TWI271888B - Solid oxide full cells module of multiple tubular electrodes - Google Patents

Solid oxide full cells module of multiple tubular electrodes Download PDF

Info

Publication number
TWI271888B
TWI271888B TW094139181A TW94139181A TWI271888B TW I271888 B TWI271888 B TW I271888B TW 094139181 A TW094139181 A TW 094139181A TW 94139181 A TW94139181 A TW 94139181A TW I271888 B TWI271888 B TW I271888B
Authority
TW
Taiwan
Prior art keywords
fuel cell
fuel
layer
gas
tubular
Prior art date
Application number
TW094139181A
Other languages
Chinese (zh)
Other versions
TW200719515A (en
Inventor
Lieh-Kwang Chiang
Yu-Ching Tsai
Chia-Lieh Huang
Wei-Ping Huang
Chien-Hsiung Lee
Original Assignee
Iner Aec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iner Aec filed Critical Iner Aec
Priority to TW094139181A priority Critical patent/TWI271888B/en
Priority to JP2005362222A priority patent/JP4397886B2/en
Priority to US11/385,851 priority patent/US7674543B2/en
Application granted granted Critical
Publication of TWI271888B publication Critical patent/TWI271888B/en
Publication of TW200719515A publication Critical patent/TW200719515A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a solid oxide fuel cells, which comprises: a plurality of tubular electrodes, supplying reacting gases means, and a preheat piping. The tubular electrodes are concentrically arranged while enabling the polarity of a surface of any one of the plural electrodes is the same as that of the corresponding surface faced thereto of the electrode adjacent thereto; wherein each tubular electrode further comprises an anode layer, a cathode layer, and a solid electrolyte layer sandwiched between the anode layer and the cathode layer. The supplying reacting gases means is capable of supplying fuel and gas respectively to the anode and cathode of the tubular electrodes. The preheat piping, connected to the supplying reacting gases means, collects the heat, generated from the combustion reaction of residual fuel and gas, which can be utilized to preheat the supplying reacting gases means. The concentric electrode structure of the invention is compact and space saving, so that the efficiency per unit volume of the fuel cell adopting the same is enhanced. Moreover, by employing the referring fuel cell as one power generating unit, a fuel cell module can be formed by combining a plurality of the power generating units that the modularized design enables the fuel cell module to incorporate any amount of fuel cells therein with flexible formation while enabling each fuel cell of the fuel cell module to be maintained and replaced with ease.

Description

1271888 九、發明說明: ’ 【發明所屬之技術領域】 , 本發明係有關於燃料電池以及模組。特別是關於一種 • ·利用多層管狀電極,並配合連接管狀電極兩側連接板,以 ^及氣體預熱管路,來減少内電阻、增進燃料電池的運作效 率以及節省空間之一種多層圓管型固態氧化物燃料電池模 組。 ⑩ 【先前技術】 燃料電池是大約在160年前的1839年由英國的Grove 所發明’而燃料電池邁向實用化之路程是從1940年開始, 由太空船上的電源,往產業、民生之應用開發急速升高, 進展至今所見之固定位置使用燃料電池。燃料電池的操作 原理可簡述如下·燃料與氧化劑(空氣)在進入固態氧化物 燃料電池(solid oxide fuel cell, S0FC)之前會先被預 熱至接近固悲氧化物燃料電池的操作溫度(6〇〇〜1〇〇〇。〇)。 * 而在此高溫的條件下,燃料(曱烷)與水汽可以在固態 氧化物燃料電池的陽極產生重組反應,將甲烧重組成氮氣 與了氧化碳;而一氧化碳又可以再與水汽產生水汽轉移反 =、w進步釋出氫軋與二氧化碳。在陰極側的空氣在如此 條件下’其間的氧氣會與來自外部電路的電子反應形 、氧,子,此氧離子會透過固態電解質遷移至陽極側與其 間的氫氣產生電化學反應,釋出電子、水與熱。 、/、 •此時,電子透過外電路可用來產生功,而在固態氧化 物燃料電池出口處,則會有溫度高達70(rc以上的廢氣與 6 1271888 殘餘燃料,一般固態氧化燃料電池分為圓管式與平板式, 因為平板型在密封上會面臨很多問題所以,1960年開如西 屋公司開始發展圓管型S〇FC技術(例#如° : • US. Pat. No. 4490444 、 US.Pat.No. 4833042 _ ⑽· Pat· No· 6416897、US· Pat· No· 6444342),此圓筒型固能 氧化物燃料電池是由燃料極/電解質/空氣極組成一根電= 管’可順利的吸收無脹冷縮’而且不需作密封,操作溫度 於1000度亦可安定運轉,但是其缺點為製程技術相當^ >雜’製作成本高昂,且電流行進路線較長,因此電池;電 阻損失較高。此外,如果要增加發電量,如前述 U· S· Pat· No· ‘490444所揭露之方式,係將複數個圓筒型固 態氧化物燃料電池相鄰的排列,此舉雖然可以達到增加發 電力之目的,但也增加了使用上之體積,造成不便。 此外,在美國公開專利US2004258972所揭露的一種電 極結構為同心之環狀電極結構,雖然其同心環狀電極結構 可以克服空間浪費之缺點,但是,並無具備燃料回收以及 . 氣體預熱之功能以及模組化電池之優點。 基於上述之問題,因此需要一種固態氧化物之電極結 構及其使用該電極結構之燃料電池,以解決上述習知技術 之缺失。 【發明内容】 本發明的主要目的是提供一種多層圓管型固態氧化物 燃料電池模組,其係於單一空間中,佈置多層同心排列之 電極,以達到單位體積下輸出較高功率之目的— 7 1271888 燃料的次要目的是提供—種多層圓管型固態氧化物 綠、組’则電極組兩側連接板來縮短電流行進路 線’達到減低内阻抗之目的。 婵料=:f另一目的是提供-種多層圓管型固態氧化物 池她’其係將複數個多層圓管簡電池組合成單 兀’並利用複數個發電單元組成一電池模組,達 到弹性安裝、便於維修之目的。 ,的又—目的是提供—種多層圓管型固態氧化物 箱、1:〉模組’其係於供氣管路上設置預熱之管路,達到 預熱氣體以及燃料之目的。 孫勺2達到上述目的’本發明提供了 —種燃料電池,其 t括=:複數個管狀電極,其係設置於該燃料電池之殼 ,内,,複數個管狀電極呈同心排列以形成複數個反應空 ΐ且相Γ面具有相同之極性,該管狀電極 ϋΐ:層’一陰極層以及—固態電解質層,該固態 ”设置於該陽極層與陰極層之間。一反應物提供 U可提供-氣體給該管狀電極之陰極層以」 燃=該管狀電極之陽極層。以及一預熱管路,其係料 反=供部相連通,該預熱管路可接收由未反應之;; =體因南溫燃燒所產生之熱以預熱該反 之燃料以及氣體。 1 ^ 較佳的是,該反應物提供部更包括有:—氣 其係設置在最内層管狀電極之内部空間’該氣體管路通過 以陰極層㈣應之該反應空間的管壁上開設有至少一^ 孔’使該氣體可以流入該反應空間内;以及一敗料 、 其係設置在最内層管狀電極之内部空間,該燃料管路通過 8 1271888 以陽極層相對應之該反應空間的㈣上開 孔,使該燃料可以流入該反應空間内。 有至乂一通 較佳的是,該燃料電池,其係更包括至少— 其係分別與該管狀電極之陰極層與陽極層相連接連 對連接板其中之一片係可與另一片相對應。 /、 較佳的是,該燃料電池,其係更包括有 = 系分別與該管狀電極之陰極層與陽極層相 連接相互對應’ W —對連接板係分顺奸 陰極層與陽極層相連接且相互對應。 ° 較佳的是’其中該反應空間中與陽極 ,可選擇與相鄰反應空間内之相鄰管路電極之== 連接板作電性連接。 9上的 ,佳岐,料電池,其敎包 氣管路,以將燃燒反應後產生之廢氣排出。“路排 較佳的是,其中該預熱管路係為-螺旋管。 组,‘括㊁」目,,本發明更提供了—種燃料電池模 體内之複數個發電單元,該發電單 兀括有.複數個管狀電極,其係設 極呈同, ::且』面具有相同之極性,該管狀電 極更具有極層’―陰極層以及—固態電解質層, 態電解質層係設置於該陽極層與陰極層之間。一反應物 供部’其係可提供-氣體給該管狀電 ^ -燃料給該管狀電極之陽極層。至少二第3„ 設置於該殼體内,以提供固定該複數個單1板以= 數個預熱管路,其係分別與該複數個發料元之反= 1271888 . 供部相連通,該預熱管路可接收由未反應之燃料以及氣體 因高溫燃燒所產生之熱以預熱該反應物提供部内之燃料以 . 及氣體。 ^ 較佳的是,該第一集電板係為一陽極板。此外該燃料 . 電池模組更包括有至少一第二集電板,設置於該殼體内且 與該管狀電極之陰極層作電性連接。 較佳的是,該第一集電板係為一陰極板。此外該燃料 電池模組更包括有至少一第二集電板,設置於該殼體内且 Φ 與該管狀電極之陽極層作電性連接。 【實施方式】 為使貴審查委員能對本發明之特徵、目的及功能有 更進一步的認知與暸解,下文特將本發明之裝置的相關細 部結構以及設計的理念原由進行說明,以使得審查委員可 以了解本發明之特點,詳細說明陳述如下: 請參閱圖一 A以及圖一 B所示,其中圖一 A係為本發 明固態氧化物之電極結構之較佳實施例示意圖;圖一 B係 ® 為係為本發明固態氧化物之管狀電極立體組合示意圖。該 固態氧化物之電極結構1,其係包括有:複數個管狀電極, 其係呈同心排列且相鄰管狀電極相對之面具有相同之極 性。在本實施例中,該複數個管狀電極係更包括有一第一 管狀電極10、一第二管狀電極11以及一第三管狀電極12。 該第二管狀電極11係容置於該第一管狀電極10内,該第 三管狀電極12係容置於該第二管狀電極11内。這三個管 狀電極10、11、12係成同心圓排列,以減少單位發電功率 所佔有之體積。 1271888 一其凊苓閱圖一 c所示,該圖係為本發明固態氧化物之單 一官狀,極俯視示意圖。本圖係以第一管狀電極10來做說 月/亥苐盲狀電極具有一陽極層105、一陰極層107 一固態電解質層1〇6,該固態電解質層1〇6係設置於 %極層105與陰極層之間。在本實施例中雖然陽極 θ在外仁也可根據需要將陽極層設置在内。在本實施例 中,每一個管狀電極10、u、12之陽極層以及陰極層表面 各設置有兩對連接板101〜104、lu〜114、121〜124,每一 對連接板分別與每一個管狀電極之陽極層表面與陰極層表 面連接且相對應,以達到較佳之導電效果。在圖一 C中, 乂 ^亥第一管狀電極1〇為例,與陽極層連接之連接板 101係與陰極層1〇7連接之連接板1〇2松對應;與陽極層 105連接之連接板1〇3係與陰極層107連接之連接板1〇4 相,應。請參閱圖五所示,該圖係為電流流動路徑示意圖。 以第一管狀電極10為例,當每一管狀電極1〇反應所產生 之電流96藉由與該第一管狀電極1〇連接之連接板1〇1、 1〇3、104將電流串聯起來,因此可以縮短電流行進 路徑,以減少電壓損失。 ^請參閱圖二Α所示,該圖係為本發明燃料電池較佳實 靶=示意圖。利用本發明揭露之固態氧化物電極結構,可 以製作如圖二A所示之一燃料電池2。該燃料電池2包括: 體20、一發電單元21以及一反應物提供部22。該韻 電單元21係設置於該殼體2〇内,該發電單元21具有呈同 圓排列之一第一管狀電極21〇、一第二管狀電極211 ^ ^一第三管狀電極212。該第二管狀電極211係與該第一 官狀電極210形成一反應空間213,該第三管狀電極21: !271888 ^該第—官狀電極211形成一反應空間214。該第一管狀 應極之陰極層係與該第二管狀電極211之陰極層相對 ^。f第二管狀電極211之陽極層係與該第三管狀212電 f之陽極層相對應。而該第三管狀電極212之内部空間215 之電極層係為陰極層。1271888 IX. Description of the invention: ′ [Technical field to which the invention pertains] The present invention relates to a fuel cell and a module. In particular, a multi-layer tubular type that utilizes a multi-layer tubular electrode and cooperates with a connecting plate on both sides of the tubular electrode to reduce the internal resistance, improve the operating efficiency of the fuel cell, and save space by using a gas preheating line. Solid oxide fuel cell module. 10 [Prior Art] The fuel cell was invented by Grove in the United Kingdom about 160 years ago in 1839. The fuel cell is moving toward practical use. It has been used since 1940, from the power supply of spacecraft to the industry and people's livelihood. The development has been rapidly increasing, and fuel cells have been used in fixed positions as seen so far. The operating principle of the fuel cell can be briefly described as follows: The fuel and oxidant (air) are preheated to the operating temperature of the solid oxide fuel cell (S0FC) before entering the solid oxide fuel cell (S0FC). 〇〇~1〇〇〇.〇). * Under this high temperature condition, the fuel (decane) and water vapor can recombine at the anode of the solid oxide fuel cell, and the toluene is composed of nitrogen and carbon oxide; and the carbon monoxide can be transferred to the water vapor to generate water vapor. Anti-, w progress to release hydrogen rolling and carbon dioxide. The air on the cathode side under such conditions will react with the electrons from the external circuit, oxygen, and the oxygen ions will migrate through the solid electrolyte to the anode side to generate an electrochemical reaction with the hydrogen between the anode side, releasing electrons. Water and heat. At this time, electrons can be used to generate work through the external circuit, and at the outlet of the solid oxide fuel cell, there will be temperatures up to 70 (rc and above exhaust gas and 6 1271888 residual fuel, generally solid oxide fuel cells are divided into Round tube type and flat type, because the flat type will face many problems in sealing, in 1960, the open Westinghouse Company began to develop round tube type S〇FC technology (example #: ° : • US. Pat. No. 4490444, US .Pat.No. 4833042 _ (10)· Pat· No. 6416897, US Pat·No 6444342), this cylindrical solid oxide fuel cell is composed of a fuel electrode/electrolyte/air electrode. It can smoothly absorb non-expansion and shrinkage' and does not need to be sealed. The operating temperature can be stabilized at 1000 degrees, but its shortcoming is that the process technology is quite ^ > miscellaneous' production cost is high, and the current travel route is long, so the battery In addition, if the amount of power generation is to be increased, as described in the above-mentioned U.S. Pat. No. '490444, a plurality of cylindrical solid oxide fuel cells are arranged adjacent to each other. Although it can be increased The purpose of generating electricity is to increase the volume of use, which is inconvenient. In addition, an electrode structure disclosed in US Pat. No. 2004258972 is a concentric annular electrode structure, although its concentric annular electrode structure can overcome space waste. Disadvantages, however, have no fuel recovery and gas preheating functions and the advantages of modular batteries. Based on the above problems, there is a need for an electrode structure of a solid oxide and a fuel cell using the same to solve SUMMARY OF THE INVENTION The main object of the present invention is to provide a multi-layered tubular solid oxide fuel cell module that is arranged in a single space and arranged with a plurality of concentrically arranged electrodes to achieve a unit volume. The purpose of outputting higher power - 7 1271888 The secondary purpose of the fuel is to provide a multi-layered round tube type solid oxide green, and the group 'the electrode plate on both sides of the electrode group to shorten the current travel route' to achieve the purpose of reducing the internal impedance. Material =: f Another purpose is to provide a multi-layered round tube type solid oxide pool. A plurality of multi-layered circular