TWI295725B - Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device - Google Patents

Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device Download PDF

Info

Publication number
TWI295725B
TWI295725B TW93104503A TW93104503A TWI295725B TW I295725 B TWI295725 B TW I295725B TW 93104503 A TW93104503 A TW 93104503A TW 93104503 A TW93104503 A TW 93104503A TW I295725 B TWI295725 B TW I295725B
Authority
TW
Taiwan
Prior art keywords
layer
liquid
interface
interface layer
heat exchanger
Prior art date
Application number
TW93104503A
Other languages
Chinese (zh)
Other versions
TW200419128A (en
Inventor
William Kenny Thomas Jr
Gill Shook James
Munch Mark
Upadhya Girish
Zhou Peng
E Goodson Kenneth
Corbin David
Mcmaster Mark
Lovette James
Hom James
Original Assignee
Cooligy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/439,635 external-priority patent/US6988534B2/en
Priority claimed from US10/680,584 external-priority patent/US7000684B2/en
Application filed by Cooligy Inc filed Critical Cooligy Inc
Publication of TW200419128A publication Critical patent/TW200419128A/en
Application granted granted Critical
Publication of TWI295725B publication Critical patent/TWI295725B/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

1295725 五、發明說明(1) 相關申請 本專利申請為美國專利申請序號1 〇 / 4 3 9,6 3 5之繼續, 2 0 0 3,5,1 6日提出,標題為’’發熱裝置中冷卻理想熱點之柔 性液體之方法及裝置π,該文以參考方式併入此間,該申 請在共同美國臨時專利申請之35 USC 11 9(e)之下聲請優 先於臨時專利申請序號60/423,0 09,2 0 0 2,11,1提出, 標題為"微通道吸熱器供柔性液體輸送及熱點冷卻方法”, 該申請以參考方式併入此間,及美國臨時專利申請序號1295725 V. INSTRUCTIONS INSTRUCTIONS (1) RELATED APPLICATIONS This application is hereby incorporated herein by reference in PCT/PCT/PCT/PCT/PCT///////////////////////////////////// A method and apparatus for cooling a flexible liquid of an ideal hot spot, which is incorporated herein by reference. 0 09,2 0 0 2,11,1, entitled "Microchannel Heatsink for Flexible Liquid Delivery and Hot Spot Cooling Method", incorporated herein by reference, and US Provisional Patent Application Serial No.

6 0/442,383,2 0 0 3,,2 4提出,標題為"供CPU冷卻最佳 之平板翼片熱交換器π,該申請以參考方式併入此間,共 同美國臨時專利申請序號60/455,729,2003,3,17提 出,標題為"具有多孔構型之為微通道熱交換器裝置及其 製造方法",該申請以參考方式併入此間。本專利申請在 3 5 U S C 1 1 9 ( e )之下宣稱優先於美國臨時專利申請序號 60/423,009,2002’ 11’· 1提出之標題為”以微通道熱吸 收器冷卻及輸送柔性液體之方法",該申請以參考方式併 入此間,及美國臨時專利申請序號60/442, 383,2003,6 0/442,383,2 0 0 3,, 2 4, entitled "The best flat finned heat exchanger π for CPU cooling," which is incorporated herein by reference, commonly assigned U.S. Provisional Patent Application Serial No. 60/ 455, 729, 2003, 3, 17, entitled "Microchannel heat exchanger apparatus having a porous configuration and method of making the same", which is hereby incorporated by reference. This patent application claims priority under U.S. Provisional Patent Application Serial No. 60/423,009, 2002 '11', entitled "Microchannel Heat Absorber Cooling and Transport Flexibility" under US Patent Application Serial No. 60/423,009, The method of liquid ", the application is incorporated herein by reference, and U.S. Provisional Patent Application Serial No. 60/442, 383,2003,

1 ’ 2 4提出,標題為n C P U冷卻之做佳板翼片熱交換器”,該 專利申請以參考方式併入此間,及美國臨時專利申請序號 60/455, 729,2003’ 3’ 17提出,標題為”具有多孔構塑之 微通道熱交換器裝置及其製造方法”,該申請以參考方式 併入此間。 發明範圍1 '2 4, entitled "N CPU Cooling for a Plate Fin Heat Exchanger", the patent application is hereby incorporated by reference, and the U.S. Provisional Patent Application Serial No. 60/455, 729, 2003 3'17 , entitled "Microchannel Heat Exchanger Device with Porous Construction and Method of Making Same", which is hereby incorporated by reference.

1295725 五、發明說明(2) 本發明關於冷卻一發熱裝置之方法及裝置,特別關於 有效鉛直液體輸送及熱交換器之最小壓力降以冷卻一電子 裝置。 發明背景 自1 9 8 0年代早 量冷卻應用上之大 包括傳統平行通道 負荷之發熱裝置。 面積。此較熱面積 為”溫點π。 圖1 Α及1 Β說明 圖,熱交換器1 0耦 熱介面材料9 8麵合 流入及沿平行通道 出口埠1 6流出。雖 埠1 2至出口埠1 4之 實際上以均勻方式 不供應更多液體於 域。此外,自入口 面1 1流動時會%增加 口埠16,故未供應 溫液體或二相液體 跨熱交換器1 1之全1295725 V. DESCRIPTION OF THE INVENTION (2) The present invention relates to a method and apparatus for cooling a heat generating device, and more particularly to an effective vertical liquid transport and a minimum pressure drop of a heat exchanger for cooling an electronic device. BACKGROUND OF THE INVENTION The application of early cooling applications since the 1970s includes conventional parallel channel load heating devices. area. The hotter area is "temperature point π. Figure 1 Α and 1 Β explanatory diagram, heat exchanger 10 coupling heat interface material 9 8 surface inflow and out along parallel channel outlet 埠16. Although 埠1 2 to outlet 埠In fact, no more liquid is supplied to the domain in a uniform manner. In addition, the port 16 is increased by % when flowing from the inlet face 1 1 , so no warm liquid or two-phase liquid is supplied across the heat exchanger 1 1 .

期引入之後,熱交換器已顯示在高熱流 潛力及工業中之使用。但現有之微通道 安排,其不適於冷卻具有空間變化之熱 此一發熱裝置具有較其它產生更多熱之 被稱為π熱點n,不產生多熱之面積稱 面圖及頂視 理器經由一 單入口埠1 2 頭所示,經 99,自入口 言之,液體 1 1流動,而 面1 1之區 交換器底表 游或接近出 游加熱之較 上傳輸熱於 出口之液體 習知技藝之熱交換器1 0之側 合至一電子裝置99,如微處 。如圖1 A及1 B所示,液體自 14間之底表面11流動,如箭 然熱交換器1 0冷卻電子裝置 液體係以均勻方式流過。換 沿熱交換器1 0之全部底表面 對應裝置99中之熱點之底表 流過之液體溫度,當其沿熱 。因此,熱源9 9之區域為下 冷液體,但實際供應已在上 。事實上,加熱之液體實際 底表面及熱源9 9,因此接近After the introduction, heat exchangers have been shown to be used in high heat flow potential and in industry. However, the existing microchannel arrangement is not suitable for cooling the heat with spatial variation. This heat generating device has a surface called a π hot spot n which generates more heat, and does not generate much heat. The surface top view and the top viewper are via A single inlet 埠1 2 is shown, through 99, from the inlet, the liquid 1 1 flows, while the surface of the surface of the exchanger is on the surface of the exchanger or near the travel heating, the liquid is transferred to the outlet. The side of the heat exchanger 10 is coupled to an electronic device 99, such as a micro. As shown in Figs. 1A and 1B, the liquid flows from the bottom surface 11 of the 14th, and if the heat exchanger 10 cools the electronic device, the liquid system flows in a uniform manner. The entire bottom surface of the heat exchanger 10 is replaced by the temperature of the liquid flowing through the bottom surface of the hot spot in the device 99 as it follows the heat. Therefore, the area of the heat source 9 9 is a subcooled liquid, but the actual supply is already on. In fact, the actual bottom surface of the heated liquid and the heat source 9 9 are therefore close

第10頁 1295725 五、發明說明(3) 並非太熱,因而 流體不穩定,沿 最多熱之面積。 交換器1 0,迫使 交換器1 0之全長 壓力降。熱交換 器十分困難及增 圖1 C說明習 進入多位準熱交 動至底表面2 7及 並非均勻向下流 現與以上討論之 故所需者為 及出口之間,同 換器,其構型可 器,其構型可達 不足以有效冷 底表面1 1之液 卻熱源。熱之增加造成二相 體之沸騰迫使液體離開產生 此外,僅有一入口埠1 2及一出口埠1 6之熱 液體沿底表面 度,因而造成 器10中之大壓 加不穩定。 知技藝熱交換 換器2 0,經中 至出口埠24。 至底表面2 7。 圖1 A及1 B之熱 熱交換器,其 時有效冷卻熱 熱源之溫度均 到熱源中之熱 11中之平行通道14傳輸於熱 液體必須傳輸之長度引起之 力降使液體被幫浦至熱交換Page 10 1295725 V. INSTRUCTIONS (3) Not too hot, so the fluid is unstable, along the area of the most heat. Switch 10 forces the full length of the exchanger 10 to drop. The heat exchanger is very difficult and the addition of Figure 1 C illustrates the entry into the multi-position quasi-thermal interaction to the bottom surface 27 and the non-uniform downward flow between the requirements and the above-mentioned discussion. The type of the device can be configured to be insufficient to effectively cool the liquid surface of the cold bottom surface. The increase in heat causes the boiling of the two phases to force the liquid to leave. In addition, only one inlet 埠1 2 and one outlet 埠16 of the hot liquid along the bottom surface degree, thereby causing large pressure instability in the apparatus 10. Knowledge transfer hot swap converter 2 0, through the middle to the exit 埠 24. To the bottom surface 2 7. Figure 1 A and 1 B of the heat exchanger, when the temperature of the heat source is effectively cooled to the heat source 11 of the parallel channel 14 is transferred to the heat liquid must be transported by the length of the force caused by the pressure to cause the liquid to be pumped to Heat exchange

器2 0之側視圖。液體經埠2 2 間層26中之多喷嘴28向下流 此外,沿喷嘴2 8傳輸之液體 此外,圖1C中之熱交換器顯 交換器之同一問題。 構型可達成低壓力降於入口 源。所需者為一微通道熱交 勻性。所需者為一熱交換 點之適當溫度均勻性。 本發明概論 本發明之一特性中,熱交換器包含一介面層以冷卻熱 源該介面層與熱源接觸,其構型可通過液體。該熱交換器 尚包含支管層耦合至介面層。支管層尚包含第一組個別化 洞以通過液體至介面層,及第二組個別化洞以自介面層傳 輸液體。支管層尚包含第一埠,其提供液體至第一組個別 化洞,及第二埠將自第二組個別化洞傳輸之液體移除。第Side view of the device 20. The liquid flows downward through the plurality of nozzles 28 in the interlayer 2, and the liquid transported along the nozzles 28. In addition, the heat exchanger of Fig. 1C exhibits the same problem. The configuration achieves a low pressure drop to the inlet source. The required one is a microchannel thermal uniformity. The desired temperature uniformity is required for a heat exchange point. SUMMARY OF THE INVENTION In one feature of the invention, the heat exchanger includes an interfacial layer to cool the heat source. The interfacial layer is in contact with a heat source and is configured to pass a liquid. The heat exchanger further includes a branch layer coupled to the interface layer. The manifold layer also includes a first set of individualized holes to pass the liquid to the interface layer, and a second set of individualized holes to transport the liquid from the interface layer. The manifold layer also includes a first weir that provides liquid to the first set of individualized holes, and a second weir that removes liquid transported from the second set of individualized holes. First

1295725 五、發明說明(4) -組洞及第二組洞 離,以適 第二組之 體通路距 配置在與 器之液體為一或多 一流通位準,其具 層,其構 之安排可提供第一及第二 當冷卻熱源。較佳為第一 相鄰洞最接近之最佳距離 相流動狀態或其組合。該 合至介面 及至介面 此相通, 層尚包含 準之構型 耦合至第 二埠與第 二位準傳 耦合至第 之安排。 中該第二 二組洞彼 洞以均勻 層。第一 每一圓筒 第一位準 可傳輸液 一位準及 二組洞之 輸之液體 一埠,其 第一位·準 組洞與第 此熱絕緣 方式沿一 排。第一組及第二 通位準之 成密封分 中之至少 至少一維 隔。或者 一介面熱 一洞有一第一尺寸 寸。在另一實施例1295725 V. INSTRUCTIONS (4) - The group hole and the second group of holes are separated, and the liquid of the second group is disposed at one or more circulation levels of the liquid of the device, and the layer is arranged. The first and second cooling heat sources can be provided. Preferably, the first adjacent hole is closest to the optimum distance phase flow state or a combination thereof. The interface and the interface are in communication, and the layer further includes a quasi-configuration coupled to the second and second quasi-transfer coupling to the first arrangement. The second and second sets of holes are in a uniform layer. The first one of each cylinder is the first liquid to be transported, and the first one of the two sets of holes is the same as the first one. The first set and the second pass are at least one of the seal points. Or one interface heat One hole has a first size. In another embodiment

。較佳 近之最 或其組 有第一及第二洞延 輸液體 型可 組及 形突 ,麵 體於 第二 間, 分開 中該 尚包 二狹 以防 實施 組洞 方向 ,第 點區 實際 中至 分別傳 第二組洞每一 出與流通位準 伸貫穿 經第一 包括一 埠間之 組中之 。通過 支管層 。流通 及第二 圓筒形 延伸。 最小液 每一洞 熱交換 尚包含 位準耦 組洞自 突出彼 該支管 成垂直 合至流通位準及至第一埠。第一位 第一埠與第一組洞之間。第 埠。第二位準構型可傳輸液 輸之液體保持 包含第一狹長 經第一 。第一 第一組 二位準 位準傳 位準尚 洞與第 狹長通 為可密 之熱轉 流通位 含第二 長通道 止其間 例中之 以非均勻方式在另一 一狹長通道為 至第二 道耦合 封安排 移。第 準之至 〇第一 一組及 少一維 實施例 組洞較 安排。第一組及第二 洞之配置可冷 中,第 一組及 0 在^— 第二組 實施例中,第一組中 上等於第二組中至少一洞之 少第一組洞之一洞具有一第 二位準 體於第 與經第 通道, 可密封 埠,其 組及第 第二組 方向安 中沿流 佳彼此 卻熱源 之至少 第二尺 一尺寸. Preferably, the closest one or the group has the first and second holes, the liquid type can be formed and shaped, and the body is in the second part, and the two parts are separated in the middle to prevent the implementation of the group hole direction, and the first point area is actually To each of the second group of holes, each of the outlets and the circulation level are extended through the first group including the first group. Through the branch layer. Circulation and a second cylindrical extension. The minimum liquid per hole heat exchange still includes the positional quasi-coupling group. The hole is self-protruding and the branch tube is vertically aligned to the flow level and to the first pass. The first place is between the first hole and the first hole. Dijon. The second collimating configuration transports the liquid to maintain the liquid containing the first slit through the first. The first first group of two-position quasi-position quasi-passage quasi-passage and the first narrow-length pass are densely entangled, and the second long passage is included in the non-uniform manner in another narrow passage to the first The two coupling seals are arranged to move. The first to the first group and the less one-dimensional embodiment group holes are arranged. The configuration of the first group and the second hole may be cold, the first group and the 0 in the second group embodiment, the first group is equal to one of the first group holes in the second group. Having a second level in the first and second passages, the sealable jaws, the group and the second group of directions are in the middle of each other but at least the second dimension of the heat source

第12頁 1295725 五、發明說明(5) 與第二組洞中至少一洞之第二尺寸不同。較佳為 具有熱傳導率為至少l〇〇W/mk。較佳為,介面層\’介面層 數個柱體’其構型為沿介面層之預定圖案。或者^匕3 .複 目之柱體沿介面層之預定區域配置。或者,該柱 f當數 塗層於其上,其中該塗層之適當熱傳導率為=少 或者’介面層尚包含配置其上之多孔微結構。或者,^面 層有一粗糙表面。或者,複數個微通道構型在介面声 適當構型中。 曰Page 12 1295725 V. INSTRUCTIONS (5) Unlike the second dimension of at least one hole in the second set of holes. Preferably, it has a thermal conductivity of at least 1 〇〇 W/mk. Preferably, the interface layer 'the interface layer has a plurality of pillars' configured to have a predetermined pattern along the interface layer. Or ^匕3. The column of the replica is disposed along a predetermined area of the interface layer. Alternatively, the column f is coated thereon, wherein the coating has a suitable thermal conductivity = less or the interface layer still contains the porous microstructure disposed thereon. Or, the surface layer has a rough surface. Alternatively, the plurality of microchannel configurations are in an appropriate configuration of the interface sound.曰

本發明另一特性中,熱交換器可構型為耦合至一熱 源。該熱交換器包括一介面層耦合至熱源及構型為可使液 ^通過。因此’液體與熱源產生之熱受到熱交換。熱交換 器尚包含支管層,以耦合至介面層’,該層具有至少一液體In another feature of the invention, the heat exchanger can be configured to be coupled to a heat source. The heat exchanger includes an interface layer coupled to the heat source and configured to allow liquid to pass. Therefore, the heat generated by the liquid and the heat source is exchanged by heat. The heat exchanger further includes a branch layer to couple to the interface layer ', the layer having at least one liquid

入口璋。液體入口埠輕合至一實際上垂直之入口液體通 路’其將液體傳輸至介面層。熱交換器尚包含至少一液體 出口璋’其柄合至垂直出口液體通路以自介面層移除液 體。入口及出口液體通路被安排為彼此間分開之最佳最小 T體傳輸距離。支管層尚包含一流通位準耦合至介面層。 流通位準具有複數個入口孔隙,其垂直延伸通過以供液體 1介^層沿出口液體通路傳輸。支管層包括一入口位準耦 合至流通位準及入口埠。出口位準之構型可自出口孔隙傳 輸液體至出口槔。經入口液體傳輸之液體與'經出口位準傳 輸之液體分開流動。入口位準中之液體通路尚包含一液體 狹長通道’其自入口埠水平傳輸液體至入口孔隙。出口位 準中之液體通路包含一液體狹長通道以自出口孔隙傳輸液Entrance 璋. The liquid inlet port is lightly coupled to a substantially vertical inlet liquid passage which delivers liquid to the interface layer. The heat exchanger further includes at least one liquid outlet port' shank coupled to the vertical outlet liquid passage to remove the liquid from the interfacial layer. The inlet and outlet liquid passages are arranged to be separated from each other by an optimum minimum T-body transmission distance. The branch layer also includes a flow-level coupling to the interface layer. The flow level has a plurality of inlet apertures that extend vertically to allow liquid 1 to be transported along the outlet liquid path. The branch layer includes an inlet level that is coupled to the flow level and the inlet port. The exit level configuration can transport liquid from the outlet orifice to the outlet helium. The liquid transported through the inlet liquid flows separately from the liquid transported through the outlet level. The liquid path in the inlet level still contains a liquid elongated channel' which transports liquid from the inlet port horizontally to the inlet aperture. The liquid passage in the outlet level contains a liquid elongated passage to transfer the liquid from the outlet orifice

第13頁 1295725 — 五、發明說明(6)Page 13 1295725 — V. Description of invention (6)

體至出口埠。入口及出口液體孔隙係沿一實施例中之流通 位準中至少一維方向以均勻方式個別安排。該入口及^口 孔隙在另一實施例之流通位準中沿至少一維方向為非均勻 安排。入口及出口液體通路較佳為彼此密封分離。入口及 出口孔隙為交互安排以冷卻熱源中之至少一介面熱點冷卻 區。在一實施例中,至少一入口孔隙有一入口尺寸與至少 一出口孔隙之出口尺寸相等。另一實施例中,至少一入口 孔隙有一入口尺寸與至少一出口孔隙之出口孔隙之尺寸不 同。介面層較佳有一至少1〇〇W/mk之熱傳導率。介面層尚 含複數個柱體以適當圖案配置其上,其中’適當數目之柱 體沿介面層以預定區域配置。或者’介面層有一粗輪表 面。複數個柱體包括其上之塗層,塗層至少具有l〇W/mk之 適當熱傳導率。介面層可有多孔微結構配置其上。熱交換 器較佳包括複數個圓筒形突出物,自流通位準延伸一適當 ,度,每一突出物與第一及第二組孔隙相通。較佳為,圓 靖形突出為熱絕緣以防其間之熱轉移。Body to export 埠. The inlet and outlet liquid pores are individually arranged in a uniform manner along at least one of the flow levels in one embodiment. The inlet and the orifice are non-uniformly arranged in at least one dimension in the flow level of another embodiment. The inlet and outlet fluid passages are preferably sealed from each other. The inlet and outlet apertures are alternately arranged to cool at least one of the interface hot spot cooling zones. In one embodiment, at least one of the inlet apertures has an inlet dimension equal to the outlet dimension of the at least one outlet aperture. In another embodiment, at least one of the inlet apertures has an inlet dimension that is different from the outlet aperture of the at least one outlet aperture. The interface layer preferably has a thermal conductivity of at least 1 〇〇W/mk. The interface layer further includes a plurality of cylinders disposed thereon in a suitable pattern, wherein 'the appropriate number of pillars are disposed along the interface layer in a predetermined area. Or the 'interlayer layer has a thick wheel surface. The plurality of cylinders include a coating thereon having a coating having at least a suitable thermal conductivity of 10 W/mk. The interface layer can have a porous microstructure disposed thereon. The heat exchanger preferably includes a plurality of cylindrical projections extending from the flow level by an appropriate degree, each projection being in communication with the first and second sets of apertures. Preferably, the shape of the dome is thermally insulated to prevent heat transfer therebetween.

本發明之另一特性中,一支管層適於耦合介面層以構 ^微通道熱交換器,其包含一入口埠以提供第一溫度液 L支管層亦包括一出口埠與液體通路相通。第二溫度液 面鉍出口埠排出支管層。每一入口通路提供自第一槔至介 至=之直接入口流體通路,及每一出口通路提供自介面層 夜靜t埠之直接流體通路。入口及出口之安排可使其間之 趲流動距離最短。入口及出口通路沿第三層之至少一尺 、M均勻方式安排。或者,入口及出口通路沿第三層之至In another feature of the invention, a tube layer is adapted to couple the interface layer to form a microchannel heat exchanger comprising an inlet port to provide a first temperature liquid L branch layer and an outlet port to communicate with the liquid path. The second temperature liquid level 铋 exit 埠 exits the branch pipe layer. Each inlet passage provides a direct inlet fluid passage from the first weir to a =, and each outlet passage provides a direct fluid passage from the interfacial layer. The entrance and exit arrangements allow for the shortest flow distance between them. The inlet and outlet passages are arranged in a uniform manner along at least one foot of the third layer, M. Or, the inlet and outlet pathways are along the third floor.

1295725 五、發明說明(7) 少一尺寸以非均勻 為密封分離。入口 源中之至少一介面 寸實際上與至少一 少一入口通道有一 不同。支 通位準延 通。該圓 入口通路 該與出口 道。 本發 換器之構 驟,該介 穿以冷卻 個實際上 通路。該. 佳最小距 面層。該 路,其中 含耦合至 管層尚包 伸,每一 筒形突出 相通之突 通路相通 明之另一 型可冷卻 面層之構 熱源。該 垂直之入 入口及出 離傳輸液 方法尚包 ’液體經 少一出口 出口液體埠排出熱 一流通位準,其具 面層,該入口孔隙1295725 V. INSTRUCTIONS (7) One less size is separated by a non-uniform seal. At least one of the inlet sources is actually different from at least one of the inlet channels. The branch level is extended. The circular inlet path is the exit path. The configuration of the converter is such that it passes through to cool the actual path. The best minimum distance layer. The path includes a heat source that is coupled to the tube layer and is extended to each other, and each of the barrel-shaped protruding passages is transparent to the other type of cooling surface layer. The method of vertically entering and exiting the transfer liquid is still included. The liquid is discharged through one outlet, the outlet liquid is discharged, and the heat is discharged. The flow level is the surface layer.

方式 其出 熱點 出口 入口 含複 突出 物為 出物 之突 安排。入口及 口通路交互配 區域。至少一 通道之一出口 尺寸與至少一 數個圓筒形突 物與入口及出 熱絕緣以防止 為密封耦合至 出物為密封耦 出口通路較 置於第三層 入口通道有 尺寸相等。 出口通道之 出物以適當 口通路彼此 其間之熱轉 液體進入狹 合至液體出 佳為彼此 中以冷熱 一入 尺 特性包 熱源。 型可耦 方法尚 口液體 口液體 體流動 含柄合 由入口 液>體埠 交換器 有複數 傳輸入 換器之製 法包含形 括熱交 製造方 合至熱源。該介 包含形成一支管 通路, 通路之 。該方 至少一 液體埠 至出口 。形成 個入口 口液體 及複數個 安排以供 法尚包含 入口液體 進入熱交 液體通路 支管層之 孔隙,垂 通過入口 造方法 成介面 面層通 層,並 垂直之 沿介面 麵合支 埠至入 換器。 ,其中 步驟尚 直延伸 液體通 或者,至 出口尺寸 而度自流 個別相 移。該與 長通道, 口狹長通 ,該熱交 層之步 過液體貫 包括複數 出口液體 層間之最 管層至介 口液體通 方法尚包 該液體經 包含形成 通過至介 路。該流The way out of the hot spot exit entrance contains complex protrusions as a sudden arrangement of the object. The inlet and port pathways interact with each other. An outlet of at least one of the channels is sized to be insulated from the inlet and the at least one of the plurality of cylindrical projections to prevent coupling to the seal as a seal coupling. The outlet passage is of equal size to the third inlet passage. The outlets of the outlet passages are heated to each other with appropriate passages. The liquid enters the narrowing to the liquid to provide a heat source for each other. Type Coupling Method Still Liquid Liquid Liquid Flow Flow Containing Handle Liquid From the inlet liquid > body 埠 exchanger There are complex transmissions into the converter including the hot junction manufacturing to the heat source. The inclusion includes the formation of a tube passage, passage. The party has at least one liquid 埠 to the outlet. Forming an inlet liquid and a plurality of arrangements for the method to still include the inlet liquid into the pores of the heat exchange liquid passage branch layer, and the inlet layer is formed into an interface layer through the inlet, and the vertical surface is joined to the surface to the inlet Device. , where the steps are still straight through the liquid pass or to the outlet size and the self-flow individual phase shift. The long channel, the slit is long, and the step of the heat stratification through the liquid includes a plurality of layers of the outlet liquid layer to the interface liquid passage method, the liquid is contained to form a passage to the medium. The flow

IIII

第15頁 1295725 五、發明說明(8) 通位準亦有複 輸出口液體通 形成一入 位 八口孔 位準, 支管層 出口狹 含耦合 通道為 輸之液 源中至 液體入 最小。 包括以 包括沿 法尚含 在介面 尚含在 導塗層 方法如 蝕刻相 型技術 穿子L法 由機器 隙。形 其中該 之步驟 長通道 出口位 密封耦 體保持 少一介 口通路 介面層 電錢法 介面層 將介面 層上構 介面層 於複數 >愚餘刻 關之化 或軟微 形成。 方法形 數個出口孔隙,其 過出口液體通路。 準,以自入口埠傳 成支管層之步驟尚 入口孔隙與入口狹 尚包含形成一出口 傳輸液體至出口埠 準至流通位準,其 合。經入口位準傳 分開。入口及出口 面熱點區域。該方 及液體出口通路之 較佳有一熱傳導率 施加一熱傳導塗層 以預定圖案形成複 層構型使其有一粗 型一微 上形成 個柱體 ,電漿 學餘刻 影圖案 支管層 成。支 多孔結構配 複數個微通 上。複數個 蝕刻,光化 等方法交互 技術之組合 亦可由軟微 管層或者由 垂直延 形成支 輸液體 包含耦 長通道 位準以 。形成 中該出 輸之液 液體通 法尚包 步驟, 為至少 於介面 數個枉 链表面 置於介 道。方 柱體係 學蝕刻 形成。 交互實 影技術 射出成 伸通過介 督層之步 口狹 立 馬密封耦 便自出口 支管層之 〇孔隙與 體與經出 路之配置 含絕緣支 以使其間 l〇〇W/mkc 層之步驟 體。或者 。製造方 面層上。 法尚包含 以電形成 ,化學蝕 電形成法 施。支管 形成。支 型法,電 面層及傳 驟尚包含 長通道至 準至流通 合。形成 孔隙經一 步驟尚包 出口狹長 口位準傳 可冷卻熱 管層中之 之熱轉移 方法尚 。方法尚 ,製造方 法尚包括 製造方法 施加熱傳 法,餘刻 刻及雷射 與熱壓成 層以雷射 管層較佳 放電機器Page 15 1295725 V. INSTRUCTIONS (8) The pass level also has a multi-port liquid passage to form an in-position eight-port level. The outlet layer outlet has a coupling channel that is the source of the liquid to the minimum. Included with the inclusion of the method is also included in the interface is also included in the coating method such as the etching phase type technique of the wearer L method from the machine gap. The step of the long channel exit point sealing coupler keeps less one interface channel interface layer electricity money interface layer layer interface layer on the interface layer in the complex number > stupid turn off or soft micro formation. The method divides the number of outlet pores through the outlet liquid passage. The step of passing the inlet pipe into the branch layer is still the entry aperture and the inlet narrowly forming an outlet to transport the liquid to the outlet to the circulation level. Separated by the entrance level. Entrance and exit Hot spots. Preferably, the side and the liquid outlet passage have a thermal conductivity. A heat conductive coating is applied to form a multi-layered configuration in a predetermined pattern such that a thick shape forms a cylinder, and a plasma pattern is formed in the branch. The porous structure is provided with a plurality of micro-passes. A combination of multiple etching, photochemical, and other methods of interaction may also be performed by a soft microtubule layer or by a vertically extending support liquid containing a coupling channel level. The liquid liquid is formed in the process of forming the liquid, and the surface of the chain is placed on at least a plurality of interfaces. The square column is systematically etched. Interacting photographic technology The process of projecting through the guiding layer is narrow. The horse seal is coupled to the outlet of the branch pipe. The pores and the body and the path are arranged with insulation to make the step of the l〇〇W/mkc layer. Or . On the manufacturing side. The law still consists of electricity formation and chemical etching. The branch pipe is formed. The branching method, the electrical surface layer and the sub-channel still contain long-channel to quasi-flow-through. The formation of pores through a step is still included in the exit of the narrow mouth. The heat transfer method in the cooling heat pipe layer is still available. The method still requires the manufacturing method to include the heating method, the residual engraving and the laser and the hot pressing layer to the laser tube layer.

第16頁 1295725_·' … 五、發明說明(9) (EDM),沖壓,金屬射出成型(MIM),交叉切割及鋸法形 成。 本發明之其他優點及特性在以下之較佳及其他實施例 檢討詳細說明後當更為明顯。 本發明之詳 通常, 捉熱源產生 是,液體被 區域,以建 較小壓力降 複數個孔隙 導管以導引 者,熱交換 引傳輸自熱 對精於 交換器之說 熱交換器亦 然本發明以 應用中而不 圖2A說 括本發明一 外,圖2B說 性液體輸送 細說明 熱交換器 之熱能量 導向介面 立跨熱源 。如在以 ,通道及 及流通液 器包括數 點之液·體 此技藝人 明及討論 可用為加 微通道熱 限於此處 明閉合迴 交互軟性 明閉合迴 微通道熱Page 16 1295725_·' ... V. Invention Description (9) (EDM), stamping, metal injection molding (MIM), cross-cutting and sawing. Other advantages and features of the present invention will become more apparent from the following detailed description of the preferred and other embodiments. In general, the heat source is generated by the liquid being zoned to build a small pressure drop to a plurality of pore conduits to guide the person, and the heat exchange is transmitted to the heat exchanger. In the application, instead of FIG. 2A, the present invention is described. FIG. 2B illustrates the heat transfer of the heat exchanger to the thermal energy source of the heat exchanger. For example, in the channel, and the flow-through liquid includes a few liquids and bodies. This artist can understand and discuss the use of micro-channel heat. Limited to here. Closed back. Interactive softness. Closed back. Microchannel heat.

以通過液體與介面層之選擇區域以捕 ,該層較佳耦合至熱交換器。特別 層之特別區以冷卻熱點及熱點週圍之 之溫度均勻性,及維持熱交換器内之 下不同實施例所討論,熱交換器利用 /或指狀物於支管層中及中間層中之 體至及自介面層中選擇熱點區域。或 個埠,其特別配置在預定位置中以導 及移除液體,以有效冷卻熱源。 士甚為明顯,雖然本發明之微通道熱 以冷卻一裝置中之熱點位置有關,該 熱一裝置中之冷點位置。應注意,雖 交換器加以說明,本發明可用於其他 所討論者。 路密封冷卻系統3 0之略圖,該系統包 液體輸送微通道熱交換器100。此 路冷卻系統3 0之略圖,其包括另一軟 交換器1 0 0,該交換器具有本發明之To capture through a selected area of liquid and interface layers, the layer is preferably coupled to a heat exchanger. The special zone of the special layer is used to cool the hot spot and the temperature uniformity around the hot spot, and to maintain the heat exchanger utilization and/or finger in the branch pipe layer and the intermediate layer as discussed in the different embodiments below the heat exchanger. Select a hotspot area from the interface layer. Or 埠, which is specifically configured in a predetermined position to conduct and remove liquid to effectively cool the heat source. It is quite obvious that although the microchannel heat of the present invention relates to the location of the hot spot in a device, the location of the cold spot in the device. It should be noted that although the exchanger is described, the invention can be used with other discussions. A schematic of the road seal cooling system 30, which incorporates a liquid delivery microchannel heat exchanger 100. An outline of the cooling system 30, which includes another soft exchanger 100 having the present invention

111 I mu IHHi I I n ISilSS 11 l_lll I 11 I 第17頁 1295725 五、發明說明(ίο) 多個埠1 0 8,1 0 9。應注意,該系統亦可併入其他熱交換器 實施例,並不限於另一熱交換器1 〇 〇。 如圖2A所示,液體埠1〇8,109輕合至液體線38,該線 耦合至一幫浦3 2及一熱凝聚器3 0。幫浦3 2在閉合迴路3 0中 幫浦液體及流通液體。在另一實施例中,一液體埠1 〇 8用 來供應液體至熱交換器100。此外,~液體埠l〇g用來自熱 交換器1 0 0將液體移除。在一實施例中,一均勻恒定量之 液體流量經各液體埠1 〇 8,1 0 9進入及排出熱交換器1 〇 〇。 或者,不同量之液體流動經入口及出口埠1 〇 8,1 〇 9在定時 進入及流出。或者’如圖2B所示,一幫浦提供液體至數嗰 指定之入口埠108。或者,多個幫浦(未示出)提供液體至 其個別入口及出口埠1〇8,1〇9。此外,動態偵感及控制模 組34可用於系統中以改變及動態控制進入及排出較佳或另 一熱交換器之流體量及流速,以響應熱點之變化或熱點位 置中熱量之變化及熱點之位·置變化。 圖3B說明本發明之具有交互支管層之三層埶交換器 圖。3B所示之另一實施例為三位準熱'交換器 100,其包括介面層102,至少一中Μ疏1Λ>Ι” . , ^ 玉y 干間層1 0 4及至少一支管 層1 0 6。或者,如以之下討論,勃丄 丁娜 熱父換器1 0 0為二位準裝 置,其包括介面層10 2及之詧層η ^ &嘈1〇6。如圖2Α及2Β所示,埶 交換器100耦合至熱源99,如一雷工姑堪 ^ … ^ ^ 更子裝置,包括但不限於 微日日片及積體電路,一執介面松斗:Ln111 I mu IHHi I I n ISilSS 11 l_lll I 11 I Page 17 1295725 V. Invention description (ίο) Multiple 埠1 0 8,1 0 9. It should be noted that the system may also incorporate other heat exchanger embodiments and is not limited to another heat exchanger 1 〇 〇. As shown in Fig. 2A, liquid 埠1,8,109 is lightly coupled to liquid line 38, which is coupled to a pump 3 2 and a thermal agglomerator 30. The pump 3 2 is in the closed loop 30 to pump liquid and flow liquid. In another embodiment, a liquid 埠 1 〇 8 is used to supply liquid to the heat exchanger 100. In addition, the liquid 移除l〇g is removed from the heat exchanger 100. In one embodiment, a uniform constant amount of liquid flow enters and exits heat exchanger 1 〇 through each of liquids 〇1,1,09. Alternatively, different amounts of liquid flow through the inlet and outlet 埠1 〇 8,1 〇 9 at regular intervals to enter and exit. Alternatively, as shown in Fig. 2B, a pump provides liquid to a number of designated inlet ports 108. Alternatively, a plurality of pumps (not shown) provide liquid to their individual inlets and outlets 〇1,8,1〇9. In addition, the dynamic sense and control module 34 can be used in the system to change and dynamically control the amount and flow rate of fluid entering and exiting the preferred or another heat exchanger in response to changes in hot spots or changes in heat and hot spots in the hot spot location. The position of the position changes. Figure 3B illustrates a three layer germanium exchanger diagram of the present invention having an alternating branch layer. Another embodiment shown in 3B is a three-position quasi-heat exchanger 100, which includes an interface layer 102, at least one of which is 1 Λ Λ . , , , , , , , , , , , , , , , , , , , , , , , 及 及 及 及 及0 6. Alternatively, as discussed below, the Burgundy Heater Replacer 100 is a two-position device comprising an interface layer 10 2 and a layer of η ^ & 嘈 1 〇 6. Figure 2 As shown in FIG. 2, the 埶 exchanger 100 is coupled to the heat source 99, such as a Leigong 堪 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

…、;丨囬何枓98較佳配置在熱源99盘 熱交換器100之間。或者,埶交拖w ιΛη* &夏隹…T ^ 可热人換器1 〇 〇直接耦合至熱源9 9 之表面。對精於此技藝人士其发 士苍為明顯,熱交換器1 0 〇亦可...,; 丨 枓 枓 98 is preferably disposed between the heat source 99 heat exchanger 100. Alternatively, 埶 拖 w ι Λ * & 隹 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T It is obvious to those skilled in the art that the heat exchanger is 10 〇

1295725 五、發明說明(Η) 統合形成在熱源9 9之,熱交換器丨〇 〇及熱源9 9形成一 件。因此,介面層1〇2可與熱源99統合配置並 一個元件。 ,、熟源 元 形成 較佳為,本發明之微通道熱交換器之構型可 接與熱源Θ 9接觸,該熱交換器為長方形如圖所示。或間 於此技藝人士甚為明顯,該熱交換器! 〇 〇可為任何形〜對精 ,源9 9之形狀配合。例如,本發明熱交換器可構型為大且與 半圓形’其可使熱交換器(未示出)與對應半圓形熱源、f未有 示出)直接或間接接觸。此外,熱交換器較佳為具有較献 源為大之尺寸,其範圍在及包括〇. 5-5β 0mm。 …、 圖3A說明本發明另一支管層1〇6之頂視圖。如圖⑽所 示,支管層1 0 6包括四側邊及一頂表面1 3 0及一底表面 1 3 2。但頂表面1 3 〇在圖3 A中被移除以適當說明支管層i 〇 6 之工作。如圖3 A所示,支管層1 0 6有一係列通道或通路 1 1 6,1 1 8,1 2 0,1 2 2及埠1 0 8,1 0 9形成於其間。手指部 1 0 8,1 2 0以Z方向如圖3 B所示,延伸完全過支管層1 〇 6之本 體。或者,手指部1 1 8及1 2 0以Z方向部分延伸通過支管層 1 0 6,及具有孔隙如圖3 A所示。此外,通道11 6及1 2 2部分 延伸通過支管層106。入口及出口通道116,120間之其餘 區域以1 0 7代表,自頂表面1 3 0延伸至底表面1 3 2及構成支 管層1 0 6之本體。 ^ 如圖3A所示,液體經由入口埠108進入支管層106,並 沿入口通道11 6流至數個手指部11 8,其將自通道1 1 6之液 體分布至X及/或Y方向,以施加液體至介面層1 0 2中之選擇1295725 V. INSTRUCTIONS (Η) The integration is formed in the heat source 9 9 and the heat exchanger 丨〇 and the heat source 9 9 form one. Therefore, the interface layer 1〇2 can be integrated with the heat source 99 and have one element. Preferably, the microchannel heat exchanger of the present invention is configured to be in contact with a heat source Θ 9, which is rectangular as shown. Or the skilled person is very obvious, the heat exchanger! 〇 〇 can be used for any shape ~ pair fine, source 9 9 shape. For example, the heat exchanger of the present invention can be configured to be large and semi-circular' which can cause a heat exchanger (not shown) to be in direct or indirect contact with a corresponding semi-circular heat source, f not shown. Further, the heat exchanger preferably has a larger size than the donor, and the range thereof is and includes 〇. 5-5β 0 mm. Fig. 3A illustrates a top view of another tube layer 1〇6 of the present invention. As shown in (10), the branch layer 106 includes four sides and a top surface 130 and a bottom surface 133. However, the top surface 1 3 〇 is removed in Figure 3A to properly illustrate the operation of the branch layer i 〇 6 . As shown in Fig. 3A, the branch layer 106 has a series of channels or passages 1 1 6,1 1 8 , 1 2 0, 1 2 2 and 埠1 0 8,1 0 9 formed therebetween. The finger portion 1 0 8, 1 2 0 extends in the Z direction as shown in Fig. 3B, and extends completely through the body of the branch pipe layer 1 〇 6. Alternatively, the finger portions 1 18 and 1 2 0 partially extend through the branch layer 106 in the Z direction and have pores as shown in FIG. 3A. In addition, the channels 11 6 and 1 2 2 extend through the branch layer 106. The remaining areas between the inlet and outlet passages 116, 120 are represented by 107, extending from the top surface 130 to the bottom surface 133 and forming the body of the manifold layer 106. ^ As shown in FIG. 3A, liquid enters the branch layer 106 via the inlet port 108 and flows along the inlet channel 116 to a plurality of finger portions 11 8 which distribute the liquid from the channel 1 16 to the X and/or Y direction. The choice of applying liquid to the interface layer 102

第19頁 1295725 ‘ . 五、發明說明(12)Page 19 1295725 ‘ . V. Description of invention (12)

區域。手指部1 1 8安排在不同之預定方向以輸送液體至介 面層1 0 2中之各位置,該介面層1 〇 2對應熱源中之在或接近 熱點之區域。介面層102中之此等位置以後稱為介面熱點 區。該手指部之構型能冷卻靜態及時間改變之介面熱點 區。如圖3 A所示,通道1 1 6,1 1 2及手指部11 8,1 2 0以X及/ 或Y方向配置在支管層1 0 6中。因此,通道11 6,1 1 2及手指 部11 8,1 2 0之不同方向可傳輸液體以冷卻熱源9 9中之熱 點,及/或使熱交換器1 0 0中之壓力降為最小。或者,通道 116,122及手指部118,120定期配置於支管層1〇 6中,並 展現一圖案如圖4及5之例所示。 手指部11 8,1 2 0之安排及尺寸由有待冷卻之熱源9 9中 之熱點決定。熱點之位置及在每一熱點或附近產生熱之量 用以構型支管層1 〇 6,俾手指部11 8,1 2 0被置於或接近介 面層1 0 2中之介面熱點區之上方。支管層1 〇 6較佳可使單相 及/·或二相液體流通至具面層1 0 2,而不使熱交換器1 〇 〇及 系統30中(圖2A)發生壓力降。傳輸至介面熱點區之液體在 介面熱點區及接近介面熱點區建立均勻溫度。region. The finger portions 1 18 are arranged in different predetermined directions to transport liquid to respective positions in the interface layer 102, which corresponds to an area of the heat source at or near the hot spot. These locations in the interface layer 102 are hereinafter referred to as interface hotspot regions. The configuration of the finger portion cools the static and time-changing interface hotspot regions. As shown in FIG. 3A, the channels 1 1 6 , 1 1 2 and the finger portions 11 8 , 1 2 0 0 are disposed in the branch pipe layer 106 in the X and/or Y directions. Thus, the different directions of the channels 11 6, 1 1 2 and the fingers 11 8 , 1 2 0 can transport liquid to cool the hot spots in the heat source 9 9 and/or minimize the pressure drop in the heat exchanger 1000 . Alternatively, the channels 116, 122 and the finger portions 118, 120 are periodically disposed in the branch layer 1 〇 6 and exhibit a pattern as shown in the examples of Figs. The arrangement and size of the fingers 11 8 , 1 2 0 are determined by the hot spots in the heat source 9 9 to be cooled. The position of the hot spot and the amount of heat generated at or near each hot spot are used to configure the branch layer 1 〇6, and the finger portion 11 8 , 1 2 0 0 is placed at or near the interface hot spot area in the interface layer 102 . The branch layer 1 〇 6 preferably allows a single phase and/or two phase liquid to circulate to the surface layer 102 without causing a pressure drop in the heat exchanger 1 〇 and the system 30 (Fig. 2A). The liquid delivered to the interface hot spot establishes a uniform temperature in the interface hot spot and near interface hot spot.

I 通道11 6及手指部11 8之尺寸及數目與數因數有關。在 一實施例中,入口及出口手指部11 8,1 2 0具有相同之寬度 尺寸。或者,入口及一出口手指部118,120具有不同之寬 度尺寸。手指部118,12 0之寬度尺寸在及包括0.25-5.0mm 範圍。在另一實施例中,手指部11 8,1 2 0具有相同長度及 寬度。或者入口及出口手指部118,120具有不同之寬度與 長度。在另一實施例中,入口及出口手指部1 1 8,1 2 0沿手The size and number of the I channel 11 6 and the finger portion 11 8 are related to the number factor. In one embodiment, the inlet and outlet fingers 11 8 , 1 20 have the same width dimension. Alternatively, the inlet and outlet finger portions 118, 120 have different width dimensions. The width of the finger portions 118, 120 is in the range of 0.25-5.0 mm. In another embodiment, the fingers 11 8 , 1 20 have the same length and width. Or the inlet and outlet fingers 118, 120 have different widths and lengths. In another embodiment, the inlet and outlet fingers 1 1 8, 1 2 0

第20頁 1295725Page 20 1295725

3之長度有變化之寬度。此外,入口及出口手指部1丨8, 2之長度尺寸在及包括0· 5mm至熱源長度之三倍。此外 八曰部118,120有一高度或深度為· 25 5· 〇mm。此外,每 ς少於10或多餘30之手指部可交互配置在介面層1〇6中。 ^,對精於此技藝人士甚為明顯,每公分丨〇及3 〇個手 之間於支管層亦屬可行。 本發明擬配 形狀為非週期性 到跨熱源9 9之均 生之空間分布加 時’溫度增加及 液體受到大幅膨 面層至液體熱轉 液體輪送之剖面 1 2 0及通道丨! 8, 例如,可為 幸父问之熱。此外 116 ’ 122之較大 蒸氣之合物。 雖未示出, 始’以造成液體 為在下游出口處 部及通道之設計 流體中液體轉換 公 部 合手指部1 1 8,1 2 〇及通道1 1 6,! 2 2之幾何 安排,以增加熱源之最佳熱點冷卻。為達 勻溫度,熱轉移至液體之空間分布以熱產 以匹配。當液體沿介面層流過微通道丨i 〇 開始在二相位條件下轉換為蒸氣。因此, 脹’而引起速度之大量增加。通常,自介 移效率因高速流量而改進。因此,可調整 尺寸及移除熱交換器1〇〇中之手指部118, 122,以配合熱轉移至液體之效率。 熱源設計一特殊手指部,接近入口處產生 ,設計一較大之手指部i丨8,j 2 〇及通道 剖面積亦為一優點,該處可能產生液體及 手指部可設計為以入口處較小之剖面積開 之高速流動。該特殊手指部或通道可構'型 之大剖面面積,以造成較低之流速。手指 可使熱交換器之壓力降最小,及由於二相 為蒸氣引起之液體量,速度及加速增加之The length of 3 has a varying width. In addition, the length of the inlet and outlet fingers 1 丨 8, 2 is and includes 0.5 mm to three times the length of the heat source. In addition, the gossip 118, 120 has a height or depth of 25 5 · 〇 mm. In addition, fingers of less than 10 or more than 30 per 可 can be interactively configured in the interface layer 〇6. ^, it is obvious to those skilled in the art that it is also feasible to be at the branch level between every centimeter and 3 hands. The present invention is intended to be a non-periodic to cross-heat source 9 9 spatial distribution plus time 'temperature increase and liquid from a large expansion layer to liquid heat transfer liquid transfer profile 1 2 0 and channel 丨! 8, for example, can ask for the heat of the father. In addition, a larger vapor composition of 116' 122. Although not shown, the beginning is to cause the liquid to be in the design of the fluid at the downstream outlet and the channel. The liquid is converted into the finger part 1 1 8 , 1 2 〇 and channel 1 1 6! 2 2 geometry is arranged to increase the optimal hot spot cooling of the heat source. To achieve a uniform temperature, the heat is transferred to the spatial distribution of the liquid to match the heat. As the liquid flows through the microchannels 沿i 沿 along the interface layer, it begins to convert to vapor under two-phase conditions. Therefore, the expansion causes a large increase in speed. In general, self-transfer efficiency is improved by high-speed traffic. Thus, the size and removal of the fingers 118, 122 in the heat exchanger 1 can be adjusted to accommodate the efficiency of heat transfer to the liquid. The heat source is designed with a special finger part, which is close to the entrance. Designing a larger finger part i丨8, j 2 〇 and the channel sectional area is also an advantage. The liquid may be generated at this place and the finger part may be designed to be at the entrance. The small section area opens at high speed. The special finger or channel can be configured to have a large cross-sectional area to create a lower flow rate. The finger can minimize the pressure drop of the heat exchanger, and the amount of liquid due to the two phases being vapor, the speed and acceleration increase.

1295725_… ·雇 五、發明說明(14) 處熱點冷卻之最佳化。 此外,手指部1 1 8,1 0及通道1 1 6,1 2 2可設計為沿其 長度先寬而後窄,以增加微通道熱交換器100中不同處之 液體速度。或者,亦可設計改變手指部及通道由大至小再 由小至大數次,以配合熱轉移效率達到跨括熱源9 9所望之 熱消耗分布。應注意,上述改變手指部及通道之討論亦可 適用於其他實施例’不限於本實施例。1295725_... · Employment V. Description of the invention (14) Optimization of hot spot cooling. In addition, the fingers 1 18, 10 and the channels 1 1 6, 1 2 2 can be designed to be wide and narrow along their length to increase the velocity of the liquid at different locations in the microchannel heat exchanger 100. Alternatively, it is also possible to design and change the finger portion and the passage from large to small and then from small to large to match the heat transfer efficiency to the heat consumption distribution expected from the heat source. It should be noted that the above discussion of changing the finger portion and the passage can also be applied to other embodiments' without being limited to the embodiment.

或者,如圖3 A所示,支管層1 0 6包括一或個孔隙1 1 9於 手指部1 1 8中。在三層熱交換器1 0 0中,液體沿手指部1 1 8 經孔隙1 1 9向下流至中間層1 0 4。或者,在三層熱交換器 1 0 0中,液體沿手指部1 1 8向下流至孔隙1 1 9直接進入介面 層102。此外,如圖3A所示,支管層106包括出口手指部 1 2 0中之孔隙1 2 1。在三層熱交換器1 0 0中,液體自中間層 1 0 4向上流過孔隙1 2 1進入出口手指部1 2 0。或者,在二層 熱交換器1 0 0中,液體自中間層1 0 2流向上至孔隙1 2 1進入 出口手指部1 2 0。 在另一實施例中,入口及出口手指部11 8,1 2 0為開路 通道而無孔隙。支管層1 0 6之底表面1 0 3在三層熱交換器 10 0中鄰接中間層104之表面,或在二層熱交換器中鄰接介 面層1 0 2。因此,三層熱交換器1 00中,液體自由至中間層 1 0 4及支管層1 0 6流動。液體由中間層1 0 4中之導管1 0 S導自 及至適當介面熱點區。精於此技藝人士可知,導管10 5直 接與手指部對齊於三層系統之下方或各處。 圖3B雖僅顯示具有支管層之三層熱交換器,該熱交換Alternatively, as shown in Fig. 3A, the branch layer 106 includes one or more apertures 1 1 9 in the finger portion 1 18 . In the three-layer heat exchanger 100, the liquid flows down the finger 1 1 8 through the pores 1 1 9 to the intermediate layer 104. Alternatively, in the three-layer heat exchanger 100, the liquid flows down the finger portion 1 18 to the aperture 1 1 9 directly into the interface layer 102. Further, as shown in Fig. 3A, the branch pipe layer 106 includes the apertures 1 2 1 in the outlet finger portion 120. In the three-layer heat exchanger 100, liquid flows upward from the intermediate layer 104 into the pores 1 2 1 into the outlet finger portion 120. Alternatively, in the two-layer heat exchanger 100, liquid flows from the intermediate layer 110 to the pores 1 2 1 into the outlet finger portion 120. In another embodiment, the inlet and outlet fingers 11 8 , 1 20 are open channels without voids. The bottom surface 110 of the manifold layer 106 is adjacent to the surface of the intermediate layer 104 in the three-layer heat exchanger 100 or adjacent to the dielectric layer 102 in the two-layer heat exchanger. Therefore, in the three-layer heat exchanger 100, the liquid flows freely to the intermediate layer 104 and the branch layer 106. The liquid is directed from the conduit 10S in the intermediate layer 104 to the appropriate interface hot spot. As will be appreciated by those skilled in the art, the conduit 105 is directly aligned with the finger portion below or throughout the three-layer system. Figure 3B shows only the three-layer heat exchanger with a branch layer, the heat exchange

第22頁 1295725 五、發明說明(15) 器亦可有二層結構包括支管層1〇6及介面層1〇2,液體經各 層直接通過支管層1〇 6之介面層1〇 2之間而不通過介面層 104。對精於此技藝人士甚為明顯,支管,中間層及介面 層之構型之顯示僅供範例目的,而不限於所示之構型。Page 22 1295725 V. INSTRUCTIONS (15) The device may also have a two-layer structure including a branch layer 1〇6 and an interface layer 1〇2, and the liquid passes through the layers directly between the interface layers 1〇2 of the branch layer 1〇6. Does not pass through the interface layer 104. It will be apparent to those skilled in the art that the display of the manifold, intermediate layer and interface layer is for illustrative purposes only and is not limited to the configuration shown.

如圖3B所示,中間層1 〇4括複數個導管1 〇5延伸通過。 流入導管1 〇 5導引液體自支管層1 〇 6進入,流至介面層1 〇 2 中之指定介面熱點區。同理,孔隙1 〇 5亦傳輸液體自介面 層1 0 2至出口液體埠1 〇 9。因此,中間層1 〇 4亦提供自介面 層1 0 2之液體傳輸至出口液體埠i〇g,出口液體埠8與支 管層1 0 6相通。As shown in Fig. 3B, the intermediate layer 1 〇 4 includes a plurality of conduits 1 〇 5 extending therethrough. The inflow conduit 1 〇 5 directs the liquid from the branch layer 1 〇 6 into the designated interface hot spot in the interface layer 1 〇 2 . Similarly, the pores 1 〇 5 also transport liquid from the interface layer 1 0 2 to the outlet liquid 埠 1 〇 9. Therefore, the intermediate layer 1 〇 4 also provides liquid transport from the interface layer 102 to the outlet liquid 埠i〇g, and the outlet liquid 埠8 communicates with the branch layer 106.

導官10 5以根據數因數之予定圖案配置在介面層丨 中,該因數包括但不限於介面熱點區之位置,介面熱點區 所需之液體量以冷卻熱源9 9及液體溫度。該導管之寬度尺 寸為1 0 0微米,其它尺寸至數毫米亦屬可行。此外,導管 1 〇 5尚可為其他尺寸’視至少上述之因數而定。對精於此 技藝人士而言,中間層104中之每一導管ι〇5具有相同形狀 及尺寸但非必需。例如,如上述之手指部,導管亦可有可 變之長度及/或寬度尺寸。此外,導管! 〇5有一恆定深度或 向度尺寸通過中間層104。或者,導管1〇5有一可變深度尺 1 ★,如梯形或喷嘴形,,通過中間層1〇4。雖然圖2C所示之 管1 0 5之水平形狀為矩形,導管i 〇 5可有其他形狀,包括 圓形(圖3A),曲線形,橢圓形。或者,一或多個導管ι〇5 可與部分或全部手指部形狀及等值。 中間層1 0 4水平配置在熱交換器i 〇 〇中,導管則垂直配The guide 10 5 is disposed in the interface layer 予 in a predetermined pattern according to a factor of factors including, but not limited to, the location of the interface hot spot, the amount of liquid required in the interface hot spot to cool the heat source 9 9 and the liquid temperature. The width of the catheter is 100 microns, and other sizes to a few millimeters are also possible. In addition, the conduit 1 〇 5 can be other sizes depending on at least the above factors. For those skilled in the art, each of the conduits 5 in the intermediate layer 104 has the same shape and size but is not required. For example, as with the finger portions described above, the catheter can also have variable length and/or width dimensions. In addition, the catheter! The crucible 5 has a constant depth or dimension through the intermediate layer 104. Alternatively, the conduit 1〇5 has a variable depth gauge 1 ★, such as a trapezoidal or nozzle shape, through the intermediate layer 1〇4. Although the horizontal shape of the tube 105 shown in Fig. 2C is rectangular, the duct i 〇 5 may have other shapes including a circular shape (Fig. 3A), a curved shape, and an elliptical shape. Alternatively, one or more of the catheters ι〇5 may be in shape and equivalent to some or all of the fingers. The intermediate layer 104 is horizontally disposed in the heat exchanger i 〇 ,, and the conduit is vertically aligned

$烈頁 1295725 五、發明說明(16) ^此外:中間層104可配置在熱交換器u ^括但不限於對角線及曲線形。或者,導管 订方向, 平,對角線,曲線或任何方向配在 =水 φ pe S , n ^ _ 牧甲間層1 〇 4中。或者, 宁間層1 04沿熱父換器之全長水平有 介面厝1 η 9詉士技& , η…X ®此* + ^層1 0 4將 以迫使液體通過導管$烈页 1295725 V. INSTRUCTION DESCRIPTION (16) ^ In addition: the intermediate layer 104 can be disposed in the heat exchanger u, but not limited to diagonal and curved. Alternatively, the catheter can be oriented, flat, diagonal, curved or in any direction with = water φ pe S , n ^ _ 牧 interlayer 1, 〇 4. Or, Ningjian 04 04 along the full length of the hot parent exchanger has interface 厝1 η 9 詉士技 & η...X ® this * + ^ layer 1 0 4 will force the liquid through the conduit

介面層1 0 2與支管層1 〇 6完全分開,” η傳輸。或者,熱交換器10。之—部τ〇6 丨面層102間之中間層104,因此液體可自由流動於並 間。此外,中間層104可垂直延伸於支管層1〇6與介面層 1 〇 2之間以構成單獨,區別之中間層區域。或者,中間層 1〇4不完全自支管層1〇6延伸至介面層1〇2。 圖1 Ο Α說明本發明之介面層之較佳實施例之透視圖。 如圖1 Ο A所示,介面層3 0 2包括一系列柱體3 0 3自介面層3 0 2 之底表面向上延伸。此外,圖1〇A說明配置在介面層3〇 2之 底表面上之微多孔結構3 〇丨。甚為明顯,介面層3 〇 2可僅包 括微多孔結構301及與任何其他介面層特性(即,微·通道, 柱體等)之多孔結構組合。 較佳介面層3 0 2包括柱體3 0 3而非微通道,此係因為自The interface layer 102 is completely separated from the branch layer 1 〇6," η is transferred. Or, the heat exchanger 10. The portion τ 〇 6 is the intermediate layer 104 between the surface layers 102, so that the liquid can flow freely. In addition, the intermediate layer 104 may extend vertically between the branch layer 1〇6 and the interface layer 1〇2 to form a separate, distinct intermediate layer region. Alternatively, the intermediate layer 1〇4 does not extend completely from the branch layer 1〇6 to the interface. Layer 1 〇 2. Figure 1 透视 Α illustrates a perspective view of a preferred embodiment of the interface layer of the present invention. As shown in Figure 1, Ο A, the interface layer 306 includes a series of pillars 3 0 3 self-interposer 3 The bottom surface of 2 extends upward. Further, Fig. 1A illustrates the microporous structure 3 配置 disposed on the bottom surface of the interface layer 3〇2. It is apparent that the interface layer 3 〇 2 may include only the microporous structure 301 and Combined with the porous structure of any other interface layer properties (ie, microchannels, cylinders, etc.). The preferred interface layer 3 0 2 includes the cylinders 3 0 3 instead of the microchannels.

入口孔隙之液體流動至較佳之支管層3 0 2 (圖1 2 A )之四週出 口孔隙之故。如下所詳細討論,液體經一系列入口孔隙向 下傳輸至介面層3 〇 2,於是液體經一系列出口孔隙自介面 層3 0 2流出,該孔隙以至入〆孔隙之最佳之距離空間分 隔。換言之,液體自每一入口孔隙傳輸向最近之出口孔 隙。較佳為,每一入口孔隙由數個出口孔隙所包圍。因 此’進入介面層3 0 2之液體將以圍繞出口孔隙之方向流The liquid in the inlet pores flows to the outlet pores around the preferred branch layer 3 0 2 (Fig. 12A). As discussed in more detail below, the liquid is transported downward through a series of inlet apertures to the interface layer 3 〇 2, whereupon the liquid exits through the intervening layer 3 2 2 through a series of exit pores which are spatially separated by the optimum distance into the pores. In other words, liquid is transported from each inlet aperture to the nearest exit aperture. Preferably, each inlet aperture is surrounded by a plurality of outlet apertures. Therefore, the liquid entering the interface layer 3 0 2 will flow in the direction around the exit aperture.

第24頁 1295725 五、發明說明(17) 動。準此,柱體3 0 3較佳在介面層3 0 2中以容納足夠之熱轉 移至液體,及使液體在自入口孔隙流向出口孔隙時,受到 最少量之液體壓力降。 介面層3 0 2較佳包括一濃密之高,窄柱體陣列3 〇 3,其 自底表面301垂直延伸,與支管層之底表面接觸。或者, 柱體30 3與介面層30 2之底表面301成一角度延伸。柱體303 亦較佳為沿介面層3 0 2等距彼此分開,俾介面層3 〇 2之熱轉 移能力可均勻跨底表面301。或者,柱體30 3亦可以非等距 分開,如圖1 0 B所示,其中在介面層3 〇 2中間之柱體3 0 3較Page 24 1295725 V. Description of invention (17) Movement. Accordingly, the column 3 0 3 is preferably in the interface layer 302 to accommodate sufficient heat transfer to the liquid and to cause the liquid to undergo a minimum amount of liquid pressure drop as it flows from the inlet aperture to the outlet aperture. The interface layer 302 preferably includes a dense, narrow array of cylinders 3 〇 3 extending perpendicularly from the bottom surface 301 to contact the bottom surface of the manifold layer. Alternatively, the post 30 3 extends at an angle to the bottom surface 301 of the interface layer 30 2 . The cylinders 303 are also preferably spaced apart from one another along the interface layer 320 and the thermal transfer capability of the tantalum interface layer 3 〇 2 can be evenly across the bottom surface 301. Alternatively, the cylinders 30 3 may also be separated non-equidistantly, as shown in FIG. 10B, wherein the cylinders in the middle of the interface layer 3 〇 2 are 3 0 3

柱體3 0 3在邊緣以更遠之距離分開。柱體3 〇 3之空間分開與 熱源9 9之尺寸有關,液體之流體阻抗及熱點之大小及位 置,與自熱源9 9之熱通量密度之大小及位置有關。例如, 柱體3 0 3之較低密度對流體之阻抗較小,但亦提供自介面 層3 0 2至液體之熱轉移之較少表面面積。應瞭解,圖1〇β所 不之實施例之柱體3 0 3之非間歇分隔構型並非受到限制, 可構型為任何安排’視熱源及冷卻系統3 〇 (圖2 A )之理想操 作之條件而定。 此外’柱體3 0 3較佳為如圖丨0A所示之圓筒形,以使液〆 體在最少之抵抗下,自入口瓦出—口孔隙。但,枉體 Λ 3 0 3之形狀可包括但不限於方形3〇3Β(圖1〇Β),菱形,橢圓(Ρ 形3 0 3C(圖10C),六角形3〇3D(圖1〇D)或真他形狀。此外, 介面層3 0 2可有一沿底表面3 〇丨之不同形狀柱體之組合。 例如’如圖10E所示,介面層3〇2包括一組距形翼片 3 0 3 E,其在各組中彼此成徑向配置。此外,介面層3 〇 2包The cylinders 3 0 3 are separated at the edges by a greater distance. The space of the cylinder 3 〇 3 is separated from the size of the heat source 9 9 , and the fluid impedance and the size and location of the hot spot of the liquid are related to the magnitude and position of the heat flux density of the self-heat source 9 9 . For example, the lower density of the cylinder 310 has a lower impedance to the fluid, but also provides less surface area for thermal transfer from the interface layer 320 to the liquid. It should be understood that the non-intermittent separation configuration of the column 3 0 of the embodiment of Fig. 1 〇β is not limited, and can be configured as any arrangement for the arrangement of the heat source and the cooling system 3 (Fig. 2A). Depending on the conditions. Further, the column 3 0 3 is preferably a cylindrical shape as shown in Fig. 0A, so that the liquid sputum exits the port pores with minimum resistance. However, the shape of the body Λ 3 0 3 may include, but is not limited to, a square 3〇3Β (Fig. 1〇Β), a diamond shape, an ellipse (Ρ3 3 3C (Fig. 10C), a hexagonal 3〇3D (Fig. 1〇D) In addition, the interface layer 302 may have a combination of differently shaped cylinders along the bottom surface 3. For example, as shown in FIG. 10E, the interface layer 3〇2 includes a set of spaced-shaped fins 3 0 3 E, which is arranged radially to each other in each group. In addition, the interface layer 3 〇 2 package

第25頁 1295725 五、發明說明(18) 括數個柱體3 0 3B配置在該組罕形1片303E之-間 例中,在徑向安排之距形翼片3 0 3 E中之開路圓形區被置於 每一入口孔隙之下,翼片3 Ο 3E可協助導引流體至出Q孔、 隙,因此,徑向分布之翼片3Ο3E可協助使壓力降最小,及 使具有接近均勻分布之冷卻液體於介面層302中。視入口 及出口孔隙之大小及相對配置,其可有許多可能柱體及7 或翼片之構型,介面層30 2最佳安排之選擇視液體是否受 到單相或雙相流動狀態而定。精於此技藝人士甚為明顯, 不同之銷3 0 3構型亦可併入任何實施例中及變化中。η 圖3B說明本發明介面層1〇2另一實施例之透視如 圖3B所示,介面層1〇2包括底表面1〇3及複數個微通道辟 1 1 〇,微通道壁11 〇間之區域可導引或傳輸液體沿_二沒 路徑傳輸。底表面1 03為平坦及有一高熱傳導率,以- :、源9 9有足夠之熱轉移。或者,底表面工〇 3包括設計用以 自一一特殊位置收集或驅逐之槽·或脊部。微通道壁i丨〇以 2構型如圖3B所示,因而使液體可沿液體路徑流動於 遑壁之間。 ) 十精於此技藝人士甚為明顯,微通道壁Π 〇可構型為 構型,視上述之因數而定。例如,介面層10 2可在微 γ k壁部分之間具有槽溝,如圖8C所示。此外,微通道壁 H具有乂寸,可使介面層1〇2中之壓力降或壓力差最小。 =微通道壁之外,其他構型亦可考慮,包括但不限於粗糙 =面及多孔結構如燒結之金屬或矽泡沫,此點甚為明 .,、員。但為範例目的,圖3B中之微通道壁u〇係用以說明本 1295725 五、發明說明(19) 發明之介面層1 〇 2。 仍篆 讓占 微通道壁1 1 0可使液體沿介面熱點區之選#辨” !丨0厶 受到熱交換,以便在該位置冷卻熱源9 9。微通道雙執滹9 9 寬度為2 0 - 3 0 0微米及高度1 〇 〇微米至1毫米範園,祝二分之 之功率而定。微通道壁Π〇之長度為1〇〇微米至數個二度而 間,視熱源之大小,熱點之大小及至熱源之熱通f在^ 定。或者,任何其他微通道壁尺寸均可考慮。微通道, 1 1 0彼此分隔,分隔範圍為5 0 —5 0 0微米,視熱源99功率 疋’雖然其他分隔距離亦可考慮。 參考圖3B中之總成,支管層1 〇 6之頂表面被切開以说 W 明支管層1 0 6本體内之通道1丨6,n 2及手指部11 8,1 2 0。 熱源9 9中之位置產生更多熱,因此被稱為熱點,熱源9 9中 之該產生少量熱之位置稱為溫點。如圖3B所示,熱源99有 一熱點區於位置A,及溫點區於位置b。介面層丨〇 2接近熱 點及溫點之區域稱為介面熱點區。如圖3 B所示,介面層 1 0 2包括介面熱點區a,其配置在位置a及介面熱點區此 上’該熱點區B配置在位置β之上。 如圖3Α及3Β所示,液體經由入口埠工〇8最初進入熱交 換器100。液體於是流至一入口通道116。或者,熱交換器 10 0包括一或多個入口通道U6。圖3A及3B所示,液體沿入f 口通道116自入口埠、108流入在分支流至手指部H8D。此 外,繼續沿入口通道丨丨6之其他部分流動之液體流動至各 手指部1 1 8 B及1 1 8 C,餘類推。 在圖B中’液體至手指部丨丨8 A而供應至介面熱點區a,Page 25 1295725 V. INSTRUCTIONS (18) The number of cylinders 3 0 3B is arranged in the case of the group of 303E of the group, and the open path in the radial arrangement of the tabs 3 0 3 E A circular zone is placed under each inlet aperture, and the vanes 3 Ο 3E assist in guiding the fluid to the Q-holes and gaps, so that the radially distributed fins 3Ο3E assist in minimizing pressure drop and providing closeness A uniformly distributed cooling liquid is in the interface layer 302. Depending on the size and relative configuration of the inlet and outlet apertures, there may be many possible configurations of the cylinders and 7 or fins. The optimal arrangement of the interface layer 30 2 depends on whether the liquid is subjected to a single phase or two phase flow condition. It will be apparent to those skilled in the art that the different configurations of the 3 3 3 can also be incorporated into any embodiment and variations. FIG. 3B illustrates a perspective view of another embodiment of the interface layer 1〇2 of the present invention. As shown in FIG. 3B, the interface layer 1〇2 includes a bottom surface 1〇3 and a plurality of microchannels 1 1 〇, and a microchannel wall 11 The area can be guided or transported along the _two path. The bottom surface 103 is flat and has a high thermal conductivity to - :, the source 9 has sufficient heat transfer. Alternatively, the bottom surface work 3 includes grooves or ridges designed to be collected or ejected from a particular location. The microchannel wall is configured in a configuration as shown in Fig. 3B, thereby allowing liquid to flow between the walls of the crucible along the liquid path. The ten fines are very obvious to those skilled in the art, and the microchannel niche can be configured in a configuration depending on the above factors. For example, the interface layer 102 may have grooves between the micro gamma wall portions as shown in Figure 8C. In addition, the microchannel wall H has a size that minimizes the pressure drop or pressure differential in the interface layer 1〇2. In addition to the microchannel walls, other configurations are also contemplated, including but not limited to rough = face and porous structures such as sintered metal or tantalum foam, which is quite clear. For the purposes of the example, the microchannel wall in Fig. 3B is used to illustrate the interface layer 1 〇 2 of the invention of the invention. Still letting the microchannel wall 1 1 0 allow the liquid to be exchanged along the hot spot of the interface. The heat exchange is performed to cool the heat source 9 at this position. The microchannel double 滹9 9 width is 2 0 - 300 μm and height 1 〇〇 micron to 1 mm fan garden, depending on the power of the two-point. The length of the micro-channel niche is between 1 μm and several degrees, depending on the size of the heat source. The size of the hot spot and the heat flux to the heat source are determined. Alternatively, any other microchannel wall size can be considered. The microchannels, 1 1 0 are separated from each other, the separation range is 50-500 microns, and the heat source 99 power is 疋'Although other separation distances may also be considered. Referring to the assembly in Fig. 3B, the top surface of the branch layer 1 〇6 is cut to say that the channel 1 66, n 2 and the finger portion 11 in the body of the branch pipe layer 8,1 2 0. The position in the heat source 9 9 generates more heat, so it is called a hot spot, and the position of the heat source 9 9 which generates a small amount of heat is called a temperature point. As shown in FIG. 3B, the heat source 99 has a hot spot. At position A, and at the temperature point in position b. The area of the interface layer 接近2 close to the hot spot and the temperature point is called the interface hot spot area. As shown in FIG. 3B, the interface layer 102 includes an interface hotspot area a, which is disposed on the location a and the interface hotspot area. The hotspot area B is disposed above the position β. As shown in FIGS. 3A and 3B, The liquid initially enters heat exchanger 100 via inlet port 8. The liquid then flows to an inlet passage 116. Alternatively, heat exchanger 100 includes one or more inlet passages U6. As shown in Figures 3A and 3B, the liquid follows The mouth passage 116 flows from the inlet port 108 to the branch portion to the finger portion H8D. Further, the liquid flowing along the other portions of the inlet port 丨丨6 flows to the respective finger portions 1 18 B and 1 18 C, and so on. In Figure B, 'liquid to finger 丨丨 8 A is supplied to the interface hot spot a,

第27頁 1295725 … 4 * -----------—_____—____ 五、發明說明(20) 浪體向下流過手指部1 1 8 A至中間層1 0 4。液體於是流過入 口導管5A,其位於手指部U8A之下,再流入介面層1〇2, 該處液體受到與熱源9 9之熱交換。如上所述,介面層1 〇 2 中之微通道可構型在任何分向。因此,介面區A中之微通 遂111配置成與介面層1〇 2中之其餘微通道成垂直。因此, 自導管1 0 5 A之液體沿微通道1丨丨傳輸,如圖3所示,雖然液 禮亦/口介面層1 〇 2之其餘區域之其他方向傳輸。被加熱之 浪體於是經導管1 0 5 B向上傳輸至出口手指部} 2 〇 A。Page 27 1295725 ... 4 * -----------______________ V. INSTRUCTIONS (20) The wave body flows down the finger 1 1 8 A to the middle layer 1 0 4 . The liquid then flows through the inlet conduit 5A, which is below the finger U8A and then flows into the interface layer 1〇2 where it is subjected to heat exchange with the heat source 99. As mentioned above, the microchannels in interface layer 1 〇 2 can be configured in any orientation. Therefore, the microchannels 111 in the interface region A are arranged to be perpendicular to the remaining microchannels in the interface layer 1〇2. Therefore, the liquid from the conduit 1 0 5 A is transported along the microchannel 1丨丨, as shown in Fig. 3, although the other areas of the liquid/internal interface layer 1 〇 2 are transported. The heated body is then transported upwards through the conduit 1 0 5 B to the outlet finger} 2 〇 A.

同理’液體以Z方向向下流動過手指部1丨8 £及丨丨8 ?至 中間層1 0 4。液體於是向下流過z方向之入口導管丨〇 5 c進入 介面層1 0 2。液體於是以方向向上流,自介面層i 〇 2過出口 導管105D至出口手指部12〇及12〇F。熱交換器1〇〇經由出口 手扎邛120移除支管層1〇6中之加熱液體,該出口手指部 120與出口.通道122相通。出口通道122使液體經一出口埠 1 0 9流出·熱交換器。 較佳為,進入流體及流出流體導管】〇5直接配置或接 置在適當之介面熱點區之上,以直接供應液體至 ^ ^ ”, 此外母一出口手指部120之構型可配 置在最接近特殊介面劫^ WJ- x …點^各入口手指部1 1 8,以使其間 之壓力降最小。因此,液贈士 a 1πο ^ ,仗體&由入口手指部1 18Α進入介面 :+人並在其排出介面層1 02至出口手指部1 20A之前傳輸 I二Y fit#層/ 〇 2之底表面1 〇 3一距離。甚為明顯,液體沿底 ^面103傳輸之距離之量可適當將自熱源99產生之熱移 除,而不產生不必要之壓力&。此外,如圖3A及3B所示,Similarly, the liquid flows downward in the Z direction through the fingers 1丨8 £ and 丨丨8? to the intermediate layer 104. The liquid then flows down through the inlet conduit 丨〇 5 c in the z direction into the interface layer 102. The liquid then flows upwards in the direction from the interface layer i 〇 2 through the outlet conduit 105D to the outlet finger portions 12〇 and 12〇F. The heat exchanger 1 移除 removes the heated liquid in the branch layer 1 〇 6 via the outlet hand 邛 120, which is in communication with the outlet passage 122. The outlet passage 122 allows the liquid to flow out of the heat exchanger via an outlet 埠 1 0 9 . Preferably, the inlet fluid and the outflow fluid conduit are directly disposed or attached to the appropriate interface hot spot to directly supply the liquid to the ^^", and the configuration of the female-outlet finger 120 can be configured at most Close to the special interface robbery ^ WJ- x ... point ^ each finger finger 1 1 8 to minimize the pressure drop between them. Therefore, the liquid gift a 1πο ^, the body & enters the interface from the entrance finger 1 18Α: + The person transmits a distance from the bottom surface of the I y Y fit # layer / 〇 2 1 〇 3 a distance before the discharge interface layer 102 to the outlet finger portion 1 20A. It is quite obvious that the amount of liquid transported along the bottom surface 103 is The heat generated by the heat source 99 can be appropriately removed without generating unnecessary pressure & Further, as shown in FIGS. 3A and 3B,

第28頁 1295725 五、發明說明(21) 手指部1 1 8,1 2 0中角落為曲線以降低沿手指部n 8流動之 液體之壓力降。Page 28 1295725 V. INSTRUCTIONS (21) The corners of the finger portion 1 18, 1 2 0 are curved to reduce the pressure drop of the liquid flowing along the finger portion n 8 .

對精於此技藝人士甚為明顯,圖3级3B所示之支管層 1 0 6之構型僅係供範例目的。支管層丨6中之通路n 6及手指 部1 1 8之構型,視以下因數包括但不限於介面熱點區之位 置’流自及至介面熱點區之流量,及介面熱點區中之熱源 產生熱之量而定。例如,支管層1 〇 6之可能構型包括平行 入口及出口手指部之交又指型,其如圖4-7A所示沿支管層 之寬度交互安排,如以下所討論。雖然如此,通道n 6及 手指部1 1 8之其他構型亦可考慮。 圖4說明本發明熱交換器之另一支管層4 〇 6之透視圖。 圖4之支官層406包括複數個交織或交差指之平行液體導管 4 1 1 ’ 4 1 2 ’其使單相或二相液体流通至介面層4 〇 2而不發 生壓力降於熱交換器40 0及系統30中(圖2A).。如圖8所 示’入口手指部4 1 1與出口手指部4 1 2交互安排。但精於此 技藝人士可考慮某一數量之入口或出口手指部可彼此相鄰 安排’因此不限於圖4之構型。此外,手指部可設計使一 平行手指部與另一平行手指部分支或交鏈。故可有多於出 口手指部之入口手指部,反之亦然。 入口手指部或通道4 1 1供應液體進入熱交換器至介面 層402,出口手指部或通道412自介面層40 2移除液體,再 流出熱交換器4 0 0。所示之支管層4 0 6之構型可使液體流入 介面層40 2,及在流至出口通道41 2之前在介面層4 0 2中傳 輸一甚短距離。液體沿介面層4 0 2傳輸長度之降低實際上It is obvious to those skilled in the art that the configuration of the branch layer 106 shown in Figure 3, Level 3B is for illustrative purposes only. The configuration of the path n 6 and the finger portion 1 18 in the branch layer 6 includes, but is not limited to, the location of the interface hot spot, the flow from the interface to the hot spot, and the heat generated by the heat source in the interface hot spot. The amount depends. For example, the possible configuration of the manifold layer 1 〇 6 includes the intersection of the parallel inlet and outlet fingers, which are alternately arranged along the width of the branch layer as shown in Figures 4-7A, as discussed below. Nevertheless, other configurations of the channel n 6 and the finger portion 1 18 can also be considered. Figure 4 illustrates a perspective view of another tube layer 4 〇 6 of the heat exchanger of the present invention. The panel 406 of Figure 4 includes a plurality of parallel liquid conduits 4 1 1 ' 4 1 2 ' of interlaced or crossed fingers which circulate single or two phase liquids to the interface layer 4 〇 2 without pressure drop to the heat exchanger 40 0 and system 30 (Fig. 2A). As shown in Fig. 8, the entrance finger portion 41 1 and the outlet finger portion 4 1 2 are arranged alternately. However, those skilled in the art will recognize that a certain number of inlet or outlet fingers can be arranged adjacent to one another' and thus are not limited to the configuration of Figure 4. In addition, the fingers can be designed to branch or interlace a parallel finger portion with another parallel finger portion. Therefore, there may be more than the entrance finger of the outlet finger and vice versa. The inlet finger or channel 4 1 1 supplies liquid into the heat exchanger to the interface layer 402, and the outlet finger or channel 412 removes liquid from the interface layer 40 2 and exits the heat exchanger 4000. The illustrated manifold layer 406 configuration allows liquid to flow into the interface layer 40 2 and transport a very short distance in the interface layer 420 before flowing to the outlet channel 41 2 . The decrease in the length of liquid transport along the interface layer 40 2 actually

第29頁 1295725 五、發明說明(22) 可降低在熱交換器40 0及系統30中之降(圖2A)。 如圖4_5所示’另一支管層406包括通道414,其與二 入口通道411相通並提供液體至該處。圖8 —9中之支管層 406包括二個出口通道412,其與通道41 8相通。支管層406 中之通道41 4有一平底表面以傳輸液體至手指部411,Page 29 1295725 V. INSTRUCTIONS (22) The drop in heat exchanger 40 0 and system 30 can be reduced (Fig. 2A). As shown in Figure 4-5, another manifold layer 406 includes a channel 414 that communicates with the two inlet channels 411 and provides liquid thereto. The manifold layer 406 of Figures 8-9 includes two outlet passages 412 that communicate with the passages 41 8 . The channel 41 4 in the manifold layer 406 has a flat bottom surface for transporting liquid to the finger portion 411.

412。或者,入口通道41 4有一小斜率以協助液體傳輸至選 擇之液體通道4 1 1。或者,入口通道4 1 4包括一或多個孔隙 於其底表面’其可使部分液體向下流至介面層4〇2。同 理’支管層中之通道41 8有一平底表面,其中包含液體並 傳輸液體至埠40 8。或者,通道41 8有一斜率以協助傳輸液 體至選擇之出口埠408。此外,通道414,41 8有一寬度約 為2毫米,其他寬度亦可考慮。412. Alternatively, the inlet passage 41 4 has a small slope to assist in the transfer of liquid to the selected liquid passage 4 1 1 . Alternatively, the inlet channel 412 includes one or more apertures on its bottom surface 'which allows a portion of the liquid to flow down to the interface layer 4〇2. The channel 41 8 in the manifold section has a flat bottom surface containing liquid and transporting liquid to the crucible 40 8 . Alternatively, channel 41 8 has a slope to assist in the transfer of liquid to selected outlet port 408. In addition, the channels 414, 41 8 have a width of about 2 mm, and other widths are also contemplated.

通道414,41 8與埠408,409相通,該埠耦合至系統3〇 (圖2 A)中4液體線3 8。支管層4 0 6包括水平構型液體埠 408’ 409。或者,支管層40 6包括垂直或對角線構型之液 體璋408’ 409’如以下討論者’但未示於圖4-7中。或 者’支管層40 6不含通道414。因此液直接自埠4〇 8供應至 手指部4 11。此外,支管層4 1 1不包括通道4 1 8,手指部4 1 2 中液體直接經璋4 1 8流出入父換器400。雖然二埠408顯示 與通道4 1 4,4 1 8相通,其他數目之埠亦可利用。 入口通道411之尺寸可使液體傳輸至介面、層,而不致 Ά通道411及糸統30(圖2A)發生壓力降。入口通道411之寬 度在及包括0.25-5·00πιιπ’雖然其他尺寸亦可予考慮、。此 外’入口通道411有一長度尺寸在及包括〇· 5 mm至三倍熱源Channels 414, 41 8 are in communication with turns 408, 409 which are coupled to four liquid lines 38 in system 3 (Fig. 2A). The manifold layer 406 includes a horizontal configuration liquid 408 408' 409. Alternatively, the manifold layer 40 6 includes a liquid 璋 408' 409' in a vertical or diagonal configuration as discussed below, but not shown in Figures 4-7. Or 'the branch layer 40 6 does not contain the channel 414. Therefore, the liquid is supplied directly from the crucible 4 to the finger portion 4 11 . In addition, the branch layer 4 1 1 does not include the passage 4 1 8 , and the liquid in the finger portion 4 1 2 flows directly into the parent exchanger 400 via the crucible 4 1 8 . Although the second 408 display is connected to the channel 4 1 4, 4 1 8 , other numbers can be utilized. The size of the inlet passage 411 allows liquid to be transferred to the interface, layer without pressure drop in the channel 411 and the system 30 (Fig. 2A). The width of the inlet passage 411 is and includes 0.25-5·00 πιιπ' although other dimensions are also contemplated. Further, the inlet channel 411 has a length dimension and includes 〇·5 mm to three times the heat source.

第30頁 1295725 ,. 五、發明說^ - 之長度。或者,其他長度亦可考慮。如上所述,入口通道 4 11向下延伸至稱高於微通道41〇之高度,俾液体直接傳輸 至微通道410。入口通道411有一高度在及包括〇.25一 5. 0 0mm。對精於此技藝人士而言,雖然入口通道丨具有 相同尺寸’但其他不同尺寸亦屬可行。或者通道411具有 可變寬度’剖面積尺寸及相鄰手指部間之距離。特別是, 通道4 1 1在沿其長度上具有較大寬度或深度之區域,及具 有較窄寬度及深度之區域。此一變化尺寸可使更多液體經 較寬區域傳輸至介面層4 〇 2之預定介面熱點區,而限制經 較窄之部分傳輸至溫點區域。 此外’出口通道4 1 2有一尺寸可使液體傳輸至介面 層’而不致沿出口通道41 2及系統30 (圖2A)產生大壓力 降。出口通道41 2有一寬度尺寸在及包括〇·25-5. 00 mm,其 他尺寸亦屬可行。此外,出口通道4 1 2有一長度尺寸在及 包括0. 5mm至熱源之三倍長度。此外,出口通道4 1 2向下延 伸至微通道4 1 0之高度,俾液體易於在沿微通道4 1 0水平流 動後於出口通道412中向上流動。入口通道411具有一高度 在及包括0.25-5.00mm範圍,其他高度尺寸亦可考慮。對 精於此技藝人士甚為明顯,雖然出口通道41 2具有相同尺 寸,出口通道4 1 2可具有不同尺寸亦可考慮。此外,出口 通道4 1 2可具有不同寬度,剖面尺寸及/或相鄰手指部、間之 不同距離。 入口及出口通道411,41 2為分段及彼此不同如圖4及5 所示,液體在通道中彼此不混合。特別是,如圖8所示,Page 30 1295725,. V. The length of the invention says ^ -. Alternatively, other lengths may also be considered. As described above, the inlet passage 4 11 extends downward to a height higher than the microchannel 41 , and the helium liquid is directly transferred to the microchannel 410. The inlet passage 411 has a height and includes 〇.25-5.0 mm. For those skilled in the art, although the inlet channels are of the same size, other different sizes are also possible. Alternatively, channel 411 has a variable width 'area size and a distance between adjacent fingers. In particular, channel 4 1 1 has regions of greater width or depth along its length, and regions of narrower width and depth. This variation allows more liquid to be transported over a wider area to a predetermined interface hot spot area of the interface layer 4 〇 2, while limiting the narrower portion to the warm spot area. In addition, the exit channel 4 1 2 has a size that allows liquid to be transported to the interface layer without creating a large pressure drop along the exit channel 41 2 and system 30 (Fig. 2A). The outlet passage 41 2 has a width dimension of and including 〇·25-5. 00 mm, and other dimensions are also possible. In addition, the outlet channel 4 1 2 has a length dimension and includes 0. 5mm to three times the length of the heat source. Further, the outlet passage 4 1 2 extends downward to the height of the microchannel 410, and the helium liquid tends to flow upward in the outlet passage 412 after flowing horizontally along the microchannel 410. The inlet passage 411 has a height in and including the range of 0.25-5.00 mm, and other height dimensions are also contemplated. It will be apparent to those skilled in the art that although the outlet passages 41 2 have the same size, the outlet passages 41 2 may have different sizes as may be considered. In addition, the outlet passages 41 can have different widths, cross-sectional dimensions, and/or different distances between adjacent fingers. The inlet and outlet passages 411, 41 2 are segmented and different from each other as shown in Figures 4 and 5, and the liquids are not mixed with each other in the passage. In particular, as shown in Figure 8,

第31頁 1295725 五、發明說明(24)Page 31 1295725 V. Description of invention (24)

二出口通道位於支管層4 0 6之外側邊緣,及一出口通道4 ! 2 位於支管層4 〇 6之中央。此外,二入口通道4 1 1構型為在中 央出口通道之相鄰側。此一特別構型造成進入介面層4 0 2 之液體在經由出口通道4 1 2流出介面層4 〇 2之前,在介面層 4 〇 2中傳輸一短躁離。但,對精於此技藝人士甚為明顯, 入口通道及出口通道可以任何其他適當構型配置,因此不 限於本發明所述之構型。入口及出口通道4 11,4 1 2之數目 在支管層40 6中多於三個,但跨支管層40 6之每一公分少於 1 〇個。精於此技藝人士甚為明顯,入口通道及出口通道之 其他數目亦可使用,而不限於本發明所示及說明之數目。The second outlet passage is located at the outer side edge of the branch pipe layer 406, and an outlet passage 4! 2 is located at the center of the branch pipe layer 4 〇 6. In addition, the two inlet passages 4 1 1 are configured to be adjacent sides of the central outlet passage. This particular configuration causes the liquid entering the interface layer 420 to transport a short smear in the interface layer 4 〇 2 before exiting the interface layer 4 〇 2 via the outlet channel 4 1 2 . However, it will be apparent to those skilled in the art that the inlet and outlet channels can be configured in any other suitable configuration and are therefore not limited to the configurations described herein. The number of inlet and outlet passages 4 11, 4 1 2 is more than three in the branch pipe layer 40 6 , but less than one centimeter per cross pipe branch layer 40 6 . It will be apparent to those skilled in the art that other numbers of inlet and outlet passages may be used without limitation to the number shown and described herein.

支管層40 6耦合至中間層(未示出),中間層耦合至介 面層40 2以構成三層熱交換器400。此處討論之中間層係指 圖3B所示實施例中之上。支管層40 6亦可耦合至介面層 4 0 2,及配置在介面層4 0 2之上以構成二層熱交換器4 0 0如 圖7 A所示。圖6A-6 C說明在二層熱交換器中耦合至介面層 4 0 2之另一支管層40 6之剖面圖。圖6A特別說明沿圖5中A-A 線之熱交換線40 0之剖面圖。此外,圖6B說明沿線B-B之熱 交換器400之剖面圖,圖6C說明沿圖5之線C-C之熱交換器 40 0之剖面圖。如上所述,入口及出口通道411,412自頂 表面延伸至支管層40 6之底表面。當支管層4 06及介面層 402彼此耦合時,入口、及出口通道411,41 2為稍高於介面 層402中微通道々I q之高度。此〆構型可使自入口通道4 11 之液體易於自通道41 1流過微通道4 1 0。此外,此一構型時 流過微通道之液體在流過微通遒4 1 0後容易向上流過出口The manifold layer 406 is coupled to an intermediate layer (not shown) that is coupled to the interface layer 40 2 to form a three-layer heat exchanger 400. The intermediate layer discussed herein refers to the above in the embodiment shown in Figure 3B. The branch layer 40 6 may also be coupled to the interface layer 420 and disposed over the interface layer 420 to form a two-layer heat exchanger 4000 as shown in Figure 7A. Figures 6A-6C illustrate cross-sectional views of another tube layer 406 coupled to the interface layer 420 in a two-layer heat exchanger. Fig. 6A particularly illustrates a cross-sectional view of the heat exchange line 40 0 along the line A-A in Fig. 5. Further, Fig. 6B illustrates a cross-sectional view of the heat exchanger 400 along line B-B, and Fig. 6C illustrates a cross-sectional view of the heat exchanger 40 0 along line C-C of Fig. 5. As noted above, the inlet and outlet passages 411, 412 extend from the top surface to the bottom surface of the manifold layer 406. When the branch layer 068 and the interface layer 402 are coupled to each other, the inlet and outlet channels 411, 41 2 are slightly higher than the height of the microchannels 々I q in the interface layer 402. This configuration allows liquid from the inlet channel 4 11 to readily flow through the microchannel 4 1 0 from the channel 41 1 . In addition, in this configuration, the liquid flowing through the microchannel easily flows upward through the outlet after flowing through the micro-pass 遒 4 1 0

1295725 五、發明說明(25) 通道4 1 2。1295725 V. INSTRUCTIONS (25) Channel 4 1 2

在另一實施例中,中間層104 (圖3B)配置在支管層406 及介面層4 0 2之間,但在圖中未示出。中間層1 〇 4 (圖3 B )傳 輸液體流通至介面層4 0 2中之指定介面熱點區。此外,中 間層1 0 4 (圖3 B )可用以提供液體均勻流動進入介面層4 〇 2。 此外,中間層1 0 4可用以提供液體至介面層4 0 2中介面熱點 區,以適當冷卻熱點及造成熱源9 9中之均勻溫度。入口及 出口通道411’ 41 2之配置接近或在熱源99中熱點之上方, 以適當冷卻熱點,但並非必需。 圖7 A說明本發明具有另一介面層1〇 2之另一支管層406 之立體圖。介面層102包括連續安排之微通道壁no如圖3B 所示。在作業時,與圖3B所示之較佳支管層1 〇6相似,液 體在液體埠40 8進入支管層4 0 6及傳輸通過通道4 1 4及流向 液體手指部或通道4 11。液體進入入口手指部4 11之開口及 流向X方向中之手指部4 11之長度,如箭頭所示。此外,液 體在Z方向向下流動至介面層402,其配置在支管層40 6之 下方。如圖7 A所示,介面層40 2中之液體以介面層40 2之X 及Y方向橫向沿底表面流動,及與熱源9 9實施熱交換。加 熱之液體以Z方向經出口手指部4 1 2向上流動而排出介面層 4 0 2,出口手指部4 1 2將加熱之液體在X方向傳輸至支管層 4 0 6中之通道4 1 8。該液體於是'沿通道4 1 8流動並經埠4 0 9流 出而排出熱交換器。 圖7 A所示之介面層包括一係系列槽溝4 1 6配置在各組 微通道410之間,其可協助傳輸液體自及至通道411,In another embodiment, the intermediate layer 104 (Fig. 3B) is disposed between the manifold layer 406 and the interface layer 402, but is not shown in the figures. The intermediate layer 1 〇 4 (Fig. 3B) transports the liquid to the designated interface hot spot in the interface layer 420. In addition, the intermediate layer 104 (Fig. 3B) can be used to provide uniform flow of liquid into the interface layer 4 〇 2 . In addition, the intermediate layer 104 can be used to provide a liquid to the interface layer 40 2 interposer hot spot to properly cool the hot spot and cause a uniform temperature in the heat source 99. The configuration of the inlet and outlet channels 411' 41 2 is close to or above the hot spot in the heat source 99 to properly cool the hot spot, but is not required. Figure 7A illustrates a perspective view of another tube layer 406 of the present invention having another interface layer 1〇2. The interface layer 102 includes successively arranged microchannel walls no as shown in Figure 3B. In operation, similar to the preferred manifold layer 1 〇6 shown in Figure 3B, the liquid enters the manifold layer 406 in the liquid helium 40 8 and passes through the channel 4 1 4 and to the liquid finger or channel 4 11 . The liquid enters the opening of the entrance finger portion 4 11 and the length of the finger portion 4 11 flowing in the X direction as indicated by the arrow. Further, the liquid flows downward in the Z direction to the interface layer 402, which is disposed below the branch pipe layer 406. As shown in FIG. 7A, the liquid in the interface layer 40 2 flows laterally along the bottom surface in the X and Y directions of the interface layer 40 2 and exchanges heat with the heat source 9 9 . The heated liquid flows upward in the Z direction through the outlet finger portion 4 1 2 to discharge the interface layer 410, and the outlet finger portion 4 1 2 transports the heated liquid in the X direction to the channel 4 18 in the branch pipe layer 406. The liquid then 'flows along channel 4 1 8 and exits through 埠 4 0 9 and exits the heat exchanger. The interface layer shown in FIG. 7A includes a series of trenches 4 1 6 disposed between each set of microchannels 410, which can assist in transporting liquids to and from the channels 411.

苐33頁 1295725 ,’ 五'發明說明(26) 4 1 2。槽溝4 1 6 A特別位於支管層4 0 6之入口通道4 1 1之直 下’經入口通道411進入介面層1〇 2之液體被導向鄰近槽溝 4 1 6 A之微通道。因此,槽溝416 A可使液體自入口通道411 直接傳輸至特殊指定之流量路徑如圖5所示。同理,介面 層40 2包括槽溝416B,其位於在Z方向出口通道41 2之直 下。因此,沿微通道4 1 0水平傳輸至出口通道之液體被水 平傳輸至槽溝416 B及垂直傳輸至槽溝416 B上方之出口通道 412°苐 Page 33 1295725, 'Five' invention description (26) 4 1 2. The groove 4 1 6 A is located particularly directly below the inlet passage 4 1 1 of the branch pipe layer 406. The liquid entering the interface layer 1 经 2 via the inlet passage 411 is directed to the microchannel adjacent the groove 4 1 6 A. Thus, the grooves 416 A allow liquid to be transported directly from the inlet passage 411 to a specially designated flow path as shown in FIG. Similarly, the interface layer 40 2 includes a trench 416B that is located directly below the Z-direction exit channel 41 2 . Therefore, the liquid horizontally transferred to the outlet passage along the microchannel 410 is horizontally transferred to the groove 416B and vertically to the outlet passage 412 above the groove 416B.

圖6A說明具有支管層40 6及介面層402之熱交換器400 之剖面圖。圖6 A特別顯示入口通道4 11與出口通道41 2交 織,因此入口通道411之液體向下流動及出口通道41 2之液 體向上流動。此外,如圖6 A所示,液體水平流過微通道 410,其配置在入口通道與出口通遗之間,並由槽溝 416A,416B分隔。或者,微通道壁為連續的(圖3B)及未有 微通道410分隔,如圖6撕示,入口及出口通道411,412 在其末端及接近槽溝41 6之位置有一曲線表面420。曲線表 面42 0導引液體向下流動至通道411而流向微通道41 0,其 位於通道411之附近。因此,進入介面層1 0 2之液體容易被 導向微通道4 1 〇,而非直接流向槽溝4 1 6 A。同理,出口通 道4 1 2中之曲線表面4 2 0協助液體自微通道4 1 0流向出口通 道 412〇 在另一實施例中如圖7 B所系,介面層4 0 2 ’包括入口通 道411,及出口通道41 2,,如與支管層40 6所討論者(圖8-9 )。在另一實施例中,液體自埠4 0 8 ’直接供應至介面層FIG. 6A illustrates a cross-sectional view of a heat exchanger 400 having a manifold layer 406 and an interface layer 402. Fig. 6A particularly shows that the inlet passage 4 11 and the outlet passage 41 2 are interwoven, so that the liquid of the inlet passage 411 flows downward and the liquid of the outlet passage 41 2 flows upward. Further, as shown in Fig. 6A, the liquid flows horizontally through the microchannel 410, which is disposed between the inlet passage and the outlet passage, and is separated by the grooves 416A, 416B. Alternatively, the walls of the microchannels are continuous (Fig. 3B) and are not separated by microchannels 410. As shown in Fig. 6, the inlet and outlet channels 411, 412 have curved surfaces 420 at their ends and near the slots 41. The curved surface 42 0 directs the liquid to flow down to the channel 411 and to the microchannel 41 0, which is located adjacent the channel 411. Therefore, the liquid entering the interface layer 102 is easily guided to the microchannels 4 1 〇 instead of directly to the trenches 4 1 6 A. Similarly, the curved surface 4 2 0 in the outlet channel 4 1 2 assists the flow of liquid from the microchannel 410 to the outlet channel 412. In another embodiment, as shown in FIG. 7B, the interface layer 4 0 2 ' includes an inlet channel. 411, and the outlet passage 41 2, as discussed with the manifold layer 40 6 (Figs. 8-9). In another embodiment, the liquid is supplied directly from the 埠4 0 8 ' to the interface layer

1295725 五、發明說明(27) 4 0 2’。液體沿 向沿該組微通 及流向出口通 4 1 8 ’,液體在 4 0 9 ’構型在介 7A) ° 對精於此 交換器顯示水 以垂直位置操 於相鄰出口通 面層,並自然 層之任何其他 作01295725 V. Description of invention (27) 4 0 2’. The liquid is directed along the set of micro-passes and the flow-through outlet is 4 1 8 ', and the liquid is in the 4 0 9' configuration at 7A). For the exchanger, the water is displayed in a vertical position on the adjacent outlet through-layer. And any other layer of the natural layer

通道414,傳輸向 道41〇’傳輪及與 道412’。液體於 該處經埠4 0 9,流 面層4 0 2,中,亦 技藝人士甚為明 平操作,熱交換 作時,熱交換器 道之上方。因此 傳輸至出口通道 構型可以使用, 入口通道411,。液體於是橫 $,(未示出)實施熱交換, 是沿出口通道4 1 2,流至通道 出介面層402,。該埠408,, 可構型在支管層40 6中(圖 顯’雖然本發明中之所有熱 器亦可在垂直位置操作。當 可構型為使每一入口通道位 ’液體經由入口通道進入介 。甚為明顯,支管層及介面 以使熱交換器於垂直位置操Channel 414 is transmitted to the track 41' and the track 412'. At this point, the liquid passes through the 埠400, the flow layer of the layer 4, and is also operated by the skilled person. When the heat exchange is performed, the heat exchanger is above the heat exchanger. Therefore, the transfer to the exit channel configuration can be used, the inlet channel 411. The liquid then crosses $, (not shown) for heat exchange, which flows along the outlet passage 4 1 2 to the passage outlet interface layer 402. The crucible 408, can be configured in the manifold layer 40 6 (although all of the heaters in the present invention can also be operated in a vertical position. When configured to allow each inlet channel to pass liquid through the inlet channel) It is very obvious that the branch layer and interface are used to make the heat exchanger operate in a vertical position.

圃 圖θ圖 說明中 用另一 支管層 如 平及垂 線或任 以有效 多個液 體埠直 明本發明之熱交換器之另一實施例之頂視 ' 發明另一支管層20 6之頂視圖。圖 ]:204及介面層2〇2之頂視圖。此外,圖9說明利 =層2 0 6之三層熱交換器,其中圖9說明利用 2 0 6之二層熱交換器。 =8及9所不,支管層2 〇 6包括複數個液體埠2 〇 8成水 構型。或者,液體埠2 〇 8位於與支管層2 〇 6成對角 ^方向。液體埠2 0 8倍至於支管層20 6之選擇位置, 輸液體至熱交換器2 0 0中之預定之介面熱點區。 蜂2 0 8提供一足夠之優點,因為液體可被自一液 傳輸至特殊介面熱點區,不致大幅增加壓力降至圃图θ图 illustrates a top view of another embodiment of the tube layer 205 of another embodiment of the heat exchanger of the present invention, using another tube layer, such as a flat and vertical line, or an effective plurality of liquids. Figure]: Top view of 204 and interface layer 2〇2. Further, Fig. 9 illustrates a three-layer heat exchanger of the layer = 0.6, wherein Fig. 9 illustrates the use of a two-layer heat exchanger of 206. =8 and 9 do not, the branch layer 2 〇 6 includes a plurality of liquid 埠 2 〇 8 into water configuration. Alternatively, the liquid 埠2 〇 8 is located diagonally to the branch layer 2 〇 6 . The liquid 埠 2 0 8 times the selected position of the branch layer 20 6 and the liquid is transferred to a predetermined interface hot spot in the heat exchanger 200. Bee 2 0 8 provides a sufficient advantage because liquid can be transported from one liquid to a special interface hot spot without significantly increasing the pressure drop.

1295725 五、發明說明(28) 熱交換器2 0 0。 此外,液體埠2 0 8亦配置在支管層2 0 6内以使介面熱點 區之液體傳輸一最短之距離至出口埠2 0 8,俾液體達到溫 度均勻性,並可維持入口及出口埠2 0 8間之最小壓力降。 此外,利用支管層2 0 6可協助穩定熱交換器2 0 0中之二相液 體流,及跨介面層2 0 2分布之均勻液體流。應注意,多於 一個之支管層20 6可包括於熱交換器20 0中,因此,一支管 層2 0 6可路由液體流入及流出熱交換器2 0 0,另一支管層 (未示出)控制至熱交換器2 0 0之液體流通速度。或者,所 有複數個支管層2 0 6流通液體至介面層2 0 2中之選擇對應之 熱點區。 另一支管層20 6有一橫向尺寸密切配合介面層20 2之尺 寸,支管層2 0 6與熱源9 9有相同尺寸。或者,支管層2 0 6較 熱源99為大。支管層2 0 6之垂直尺寸為0. 1-1 0mm之範圍。 此外,接受液體埠2 0 8之支管層2 0 6中之孔隙之尺寸為1mm 及熱源9 9之全寬度或長度。 圖11說明本發明具有另一支管層2 0 6之三層熱交換器 之透視圖。圖1 1所示,熱交換器2 0 0被分為獨立區,視沿 熱源99之本體產生之熱量而定。各區由垂直中間層20 4所 分隔及/或介面層2 0 2中微通道壁2 1 0所分隔。對精於此技 藝人士甚為明顯,圖1 1中之總成不限所示之構型,而僅供 舉例目的。熱交換器2 0 0麵合至一或多個幫浦,一幫浦麵 合至入口 208A,另一幫浦耦合至入口 208B。 如圖3所示,熱源9 9在位置A有一熱點,位置B有一溫1295725 V. INSTRUCTIONS (28) Heat exchanger 2000. In addition, the liquid 埠2 0 8 is also disposed in the branch layer 206 to allow the liquid in the interface hot spot to be transported for a shortest distance to the outlet 02 0 8, the liquid reaches temperature uniformity, and the inlet and outlet 埠2 can be maintained. The minimum pressure drop between 0 and 8. In addition, the use of the manifold layer 206 assists in stabilizing the two-phase liquid flow in the heat exchanger 200 and the uniform liquid flow distributed across the interface layer 20 2 . It should be noted that more than one branch layer 20 6 may be included in the heat exchanger 200, so that one tube layer 206 may route liquid into and out of the heat exchanger 200, another tube layer (not shown) Control the flow rate of the liquid to the heat exchanger 2000. Alternatively, all of the plurality of branch layers 206 are circulated through the liquid to the selected hot spot in the interface layer 202. The other tube layer 20 6 has a lateral dimension that closely matches the size of the interface layer 20 2 , and the branch layer 206 has the same dimensions as the heat source 9 9 . Alternatively, the manifold layer 206 is larger than the heat source 99. 1-1 0毫米范围内。 The vertical dimension of the branch layer 2 0 6 is 0. 1-1 0mm range. Further, the size of the pores in the branch layer 206 of the liquid 埠20 is 1 mm and the full width or length of the heat source 909. Figure 11 illustrates a perspective view of a three-layer heat exchanger of the present invention having another manifold layer 206. As shown in Fig. 11, the heat exchanger 200 is divided into separate zones depending on the amount of heat generated along the body of the heat source 99. Each zone is separated by a vertical intermediate layer 20 4 and/or by a microchannel wall 2 1 0 of the interface layer 2 0 2 . It is obvious to those skilled in the art that the assembly of Fig. 11 is not limited to the illustrated configuration and is for illustrative purposes only. Heat exchanger 200 is joined to one or more pumps, one pump is coupled to inlet 208A and the other pump is coupled to inlet 208B. As shown in FIG. 3, the heat source 9 9 has a hot spot at the position A, and the position B has a temperature.

第36頁 1295725 五、發明說明(29) 點’位置A中之熱點較位置b中之溫點產生更多熱。甚為明 顯’熱源9 9在任何位置及一固定時間可有一個以上之熱點 及溫點。在此例中,因位置A為一熱點,位置A較多之熱轉 移至位置A上方之介面層2 〇 2 (圖丨丨中指定為介面熱點區 A )’更多液體及/或較高流速之液體被提供至熱交換器2 〇 〇 中之介面熱點區A以適當冷卻位置a。甚為明顯,雖然介面 熱點區B顯示較介面熱點區a為大,介面熱點區级B及熱交 換器2 0 0中之其他介面熱點區可為任何尺寸及/或彼此相關 之構型。Page 36 1295725 V. INSTRUCTIONS (29) Point 'The hot spot in position A produces more heat than the temperature point in position b. It is obvious that the heat source 9 9 can have more than one hot spot and temperature point at any position and at a fixed time. In this example, because the position A is a hot spot, the heat of the position A is more transferred to the interface layer 2 〇 2 above the position A (designated as the interface hot spot area A in the figure), which is more liquid and/or higher. The flow rate of liquid is supplied to the interface hot spot area A in the heat exchanger 2 to properly cool the position a. It will be apparent that although the interface hotspot B shows a larger interface hot spot a, the interface hotspot level B and other interface hotspots in the heat exchanger 200 may be of any size and/or configuration.

或者’如圖11所示,液體經液體埠2 0 8A進入’沿中間 層2 0 4流動而被導至介面熱點區A再流至進入流體導管 205A。該液體於是在導管2〇5Αα z方向向了流入介面層2〇2 中之介面熱點區A。液體在微通道2 1 〇 a間流動,因此自位 置A之熱量.經介面層2 0 2之傳導轉移至液體。加熱之液體 介面熱點區A中之介面層2 0 2流動向出口埠2〇9A,液體在^Alternatively, as shown in Fig. 11, the liquid enters through the liquid helium 202A and flows along the intermediate layer 220 to be directed to the interface hot spot A and then to the incoming fluid conduit 205A. The liquid then flows in the direction of the conduit 2〇5Αα z into the interface hot spot area A in the interface layer 2〇2. The liquid flows between the microchannels 2 1 〇 a, so the heat from the position A is transferred to the liquid via the conduction of the interface layer 220. The heated liquid interface layer in the hot spot area A 2 0 2 flows to the exit 埠 2〇9A, the liquid is in ^

處流出熱交換器2 0 0。對精於此技藝人士甚為明顯,任何 數目入口埠208及出口埠20 9可供一特別介面熱點區或一組 介面熱點區用。此外,雖然出口埠20 9_示接近介面層 2 0 2Α,出口槔209Α亦可位於任何其他垂直位置,包括 限於至支管層2 0 9Β。 一 所示之例中,熱源99在位置Β有一溫點, Ί門t…源之位置Α為熱量。經埠208Β進入之液體由 沿:巧:204Β之流動而被導至介面熱點區β及流至進人 體導官2 0 5Β。該液體於是在進入流體導管2〇5似ζ方向向The heat exchanger 200 is discharged. It will be apparent to those skilled in the art that any number of ports 208 and 埠 20 9 may be used for a particular interface hotspot or a set of interface hotspots. In addition, although the outlet 埠20 9_ is shown to be close to the interface layer 2 Α 2 Α, the outlet 槔 209 Α can also be located in any other vertical position, including to the branch layer 2 0 9 Β. In one example, the heat source 99 has a temperature point at the location, and the position of the source of the sputum is... heat. The liquid entering through 埠208 is guided by the flow of the :: 204Β to the interface hot spot β and flows to the human body guide 2 0 5Β. The liquid then enters the fluid conduit 2〇5 like a ζ direction

第37頁 1295725 '4 i 五、發明說明(30) 中% 介面層2 0 2中之介面熱點區Β。該液體在微通道201 熱以X及γ方向流動於其間,因此,熱源於位置Β中產生之 介被傳輪進入液體中。加熱之液體沿介面熱點區Β中之全 ^面層2 0 2Β流動並向經中間層2 0 2中之流出導管2 0 5Β以Ζ方 °向上流至出口埠2 0 9Β,該處,液體排出熱交換器2 0 0。 衫 或者,如圖9 A所示,熱交換器2 0 0可包括一可滲透蒸 乳隔膜214配置在介面層2 0 2之上方。可滲透蒸氣隔膜214 與熱交換器2 0 0之内側壁為密封接觸。隔膜之構型具有數 個小孔隙以使沿介面層2 〇 2產生之蒸氣可通過並至埠2 0 9。 隔膜2 1 4亦可構型為防水以防液體流體沿介面層2 〇 2通過隔 膜2 1 4之孔隙。可渗透蒸氣隔膜11 4之細節討論於共同美國 專利申請序號1 0 / 3 6 6,1 2 8,2 0 0 2,3,2 2提出,標題為"蒸氣 脫逃微通道熱交換器",該專利申請以參考方式併入此 間0 圖12A說明本發明較佳熱交換器3〇〇之立體圖。圖ι2β 明本發明另一熱交換器300,之立體圖如圖12A及12B所示, 熱交換器300,300’包括介面層302,3 0 2,及支管層306, 306’耦合至該處。如上所述熱交換器3〇〇,3〇〇,耦合至熱 源(未示出)或與熱源全面統合於熱源内(散入微處理器 中)。對精於此技藝人士甚為明顯,介面層3〇2,302,實際 上為閉合的,圖12A所示之曝露者。僅為舉例目的。介面層 3 0 2,302’較佳包括複數個柱體3〇3沿底表面3〇丨配置。此 外,柱體3 0 3可為任何形狀如圖1{^ — 1〇£所討論者及/或為 徑向分布之翼片3 0 3E。介面層3 0 2可有任何特性如上所討Page 37 1295725 '4 i V. Description of the invention (30) % interface layer 2 0 2 interface hotspot area Β. The liquid flows between the microchannels 201 in the X and gamma directions, so that the heat is generated in the position enthalpy and the transfer wheel enters the liquid. The heated liquid flows along the entire surface layer of the interface hot spot 22 0 2Β and flows out to the outlet 埠2 0 9Β through the outflow conduit 2 0 5Β in the intermediate layer 2 0 2 , where the liquid The heat exchanger 200 is discharged. Alternatively, as shown in Figure 9A, the heat exchanger 200 may include a permeable vapor barrier 214 disposed above the interface layer 220. The permeable vapor membrane 214 is in sealing contact with the inner wall of the heat exchanger 200. The configuration of the membrane has a plurality of small pores such that vapor generated along the interface layer 2 〇 2 can pass through to 埠 209. The diaphragm 2 14 can also be configured to be watertight to prevent liquid fluid from passing through the pores of the membrane layer 2 〇 2 through the membrane 2 14 . The details of the permeable vapor membrane 11 4 are discussed in the commonly-owned U.S. Patent Application Serial No. 10/36,162, filed in the "Vapor Removal Microchannel Heat Exchanger" This patent application is incorporated herein by reference. FIG. 12A illustrates a perspective view of a preferred heat exchanger 3 of the present invention. Figure 2a shows another heat exchanger 300 of the present invention, a perspective view of which is shown in Figures 12A and 12B. Heat exchangers 300, 300' include an interface layer 302, 322, and branch layers 306, 306' are coupled thereto. The heat exchangers 3, 3, as described above, are coupled to a heat source (not shown) or integrated with the heat source within the heat source (dissipated into the microprocessor). It is apparent to those skilled in the art that the interface layer 3〇2, 302 is actually closed, as shown in Figure 12A. For illustrative purposes only. The interface layer 3 0 2, 302' preferably includes a plurality of columns 3〇3 disposed along the bottom surface 3〇丨. In addition, the cylinders 3 0 3 can be any shape as discussed in Figure 1 {^ - 1〇£ and/or radially distributed fins 3 0 3E. Interface layer 3 0 2 can have any characteristics as discussed above

第38頁Page 38

1295725 ---—~- 五、發明說明(31) f者(即微通道,粗糙表面)。介面層3 0 2及層3 0 2中之特性 車2佳具有相同之熱傳導率特性,如上所討論者並將再度以 較佳實施例討論。雖然介面層3 0 2顯示較支管層3 0 6為小, 對精於此技藝人士甚為明顯,介面層3 〇 2及支管層3 〇 6彼此 及與熱源99可為任何尺寸。介面層3〇2,3〇2,之其他裝置 具有相同特性,如介面層所述,不再詳細說明。 L吊 較佳熱父換裔30 0可利用支管層3 0 6中之傳輸通 道3 2 2使熱^交換器中之壓力降為最小。傳g通道3 2 2為垂直 配置在支管層30 6中,及垂直供應液體至介面層3〇 2以降低 熱父換器300中之壓力降。如上所述,壓力降被建立或增 加於熱乂換器3 0 0中係由於液體沿介面層以X及γ方向流動 一相當時間及/或一距離之故。該支管層3 〇 6以垂直強迫液 體由數個傳輸通道3 2 2進入介面層3 0 2以使在X及γ方向之液 體流最小。換言之,數個液體喷嘴自上方直接加在介面層 3 0 2上。傳輸通道3 2 2彼此間配置一最佳距離以使液體在X 及Y方向流動最小及垂直向上流出介面層3 〇 2。因此,來自 最佳配置之通道32 2之個別液體路徑力量自然促使液體在 向上液體路徑中流出介面層3 0 2。此外,個別通道3 2 2可使 介面層3 0 2中之數個通道3 2 2之液體流之分布最大,因此降 低熱交換器中之壓力降並能有效冷卻熱源99。此外,較佳 熱交換器3 0 0之構型可使熱交換器較其他熱交換器之尺寸 為小’因為液體不需在X及γ方向傳輸一大距離,因而可適 當冷卻熱源9 9。 圖12A中所示之較佳支管層3 0 6包括二個別位準。支管1295725 ----~- V. Description of invention (31) f (ie microchannel, rough surface). The characteristics of the interface layer 302 and the layer 203 are preferably of the same thermal conductivity characteristics as discussed above and will be discussed again in the preferred embodiment. Although the interface layer 320 shows a smaller size than the manifold layer 306, it will be apparent to those skilled in the art that the interface layer 3 〇 2 and the branch layer 3 〇 6 and the heat source 99 can be of any size. The other layers of the interface layer 3〇2, 3〇2 have the same characteristics, as described in the interface layer, and will not be described in detail. The L-hanger is preferably a hot father-changing 30 0 that can utilize the transmission channel 3 2 2 of the branch pipe layer 3 2 to minimize the pressure in the heat exchanger. The pass channel 3 2 2 is vertically disposed in the branch pipe layer 30 6 and vertically supplies liquid to the interface layer 3〇 2 to reduce the pressure drop in the hot parent exchanger 300. As described above, the pressure drop is established or increased in the heat exchanger 300 because the liquid flows in the X and γ directions along the interface layer for a substantial period of time and/or a distance. The manifold layer 3 〇 6 enters the interface layer 3 0 2 by a plurality of transfer channels 3 2 2 in a vertical forced liquid to minimize liquid flow in the X and γ directions. In other words, a plurality of liquid nozzles are directly applied to the interface layer 203 from above. The transfer channels 3 2 2 are disposed at an optimum distance from each other such that the liquid flows in the X and Y directions minimally and vertically upwards out of the interface layer 3 〇 2 . Thus, the individual liquid path forces from the optimally configured channel 32 2 naturally cause the liquid to flow out of the interface layer 320 in the upward liquid path. In addition, the individual channels 3 2 2 maximize the distribution of the liquid flow in the plurality of channels 3 2 2 of the interface layer 302, thereby reducing the pressure drop in the heat exchanger and effectively cooling the heat source 99. In addition, the preferred configuration of the heat exchanger 300 allows the heat exchanger to be smaller than other heat exchangers' because the liquid does not need to travel a large distance in the X and gamma directions, so that the heat source 9 9 can be properly cooled. The preferred manifold layer 306 shown in Figure 12A includes two individual levels. Branch pipe

第39頁 1295725 五、發明說明(32) =位準3°8及位準312。位準3_合至介面層 上,精於此技藝人ΐΊ位^準312配置在位準3 0 8之 上。對精於此技藝人士亦二日、可配置在位準312之 可以實施。 宂甚為明顯,任何數目根據本發明 #麻,2β所不之另一支官層3 0 6,包括三個個別位準。支 官層3〇6特別一息括一流通位準3〇F:-::位準3〇8,及一叉 =『奴ί通位準304,搞合至介面層302,及位準3 08,。位^Page 39 1295725 V. Description of invention (32) = level 3°8 and level 312. Level 3_ is connected to the interface layer. It is fine for this artist to configure the position 312 above the level 3 0 8 . For those skilled in the art, they can also be deployed on the second day.宂 is very obvious, any number according to the invention #麻, 2β does not have another official layer 3 0 6, including three individual levels. The official level 3〇6 special interest includes a circulation level of 3〇F:-:: level 3〇8, and a fork=“slavery pass level 304, fit to interface layer 302, and level 3 08 ,. Bit ^

準3〇4,及位準312,。雖然圖―月位準 配置在位準308,之上,精於此技藝人士可考慮位準 可配置在位準31 2’之上。對精於此技藝人士甚為明 顯’根據本發明任何數目之位準均可實施。 ”圖12C顯示本發明流通位準3〇4,之透視圖。流通位準 3〇4Π包括一頂表面304A,及底表面3 04B,。如圖12B及12C所 不’流通位準3 0 4 ’包括數個孔隙3 2 2,延伸貫穿。在一實施 例中’孔隙3 2 2 ’之開口底表面3 0 4 Β ’齊平。或者,孔隙 3 2 2’延伸超過底表面3〇4Β,以供應液體接近介面層3〇2,。The standard is 3〇4, and the level is 312. Although the figure-month position is placed on the level 308, it is reasonable for the skilled person to consider the level to be configurable above the level 31 2'. It will be apparent to those skilled in the art that any number of levels in accordance with the present invention can be implemented. Figure 12C shows a perspective view of the flow level 3〇4 of the present invention. The flow level 3〇4Π includes a top surface 304A and a bottom surface 304B. As shown in Figures 12B and 12C, the flow level 3 0 4 'Includes a plurality of pores 3 2 2 extending throughout. In one embodiment, the open bottom surface of the 'pores 3 2 2 ' is flush, or the pores 3 2 2' extend beyond the bottom surface 3〇4Β, To supply liquid close to the interface layer 3〇2.

此外’流通位準304,包括數孔隙324,自頂表面304Α,延伸 至底表面3 0 4 Β,及在Ζ方向一預定距離垂直突出如一圓筒 形突出物。對精於此技藝人士甚為明顯,孔隙322,, 3 2 4 ’亦可一角度延伸通過流通位準,亦不必為完全垂直。 如上所述,在一實施例中,介面層3 0 2,(圖12Β)耦合至流 通位準3 04,之底表面3 04Β,。因此,液體僅在Ζ方向流過孔 隙3 22’而進入介面層3 0 2,,而以Ζ方向流過孔隙324,而排In addition, the flow level 304 includes a plurality of apertures 324 extending from the top surface 304Α to the bottom surface 3 0 4 Β and vertically projecting as a cylindrical protrusion at a predetermined distance in the Ζ direction. It is obvious to those skilled in the art that the apertures 322, 3 2 4 ' can also extend through the flow level at an angle and need not be completely vertical. As described above, in one embodiment, the interface layer 3 0 2, (Fig. 12A) is coupled to the flow level 34, the bottom surface of the frame 04. Therefore, the liquid flows through the pores 3 22' only in the direction of the weir into the interface layer 3 0 2, and flows through the pores 324 in the weir direction, while the liquid

第4(Γ頁 1295725 - * , 五、發明說明(33) ^ 一 出介面層3 0 2 ’。如下所討論,經孔隙3 2 2,進入介面層 3 0 2’之液體與經由孔隙324,排出介面層之液體由流通位準 3 0 4 ’所分隔。 如圖12C所示’孔隙324,之一部分較佳為圓筒構件在z 方向自流通位準3 04’之頂表面3Q4A,延伸,俾流過孔隙 324之液體直接流至位準312,中之狹長通道326,(圖12 F及 12G)。圓筒突出物較佳為圓形如圖12C所示,但其他形狀 亦可。沿介面層3 0 2,,液體自每一孔隙3 2 2,以橫向及垂直 方向流至相鄰孔隙324,。孔隙3 2 2,及324,較佳為彼此成熱 絕緣’俾經支管層306’存在於介面層302’中加熱液體之熱 不傳輸至經支管層3 0 6,流向介面層3 0 2,之冷卻之液體。 圖1 2 D說明本發明位準3 0 8之較佳實施例。如圖丨2 D所 示’位準30 8包括頂表面308 A及底表面308B。位準30 8之底 表面308 B較佳直接麵合至介面層302,如圖12 A所述。位準 30 8包括一凹狹長通道320,其包括數個液體傳輸通道322 以傳輸液體至介面層302。該凹狹長通道32 0與介面層302 成密封接觸,其中存在於介面層30 2之液體圍繞及在狹長 通道3 2 0中之通道3 2 2之間流動並經埠3 1 4#出。應注意, 存在於介面層30 2中之液體不進入傳輸通道322。丨/" 圖1 2 E說明本發明位準3 0 8 ’另一實施例下侧之透視 圖。位準308’包括一頂表面308 A,及底表畜308B,,位準 308B’之底表面直接耦合至流通位準3〇4,(圖12C)。位準 3 0 8 ’較佳包括一埠3 1 4 ’,一狹長通道3 2 0,及複數個孔隙 322 ’ 324’於底表面308B’中。對精於此技藝人士甚為明4 (Γ 12 1295725 - *, V, invention description (33) ^ an interface layer 3 0 2 '. As discussed below, through the pores 32 2, the liquid entering the interface layer 3 0 2' and via the aperture 324, The liquid exiting the interface layer is separated by the flow level 3 0 4 '. As shown in Fig. 12C, 'the aperture 324, preferably a cylindrical member extending from the top surface 3Q4A of the flow level 34' in the z direction, The liquid flowing through the pores 324 flows directly to the level 312, the narrow channel 326 (Figs. 12 and 12G). The cylindrical protrusions are preferably circular as shown in Fig. 12C, but other shapes are also possible. The interface layer 3 0 2, the liquid flows from each of the pores 32 2 to the adjacent pores 324 in a lateral direction and a vertical direction. The pores 32 2, and 324 are preferably thermally insulated from each other 'the vial layer 306 The heat present in the interface layer 302' to heat the liquid is not transferred to the cooled liquid flowing through the manifold layer 306, to the interface layer 302. Figure 1 2D illustrates the preferred implementation of the present invention. For example, the level 30 8 includes a top surface 308 A and a bottom surface 308B. The bottom surface 308 B of the level 30 8 is preferably directly surfaced to the interface. Layer 302, as depicted in Figure 12 A. Level 30 8 includes a concave elongated channel 320 that includes a plurality of liquid transport channels 322 for transporting liquid to interface layer 302. The concave elongated channel 32 0 is in sealing contact with interface layer 302 Wherein the liquid present in the interface layer 30 2 surrounds and flows between the channels 3 2 2 in the elongated channel 3 20 and exits through the 埠 3 1 4#. It should be noted that the liquid present in the interface layer 30 2 does not enter. Transmission channel 322. 丨/" Figure 1 2 E illustrates a perspective view of the underside of another embodiment of the present invention. The level 308' includes a top surface 308 A, and a bottom table animal 308B, The bottom surface of the quasi-308B' is directly coupled to the flow level 3〇4, (Fig. 12C). The level 3 0 8 ' preferably includes a 埠 3 1 4 ', a narrow channel 3 2 0 , and a plurality of apertures 322 ' 324' in the bottom surface 308B'. It is very clear to those skilled in the art.

T295725T295725

_,位準3 08,可包括許多數目之埠及狹 么孔隙322’,324,之構型為面對流通 通道圖12£中 妒圖12E所述’孔隙322,導引進入狹長通304 。特別疋, ^ ^ ^ 312- 324^ 324^ ^ ^ ^ 道320,。孔隙324,為個別及分隔,俾308’中之狹長通_, level 308, may include a number of enthalpy and narrow apertures 322', 324 configured to face the flow channel of Fig. 12, and the aperture 322, as shown in Fig. 12E, is directed into the elongated pass 304. In particular, ^ ^ ^ 312- 324^ 324^ ^ ^ ^ Road 320,. Pores 324, individually and separated, narrow and long in 俾308’

不與流經相關孔隙324,之圓筒形之液:$隙324之液體 Q9H加α丨儿, 圓间开/之液體處合及接觸。孔隙 3 4 ί :=二進入每一孔隙以4,之液體沿孔隙 3 24 k供之液體路徑流過。孔隙324,較佳為垂直構型。因 此,液體被垂直傳輸通過支管層3〇6,之主要部分。同理此It does not flow with the relevant pores 324, the cylindrical liquid: the liquid of the gap 324 Q9H plus α丨, the round opening / the liquid is combined and contacted. The pores 3 4 ί := two enter each pore to 4, and the liquid flows through the liquid path along the pores 3 24 k. The apertures 324 are preferably of a vertical configuration. Therefore, the liquid is vertically transported through the main portion of the branch layer 3〇6. Same as this

險頓A用於孔隙322’,特別是在位準配置在介面層與位準 之間之情況為然。The defect A is used for the aperture 322', especially where the level is placed between the interface layer and the level.

雖然孔隙或洞3 2 2顯示具有相同尺寸,孔隙3 2 2可具有 不同或沿一長度之變化直徑。例如,接近埠314之洞322可 具有較小直徑以限制液體流通。較小洞322因此可迫使液 體自孔隙322向下流,該孔隙·距埠314更遠。洞322直徑之 變化可使液體之更均勻分布進入介面層3〇2。對精於此技 藝人士甚為明顯,洞322之直徑可以變化以解決介面層3〇2 中已知介面熱點區冷卻》對精於此技藝人士甚為明顯,上 述討論亦可應用於孔隙324,,孔隙324,之尺寸變化或不同 以適應自介面層3 0 2之均勻向外流量。 在一較佳實施例中,埠31 4提供液體至位準3 〇 8及至介 面層3 0 2。圖1 2D中之埠314較佳自頂表面3 08A延伸通過位 準3 08之本體之一部分再至狹長通道3 2 0。或者,埠314自 位準3 0 8之底部或側邊延伸至狹長通道3 2 〇。較佳為埠3 〇 4Although the pores or holes 32 2 are shown to have the same size, the pores 32 2 may have different diameters or vary along a length. For example, the hole 322 near the crucible 314 can have a smaller diameter to limit liquid flow. The smaller hole 322 can therefore force the liquid to flow downward from the aperture 322, which is further from the bore 314. The change in diameter of the hole 322 allows a more even distribution of the liquid into the interface layer 3〇2. It is obvious to those skilled in the art that the diameter of the hole 322 can be varied to address the cooling of the known interface hot spot in the interface layer 3〇2, which is apparent to those skilled in the art, and the above discussion can also be applied to the aperture 324. The apertures 324 are sized or varied to accommodate a uniform outward flow of the self-intermediate layer 320. In a preferred embodiment, crucible 31 4 provides liquid to level 3 〇 8 and to interface layer 203. Preferably, the crucible 314 of Figure 1 extends from the top surface 3 08A through a portion of the body of the level 308 to the elongate channel 3 2 0. Alternatively, 埠 314 extends from the bottom or side of the level 3 0 8 to the narrow channel 3 2 〇. Preferably 埠3 〇 4

第42頁 1295725 五、發明說明(35) η 耦合至位準31 2中之埠315(圖12Α-12Β)。埠31 4引導至狹長 通道320’其為閉合如圖12C所示,或凹隙如圖1 2D所示。 狹長通道32 0較佳可傳輸液體自介面層30 2至埠314。狹長 通道3 2 0亦可傳輸液體自埠3 1 4至介面層3 0 2。 如圖1 2 F及1 2 G所示,位準3 1 2中之埠3 1 5較佳與埠3 1 4 對齊並相通。如圖1 2 Μ示,液體較佳經埠3 1 6進入熱交換 器3 0 0,及通過狹長通道3 2 8由傳輸通道3 2 2向下流動,遂、 漸流至介面層302。如圖12 Β所示,液體可進入熱交換5| 300 ’較佳經埠315’進入及流過位準308’中之埠314,,及 逐漸流至介面層3 0 2,。圖12F中之埠315較佳自頂表面31 2A u 延伸通過位準3 1 2之本體。或者,埠3 1 5自位準3 1 2之一側 > 邊延伸。或者,位準312不包括埠315,液體經由埠314進 入熱交換器3 0 0 (圖1 2 D及1 2 E )。此外,位準3 1 2包括瑋 316,其較佳傳輸液體至狹長通道328,。對精於此技藝人 士甚為明顯.,位準可包括任何數目之埠及狹長通道。狹長 通道3 28較佳傳輸液體至傳輸通道322及逐漸流至介面層 3 0 2。 圖1 2 G說明本發明位準3丨2,另一實施例之透視圖。位 準312較佳耦合至圖12 E中之位準3〇8,。如圖12 F所示,位 準312’包括一凹狹長通道區328,於本體内,其沿底表面 & 312B曝露。凹狹長通道328,與埠316,相通,因此液體可 直接自凹狹長通道328’傳輸至埠316,。凹狹長通道328,位 於位準3 0 8之頂表面3 0 8A,之上方,以使液體自孔隙 324自由向上傳輸至狹長通道328,。凹狹長通道32〇,及底Page 42 1295725 V. INSTRUCTIONS (35) η is coupled to 埠315 in the level 31 2 (Fig. 12Α-12Β). The crucible 31 4 is guided to the elongated channel 320' which is closed as shown in Fig. 12C, or the recess is as shown in Fig. 12D. The elongated channel 32 0 preferably transports the liquid self-intermediate layer 30 2 to the crucible 314. The narrow channel 3 2 0 can also transport liquid from 埠 3 1 4 to interface layer 3 0 2 . As shown in Fig. 1 2 F and 1 2 G, 埠 3 1 5 of the level 3 1 2 is preferably aligned with and communicated with 埠 3 1 4 . As shown in Fig. 12, the liquid preferably enters the heat exchanger 300 through the crucible 3 16 and flows downward through the narrow passage 3 2 8 from the transport passage 32 2 , and gradually flows to the interface layer 302. As shown in Fig. 12A, the liquid can enter the heat exchange 5|300' preferably via 315' to enter and flow through the level 314' of the crucible 314', and gradually flow to the interface layer 302. The crucible 315 in Figure 12F preferably extends from the top surface 31 2A u through the body of the level 3 1 2 . Alternatively, 埠3 1 5 extends from one side of the level 3 1 2 > side. Alternatively, level 312 does not include crucible 315 and liquid enters heat exchanger 300 via crucible 314 (Figs. 1 2 D and 1 2 E ). In addition, level 3 1 2 includes 玮 316, which preferably transports liquid to the elongated channel 328. It is obvious to those skilled in the art. The level can include any number of squats and narrow passages. The elongated channel 3 28 preferably transports liquid to the transfer channel 322 and gradually to the interface layer 302. Figure 1 2 G illustrates a perspective view of another embodiment of the present invention. Level 312 is preferably coupled to level 3 〇 8 in Figure 12E. As shown in Fig. 12F, the level 312' includes a concave elongated channel region 328 which is exposed along the bottom surface & 312B in the body. The concave elongated channel 328 is in communication with the crucible 316 so that liquid can be transferred directly from the concave elongated channel 328' to the crucible 316. A concave elongated channel 328 is located above the top surface 3 0 8A of the level 3 0 8 to allow liquid to be freely transported upwardly from the aperture 324 to the elongated channel 328. Concave narrow channel 32〇, and bottom

第43頁 1295725 五、發明說明(36) 表面312B之週邊為密封,以抵住位準312,之頂表面 3 0 8A’,,俾所有自孔隙324,之液體可經狹長通道328,流至 埠316 。底表面312B’之每一孔隙330,與位準330,位準 3 0 8’中之對應孔隙321,(圖12E)對齊並相通,孔隙33〇,與 位準3 0 8’(圖12E )之頂表面3 0 8A,齊平。或者,孔隙3 30有 一稍大於對應孔隙3 2 4 ’之直徑,延伸通過孔隙3 3 〇,進入狹 長通道3 2 8 ’。Page 43 1295725 V. Description of the Invention (36) The periphery of the surface 312B is sealed to abut against the level 312, the top surface 3 0 8A', and all of the liquid from the aperture 324 can flow through the elongated channel 328 to埠 316. Each of the apertures 330 of the bottom surface 312B' is aligned with and communicated with the corresponding aperture 321 of the level 330, the level 3 0 8 ', (Fig. 12E), the aperture 33 〇, and the level 3 0 8 ' (Fig. 12E) The top surface is 3 0 8A, flush. Alternatively, the apertures 3 30 have a diameter slightly larger than the corresponding apertures 3 2 4 ', extending through the apertures 3 3 〇 into the elongated channels 3 2 8 '.

圖1 2Η說明本發明沿圖1 2A之Η-Η線之較佳熱交換器之 剖面圖。如圖1 2狀斤示,介面層3 0 2麵合至熱源9 9。如上所 述,熱交換器3 0 0可與熱源9 9統合為一元件。介面層3 2 〇輛 合至位準308之底表面308Β。此外,位準31 2較佳偶合至位 準3 0 8,因此位準3 0 8之頂表面3 0 8 Α為密封抵住位準3丨2之 底表面31 2B。準3 0 8之狹長通道320與介面層3 0 2相通。此 外,位準31 2中之狹長通道328與位準308中孔隙322相通。 位準3 12之底表面31 2B與位準3 08之頂表面3 0 8A為密封,俾 液體不致在二位準3 0 8,3 1 2間漏出。BRIEF DESCRIPTION OF THE DRAWINGS Figure 2 is a cross-sectional view showing a preferred heat exchanger of the present invention taken along line Η-Η of Figure 12A. As shown in Fig. 1, the interface layer 310 is bonded to the heat source 9 9 . As described above, the heat exchanger 300 can be integrated with the heat source 9 as an element. The interface layer 3 2 is brought to the bottom surface 308 of the level 308. In addition, the level 31 2 is preferably coupled to the level 3 0 8 such that the top surface 3 0 8 位 of the level 3 0 8 is the bottom surface 31 2B sealed against the level 3丨2. The narrow channel 320 of the quasi-300 is in communication with the interface layer 302. In addition, the elongated channel 328 in the level 31 2 communicates with the aperture 322 in the level 308. The bottom surface 31 2B of the level 3 12 and the top surface 3 0 8A of the level 3 08 are sealed, and the liquid does not leak between the two positions 3 0 8, 3 1 2 .

圖121說明本發明沿圖12B之I-I線之另一熱交換器之 剖面圖。如圖1 2 I所示,介面層3 0 2,耦合至熱源9 9,。介面 層3 0 2’耦合至流通位準3 04’之底表面3 04B,。流通位準3〇4 亦耦合至位準3 0 8’,流通位準304,之頂表面304A,與位準 308’之底表面308B’為密封。此外,位準312,較佳耗合至 位準308’,因而位準3 08’之頂表面3 08A,與位準312,之底 表面312B’密封。位準3 0 8’之狹長通道32〇,之週邊與流通 位準3 0 4’之頂表面3 04A’中之孔隙相通,俾液體不致二Figure 121 is a cross-sectional view showing another heat exchanger of the present invention taken along line I-I of Figure 12B. As shown in FIG. 1 2 I, the interface layer 302 is coupled to a heat source 909. The interface layer 3 0 2' is coupled to the bottom surface 3 04B of the flow level 3 04'. The flow level 3〇4 is also coupled to level 3 0 8', the flow level 304, the top surface 304A, and the bottom surface 308B' of the level 308' are sealed. In addition, level 312 is preferably consuming to level 308' such that top surface 308A of level 3 08' is sealed from level 312, bottom surface 312B'. The narrow channel 32 位 at the level of 3 0 8' is connected to the pores in the top surface 3 04A' of the flow level 3 0 4'.

第44頁 1295725 五、發明說明(37) 位準間漏出。此外,位準3 1 2,中之狹長通道3 2 8 ’與流通位 準3 0 8’之頂表面3 08A’中之孔隙相通,故液體不致在二位 準間漏出。Page 44 1295725 V. Description of invention (37) Leakage at the level. In addition, the level 3 1 2, the narrow channel 3 2 8 ' communicates with the pores in the top surface 3 08A' of the flow level 3 0 8', so that the liquid does not leak between the two positions.

在較佳作業中,如圖1 2A及1 2H之箭頭所示,冷卻之液 體經位準312’中之埠31 6進入熱交換器300。冷卻之液體自 埠31 6向下傳輸至狹長通道328,並向下流經傳輸通道322 至介面層3 0 2。狹長通道32 0中之冷卻液體不與熱交換器 30 0中之加熱液體混合及接觸。進入介面層30 2之液體與熱 源9 9實施熱交換及吸收熱源產生之熱。孔隙3 2 2為最佳安 排,俾液體在介面層3 0 2之X及Y方向流動最少距離,以使 熱交換器3 0 0中之壓力降最小,並有效冷卻熱源9 9。 加熱之液體於是在介面層3 0 2以Z方向向上流動至位準3 0 8 中之狹長通道320。支管層30 6中存在之加熱液體不致與進 入支管層3 0 6之冷卻液體混合及接觸。加熱之液體進入狹 長通道3 2 0後傳輸至埠3 1 4,3 4 5再排出熱交換器3 0 0。對精 於此技藝人士甚為明顯,液體可以與圖1 2A及1 2H所示相反 之方向流動,而不致有悖本發明之範圍。In a preferred operation, as indicated by the arrows in Figures 12A and 12H, the cooled liquid enters heat exchanger 300 via 埠31 6 in level 312'. The cooled liquid is transported downwardly from the crucible 31 6 to the elongated channel 328 and down through the transport channel 322 to the interface layer 320. The cooling liquid in the narrow channel 32 0 is not mixed and contacted with the heating liquid in the heat exchanger 30 0 . The liquid entering the interface layer 30 2 is heat exchanged with the heat source 9 9 and absorbs heat generated by the heat source. The pores 3 2 2 are optimally arranged, and the helium liquid flows a minimum distance in the X and Y directions of the interface layer 320 to minimize the pressure drop in the heat exchanger 300 and to effectively cool the heat source 9 9 . The heated liquid then flows upward in the Z direction at the interface layer 320 to the elongated channel 320 in the level 3 0 8 . The heating liquid present in the branch layer 30 6 is not mixed and contacted with the cooling liquid entering the branch layer 306. The heated liquid enters the narrow channel 3 2 0 and is then transferred to the crucible 3 1 4, 3 4 5 and then discharged to the heat exchanger 300. It will be apparent to those skilled in the art that the liquid can flow in the opposite direction as shown in Figures 12A and 12H without departing from the scope of the invention.

在另一作業中如圖1 2 B及1 2 I所示,冷卻之液體經位準 312,中之埠316,進入熱交換器300’。冷卻之液體自埠 3 1 5,,向下傳輸至位準30 8’中之埠314’。液體於是流進狹 長通道3 2 0 ’,及經流通位準3 0 4 ’中之孔隙3 2 2 ’向下流至介 面層3 0 2 ’。但,狹長通道3 2 0 ’中冷卻之液體不致與熱交換 器3 0 0 ’中加熱之任何液體混合或接觸。進入介面層3 0 2 ’之 液體與熱源9 9中產生熱實施熱交換並吸收該熱。如以下討In another operation, as shown in Figs. 1 2 B and 1 2 I, the cooled liquid passes through the level 312, the middle 316, and enters the heat exchanger 300'. The cooled liquid is transferred from the crucible 3 1 5 to the crucible 314' in the level 30 8'. The liquid then flows into the narrow channel 3 2 0 ', and flows through the pores 3 2 2 ' in the flow level 3 0 4 ' to the interface layer 3 0 2 '. However, the liquid cooled in the narrow channel 3 2 0 ' is not mixed or contacted with any liquid heated in the heat exchanger 300'. The liquid entering the interface layer 3 0 2 ' performs heat exchange with heat generated in the heat source 9 9 and absorbs the heat. As discussed below

第45頁Page 45

1295725 _—,… ^ _ 五、發明說明(38) 論,孔隙3 2 2 ’及孔隙3 2 4 ’之安排可使液體自每一孔隙 3 2 2 ’沿介面層3 0 2 ’傳輸一最佳之接近距離至一相鄰孔隙 3 2 4 ’,以降低期間之壓力降並有效冷卻熱源9 9。加熱之液 體於是自介面層3 0 2,以Z方向經由數個孔隙3 2 4 ’向上傳輸 通過位準3 0 8 ’,並流至位準3 1 2,中之狹長通道3 2 8 ’。加熱 之液體不致與進入支管層3 0 6,之冷卻液體在經孔隙324,向 上傳輸時混合或接觸。加熱之液體進入位準3 1 2 ’中之狹長 通道328’後,流向埠31 6’並排出熱交換器30 0’。對精於此 技藝人士甚為明顯,液體亦可與圖1 2 B及1 2 I相反之方向流 動而不致有悖本發明之範圍。 在較佳支管層3 0 6中,孔隙3 2 2之安排可使液體在介面 層3 0 2中流動之距離最小,並且可適當冷卻熱源9 9。在另 一支管層3 0 6’中’孔隙322,及孔隙324,之安排可使液體在 介面層3 0 2’流動距離最小,並可適當冷卻熱源9 9。孔隙 3 2 2 ’’ 3 2 4特別提供一垂直液體路徑俾液體流在熱交換器 3 0 0 ’之X及Y橫向中液體流最小。因此,熱交換器3 0 〇, 3 0 0 ’可大巾S降低液體必須流動之距離並可適當冷卻熱源 9 9,同時’大幅降低熱交換器3 〇 〇,3 〇 〇,及系統3 〇, 30’(圖2A - 2B)中之壓力降。 孔隙3 2 2及/或孔隙3 2 4之特殊安排及剖面尺寸於以下 因素有關’包括但不限於流體條件,溫度,熱、源9 9產生之 熱及液體流速。應注意,雖然以下討論與孔隙322,324有 關’此一討論僅可應用在孔隙3 2 2或孔隙3 2 4。 孔隙3 2 2 ’ 3 2 4彼此空間分隔一最佳距離,因此當熱源1295725 _—,... ^ _ V. OBJECT DESCRIPTION (38) The arrangement of pores 3 2 2 'and pores 3 2 4 ' allows liquid to be transported from each pore 3 2 2 ' along the interface layer 3 0 2 ' It is better to approach the distance to an adjacent aperture 3 2 4 ' to reduce the pressure drop during the period and effectively cool the heat source 9 9 . The heated liquid then self-intermediate layer 3 0 2 is transported upward through the plurality of apertures 3 2 4 ' in the Z direction through the level 3 0 8 ' and to the level 3 1 2, the narrow channel 3 2 8 '. The heated liquid does not mix or contact with the cooling liquid entering the manifold layer 306, as it travels through the apertures 324. The heated liquid enters the narrow passage 328' in the level 3 1 2 ', flows to the crucible 31 6' and exits the heat exchanger 30 0'. It will be apparent to those skilled in the art that the liquid may also flow in the opposite direction to that of Figures 1 2 B and 1 2 I without departing from the scope of the invention. In the preferred manifold layer 306, the arrangement of the apertures 32 2 minimizes the flow of liquid in the interface layer 302 and the heat source 9 9 can be suitably cooled. In another tube layer 3 0 6', the aperture 322, and the aperture 324, are arranged to minimize the flow of liquid at the interface layer 3 0 2' and to properly cool the heat source 9 9 . The pores 3 2 2 '' 3 2 4 in particular provide a vertical liquid path for the liquid stream to be minimal in the X and Y transverse directions of the heat exchanger 3 0 0 '. Therefore, the heat exchanger 3 0 〇, 300 0 'can reduce the distance that the liquid must flow and can properly cool the heat source 9 9 while 'significantly reducing the heat exchanger 3 〇〇, 3 〇〇, and the system 3 〇 , 30' (Fig. 2A - 2B) pressure drop. The particular arrangement and cross-sectional dimensions of the pores 3 2 2 and/or the pores 3 2 4 are related to factors including, but not limited to, fluid conditions, temperature, heat, heat generated by the source, and liquid flow rate. It should be noted that although the following discussion relates to apertures 322, 324, this discussion can only be applied to aperture 32 2 or aperture 3 24 . The pores 3 2 2 ′ 3 2 4 are spatially separated from each other by an optimal distance, so when the heat source

第46頁 1295725_ •‘ … —— 五、發明說明(39) 9 9適當冷卻至理想溫度時,壓力降為最小。較佳實施例之 孔隙3 22及/或孔隙324之安排及最大距離,可使經介\層 3 0 2之孔隙3 2 2,3 24及液體路徑之獨立最佳化,通常,0 即,經由改變個別孔隙之尺寸及位置而達成。此外,較佳 實施例中孔隙之安排亦大幅增加進入介面層之總流量=分 布,及經每一孔隙3 2 2進入之液體所冷卻之面積“之瓜量。刀 在一實施例中,孔隙3 22,324於支管層3〇6中配置為 交互構型或棋盤圖案,如圖13,14所示。每一孔隙μ/, 324以一小距離分隔,液體必須傳輸於棋盤圖案中'但孔 隙322’ 324彼此必須分隔一夠大之距離以提供冷卻液體至 介面層3 0 2—足夠之時間。如圖13,14所示,較佳 多個孔隙3 2 2與對應數目之孔隙相鄰配w5 且 之亦然,俾 進入介面層30 2之液體在排出介面層3〇2之前,沿介面層 3 02傳輸一最短之距離。因此如圖所示,較佳 324為彼此成徑向分布以協助液體自孔隙322傳輪一 +最短距 離至最近之孔隙324。例#,如目13所*,經 322進入介面層3 0 2之液體受到最小阻浐+办/符疋孔障 孔隙324。此外,孔隙322,324較佳^圓之/^再至一相鄰 形狀。 E馬圓形但亦可為其他 此外,如上所述,雖然孔隙324在 干 準3,位準3G8,31 2突出成—圓筒構件中^ J = 自支官層30 6中之任何位準突出。較佳 =…有一圓形表面以協助降低熱支交V器Page 46 1295725_ • ‘ ... —— V. INSTRUCTIONS (39) 9 9 When properly cooled to the desired temperature, the pressure drop is minimized. The arrangement and maximum distance of the apertures 3 22 and/or apertures 324 of the preferred embodiment optimize the independent separation of the pores 3 2 2, 3 24 and the liquid path through the dielectric layer 3, typically 0. This is achieved by changing the size and location of individual pores. Moreover, the arrangement of the apertures in the preferred embodiment also substantially increases the total flow rate = distribution of the incoming interface layer, and the area of the area cooled by the liquid entering each of the apertures 322. The knife in one embodiment, the aperture 3 22,324 is configured in the manifold layer 3〇6 as an interactive configuration or a checkerboard pattern, as shown in Figures 13 and 14. Each aperture μ/, 324 is separated by a small distance and the liquid must be transported in the checkerboard pattern. The apertures 322' 324 must be separated from each other by a sufficient distance to provide a cooling liquid to the interface layer 320 - sufficient time. As shown in Figures 13, 14, preferably a plurality of apertures 32 2 are adjacent to the corresponding number of apertures. With w5, and likewise, the liquid entering the interface layer 30 2 is transported a shortest distance along the interface layer 302 before exiting the interface layer 3〇2. Therefore, as shown, preferably 324 is radially distributed to each other. To assist the liquid from the aperture 322 to pass the wheel + the shortest distance to the nearest aperture 324. Example #, 如目13*, the liquid entering the interface layer 322 through 322 is subjected to the minimum resistance + the operation / the aperture hole 324 In addition, the apertures 322, 324 are preferably rounded to an adjacent shape. Circular, but also other, in addition, as described above, although the apertures 324 are in the dry 3, the level 3G8, 31 2 protrudes into the cylindrical member, and any position in the self-support layer 30 6 protrudes. Preferably =... has a rounded surface to assist in reducing the heat branch V

12957251295725

孔隙3 2 2,324之最佳距離構型及尺寸與液體沿介面; 3 0 2曝露之溫度之量有關。孔隙3 2 2,3 2 4中液體路徑之剖9 面尺寸必須夠大以降低熱交換器3 〇 〇中之壓力降,此點甚 為重,。當液體沿介面層3 〇 2僅遭受單相液體流動情況 下’每一孔隙3 2 2較佳以對稱六角形安排由數個相鄰孔隙 3 2 4包圍,如圖1 3所示。此外,以單相液體流而言在流通 位準3 0 4中之孔隙之數目較佳為大約相等。此外,以單相 液體流而言,孔隙322,324較佳具有相同直徑。對精於此 技藝人士甚為明顯,其他安排及孔隙3 2 2,3 2 4之任何比例 均可考慮。The optimum distance configuration and size of the pores 3 2 2, 324 is related to the amount of temperature of the liquid along the interface; The cross-sectional dimension of the liquid path in the pores 3 2 2, 3 2 4 must be large enough to reduce the pressure drop in the heat exchanger 3 〇 , which is very heavy. When the liquid is only subjected to single-phase liquid flow along the interface layer 3 ’ 2, each of the pores 32 2 is preferably surrounded by a plurality of adjacent pores 3 2 4 in a symmetrical hexagonal arrangement, as shown in FIG. Moreover, the number of pores in the flow level 300 in terms of a single phase liquid stream is preferably about equal. Moreover, in the case of a single phase liquid stream, the apertures 322, 324 preferably have the same diameter. It is obvious to those skilled in the art that other arrangements and any ratio of pores 3 2 2, 3 2 4 can be considered.

當液體沿介面層3 0 2受到二相液體流之情況下,孔隙 3 2 2,3 2 4較佳為非對稱安排以配合二相液體之加速。但, 孔隙3 2 2,324之對稱安排亦可供二相液體流加以考慮。例 如,孔隙3 22,324可在流通位準304中成對稱安排,因此 孔隙3 24有一較孔隙32 2為大之開口。或者,圖13所示之六 角形對稱安排被用於流通位準3 0 4供二相液體流之用,因、 此,較孔隙3 2 2為多之孔隙3 2 4出現在流通位準3 0 4中。In the case where the liquid is subjected to a two-phase liquid flow along the interface layer 302, the pores 3 2 2, 3 2 4 are preferably asymmetrically arranged to accommodate the acceleration of the two-phase liquid. However, the symmetrical arrangement of the pores 3 2 2, 324 is also considered for the two-phase liquid flow. For example, the apertures 3 22, 324 may be symmetrically arranged in the flow level 304 such that the apertures 3 24 have a larger opening than the aperture 32 2 . Alternatively, the hexagonal symmetrical arrangement shown in Figure 13 is used for the flow level 3 0 4 for the flow of the two-phase liquid, because, more than the pores 32 2 2, the pores 3 2 4 appear in the flow level 3 0 4 in.

應注意,流通位準中之孔隙3 2 2,3 2 4可交互安排以冷 卻熱源99之熱點。例如,二孔隙3 2 2彼此交互配置為近鄰7 於流通位準3 0 4中,因此,二孔隙3 2 2配置在接近或在_介 面熱點區之上。甚為明顯,適當數目之孔隙3 2 4配置在與 二孔隙3 2 2相鄰以降低介面層3 0 2中之壓力降。因此,二孔 隙3 2 2供應冷卻液體至介面熱點區以迫使介面熱點區為_ 均勻,實際上相等之溫度。It should be noted that the apertures 3 2 2, 3 2 4 in the flow level can be alternately arranged to cool the hot spots of the heat source 99. For example, the two pores 3 2 2 are alternately arranged with each other as a neighbor 7 in the flow level 3 0 4 , and therefore, the two pores 32 2 are disposed near or above the _ interface hot spot. It is apparent that a suitable number of apertures 3 2 4 are disposed adjacent to the two apertures 3 2 2 to reduce the pressure drop in the interface layer 302. Thus, the two apertures 3 2 2 supply cooling liquid to the interface hot spot to force the interface hot spot to be _ uniform, actually equal temperature.

1295725 五、發明說明(41)1295725 V. Description of invention (41)

如上所述’較佳熱交換器30 0較其他熱交換器具有重 要優點。較佳熱交換器3〇〇之構型,因為垂直液體路徑造 f之壓力降降低,可利用中度性能之幫浦。此外,較佳熱 交換器3 0 0之構型可使入口及沿介面層3 〇 2之液體路徑之獨 立最佳化。此外,獨立位準可達成訂製設計基礎以使轉 移壓力降降低,及各組件之尺寸最佳化。較佳熱交換器 3 0 0之構型亦可降低系統中之壓力降,其中液體受到二相 =體流,因此可在單相及二相系統中使用。如下所討論, 車又佳熱交換器可配合許多不同製造方法,及可調整組件之 幾何形狀以供容差目的。 1 以=討論熱交換器100及熱交換器100中之各層如何製 ,之細節。以下討論適用於本發明之較佳及另一熱交換 器’雖然圖3B中之熱交換器及各層為簡單之故分別顯示。 『精於此择藝人士甚為明顯,雖然構造/製造方法與本發 明有關’製造方法之細節亦適用於其它熱交換器及利用一 /夜體入口璋及一液體埠之二及三層熱交換器,如圖1A-1C 所示。 A S 佳有—等於熱源99之熱擴張系數(CTE)之熱 擴張$數。因此’介面層較佳與熱源9 9擴張及收縮。或 者’介面層3 0 2之材料之CTE與熱源材料之CTE不同。介面 層3 0 2如以石夕為材料,其CTE可配合熱源99i、CTE,及具有 足夠之熱傳導率以自熱源9 9適當轉移熱至液體。但,其他 材料=可用於介面層3〇2,其具有可與熱源99配合之CTE。 介面層較佳具有高熱傳導率以便有足夠之傳導以通過The preferred heat exchanger 30 0 has important advantages over other heat exchangers as described above. The preferred configuration of the heat exchanger 3 is because the pressure drop of the vertical liquid path is reduced, and a pump of moderate performance can be utilized. In addition, the preferred heat exchanger 300 configuration optimizes the inlet and the liquid path along the interface layer 3 〇 2 independently. In addition, independent levels can be used to achieve a custom design basis to reduce the transfer pressure drop and optimize the size of each component. The preferred configuration of the heat exchanger 300 also reduces the pressure drop in the system where the liquid is subjected to two phases = body flow and can therefore be used in both single and two phase systems. As discussed below, the Che-Jia heat exchanger can be fitted with many different manufacturing methods and the geometry of the components can be adjusted for tolerance purposes. 1 to = discuss how the various layers in the heat exchanger 100 and heat exchanger 100 are made. The preferred and further heat exchangers suitable for use in the present invention are discussed below. Although the heat exchanger and layers of Figure 3B are shown separately, they are shown separately. "It is very obvious to those skilled in the art, although the construction/manufacturing method is relevant to the present invention. The details of the manufacturing method are also applicable to other heat exchangers and the use of one/night body inlets and one liquid layer of two and three layers of heat. The switch, as shown in Figures 1A-1C. A S is good - equal to the thermal expansion coefficient of the thermal expansion coefficient (CTE) of the heat source 99. Therefore, the interface layer preferably expands and contracts with the heat source 909. Or the CTE of the material of the interface layer 320 is different from the CTE of the heat source material. The interface layer 3 0 2 is made of Shi Xi as a material, and its CTE can be combined with the heat source 99i, CTE, and has sufficient thermal conductivity to properly transfer heat to the liquid from the heat source 9 9 . However, other materials = can be used for the interface layer 3〇2, which has a CTE that can be combined with the heat source 99. The interface layer preferably has a high thermal conductivity so that there is sufficient conduction to pass

第49頁 1295Ί21 五 發明說明(42) 熱 熱 成 於Page 49 1295Ί21 V Description of invention (42) Heat is caused by

源99及沿介面層3 0 2流動之液體之間,俾熱源99不致 。介面層較佳由具有高熱傳導率為1〇〇w/mk之材 。但對精於此技藝人士甚為明顯’介面層3〇2可且 或小於100W/mk之熱傳導率,並受限於該值。” A 製 為^較佳高熱傳導率介面層較佳由Λ半導體基板如 曰層可由任何其他材料,包括但不限於單 I 屬,在呂’錄及銅,科伐,石·墨,鐵石,混 =當合金。介面層302之其他材料為圖案或模Between the source 99 and the liquid flowing along the interface layer 302, the heat source 99 does not. The interface layer is preferably made of a material having a high thermal conductivity of 1 〇〇 w/mk. However, it is apparent to those skilled in the art that the thermal conductivity of the interface layer 3 〇 2 is less than or equal to 100 W/mk and is limited by this value. "A system is preferably a high thermal conductivity interface layer. Preferably, the semiconductor substrate such as a germanium layer can be made of any other material, including but not limited to a single I genus, in Lu's and copper, Kovar, Shi · ink, iron, Mixed = when alloy. Other materials of interface layer 302 are patterns or modes

介面示’彳面層較佳以塗層112加以塗層以保護 二及改進介面層之熱交換特性。該塗層112 =、1 β供化學保護,以消除液體與介面層302間化學作 介面H〜紹製之介面層302在接觸液體時被蝕刻,因此 為^/時間上將變壞。塗層112為鎳之薄層,厚度約 im,以電鍍在介面層3 02之表.面以化學淨化任何可 他材料^且^不致大幅改變介面層3〇2之熱特性。任何其 之材有適當層厚度之塗層亦可考慮,視介面層302 成,ά : ί 2利用銅材料以薄鎳層塗層之蝕刻方法構 塑料或Α他二it 3 0 2。或者,介面層302由铭,石夕基板, 所it 構成。介面層30 2如以不良熱傳導率材料 傳導率Γ雷=备之塗層材料塗層,以改進介面層3〇2之熱 加鉻赤i从/成介面層之方法係沿介面層302之底表面施 ^ 適當金屬之種子層,及施加適當電壓至種子層The interface shows that the tantalum layer is preferably coated with a coating 112 to protect the heat exchange characteristics of the interface layer. The coating 112 =, 1 β is chemically protected to eliminate the chemical interface between the liquid and the interface layer 302. The interface layer 302 is etched when it contacts the liquid, and thus will deteriorate in time/time. The coating 112 is a thin layer of nickel having a thickness of about im to be plated on the surface of the interface layer 302 to chemically purify any other material and does not substantially change the thermal characteristics of the interface layer 3〇2. Any coating having a suitable layer thickness may also be considered. The interface layer 302 is formed, ά: ί 2 is made of a copper material by a thin nickel coating etching method to form a plastic or a ruthenium 3 0 2 . Alternatively, the interface layer 302 is composed of an inscription, a stone substrate, and it. The interface layer 30 2 is coated with a coating material of a poor thermal conductivity material, such as a coating material, to improve the thermal layer of the interface layer 3〇2, and to form a layer of the interface layer 302 along the bottom of the interface layer 302. Apply a suitable metal seed layer to the surface and apply an appropriate voltage to the seed layer

第50頁 1295725Page 50 1295725

之電連接而成。電連接因此構成一熱傳導 層於介面層30 2之頂部。電形成方法亦構 S材料112— 微米之特性尺寸。介面層3 02可由電形成方^ 在10 —100 案電鍍。此外,介面層可由其他方法如光 A成’如圖 研磨處理,或與電形成方法之組合處理。化^ 刻或化學 微影組用以處理介面層3 0 2之特性。此冰 予研磨之表準 可利用雷射協助化學研磨方法加以改進。 久#左The electrical connection is made. The electrical connections thus form a thermal conduction layer on top of the interface layer 30 2 . The electrical formation method also constitutes the S material 112 - the characteristic size of the micron. The interface layer 322 can be electroplated by electroforming in the case of 10 - 100. Further, the interface layer may be processed by other methods such as light A as shown in the figure, or in combination with the electric forming method. The chemical or chemical lithography group is used to treat the characteristics of the interface layer 302. This ice pre-grinding can be improved by laser assisted chemical grinding. Long #左

以上討論之柱體3 0 3係以不同方法製造。但廡立, 枉體3 0 3製造後具有一高熱傳導率。柱體3〇3較佳〜為由$高 導率材料如銅製成。但其他材料如矽亦可由精於此技蓺人 士加以考慮。柱體3 0 3由不同方法包括但不限於電形成=, EDM線製造,壓印,MIM及機器製造。此外,利用鋸及/或 研磨工具交互切割亦可產生介面層3〇2之理想構型。以由 石夕製成之介面層3 0 2而言’柱體3 〇 3將以電漿蝕刻,鋸,微 影圖案及不同濕#刻等方法製造,視介面層3〇2中柱體3〇: 之理想長寬比而定。徑向分布之矩形翼片3〇3E(圖1〇E)可 以微影圖案法製造,其中利用電漿蝕刻或電鍍法於微影限 定之模具中。The cylinders discussed above are manufactured in different ways. However, it stands tall, and the body 3 3 3 has a high thermal conductivity after manufacture. The cylinder 3〇3 is preferably made of a high conductivity material such as copper. However, other materials such as 矽 can also be considered by those skilled in the art. The cylinders 3 0 3 are manufactured by various methods including, but not limited to, electrical formation =, EDM wire manufacturing, stamping, MIM, and machine manufacturing. In addition, interactive cutting with a saw and/or abrasive tool can also result in an ideal configuration of the interface layer 3〇2. In the case of the interface layer made of Shi Xi 3 0 2, the column 3 〇 3 will be fabricated by plasma etching, sawing, lithography and different wet etching, and the interface layer 3 〇 2 of the cylinder 3 〇: The ideal aspect ratio depends on. The radially distributed rectangular fins 3〇3E (Fig. 1A) can be fabricated by a lithographic patterning process using plasma etching or electroplating in a lithographically defined mold.

在一實施例中,用於介面層i 〇 2之微通道壁11 〇為矽所 製。微通道壁11 0亦可由其他材料製造,包栝但不限於圖 案玻璃,聚合物,及模、製聚合物網格。雖然微通道壁1又〇 與介面層1 1 2之底表面1 〇 3為相同材料所製,微通道壁1 j 〇 亦可由與介面層1 0 2其他組件不同材料所製。 在另一實施例中’微通道壁11 〇之熱傳導率特性至少In one embodiment, the microchannel walls 11 for the interface layer i 〇 2 are made of germanium. The microchannel walls 110 can also be fabricated from other materials, including but not limited to pattern glass, polymers, and mold and polymer grids. Although the microchannel wall 1 is made of the same material as the bottom surface 1 〇 3 of the interface layer 112, the microchannel wall 1 j 亦可 can also be made of a different material than the other components of the interface layer 102. In another embodiment, the microchannel wall 11 has a thermal conductivity characteristic of at least

第51頁Page 51

1295725 , --------- , 五、發明說明(44) ~ ^ -— 為10W/mk。對精於此技藝人士甚為明顯,微通道壁I〗。亦 可具有小於1 OW/mk之熱傳導率特性,此時一塗層材料 加在微通道壁1 1 0上,如圖1 5所示,以增加微通道壁丨丨〇之 熱傳導率。如微通道壁1 1 0由具有良好熱傳導率之$料 成時’塗層112之厚度至少為25微米,其可保護微通道壁 11 〇之表面。微通道壁11 〇如由不良熱傳導率材料所製時, 塗層112之熱傳導率至少為50W/ink,並可高於25微米哄\對 精於此技藝人士甚為明顯,其他型式之塗層材料及厚度尺 寸亦可考慮。1295725 , --------- , V. Description of invention (44) ~ ^ -— is 10W/mk. It is very obvious to those skilled in this art, micro channel wall I〗. It is also possible to have a thermal conductivity characteristic of less than 1 OW/mk, in which case a coating material is applied to the microchannel wall 110, as shown in Fig. 15, to increase the thermal conductivity of the microchannel niche. If the microchannel wall 110 is made of a material having a good thermal conductivity, the thickness of the coating 112 is at least 25 microns, which protects the surface of the microchannel wall 11 。. When the microchannel wall 11 is made of a poor thermal conductivity material, the thermal conductivity of the coating 112 is at least 50 W/ink and can be higher than 25 micrometers. It is obvious to those skilled in the art, other types of coatings. Materials and thickness dimensions are also considered.

為構型一微通道壁11 〇具有一適當熱傳導率至少為 1 0 W / m k時’微通道壁11〇必須以塗層材料11 2 (圖1 5 )電形 成,材料如鎳或金屬如上所述。構型一微通道壁11〇具有 至少50W/mk熱傳導率時,微通道壁no以銅電鍍於薄金屬 薄膜種子層上。或者,微通道壁Π 〇不用以塗層材料塗 層。 ·In order to configure a microchannel wall 11 having a suitable thermal conductivity of at least 10 W / mk, the microchannel wall 11 must be electrically formed with a coating material 11 2 (Fig. 15), such as nickel or metal. Said. When the microchannel wall 11 has a thermal conductivity of at least 50 W/mk, the microchannel wall no is electroplated on the thin metal film seed layer by copper. Alternatively, the microchannel niches are not coated with a coating material. ·

微通道壁11 0可利用熱壓成型技術以達成沿介面層i 〇 2 之底表面10 3之通道壁11〇之高長寬比。微通道壁u〇亦可 構造為矽結構沉積在玻璃表面上,該結構以理想構型餘刻 在玻璃上。微通道壁11 〇亦可由標準微影技術,壓印或鑄 造方法或其他適當方法構成。微通道壁n 〇亦可與介面層 1 0 2分別製成,及由陽極或樹脂黏接耦合至介面層1 〇 2。或 者’微通道壁1 1 〇以傳統電形成技術如電鍍耦合至介面; 102。 曰 有數種方法可用以構造中間層1 〇 4。中間層係由矽所The microchannel wall 110 can utilize hot press forming techniques to achieve a high aspect ratio along the channel wall 11 of the bottom surface 103 of the interface layer i 〇 2 . The microchannel wall 〇 can also be constructed such that the ruthenium structure is deposited on the glass surface, and the structure is engraved on the glass in a desired configuration. The microchannel walls 11 can also be constructed by standard lithography techniques, embossing or casting methods, or other suitable methods. The microchannel wall n 〇 can also be made separately from the interface layer 102 and bonded to the interface layer 1 〇 2 by an anode or a resin. Or the 'microchannel wall 1 1 ' is coupled to the interface by conventional electrical forming techniques such as electroplating;曰 There are several ways to construct the intermediate layer 1 〇 4. Middle layer

1295725 五、發明說明(45) 製。對精於此技人士甚為明顯,任何適當材料包括但不限 於雷射圖案玻璃,聚合物,金屬,玻璃,塑料,模製有機 讨料及任何組合。或者,中間層1 0 4利用電漿蝕刻技術製 造’或者’中間層1 〇 4可利用化學蝕刻技術形成。其他方 法包括機器法,蝕刻,擠壓,及/或鑄造金屬為理想構 裂。中間層1 0 4亦可塑料網格之射出模製為理想構型。或 者中間層1 04可用雷射穿孔玻璃板成為一理想構型。中1295725 V. Inventions (45). It will be apparent to those skilled in the art that any suitable material includes, but is not limited to, laser-patterned glass, polymers, metals, glass, plastics, molded organic materials, and any combination. Alternatively, the intermediate layer 104 can be fabricated using plasma etching techniques or the intermediate layer 1 〇 4 can be formed using chemical etching techniques. Other methods include machine method, etching, extrusion, and/or casting of the metal as an ideal fracture. The intermediate layer 104 can also be injection molded into a desired configuration. Or the intermediate layer 104 can be made into a desired configuration using a laser perforated glass plate. in

〜支管層3 0 6可用不同方法製造。較佳支管層3 〇 6係製成 一完整之一件。或者,較佳支管層30 6可製成個別組件如 圖1 2所示’之後再耦合一起。支管層3 〇 6可利用塑料,金 屬’聚合物混合物或其他適當材料以射出模製方法形成, ^二層由相同材料製成。或者如上所述,每一層由不同材 厂形成。支管層3 0 6亦可利用機器及蝕刻金屬技術形 對精於此技藝者甚為明顯,支管層3〇6可用任何適當方法 方丰1〇4輕合至介面層102及支管層106以利用不同 ^構s成熱父換器1〇〇。介面層102,中間層1〇4及支管屏 由陽極,黏膠及易熔接合劑彼此麵合。 曰~ The branch layer 3 0 6 can be manufactured in different ways. Preferably, the branch layer 3 〇 6 is made into one complete piece. Alternatively, the preferred manifold layer 30 6 can be fabricated as individual components as shown in Figure 12 and then coupled together. The branch layer 3 〇 6 can be formed by injection molding using a plastic, metal polymer mixture or other suitable material, and the second layer is made of the same material. Or as described above, each layer is formed by a different material plant. The branch layer 306 can also be utilized by machine and etched metal techniques. It is obvious to those skilled in the art that the branch layer 3〇6 can be lightly bonded to the interface layer 102 and the branch layer 106 by any suitable method. Different ^ structure s into a hot parent converter 1 〇〇. The interface layer 102, the intermediate layer 1〇4 and the branch screen are covered by an anode, and the adhesive and fusible bonding agent are in contact with each other.曰

由化學接合法耦合至介面層1〇2。中間層1〇4亦可由熱凸 及軟微影技術形成,此時利用線EDM或矽主件以壓、中門 ::::之:Γ導;°:於是與㈣ 或者,中間層1〇4以射出模製法與介面層1〇2中之微通It is coupled to the interface layer 1〇2 by chemical bonding. The intermediate layer 1〇4 can also be formed by thermal convex and soft lithography techniques, in which case the line EDM or the 矽 main part is used to press, the middle door::::: Γ;°: then (4) or, the middle layer 1〇 4 by the injection molding method and the micro-pass in the interface layer 1〇2

第53頁 1295725____ …^ - 五、發明說明(46) 道壁110之製造共同形成。或者中間層10 4可以其他適當方 法與微通道壁1 1 0之製造形成。熱交換器其他製造方法包 括但不限於焊接,熔合黏接,易熔接合,金屬間接合,及 任何適當技術,視該層使用之材料型式而定。Page 53 1295725____ ...^ - V. INSTRUCTIONS (46) The manufacture of the wall 110 is formed in common. Alternatively, the intermediate layer 104 may be formed by other suitable methods and fabrication of the microchannel walls 110. Other methods of manufacturing heat exchangers include, but are not limited to, welding, fusion bonding, fusible bonding, intermetallic bonding, and any suitable technique, depending on the type of material used in the layer.

本發明熱交換器之另一製造方法如圖1 6之說明。如圖 1 6所示,製造熱交換器之另一方法包括建立一由矽基板作 為介面層形成之硬掩膜(步驟5 0 〇 )。硬掩膜由二氧化石夕或 者由玻璃上自旋製成。硬膜形成後,複數個下通道於硬掩 膜中形成,該下通道於微通道1 1 〇之間構成液體之路徑(步 驟5 0 2 )。下通道由適當方法形成,包括但不限於jji?餘刻技 咖’化學研磨軟微影或iSL去鼠餘刻。此外,必須墟粗辦;g 道間之;1夠空m下微通道彼此間不致成橋Γ ; 後,以傳統方法施加玻璃上自旋法於硬掩膜表面上,以構 成中間及夫管層(步驟5 0 4 )。隨後,中間層及支管層以凝 結法硬化(步驟5 0 6 )。當中間層及支管層形成及硬化後, 多個液體埠形成在硬化層中(步驟5 〇 8 )。液體埠係蝕刻或 鑽研於支管層中。雖然其他方法可製造介面層1〇2,中間 層1 0 4及支管層1 0 6 ’其他製造熱交換器1 〇 〇方法亦可考 慮。Another method of manufacturing the heat exchanger of the present invention is illustrated in Figure 16. As shown in Fig. 16, another method of fabricating a heat exchanger includes establishing a hard mask formed by a tantalum substrate as an interface layer (step 50). The hard mask is made of silica dioxide or spin on the glass. After the formation of the dura mater, a plurality of lower channels are formed in the hard mask, and the lower channel forms a path of the liquid between the microchannels 1 1 ( (step 502). The lower channel is formed by a suitable method including, but not limited to, jji's engraving technique 'chemical grinding soft lithography or iSL de-sequence. In addition, the market must be rough; g between the roads; 1 small space m microchannels do not become bridges between each other; afterwards, the glass spin method is applied to the hard mask surface in a conventional way to form the middle and the tube Layer (step 5 0 4). Subsequently, the intermediate layer and the branch layer are hardened by coagulation (step 506). After the intermediate layer and the branch layer are formed and hardened, a plurality of liquid helium are formed in the hardened layer (step 5 〇 8 ). The liquid is lanthanized or drilled into the branch layer. Although other methods can be used to fabricate the interface layer 1 〇 2, the intermediate layer 104 and the branch layer 1 0 6 ' other methods of manufacturing the heat exchanger 1 can also be considered.

圖1 7說明本發明熱交換器之另一實施例。如圖6所 不,二熱交換器200,200’耦合至熱源99。熱源99,、如一 電子裝置搞合至電路板9 6並以直立配置,故熱源9 9之每側 均曝露。本發明之熱交換器耦合至熱源99之一曝露側,因 此二熱交換器2 0 0,2 0 0,可提供熱源99最大冷卻。或者熱Figure 17 illustrates another embodiment of the heat exchanger of the present invention. As shown in Figure 6, the two heat exchangers 200, 200' are coupled to a heat source 99. The heat source 99, such as an electronic device, is brought into the circuit board 96 and disposed in an upright position, so that each side of the heat source 9 9 is exposed. The heat exchanger of the present invention is coupled to one of the exposed sides of the heat source 99, so that the two heat exchangers 200, 2000 can provide maximum cooling of the heat source 99. Or hot

1295725_____:_ 五、發明說明(47) 源水平耦合至電路板,因此一個以上之熱交換器堆疊在熱 源9 9之頂部(未示出),因此每一熱交換器耦合至熱源9 9。 本實施例之細節揭示於美國專利申請序號1 0 / 0 7 2,1 3 7,於 2 0 0 2,2,7日提出,標題為π功率調整模組”,該專利以參 考方法併入此間。1295725_____: _ V. DESCRIPTION OF THE INVENTION (47) The source level is coupled to the circuit board such that more than one heat exchanger is stacked on top of the heat source 9 9 (not shown) such that each heat exchanger is coupled to a heat source 9 9 . The details of this embodiment are disclosed in U.S. Patent Application Serial No. 1 0 / 0 7 2,1, 3, 7, 2, 2, 7, the entire disclosure of which is incorporated herein by reference. here.

如圖17所示,具有二層之熱交換器20 0耦合至熱源99 之左側,熱交換器2 0 0,耦合至熱源9 9之右側。對精於此技 藝者甚為明顯,可耦合至熱源9 9之各側。對精於此技藝者 甚為明顯,熱交換器2 0 0,之另一實施例亦可耦合至熱源9 9 之側邊。圖1 7所示之另一實施例可使熱源9 9之更精確之熱 點冷卻,因其施加液體以冷卻存在於熱源9 9厚度之熱點。 因此圖1 7之實施例由熱源9 9之二側交換熱而施加適當冷卻 至熱源9 9之中心。對精於此技藝者甚為明顯,圖1 7之實施 例係用以圖2Α-2Β中之冷卻系統3〇共用,雖然其他閉合系 統亦可考慮。 如上所述’熱源9 9具有其他特性,其中,因為熱源9 9 需要實施之不同任務,一或多個熱點之位置可能改變。為 適當冷卻熱源99,系統30可包括一感測及控制模組34(圖As shown in Figure 17, a two-layer heat exchanger 20 0 is coupled to the left side of the heat source 99, and the heat exchanger 2000 is coupled to the right side of the heat source 9 9 . It is apparent to those skilled in the art that it can be coupled to each side of the heat source 9 9 . It will be apparent to those skilled in the art that another embodiment of the heat exchanger 200 can also be coupled to the side of the heat source 9 9 . Another embodiment, illustrated in Figure 17, can cool the more precise hot spot of the heat source 9 9 as it applies a liquid to cool the hot spot present at the thickness of the heat source 919. Thus, the embodiment of Fig. 17 is heated by the heat exchange on both sides of the heat source 9 9 and applied to the center of the heat source 9 9 . It is obvious to those skilled in the art that the embodiment of Fig. 17 is used for the cooling system 3〇 in Fig. 2Α-2Β, although other closed systems may also be considered. As mentioned above, the heat source 9 9 has other characteristics in which the position of one or more hot spots may change because of the different tasks that the heat source 9 9 needs to perform. To properly cool the heat source 99, the system 30 can include a sensing and control module 34 (Fig.

2Α-2Β),其動態改變流量及/或進入熱交換器1〇〇之液體流 速,以響應熱點位置之改變。 特別如圖17所示’—或多個㈣S 124配置在孰交換 器2 0 0中之母一介面熱點區,及/或配置在熱源99之每一可 能熱點位置0或者,複數個執、、店 〇 炎双1U熟藏岣勻配置在熱源及熱交換 器之間,及/或配置在埶交拖哭 "' 你…、乂換裔之中。控制膜組38(圖2A__2Α-2Β), which dynamically changes the flow rate and/or the liquid flow rate into the heat exchanger 1 in response to changes in the hot spot position. Specifically, as shown in FIG. 17, '- or a plurality of (four) Ss 124 are disposed in the mother-interface hotspot area of the chirp converter 200, and/or are disposed at each possible hotspot position of the heat source 99, or a plurality of functions, Shop 〇炎双1U cooked 岣 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置 配置Control film set 38 (Fig. 2A__

1295725 五、發明說明(48) 2 B )亦耦合至迴路3 0中之多個活瓣,用以控制液體至熱交 換器1 0 0之流量。一或多個活瓣配置在液體線中但亦可配 S在其他位置。複數個偵測器1 2 4麵合至控制模組3 4,該 控制模組3 4較佳配置在自熱交換器1 0 0之上游,如圖2所 示。或者,控制模組3 4配置在閉合迴路系統3 0任何位置。1295725 V. INSTRUCTION DESCRIPTION (48) 2 B) A plurality of flaps also coupled to the loop 30 for controlling the flow of liquid to the heat exchanger 100. One or more flaps are disposed in the liquid line but may also be equipped with S at other locations. A plurality of detectors are integrally connected to the control module 34. The control module 34 is preferably disposed upstream of the heat exchanger 100, as shown in FIG. Alternatively, the control module 34 is configured at any position in the closed loop system 30.

偵測器1 2 4提供資訊至控制模組3 4,包括但不限於在 介面熱點區流動之液體之流速,介面熱點區中介面層1 〇 2 及/或熱源9 9之溫度及液體之溫度。例如,參考圖1 7,配 置在介面之偵測器丨24提供資訊至控制模組34,指出熱交 f器2 0 0中一特殊介面熱點區之溫度正在增加,而熱交換 裔2 0 〇 ’中一特定介面熱點區之溫度正在降低。為響應此 舉’控制模組3 4增加流量至熱交換器2 0 0及降低流量至埶 )換器2 0 0’。或者,控制模組34可改變至一或多個熱交換 之一或多個介面熱點區之液體流量,以響應自偵測器 9ηΛ接收之資訊。雖然偵.測器11 8在圖1 7中與二埶交.換考 :合鮮顯示’甚為明顯,横測器118亦可僅與一熱:換 以便用特殊實施例加以說明,其中併入細 、睛解本發明之結構及作業原理。對The detector 1 2 4 provides information to the control module 34, including but not limited to the flow rate of the liquid flowing in the interface hot spot, the temperature of the interface hotspot area 1 〇 2 and/or the heat source 9 9 and the temperature of the liquid . For example, referring to FIG. 17, the detector 丨24 disposed in the interface provides information to the control module 34, indicating that the temperature of a special interface hot spot in the hot junction device is increasing, and the heat exchange is 2 0 〇. The temperature of the medium-specific interface hot spot is decreasing. In response to this, the control module 34 increases the flow rate to the heat exchanger 200 and reduces the flow to the converter 2 0 0'. Alternatively, control module 34 may change the flow of liquid to one or more of the one or more interface hotspots in response to information received from detectors. Although the detector 11 8 is in contact with the second in Fig. 17. The change test: the fresh display 'is very obvious, the cross detector 118 can also be replaced with only one heat: for the specific embodiment, wherein The structure and working principle of the present invention are carefully understood. Correct

及細即並無限制申請專利範圍之範疇之音 ^列之 I = 士甚為明顯,實施例中可作修改以供g明對精於此 本發明之精神與範圍。 說明而不致有And the details are not limited to the scope of the patent application scope. I = 士 is very obvious, and the examples can be modified to provide a clear understanding of the spirit and scope of the present invention. Explain without

1295725 圖式簡單說明 圖1 A說明傳統熱交換器側視圖。 圖1 B說明傳統熱交換器頂視圖。 圖1 C說明習知技藝多位準熱交換器之側視圖。 圖2A說明包含本發明之軟性液體傳輸微通道熱交換器另一 實施例閉合迴路冷卻系統之略圖。 圖2B說明併入本發明軟性液體傳輸微通道熱交換器另一實 施例閉合迴路冷卻系統略圖。 圖3人說明本發明熱交換器之另一支管層之頂視圖。 圖3B說明本發明具有另一支管層之另一熱交換器略圖。 圖4說明本發明交織支管層之透視圖。 圖5說明本發明具有介面層之交織支管層之頂視圖。 圖· 6A說明沿A-A線之介面層交織支管層剖面圖。 圖63說明沿B-B線之介面層交織支管層剖面圖。 圖6C說明沿C-C線之介面層交織支管層剖面圖。 圖7A說明本發明具有介面層交織支管層立體圖。 圖7B說明本發明介面層另一實施例透視圖。 圖8 A說明本發明另一友管層頂視圖。 圖8B說明本發明介面層頂視圖。 圖8C說明本發明介面層頂視圖。 圖9 A說明本發明之三層熱交換器另一實施例侧視圖。 圖9B說明本發明二層熱交換器另一實施例侧視圖。 圖1 0 A- 1 ΟE說明本發明具有不同微銷陣列介面層透視圖。 圖1 1說明本發明另一熱交換器透視圖。 圖1 2 A說明本發明較佳熱交換器立娌圖。 圖1 2 B說明本發明另一熱交換器立體圖。1295725 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 A illustrates a side view of a conventional heat exchanger. Figure 1 B illustrates a top view of a conventional heat exchanger. Figure 1C illustrates a side view of a conventional art multi-level heat exchanger. Figure 2A illustrates a schematic of a closed loop cooling system incorporating another embodiment of the flexible liquid transport microchannel heat exchanger of the present invention. Figure 2B illustrates a schematic of another embodiment of a closed loop cooling system incorporating a flexible liquid transport microchannel heat exchanger of the present invention. Figure 3 illustrates a top view of another tube layer of the heat exchanger of the present invention. Figure 3B illustrates a schematic view of another heat exchanger having another manifold layer of the present invention. Figure 4 illustrates a perspective view of the interwoven branch layer of the present invention. Figure 5 illustrates a top view of an interwoven branch layer of the present invention having an interfacial layer. Figure 6A illustrates a cross-sectional view of the interleaved branch layer along the interface layer A-A. Figure 63 is a cross-sectional view showing the interleaved branch pipe layer along the interface line B-B. Figure 6C illustrates a cross-sectional view of the interleaved branch layer along the interface layer of line C-C. Figure 7A illustrates a perspective view of the present invention having an interfacial layer interleaved branch layer. Figure 7B illustrates a perspective view of another embodiment of the interface layer of the present invention. Figure 8A illustrates a top view of another tube layer of the present invention. Figure 8B illustrates a top view of the interface layer of the present invention. Figure 8C illustrates a top view of the interface layer of the present invention. Figure 9A illustrates a side view of another embodiment of a three-layer heat exchanger of the present invention. Figure 9B illustrates a side view of another embodiment of the two-layer heat exchanger of the present invention. Figure 10 A-1 ΟE illustrates a perspective view of the present invention having different micropin array interface layers. Figure 11 illustrates a perspective view of another heat exchanger of the present invention. Figure 1 2A illustrates a preferred heat exchanger elevation of the present invention. Figure 1 2B illustrates a perspective view of another heat exchanger of the present invention.

第57頁 1295725 圖式簡單說明 圖1 2 C說明本發明另一流通位準透視圖。 圖1 2 D說明本發明較佳入口位準下側透視圖。 圖1 2 E說明本發明另一入口位準下側透視圖。 圖1 2 F說明本發明較佳出口位準下侧透視圖。 圖1 2 G說明本發明另一出口位準下側透視圖。 圖1 2H說明本發明較佳熱交換器剖面圖。 圖1 2 I說明本發明另一熱交換器剖面圖。 圖1 3說明本發明具有較佳安排之入口及出口孔隙供單相液 體流動較佳實施例流通位準頂視圖。Page 57 1295725 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 2 C illustrates another flow-through perspective view of the present invention. Figure 1 2D illustrates a lower perspective view of the preferred entry level of the present invention. Figure 1 2 E illustrates a lower perspective view of another inlet level of the present invention. Figure 1 2 F illustrates a lower perspective view of the preferred exit level of the present invention. Figure 1 2 G illustrates a lower perspective view of another exit level of the present invention. Figure 1 2H illustrates a cross-sectional view of a preferred heat exchanger of the present invention. Figure 1 2I illustrates a cross-sectional view of another heat exchanger of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 13 is a top plan view of a preferred embodiment of the preferred embodiment of the present invention with preferred arrangement of inlet and outlet apertures for single phase liquid flow.

圖1 4說明本發明具有較佳安排之入口及出口孔隙供二相液 體流動較佳實施例流通位準頂視圖。 圖1 5說明本發明具有塗層材料加於其上之熱交換器介面層 側視圖。 圖1 6說明本發明之熱交換器另一製造方法流程圖。 圖.1 7說明本發明具有二熱交換器耦合至熱源之另一實施例 略圖。 元件符號說明: 10, 20熱交換器 1 4平行通道 24出口%埠 2 7底表面 3 2幫浦 3 8液體線 11底表面 12入口埠Figure 14 illustrates a top view of a flow-through position of a preferred embodiment of the present invention with preferred arrangement of inlet and outlet apertures for two-phase liquid flow. Figure 15 illustrates a side view of a heat exchanger interface layer of the present invention having a coating material applied thereto. Figure 16 is a flow chart showing another manufacturing method of the heat exchanger of the present invention. Fig. 1 7 illustrates a schematic view of another embodiment of the invention having two heat exchangers coupled to a heat source. Component symbol description: 10, 20 heat exchanger 1 4 parallel channel 24 outlet %埠 2 7 bottom surface 3 2 pump 3 8 liquid line 11 bottom surface 12 inlet 埠

16出口埠 22埠 26中間層 28多喷嘴 3 0閉合迴路密封冷卻系統 3 4動態偵感及控制模組 9 6電路板 9 8熱介面材料16 exit 埠 22埠 26 middle layer 28 multi-nozzle 3 0 closed loop sealed cooling system 3 4 dynamic sense and control module 9 6 circuit board 9 8 thermal interface material

第58頁 1295725 圖式簡單說明 99, 9 9 ’熱源 1 0 0熱交換器 104 ,204中間層 102, 20 2, 2 0 2A, 3 0 2, 3 0 2’,402,40 2’介面 層 103, 132, 3 04B, ,3 0 8B ,3 0 8B’,312B’底表面 105, 105A, 105B ,105C ,105D, 205A, 2 0 5B導管 106, 2 0 6, 3 0 6, 3 0 6、 4 0 6支管層 1 2 4偵測器 1 0 7區域 1 0 8,1 0 9液體埠 110, 111, 210A〇 410, 410’微通道 112, 116, 414, 414、 418,418’通道 108, 116, 118, 118A, 118B, 118C, 118D, 118E, 1 18F ,120, 120A ,120F ,122手指部 119, 1 2 1手指部孔隙 1 30,304A,,308A, 3 0 8 A頂表面 2 0 0, 20 0,, 3 0 0, 3 0 0,, 4 0 0熱交換器 2 0 8, 208A, 2 0 8B入口 2 0 9,2 0 9A,2 0 9B出口 埠 2 1 0微通道壁 214可滲透蒸氣隔膜 3 0 1微多孔結構 3 0 3系列柱體· 3 0 3B方形 3 0 3C菱形,橢圓形 3 0 3D六角形 3 0 3E距形翼片 304,,3 0 8,3 0 8’,312,312’位準 314,314,,315,315,,316,316,,345,408,40 9蜂 32 0’ 3 2 0’,3 2 6’,328,3 28’狹長通道 3 2 2傳輸通道 'Page 58 1295725 Schematic description 99, 9 9 'Heat source 1 0 0 heat exchanger 104, 204 intermediate layer 102, 20 2, 2 0 2A, 3 0 2, 3 0 2', 402, 40 2' interface layer 103, 132, 3 04B, , 3 0 8B , 3 0 8B', 312B' bottom surface 105, 105A, 105B, 105C, 105D, 205A, 2 0 5B conduit 106, 2 0 6, 3 0 6, 3 0 6 4 0 6 pipe layer 1 2 4 detector 1 0 7 zone 1 0 8,1 0 9 liquid 埠110, 111, 210A〇410, 410' microchannel 112, 116, 414, 414, 418, 418' channel 108, 116, 118, 118A, 118B, 118C, 118D, 118E, 1 18F , 120, 120A , 120F , 122 finger 119, 1 2 1 finger aperture 1 30,304A,,308A, 3 0 8 A top surface 2 0 0, 20 0,, 3 0 0, 3 0 0,, 4 0 0 heat exchanger 2 0 8, 208A, 2 0 8B inlet 2 0 9,2 0 9A, 2 0 9B exit 埠 2 1 0 micro Channel wall 214 permeable vapor membrane 3 0 1 microporous structure 3 0 3 series cylinder · 3 0 3B square 3 0 3C diamond, oval 3 0 3D hexagon 3 0 3E distance wing 304,, 3 0 8, 3 0 8', 312, 312' level 314, 314, , 315, 315, 316, 316,, 345, 408, 40 9 bees 32 0' 3 2 0', 3 2 6', 328, 3 28' narrow channel 3 2 2 transmission channel '

321’,322,322,,324,324’,33 0’孔隙 411,411’,412,412’平行液體導管 416’ 416A,416B槽溝 42 0曲線表面321', 322, 322, 324, 324', 33 0' aperture 411, 411', 412, 412' parallel liquid conduit 416' 416A, 416B groove 42 0 curved surface

Claims (1)

1295725 六、申請專利範圍 1 . 一種熱交換 a. —介面層 間以冷卻該熱 b. —支管層 別路徑用以傳 體路徑之配置 其中,該介面 預定圖案; 其中,該複數 1 0 W / m k之適當 2. —種冷卻一 a. —介面層 b. —支管層 i ·第一位 供傳輸液體至 最佳液體傳輸 i i·一第二 層移除液體; 其中,該介面 該複數個柱體 1 0 W/mk之適當 3. 如申請專利 構沿該介面層 4. 如申請專利 器包含: 係與熱源接觸及構型為可使液體通過貫穿其 源;及 耦合至該介面層,該支管層尚包含第一組個 輸液體至該介面層,在該第一組中之個別液 可使熱交換器中之壓力降最小; 層尚含複數個柱體,其構型於沿該介面層之 個柱體包括一塗層於其上,該塗層有一至少 熱傳導率。 熱源之熱交換器,包含: 與熱源接觸,並構型為可使液體通過貫穿〆 搞合至該介面層,該支管層尚含: 準,具有複數個實際上垂直之入口路徑,以 該介面層,其中該入口路徑彼此間安排有一 距離;及 L位準,具有至少一出口路徑以供自該介面 層尚含複數個柱體以適當圖案配置其上; 包括一塗層於其上,其中該塗層有一至少 熱傳導率。 範圍第2項之熱交換器,尚包含一多孔微結 配置。 範圍第3項之熱交換器,其中該多孔微結構1295725 VI. Patent application scope 1. A heat exchange a. - inter-layer layer to cool the heat b. - a branch pipe layer path for a transfer path configuration, wherein the interface is in a predetermined pattern; wherein the complex number is 10 W / mk Suitably 2. a kind of cooling a. - interface layer b. - branch layer i · first position for transporting liquid to optimal liquid transport ii · a second layer of removing liquid; wherein the interface is a plurality of columns Appropriate for 1 0 W/mk 3. If the patent application is along the interface layer 4. The patent application comprises: contacting and configuring a heat source to pass liquid through its source; and coupling to the interface layer, the branch The layer further comprises a first set of liquids to the interface layer, wherein the individual liquids in the first group minimize the pressure drop in the heat exchanger; the layer further comprises a plurality of columns disposed along the interface layer The cylinder includes a coating thereon that has at least thermal conductivity. The heat source heat exchanger comprises: a contact with a heat source and configured to allow liquid to pass through the enthalpy to the interface layer, the branch layer further comprising: a plurality of substantially vertical inlet paths, the interface a layer, wherein the inlet paths are arranged at a distance from each other; and an L-level having at least one outlet path for the interface layer to have a plurality of columns disposed in a suitable pattern thereon; comprising a coating thereon The coating has at least thermal conductivity. The heat exchanger of the second item also contains a porous microjunction configuration. The heat exchanger of the third aspect, wherein the porous microstructure 第60頁 1295725__ …… ^ , 六、申請專利範圍 包括至少一微孔,其沿一預定方向有一可變尺寸。 5 ·如申請專利範圍第3項之熱交換器,其中該多孔微結構 之平均孔尺寸在及包括3 0微米及3 0 0微米之範圍。 6 ·如申請專利範圍第3項之熱交換器,其中該多孔微結構 之至少一區具有在及包括0· 3及0 · 8之範圍之一多孔性。Page 60 1295725__ ...... ^ , VI. The scope of the patent application includes at least one microhole having a variable size along a predetermined direction. 5. The heat exchanger of claim 3, wherein the porous microstructure has an average pore size in the range of 30 micrometers and 300 micrometers. 6. The heat exchanger of claim 3, wherein at least one region of the porous microstructure has a porosity in the range of 0 and 3 and 0.8. 第61頁 1295725 中文^月摘要(發明名稱:冷卻發熱裝 置之效率錯直流體輸送之方法及裝置) 一種熱交換器及其製造 源。介面層耦合至熱源及構 父換尚包含一支管層耦合 第一埠耦合至第一組個別化 組。該支管層包括至少一第 該洞係傳輸液體通過第二組 可提供第一及第二埠之間之 熱源。較佳為第一組中之每 之最近最佳距離。 方法’包含一介面層以冷卻熱 型為可使液體通過貫穿。該熱 至介面層。介面層包括至少一 洞’該洞係傳輸液體通過第一 二璋耦合至第二組個別化洞, 。第一組洞及第二組洞之安排 最小液體路徑距離以適當冷卻 一洞配置在與第二組洞相鄰洞 五、(一)、本案代表圖為··第____7 A____圖 (二)、本案代表圖之元件代表符號簡單說明: 液體導管412,412’ for Efficient Vertical Fluid 琿408,40 9 平行 六、英文發明摘要(發明名稱:Method and Apparatus Delivery for Cooling a Heat Producing Device) A heat exchanger and method of manufacturing thereof comprises an interface layer for cooling a heat source. The interface layer is coupled to the heat source and is configured to pass fluid therethrough. The heat exchanger further comprises a manifold layer that is coupled to the interface layer. The manifold layer includes at 1 east one first port that is coupled to a first set ofPage 61 1295725 Chinese ^ month summary (Invention name: Method and apparatus for efficiency of DC body transport for cooling heating devices) A heat exchanger and its source of manufacture. The interface layer is coupled to the heat source and the constitutive member includes a tube layer coupling first 埠 coupled to the first group of individualized groups. The branch layer includes at least one first hole transporting liquid through the second set to provide a heat source between the first and second turns. Preferably, the closest optimal distance for each of the first groups. The method 'contains an interface layer to cool the heat profile so that liquid can pass through. This heat is applied to the interface layer. The interface layer includes at least one hole' that transports liquid through the first two turns to the second set of individualized holes. The first group of holes and the second group of holes are arranged with a minimum liquid path distance to properly cool a hole and are arranged adjacent to the second group of holes. 5. (1), the representative figure of the case is · ________________________ ), the representative symbol of the representative figure in this case is a brief description: Liquid conduit 412, 412' for Efficient Vertical Fluid 珲 408, 40 9 Parallel six, English invention summary (Invention name: Method and Apparatus Delivery for Cooling a Heat Producing Device) A heat The heat exchanger further comprising a manifold layer that is coupled to the interface layer. The interface is is to the heat source and is configured to pass fluid therethrough. Manifold layer includes at 1 east one first port that is coupled to a first set of 1295725 四、中文發明摘要(發明名稱:冷卻發熱裝置之效率鉛直流體輸送之方法及裝置) 通道414,414’ ,418,418, 槽溝4 1 6,4 1 6A,4 1 6B 曲線表面4201295725 IV. Summary of Chinese Invention (Invention Name: Method and Apparatus for Efficient Lead-DC Body Transport for Cooling Heating Devices) Channels 414, 414', 418, 418, Grooves 4 1 4, 4 1 6A, 4 1 6B Curved Surface 420 六、英文發明摘要(發明名稱:Me1:hod and Apparatus for Efficient Vertical Fluid Delivery for Cooling a Heat Producing Device)6. English Abstract (Invention Name: Me1: hod and Apparatus for Efficient Vertical Fluid Delivery for Cooling a Heat Producing Device) individualized holes which channel fluid through the first set. The manifold layer includes at least one second port coupled to a second set of individualized holes which channel fluid through the second set. The first set of holes and second set of holds are arranged to provide a minimized fluid path distance between the first and second ports to adequate 1 y cool the heat source.The first layer of at least one second port coupled to a second set of individualized holes which channel fluid through the second set. The first set of holes and second set of holds are arranged to provide a Minimized fluid path distance between the first and second ports to adequate 1 y cool the heat source. 第6頁Page 6
TW93104503A 2003-03-17 2004-02-23 Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device TWI295725B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US45572903P 2003-03-17 2003-03-17
US10/439,635 US6988534B2 (en) 2002-11-01 2003-05-16 Method and apparatus for flexible fluid delivery for cooling desired hot spots in a heat producing device
US10/680,584 US7000684B2 (en) 2002-11-01 2003-10-06 Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device

Publications (2)

Publication Number Publication Date
TW200419128A TW200419128A (en) 2004-10-01
TWI295725B true TWI295725B (en) 2008-04-11

Family

ID=45068527

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93104503A TWI295725B (en) 2003-03-17 2004-02-23 Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device

Country Status (1)

Country Link
TW (1) TWI295725B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790027A (en) * 2012-08-27 2012-11-21 无锡市福曼科技有限公司 Multi-runner water-cooling device for computer CPU (central processing unit)
TWI408329B (en) * 2010-02-12 2013-09-11 Univ Nat Sun Yat Sen Heat transfer micro-channel and heat sink and manufacturing method thereof
CN105027021A (en) * 2013-03-14 2015-11-04 阿威德热合金有限公司 System and method for cooling heat generating components
CN107810662A (en) * 2015-06-26 2018-03-16 微软技术许可有限责任公司 Cooled down via the subsea vessel of integrated heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236846B2 (en) * 2018-11-15 2023-03-10 株式会社Kelk TEMPERATURE CONTROLLER AND METHOD FOR MANUFACTURING TEMPERATURE CONTROLLER
TWI695467B (en) 2019-07-10 2020-06-01 國立交通大學 Thermal dissipation structure for integrated circuits

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408329B (en) * 2010-02-12 2013-09-11 Univ Nat Sun Yat Sen Heat transfer micro-channel and heat sink and manufacturing method thereof
CN102790027A (en) * 2012-08-27 2012-11-21 无锡市福曼科技有限公司 Multi-runner water-cooling device for computer CPU (central processing unit)
CN105027021A (en) * 2013-03-14 2015-11-04 阿威德热合金有限公司 System and method for cooling heat generating components
CN105027021B (en) * 2013-03-14 2019-04-09 阿威德热合金有限公司 For carrying out cooling component to heat generating components
CN107810662A (en) * 2015-06-26 2018-03-16 微软技术许可有限责任公司 Cooled down via the subsea vessel of integrated heat exchanger
US10524395B2 (en) 2015-06-26 2019-12-31 Microsoft Technology Licensing, Llc Artificial reef datacenter
CN107810662B (en) * 2015-06-26 2020-04-07 微软技术许可有限责任公司 Subsea vessel cooling system via integrated heat exchanger

Also Published As

Publication number Publication date
TW200419128A (en) 2004-10-01

Similar Documents

Publication Publication Date Title
TWI300469B (en) Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
TWI304879B (en) Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
TWI282840B (en) Interwoven manifolds for pressure drop reduction in microchannel heat exchangers
US7836597B2 (en) Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system
US8464781B2 (en) Cooling systems incorporating heat exchangers and thermoelectric layers
US20050211418A1 (en) Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
US20050211417A1 (en) Interwoven manifolds for pressure drop reduction in microchannel heat exchangers
US20040112571A1 (en) Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
JP2006054434A (en) Method and apparatus for flexibly transferring fluid for cooling desired hot spot in heat generating device
JP2006506603A5 (en)
JP2006515054A5 (en)
JP2008539090A (en) Microfluidic structure and manufacturing method thereof
US8006746B2 (en) 3-dimensional high performance heat sinks
JP2008111653A (en) Cooler
TWI295725B (en) Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device
JP2008530482A (en) Heat exchanger manufacturing method, micro heat exchanger manufacturing method, and micro heat exchanger
JP2004077051A (en) Heat transport device and its manufacturing method
JP6162836B2 (en) Heat exchanger
CN110581112A (en) Countercurrent double-layer micro-channel group micro-heat exchanger with phase separation structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees