裝此裝置晶粒。 經濟部智慧財產局員工消費合作社印製 依據此種程序所製造的可程式化奈米管記憶體裝 置係藉由使用Keithley靜電計之可程式化電壓源來掃 20 描接面上面的電壓而程式化。同時,飛越接面之電流 係藉由使用靜電計之積體電流前級放大器(10 fA敏感 度)而被測量,用以產生電流與電壓曲線(I-V曲線)。 關於所有測量,SWNT係被施以高偏壓,而下層電極 -25- 本纸張尺度適用中國固家標準(CNS)A4規格(210x297公釐) 1323479 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(24 ) 係維持於接地。當SWNT從一懸浮之高電阻(>ΜΩ) OFF狀態轉換成與下層電極接觸以形成一歐姆(〜kQ) ON狀態時,電流與電壓(I-V)測量顯示出於2.5士0.5 V 之臨限電壓下,奈米管與電極接面上面的電流之突然 5 增加。即使在電力被切斷數日時,仍維持奈米管位元 狀態(亦即,開關位元係非揮發性的)。 例2 晶圓(32-04,晶粒E4,裝置9x26/4x17)係以光阻 來塗佈並利用標準光學平版印刷技術來圖案化,此圖 10 案係藉由在CHF3中反應性離子蝕刻(RIE)持續4分鐘 而被轉送至Si02。 鉻/金5/50nm標記係用來EBL對準(經由熱蒸 鍍)。光阻與光阻上方之金屬係利用N-N二曱基砒喀 烷酮(1165)而藉由標準剝落而移除。以〇2電漿灰化 15 晶圓持續5分鐘。PMMA(微量化學(Microchem))係藉 由旋轉塗佈60秒以4000 rpm而被塗敷。 執行電子束微影術(EBL)以製作EBL標記,使 PMMA顯影,並在CHF3中蝕刻此圖案持續4分鐘進 入Si02。使5/50nm鉻/金沈積,並如上所示執行剝 20 落以留下EBL標記。塗敷PMMA,並執行EBL以建 立下電極圖案。PMMA係利用 MIBK而顯影。在 CHF3中執行RIE持續4 : 30分鐘以將此圖案轉移至 Si02。 -26- 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)The lower electrode 112 may be non-volatile, or both may be volatile or both may be non-volatile. Figure 7 is an actual micrograph of a working nanostructure switch. The manufacture of the switch is illustrated in Example 2 below. This microscopic cymbal makes it possible for the nanotubes with only a few patches to be clear, but can be seen across the formed channels. (This device omits the upper encapsulation material 178 as shown in Figure 2A). Example 1 In order to manufacture a non-volatile nanotube switch, a tantalum wafer having a thermally grown oxide layer (0_5//m) was used. The buried electrode is composed of polymethyl methacrylate (PMMA) as a photoresist and consists of electron beam lithography (EBL). After the electrode pattern is defined in the photoresist, 'reactive ion etching (RIE) uses chf3 gas to construct a trench in the oxide layer. The buried electrode is filled with the electrode by depositing the electrode in an electron beam evaporator, and then the photoresist of N-methylpyrrolidone (N_methyl pyrr〇Hd〇ne) is stripped at 70 ° C ( Shipley 1165) consists of a peeling process. These electrodes are 1818±0.02//m wide' and contain 85 Å of metal (titanium 'Ti) and 200 angstroms of sacrificial material (Oxide, Gossip 2〇3). The vertical gap between the electrodes and the SWNTs that have been deposited so far is adjusted to 2 〇〇 ± 5 埃 Å to produce electromechanical switchable bits' as predicted in theory. This 200±50 angstrom gap corresponds to the tensile strain of the etensile = 0.9±0.5% of the nanotube in the on state, which is exactly at the SWNT -23- This paper scale applies the Chinese National Standard (CNS) A4 specification (210x297). Bulletin 1323479 A7 B7 V. Within the limits of the invention (22). However, helium or metal ion beams are unable to resist this tensile strain without permanent plastic deformation. After creating the buried electrode, a carbon nanotube structure is constructed. The nanotube structure is produced by spin coating a solution of 1,2 dioxobenzene (ortho-5 dichlorobenzene 'ODCB) on a device wafer. The concentration of the nanotube solution was 30 ± 3 mg / L. This solution was sonicated (70 W sonication power) in an ultrasonic bath for 90 minutes for complete dispersion into the nanotubes. After sonication, the nanotube solution is rotated onto the wafer using a typical photoresist rotation technique. The desired sheet resistance that produces a <100 kQ/square SWNT structure requires a majority of rotation. The sheet resistance of the nanotube monolayer can be varied between 10 kQ/square and several ΜΩ/square by adjusting the concentration of the nanotube solution and the number of spin coating steps. For the device discussed here, a 15 SWNT sheet resistor of 75 k Ω / s is selected. Printed by the Ministry of Economic Affairs, the Intellectual Property Office, and the Consumer Cooperative. Once the desired resistance and density of the nanotube structure are obtained, the i-line resist is spin coated on the SWNT (eg Shipley 1805 photoresist). However, the patterning of the nanotubes is not limited by the type of photoresist used, since various types of photoresists have been used. Next, the photoresist coated wafer is exposed and developed to form the desired pattern. After development of the pattern, the exposed carbon nanotubes can be removed by isotropic ashing with oxygen plasma, while the nanotubes under the photoresist are protected from oxidation. Normal 300 W power isometric-24- This paper scale is applicable to China National Standard (CNS) A4 specification (210x297 mm) 1323479 A7 B7 V. Description of invention (23) Oxygen plasma is based on 270 mtorr pressure and 9 points The ashing time is used to remove the exposed SWNT. Then, the photoresist was subsequently stripped with N methylrrolidone (NMP) and the SWNT film pattern was exposed. Although strips having a width as small as 0.25/zm have also been produced, the SWNT strips of Fig. 5 are generally 100/zm long and wide. In the subsequent alignment of the EBL step, the clamp line (Ti, 1000 angstroms thick '0.18 0.02//m wide) is made up of SWNT strips (parallel to the buried electrode (to the electrode 1000 angstroms; on the top of the crucible) The peeling of the PMMA photoresist is defined. When the sacrificial layer is removed in the next step, it is necessary to remove these clamps to avoid uncontrolled adhesion of the SWNT to the lower electrode. Next, the device electrode and the SWNT strip system Connected to the pads, the individual contacts on the die can be electrically tested. The distance between the SWNT strip metallization and the switch junction is 3/m. Finally, the patterned SWNT is borrowed. It is suspended by wet chemical removal of the A1203 sacrificial layer with aqueous alkali (hydrogen oxyhydroxide, NH40H), followed by rinsing with deionized water (DI) and isopropyl alcohol (IPA). Then, the device is sealed in a sealed manner. The Ministry of Economic Affairs, the Intellectual Property Office, the Staff Consumer Cooperative, printed the programmable nanotube memory device manufactured by this program by using the programmable voltage source of the Keithley electrometer to scan the voltage on the trace surface. Stylized. At the same time, the current flowing over the junction is The current and voltage curves (IV curves) were measured using an integrated current preamplifier (10 fA sensitivity) of the electrometer. For all measurements, the SWNT was applied with a high bias and the lower electrode -25 - This paper scale applies to China National Standard (CNS) A4 specification (210x297 mm) 1323479 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printed A7 B7 V. Invention description (24) is maintained at ground. When SWNT is suspended from a High resistance (>ΜΩ) When the OFF state is converted into contact with the lower electrode to form an ohmic (~kQ) ON state, the current and voltage (IV) measurements are shown at a threshold voltage of 2.5 ± 0.5 V, and the nanometer The sudden increase in current across the junction of the tube and the electrode increases the nanotube position (ie, the switching level is non-volatile) even when the power is switched off for several days. Example 2 Wafer (32 -04, die E4, device 9x26/4x17) was coated with photoresist and patterned using standard optical lithography, which was performed by reactive ion etching (RIE) in CHF3 for 4 minutes. It was transferred to Si02. Chrome/Gold 5/50nm standard The trace is used for EBL alignment (via thermal evaporation). The metal above the photoresist and photoresist is removed by standard exfoliation using NN dimethyl sulfonium ketone (1165). The 15 wafers were held for 5 minutes. PMMA (Microchem) was applied by spin coating for 60 seconds at 4000 rpm. Electron beam lithography (EBL) was performed to make EBL marks, and PMMA was developed. This pattern was etched in CHF3 for 4 minutes to enter SiO 2 . 5/50 nm chrome/gold was deposited and stripping was performed as indicated above to leave the EBL mark. PMMA is applied and EBL is performed to establish a lower electrode pattern. PMMA is developed using MIBK. The RIE was performed in CHF3 for 4:30 minutes to transfer this pattern to Si02. -26- This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm)

<1323479 A7 B7 五、發明說明(25 85/20nm鈦(導體)/八丨2〇3(犧牲層)係為所沈積之 電子束’且如上所述被剝落以建立下電極。 執行原子力顯微術(AFM)以決定下電極之未充滿/ 溢出,這些電極係未充滿了-2nm)。 5 在溶液中之雷射燒蝕成長奈米管係被旋轉至晶圓 之上8次以產生具有50千歐姆(Kil0〇hm)電阻之薄膜 (5〇0 ι·ρπι 持續 30 秒,且 2000 rpm 持續 2〇 秒,8 次)。 光阻係被旋轉至奈米管結構之上(1分鐘 10 4000rPm)。光阻係被圖案化並顯影,而於3〇〇w下以 經濟部智慧財產局員工消費合作社印製 〇2電聚灰化晶圓持續3分鐘三次,且間隔5分鐘以 移除露出的奈米管。利用1165 (Shipley)移除剩下的 光阻。如上所示塗敷PMMA,並執行EB微影術以建 立使奈米管結構更牢牢地附著至下層支撐(1〇〇nm之 15鈦)之夾板之圖案。互連(未顯示於顯微圖片中)係藉由 如上所示之最先塗敷與顯影光阻而建立,並使上部互 連金屬材料(10/10/250/10鉻/金/銅/金)沈積且執行剝 離程序。犧牲的Ah〇3層係藉由以4 : 1去離子水: 351 (Ship丨ey)(—種NaOH顯影液)之濕蝕刻而移除。 20圖7所示之接面係藉由例2所略述的方法而建立。亮 垂直條帶係為高起的支撐;單一暗條帶係為在懸浮奈 米管下方之下電極。因為電子顯微鏡之解析度,所以 此影像並未清楚顯示奈米管,然而其顯示開關之幾何 -27- 1323479 A7 B7 10 15 經濟部智慧財產局員工消費合作社印製 20 五、發明說明(26) 形狀 例3 如在例2中所說明的,所建立之接面係被氧化, 以便增加開關之確實地揮發性樣態,如下: 母分鐘五個標準立方公分(SCCm)之〇2係在 NRAM開關上面流動,交流電壓(三角形波)係被施加 至NRAM接面(5 V振幅,1 〇 kHz頻率)。 低於2 V之振幅並非尚到足以使開關成為揮發性 的。高於7 V之振幅經常摧毁此装置(後來非常高至 無限電阻)。吾人發現到在〇2的存在下,開關在施加 電壓之幾秒内轉向揮發性的’然後,將開關維持揮發 性的。5V振幅之交流波適當氧化此電極;然而,2v_ 7V之電壓振幅已成功地用來製造揮發性裝置。 圖8A-9顯示奈米管結構可能藉由包含金屬覆蓋 層之各種材料而箝制或夾住或捆紮之各種方法。這可 破執行以更佳地固定奈米管補片並提供互連至補片之 低電阻。 圖8(A)顯示奈米結構之構架部分以及其創造之 方法。這種構架奈米結構可藉由下述步驟而建立:首 先在基板上建立-結構8〇2(如以中間構造_顯 示);以適當的覆蓋材料812覆蓋結構_(如以令間 構造8H)帛示);以及例如藉由光刻圖案化並移除覆 盘材料812之一部分,藉以留下在露出的結構周圍之 -28- 本紙張尺度剌中®國家標準(CNS)A4規格(210 X 297公釐) 11323479 A7 B7 五、發明說明(27 ) 材料之”框架”(如中間構造814所示)。這種捆紮方法 係更完全說明於"Non-volatile Electromechanical Field Effect Transistors and Methods of Forming Same(非揮 發性機電場效電晶體及其製造方法)中”美國臨時專 5 利申請案,申請曰為2003年6月9曰,序號 60/476,976。覆蓋材料可能是導電的,且可用來改變 整個圖案化結構之電氣特性,或其可能是半導電或絕 緣的。當單獨被使用以打開露出的結構之窗孔時,捆 紮層之材料應該可選擇性蝕刻遍及奈米結構。覆蓋層 10 之材料可能可選擇性蝕刻遍及排列於奈米結構與覆蓋 層之間的中間層。於此情況下,當蝕刻與圖案化此覆 蓋層時,中間層可作為蝕刻止擋層。 圖8(B)顯示圖案化的結構,於此未形成框架,反 而形成一組覆蓋層之分離區段,分離區段可能是電極 15 並對電阻調變偵測構造具有特別有用的應用。中間構 造810係被圖案化以形成電極818,如以中間構造 816顯示。 經濟部智慧財產局員工消費合作社印製 圖9之中間構造900顯示形成奈米結構式裝置之 又另一種方法。這種方法具有可選擇性蝕刻遍及中間 20 層904之覆蓋材料902。覆蓋材料902較佳是金屬, 而中間層較佳是例如矽之半導體,然而任何適合此應 用之材料將產生作用。中間層904係排列於奈米結構 906與覆蓋層902之間。於此情況下,當對覆蓋層 -29- 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) 1323479 A7 B7 五 發明說明( 28 902進行乾蝕刻與圖案化時,中間層9〇4可作為蝕刻 止擋層。中間構造910顯示以框架之形狀存在的圖案 化覆蓋層912’然而依據最終產品之需求,任何圖案 將產生作用。中間構造91 〇係受到一退火步驟(形成 5構造916) ’藉以覆蓋層902與中間層形成例如金屬矽 化物之導電複合層914。依據最終產品之用途,這種 複合層可作為縫合電極或其他接觸或定址元件。 圖1 〇係為以透視顯示之奈米管之例示結構之影 像。如可看見的’此結構可能是高度多孔性的,且顯 10現成數個在中間具有間隙之螺紋。於此圖中,實際上 有數個從左延伸至右並藉沒有奈米管之區域而彼此分 離之奈米結構之絲帶。吾人可能注意到圖7之結構同 樣是非常多孔性的,並具有些許跨越通道與接觸電極 之奈米管。在兩張圖中,圖之解析度係受取像技術影 15響,所以無法以對準焦點或可注意的方式顯現某些奈 米管。 其他變化 經濟部智慧財產局員工消費合作社印製 要注意的是例如上部電極168之電極本身可以由 奈米結構材料所組成。在某些實施例中,使奈米結構 20絲帶或另一個奈米結構物件被排列在取代金屬電極之 可動的奈米結構元件172之上,允許從上部電極下面 移除犧牲材料。流體可流經排列在犧牲層之上的奈米 結構材料以移除犧牲材料。同樣地,如果希望的話, -30- 本纸張尺度適用中國國家標準(CNS>A4規格(210 X 297公釐) 1323479<1323479 A7 B7 V. DESCRIPTION OF THE INVENTION (25 85/20 nm titanium (conductor) / gossip 2 〇 3 (sacrificial layer) is the deposited electron beam 'and is peeled off as described above to establish a lower electrode. Microsurgery (AFM) determines the underfill/overflow of the lower electrodes, which are not filled with -2 nm). 5 Laser ablation in the solution The nanotube system is rotated 8 times over the wafer to produce a film with a resistance of 50 kilo ohms (5 〇 0 ι·ρπι for 30 seconds, and 2000 Rpm lasts 2 sec seconds, 8 times). The photoresist is rotated above the nanotube structure (10 4000 rPm in 1 minute). The photoresist system was patterned and developed, and the ITO 2 electro-accumulated wafer was printed three times at 3 〇〇w for 3 minutes with an interval of 5 minutes to remove the exposed naphthalene. Rice tube. Use 1165 (Shipley) to remove the remaining photoresist. PMMA was applied as indicated above, and EB lithography was performed to create a pattern of splints that adhered the nanotube structure more firmly to the underlying support (15 nm of 1 〇〇 nm). Interconnects (not shown in the photomicrograph) are created by first coating and developing photoresist as shown above, and the upper interconnect metal material (10/10/250/10 chrome/gold/copper/ Gold) deposits and performs a stripping procedure. The sacrificial Ah3 layer was removed by wet etching with 4:1 deionized water: 351 (Ship丨ey) (a NaOH developer). The junction shown in Fig. 7 is established by the method outlined in Example 2. The bright vertical strip is a raised support; the single dark strip is the electrode below the suspended nanotube. Because of the resolution of the electron microscope, this image does not clearly show the nanotubes, but the geometry of the display switch is -27- 1323479 A7 B7 10 15 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 20 V. Invention description (26) Shape Example 3 As illustrated in Example 2, the junction is established to be oxidized to increase the true volatility of the switch, as follows: 母2 Five standard cubic centimeters (SCCm) 〇 2 is in NRAM The switch flows above and the AC voltage (triangular wave) is applied to the NRAM junction (5 V amplitude, 1 〇 kHz frequency). Amplitude below 2 V is not sufficient to make the switch volatile. An amplitude above 7 V often destroys the device (later very high to infinite resistance). I have found that in the presence of 〇2, the switch turns to volatile within a few seconds of applying a voltage' and then maintains the switch volatile. The 5V amplitude alternating wave suitably oxidizes the electrode; however, a voltage amplitude of 2v_7V has been successfully used to fabricate volatile devices. Figures 8A-9 illustrate various methods by which a nanotube structure may be clamped or clamped or bundled by various materials comprising a metal cover. This can be broken to better secure the nanotube patch and provide low resistance to interconnect to the patch. Fig. 8(A) shows the structural part of the nanostructure and the method of its creation. Such a framework nanostructure can be established by first establishing a structure 8〇2 on the substrate (as shown in the intermediate configuration _); covering the structure with a suitable covering material 812 (eg, inter-structure 8H) And; for example, by lithographic patterning and removal of a portion of the disc material 812, thereby leaving a -28-paper scale 剌中® National Standard (CNS) A4 specification (210) around the exposed structure X 297 mm) 11323479 A7 B7 V. INSTRUCTIONS (27) The "framework" of the material (as shown in intermediate construction 814). This method of bundling is more fully described in the "Non-volatile Electromechanical Field Effect Transistors and Methods of Forming Same" application. June 9, 2003, Serial No. 60/476,976. The cover material may be electrically conductive and may be used to alter the electrical characteristics of the entire patterned structure, or it may be semi-conductive or insulative. When used alone to open the exposed structure The material of the tying layer should be selectively etchable throughout the nanostructure. The material of the cap layer 10 may be selectively etched throughout the intermediate layer between the nanostructure and the cap layer. In this case, When etching and patterning the cover layer, the intermediate layer can serve as an etch stop layer. Figure 8(B) shows the patterned structure, where no frame is formed, instead a separate segment of the cover layer is formed, and the separation section may It is an electrode 15 and has a particularly useful application for resistance modulation detection construction. The intermediate structure 810 is patterned to form an electrode 818, such as with an intermediate structure 816 The intermediate structure 900 of Figure 9 of the Intellectual Property Office of the Intellectual Property Office of the Ministry of Economic Affairs shows yet another method of forming a nanostructured device. The method has a cover material 902 that is selectively etchable throughout the middle 20 layers 904. The material 902 is preferably a metal, and the intermediate layer is preferably a semiconductor such as germanium, however any material suitable for this application will function. The intermediate layer 904 is arranged between the nanostructure 906 and the cover layer 902. In this case When applying the cover layer -29- This paper size applies the Chinese National Standard (CNS) A4 specification (210x297 mm) 1323479 A7 B7 Five invention instructions (28 902 for dry etching and patterning, the intermediate layer 9〇4 can be used as etching Stop layer. The intermediate structure 910 shows the patterned cover layer 912' in the shape of a frame. However, depending on the requirements of the final product, any pattern will work. The intermediate structure 91 is subjected to an annealing step (forming a 5 configuration 916). The cover layer 902 and the intermediate layer form a conductive composite layer 914 such as a metal telluride. According to the use of the final product, the composite layer can be used as a stitching electrode. Other contact or addressing elements. Figure 1 〇 is an image of an exemplary structure of a nanotube shown in perspective. As can be seen, 'this structure may be highly porous, and 10 are ready to have several threads with a gap in the middle. In this figure, there are actually a number of ribbons that extend from left to right and are separated from each other by a region without a nanotube. We may have noticed that the structure of Figure 7 is also very porous and has There are a few nanotubes that cross the channel and the contact electrode. In the two figures, the resolution of the image is 15 times affected by the imaging technique, so some nanotubes cannot be visualized in an in-focus or noticeable manner. Other changes Printed by the Intellectual Property Office of the Ministry of Economic Affairs, the Consumer Cooperatives, it is noted that the electrodes of the upper electrode 168 itself may be composed of nanostructured materials. In some embodiments, the nanostructure 20 ribbon or another nanostructure member is arranged over the movable nanostructure element 172 in place of the metal electrode, allowing the sacrificial material to be removed from beneath the upper electrode. Fluid can flow through the nanostructured material disposed over the sacrificial layer to remove the sacrificial material. Similarly, if desired, -30- this paper size applies to Chinese national standards (CNS> A4 size (210 X 297 mm) 1323479

下電極可由奈米結構材料所组成。 一在如® 2(A)-(B)所示之某些較佳實施例之下,奈 $管補片154具有大約18〇 nm之寬度,並被捆紮、 掛制或固著至較佳是氮化石夕所製造的支樓102。在補 片154之下的下電極112之局部區域形成n摻雜矽電 極,亚係位於接近支撐11〇之位置,且較佳是不比補 片(例如180 nm)寬。從支撐102之上端至補片154附 著至電極112之偏移位置的相對間隔(圖2(B))應該是 大約5-50 nm。間隔(18〇或186)之大小係被設計成與 1〇 。己憶體裝置之機電切換能力相容。對本實施例而言, 5-50 nm之間隔對某些利用由奈米碳管所製成的補片 B4之實施例是較佳的,但其他間隔可能對其他材料 是較佳的。此種大小起因於在偏移的奈声管之應變能 與黏著能之間的相互作用。鑒於現代化的製造技術而 15提出這些特徵尺寸。其他實施例可能製造更小(或更 大)尺寸以反映製造設備的能力。 經濟部智慧財產局員工消货合作社印製 某些實施例之奈米管補片154係由糾纏或毛面奈 米管之非編織結構(以下更多)所形成。絲帶之切換參 數類似個別奈米管之那些參數。因此,絲帶之預須彳切 20換次數與電壓應接近奈米管之相同的次數與電壓。不 像依據個別奈米管之定向成長或化學自我組合之習知 技術’本發明之較佳實施例利用包括薄膜與光刻之製 造技術。這種製造方法本身導致產生遍及大型表面, -31- 本紙張尺度適用申國國家標準(CNS)A4規格(210x297公釐) Ί323479 A7The lower electrode can be composed of a nanostructure material. Under certain preferred embodiments as shown in ® 2(A)-(B), the tube patch 154 has a width of about 18 〇 nm and is bundled, hung or fixed to the preferred one. It is a branch building 102 made by Nitrix. An n-doped germanium electrode is formed in a partial region of the lower electrode 112 below the patch 154, the sub-system being located near the support 11?, and preferably not wider than the patch (e.g., 180 nm). The relative spacing (Fig. 2(B)) from the upper end of the support 102 to the offset position of the patch 154 attached to the electrode 112 should be about 5-50 nm. The size of the interval (18〇 or 186) is designed to be 1〇. The electromechanical switching capability of the memory device is compatible. For the present embodiment, an interval of 5-50 nm is preferred for some embodiments utilizing patch B4 made of carbon nanotubes, although other spacing may be preferred for other materials. This size is due to the interaction between the strain energy and the adhesive energy of the offset tube. These feature sizes are presented in view of modern manufacturing techniques. Other embodiments may make smaller (or larger) sizes to reflect the capabilities of the manufacturing equipment. Printed by the Intellectual Property Office of the Ministry of Economic Affairs, the Consumer Goods Elimination Cooperative. The nanotube patch 154 of some embodiments is formed by a non-woven structure of entangled or matte nanotubes (more below). The switching parameters of the ribbon are similar to those of the individual nanotubes. Therefore, the pre-cutting of the ribbon should be repeated 20 times and the voltage should be close to the same number and voltage of the nanotube. Conventional embodiments of the present invention do not utilize fabrication techniques including thin film and photolithography, unlike conventional techniques for growing or chemically self-assembling according to the orientation of individual nanotubes. This manufacturing method itself results in a large surface, -31- This paper scale applies to the National Standard (CNS) A4 specification (210x297 mm) Ί323479 A7