tube batteries are combined into a single unit and a plurality of power generating units are used to form a battery module to achieve elastic installation and convenient maintenance. The purpose of the invention is to provide a multi-layer round tube type solid oxide box. , 1: Module ' is set to preheat the pipeline on the gas supply pipeline to achieve the purpose of preheating gas and fuel. Sun spoon 2 achieves the above purpose' The present invention provides a fuel cell, which includes: a plurality of tubular electrodes disposed in the shell of the fuel cell, wherein the plurality of tubular electrodes are concentrically arranged to form a plurality of reaction spaces and the opposite sides have the same polarity, the tubular electrode: layer 'one cathode The layer and the solid electrolyte layer are disposed between the anode layer and the cathode layer. A reactant provides U to provide a gas to the cathode layer of the tubular electrode to "burn" the anode layer of the tubular electrode. And a preheating line, wherein the material is connected to the supply portion, the preheating line can receive unreacted;; = the heat generated by the south temperature combustion to preheat the opposite fuel and gas. 1 ^ Preferably, the reactant supply portion further includes: - the gas is disposed in the inner space of the innermost tubular electrode - the gas line is opened through the wall of the reaction space where the cathode layer (four) is At least one hole 'to allow the gas to flow into the reaction space; and a smashed material, which is disposed in the inner space of the innermost tubular electrode, the fuel line passing through the anode layer corresponding to the reaction space (4) The upper opening is such that the fuel can flow into the reaction space. Preferably, the fuel cell further comprises, at least, a cathode layer and an anode layer respectively connected to the tubular electrode. One of the sheets of the connecting plate may correspond to the other sheet. Preferably, the fuel cell further comprises: a system respectively connected to the cathode layer and the anode layer of the tubular electrode to correspond to each other 'W - connecting the cathode plate to the cathode layer and the anode layer And correspond to each other. ° It is preferred that the reaction space and the anode are selectively electrically connected to the == connection plate of the adjacent pipeline electrode in the adjacent reaction space. On the 9th, Jiayu, the battery, and the gas-filled pipeline are used to discharge the exhaust gas generated after the combustion reaction. Preferably, the preheating line is a spiral tube. The group is provided with a plurality of power generating units, and the power generating unit is provided. Included in the plurality of tubular electrodes, which are provided with the same polarity, and the: and the faces have the same polarity, and the tubular electrode further has a pole layer 'cathode layer and a solid electrolyte layer, and the electrolyte layer is disposed thereon Between the anode layer and the cathode layer. A reactant supply portion' can provide a gas to the tubular electrode to the anode layer of the tubular electrode. At least two thirds are disposed in the housing to provide fixation of the plurality of single plates to = a plurality of preheating lines respectively connected to the plurality of sending elements = 1271888. The preheating line can receive the unheated fuel and the heat generated by the combustion of the gas at a high temperature to preheat the fuel in the reactant supply portion and the gas. ^ Preferably, the first collector plate is An anode plate. In addition, the fuel module further includes at least one second collector plate disposed in the casing and electrically connected to the cathode layer of the tubular electrode. Preferably, the first set The electric fuel cell module further includes at least one second current collecting plate disposed in the casing and electrically connected to the anode layer of the tubular electrode. The review board members can further understand and understand the features, objects and functions of the present invention. The detailed structure of the device of the present invention and the concept of the design are explained below so that the reviewing committee can understand the characteristics of the present invention. ,Detailed description Please refer to FIG. 1A and FIG. 1B, wherein FIG. 1A is a schematic diagram of a preferred embodiment of the electrode structure of the solid oxide of the present invention; FIG. 1B is a solid oxide of the present invention. The solid electrode structure 1 includes a plurality of tubular electrodes which are arranged concentrically and have opposite polarities on opposite sides of the adjacent tubular electrodes. In this embodiment, The plurality of tubular electrode systems further includes a first tubular electrode 10, a second tubular electrode 11, and a third tubular electrode 12. The second tubular electrode 11 is received in the first tubular electrode 10, the third tubular The electrode 12 is housed in the second tubular electrode 11. The three tubular electrodes 10, 11, 12 are arranged in a concentric circle to reduce the volume occupied by the unit power. 1271888 The figure is a single official shape of the solid oxide of the present invention, and is a top view. The figure is a first tubular electrode 10, and the blind electrode has an anode layer 105 and a cathode layer 107. solid The electrolyte layer 1〇6 is disposed between the % pole layer 105 and the cathode layer. In the present embodiment, although the anode θ is in the outer core, the anode layer may be disposed as needed. The anode layer and the cathode layer surface of each of the tubular electrodes 10, u, and 12 are respectively provided with two pairs of connecting plates 101 to 104, lu 114, 121 to 124, and each pair of connecting plates and the anode of each of the tubular electrodes The surface of the layer is connected to the surface of the cathode layer and corresponds to achieve a better electrical conductivity. In Fig. 1C, the first tubular electrode 1〇 of the 乂^hai is taken as an example, and the connecting plate 101 and the cathode layer are connected to the anode layer. 7 connected connecting plates 1 〇 2 loose; the connecting plate 1 〇 3 connected to the anode layer 105 is connected to the connecting plate 1 〇 4 of the cathode layer 107. Please refer to Figure 5, which is a schematic diagram of the current flow path. Taking the first tubular electrode 10 as an example, when the current 96 generated by the reaction of each tubular electrode 1 is connected in series by the connecting plates 1〇1, 1〇3, 104 connected to the first tubular electrode 1〇, Therefore, the current travel path can be shortened to reduce voltage loss. ^ Please refer to Figure 2, which is a preferred target of the fuel cell of the present invention = schematic diagram. With the solid oxide electrode structure disclosed in the present invention, a fuel cell 2 as shown in Fig. 2A can be fabricated. The fuel cell 2 includes a body 20, a power generating unit 21, and a reactant supply portion 22. The power unit 21 is disposed in the casing 2, and the power generating unit 21 has a first tubular electrode 21A and a second tubular electrode 211 and a third tubular electrode 212 arranged in a circle. The second tubular electrode 211 forms a reaction space 213 with the first official electrode 210. The third tubular electrode 21: !271888 ^ The first-shaped electrode 211 forms a reaction space 214. The cathode layer of the first tubular electrode is opposite to the cathode layer of the second tubular electrode 211. f The anode layer of the second tubular electrode 211 corresponds to the anode layer of the third tubular 212. The electrode layer of the inner space 215 of the third tubular electrode 212 is a cathode layer.

母個管狀電極之陽極層以及陰極層各連接有相互對 兩連接板 21 〇1〜21〇4、2111〜21114、212卜2124。在本 、施例中,該第一管狀電極210之陰極層一側上之連接板 102係以導線體24與相鄰之第二管狀電極211之陽極層 上的連接板2112相連接;該第一管狀電極21〇陰極層另一 側上之連接板21〇4係以導線體24與相鄰之第二管狀電極 2U之陽極層上的連接板2114相連接。而該第二管狀電極 211★之陰極層一側上之連接板2111係以導線體24與相鄰 ,第二官狀電極212之陽極層上的連接板2121相連接;該 第二管狀電極211陰極層另一側上之連接板2113係以導^ 體24與相鄰之第三管狀電極212之陽極層上的連接板Μ” 相連接。戎燃料電池2係利用陽極導線以及陰極導 燃料電池2所發之電導出。 ^ 該反應物提供部22係設置在該第三管狀電極212之 ,空間中215,該反應物提供部22係可提供一氣體給 ,電極之陰極層以及提供-燃料給該管狀電極之陽_。 在本實施例中,該反應物提供部22包括有—氣體曰 以及-燃料管路220。請參閱圖二Α以及圖二Β所示 氣體管路221係設置在第三管狀電極212之内部空 ^ 該氣體管路⑵㈣赠極層㈣叙該反毅 上開設有至少-狀2210、2211,使該氣體可以流入^ 12 1271888 , 應空間213以及内部空間215内。該燃料管路220係設置 在第三管狀電極212之内部空間215,該燃料管路220通 過以陽極層相對應之該反應空間214的管壁上開設有至少 .· 一通孔2201、2202,使該燃料可以流入該反應空間214内 _ 以及殼體20與該第一管狀電極210之間的空間。 該反應物提供部22更連接有一預熱管25以形成尾續 燃燒區。該預熱管路25係包括有一燃料預熱管路250以及 一氣體預熱管路251。該燃料預熱管路250係與該燃料管 φ 路220相連通,該氣體預熱管路251係與該氣體管路221 相連通。由於在電池内未反應之燃料以及氣體會向上移動 之該預熱管路2 5區域’由於該燃料電池2係在南溫作業壞 境下,因此燃料與氣體會因高溫受熱而燃燒並釋放出熱能 與廢氣。廢氣由該排氣管路排出,而釋放出之熱能則會傳 遞至該預熱管路而預熱在管路内部之燃料以及氣體。在本 實施例中,該氣體預熱管路251與該燃料預熱管路25係為 一螺旋管體,其目的在增加管内氣體以及燃料流動之路徑 以增加預熱之時間,達到較佳之預熱效果。 * 請參閱圖三所示,該圖係為本發明燃料電池模組俯視 示意圖。本發明之燃料電池模組3係結合複數個發電單元 31以形成一發電模組3,使得使用者可彈性組合安裝以便 於維修更新。該燃料電池模組3係包括有一殼體30、複數 個發電單元31、以反應物提供部37以及至三第一集電板 33、34、35。在本實施例中,該電池模組係具有四個發電 單元31,該四個發電單元31係設置於該殼體内,至於該 發電單元31以及該反應物提供部37之結構係與本發明圖 二A所示之發電單元相同,在此並不多作贅述。 13 I27l888The anode layer and the cathode layer of the mother tubular electrode are connected to each other by two connecting plates 21 〇 1 21 21 〇 4, 2111 211 21114, 212 224. In the present embodiment, the connecting plate 102 on the cathode layer side of the first tubular electrode 210 is connected to the connecting plate 2112 on the anode layer of the adjacent second tubular electrode 211 by the wire body 24; A tubular electrode 21 is connected to the connecting plate 21114 on the other side of the cathode layer by a wire body 24 connected to the connecting plate 2114 on the anode layer of the adjacent second tubular electrode 2U. The connecting plate 2111 on the cathode layer side of the second tubular electrode 211 is connected to the adjacent connecting plate 2121 on the anode layer of the second official electrode 212 by the wire body 24; the second tubular electrode 211 The connecting plate 2113 on the other side of the cathode layer is connected to the connecting plate Μ" on the anode layer of the adjacent third tubular electrode 212 by the conductor 24. The 戎 fuel cell 2 utilizes an anode wire and a cathode fuel cell. 2 is electrically derived. ^ The reactant supply portion 22 is disposed in the space 215 of the third tubular electrode 212, and the reactant supply portion 22 can provide a gas supply, a cathode layer of the electrode, and a supply-fuel In the present embodiment, the reactant supply portion 22 includes a gas gas and a fuel line 220. Please refer to Figure 2 and Figure 2 for the gas line 221. The inner portion of the third tubular electrode 212 is provided with at least a shape 2210, 2211, so that the gas can flow into the space 213 and the inner space 215. The fuel line 220 is disposed in the third tube The inner space 215 of the electrode 212, the fuel line 220 is provided with at least one through hole 2201 and 2202 through the wall of the reaction space 214 corresponding to the anode layer, so that the fuel can flow into the reaction space 214. a space between the housing 20 and the first tubular electrode 210. The reactant supply portion 22 is further connected with a preheating tube 25 to form a trailing combustion zone. The preheating line 25 includes a fuel preheating line 250. And a gas preheating line 251. The fuel preheating line 250 is in communication with the fuel tube φ road 220, and the gas preheating line 251 is in communication with the gas line 221. Since it is not reacted in the battery The fuel and gas will move upward in the preheating line 2 5 'Because the fuel cell 2 is in an environment of south temperature operation, the fuel and gas will burn due to high temperature and release heat and exhaust gas. The exhaust line is exhausted, and the released heat energy is transmitted to the preheating line to preheat the fuel and the gas inside the pipeline. In the present embodiment, the gas preheating line 251 and the fuel preheating The heat pipe 25 is a spiral pipe The purpose of the invention is to increase the time of the gas in the tube and the flow of the fuel to increase the preheating time to achieve a better preheating effect. * Please refer to FIG. 3, which is a schematic view of the fuel cell module of the present invention. The fuel cell module 3 is combined with a plurality of power generating units 31 to form a power generating module 3, so that the user can be flexibly assembled and installed to facilitate maintenance and repair. The fuel cell module 3 includes a casing 30 and a plurality of power generating units. 31. The reactant supply unit 37 and the third first power collection plates 33, 34, and 35. In the embodiment, the battery module has four power generation units 31, and the four power generation units 31 are disposed in the The structure of the power generating unit 31 and the reactant supply unit 37 in the casing is the same as that of the power generating unit shown in FIG. 2A of the present invention, and will not be further described herein. 13 I27l888

在本實施例中,係使用三個第一集電板33、34、35, 其中兩第一集電板33、35係與該殼體30内之側壁相鄰靠, 而第二個第一集電板34則設置在兩第一集電板、35之 中央,以形成分隔的空間來容置該發電單元31,該第一集 電板33、34、35係可頂靠該發電單元31,以提供固定該 發電單元。該第一集電板33、34、35除了提供固定發電單 =31之外,更可以作為導電用之集電板。在本實施例中該 發電單元31之外層係為陽極層,因此該第一集電板33、 34、35之極性係為陽極。 此外在兩發電單元31之間更設置有一第二集電板 38。在本實施例中,該第二集電板邡之極性係為陰極,該 第二集電板可藉由導線體36與該發電單元31之陰極層作 2連接,在本實施例中該導線體36係由連接板所構成。 二第厂集電板33、34、35與該第二集電板38以將燃料電 从极且所產生之電力導出。雖然在本實施例中,該燃料電 3具有四個發電單元’但在實際實施上可根據不同 之而求增加或減少該發電單元之數量。例如:可以利用兩 該且3進行組合’然後將第-集電板 -隹起來以產生更大之電力。至於該第 及該第二㈣板之極性則是根據第—管狀電極 me該第一管狀電極之外層電極為陰極 則為陰極之電極板,㈣第m 則為〶極之電極板。在圖三之電池模_ 管路形成尾續__ μ ^ 雖未+出以預熱 A之方ϋ F1、“、k °σ的、、"構,仁其相關之連接關係與圖二 Α之方式相同,在此不做贅述。 請參閱圖四所示,該圖係為本發明較佳實施例之燃料 14 ^271888 ,池運作示意圖。該第—管 川以及該第三管狀電極213係㈣、、n^一官狀電極 管狀電極相對應之電極為同性二丄::且:鄰之 極w與該第二管狀开ΓΓ 一管狀電 應:間213。㈣二管狀電極211與該第三管狀電極 間則形成以陽極層相對應之反應空間214。而該第三 巨狀電極212之内部空間215則為陰極層。 一 由^該第-管狀電極21〇之外表面係為陽極層,所以 ^亥第_官狀電極21Q表面接觸的係為高溫之燃料氣體 例如甲烧、氫氣。該燃料管路22〇則在陽極層相對所 形成之反應空間214以及該殼體2〇與該第一管狀電極21〇 ,,的空間開设通孔22(Π、2202使燃料氣體93可以通入。 該氣體管路221則在陰極層相對所形成之反應空間215、 213開设通孔2210、2211使氣體94可以通入。而在此高 μ的條件下,在陰極層的氧氣會與來自外部電路的電子形 成氧離子,此氧離子會透過固態電解質遷移至陽極層與其 間的氫氣產生電化學反應,釋出電子。該預熱管路25可接 收由^反應之燃料93以及氣體94因高溫燃燒之後所產生 =熱能以預熱該反應物提供部22。反應之後之廢氣95再 藉由一排氣管路28排出。 唯以上所述者,僅為本發明之較佳實施例,當不能以 之,制本發明範圍。即大凡依本發明申請專利範圍所做之 均等變化及修飾,仍將不失本發明之要義所在,亦不脫離 本發明之精神和範圍,故都應視為本發明的進一步實施狀 況。 1271888 綜合上述,本發明具有提高單位體積之發電效率、縮 短電流路徑以減少電壓損失以及模組化設計可彈性組合安 裝以便於維修更新之特點,所以可以滿足業界之需求,進 而提高該產業之競爭力,誠已符合發明專利法所規定申請 發明所需具備之要件,故爰依法呈提發明專利之申請,謹 請貴審查委員允撥時間惠予審視,並賜準專利為禱。In this embodiment, three first collector plates 33, 34, 35 are used, wherein the two first collector plates 33, 35 are adjacent to the sidewalls in the casing 30, and the second first The collector plate 34 is disposed at the center of the two first collector plates 35 to form a space for accommodating the power generating unit 31. The first collector plate 33, 34, 35 can be placed against the power generating unit 31. To provide a fixed power unit. The first current collector plates 33, 34, 35 can be used as a current collector plate for conduction, in addition to providing a fixed power generation list = 31. In the present embodiment, the outer layer of the power generating unit 31 is an anode layer, and therefore the polarity of the first collector plates 33, 34, 35 is an anode. Further, a second collector plate 38 is further disposed between the two power generating units 31. In this embodiment, the polarity of the second collector plate is a cathode, and the second collector plate can be connected to the cathode layer of the power generating unit 31 by the wire body 36. In the embodiment, the wire The body 36 is composed of a connecting plate. The second factory collector plates 33, 34, 35 and the second collector plate 38 are used to derive fuel electricity from the poles and the generated electric power. Although in the present embodiment, the fuel electric power unit 3 has four power generating units', in actual practice, the number of the power generating units may be increased or decreased depending on the difference. For example, two and three can be combined and then the first collector plate can be picked up to generate more power. The polarities of the second and fourth plates are based on the first tubular electrode me, the outer electrode of the first tubular electrode is the electrode of the cathode, and the mth is the electrode plate of the drain. In Figure 3, the battery module _ tube formation continuation __ μ ^ Although not + to preheat A square ϋ F1, ", k °σ,, " structure, Renqiu related connection relationship and Figure 2 The method is the same and will not be described here. Please refer to FIG. 4, which is a schematic diagram of the operation of the fuel 14 ^ 271888 in the preferred embodiment of the present invention. The first tube and the third tubular electrode 213 The electrode corresponding to the tubular electrode of the (4), n^1 official electrode is a homogenous dipter: and: the adjacent pole w and the second tubular opening a tubular electrical: inter-213. (four) two tubular electrode 211 and the A reaction space 214 corresponding to the anode layer is formed between the third tubular electrodes, and the inner space 215 of the third giant electrode 212 is a cathode layer. The surface of the first tubular electrode 21 is an anode. The layer is in contact with the surface of the surface of the electrode 21Q which is a high-temperature fuel gas such as a gas-fired or hydrogen gas. The fuel line 22〇 is opposite to the reaction space 214 formed in the anode layer and the casing 2 The space of the first tubular electrode 21〇, opens a through hole 22 (Π, 2202 allows the fuel gas 93 to The gas line 221 defines a through hole 2210, 2211 in the reaction space 215, 213 formed in the cathode layer to allow the gas 94 to pass through. Under the condition of the high μ, the oxygen in the cathode layer will be Electrons from an external circuit form oxygen ions that migrate through the solid electrolyte to an electrochemical reaction between the anode layer and the hydrogen gas between them, releasing electrons. The preheating line 25 receives the fuel 93 and the gas 94 The heat is generated by the high temperature combustion to preheat the reactant supply portion 22. The exhaust gas 95 after the reaction is discharged through an exhaust line 28. Only the above is only a preferred embodiment of the present invention. The scope of the present invention is not limited thereto, that is, the equivalent changes and modifications of the scope of the present invention will remain without departing from the spirit and scope of the present invention. According to the above, the present invention has the advantages of improving power generation efficiency per unit volume, shortening current path to reduce voltage loss, and modular design. It is easy to repair and update, so it can meet the needs of the industry and improve the competitiveness of the industry. It has already met the requirements for applying for inventions as stipulated by the invention patent law, so it is an application for invention patents according to law. Please ask the review committee to allow time for review and grant the patent as a prayer.

16 1271888 【圖式簡單說明】 圖一 A係為本發明固態氧化物之電極結構之較佳實施例示 意圖。 .、 圖一 B係為本發明固態氧化物之管狀電極立體組合示意 . 圖。 圖一 C係為本發明固態氧化物之單一管狀電極俯視示意 圖。 圖二A係為本發明燃料電池較佳實施例示意圖。 φ 圖二B係為本發明氣體管路以及燃料管路立體示意圖。 圖三係為本發明燃料電池模組俯視示意圖。 圖四係為本發明較佳實施例之燃料電池運作示意圖。 圖五係為電流流動路徑不意圖。 【主要元件符號說明】 1-電極結構 ^ 10-第一管狀電極 101、102、103、104-連接板 • 105-陽極層 106- 固態電解質層 107- 陰極層 1卜第二管狀電極 111、112、113、114-連接板 12-第三管狀電極 121、122、123、124-連接板 2-燃料電池 20-殼體 1271888 21- 發電單元 210-第一管狀電極 2101、2102、2103、2104-連接板 、 211-第二管狀電極 2111、2112、2113、2114-連接板 212-第三狀電極 2121、2122、2123、2124-連接板 213、214-反應空間 I 215-内部空間 22- 反應物提供部 220- 氣體管路 2201、2202-通孔 221- 燃料管路 2210、2211-通孔 24-導線體 25-預熱管路 250-燃料預熱管路 * 251-氣體預熱管路 28-排氣管路 3-燃料電池模組 30- 殼體 31- 發電單元 32- 容置空間 33、34、35-第一集電板 36- 導線體 37- 反應物提供部 18 1271888 38-第二集電板 93- 燃料氣體 94- 氣體 95- 廢氣 96- 電流16 1271888 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic view of a preferred embodiment of an electrode structure of a solid oxide of the present invention. Fig. 1 B is a three-dimensional combination of the tubular electrodes of the solid oxide of the present invention. Figure 1 C is a top plan view of a single tubular electrode of the solid oxide of the present invention. Figure 2A is a schematic view of a preferred embodiment of the fuel cell of the present invention. φ Figure 2B is a schematic perspective view of the gas pipeline and the fuel pipeline of the present invention. FIG. 3 is a schematic top view of the fuel cell module of the present invention. Figure 4 is a schematic diagram of the operation of a fuel cell in accordance with a preferred embodiment of the present invention. Figure 5 is not intended for the current flow path. [Description of main component symbols] 1-electrode structure ^ 10-first tubular electrode 101, 102, 103, 104-connecting plate • 105-anode layer 106 - solid electrolyte layer 107 - cathode layer 1 second tubular electrode 111, 112 , 113, 114 - connecting plate 12 - third tubular electrode 121, 122, 123, 124 - connecting plate 2 - fuel cell 20 - housing 1271888 21 - power generating unit 210 - first tubular electrode 2101, 2102, 2103, 2104 Connecting plate, 211 - second tubular electrode 2111, 2112, 2113, 2114 - connecting plate 212 - third electrode 2121, 2122, 2123, 2124 - connecting plate 213, 214 - reaction space I 215 - internal space 22 - reactant Supply portion 220 - gas line 2201, 2202 - through hole 221 - fuel line 2210, 2211 - through hole 24 - wire body 25 - preheating line 250 - fuel preheating line * 251 - gas preheating line 28 - exhaust line 3 - fuel cell module 30 - housing 31 - power generating unit 32 - housing space 33, 34, 35 - first collector plate 36 - wire body 37 - reactant supply portion 18 1271888 38 - Two collector plates 93- Fuel gas 94- Gas 95- Exhaust gas 96- Current

1919

Claims (1)

1271888 十、申請專利範圍: 1. 一種燃料電池,其係包括有: 複數個管狀電極,其係設置於該燃料電池之一殼體 内,該複數個管狀電極呈同心排列以形成複數個反 應空間,相鄰管狀電極相對之面具有相同之極性, 該管狀電極更具有一陽極層,一陰極層以及一固態 電解質層,該固態電解質層係設置於該陽極層與陰 極層之間; Φ 一反應物提供部,其係可提供一氣體給該管狀電極之 陰極層以及提供一燃料給該管狀電極之陽極層; 一預熱管路,其係與該反應物提供部相連通,該預熱 管路可接收由未反應之燃料以及氣體因高溫燃燒 所產生之熱以預熱該反應物提供部内之燃料以及 氣體。 2. 如申請專利範圍第1項所述之燃料電池,其中該氣體係 為空氣。 φ 3.如申請專利範圍第1項所述之燃料電池,其中該氣體係 為氧氣。 4. 如申請專利範圍第1項所述之燃料電池,其中該燃料係 為氫氣。 5. 如申請專利範圍第1項所述之燃料電池,其中該燃料係 為曱烷。 * 6.如申請專利範圍第1項所述之燃料電池,其中該反應物 提供部更包括有: 一氣體管路,其係設置在最内層管狀電極之内部空 20 1271888 間,該氣體管路通過以陰極層相對應之該反應空間 的管壁上開設有至少一通孔,使該氣體可以流入該 反應空間内;以及 - 一燃料管路,其係設置在最内層管狀電極之内部空 - 間,該燃料管路通過以陽極層相對應之該反應空間 的管壁上開設有至少一通孔,使該燃料可以流入該 反應空間内。 7. 如申請專利範圍第1項所述之燃料電池,其係更包括至 • 少一對連接板,其係分別與該管狀電極之陰極層與陽極 層相連接。 8. 如申請專利範圍第7項所述之燃料電池,其中該對連接 板其中之一片係與另一片相對應。 9. 如申請專利範圍第1項所述之燃料電池,其係吏包括有 兩對連接板,其中一對連接板係分別與該管狀電極之陰 極層與陽極層相連接且相互對應,而另一對連接板係分 別與該管狀電極之陰極層與陽極層相連接且相互對應。 φ 10.如申請專利範圍第9項所述之燃料電池,其中該反應 空間中與陽極層連接之連接板係可選擇與相鄰反應空 間内之相鄰管路電極之陰極層上的連接板作電性連接。 11. 如申請專利範圍第1項所述之燃料電池,其係更包括 ^ 有一排氣管路,以將燃燒反應後產生之廢氣排出。 12. 如申請專利範圍第1項所述之燃料電池,其中該預熱 管路係為一螺旋管。 13. —種燃料電池模組,其係包括有: 複數個發電單元,其係設置於一殼體内,該發電單元 21 1271888 更包括有: 複數個管狀電極,其係設置於該燃料電池之殼體 内,該複數個管狀電極呈同心排列以形成複數個 • 反應空間,相鄰管狀電極相對之面具有相同之極 - 性,該管狀電極更具有一陽極詹,一陰極層以及 一固態電解質層,該固態電解質層係設置於該陽 極層與陰極層之間; 一反應物提供部,其係可提供一氣體給該管狀電極 • 之陰極層以及提供一燃料給該管狀電極之陽極 層;以及 至少二第一集電板,其係設置於該殼體内,以提供固 定該複數個發電單元;以及 複數個預熱管路,其係分別與該複數個發電單元内之 反應物提供部相連通,該預熱管路可接收由未反應 之燃料以及氣體因高溫燃燒所產生之熱以預熱該反 應物提供部内之燃料以及氣體。 • 14.如申請專利範圍第13項所述之燃料電池模組,其中該 氣體係為空氣。 15.如申請專利範圍第13項所述之燃料電池模組,其中該 氣體係為氧氣。 , 16.如申請專利範圍第13項所述之燃料電池模組,其中該 燃料係為氳氣。 17. 如申請專利範圍第13項所述之燃料電池模組,其中該 燃料係為曱烷。 ’ 18. 如申請專利範圍第13項所述之燃料電池模組,其中該 22 1271888 反應物提供部更包括有: 一氣體管路,其係設置在最内層管狀電極之内部空 間,該氣體管路通過以陰極層相對應之該反應空間 , 的管壁上開設有至少一通孔,使該氣體可以流入該 . 反應空間内;以及 一燃料管路,其係設置在最内層管狀電極之内部空 間,該燃料管路通過以陽極層相對應之該反應空間 的管壁上開設有至少一通孔,使該燃料可以流入該 _ 反應空間内。 19. 如申請專利範圍第13項所述之燃料電池模組,其係更 包括至少一對連接板,其係分別與該管狀電極之陰極層 與陽極層相連接。 20. 如申請專利範圍第19項所述之燃料電池模組,其中該 對連接板其中之一片係與另一片相對應。 21. 如申請專利範圍第13項所述之燃料電池模組,其係更 包括有兩對連接板,其中一對連接板係分別與該管狀電 φ 極之陰極層與陽極層相連接且相互對應,而另一對連接 板係分別與該管狀電極之陰極層與陽極層相連接且相 互對應。 22. 如申請專利範圍第21項所述之燃料電池模組,其中該 _ 反應空間中與陽極層連接之連接板係可選擇與相鄰反 應空間内之相鄰管路電極之陰極層上的連接板作電性 連接。 23. 如申請專利範圍第13項所述之燃料電池模組,其中該 第一集電板係為一陽極板。 23 1271888 24.如申請專利範圍第23項所述之燃料電池模組,其係更 包括有至少一第二集電板,設置於該殼體内且與該管狀 電極之陰極層作電性連接。 * 25.如申請專利範圍第13項所述之燃料電池模組,其中該 . 第一集電板係為一陰極板。 26.如申請專利範圍第25項所述之燃料電池模組,其係更 包括有至少一第二集電板,設置於該殼體内且與該管狀 電極之陽極層作電性連接。 φ 27.如申請專利範圍第13項所述之燃料電池模組,其係更 包括有一排氣管路,以將燃燒反應後產生之廢氣排出。 28.如申請專利範圍第13項所述之燃料電池模組,其中該 預熱管路係為一螺旋管。1271888 X. Patent Application Range: 1. A fuel cell comprising: a plurality of tubular electrodes disposed in a casing of the fuel cell, the plurality of tubular electrodes being concentrically arranged to form a plurality of reaction spaces The adjacent tubular electrodes have the same polarity, and the tubular electrode further has an anode layer, a cathode layer and a solid electrolyte layer disposed between the anode layer and the cathode layer; Φ-reaction And a material supply portion for supplying a gas to the cathode layer of the tubular electrode and providing a fuel to the anode layer of the tubular electrode; a preheating pipeline connected to the reactant supply portion, the preheating tube The road can receive heat from unreacted fuel and gas generated by high temperature combustion to preheat the fuel and gas within the reactant supply. 2. The fuel cell of claim 1, wherein the gas system is air. Φ 3. The fuel cell of claim 1, wherein the gas system is oxygen. 4. The fuel cell of claim 1, wherein the fuel is hydrogen. 5. The fuel cell of claim 1, wherein the fuel is decane. 6. The fuel cell of claim 1, wherein the reactant supply portion further comprises: a gas line disposed between the innermost inner tubular electrode 20 1271888, the gas line The gas may flow into the reaction space by opening at least one through hole in the tube wall of the reaction space corresponding to the cathode layer; and - a fuel line disposed inside the innermost tubular electrode The fuel pipeline is provided with at least one through hole through a wall of the reaction space corresponding to the anode layer, so that the fuel can flow into the reaction space. 7. The fuel cell of claim 1, further comprising a pair of connecting plates respectively connected to the cathode layer and the anode layer of the tubular electrode. 8. The fuel cell of claim 7, wherein one of the pair of webs corresponds to the other sheet. 9. The fuel cell according to claim 1, wherein the system comprises two pairs of connecting plates, wherein a pair of connecting plates are respectively connected to the cathode layer and the anode layer of the tubular electrode and correspond to each other, and A pair of connecting plates are respectively connected to the cathode layer and the anode layer of the tubular electrode and correspond to each other. Φ 10. The fuel cell according to claim 9, wherein the connecting plate connected to the anode layer in the reaction space is selected from a connecting plate on a cathode layer of an adjacent pipe electrode in an adjacent reaction space. Make an electrical connection. 11. The fuel cell of claim 1, further comprising: an exhaust line for exhausting exhaust gas generated after the combustion reaction. 12. The fuel cell of claim 1, wherein the preheating line is a spiral tube. 13. A fuel cell module, comprising: a plurality of power generating units disposed in a casing, the power generating unit 21 1271888 further comprising: a plurality of tubular electrodes disposed on the fuel cell In the housing, the plurality of tubular electrodes are arranged concentrically to form a plurality of reaction spaces, and the adjacent tubular electrodes have the same polarity, and the tubular electrode further has an anode, a cathode layer and a solid electrolyte. a layer, the solid electrolyte layer is disposed between the anode layer and the cathode layer; a reactant supply portion for supplying a gas to the cathode layer of the tubular electrode and providing a fuel to the anode layer of the tubular electrode; And at least two first current collecting plates disposed in the casing to provide fixing of the plurality of power generating units; and a plurality of preheating pipes respectively connected to the reactant supply portions in the plurality of power generating units In communication, the preheating line can receive heat generated by unreacted fuel and gas generated by high temperature combustion to preheat the fuel in the reactant supply portion. Gas. The fuel cell module of claim 13, wherein the gas system is air. 15. The fuel cell module of claim 13, wherein the gas system is oxygen. 16. The fuel cell module of claim 13, wherein the fuel is helium. 17. The fuel cell module of claim 13, wherein the fuel is decane. The fuel cell module of claim 13, wherein the 22 1271888 reactant supply portion further comprises: a gas line disposed in an inner space of the innermost tubular electrode, the gas tube The passage passes through the reaction space corresponding to the cathode layer, and at least one through hole is opened in the tube wall to allow the gas to flow into the reaction space; and a fuel line is disposed in the inner space of the innermost tubular electrode The fuel line is provided with at least one through hole through a wall of the reaction space corresponding to the anode layer, so that the fuel can flow into the reaction space. 19. The fuel cell module of claim 13, further comprising at least one pair of connecting plates respectively connected to the cathode layer and the anode layer of the tubular electrode. 20. The fuel cell module of claim 19, wherein one of the pair of webs corresponds to the other sheet. 21. The fuel cell module of claim 13, further comprising two pairs of connecting plates, wherein a pair of connecting plates are respectively connected to the cathode layer and the anode layer of the tubular electric φ pole and mutually Correspondingly, the other pair of connecting plates are respectively connected to the cathode layer and the anode layer of the tubular electrode and correspond to each other. 22. The fuel cell module according to claim 21, wherein the connection plate in the reaction space connected to the anode layer is selectable on the cathode layer of the adjacent pipe electrode in the adjacent reaction space. The connecting plate is electrically connected. 23. The fuel cell module of claim 13, wherein the first collector plate is an anode plate. The fuel cell module of claim 23, further comprising at least one second collector plate disposed in the housing and electrically connected to the cathode layer of the tubular electrode . The fuel cell module of claim 13, wherein the first collector plate is a cathode plate. 26. The fuel cell module of claim 25, further comprising at least one second collector plate disposed in the housing and electrically connected to the anode layer of the tubular electrode. The fuel cell module of claim 13, further comprising an exhaust line for exhausting exhaust gas generated after the combustion reaction. 28. The fuel cell module of claim 13, wherein the preheating line is a spiral tube. 24twenty four
TW094139181A 2005-11-08 2005-11-08 Solid oxide full cells module of multiple tubular electrodes TWI271888B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW094139181A TWI271888B (en) 2005-11-08 2005-11-08 Solid oxide full cells module of multiple tubular electrodes
JP2005362222A JP4397886B2 (en) 2005-11-08 2005-12-15 Multi-layer circular pipe type solid oxide fuel cell module
US11/385,851 US7674543B2 (en) 2005-11-08 2006-03-22 Solid oxide fuel cell of multiple tubular electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094139181A TWI271888B (en) 2005-11-08 2005-11-08 Solid oxide full cells module of multiple tubular electrodes

Publications (2)

Publication Number Publication Date
TWI271888B true TWI271888B (en) 2007-01-21
TW200719515A TW200719515A (en) 2007-05-16

Family

ID=37742884

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094139181A TWI271888B (en) 2005-11-08 2005-11-08 Solid oxide full cells module of multiple tubular electrodes

Country Status (3)

Country Link
US (1) US7674543B2 (en)
JP (1) JP4397886B2 (en)
TW (1) TWI271888B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304122B2 (en) * 2009-02-06 2012-11-06 Protonex Technology Corporation Solid oxide fuel cell systems with hot zones having improved reactant distribution
US8638011B2 (en) 2009-07-10 2014-01-28 Protonex Technology Corporation Portable power manager operating methods
KR101109233B1 (en) * 2009-08-04 2012-01-30 삼성전기주식회사 Fuel cell comprising manifold capable of current collecting
US20110059383A1 (en) * 2009-09-04 2011-03-10 Shunsuke Taniguchi Combined cell structure for solid oxide fuel cell
US8822098B2 (en) * 2012-12-17 2014-09-02 GM Global Technology Operations LLC Manufacturing/assembly of a fuel distributor assembly
US9634485B2 (en) 2013-04-01 2017-04-25 Protonex Technology Corporation Power manager
US10109867B2 (en) 2013-06-26 2018-10-23 Upstart Power, Inc. Solid oxide fuel cell with flexible fuel rod support structure
KR102320128B1 (en) 2014-10-07 2021-11-02 프로토넥스 테크놀로지 코퍼레이션 Sofc-conduction
EP3218985B1 (en) 2014-11-11 2022-01-05 Galvion Soldier Power, LLC Control module for dc power network
TWI616405B (en) * 2015-01-22 2018-03-01 Electrochemical reaction method and electrochemical cell
JP6606606B2 (en) 2015-10-20 2019-11-13 プロトネクス テクノロジー コーポレイション Improved CPOX fuel reformer and SOFC system
US10790523B2 (en) 2015-10-20 2020-09-29 Upstart Power, Inc. CPOX reactor control system and method
US11258366B2 (en) 2015-11-20 2022-02-22 Galvion Soldier Power, Llc Power manager with reconfigurable power converting circuits
US10848067B2 (en) 2015-11-20 2020-11-24 Galvion Soldier Power, Llc Power manager with reconfigurable power converting circuits
US11108230B2 (en) 2015-11-20 2021-08-31 Galvion Soldier Power, Llc Power manager with reconfigurable power converting circuits
CN109845009B (en) 2016-08-11 2022-10-25 新兴电力公司 Planar solid oxide fuel cell and stack
CN109443043B (en) * 2018-09-05 2019-09-27 西安交通大学 A kind of lead-supercritical carbon dioxide Intermediate Heat Exchanger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490444A (en) * 1980-12-22 1984-12-25 Westinghouse Electric Corp. High temperature solid electrolyte fuel cell configurations and interconnections
US4833042A (en) * 1988-01-27 1989-05-23 Rockwell International Corporation Nonalloyed ohmic contacts for n type gallium arsenide
JPH01267964A (en) 1988-04-20 1989-10-25 Mitsui Eng & Shipbuild Co Ltd Fuel battery with solid electrolyte
JPH01298647A (en) 1988-05-27 1989-12-01 Mitsubishi Heavy Ind Ltd Cylindrical type solid electrolytic fuel cell
JP2860795B2 (en) 1989-04-17 1999-02-24 東京電力 株式会社 Solid electrolyte fuel cell
JPH0850914A (en) 1994-08-08 1996-02-20 Fujikura Ltd Cylindrical layer-built fuel cell
US6126908A (en) * 1996-08-26 2000-10-03 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6444342B1 (en) * 2000-08-18 2002-09-03 Siemens Westinghouse Power Corporation Air feed tube support system for a solid oxide fuel cell generator
US6416897B1 (en) * 2000-09-01 2002-07-09 Siemens Westinghouse Power Corporation Tubular screen electrical connection support for solid oxide fuel cells
JP2003123824A (en) 2001-10-16 2003-04-25 Shin Etsu Chem Co Ltd Fuel cell system
US20040258972A1 (en) 2003-04-08 2004-12-23 Yanhai Du Solid state electrochemical devices
JP4319852B2 (en) 2003-04-08 2009-08-26 新光電気工業株式会社 Fuel cell

Also Published As

Publication number Publication date
JP4397886B2 (en) 2010-01-13
US7674543B2 (en) 2010-03-09
TW200719515A (en) 2007-05-16
JP2007134296A (en) 2007-05-31
US20070037028A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
TWI271888B (en) Solid oxide full cells module of multiple tubular electrodes
JP5065367B2 (en) Fuel cell module
JP5109253B2 (en) Fuel cell
JP5429748B2 (en) Fuel cell module
JPH09259910A (en) Molten carbonate fuel battery and power generator using this battery
JP2004193125A (en) Method and device for assembling solid oxide fuel cell
JP2011129489A (en) Fuel cell module
JP2010021135A (en) Stack and fuel cell electric power generation system including same
JP4956946B2 (en) Fuel cell
JP5551495B2 (en) Fuel cell module
JP3539562B2 (en) Solid oxide fuel cell stack
TWI459624B (en) Fuel cell module
EP3595067A1 (en) Multi-stack fuel cell systems and heat exchanger assemblies
CN103490087A (en) Tubular type SOFC (Solid Oxide Fuel Cell) stack for portable power supply and assembly method thereof
JP4501367B2 (en) Fuel cell
JP2005327553A (en) Solid oxide fuel cell
JP2008021636A (en) Fuel cell
JP2009087550A (en) Solid oxide fuel cell
JP2004139960A (en) Fuel cell
JP2007005134A (en) Steam generator and fuel cell
JP4544055B2 (en) Fuel cell
JP5307376B2 (en) Fuel reforming fuel cell
JP2017027937A (en) Fuel cell module
JP2005019035A (en) Fuel cell
JP2009245627A (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees