TWI279740B - Parameter correction method of video cameras - Google Patents

Parameter correction method of video cameras Download PDF

Info

Publication number
TWI279740B
TWI279740B TW94110247A TW94110247A TWI279740B TW I279740 B TWI279740 B TW I279740B TW 94110247 A TW94110247 A TW 94110247A TW 94110247 A TW94110247 A TW 94110247A TW I279740 B TWI279740 B TW I279740B
Authority
TW
Taiwan
Prior art keywords
moving object
camera
parameter
path
video camera
Prior art date
Application number
TW94110247A
Other languages
Chinese (zh)
Other versions
TW200634667A (en
Inventor
Kuan-Wen Chen
Yi-Ping Hung
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW94110247A priority Critical patent/TWI279740B/en
Publication of TW200634667A publication Critical patent/TW200634667A/en
Application granted granted Critical
Publication of TWI279740B publication Critical patent/TWI279740B/en

Links

Landscapes

  • Studio Devices (AREA)

Abstract

Disclosed is a parameter correction method of video cameras. Mainly, the object proceeds correction against the video camera or the camera based on the influence of gravitation upon the movement. The method first makes the moving object be influenced by the gravitation to form the parabolic motion path to enable the video camera to do successive shooting of the moving object in motion in the movement path using the specific shutter speed to get the plurality of specific shooting tie and the correction image of the specific x, y positions on the image coordinates, and the geometric equation of perspective projection is based on as well as the positions of the image coordinates and shooting time are used to find out the internal parameter of the video camera and the external parameter of the planar projection transformation matrix.

Description

1279740 九、發明說明: 【發明所屬之技術領域】 本發明係_-賴影齡數校正方法 心引力影響騎_體之校正方法。兀純於又到地 【先前技術】 正Ϊ彻料鍊觸影—微狀間所存在 的理_上不會鶴_係參數值 峰職拍翻校正物的圖 參紐可分為内在參數和外在參數。攝 係,_二ΐΐ要為有關攝影機座標與影像座標間的關 可==角度與位置。所以,透過 -二摄不同攝衫機座標間的轉換,因此可由 “t彡^彡=過外在參數烟另—台攝影機 筘所方式犧在參數和外在參數的關 的任意點m表示式為:㈣,vf ;而3D的空間 表1表示式為:叫,若冠以〜符號代 月〇里,為原向量增加一個元素1貝Γ· 且 焦距等包括成像中咖、攝影機 亦摊〃 ’數則表不該攝影機在世界座標與攝影機 1279740 Μ 點之間的]關:可胤上的M點與影像座標上的m ^ = A[R|T]M, With A: a r u〇 〇 β v0 0 0 1 ⑴ m的比例係數(scaie fa伽);[r|t]為外在參數.r y ; 在參數;(y。)為攝影機 =在影像上垂直投影的座標;《和分別為影像上uf 2比例係數;γ絲示兩條影像上的軸的歪斜。如此’ 方衫⑴雜體在世界絲和攝影機 換。以下,以A—來表示(A-lf或卜卞。 Ή乍轉 假设攝影機拍攝到校正物,其在世界座標中= X β· y 1 = Atri r2 r3 t Y 0 = Atri r2 t X' Y 丄 1 1 (2) 接著可再推導成: *ym=HM, withH = A[r1 r2 t]. ⑶ 這其中,fi為μ的平面鄉觀矩陣(h_ matnx)’可表示_之間的對應關係。 由於% /g,因此方程式⑶可為: [h, h2 h3]=M[ri r2 t] (4) &為單位正切(〇rth〇_ai)㈣ ===⑷可得兩個内在參數矩_件限 1279740 W = H + JhfA-AXA-A' (5) η . r2 = 0 |hf A~rA_1h2 = 0 (6) 令 B = A rA 1 B\i B2l B3l B\2 B22 B32 •B\3 B23 B33 丄 —_r_ v0y-u0js a2 α2β α2β __Ύ_ Y1 1 Λν〇7-^〇β) ν〇 α2β α2β2 β2 α2β2 β21279740 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is a method for correcting the riding body.兀 pure to the ground [previous technique] Ϊ Ϊ Ϊ Ϊ — — — — — — — — Ϊ 微 微 微 微 微 微 微 微 微 微 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ External parameters. The camera system, _2 ΐΐ should be related to the camera coordinates and image coordinates can be == angle and position. Therefore, through the two-camera conversion between the coordinates of the different camera, it can be sacrificed at any point m of the parameter and the external parameter by "t彡^彡=over-external parameter smoke----------- For: (4), vf; and 3D space table 1 expression is: call, if the crown is replaced by the ~ symbol, add an element to the original vector 1 and the focal length, including the image of the coffee, the camera is also spread 'The number indicates that the camera is between the world coordinates and the camera 1279740 ] point: the M point on the 胤 and the m ^ = A[R|T]M on the image coordinates, With A: aru〇〇β V0 0 0 1 (1) The scale factor of m (scaie fa gamma); [r|t] is the extrinsic parameter .ry ; in the parameter; (y.) is the coordinate of the camera = vertical projection on the image; The uf 2 scale factor; γ silk shows the skew of the axis on the two images. So the 'square shirt (1) hybrid is exchanged in the world silk and the camera. Below, it is represented by A- (A-lf or divination. Suppose the camera captures the calibrator, which is in the world coordinates = X β· y 1 = Atri r2 r3 t Y 0 = Atri r2 t X' Y 丄1 1 (2) It can be deduced as follows: *ym=HM, withH = A[r1 r2 t]. (3) Among them, the plane of the plane of view (h_ matnx) where fi is μ can represent the correspondence between _. Because % /g, Therefore, equation (3) can be: [h, h2 h3]=M[ri r2 t] (4) & is unit tangent (〇rth〇_ai) (four) ===(4) can obtain two intrinsic parameter moments _ parts limit 1279740 W = H + JhfA-AXA-A' (5) η . r2 = 0 |hf A~rA_1h2 = 0 (6) Let B = A rA 1 B\i B2l B3l B\2 B22 B32 •B\3 B23 B33丄—_r_ v0y-u0js a2 α2β α2β __Ύ_ Y1 1 Λν〇7-^〇β) ν〇α2β α2β2 β2 α2β2 β2

^r-u〇p riyQY-u0p) ν〇 {y〇r-uQp)2 ν〇 ⑺ ~ΊΓβ άψy α2β2 y 由於Β為對稱矩陣,因此可用6D的向量來表示: b = [5U Bu B22 Bl3 B23 B33 ] (8) 令第i行的丑為^[/^〜W,則: h[B/z.-yJb (9) v々=Ά2+ά〗Ά2 ,Wltn h;3hfj3] 由條件限制式可得 >nX)r b = 0 (10) 因為b有6個未知數且b的值為比例係數相關,所以當取 像張數n>3,可求b的maximum likelihood解,即使以下 的式子結果為最小 zSlm" -ώ(Α,υ/,Μ7】Ι i=\ >=1 (11) 1279740 求得b之後,則可求得内在參數,如下 v〇 - (b12bu -bub2^)i{bub22 ~-δ122] ^ = ^33 ' [α23 + ν〇(ΒηΒη - ΒηΒ23)]/Βη «=λ/Ιλ^7(12) Τ^-Βηα2β/λ 11^22 - Α22) :^0/β-Β13α2/χ 内ΐί數'之後’再用Church方法與Arun方法則 =求件不同攝影機彼此間座標系轉換的外在參數R與τ。 校正時’需要讓多台攝影機同 正物’ *傳驗正綠的缺點是校正物為一侧 以方Γ遺意放大,或是當校正物太大時,娜 【發明内容】 t發?主要目的在提供—種攝影機參數校正方法,藉著 j叉到地d丨力影響的物物體,*對攝影機進行校正。 t明為-麵影機參數校正綠,主妓基於受到地心 引力影響的運動物體對攝影機進行校正。此方法首先使 ,物體沿著其所受到的地㈣力影響觸_運動路徑而 在世界座標上進機動、錄影機哺定驗n速度,對 在運動路財運躺運動物體連續_ 複^ru〇p riyQY-u0p) ν〇{y〇r-uQp)2 ν〇(7) ~ΊΓβ άψy α2β2 y Since Β is a symmetric matrix, it can be represented by a 6D vector: b = [5U Bu B22 Bl3 B23 B33 ] (8) Let the ugly line of the i-th line be ^[/^~W, then: h[B/z.-yJb (9) v々=Ά2+ά〗 Ά2, Wltn h; 3hfj3] >nX)rb = 0 (10) Since b has 6 unknowns and the value of b is proportional to the proportional coefficient, when taking the number of images n>3, the maximum likelihood solution of b can be obtained, even if the following expression is The minimum zSlm" -ώ(Α,υ/,Μ7]Ι i=\ >=1 (11) 1279740 After obtaining b, the intrinsic parameters can be obtained, as follows v〇- (b12bu -bub2^)i{bub22 ~-δ122] ^ = ^33 ' [α23 + ν〇(ΒηΒη - ΒηΒ23)]/Βη «=λ/Ιλ^7(12) Τ^-Βηα2β/λ 11^22 - Α22) :^0/β- Β13α2/χ ΐ 数 数 'after' using the Church method and the Arun method = the external parameters R and τ of the coordinate system conversion between the cameras. When correcting, 'multiple cameras need to be the same thing'. * The shortcoming of passing the test green is that the calibration object is enlarged by one side, or when the correction object is too large, Na [invention] t hair? The main purpose is to provide a camera parameter correction method, which corrects the camera by j-to-ground object affected by the ground force. t Ming is - the camera parameters are corrected green, and the main frame is corrected based on the moving object affected by gravity. This method first makes the object move along the earth (four) force it receives to influence the _ motion path, and the maneuver on the world coordinates, the video machine feeds the n speed, and the moving object in the sports road continually _ complex

定拍攝_和在影像座標上㈣定xy位㈣校 及依據透視投職何絲4 ’❿胁縣物财影像座掉 的位置和拍攝時間來求出攝影機的内部參數和 I 平面投影轉換矩陣。 8 ⑧ 1279740 最佳可能解(maximum likelihood estimation)來求得較適 當的Η’。由於基於/r而求出内在參數和外在參數屬於習= 方法,因此,底下將簡略說明如何進一步求出内在參數和1 外在參數。 又fee 〜則方程式⑸和⑹可將η推成以以央 表示 ^ (^yA-A-々)=h【™2 (16) φ ΚΤ^~ΤΑ~\ =0 令弟i行的/τ為[1: =¾ /4 ;2;3]r,方程式(9)則成: (17) ,wi th v) 一 卜為1 Ά + Ά 厶:2厶;2 hi3hjX + hnhj3 hnhj2 + hfi2hj3 ] 再由方程式(16)可得: ^=0 (18) b有6個未知數,不過b的值為比例係數相關,因此必須 修使^動物體1 〇被重新拋出至少5次並獲得相對數量的複數 個校正影像,而每拋一次球,我們可得到一π,則可得到 一個對應的〜。因此當拋球次數us,可得到足夠的式子(18) 來解b,並藉此採用習知的方程式進一步獲得内部參數。 =過,有時會有測量誤差產生,所以若拋球取像愈多次所 求得的值會愈精確。可用最佳可能解的方法,透過使方程 式(^)為最小來求得較精確的結果。 f求得内在參數A後’則每次拋球的水平速度V,可由方程 5(16)求得。求得v之後,則χ,γ均為已知,因此可以推 估出球運動時的拋物線式子,接著可再由得到的拋物線式 12 ⑧The camera's internal parameters and the I-plane projection conversion matrix are determined by taking the shot _ and the image coordinates (4) the xy position (4) and the position and shooting time of the Hesi 4' 8 8 1279740 The maximum likelihood estimation is used to find the appropriate Η'. Since the intrinsic parameters and extrinsic parameters are obtained based on /r, they are abbreviated as follows. Therefore, how to further find the intrinsic parameters and the 1 extrinsic parameters will be briefly explained. Also fee ~ then equations (5) and (6) can be used to push η to represent ^ (^yA-A-々)=h[TM2 (16) φ ΚΤ^~ΤΑ~\ =0 For [1: =3⁄4 /4 ;2;3]r, equation (9) is: (17) , wi th v) 1 为 + Ά 厶: 2厶; 2 hi3hjX + hnhj3 hnhj2 + hfi2hj3 ] From equation (16), we can get: ^=0 (18) b has 6 unknowns, but the value of b is proportional to the coefficient, so we must repair the animal 1 〇 to be re-thrown at least 5 times and get the relative amount. A plurality of corrected images, and each time we throw a ball, we can get a π, then we can get a corresponding ~. Therefore, when the number of throws is us, a sufficient formula (18) can be obtained to solve b, and thereby the internal parameters are further obtained by using a conventional equation. = too, sometimes there will be measurement errors, so the more the value obtained by the ball is, the more accurate the value will be. The best possible solution can be used to find a more accurate result by making the equation (^) minimum. f After obtaining the intrinsic parameter A, then the horizontal velocity V of each throwing ball can be obtained by Equation 5(16). After v is obtained, then γ, γ is known, so the parabolic equation for the ball motion can be estimated, and then the parabola can be obtained.

Claims (1)

1279740 重力加速度;t為時間。 4·如申請專利範圍第1項所述之校正方法,其中 將該運動物體由靜止狀態釋放時,該運動ς徑 則呈現一垂直線。 5·如^請專利範圍第4項所述之校正方法,其中 &著該運動路徑為該垂直線的該運動物體,其 籲 在該世界座標上的位置是以Υ方向為方向 和Z方向不變來表示;g為重力加速度;士為時 間。 6· 土申請專利範圍第3項所述之校正方法,其中 若為沿著該運動路徑為該拋物線的該運動物 體,由於其X方向的V/中的v為常數,因此其X方 1 簡化成t,而依據該透視投影幾何方程式所 獲得的該平面投影轉換矩陣也因乘上常數v變 _ 成一撤物轉換矩陣。 7\如申請專利範圍第1項所述之校正方法,其中 若為沿著該運動路徑為該拋物線的該運動物 體,必須使該運動物體被重新拋出一次以上並 獲得相對數量的複數個校正影像,而藉此獲得 該内部參數。1279740 Gravity acceleration; t is time. 4. The correction method according to claim 1, wherein the moving path presents a vertical line when the moving object is released from a stationary state. 5. The method of claim 4, wherein the moving path is the moving object of the vertical line, and the position on the world coordinate is the direction of the Υ direction and the Z direction. It is constant; g is the acceleration of gravity; 6. The method of claim 3, wherein if the moving object is the parabola along the moving path, since the V in the X direction is constant, the X square 1 is simplified. In the case of t, the plane projection transformation matrix obtained according to the perspective projection geometric equation is also multiplied by a constant v to form a relief transformation matrix. 7. The method of claim 1, wherein if the moving object is the parabola along the motion path, the moving object must be re-thrown more than once and a relative number of complex corrections are obtained. Image, and thereby obtain the internal parameters.
TW94110247A 2005-03-31 2005-03-31 Parameter correction method of video cameras TWI279740B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94110247A TWI279740B (en) 2005-03-31 2005-03-31 Parameter correction method of video cameras

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94110247A TWI279740B (en) 2005-03-31 2005-03-31 Parameter correction method of video cameras

Publications (2)

Publication Number Publication Date
TW200634667A TW200634667A (en) 2006-10-01
TWI279740B true TWI279740B (en) 2007-04-21

Family

ID=38645502

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94110247A TWI279740B (en) 2005-03-31 2005-03-31 Parameter correction method of video cameras

Country Status (1)

Country Link
TW (1) TWI279740B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10395391B1 (en) 2018-04-17 2019-08-27 National Chiao Tung University System and method of automatic calibration of principal point

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579123B (en) * 2016-07-18 2017-04-21 國立虎尾科技大學 Robot correction system and method thereof
TWI705292B (en) * 2020-02-14 2020-09-21 致伸科技股份有限公司 Method of determining assembly quality of camera module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10395391B1 (en) 2018-04-17 2019-08-27 National Chiao Tung University System and method of automatic calibration of principal point

Also Published As

Publication number Publication date
TW200634667A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
US9448067B2 (en) System and method for photographing moving subject by means of multiple cameras, and acquiring actual movement trajectory of subject based on photographed images
TWI281623B (en) Orientation point orientating method of orientation device and device thereof
TWI361396B (en) Image synthesis system for a vehicle and the manufacturing method thereof mage synthesis device and method
CN104240262B (en) Calibration device and calibration method for outer parameters of camera for photogrammetry
CN106500596B (en) The measurement method of structure light panorama measuring system
JP2012516504A5 (en)
CN109448041A (en) A kind of capsule endoscope 3-dimensional reconstruction method and system
CN105654476B (en) Binocular calibration method based on Chaos particle swarm optimization algorithm
TWI279740B (en) Parameter correction method of video cameras
CN105160663A (en) Method and system for acquiring depth image
JP2010524279A5 (en)
JP2003254748A5 (en)
TW200910146A (en) Interactive image system, interactive device and operative method thereof
CN103903263B (en) A kind of 360 degrees omnidirection distance-finding method based on Ladybug panorama camera image
WO2016194330A1 (en) Action display system and program
TWI301707B (en)
JP2011237716A5 (en) Digital camera, control method thereof, and program
JP2014053823A5 (en)
CN104200469B (en) Data fusion method for vision intelligent numerical-control system
CN108596826A (en) Based on spherical surface camera lens image-pickup method, system, device and readable storage medium storing program for executing
JP2013009789A (en) Camera system, photographing system, and photographing method
CN105354853B (en) Two-step method based on non-coplanar control straight line imaging demarcation camera parameter
CN106257924B (en) Multi-visual angle filming device and multi-visual angle filming method
CN113506210A (en) Method for automatically generating point maps of athletes in basketball game and video shooting device
CN106488143B (en) It is a kind of generate video data, in marking video object method, system and filming apparatus