丨1323479 五、發明說明(31) 态、電晶體等之應用上可能特別有用。 當補片與下層電極之間的垂直間隔增加時,開關 會在偏移的奈米結構具有大於維持結構與下層電極接 知瓦爾力之應變能時變成揮發性。控制這個間 隔之絕緣層之厚度可被調整,以依照具有期望的電氣 特徵之特定應用之要求’產生既定垂直間隙之非揮發 性或揮發性條件。 10 15 20 其他實施例牽涉奈米碳管結構之受控制成分。具 體。之 了 採用控制奈米結構中之金屬與半導體奈 1管之相對數量之方法。於此方式令,奈米結構可被 製成以具有較高或較低的金屬奈米管相對於半導體奈 米管之百分比。相應地,奈米結構之其他特性(例如 電阻)將改變。控制可藉由直接成長、不期望物質之 移除'或精製奈米管之採用而達成。許多方法已說明 於例如前文之併入參考文獻,用以成長並製造奈米結 構物件與材料。 簡 於 上述所標示並併入之美國專利申請案說明從那裡 製造的奈米結構與物件之幾個(但非限制)用途。它們 亦說明製造這種奈米結構與裝置之各種方法。為了 潔起見,於這些併入參考文獻中所揭露的各種樣態… 此不再重複。舉例而言,用以選擇性移除結構之部分 之各種屏蔽與圖案化技術係說明於這些應用中;此 外’使奈米結構成長或形成具有預先形成奈米管之奈 -33- 本纸張尺度適用中圉國家標準(CNS)A4規格(210x297公釐) 1323479 A7 B7 五、發明說明(32) 米結構之各種方法係說明於這些應用中。 如在併入之參考文獻中所說明的,可使奈米結構 形成或成長遍及犧牲材料之界定區域以及遍及界定的 支撐區域。接著可能移除犧牲材料,藉以產生奈米結 5 構之懸浮物件。參見例如Electromechanical Memory Array Using Nanotube Ribbons and Method for Making Same(使用奈米管絲帶之機電記憶體陣列及其製造方 法),美國專利申請序號09/915,093,申請曰為2001 年7月25日,關於使奈米結構之絲帶懸浮之結構。 10 藉由較佳實施例而形成之物件有助於允許奈米電 子裝置之產生,且亦可藉由使用混合式方法(例如, 使用與半導體定址與處理電路相關聯的奈米絲帶記憶 體單元)來幫助增加目前電子裝置之效率與性能。 吾人將更進一步明白到本發明之範疇並未受限於 15 上述實施例,而係由下述申請專利範圍所界定,且這 些申請專利範圍將包含已說明過之修改與改善。 經濟部智慧財產局員工消費合作社印製 本纸張尺度適用中國國家標準(CNS)A4規格(210x297公釐) !丄:^丨 1323479 V. INSTRUCTIONS (31) The application of states, transistors, etc. may be particularly useful. When the vertical spacing between the patch and the underlying electrode is increased, the switch becomes volatile when the offset nanostructure has a strain energy greater than the Water force of the sustaining structure and the underlying electrode. The thickness of the insulating layer that controls this spacing can be adjusted to produce a non-volatile or volatile condition of a given vertical gap in accordance with the requirements of a particular application having the desired electrical characteristics. 10 15 20 Other embodiments involve controlled components of the carbon nanotube structure. Specific. The method of controlling the relative amount of metal and semiconductor nanotubes in the nanostructure is employed. In this manner, the nanostructure can be made to have a higher or lower percentage of metal nanotubes relative to the semiconductor nanotubes. Accordingly, other characteristics of the nanostructure (e.g., resistance) will change. Control can be achieved by direct growth, removal of undesirable materials, or the use of refined nanotubes. A number of methods have been described, for example, in the above-referenced references for growing and fabricating nanostructured articles and materials. U.S. Patent Application Serial No They also illustrate various methods of making such nanostructures and devices. For the sake of cleanliness, the various aspects disclosed in these references are incorporated... This is not repeated. For example, various shielding and patterning techniques for selectively removing portions of a structure are described in these applications; in addition, 'making the nanostructure grow or forming a nano-33-sheet with pre-formed nanotubes The scale applies to the China National Standard (CNS) A4 specification (210x297 mm) 1323479 A7 B7 V. Description of the invention (32) The various methods of the meter structure are described in these applications. As illustrated in the incorporated references, the nanostructures can be formed or grown throughout the defined regions of the sacrificial material as well as throughout the defined support regions. The sacrificial material may then be removed to create a suspended object of the nanostructure. See, for example, Electromechanical Memory Array Using Nanotube Ribbons and Method for Making Same, U.S. Patent Application Serial No. 09/915,093, filed on July 25, 2001, The structure of the ribbon suspension of the nanostructure. 10 The article formed by the preferred embodiment facilitates the creation of nanoelectronic devices and can also be used by hybrid methods (eg, using nanostrip memory cells associated with semiconductor addressing and processing circuitry) ) to help increase the efficiency and performance of current electronic devices. It will be further understood that the scope of the present invention is not limited to the above-described embodiments, but is defined by the scope of the following claims, and the scope of the claims will include modifications and improvements. Printed by the Intellectual Property Office of the Ministry of Economic Affairs, the Consumer Cooperatives. This paper scale applies the Chinese National Standard (CNS) A4 specification (210x297 mm)!丄:^

【圖式簡單說明】 在附圖中, 卜圖1A-P係'為顯示依據本發明之某些實施例之在 形成^有水平排列之奈米管物件的裝置之製程期間所 5建立之中間構造之剖面圖; 圖2A-D係為顯示本發明之某些實施例(其中一懸 ::奈米管物件與—電極之間的間隙位移在製造期間可 月b又到控制),且亦顯示依據本發明之某些實施例之 金屬化機制之剖面圖; 1〇 目3顯示依據本發明之某些實施例之-中間構造 之平面視圖; 圖4-6係為依據本發明之某些實施例之以各糧剖 面圖顯示之一中間構造之立體圖; 圖7係為依據本發明之某些實施例之一中間構造 15 之顯微圖片; 圖8A-B與9顯示依據本發明之以包含相當低的 經濟部智慧財產局員工消費合作社印製 電阻材料之材料來捆紮或箝制由毛面奈米管之層所製 成之物件之方法;以及 圖10係為透視顯示之例示的奈米結構之影像。 -35- 本紙張尺度適用中國®家標準(CNS)A4規格(210x297公釐) 1 丄323479BRIEF DESCRIPTION OF THE DRAWINGS In the drawings, Figures 1A-P are 'shown in the middle of the process of forming a device having horizontally aligned nanotube articles in accordance with certain embodiments of the present invention. 2A-D are diagrams showing certain embodiments of the present invention (wherein a suspension: the gap displacement between the nanotube object and the electrode can be controlled during the manufacturing period) A cross-sectional view showing a metallization mechanism in accordance with certain embodiments of the present invention; 1 3 3 shows a plan view of an intermediate structure in accordance with certain embodiments of the present invention; and FIGS. 4-6 are diagrams in accordance with the present invention. The embodiment shows a perspective view of one of the intermediate configurations of the grain; FIG. 7 is a photomicrograph of the intermediate structure 15 in accordance with some embodiments of the present invention; FIGS. 8A-B and 9 show the present invention in accordance with the present invention. A method comprising a relatively low material printed by the Ministry of Economic Affairs, the Intellectual Property Bureau, a consumer cooperative, printed with a material of a resistive material to bundle or clamp an object made of a layer of a matte nanotube; and FIG. 10 is a exemplified nanometer in perspective Image of the structure. -35- This paper size applies to China® Standard (CNS) A4 (210x297 mm) 1 丄323479

五、發明說明(34 ) 經濟部智慧財庋局員工消費合作社印製 【圖式之代號說明】 100~矽晶圓基板/基板層 102〜支撐部/氧化層/基板/絕緣層 104〜上表面 106〜孔穴 5 108〜支撐構造 110〜支撑 112〜下層電極 114〜_間構造 116〜氮化層/絕緣層 118〜中間構造 120〜上表面 122〜孔穴/奈米管活性區域 10 124〜氮化層 126〜中間構造 128〜多晶體層/犧牲層 130〜中間構造 131〜上表面 132〜多晶體層 133~表面 134〜中間構造 136~奈米管結構 138〜中間構造 15 140~光阻層 Ml〜奈米結構部分 142〜中間構造 144〜中間構造 145〜中間構造 146〜奈米管結構/露出部分 147〜奈米管區域/奈米管部分 20 148〜光阻層 149〜光阻層 150〜中間構造 151〜多晶體部分 152〜中間構造 153〜中間構造 154〜奈米結構/奈米管結構/奈米管結構段/奈米 -36- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 29*7公釐) 11323479 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(35 ) 補片 155〜構造 156〜多晶體層 157〜奈米管結構部分 158〜中間構造/補片 160〜多晶體層部分 162〜中間構造 5 164〜上部電極 166〜中間構造 168〜上部電極 176〜中間構造 178〜封裝材料/絕緣材料 172〜奈米結構 180〜間隙高度 182〜中間構造 10 18 3 ~構造 185〜絕緣層 186〜間隙高度/間隙距離 188〜構造 192〜構造 194〜開放區域 196〜連接通道 800〜中間構造 802〜結構 810〜中間構造 15 812〜覆蓋材料 814〜中間構造 816~中間構造 818〜電極 900〜中間構造 902〜覆蓋層 904〜中間層 906〜奈米結構 910〜中間構造 912〜圖案化覆蓋層 20 914〜導電複合層 916〜構造 -37- 本纸張尺度適用中國S家標準(CNS)A4規格(210x297公釐)V. Description of Invention (34) Printed by the Ministry of Economic Affairs, Smart Finance Bureau, Staff Cooperatives [Description of the code] 100~矽 wafer substrate/substrate layer 102~support/oxidation layer/substrate/insulation layer 104~upper surface 106~hole 5 108~support structure 110~support 112~lower electrode 114~_interstructure 116~nitride layer/insulation layer 118~intermediate structure 120~upper surface 122~hole/nanotube active region 10 124~nitriding Layer 126 to intermediate structure 128 to polycrystalline layer/sacrificial layer 130 to intermediate structure 131 to upper surface 132 to polycrystalline layer 133 to surface 134 to intermediate structure 136 to nano tube structure 138 to intermediate structure 15 140 to photoresist layer M1 ~Nano structure portion 142~Intermediate structure 144~Intermediate structure 145~Intermediate structure 146~Nano tube structure/exposed portion 147~Nano tube region/Nano tube portion 20 148~Photoresist layer 149~Photoresist layer 150~ Intermediate structure 151~polycrystalline portion 152~intermediate structure 153~intermediate structure 154~nano structure/nanotube structure/nanotube structure segment/nano-36- This paper scale applies to Chinese national standards (CNS) A4 specification (210 X 29*7 mm) 11323479 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 5, invention description (35) patch 155 ~ structure 156 ~ polycrystalline layer 157 ~ nano tube structure Portion 158 to intermediate structure/patch 160 to polycrystalline layer portion 162 to intermediate structure 5 164 to upper electrode 166 to intermediate structure 168 to upper electrode 176 to intermediate structure 178 to packaging material/insulating material 172 to nanostructure 180 to gap Height 182 ~ intermediate structure 10 18 3 ~ structure 185 ~ insulating layer 186 ~ gap height / gap distance 188 ~ structure 192 ~ structure 194 ~ open area 196 ~ connection channel 800 ~ intermediate structure 802 ~ structure 810 ~ intermediate structure 15 812 ~ cover Material 814 to intermediate structure 816 to intermediate structure 818 to electrode 900 to intermediate structure 902 to cover layer 904 to intermediate layer 906 to nanostructure 910 to intermediate structure 912 to patterned cover layer 20 914 to conductive composite layer 916 to structure -37 - This paper scale applies to China S Standard (CNS) A4 specification (210x297 mm)

Claims (1)

%年丨上月2^9修正本 ^、申請專利範圍%年丨2^9 revised this last month ^, the scope of patent application 專利申請案第93103122號 T ^ *i^?C ^.atent ΑρΡ,η· Ν°· 93103122 广τχ τ讲界利g.m辞j&可—q坪f = t Amended Claims in Chinese - F.ncl. mi^ (民-98年12月24日送呈) (Submitted on December 24, 2009) ι·一種分離式機電裝置,包含. 5 10 包含一導電線路之構造; 一奈米管結構之界定福y fa M . ,. 補片,係以與該線路呈隔 開關係排列,該奈米管結構包含一奈米管之薄膜; 而其中該奈米管結構之界定補片係可在—第一盘一 第二狀態之間機電偏移,其令在該第一狀態中:、該 奈水官結構係相對於該線路呈隔開關係,且其中在 該第二狀態中,該奈米管結構係與該線路接觸;以及 一低電阻信號路徑,其與該奈米管結構之界定 補片電氣連通。 訂 %濟邹智慧財產局員Η消費合作社印製 20 2.如申請專利範圍第丨項所述之分離式機電裝 is置其中6亥低電阻信號路徑係為一與該奈米管結構 之界定補片接觸之金屬信號路徑。 3. 如申請專利範圍第丨項所述之分離式機電裝 置’其中該構造包含一當中排列有該導電線路之界 定間隙,其中該界定間隙具有一界定寬度,且其中 該奈米管結構之界定補片跨越該間隙並具有一略比 該間隙之該界定寬度長之縱向範圍。 4. 一種分離式機電裝置,包含: 一包含實質上彼此平行且相對於彼此呈一隔開 關係排列之一第一與第二導電線路之構造; -38 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公爱) :\ Jitoray ( JW) \ pc-〇93\93〇45\93<M5-C /、、申凊專利範 不米管結構之界定補片,其排列在該第—與 延;=間,且實質上垂直於該第一與第二線路 成與米管結構之界^補片係可機電偏移 第二:㉟第二線路之至少-者接觸’以因應該 ^第二線路之至少一者相對於該奈米管結構之 ^補片之電氣刺激,該奈米管結構包含一奈米營 之薄膜;以及 一低電阻信號路徑,其與該奈米管結構之界 補片電氣連通。 10 15 經濟部智慧財產局員工消費合作社印製 20 5·如申請專利範圍,第4項所述之分離式機電裝 置,其中該低電阻信號路徑係為一與該奈米管結構 之界定補片接觸之金屬信號路徑。 6·如申喷專利範圍第4項所述之分離式機電裝 置,其中該構造包含一當中排列有該導電線路之其 中一個之界定間隙,其中該界定間隙具有一界定寬 度,且其中該奈米管結構之界定補片跨越該間隙並 具有一略比該間隙之該界定寬度長之縱向範圍。 7.—種機電裝置,包含: 一界定具有一間隙寬度之一間隙之構造; 一奈米管結構之界定段,其排列在該構造上並 跨越該間隙,該奈米管結構段包含複數個奈米管, -39 - 本纸張尺度適用中國國家標準(CNS)A4規格(210x297公笼)Patent Application No. 93103122 T ^ *i^?C ^.atent ΑρΡ,η· Ν°· 93103122 广τχ τ说界利gm辞j&可—q平f = t Amended Claims in Chinese - F.ncl. Mi^ (Citizen-February 24, 1998) (Submitted on December 24, 2009) ι· A Separate Electromechanical Device Containing. 5 10 Structure Containing a Conductive Line; Definition of a Nanotube Structure 福 y fa The M. , patch is arranged in a spaced relationship with the line, the nanotube structure comprises a film of a nanotube; and wherein the defined structure of the nanotube structure is in the first disk An electromechanical offset between the second states, wherein in the first state: the hemispherical structure is spaced apart from the line, and wherein in the second state, the nanotube structure is The line contact; and a low resistance signal path in electrical communication with the defined patch of the nanotube structure. Order % Ji Zou Intellectual Property Bureau member Η Consumer Cooperative Printed 20 2. Separate electromechanical device as described in the scope of patent application No. 6 where the low-resistance signal path is 6 and the definition of the nanotube structure The metal signal path of the piece contact. 3. The split electromechanical device of claim 2, wherein the configuration comprises a defined gap in which the conductive trace is arranged, wherein the defined gap has a defined width, and wherein the nanotube structure is defined The patch spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap. 4. A separate electromechanical device comprising: a structure comprising first and second electrically conductive lines arranged substantially parallel to each other and spaced apart from each other; -38 the paper size is applicable to the Chinese National Standard (CNS) A4 specification (210x297 public): \ Jitoray ( JW) \ pc-〇93\93〇45\93<M5-C /,,,,,,,,,,,,,,,,,,,,,,,,,, And the extension; =, and substantially perpendicular to the boundary between the first and second lines and the meter tube structure ^ patch system can be electromechanically offset second: 35 at least the second line of the 'contact' with Electrical stimulation of at least one of the second lines relative to the patch of the nanotube structure, the nanotube structure comprising a film of a nanotube; and a low resistance signal path associated with the nanotube structure The boundary patch is electrically connected. 10 15 Ministry of Economic Affairs Intellectual Property Office Employees' Consumption Cooperatives Printing 20 5 · As claimed in claim 4, the separate electromechanical device of item 4, wherein the low resistance signal path is a defined patch of the nanotube structure The metal signal path of the contact. 6. The split electromechanical device of claim 4, wherein the configuration comprises a defined gap in which one of the conductive traces is arranged, wherein the defined gap has a defined width, and wherein the nanometer The defined portion of the tube structure spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap. 7. An electromechanical device comprising: a structure defining a gap having a gap width; a defined segment of a nanotube structure aligned over the structure and spanning the gap, the nanotube structure segment comprising a plurality of Nanotube, -39 - This paper size applies to China National Standard (CNS) A4 specification (210x297 male cage) 該等奈米管之至少一些具有一超過該間隙寬度之長 度,該奈米管結構包含一奈米管之薄膜;以及 一夾板,排列於該奈米管結構段之兩端之每— 端,且實質上排列於該奈米管結構段之界定該間隙 之該等邊緣之至少一部分上。 10 8. 如申請專利範圍第7項所述之機電裝置,其 中該夹板係由導電材料所構成。 9. 如申請專利範圍第7項所述之機電裝置,其 中該夾板係由具有一通孔(via)之電氣絕緣材料所構 成’該通孔係以導電材料填滿,用以提供一與該奈 米管結構段電氣連通之路徑。 15 10.如申請專利範圍第9項所述之機電裝置,其 中該通孔係以金屬填滿,用以提供一到達該奈米管 結構段之金屬信號路徑。 訂 經濟部智慧財產局員工消費合作社印製 20 11.如申請專利範圍第9項所述之機電裝置,其 中該奈米管結構段係由一具有一多孔部分之奈米管 結構所構成’且其中填滿該通孔之該導電材料亦填 滿該奈米管結構段之至少某些毛細孔。 12.如申請專利範圍第7項所述之機電裝置,其 -40 - 本紙張尺度適用中國國家標準(CNS)A4規格(2i〇X297公釐)At least some of the nanotubes have a length exceeding the gap width, the nanotube structure comprises a film of a nanotube; and a splint is arranged at each end of the two ends of the nanotube structure, And substantially aligned on at least a portion of the edges of the nanotube structure segment defining the gap. The electromechanical device of claim 7, wherein the splint is made of a conductive material. 9. The electromechanical device of claim 7, wherein the splint is formed of an electrically insulating material having a via that is filled with a conductive material to provide a The path of the electrical connection of the meter tube section. The electromechanical device of claim 9, wherein the through hole is filled with metal to provide a metal signal path to the nanotube structure. 11. The electromechanical device of claim 9, wherein the nanotube structure is composed of a nanotube structure having a porous portion. And the conductive material filling the through hole also fills at least some of the capillary holes of the nanotube structure. 12. The electromechanical device as described in claim 7 of the patent scope, -40 - the paper size is applicable to the Chinese National Standard (CNS) A4 specification (2i〇X297 mm) 中5亥奈米管結構段具有一平版印刷界定的形狀β 13. 如申請專利範圍第7項所述之機電裝置,更 包含一導電線路’其排列在該間隙中,且係與該奈 5米管結構段呈隔開關係。 14. 如申請專利範圍第7項所述之機電裝置,其 中該夹板係為一界定在該奈米管結構段之上的一第 1〇 —間隙之構造,而其中該間隙與該第二間隙每個分 別具有一排列於其中之導電線路。 15. 如_請專利範圍第7項所述之機電裝置,其 2該奈米管結構段係由一具有一多孔部分之奈米管 15 :構所構成,且其中該夾板係由填滿該奈米管結構 奴之至少某些毛細孔之材料所構成。 16’如申凊專利範圍第7項所述之機電裝置,更 包3相對於該奈米管結構段呈隔開關係之至少一導 p線路’且其中該奈米管結構段係可機電偏移成與 〇 °玄線路接觸’以因應該線路與該奈米管結構段之電 氣刺激。 17·如申請專利範圍第16項所述之機電裝置, 〃、’~線路之該接觸係為一非揮發性狀態。 /、、申睛專利範 A8 B8 C8 D8 Αψώ!·如巾4專利範16項所述之機電裝置 Z、該線路之該接觸係為一揮發性狀態。 .如申凊專利範圍第16項所述之機電裝置 至少—導電線路具有—介面材料,以改變 X S、’·。構段與s玄導電線路之間的吸引力。 該 15 經濟部智慧財產局員工消費合作社印製 20 20·—種機電裝置之製造方法,包含: 提供一具有一界定寬度之間隙之構造; 在該間隙中形成一犧牲材料之區域; ^在該構造與該犧牲材料之區域上面形成一奈米 管結構段,1亥奈米管結才冓段包含一奈米管之薄膜; j該奈米管結構段之每端,實質上於排列於該 奈米管結構段之界定該間隙之該等邊緣之至少一部 分上提供一夾板;以及 移除該犧牲材料之區域,俾能使該奈米管結構 段被箝制於該物件之每端而懸浮在該間隙上面並跨 越該間隙。 21.如申凊專利範圍第20項所述之製造方法, 其中該奈米管結構段之該界定長度略超過該間隙之 該寬度。 -42 本紙張尺度適用中國國家標準(CNS)A4規格(21〇x297公釐) 訂 1323479 A8 B8 C8 --------- - 六、申請專利範圍 22. 如申請專利範圍第2〇項所述之製造方法, 其中該夾板係由絕緣材料所組成。 23. 如申請專利範圍第2〇項所述之製造方法, 5其中該夹板係由導電材料所組成》 24. 如申請專利範圍第20項所述之製造方法, 其中形成該奈米管結構段包括:形成複數個奈米管 之一毛面結構並移除該結構之一部分以產生該奈米 10 管結構段。 25. 如申請專利範圍第24項所述之製造方法, 其中移除該結構之一部分包括平版印刷圖案化並蝕 刻該結構。 26. 如申請專利範圍第2〇項所述之製造方法, 其中該奈米管結構段係、由—多孔性奈米管結構所構 經濟部智慧財產局員工消費合作社印製 成’且其中提供該夹板包括提供填滿該奈米管結構 段之至少某些毛細孔之材料。 27. 如申請專利範圍帛2G〗所述之製造方法, 其中該夾板由電氣絕緣材料所構成,且該錢係設 有-經彼界定通孔’而其中該方法更包括以導電材 料填滿該通孔以提供一斑兮太止心 興该奈水官結構段電氣連通 -43 - 本紙張尺度適用中國國家標準(CNS)A4規格(21〇X297公楚) 1323479 A8 , B8 C8 ~ - ' 1 ____D8 六、申請專利範圍 ~ '-—— 之路徑。 28. 如申請專利範圍第27項所述之製造方法, 其中該通孔係以金屬填滿,用以提供—到達該奈米 5管結構段之金屬信號路徑。 ^不…、 29. 如申請專利範圍第27項所述之製造方法, 其中該奈米管結構段係由一具有一多孔部分之奈米 管結構所構成,且其中填滿該通孔之該導電材料亦 10填滿該奈米管結構段之至少某些毛細孔。 30·如申凊專利範圍第20項所述之製造方法, 更包括提供一在該間隙中之導電線路,俾能被排列 在該犧牲材料之區域之下。 經濟部智慧財產局員工消費合作社印製 3 1.如申請專利範圍第20項所述之製造方法, 其中提供該夾板包括形成一界定在該奈米管結構段 之上的一第二間隙之構造,且其中該方法包括提供 在該間隙與該第二間隙中之一導電線路。 -44 - 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐)The medium-hemi-5 tube structure segment has a lithographically defined shape β. 13. The electromechanical device according to claim 7, further comprising a conductive line arranged in the gap and associated with the nano 5 The rice pipe structure segments are separated. 14. The electromechanical device of claim 7, wherein the splint is a first 〇-gap structure defined above the nanotube structure segment, and wherein the gap and the second gap are Each has a conductive line arranged therein. 15. The electromechanical device of claim 7, wherein the nanotube structure is composed of a nanotube having a porous portion, and wherein the splint is filled The nanotube structure is composed of at least some of the material of the capillary. 16', wherein the electromechanical device of claim 7 is further comprising at least one p-circuit ' in a spaced relationship with respect to the nanotube structure segment, and wherein the nanotube structure segment is electromechanically biased Move into contact with the 玄°Xuan line to take electrical stimulation of the line and the nanotube structure. 17. If the electromechanical device of claim 16 is applied, the contact of the 〃, '~ line is in a non-volatile state. /,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The electromechanical device of claim 16, wherein at least the conductive line has an interface material to change X S, '. The attraction between the segment and the s-shaped conductive line. The manufacturing method of the electromechanical device of the Ministry of Economic Affairs, the Intellectual Property Office of the 15th Ministry of Economics, comprises: providing a structure having a gap defining a width; forming a region of the sacrificial material in the gap; Forming a nanotube structure section on the region of the sacrificial material, wherein the 1Hai tube junction section comprises a film of a nanotube tube; j each end of the nanotube structure section is substantially arranged in the Providing a splint on at least a portion of the edges defining the gap; and removing the region of the sacrificial material such that the nanotube segment is clamped at each end of the article and suspended The gap is above and across the gap. 21. The method of manufacture of claim 20, wherein the defined length of the nanotube structure section slightly exceeds the width of the gap. -42 The paper size is applicable to China National Standard (CNS) A4 specification (21〇x297 mm). Order 1323479 A8 B8 C8 --------- - VI. Patent application scope 22. If the patent application scope is 2nd The manufacturing method according to the item, wherein the splint is composed of an insulating material. 23. The manufacturing method of claim 2, wherein the splint is composed of a conductive material. 24. The manufacturing method according to claim 20, wherein the nanotube structure is formed. The method comprises: forming a matte structure of a plurality of nanotubes and removing a portion of the structure to produce the nano 10 tube structure segment. 25. The method of manufacture of claim 24, wherein removing a portion of the structure comprises lithographic patterning and etching the structure. 26. The manufacturing method according to claim 2, wherein the nanotube structure segment is printed by the Ministry of Economic Affairs, Ministry of Economic Affairs, and the employee consumption cooperative of the Ministry of Economic Affairs, and is provided therein. The splint includes a material that provides at least some of the capillary pores that fill the segment of the nanotube structure. 27. The manufacturing method of claim 2, wherein the splint is made of an electrically insulating material, and the money is provided with a through hole defined by the method, wherein the method further comprises filling the electrically conductive material Through-hole to provide a plaque and too much heart to the electrical connection of the Nai water official section -43 - This paper scale applies to the Chinese National Standard (CNS) A4 specification (21〇X297 public Chu) 1323479 A8 , B8 C8 ~ - ' 1 ____D8 Sixth, the scope of the patent application ~ '-- the path. 28. The method of manufacture of claim 27, wherein the via is filled with metal to provide a metal signal path to the nanotube structure segment. The manufacturing method according to claim 27, wherein the nanotube structure is composed of a nanotube structure having a porous portion, and the through hole is filled therein. The electrically conductive material also fills at least some of the capillary pores of the nanotube structure section. 30. The method of manufacturing of claim 20, further comprising providing a conductive trace in the gap, the germanium being disposed below the region of the sacrificial material. 1. The manufacturing method of claim 20, wherein providing the splint comprises forming a second gap defined above the nanotube structure section. And wherein the method includes providing one of the conductive lines in the gap and the second gap. -44 - This paper size is applicable to China National Standard (CNS) A4 specification (210x297 mm)
TW93103122A 2003-02-12 2004-02-11 Devices having horizontally-disposed nanofabric articles and methods of making the same TWI323479B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US44678303P 2003-02-12 2003-02-12

Publications (2)

Publication Number Publication Date
TW200511364A TW200511364A (en) 2005-03-16
TWI323479B true TWI323479B (en) 2010-04-11

Family

ID=36167015

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93103122A TWI323479B (en) 2003-02-12 2004-02-11 Devices having horizontally-disposed nanofabric articles and methods of making the same

Country Status (2)

Country Link
CN (2) CN101475134A (en)
TW (1) TWI323479B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394483B2 (en) 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
US8083953B2 (en) 2007-03-06 2011-12-27 Micron Technology, Inc. Registered structure formation via the application of directed thermal energy to diblock copolymer films
US8557128B2 (en) 2007-03-22 2013-10-15 Micron Technology, Inc. Sub-10 nm line features via rapid graphoepitaxial self-assembly of amphiphilic monolayers
US8294139B2 (en) 2007-06-21 2012-10-23 Micron Technology, Inc. Multilayer antireflection coatings, structures and devices including the same and methods of making the same
US7959975B2 (en) 2007-04-18 2011-06-14 Micron Technology, Inc. Methods of patterning a substrate
US8097175B2 (en) 2008-10-28 2012-01-17 Micron Technology, Inc. Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure
US8372295B2 (en) 2007-04-20 2013-02-12 Micron Technology, Inc. Extensions of self-assembled structures to increased dimensions via a “bootstrap” self-templating method
US8404124B2 (en) 2007-06-12 2013-03-26 Micron Technology, Inc. Alternating self-assembling morphologies of diblock copolymers controlled by variations in surfaces
US8080615B2 (en) 2007-06-19 2011-12-20 Micron Technology, Inc. Crosslinkable graft polymer non-preferentially wetted by polystyrene and polyethylene oxide
US8999492B2 (en) 2008-02-05 2015-04-07 Micron Technology, Inc. Method to produce nanometer-sized features with directed assembly of block copolymers
US8101261B2 (en) 2008-02-13 2012-01-24 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
US8425982B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
US8426313B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Thermal anneal of block copolymer films with top interface constrained to wet both blocks with equal preference
US8114300B2 (en) 2008-04-21 2012-02-14 Micron Technology, Inc. Multi-layer method for formation of registered arrays of cylindrical pores in polymer films
US8114301B2 (en) 2008-05-02 2012-02-14 Micron Technology, Inc. Graphoepitaxial self-assembly of arrays of downward facing half-cylinders
US8304493B2 (en) 2010-08-20 2012-11-06 Micron Technology, Inc. Methods of forming block copolymers
US8900963B2 (en) 2011-11-02 2014-12-02 Micron Technology, Inc. Methods of forming semiconductor device structures, and related structures
FR3002219B1 (en) * 2013-02-19 2015-04-10 Commissariat Energie Atomique METHOD FOR MANUFACTURING A MICROMECHANICAL AND / OR NANOMECHANICAL STRUCTURE COMPRISING A POROUS SURFACE
US9177795B2 (en) 2013-09-27 2015-11-03 Micron Technology, Inc. Methods of forming nanostructures including metal oxides
CN107634060B (en) * 2016-07-18 2020-04-10 中芯国际集成电路制造(北京)有限公司 Semiconductor device, manufacturing method thereof and electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445006B1 (en) * 1995-12-20 2002-09-03 Advanced Technology Materials, Inc. Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same

Also Published As

Publication number Publication date
CN101475134A (en) 2009-07-08
CN100456500C (en) 2009-01-28
CN1748321A (en) 2006-03-15
TW200511364A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US7619291B2 (en) Devices having horizontally-disposed nanofabric articles and methods of making the same
TWI323479B (en) Devices having horizontally-disposed nanofabric articles and methods of making the same
US7416993B2 (en) Patterned nanowire articles on a substrate and methods of making the same
EP2383749A2 (en) Nanofabric articles and methods of making the same
US6924538B2 (en) Devices having vertically-disposed nanofabric articles and methods of making the same
US7719067B2 (en) Devices having vertically-disposed nanofabric articles and methods of making the same
TWI240270B (en) Hybrid circuit having nanotube electromechanical memory
US7045421B2 (en) Process for making bit selectable devices having elements made with nanotubes
Ward et al. A nonvolatile nanoelectromechanical memory element utilizing a fabric of carbon nanotubes

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent