TWI300643B - - Google Patents

Download PDF

Info

Publication number
TWI300643B
TWI300643B TW095101050A TW95101050A TWI300643B TW I300643 B TWI300643 B TW I300643B TW 095101050 A TW095101050 A TW 095101050A TW 95101050 A TW95101050 A TW 95101050A TW I300643 B TWI300643 B TW I300643B
Authority
TW
Taiwan
Prior art keywords
semiconductor laser
resin
laser device
substrate
pin
Prior art date
Application number
TW095101050A
Other languages
Chinese (zh)
Other versions
TW200640098A (en
Inventor
Takeshi Yamamoto
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Publication of TW200640098A publication Critical patent/TW200640098A/en
Application granted granted Critical
Publication of TWI300643B publication Critical patent/TWI300643B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

1300643 (1) 九、發明說明 【發明所屬之技術領域】 本發明是有關半導體雷射裝置及其製造方法。特別是 有關使用於 CD(Compact Disc)、MD(Mini Disc)、 DVD(Digital Versatile Disc)等的讀取用光源、或 CD-R/RW(Compact Disc Recordable / Rewritable) ' DVD-R / R W (D i g i t a 1 V e r s a t i 1 e D i s c R e c o r d a b 1 e / R e w r i t a b 1 e)等 的寫入用光源之半導體雷射裝置。 【先前技術】 圖8是表示日本特開2004-31900號公報中所揭示之 以往的半導體雷射裝置。半導體雷射裝置X是往圖中上 方來射出雷射光者。以下說明半導體雷射裝置X的構 成。 丰導體雷射裝置X具有基座91。基座91是由基底 91A及區塊91B所構成。在區塊91B上設置有半導體雷 射元件92。在基底91A上設置有受光元件93。並且,在 基底91 A中形成有2個孔91 Aa。 接腳94A,94B是貫通各個的孔91Aa。接腳94A是 經由導線(wire)來導通至半導體雷射元件92,接腳94B是 導通至受光元件93。在孔91 Aa與接腳94A,94B的間隙 中充塡有低融點玻璃97。接腳94C是被接合於基底91A 的下面。 以能夠覆蓋區塊91B的方式來設置罩蓋95。在罩蓋 -4- (2) 1300643 9 5的上部形成有開口 9 5 a ’但此開口 9 5 a會藉由玻 9 6來遮蔽。玻璃板9 6是構成能夠使自半導體雷射元 射出的雷射光透過。罩蓋9 5的緣是藉由電阻焊來對 9 1 A接合。 若利用上述構成,則藉由基底9 1 A及罩蓋9 5所 的空間,對半導體雷射裝置X外的空間而言,是形 密。因此,即使該半導體雷射裝置X使用於淫度高 境中,還是能夠防止半導體雷射元件9 2的周圍淫 高,進而可以保護半導體雷射元件92 ° 近年來,在CD-R等的記録媒體中存取速度形 速。因此,需要輸出光的強度大的半導體雷射裝置。 是在作爲CD-R/RW或DVD-R/RW等的寫入用光源的 中,會被要求大的輸出光強度。 若使半導體雷射裝置的輸出光的強度増加,則半 雷射元件的發熱量隨著増加。但,就上述半導體雷射 X的情況而言,是在藉由基底91A及罩蓋95而區劃 有高氣密性的空間中配置有半導體雷射元件92。因 無法充分地使在半導體雷射元件92中所產生的熱逃 氣。其結果,會有因爲半導體雷射元件92的温度過 而無法自半導體雷射元件92適當地射出雷射光之虞。 【發明'內容】 本發明是有鑑於上述情事而硏發者,其課題是在 供一種具有高放熱性,同時輸出光的強度大之半導體 璃板 件92 基底 區劃 成氣 的環 度變 成高 尤其 用途 導體 裝置 之具 此, 至外 高, 於提 雷射 -5- (3) 1300643 裝置。又’本發明的另一課題是在於提供一種如此之導體 雷射裝置的製造方法。 爲了解決上述課題,本發明具備其次的技術手段。 第1’本發明之半導體雷射裝置具備: 基底; 區塊’其係固定於上述基底;及 半導體雷射元件,其係設置於上述區塊。 又,該半導體雷射裝置具備: 接腳’其係貝通上述基底’且導通至上述半導體雷射 元件;及 罩蓋’其係固定於上述基底,同時以能夠圍繞上述半 導體雷射元件及上述接腳的一端部之方式來構成。 在此罩蓋中形成有插通於從上述半導體雷射元件射出 的雷射光的射出方向之開口。因此,上述罩蓋會開放於上 述射出方向。 若利用如此的構成,則藉由上述罩蓋及上述基底所圍 繞的空間會透過上述開口來與該半導體雷射裝置的外部連 通,不會形成密閉的空間。因此,藉由上述半導體雷射裝 置的使用,即使上述半導體雷射元件發熱,還是可以由上 述開口來將該等的熱散放至上述半導體雷射裝置外。因 此,可抑止上述半導體雷射元件形成過度高温,在使用於 CD-R/RW等的寫入用光源時,可對應於存取速度的高速 化等來使輸出光強度適當地増加。 較理想是上述基底及上述區塊係由同一材料所構成之 -6 - (4) 1300643 一體成形的構造。若利用如此的構成,則可提高上述區塊 與上述基底之間的熱傳達性。藉此,來自上述半導體雷射 元件的熱,不僅可自上述開口散放,而且還能夠經由上述 區塊來傳播至上述基底。 較理想是上述基底及上述區塊爲Cu及Cu合金的任 一方。如此的構成,可使上述基底及上述區塊成爲熱傳導 率較高者,適於抑止上述半導體雷射元件的温度上昇。 較理想是上述接腳係經由樹脂來固接於上述基底。若 利用如此的構成,則可一面機械性接合上述接腳與上述基 底,一面電性絕緣。又,例如利用玻璃之固接時,燒成時 必須爲l,〇〇〇°C以上的高温。相對的,利用樹脂之固接 時,可以較低之200〜3 00°c程度的温度來燒成。因此,在 此燒成之前,即使在上述基底及上述區塊例如施以Au電 鍍,燒成工程也不會有侵蝕該Au電鍍之虞。本發明亦可 進行Au電鍍以外的電鍍處理,或施以其他各種的表面處 理。 較理想是上述樹脂爲熱硬化性樹脂、熱可塑性樹脂及 聚矽氧樹脂的其中任一個。熱硬化性樹脂,例如可使用環 氧樹脂。又,熱可塑性樹脂可使用聚苯硫醚樹脂、聚鄰苯 二甲醯胺樹脂或液晶聚酯樹脂等。在聚矽氧樹脂中亦可混 入二氧化矽粉末。該等的樹脂,一方面燒成温度爲較的低 温,另一方面可確實達成機械性接合、電性絕緣。 較理想是在上述基底及上述區塊施以Ni/Pd/Au電鍍 及Ni/Αιι電鍍的任一方。若利用如此的構成,則適於謀求 (5) 1300643 上述基底及上述區塊的氧化防止。 較理想是上述半導體雷射元件爲高耐溼型的半 射元件。若利用如此的構成,則即使在溼度較高的 使用該半導體雷射元件,侵蝕上述半導體雷射元件 端面等之虞少,可使適當地作動。高耐溼型的半導 元件,例如可使用在射出端面藉由濺鍍法等來施以 TiO或Si02的Al2〇3所構成的塗層之半導體雷射元 第2,本發明可提供一種半導體雷射裝置的 法。 此製造方法,係具有: 形成包含基底及固定於該基底的區塊之基座之 使接腳貫通於設置於上述基底的孔而固接之工 在上述區塊搭載半導體雷射元件之工程。 在形成上述基座的工程中,使上述區塊與上述 體成形。 若利用如此的構成,則可形成熱傳導性良好的 可抑止半導體雷射元件的温度上昇。 較理想是上述基座係藉由使用Cu及Cu合金 方之冷鍛所形成。如此的材料是適用抑止上述半導 元件的温度上昇。又,由於該等的材料成形性良好 即使在冷鍛中照樣能夠尺寸精度佳,實現所望的形 較理想是上述接腳係使用樹脂來固接於上述孔 用如此的構成,則可使對樹脂之燒成温度形成較 此,施加於上述基座的電鍍,可採用沒有那麼耐高 導體雷 環境中 的射出 體雷射 由混入 件。 製造方 工程; 程;及 基底一 基座, 的任一 體雷射 ,因此 狀。 。若利 低。因 温性高 (6) 1300643 者。 較理想是上述樹脂爲熱硬化性樹脂、熱可塑性樹脂及 聚矽氧樹脂的其中任一個。熱硬化性樹脂,例如可使用環 氧樹脂。又’熱可塑性樹脂可使用聚苯硫醚樹脂、聚鄰苯 二甲醯胺樹脂或液晶聚酯樹脂等。在聚矽氧樹脂中亦可混 入二氧化矽粉末。在使用如此的材料時,可令用以形成該 等樹脂的燒成温度大槪成爲2 0 0〜3 0 〇 °C程度。 較理想是本發明的製造方法更具備:在形成上述基座 的工程之後,在固接上述接腳的工程之前,在上述基座施 以Ni/Pd/Au電鍍及Ni/Au電鍍的其中任一方之工程。若 利用如此的構成,則在上述接腳,例如爲了提高導線的接 合性,可預先施以Ο.ΐμπι以上的厚度之Au電鍍。另一方 面,在上述基座中,例如可完全不施以Au電鍍,或作爲 防止氧化的目的,施以〇·〇 1 μπι以下程度的厚度之Au電 鍍。因此,可壓制較高價之 Au電鍍的量,謀求成本削 減。 較理想是本發明的製造方法更具備:在固接上述接腳 的工程之前,在上述接腳施以Αιζ電鍍之工程。若利用如 此的構成,則可只對上述接腳施以能夠充分提高與導線的 接合性之較厚的Au電鍍。藉此,在上述基座等中,可不 必施以不必要厚度的Αιι電鍍,有利於成本削減。 本發明的其他特徴及優點可藉由參照圖面來進行的以 下詳細説明得知。 (7) 1300643 【實施方式】 以下,參照圖面來具體説明本發明的較佳實施形態。 圖1〜圖3是表示本發明的半導體雷射裝置之一例。 本實施形態的半導體雷射裝置A可往圖1的上方射出雷 射先 丰導體雷射裝置A具備:基座1、半導體雷射元件 2、受光元件3、接腳4A,4B,4C、及罩蓋5。 基座1是由基底1A、及區塊1B所構成。如圖3所 示’基座1是採取基底1A及區塊1B爲一體成形的構 h °基座1(亦即’基底1A及區塊1B)是由Cu或Cu合金 所構成,在其表面施以Ni/Pd/Au電鍍或Ni/Au電鍍。All 電鍍的厚度,例如爲〇 . 〇 1 μ m程度以下。如圖1所示,基 底1A爲圓形板狀’區堤1B爲直方體形狀。區塊1B是配 置於基底1 A的上側,且自基底1A的中心偏移的位置。 基底1 A是例如厚度爲1 .2mm程度,直徑爲5.6mm程度。 半導體雷射元件2是設置於區塊1 B側面的底層封裝 板(sub-moiint)l 1。半導體雷射元件2是用以射出雷射光。 半導體雷射元件 2 是例如具有 25 0μπι四方乃至 2 5 0μηι>< 8 00μηι四方程度的大小。底層封裝板1 1是例如由 矽基板或 ΑΙΝ(氮化鋁)所構成’通常具有〇.8mmx 1 .0mm 四方程度的大小。半導體雷射元件2是所謂高耐溼型的半 導體雷射元件。更具體而言’半導體雷射元件2是具有例 如使用由混入TiO或Si〇2的Al2〇3所構成的塗層(coating) 材,藉由濺鍍法等來覆蓋的射出端面。因此,即使高耐溼 型的半導體雷射元件2被放置於溼度較高的環境’射出面 -10- (8) 1300643 等還是難以被侵飽。 受光元件3是被設置於基底ία的上面。受光元 會輸出對應於所接受的光強度之大小的信號。藉由使 光元件3的輸出,可將來自半導體雷射裝置a的射 保持於一定。具體而言,例如,受光元件3的輸出會 餽至控制半導體雷射元件2的電路。 接腳4A,4B是分別用以對半導體雷射元件2及 元件3電源供給。如圖2所示,接腳4A,4B會貫通 於基底1A的孔1 Aa。接腳4A,4B是例如由Fe-Ni 所構成,被施以Au電鍍。此Αιι電鍍是用以在實施 的打線結合之後,使導線適當接合者,例如爲0.1 μιη 以上的厚度。接腳4Α,4Β是藉由樹脂6來固定於 1 Α。樹脂6是例如爲環氧樹脂等的熱硬化性樹脂、 苯硫醚樹脂、聚鄰苯二甲醯胺樹脂、液晶聚酯樹脂等 可塑性樹脂、或混入二氧化矽粉末的矽樹脂。藉此 6,接腳4A,4B會與基底1A機械性接合,同時被電 緣。 另一方面,在基底1 A的下面設有接腳4C。接ϋ 的上端部4 C a是例如紆焊來對基底1 Α接合。因此, 4C與基底1A會電性導通。接腳4C是由Fe_Ni合金 成。接腳4C是與接腳4A,4B相異’和基座1同樣 施以Ni/Pd/Au電鍍、或Ni/Au電鍍。接腳4C的Au 的厚度是例如爲〇 · 〇 1 程度。 如圖1所示,半導體雷射元件2的表面是利用導 件3 用受 出光 被反 受光 形成 合金 後述 程度 基底 或聚 的熱 樹脂 性絕 P 4C 接腳 所構 地被 電鍍 線7 -11 - (9) 1300643 經由底層封裝板1 1來與接腳4A的上端部4Aa導通。並 且,半導體雷射元件2的背面不與底層封裝板Π導通’ 而是導通至區塊1B。如圖3所示,區塊1B是經由基底 1A來與接腳4C導通。因此,半導體雷射元件2會與接腳 4A及接腳4C導通。如圖2所示,受光元件3的上面是藉 由導線7來與接腳4B的上端部4Ba連接,同時受光元件 3的下面是經由基底1 A來導通至接腳4C。接腳4C是具 有所謂共接腳的機能。接腳4A,4B,4C的下端部是分別 爲端子部4Ab,4Bb,4Cb,形成用以將該半導體雷射裝 置A電性及機械性連接至電子機器等的部分。 如圖1所示,罩蓋5是被支持於基底1A的上面,由 凸緣5a、圓筒5b及頂板5c所構成。罩蓋5是爲了防止 半導體雷射元件2、受光元件3、或用以謀求該等的導通 之導線7等受到不當的外力而破損,用以保護該等者。基 於此目的,圓筒5b要比區塊1B更長於上下方向。罩蓋5 是例如由Kovar (登錄商標)等的Fe-Ni-Co合金所構成。罩 胃5與基底1 a的接合是例如藉由電阻焊來達成,但除此 以外亦可例如環氧系黏合劑來進行。在頂板5 c中形成有 開□ 5 d。開口 5 d是爲了使從半導體雷射元件2往上方射 出的雷射光通過,使射出至半導體雷射裝置A之外而設 置者。開口 5 d是未被遮蔽,且完全不收容例如玻璃等的 透明材料。因此,如圖2及圖3所示,半導體雷射元件2 周邊的空間是對外部開放。 . 其次,一邊參照圖4〜圖7,一邊説明有關半導體雷 -12- (10) 1300643 射裝置A的製造方法之一例。 首先,如圖4所示,藉由對Cu材料或Cu合金材料 施以冷鍛,而形成基座1。藉由該冷鍛,基底1A與區塊 1B如圖3所示一體成形。並且’在基底ία中形成有用以 使接腳4A,4B貫通的2個孔lAa。又,基於尺寸精度或 製造效率的點,最好基座1的形成是藉由冷锻,但並非限 於此’亦可採用能夠以和冷锻同程度的尺寸精度來形成的 方法。 其次,如圖5所示,在基底1A的下面,例如藉由釺 焊來接合接腳4 C。藉此’接腳4 C與基底1A會導通。 又’接腳4 C的接合,亦可釺焊以外的方法,只要是使能 夠和基底1 A導通的方法即可。在接合接腳4 C之後,對 基座1及接腳4C施以電鍍。具體而言,施以Ni電鍍8C 及Pd電鍍8B,從該等的電鍍上更施以Au電鍍8Aa。如 上述,Au電鍍8Aa是以能夠防止基座1或接腳4(:的氧 化之方式來形成〇·〇1 μπι以下程度的厚度。另外,上述電 鍍處理亦可按照半導體雷射裝置Α的使用環境等,來省 略Pd電鍍8B,而僅施以Ni電鍍8C及Au電鍍8Aa。 其次,如圖6所示,將施以Au電鍍8 Ab的接腳4 A 及4B分別插入孔1 Aa。Au電鍍8 Ab是供以容易在接腳 4A ’ 4B接合例如Αιι製的導線者,例如爲〇. 1μιη以上的 厚度。其次,藉由在孔1 Aa内充塡樹脂糊膏6,來保持接 腳4A,4B。樹脂糊膏6’是例如含有環氧樹脂等的熱硬化 性樹脂、或聚苯硫醚樹脂、聚鄰苯二甲醯胺樹脂、液晶聚 -13- (11) 1300643 酯樹脂等的熱可塑性樹脂、或混入二氧化矽粉末的聚矽氧 樹脂之糊膏(paste)。樹脂糊膏6’的充塡,可在接腳4A, 4B的揷入前進行,或予以插入孔1 Aa之後進行。 其次,燒成樹脂糊膏6’,而形成樹脂6。藉此,如圖 7所示,樹脂6會將接腳4A,4B固接於基底1A。由於樹 脂糊膏6’是由上述材質所構成,因此燒成温度只要爲200 〜3 00°C程度,即夠充分。樹脂糊膏6’是與基座1及接腳 4A,4B,4C 一起燒成。施加於基座1或接腳4A,4B, 4C的 Au電鍍 8Aa,8Ab,例如在 1,0 0 (ΓC以上的高温 時,容易產生溶融或剝離的不良情況。但,因爲樹脂糊膏 6’的燒成温度爲較低的200〜3 00 °C程度,所以可防止 An 電鍍8Aa,8Ab因高温而被侵蝕。藉由樹脂6的形成,接 腳4A,4B可對基底1 A固接,同時被電性絕緣。 其次,經由圖1所示之底層封裝板1 1的形成、半導 體雷射元件2及受光元件3的搭載、打線結合的連接、及 罩蓋5的接合等,來完成半導體雷射裝置A。爲了有效率 地進行罩蓋5的接合作業,例如使用電阻焊。罩蓋5的接 合可不必在凸緣5a的全周進行,以罩蓋5不易從基底1A 脫離的程度,針對凸緣5 a的數處施以電阻焊即可。 其次,說明有關半導體雷射裝置A的作用。 在以往例中,例如圖8所示,本半導體雷射元件92 會被設置於密閉的空間中。其結果,從半導體雷射元件 92產生的熱會停滯於罩蓋95的内側。相對的,若利用本 實施形態,則如圖1所示,藉由罩蓋5及基底1A所圍繞 -14 - (12) 1300643 的空間不會被密閉。亦即,該空間是經由開口 5d來與該 半導體雷射裝置A外連通。其結果’自半導體雷射兀件2 散發的熱會藉由通過開口 5 d的傳熱或對流等來使散放至 半導體雷射裝置A外。因此’可防止半導體雷射元件2 形成過度高温。以半導體雷射裝置A作爲CD_R/RW等的 寫入用光源使用時’可藉由i Μ _ $ $ f@方令#耳又@ ® @ 高速化而取得大的輸出° 又,基座1是基底1Α與區塊1Β會被一體成形,藉 此形成熱傳達性良好的構造。於是’可使來自半導體雷射 元件2的熱經由區塊1 Β來傳達至基底1 Α。因此、除了經 由開口 5 d的散放以外,更可促進自半導體雷射元件2散 熱。這將適於半導體雷射裝置A的大輸出化。此外’基 座1爲熱傳導率較高的C u或C u合金所構成,亦有利於 半導體雷射元件2的散熱。 接腳4A,4B是經由樹脂6來固接於基底1A。藉 此,可強化接腳4A,4B與基底1 A的機械性接合,同時 還能夠適當地確保接腳4A,4B與基底1 A的電性絕緣。 使用於本實施形態的樹脂6之材質,燒成温度爲較低 之20 0 °C〜3 00 °C程度。因此,如圖6所示,在燒成樹脂糊 膏6’來固接接腳4A,4B的工程之前,可預先對基座1、 接腳4A,4B’ 4C等施以Αιι電鍍。 接腳4A ’ 4B爲了藉由導線7來連接半導體雷射元件 2或受光元件3,而必須施以〇.丨μηι以上的厚度之Au電 鍍。另一方面,基座1或接腳4C,爲了防止氧化,只要 -15- (13) 1300643 施以充其量0 · 0 1 μιη以下的厚度之All電鍍即夠充分。 如此’可合理選擇各構件所必要的Au電鍍,壓制較 高價的A u電鑛量,謀求成本削減。 本發明的半導體雷射裝置並非限於上述實施形態。本 發明的半導體雷射裝置的各部具體構成可自由變更各種設 計。 基座1最好是由C u或C u合金所構成。但,並非限 於此’亦可使用能夠適當抑止半導體雷射元件2的温度上 昇之材料,例如使用Fe等來形成基座1。又,基座1最 好是一體形成基底1A與區塊1 B的構造。但,並非限於 此’只要是能夠適當抑止半導體雷射元件2的温度上昇之 構造即可,亦可不是一體形成的構造。 罩蓋5只要設有用以形成從半導體雷射元件2往射出 方向開放的構造之開口 5 d即夠充分,例如亦可爲只由凸 緣5a、圓筒5b所構成,具有與頂板5c的外徑同程度的 開口之構造。 具有受光元件3的構成是例如有利於根據反餽控制之 半導體雷射元件2的安定發光。但,本發明並非限於此, 亦可利用別的手法來實現半導體雷射元件2的輸出控制, 藉此成爲不具備受光元件3的構成。 本發明的半導體雷射裝置A是適合利用於CD、MD、 DVD等的讀取用光源、或、CD-R/RW、DVD-R/RW等的 寫入用光源等。但,並非限於此,可廣泛作爲搭載於電子 機器等之雷射光的發光源使用。 -16- (14) 1300643 【圖式簡單說明】 圖1是表示本發明之半導體雷射裝置的立體圖。 圖2是表示沿著圖1之II-II線的剖面圖。 圖3是表示沿著圖1之III-III線的剖面圖。 圖4是說明本發明的半導體雷射裝置的製造方法之 工程的剖面圖。 圖5是說明上述製造方法的其他工程的剖面圖。 圖6是說明上述製造方法的其他工程的剖面圖。 圖7是說明上述製造方法的其他工程的剖面圖。 圖8是表示以往的半導體雷射裝置的剖面圖。 【主要元件符號說明】 A :半導體雷射裝置 1 :基座 2 :半導體雷射元件 3 :受光元件 4A,4B,4C :接腳 5 :罩蓋 1 A :基底 1 B :區塊 1 1 :底層封裝板 5a :凸緣 5b :圓筒 -17- (15) (15)1300643 (1) Description of the Invention [Technical Field] The present invention relates to a semiconductor laser device and a method of manufacturing the same. In particular, it is used for reading light sources such as CD (Compact Disc), MD (Mini Disc), and DVD (Digital Versatile Disc), or CD-R/RW (Compact Disc Recordable / Rewritable) 'DVD-R / RW ( A semiconductor laser device for writing light sources such as D igita 1 V ersati 1 e D isc R ecordab 1 e / R ewritab 1 e). [Prior Art] Fig. 8 shows a conventional semiconductor laser device disclosed in Japanese Laid-Open Patent Publication No. 2004-31900. The semiconductor laser device X is a person who emits laser light to the upper side of the figure. The configuration of the semiconductor laser device X will be described below. The abundance conductor laser device X has a pedestal 91. The susceptor 91 is composed of a substrate 91A and a block 91B. A semiconductor laser element 92 is disposed on the block 91B. A light receiving element 93 is provided on the substrate 91A. Further, two holes 91 Aa are formed in the base 91 A. The pins 94A, 94B are through the respective holes 91Aa. The pin 94A is electrically connected to the semiconductor laser element 92 via a wire, and the pin 94B is electrically connected to the light receiving element 93. A low melting point glass 97 is filled in the gap between the hole 91 Aa and the pins 94A, 94B. The pin 94C is bonded to the underside of the substrate 91A. The cover 95 is provided in such a manner as to cover the block 91B. An opening 9 5 a ' is formed in the upper portion of the cover -4- (2) 1300643 9 5 but the opening 9 5 a is shielded by the glass 96. The glass plate 96 is configured to transmit laser light emitted from the semiconductor laser element. The edge of the cover 915 is joined by 9 1 A by electric resistance welding. According to the above configuration, the space outside the semiconductor laser device X is dense by the space of the substrate 9 1 A and the cover 95. Therefore, even if the semiconductor laser device X is used in a high degree of lust, it is possible to prevent the semiconductor laser element 92 from being sullen, and it is possible to protect the semiconductor laser element 92 °. In recent years, in a recording medium such as a CD-R. Access speed shape. Therefore, there is a need for a semiconductor laser device that outputs a high intensity of light. In the case of a writing light source such as a CD-R/RW or a DVD-R/RW, a large output light intensity is required. When the intensity of the output light of the semiconductor laser device is increased, the amount of heat generated by the semiconductor device is increased. However, in the case of the semiconductor laser X described above, the semiconductor laser element 92 is disposed in a space in which the base 91A and the cover 95 are partitioned to have high airtightness. The heat generated in the semiconductor laser element 92 cannot be sufficiently escaped. As a result, the laser light cannot be appropriately emitted from the semiconductor laser element 92 due to the temperature of the semiconductor laser element 92. [Invention] The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a high degree of heat dissipation, and at the same time, the intensity of the output light is large, and the base of the semiconductor glass sheet 92 is divided into a gas. For the purpose of the conductor device, to the outside, in the lift laser -5 - (3) 1300643 device. Further, another object of the present invention is to provide a method of manufacturing such a conductor laser device. In order to solve the above problems, the present invention has the following technical means. A semiconductor laser device according to a first aspect of the invention includes: a substrate; a block' fixed to the substrate; and a semiconductor laser device provided in the block. Further, the semiconductor laser device includes: a pin 'being connected to the base ' and electrically connected to the semiconductor laser element; and a cover 'fixed to the base while being capable of surrounding the semiconductor laser element and It is constructed by the one end of the pin. An opening that is inserted into the emission direction of the laser light emitted from the semiconductor laser element is formed in the cover. Therefore, the cover described above is opened in the above-described emission direction. According to this configuration, the space surrounded by the cover and the substrate passes through the opening to communicate with the outside of the semiconductor laser device, and a sealed space is not formed. Therefore, by the use of the semiconductor laser device described above, even if the semiconductor laser element generates heat, the heat can be radiated from the opening to the outside of the semiconductor laser device. Therefore, the above-described semiconductor laser element can be prevented from being excessively heated, and when used in a writing light source such as a CD-R/RW, the output light intensity can be appropriately increased in accordance with the speed of the access speed. Preferably, the base and the block are integrally formed of -6 - (4) 1300643 made of the same material. According to such a configuration, the heat transfer property between the block and the substrate can be improved. Thereby, heat from the semiconductor laser element can be diffused not only from the opening but also to the substrate via the block. Preferably, the substrate and the block are either Cu or a Cu alloy. According to this configuration, the base and the block can be made to have a high thermal conductivity, and it is suitable for suppressing an increase in temperature of the semiconductor laser element. Preferably, the above-mentioned pins are fixed to the base via a resin. According to this configuration, the pins and the base can be mechanically joined to each other to be electrically insulated. Further, for example, when it is fixed by glass, it must be l, a temperature higher than 〇〇〇 °C at the time of firing. In contrast, when the resin is fixed, it can be fired at a temperature of about 200 to 300 ° C. Therefore, even before the firing, even if the substrate and the above-mentioned block are subjected to Au plating, the firing process does not erode the Au plating. The present invention can also be subjected to electroplating treatment other than Au plating or to various other surface treatments. Preferably, the above resin is any one of a thermosetting resin, a thermoplastic resin, and a polyoxyn resin. As the thermosetting resin, for example, an epoxy resin can be used. Further, as the thermoplastic resin, a polyphenylene sulfide resin, a polyphthalamide resin, a liquid crystal polyester resin or the like can be used. A cerium oxide powder may also be mixed in the polyoxynoxy resin. On the other hand, these resins have a relatively low firing temperature, and on the other hand, mechanical bonding and electrical insulation can be reliably achieved. Preferably, either one of Ni/Pd/Au plating and Ni/Αι plating is applied to the substrate and the block. According to such a configuration, it is suitable to prevent oxidation of the substrate and the block described above in (5) 1300643. Preferably, the above semiconductor laser element is a high-humidity type semiconductor element. According to such a configuration, even if the semiconductor laser element is used at a high humidity, the end face of the semiconductor laser element or the like is eroded, and the operation can be appropriately performed. For a semiconductor element having a high moisture-resistant type semi-conductive element, for example, a semiconductor laser which is coated with Al 2 〇 3 of TiO or SiO 2 by sputtering or the like, the present invention can provide a semiconductor. The method of the laser device. The manufacturing method includes: forming a base including a base fixed to the base, and attaching the pin to the hole provided in the base to be fixed. The semiconductor laser element is mounted on the block. In the process of forming the susceptor, the block and the body are formed. According to such a configuration, it is possible to form a high thermal conductivity and suppress the temperature rise of the semiconductor laser element. Preferably, the susceptor is formed by cold forging using Cu and Cu alloys. Such a material is suitable for suppressing the temperature rise of the above-mentioned semiconductive member. Further, since these materials have good moldability, even in cold forging, the dimensional accuracy is good, and it is preferable that the desired shape is such that the above-mentioned pins are fixed to the holes by using a resin, and the resin can be used. The firing temperature is formed by this, and the plating applied to the susceptor can be performed by using a mixture that is not so resistant to a high-conductor lightning environment. The manufacturer's project; the process; and the base-base, any of the body's lasers, hence the shape. . If the profit is low. Because of the high temperature (6) 1300643. Preferably, the above resin is any one of a thermosetting resin, a thermoplastic resin, and a polyoxyn resin. As the thermosetting resin, for example, an epoxy resin can be used. Further, as the thermoplastic resin, a polyphenylene sulfide resin, a polyphthalamide resin or a liquid crystal polyester resin can be used. A cerium oxide powder may also be mixed in the polyoxynoxy resin. When such a material is used, the firing temperature for forming the resin can be made to be about 200 to 30 ° C. Preferably, the manufacturing method of the present invention further includes: after the process of forming the susceptor, applying Ni/Pd/Au plating and Ni/Au plating to the susceptor before fixing the work of the pedestal The project of one party. According to such a configuration, for the above-mentioned pins, for example, in order to improve the bonding property of the wires, Au plating having a thickness of Ο.ΐμπι or more can be applied in advance. On the other hand, in the susceptor, for example, Au plating may be omitted at all, or Au plating having a thickness of about 1 μm or less may be applied for the purpose of preventing oxidation. Therefore, the amount of Au plating of a higher price can be suppressed, and the cost can be reduced. Preferably, the manufacturing method of the present invention further comprises: applying a plating process to the above-mentioned pins before fixing the above-mentioned pins. According to this configuration, it is possible to apply only a thick Au plating which can sufficiently improve the bonding property with the wires to the above-mentioned pins. Therefore, in the susceptor or the like, it is not necessary to apply iridium plating having an unnecessary thickness, which is advantageous in cost reduction. Other features and advantages of the invention will be apparent from the following detailed description. (7) 1300643 [Embodiment] Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings. 1 to 3 show an example of a semiconductor laser device of the present invention. The semiconductor laser device A of the present embodiment can emit the laser first-conductor conductor laser device A from the upper side of FIG. 1 including a susceptor 1, a semiconductor laser element 2, a light-receiving element 3, pins 4A, 4B, 4C, and Cover 5. The susceptor 1 is composed of a substrate 1A and a block 1B. As shown in FIG. 3, the susceptor 1 is formed by integrally forming the substrate 1A and the block 1B. The base 1 (that is, the 'base 1A and the block 1B') is made of Cu or a Cu alloy. Ni/Pd/Au plating or Ni/Au plating is applied. The thickness of the All plating is, for example, 〇. 〇 1 μm or less. As shown in Fig. 1, the base 1A has a circular plate shape, and the bank 1B has a rectangular parallelepiped shape. The block 1B is a position which is disposed on the upper side of the substrate 1 A and which is offset from the center of the substrate 1A. The substrate 1 A has, for example, a thickness of about 1.2 mm and a diameter of about 5.6 mm. The semiconductor laser element 2 is a sub-moiint l 1 disposed on the side of the block 1 B. The semiconductor laser element 2 is for emitting laser light. The semiconductor laser element 2 is, for example, a size having a square of 25 0 μm or even 2 5 0 μηι>< 8 00 μη. The underlying package board 11 is, for example, made of a germanium substrate or germanium (aluminum nitride), and has a size of typically 〇8 mm x 1.0 mm square. The semiconductor laser element 2 is a so-called high-humidity type semiconductor laser element. More specifically, the semiconductor laser element 2 is an injection end surface which is covered by a sputtering method or the like, for example, using a coating material composed of Al2〇3 mixed with TiO or Si〇2. Therefore, even if the semiconductor laser element 2 of the high moisture resistance type is placed in a high humidity environment, the emission surface -10- (8) 1300643 or the like is hard to be saturated. The light receiving element 3 is disposed on the upper surface of the substrate ία. The received light element outputs a signal corresponding to the magnitude of the received light intensity. By causing the output of the optical element 3, the radiation from the semiconductor laser device a can be kept constant. Specifically, for example, the output of the light receiving element 3 is fed to a circuit that controls the semiconductor laser element 2. Pins 4A, 4B are used to supply power to semiconductor laser element 2 and element 3, respectively. As shown in Fig. 2, the pins 4A, 4B penetrate through the hole 1 Aa of the substrate 1A. The pins 4A, 4B are made of, for example, Fe-Ni, and are subjected to Au plating. This Α ι electroplating is used to properly bond the wires after the bonding of the wires, for example, a thickness of 0.1 μm or more. The pins 4Α, 4Β are fixed to 1 藉 by the resin 6. The resin 6 is, for example, a thermosetting resin such as an epoxy resin, a phenylene sulfide resin, a polyphthalamide resin, a plastic resin such as a liquid crystal polyester resin, or a bismuth resin mixed with cerium oxide powder. Thereby, the pins 4A, 4B are mechanically engaged with the substrate 1A while being electrically connected. On the other hand, a pin 4C is provided under the substrate 1 A. The upper end portion 4 C a of the joint is, for example, brazed to join the substrate 1 . Therefore, 4C and the substrate 1A are electrically connected. The pin 4C is made of Fe_Ni alloy. The pin 4C is different from the pins 4A, 4B' and the susceptor 1 is also subjected to Ni/Pd/Au plating or Ni/Au plating. The thickness of Au of the pin 4C is, for example, 〇 · 〇 1 . As shown in Fig. 1, the surface of the semiconductor laser element 2 is formed by the light-receiving of the light-receiving light by the light-conducting element 3, and then the substrate or the poly-thermal resin-based P 4C pin is formed by the plating line 7 -11 - (9) 1300643 is electrically connected to the upper end portion 4Aa of the pin 4A via the underlying package board 11. Also, the back surface of the semiconductor laser element 2 is not electrically connected to the underlying package board, but is turned on to the block 1B. As shown in Fig. 3, the block 1B is electrically connected to the pin 4C via the substrate 1A. Therefore, the semiconductor laser element 2 is electrically connected to the pin 4A and the pin 4C. As shown in Fig. 2, the upper surface of the light receiving element 3 is connected to the upper end portion 4Ba of the pin 4B by a wire 7, and the lower surface of the light receiving element 3 is electrically connected to the pin 4C via the substrate 1A. The pin 4C is a function having a so-called common pin. The lower end portions of the pins 4A, 4B, and 4C are terminal portions 4Ab, 4Bb, and 4Cb, respectively, and portions for electrically and mechanically connecting the semiconductor laser device A to an electronic device or the like are formed. As shown in Fig. 1, the cover 5 is supported on the upper surface of the base 1A, and is constituted by a flange 5a, a cylinder 5b, and a top plate 5c. The cover 5 is for preventing the semiconductor laser element 2, the light-receiving element 3, or the lead wire 7 for conducting such conduction, from being damaged by an external force, and is used to protect the same. For this purpose, the cylinder 5b is longer than the block 1B in the up and down direction. The cover 5 is made of, for example, an Fe-Ni-Co alloy such as Kovar (registered trademark). The bonding of the stomach 5 to the substrate 1a is achieved, for example, by electric resistance welding, but may be carried out, for example, by an epoxy-based adhesive. An opening 5d is formed in the top plate 5c. The opening 5d is provided for the passage of the laser light emitted upward from the semiconductor laser element 2 to be emitted outside the semiconductor laser device A. The opening 5d is a transparent material that is not shielded and does not contain, for example, glass or the like at all. Therefore, as shown in FIGS. 2 and 3, the space around the semiconductor laser element 2 is open to the outside. Next, an example of a method of manufacturing the semiconductor Ray-12-(10) 1300643 radiation apparatus A will be described with reference to Figs. 4 to 7 . First, as shown in Fig. 4, the susceptor 1 is formed by cold forging a Cu material or a Cu alloy material. With this cold forging, the substrate 1A and the block 1B are integrally formed as shown in Fig. 3. Further, two holes 1Aa for inserting the pins 4A, 4B are formed in the substrate ία. Further, it is preferable that the susceptor 1 is formed by cold forging based on dimensional accuracy or manufacturing efficiency, but it is not limited thereto. A method which can be formed with the same dimensional accuracy as cold forging can also be employed. Next, as shown in Fig. 5, the pins 4 C are joined under the substrate 1A, for example, by soldering. Thereby, the 'pin 4 C' and the substrate 1A are turned on. Further, the bonding of the pin 4 C may be a method other than soldering, as long as it is a method of enabling conduction to the substrate 1 A. After the pins 4 C are joined, the susceptor 1 and the pins 4C are plated. Specifically, Ni plating 8C and Pd plating 8B were applied, and Au plating 8Aa was applied from these platings. As described above, the Au plating 8Aa is formed so as to prevent the susceptor 1 or the pin 4 from being oxidized to a thickness of not more than 1 μm. Further, the plating treatment may be performed in accordance with the semiconductor laser device. In the environment, etc., Pd plating 8B is omitted, and only Ni plating 8C and Au plating 8Aa are applied. Next, as shown in Fig. 6, pins 4 A and 4B to which Au plating 8 Ab is applied are inserted into the holes 1 Aa, respectively. The plating 8 Ab is for the purpose of easily bonding a wire made of, for example, Αι to the pin 4A ' 4B, for example, a thickness of 1 μm or more. Next, the pin is filled with the resin paste 6 in the hole 1 Aa to keep the pin. 4A, 4B. The resin paste 6' is, for example, a thermosetting resin containing an epoxy resin or the like, or a polyphenylene sulfide resin, a polyphthalamide resin, a liquid crystal poly-13-(11) 1300643 ester resin, or the like. a thermoplastic resin, or a paste of a polyoxynoxide resin mixed with cerium oxide powder. The filling of the resin paste 6' can be performed before the pin 4A, 4B is inserted, or inserted into the hole 1 After Aa, the resin paste 6' is fired to form the resin 6. Thereby, as shown in Fig. The resin 6 fixes the pins 4A, 4B to the base 1A. Since the resin paste 6' is composed of the above materials, the firing temperature is sufficient to be about 200 to 300 ° C. The resin paste 6 is sufficient. 'It is fired together with the susceptor 1 and the pins 4A, 4B, 4C. The Au plating 8Aa, 8Ab applied to the susceptor 1 or the pins 4A, 4B, 4C is, for example, at 1,0 0 (at a high temperature of ΓC or higher) It is easy to cause problems of melting or peeling. However, since the baking temperature of the resin paste 6' is as low as 200 to 300 °C, it is possible to prevent An plating 8Aa and 8Ab from being eroded by high temperature. The resin 6 is formed, and the pins 4A, 4B can be fixed to the substrate 1 A while being electrically insulated. Secondly, through the formation of the underlying package board 11 shown in FIG. 1, the semiconductor laser element 2 and the light-receiving element 3 The semiconductor laser device A is completed by the connection of the wire bonding and the bonding of the cover 5, etc. In order to efficiently perform the bonding work of the cover 5, for example, electric resistance welding is used. The bonding of the cover 5 does not have to be on the flange. The entire circumference of 5a is performed to the extent that the cover 5 is not easily detached from the base 1A, and the number of the flange 5a is The electric resistance welding can be applied. Next, the operation of the semiconductor laser device A will be described. In the conventional example, for example, as shown in Fig. 8, the semiconductor laser element 92 is placed in a sealed space. As a result, the semiconductor is used. The heat generated by the laser element 92 is stagnated inside the cover 95. In contrast, according to this embodiment, as shown in Fig. 1, the cover 5 and the base 1A are surrounded by -14 - (12) 1300643. The space is not sealed. That is, the space is communicated with the semiconductor laser device A via the opening 5d. As a result, the heat radiated from the semiconductor laser element 2 is scattered outside the semiconductor laser device A by heat transfer or convection through the opening 5d. Therefore, the semiconductor laser element 2 can be prevented from being excessively heated. When the semiconductor laser device A is used as a light source for writing such as CD_R/RW, 'a large output can be obtained by i Μ _ $ $ f@方令#耳@@@@ The substrate 1Α and the block 1Β are integrally formed, thereby forming a structure having good heat transfer property. Thus, heat from the semiconductor laser element 2 can be transmitted to the substrate 1 through the block 1 Α. Therefore, in addition to the dispersion through the opening 5d, heat dissipation from the semiconductor laser element 2 can be promoted. This will be suitable for the large output of the semiconductor laser device A. Further, the base 1 is composed of a Cu or a Cu alloy having a high thermal conductivity, and is also advantageous for heat dissipation of the semiconductor laser element 2. The pins 4A, 4B are fixed to the substrate 1A via the resin 6. Thereby, the mechanical engagement of the pins 4A, 4B with the substrate 1 A can be enhanced, while the electrical insulation of the pins 4A, 4B from the substrate 1 A can be appropriately ensured. The material of the resin 6 used in the present embodiment has a firing temperature of about 20 ° C to 300 ° C. Therefore, as shown in Fig. 6, before the process of fixing the pins 4A, 4B by baking the resin paste 6', the susceptor 1, the pins 4A, 4B' 4C, and the like may be previously subjected to Α ι plating. In order to connect the semiconductor laser element 2 or the light-receiving element 3 by the wires 7, the pins 4A' 4B must be applied with Au plating of a thickness of 〇.丨ηη or more. On the other hand, in order to prevent oxidation, the susceptor 1 or the pin 4C is sufficient as long as -15-(13) 1300643 is applied at a thickness of 0. 0 1 μm or less. In this way, the Au plating necessary for each member can be reasonably selected, and the relatively high-priced Au nuclear amount can be suppressed, and the cost can be reduced. The semiconductor laser device of the present invention is not limited to the above embodiment. The specific configuration of each unit of the semiconductor laser device of the present invention can be freely changed in various designs. The susceptor 1 is preferably made of a Cu or Cu alloy. However, it is not limited to this. It is also possible to use a material capable of appropriately suppressing the temperature rise of the semiconductor laser element 2, for example, using Fe or the like to form the susceptor 1. Further, the susceptor 1 is preferably a structure in which the base 1A and the block 1 B are integrally formed. However, the configuration is not limited thereto, and may be any structure that can appropriately suppress the temperature rise of the semiconductor laser element 2. It is sufficient that the cover 5 is provided with an opening 5d for forming a structure that is opened from the semiconductor laser element 2 in the emission direction. For example, it may be composed of only the flange 5a and the cylinder 5b, and has an outer surface with the top plate 5c. The construction of the opening of the same degree. The configuration having the light receiving element 3 is, for example, advantageous for stable light emission of the semiconductor laser element 2 controlled according to feedback. However, the present invention is not limited thereto, and the output control of the semiconductor laser element 2 can be realized by another method, whereby the light receiving element 3 is not provided. The semiconductor laser device A of the present invention is suitable for a reading light source such as a CD, an MD, or a DVD, or a writing light source such as a CD-R/RW or a DVD-R/RW. However, the present invention is not limited thereto, and can be widely used as a light source that is mounted on laser light such as an electronic device. -16- (14) 1300643 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing a semiconductor laser device of the present invention. Fig. 2 is a cross-sectional view taken along line II-II of Fig. 1. Fig. 3 is a cross-sectional view taken along line III-III of Fig. 1; Figure 4 is a cross-sectional view showing the construction of a method of fabricating a semiconductor laser device of the present invention. Fig. 5 is a cross-sectional view showing another process of the above manufacturing method. Fig. 6 is a cross-sectional view showing another process of the above manufacturing method. Fig. 7 is a cross-sectional view showing another process of the above manufacturing method. 8 is a cross-sectional view showing a conventional semiconductor laser device. [Description of main component symbols] A: Semiconductor laser device 1: Base 2: Semiconductor laser device 3: Light-receiving device 4A, 4B, 4C: Pin 5: Cover 1 A: Substrate 1 B: Block 1 1 : Bottom package board 5a: flange 5b: cylinder -17- (15) (15)

1300643 5 c :頂板 5d :開口 7 :導線 8 C : N i電鍍 8 B : P d電鍍 8 A a · AII 電鑛 8 Ab : Au電鍍 6 f :樹脂糊膏 X:半導體雷射裝置 91 :基座 91 A :基底 9 1 B ·區塊 92 :半導體雷射元件 9 3 :受光元件1300643 5 c : top plate 5d : opening 7 : wire 8 C : N i plating 8 B : P d plating 8 A a · AII electric ore 8 Ab : Au plating 6 f : resin paste X: semiconductor laser device 91 : base Block 91 A: Substrate 9 1 B · Block 92: Semiconductor laser element 9 3 : Light-receiving element

91Aa :孑L 94A,94B :接腳 97 :低融点玻璃 94C :接腳 95 :罩蓋 95a :開口 9 6 :玻璃板 -18-91Aa : 孑L 94A, 94B : Pin 97 : Low melting point glass 94C : Pin 95 : Cover 95a : Opening 9 6 : Glass plate -18-

Claims (1)

1300643 %年产月#修(走)正替換頁 十、申請專利範圍 ; 第95 1 0 1 05 0號專利申請案 • 中文申請專利範圍修正本 民國9 7年4月24日修正 1· 一種半導體雷射裝置,其特徵係具備: 基底; 區塊’其係固定於上述基底; φ 半導體雷射元件,其係設置於上述區塊; 接腳’其係貫通上述基底,且導通至上述半導體雷射 元件;及 ~ 罩蓋,其係固定於上述基底,同時以能夠圍繞上述半 ^ 導體雷射元件及上述接腳的一端部之方式來構成; 並且’在上述罩蓋中形成有插通於從上述半導體雷射 元件射出的雷射光的射出方向之開口,上述罩蓋爲開放於 上述射出方向的構造。 # 2.如申請專利範圍第丨項之半導體雷射裝置,其中上 述基底及上述區塊係由同一材料所構成之一體成形的構 造。 , 3 ·如申請專利範圍第2項之半導體雷射裝置,其中上 ^ 述同一材料爲Cu及Cu合金的任一方。 4·如申請專利範圍第1項之半導體雷射裝置,其中上 述接腳係經由樹脂來固接於上述基底。 5_如申請專利軺圍第4項之半導體雷射裝置,其中上 述樹脂爲熱硬化性樹脂、熱可塑性樹脂及聚矽氧樹脂的其 1300643 P年千月作组更)正 只 中任一個。 6 ·如申請專利範圍第5項之半導體雷射裝置,其中上 述熱硬化性樹脂爲環氧樹脂,上述熱可塑性樹脂爲聚苯硫 醚樹脂、聚鄰苯二甲醯胺樹脂及液晶聚酯樹脂的其中任一 個,上述聚矽氧樹脂爲混入二氧化矽粉末者。1300643% annual production month #修(走) replacement page 10, patent application scope; patent application No. 95 1 0 1 05 0 • Chinese patent application scope revision Amendment of the Republic of China on April 24, 1997 1 a laser device characterized by: a substrate; a block 'fixed to the substrate; φ a semiconductor laser device disposed in the block; a pin 'through the substrate and conducting to the semiconductor thunder a cover member; and a cover fixed to the base and configured to surround the one-half conductor laser member and one end of the pin; and 'insulating in the cover The cover is open to the emission direction in the opening of the laser light emitted from the semiconductor laser element. The semiconductor laser device of claim 3, wherein the substrate and the block are formed of a body formed of the same material. 3. The semiconductor laser device of claim 2, wherein the same material is any one of Cu and Cu alloy. 4. The semiconductor laser device of claim 1, wherein the pin is fixed to the substrate via a resin. 5_ As for the semiconductor laser device of the fourth application, the above-mentioned resin is a thermosetting resin, a thermoplastic resin, and a polyoxyxylene resin, which is only one of the 1300,643 P-years. 6. The semiconductor laser device of claim 5, wherein the thermosetting resin is an epoxy resin, and the thermoplastic resin is a polyphenylene sulfide resin, a polyphthalamide resin, and a liquid crystal polyester resin. In any of the above, the above polyoxygenated resin is a powder of cerium oxide mixed. 7 ·如申請專利範圍第1項之半導體雷射裝置,其中在 上述基底及上述區塊施以Ni/Pd/Αιι電鍍及Ni/Au電鍍的 任一方。 8 ·如申請專利範圍第1項之半導體雷射裝置,其中上 述半導體雷射元件爲高耐溼型的半導體雷射元件。 9 · 一種半導體雷射裝置的製造方法,係具有: 形成包含基底及固定於該基底的區塊之基座之工程; 使接腳貫通於設置於上述基底的孔而固接之工程;及 在上述區塊搭載半導體雷射元件之工程; 其特徵爲:7. The semiconductor laser device of claim 1, wherein the substrate and the block are subjected to either Ni/Pd/Αι plating and Ni/Au plating. 8. The semiconductor laser device of claim 1, wherein the semiconductor laser element is a high-humidity semiconductor laser element. 9 . A method of fabricating a semiconductor laser device, comprising: forming a substrate including a substrate and a pedestal fixed to the substrate; and attaching the pin to a hole provided in the substrate for fixing; and The above-mentioned block is equipped with a semiconductor laser element; the features are: 在形成上述基座的工程中,使上述區塊與上述基底一 體成形。 1 0 ·如申請專利範圍第9項之半導體雷射裝置的製造 方法,其中上述基座係藉由使用Cu及Cu合金的任一方 之冷鍛所形成。 1 1 ·如申請專利範圍第9項之半導體雷射裝置的製造 方法,其中上述接腳係使用樹脂來固接於上述孔。 1 2 ·如申請專利範圍第1 1項之半導體雷射裝置的製造 方法,其中上述樹脂爲熱硬化性樹脂、熱可塑性樹脂及聚 -2- 1300643 __— f 7年Y月"^日修(更)正替換貝· .............. 矽氧樹脂的其中任一個。 ^ 1 3 ·如申請專利範圍第1 2項之半導體雷射裝置的製造 * 方法’其中上述熱硬化性樹脂爲環氧樹脂,上述熱可塑性 樹脂爲聚苯硫醚樹脂、聚鄰苯二甲醯胺樹脂及液晶聚酯樹 脂的其中任一個,上述聚矽氧樹脂爲混入二氧化矽粉末 者。 1 4 ·如申請專利範圍第9項之半導體雷射裝置的製造 φ 方法’其中更具備:在形成上述基座的工程之後,在固接 上述接腳的工程之前,在上述基座施以Ni/Pd/Au電鍍及 Ni/Au電鍍的其中任一方之工程。 1 5 ·如申請專利範圍第9項之半導體雷射裝置的製造 .方法,其中更具備:在固接上述接腳的工程之前,在上述 接腳施以Au電鍍之工程。In the process of forming the susceptor, the block is integrally formed with the substrate. A method of manufacturing a semiconductor laser device according to claim 9, wherein the susceptor is formed by cold forging using either of Cu and a Cu alloy. The method of manufacturing a semiconductor laser device according to claim 9, wherein the pin is fixed to the hole by using a resin. 1 2 The method for manufacturing a semiconductor laser device according to claim 1, wherein the resin is a thermosetting resin, a thermoplastic resin, and a poly-2-1300643 __-f 7 year Y month" (more) is replacing any of the silicones. ^ 1 3 · Manufacturing of a semiconductor laser device according to claim 12 of the patent application * Method ' wherein the thermosetting resin is an epoxy resin, and the above thermoplastic resin is a polyphenylene sulfide resin or polyphthalate Any one of an amine resin and a liquid crystal polyester resin, wherein the polyfluorene oxide resin is mixed with cerium oxide powder. 1 4 . The manufacture of a semiconductor laser device according to claim 9 of the patent application method φ method further comprising: after the process of forming the susceptor, applying Ni to the pedestal before fixing the work of the above-mentioned pedestal /Pd/Au plating and Ni/Au plating. 1 5 . The method of manufacturing a semiconductor laser device according to claim 9 of the patent application, wherein the method further comprises: applying an Au plating process to the pin before fixing the pin.
TW095101050A 2005-01-11 2006-01-11 Semiconductor laser device and its manufacturing method TW200640098A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003684A JP4165760B2 (en) 2005-01-11 2005-01-11 Semiconductor laser device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200640098A TW200640098A (en) 2006-11-16
TWI300643B true TWI300643B (en) 2008-09-01

Family

ID=36677569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095101050A TW200640098A (en) 2005-01-11 2006-01-11 Semiconductor laser device and its manufacturing method

Country Status (5)

Country Link
JP (1) JP4165760B2 (en)
KR (1) KR100903709B1 (en)
CN (1) CN101103502A (en)
TW (1) TW200640098A (en)
WO (1) WO2006075544A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263099A (en) * 2007-04-13 2008-10-30 Shinko Electric Ind Co Ltd Package for optical semiconductor element and optical pickup device
JP2010098112A (en) * 2008-10-16 2010-04-30 Shinko Electric Ind Co Ltd Stem for optical semiconductor, method of electrolytic gold plating semiconductor stem, and optical semiconductor device
JP5427325B2 (en) 2011-11-30 2014-02-26 パナソニック株式会社 Nitride semiconductor light emitting device
CN104426050B (en) * 2013-09-03 2018-07-06 中国科学院苏州纳米技术与纳米仿生研究所 Semiconductor laser diode and its packaging method
US11431146B2 (en) * 2015-03-27 2022-08-30 Jabil Inc. Chip on submount module
WO2020071168A1 (en) * 2018-10-01 2020-04-09 ローム株式会社 Semiconductor laser device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898995A (en) * 1981-12-09 1983-06-13 Nec Corp Photosemiconductor device
JPH0376286A (en) * 1989-08-18 1991-04-02 Sony Corp Semiconductor laser device and assembly thereof
KR100251349B1 (en) * 1996-12-30 2000-05-01 김영환 Mirror coating method for a laser diode
JP4162363B2 (en) * 1999-06-29 2008-10-08 ローム株式会社 Semiconductor device
TW449948B (en) * 1999-06-29 2001-08-11 Rohm Co Ltd Semiconductor device
US7280572B2 (en) * 2002-03-25 2007-10-09 Sanyo Electric Co., Ltd. Semiconductor laser beam device
JP4212845B2 (en) * 2002-07-12 2009-01-21 三菱電機株式会社 Optical semiconductor element module
JP2004128378A (en) * 2002-10-07 2004-04-22 Sharp Corp Semiconductor laser device and manufacturing method thereof
JP2004146468A (en) * 2002-10-22 2004-05-20 Kyocera Corp Optical module and optical module assembly using the same

Also Published As

Publication number Publication date
WO2006075544A1 (en) 2006-07-20
JP4165760B2 (en) 2008-10-15
TW200640098A (en) 2006-11-16
JP2006196506A (en) 2006-07-27
KR20070087055A (en) 2007-08-27
CN101103502A (en) 2008-01-09
KR100903709B1 (en) 2009-06-19

Similar Documents

Publication Publication Date Title
JP6884823B2 (en) Electrical element mounting package, array type package and electrical equipment
TWI300643B (en)
US20090095975A1 (en) Light emitting diode package
TW200923262A (en) High heat dissipation optic module for light emitting diode and its manufacturing method
JP4132038B2 (en) Light emitting device
JP2010141163A (en) Semiconductor device and method of manufacturing the same
US20210265812A1 (en) Semiconductor laser device
US20080137700A1 (en) Semiconductor Laser Device and Method for Manufacturing Same
JP2006032804A (en) Light emitting device and its manufacturing method
US8237188B2 (en) Light source
WO2015029907A1 (en) Package for accommodating electronic component, and electronic device
TW200301020A (en) Process for the production of an optoelectronic semiconductor component and component produced in this way
JP6801950B2 (en) Through Silicon Via and Semiconductor Package
JP4797621B2 (en) Semiconductor device and manufacturing method thereof
JP2019153762A (en) Semiconductor light-emitting device
US20210336410A1 (en) Semiconductor laser device
WO2015076256A1 (en) Electronic component storing package and electronic device
JP2010021426A (en) Light emitting device
TW201006000A (en) Light emitting diode and method of making the same
JP2004119833A (en) Thermoelement module and its manufacturing method
JP5868269B2 (en) Semiconductor light emitting device mounting substrate and semiconductor light emitting device mounting body
JP2011187546A (en) Semiconductor device
JP2019075460A (en) Semiconductor light emitting element and semiconductor light emitting device
JP2007088327A (en) Semiconductor light emitting device
JP2004235203A (en) Package for storing light emitting element and light emitting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees