TWI269990B - Quality prognostics system and method for manufacturing processes with generic embedded devices - Google Patents

Quality prognostics system and method for manufacturing processes with generic embedded devices Download PDF

Info

Publication number
TWI269990B
TWI269990B TW94103745A TW94103745A TWI269990B TW I269990 B TWI269990 B TW I269990B TW 94103745 A TW94103745 A TW 94103745A TW 94103745 A TW94103745 A TW 94103745A TW I269990 B TWI269990 B TW I269990B
Authority
TW
Taiwan
Prior art keywords
quality
data
embedded device
general
universal
Prior art date
Application number
TW94103745A
Other languages
Chinese (zh)
Other versions
TW200629117A (en
Inventor
Fan-Tien Cheng
Yu-Chuan Su
Rung-Chuan Lin
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94103745A priority Critical patent/TWI269990B/en
Publication of TW200629117A publication Critical patent/TW200629117A/en
Application granted granted Critical
Publication of TWI269990B publication Critical patent/TWI269990B/en

Links

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A quality prognostics system and a method for predicting the product quality during manufacturing processes with generic embedded devices are disclosed. The quality prognostics system includes a GED, a measurement collection plan and a remote host, wherein the GED is installed in the production equipment, and is linked to a pluggable quality prognostics module, and the measurement collection plan is connected to a measurement equipment for collecting actual quality data of product from measurement equipment. The pluggable quality prognostics module is used to consider the current production equipment parameters sensed during the manufacturing process and several previous quality data collected from the measurement equipment to predict the quality of the product in the future.

Description

1269990 九、發明說明 ”【發明所屬之技術領域】 . 本發明係有關於一種生產製程的品質預測系統與方法,特 別是有關於一種可嵌入在設備内部之應用通用型嵌入式裝置 (Generic Embedded Device ; GED)之生產製程的的品質預測系統 與方法。 【先前技術】 _ 一般半導體與TFT-LCD廠的產品製造與檢測過程通常 是分開進行的’也就是說先由生產機台加工完成之後,再送 至置測機台進行檢測的工作。而且基於成本的考量,大部分 的檢測都是採用抽測的方式來決定產品的品質。因此,若某 批產品在製造的過程中出了問題,必須等到檢測時才會發 現’而此時製程設備可能已經產生好幾批的不良品了。目前 大部分的做法是監控生產設備的製程參數,根據此參數來判 斷生產出來的產品品質是否異常。這些做法的共同缺點是, 鲁當監控系統偵測到製程參數發生異常時,不良品已經生產出 來了。而且由於目前的半導體與TFT-Lcd廠大多採用批次生 產,因此,如果發現產品異常,則報廢的數量通常不是一、 兩個而疋一整批,不僅降低了產品的良率,同時也對工廠的 產此與生產成本造成嚴重的影響,故各製造廠商莫不極力地 尋找能預測下一批產品品質的方法。 曰目=已有數位學者對於如何預測產品品質或設備製程 疋否異㊉進行研究,這些研究包含有··提出一個增進半導體 1269990 Ή Π修:作:架* ’以從生產資料中推論出造成產品不 1==::網路作為電_機的即時故障監 否二以術來決定電漿餘刻過程中的參數是 刑: 者技術(SMT)為例’運用模糊關聯記憶模 (Fuzzy Associative Memory, FAM)以萃取出製思、 配合階層協同式作業管理策略,發展出一 。識,並 面SMT品質預測與控制夺 、 一形化人機介 古“ 種利用取得晶圓缺陷密 ^ 诘+ -欠粗w在 預J 找出日日圓缺陷群聚的程 象’減乂貝枓收集分析的時間與成本n 溫度的量測來預測GaAs F置备人 ,,由氙私中 戒置可命的方法;研究溫度升高對 於Si〇2薄膜壽命預測的影響。 又开门对 然而’上述研究主要著重在如何利用現 訊推估出現在正生產出來的產〜 ^ ^ 了此*異常,而非預測下一 t的以° —般來說,大多數研究用來推估所輸入的參 ,、推估木構的適用性亦多只侷限於特定機 台。 _現有已申請之專利方面,應用於半導體業的“Me —廿 system f〇r controlling chemicai p〇iighing 此心⑴rem〇Val”專利(美國專利前㈣M%542 -種控制半導體晶圓製程研磨厚度的系統,此系統包含三個 主要部分:晶圓研磨機、媒厚量測裝置、與-個研磨速度控 制系統,此專龍㈣厚比對的方式來分析制所需的研磨 速度,基本上還是需要實祭α ,、口口貝檢測值來提供研磨控制所需 的資訊’無法使用虛擬量測的方式來推估出膜厚值,必須等 1269990 到量測後才知道結果。 一 應用於半導體設備的“Run-to-run control over ^semiconductor processing tool based upon mirror image target”專利(美國專利前案第6,625,5 13號)提出一種利用資 料庫參數模型的方法,來比對半導體製造工具在生產過程中 的耗損變化,並依據其比對結果更改參數設定,使得加工出 來的產品不致因為工具耗損而產生異常。此方法的缺點係在 於當製程參數變多時,建立資料庫參數模型的種類與困難度 會相對地提高許多,無法允許根據不同的設備特性來使用 適合的預測模型,而不具有彈性。 至於其他現有已申請專利中,應用於半導體製程的 “Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system”專利(美國專利前案第 6,616,759號)提出一種監控半導體製程設備與預測製程結果 的方法。此方法擷取製程設備的感測器資料與製程結果量測 值,並利用局部最小平方法(Partial Least Square Method) 馨汁算出新的參數設定。然而,此方法只能根據現有的參數資 料預測正在生產的產品檢測值,無法進一步地預測出未來一 段時間將要生產的產品品質。 應用於半導體晶圓溫度預測的“Method for predicting temperature, test wafer for use in temperature prediction, and method for evaluating lamp heating system”專利(美國專 利前案第6,666,577號),提出一種預測晶圓製程溫度的方 法’此方法利用在晶圓上建立兩種不同的塗佈層來預測晶圓 Ϊ269990 方法基本上只能適用於特定種類的 製程溫度。此專利的預測 機台,缺乏泛用性。 m 另一方面,習知夕;Φ女也丨^ 產製程的品質預測系統係採用集中式 狀2: Γ :就疋將各個設備(包括生產機台和量測機台)的 4, /、里測資料傳送到一部中央主機進行分析、監控、 利工#此種架構有兩個主要的缺點:—是當中央主機 :二時’整個分析與預測系統將停擺。二是這種做法將耗費 里的網路頻寬資源,一座半導體或TFT_LCD工廠内可能有 •卩的β又備,若母一部的設備的狀態參數或量測資料資料 均傳送到中央主機,其佔用的網路頻寬將是很可觀的。 另外’本案發明人於中華民國專利第1225606證書號中 揭路種可擷取和傳送客製化應用之資訊的通用型嵌入式裝 置此通用型肷入式裝置可安裝於各種資訊設備的内部,用以 擷取、收集、管理、與分析設備之資訊。然而,此通用型嵌入 式裝置並未揭示具有生產製程之品質預測功能的應用模組。 因此’非常迫切需要發展一種應用通用型嵌入式裝置的品 馨負預測系統與方法,藉以嵌入在設備内部,來擷取設備參數 與虽測資料並加以分析,以便能即時地在產品尚未生產之 前’就可根據生產機台本身之目前製程參數與前幾批產品的 品質檢測資料,預測出下一批產品的品質,且具有泛用性, 進而改善習知技術的缺點。 【發明内容】 本發明的主要目的就是在提供一種應用通用型嵌入式裝 1269990 置之生產製程的品質預測系統與方法, -、s田⑴山, 友错由肷入在設備内部的 通用型肷入式裝置,以在產品尚未 嬸a 士色 產之刖,就可根據生產 屬口本身之目前製程參數與前幾批產 、、目,丨山卞^ < 座口口的口口質檢測資料,預 列出下一批產品的品質,因有 令双地徒同產品品質與機台的 使用效能及妥盖率f Availahintp、 ^ 文。羊(Availablhty),進而提昇製造業的競爭 力0 根據本發明之上述目的,提供一種應用通用型嵌入式裝置 2生產製程的品質預測系統。依照本發明的較佳實施例,此應 Λ通用型嵌入式裝置之生產製程的品質預測系統至少包括:第 一=用型嵌入式裝置、量測資料掘取計劃(Data c〇iiecti〇n 和遠端主機(Remote Host),其中第一通用型嵌入式裝置係安裝 於生產機〇中,且連結有可插入式(pluggable)品質預測模組;量 測資料擷取計劃係連接至量測機台,並負責描述遠端主機與可 插入式品質預測模組所需要的資料型態,以自量測機台蒐集產 品的實際品質檢測值;遠端主機係用以負責處理由第一通用型 嵌入式裝置傳送回來的資料,並顯示與儲存預測結果與異常狀 修兄。第一通用型嵌入式裝置至少包括:第一資料擷取計劃(Data1269990 IX. Description of the Invention "Technical Fields of the Invention" The present invention relates to a quality prediction system and method for a manufacturing process, and more particularly to an application-type embedded device (Generic Embedded Device) that can be embedded in a device. GED) Quality Prediction System and Method for Production Process [Prior Art] _ General semiconductor and TFT-LCD factory product manufacturing and inspection processes are usually carried out separately 'that is, after processing by the production machine first, Then send it to the test machine for testing. And based on cost considerations, most of the tests use the method of sampling to determine the quality of the product. Therefore, if a batch of products has problems in the manufacturing process, you must wait until At the time of testing, it will be discovered. 'At this time, the process equipment may have produced several batches of defective products. At present, most of the methods are to monitor the process parameters of the production equipment, and judge whether the quality of the produced products is abnormal according to this parameter. The common disadvantage is that when the Ludang monitoring system detects an abnormality in the process parameters, Good products have already been produced. And since most of the current semiconductor and TFT-Lcd plants use batch production, if the product is found to be abnormal, the amount of scrapped is usually not one or two, and the whole batch is not only reduced. The yield also has a serious impact on the production and production costs of the factory. Therefore, manufacturers are not trying to find a way to predict the quality of the next batch of products. 曰目=How many scholars have predicted how to predict product quality or equipment The process is not the same as the research. These studies include a proposal to promote a semiconductor 1269990 Ή Π repair: for: * * to infer from the production materials that the product does not 1 ==:: network as electricity_machine The immediate fault monitoring is based on the technique to determine the parameters in the plasma remnant process: STM is used as an example to use the Fuzzy Associative Memory (FAM) to extract the thoughts and cooperate with the hierarchical synergy. Job management strategy, developed a knowledge, face-to-face SMT quality prediction and control, a shape of human-machine-based ancient "species use to obtain wafer defect density ^ 欠 + - rough w J. Find the time-of-day clustering problem of the Japanese yen defect cluster. The time and cost of the collection of the 乂 乂 枓 温度 温度 温度 预测 预测 预测 预测 预测 预测 预测 GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs GaAs The effect on the lifetime prediction of Si〇2 film. Open the door again. 'The above research mainly focuses on how to use the current news to estimate the production that is occurring in the production. ^ ^ ^ This * anomaly, rather than predicting the next t in °, in general, most studies used Estimating the input parameters and estimating the applicability of the wood structure are limited to specific machines. _The existing patent application, applied to the semiconductor industry "Me 廿 system f〇r controlling chemicai p〇iighing this heart (1) rem 〇 Val" patent (US patent before (four) M% 542 - control semiconductor wafer process grinding thickness System, this system consists of three main parts: wafer grinder, media thickness measuring device, and a grinding speed control system. This special (four) thick comparison method to analyze the grinding speed required, basically The actual sacrifice α and the mouth-to-mouth detection value are required to provide the information needed for the grinding control. The virtual thickness measurement method cannot be used to estimate the film thickness value, and the result must be known after 1269990 to the measurement. The "Run-to-run control over ^semiconductor processing tool based upon mirror image target" patent (U.S. Patent No. 6,625, 5 13) proposes a method for using a database parameter model to compare semiconductor manufacturing tools. The change in wear during the production process, and the parameter setting according to the comparison result, so that the processed product is not caused by the tool wear. Often, the disadvantage of this method is that when the process parameters become more, the type and difficulty of establishing the database parameter model will be relatively improved, and it is not allowed to use the appropriate prediction model according to different device characteristics without elasticity. As for other existing patent applications, the "Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system" patent (U.S. Patent No. 6,616,759), which is applied to the semiconductor process, proposes a method for monitoring semiconductor process equipment and predicting process results. Method: This method takes the sensor data and process result measurement values of the process equipment, and uses the partial least-square method (Partial Least Square Method) to calculate new parameter settings. However, this method can only be based on existing parameters. The data predicts the value of the product being produced and cannot further predict the quality of the product to be produced in the future. "Method for predicting temperature, test wafer for use in temperature prediction, and method for evaluation The lamp heating system patent (U.S. Patent No. 6,666,577) proposes a method for predicting the wafer process temperature. This method utilizes two different coating layers on the wafer to predict the wafer Ϊ 269990 method. Suitable for a specific type of process temperature. The predictive machine of this patent lacks versatility. On the other hand, Xi Zhixi; Φ female also 丨^ The quality prediction system of the production process adopts the centralized type 2: Γ: The 4, /, of each equipment (including the production machine and the measuring machine) The measured data is transmitted to a central host for analysis, monitoring, and profit. # This architecture has two major drawbacks: - When the central host: 2 o'clock, the entire analysis and prediction system will be shut down. Second, this kind of operation will consume the network bandwidth resources. In a semiconductor or TFT_LCD factory, there may be a beta and a beta. If the state parameters or measurement data of the device are transmitted to the central host, The network bandwidth it occupies will be considerable. In addition, the inventor of the case in the Republic of China Patent No. 1225606 certificate number reveals a universal embedded device that can extract and transmit information for customized applications. This universal intrusion device can be installed inside various information devices. Information used to capture, collect, manage, and analyze equipment. However, this general-purpose embedded device does not disclose an application module having a quality prediction function for a production process. Therefore, it is very urgent to develop a product-predictive system and method for applying general-purpose embedded devices, which are embedded in the device to extract device parameters and analyze the data so that it can be immediately before the product is produced. 'According to the current process parameters of the production machine itself and the quality inspection data of the previous batches of products, the quality of the next batch of products is predicted, and it has versatility, thereby improving the shortcomings of the prior art. SUMMARY OF THE INVENTION The main object of the present invention is to provide a quality prediction system and method for manufacturing a manufacturing process using a universal embedded device 1269990, -, s Tian (1) Mountain, and a common type of 友 in the device. The input device can be used according to the current process parameters of the production port itself and the previous batches of production, and the purpose of the product, and the mouth mouth quality test of the mouth of the mouth. Information, pre-listing the quality of the next batch of products, because of the quality of both products and the effectiveness of the machine and the rate of coverage f Availahintp, ^ text. Availablhty, which further enhances the competitiveness of the manufacturing industry. According to the above object of the present invention, a quality prediction system using a general-purpose embedded device 2 production process is provided. According to a preferred embodiment of the present invention, the quality prediction system for the production process of the general-purpose embedded device includes at least: a first embedded type device, a measurement data mining plan (Data c〇iiecti〇n and Remote Host, wherein the first universal embedded device is installed in the production machine and is connected with a pluggable quality prediction module; the measurement data acquisition plan is connected to the measuring machine And is responsible for describing the data type required by the remote host and the pluggable quality prediction module, and collecting the actual quality detection value of the product by the self-measuring machine; the remote host is responsible for processing by the first general type The embedded device transmits the returned data, and displays and stores the predicted result and the abnormal shape. The first general-purpose embedded device includes at least: the first data acquisition plan (Data

Collection Plan)、第一裝置驅動器(EqUipment Driver)、第一通 訊代理者(Communication Agent)、應用介面(Application Interface)及笫一為料掏取管理者(Data Collection Manager),其 中第一資料擷取計劃係用以描述遠端主機與可插入式品質預測 模組所需要的資料型態,並產生第一資料擷取報告(Data Collection Report);第一裝置驅動器係用以根據第一資料擷取報 告,來取得生產機台的製程參數資料;第一通訊代理者係用以 Ϊ269990 處理遠端主機的要求與可插入式品質預測模組的回應 飞介面係交連於可插入式品質預測模組,藉以使可插入^品= 、預測模組透過應用介面經由第—通訊代理者,來盘遠端 行資料傳輸;第一資料擷取管理者係負責處理第一通用型私入 式裝置内部的所有訊息傳遞,以處理生產機台、可插入式=質 預測模組和遠端主機輸出輸入至第一通用 :二、 土瓜八武裝置的訊 〇 量測資料擷取計劃係位於第一通用型嵌入式裝置中或一第 Y通用型肷入式裝置中,當量測資料擷取計劃係位於第一通用 t驭入式裝置中時’產生了第二資料擷取計劃,第一裝置驅動 i再根據第二資料擷取計劃,自量測機台蒐集產品的實際品質 h測值,第一資料擷取管理者並負責處理量測機台、可插入式 Μ質預測模組和遠端主機輸出輸入至第一通用型嵌入式裝置的 机息。當量測資料擷取計劃位於第二通用型嵌入式裝置中時, 此第二通用型嵌入式裝置更至少包括··量測資料擷取計劃、第 一羞置驅動器、和第二資料擷取管理者。量測資料擷取計劃係 以描述遠端主機與可插入式品質預測模組所需要的 心並產生第二資料擷取報告;第二裝置驅動器係用以根據第 一資料掏取計劃,自量測機台蒐集產品的實際品質檢測值;第 一通祝代理者係用以處理遠端主機的要求;第二資料擷取管理 者係負責處理第二通用型嵌入式裝置内部的所有訊息傳遞,以 處理量測機台、可插入式品質預測模組和遠端主機輸出輪入至 第二通用型嵌入式裝置的訊息。 可插入式品質預測模組至少包括:推估模式裝置(Means)、 10 1269990 和預測模式裝番 ^ , - 、置,其中推估模式裝置係利用生產機台的製程參 -歎貝料來推估媒γ ,,^ 又侍正在生產機台生產之一批產品的推估品質 於、次杈式凌置係由選自由第一類神經網路、模糊理 方法I* ^ 4木勘和其他具推估能力之技術所組成之一族群的推估 始 立,預/則板式裝置係利用目前推估出來之此批產品的 推1古〇口質信,士 ,, + 一一 π σ加上由置測機台蒐集得之至少一個前批產品的至 Φ , 吳檢測值,來預測出下一批產品的預測品質值,J: 中此預測模式梦筈总丄^ 1^ 、置係由選自由權重移動平均、第二類神經網路 口其他具預測能力之、、宙瞀、土 ^ &。 r法所組成之一族群的預測方法所建 式裝置之根據』本务明之上述目的,提供一種應用通用型嵌入 你丨,+ *生產製私的品質預測方法。依照本發明的較佳實施 包括有:用通用型嵌入式裝置之生產製程的品質預測方法至少 列訓練階段和一運轉㈣。此訓練階段至少包括下 數資料第r通用型嵌入式裝置來蒐集生產機台的製程參 此第通用型嵌入式裝置係安裝於生產機台中, 製$ 2齡二、#入式質預測模組;第一通用型嵌入式裝置傳送Collection Plan), the first device driver (EqUipment Driver), the first communication agent (Communication Agent), the application interface (Application Interface), and the first data collection manager (Data Collection Manager), wherein the first data capture The plan is used to describe the data type required by the remote host and the pluggable quality prediction module, and generate a first data collection report (Data Collection Report); the first device driver is used to retrieve the data according to the first data Reporting to obtain the process parameter data of the production machine; the first communication agent is used to Ϊ269990 to process the remote host and the pluggable quality prediction module is connected to the pluggable quality prediction module. In order to enable the pluggable product, the predictive module transmits the remote data through the application interface via the first communication agent; the first data retrieval manager is responsible for processing all the internal parts of the first universal private device. Message delivery to process production machine, pluggable = quality prediction module and remote host output input to the first universal: two, toast eight armed The information acquisition data acquisition plan is located in the first general-purpose embedded device or a Y-gene general-purpose intrusion device, and the equivalent data acquisition plan is located in the first universal t-input device. At the time of 'generating a second data acquisition plan, the first device driver i then according to the second data acquisition plan, the self-measurement machine collects the actual quality h measurement value of the product, the first data acquisition manager and the processing amount The measuring machine, the pluggable tamper prediction module and the remote host output the input to the first universal embedded device. When the equivalent data acquisition plan is located in the second general-purpose embedded device, the second universal embedded device further includes at least a measurement data acquisition plan, a first shame driver, and a second data capture system. Manager. The measurement data acquisition plan is to describe the heart of the remote host and the pluggable quality prediction module and generate a second data capture report; the second device driver is used to capture the plan according to the first data. The measuring machine collects the actual quality detection value of the product; the first communication agent is used to process the requirements of the remote host; the second data retrieval manager is responsible for processing all the information transmission inside the second universal embedded device. The processing of the measurement machine, the pluggable quality prediction module, and the remote host output signals to the second general-purpose embedded device. The pluggable quality prediction module includes at least: a estimating mode device (Means), a 10 1269990, and a prediction mode device, -, and a setting, wherein the estimating mode device is driven by the manufacturing process of the production machine. Estimate the media γ,, ^ and the production quality of one batch of products produced in the production machine is based on the first type of neural network, fuzzy method I* ^ 4 wood survey and other The estimation of a group consisting of technology with estimation ability is preliminarily established. The pre/post plate device is based on the current estimated product of this batch of products. The predicted value of the next batch of products is predicted by the Φ and Wu detection values of at least one of the previous batches collected by the test machine. J: This prediction mode is a total of 筈 1 ^ 1^ It is selected from the group consisting of weighted moving averages, the second type of neural network ports, and other predictive capabilities. The method for predicting a group of people consisting of the r method is based on the above-mentioned purpose of the present invention, and provides a method for predicting the quality of the application of the universal type of embedding, + * production and production. A preferred embodiment in accordance with the present invention includes at least a training phase and an operation (4) of a quality prediction method for a production process using a general-purpose embedded device. This training phase includes at least the following data r general-purpose embedded device to collect the process of the production machine. The general-purpose embedded device is installed in the production machine, and the system is installed in the production machine. ; the first universal embedded device transmits

.^"貝料至遠端主機;使用量測資料擷取計則來蒐隼自量 測機台測得之至少一袖〜立 貝㈣取〜米鬼杲自I 其中筮—、s m 刖批產品的至少一個實際品質檢測值, 嵌入式裝:傳型:入式裝置係安裝於量測機台中;第二通用型 行自我搜尋二品胸㈣ -通用㉟山乂 M製定並發送一組最佳權重與函數資料給第 科和實際 b自我搜尋㈣餘㈣程參數資 '欢"值’來挑選出推估方法或預測方法所需之最 1269990 ,佳權重與函數資料的組合,以 〃運轉階段係於可插人式":推估/預測準確度。 ,少包括下列步驟··根據最::二:鄉模組中進行,運轉階段至 供推估模式牛顿— 重,、函數資料進行功能設定;提 依八步驟,藉以利用由篦_ 來之生產機台的製程參數資料:通:型嵌入式裝置即時荒集 之一批產品的推估品質值、推估獲得正在生產機台生產 第-類神經網路、一模糊理二令推估模式步驟係使用選自由-之技街所έ Λ 、相里_、—資料探勘和其他具推估能力 族群的推估方法;提供預測模式步驟,藉以 響彳用目前推估出來之次批產口沾扭α 實際品質檢測值,來預測出;二二品質值’加上前批產品的 批產品的預測品質值,其中預 =模式步驟係使用係選自由權重移動平均、第二類神經網路和 其他具預測能力之演算法所組成之一族群的預測方法。 因此’應用本發明,可傲入在設備(生產機台和量測機台) 内部的通用型嵌入式裝置,以在產品尚未生產之前,就可根 據生產機台本身之目前製程參數與前幾批產品的品質檢測 資料,預測出下-批產品的品質’以有效地提高產品品質與 馨峰台的使用效能及妥善率,進而提昇製造業的競爭力。 【實施方式】 請參照第1圖,其繪示本發明之應用通用型嵌入式妒置之 統的架構包括三個主要部分:遠端主機80、通用型嵌入式裝置 90、通用型嵌入式裝置50與交連於通用型嵌入式裝置的可 插入式品質預測模組40,其中通用型嵌入式裝置%係安裝於生 12 1269990 ^機台20中,而通用型嵌入式裝置5〇係安裝於量測機台%中。 ••遠端主機80和通用型嵌入式裝置9〇和5〇係透過例如乙太網路 ,(Ethernet)的網路60連結在一起。以下將針對這三個主要部分進 行說明。 退端主機80主要係負責接收由通用型嵌入式裝置9〇傳送 Z來的製程參數與品質預測分析結果資料,以及接收由通用型 嵌入式裝置50傳送回來的產品的品質檢測資料,並將這些資 料儲存在資料庫中。本發明之遠端主機8〇並不負責生產機台 ’之狀態資訊的分析與預測卫作,而是將此功能分散到生產機 力台20之通用型嵌入式裝置9〇的品質預測模組4〇來處理,此種 架構可以避免因中央主機故障造成整個分析與監控系統停擺的 問題。同時,此種架構只將極少量的分析、預測結果傳回遠端 主機進行儲存,或作為整體設備狀態與效能的整合性評估,並 不需要將每部生產機台的大量製程參數資料送到遠端主機8〇, 因此可大量減少網路資料傳輸與網路壅塞的問題。 通用型嵌入式裝置90可嵌入在生產機台2〇的内部,其主 馨聲功能有三:一是擷取生產機台20的製程參數資料,並送到可 插入式品質預測模組40來進行分析、監控、與預測;二是將預 測與分析結果透過通訊代理者82傳送到遠端主機8〇 ;三是遠端 主機80可透過通用型嵌入式裝置90對生產機台2〇進行相關參 數資料查詢。另外,可動態載入的可插入式品質預測模組則 負責生產機台20狀態的監控與預測工作,並提出生產製程的品 質預測。 壬、口口 通用型嵌入式裝置50主要係以量測資料擷取計劃58來自 13 1269990 • $測機台30蒐集產品的實際品質檢測值。由於 •置9〇的結構係等同於通用型嵌入式裝置5〇,因此,本:二’二 ’質預測系統亦可直接將量測資料擷取計二之 式裝置%中,而省略通用型後入式裝置W又置於通用型嵌入 :參照第i圖和第2圖’第2圖為繪示本發明之通用型嵌 入式政置的結構示意圖。如第i圖所示之通用型嵌入式製置 和9〇的結構大致係等同於第2圖所示之通用型嵌入式裝置7〇, 除了通用型嵌人式裝置5G因不需連結有應用模組,而沒有應用 鲁介面74之外。 兹將通用型嵌入式裝f 70的系統功能需求與其各模組功能 分述如下: 本發明之通用型嵌入式裝置70的系統功能需求為必須要能 夠肷入到各種不同的設備,如生產機台、量測機台、搬送設備 等,且須滿足例如半導體或電子業之SEM][組織為了達到 EEC(Equipment Engineering Capability)所制定的一些規格需 求’如 E132 (Authentication and Authorization ; A&A)、E120 ^(Common Equipment Model ; CEM) > E125 (Equipment Self.^"Beef material to the remote host; use the measurement data to calculate the gauge to search for at least one sleeve measured by the measuring machine ~ Libei (four) take ~ m ghosts from I where 筮 -, sm 刖At least one actual quality test value of the batch product, embedded: pass type: the in-line device is installed in the measuring machine; the second universal type self-searching two-pronged chest (four) - the general 35 Hawthorn M formulates and sends a set The best weight and function data for the first and the actual b self-search (four) the remaining (four) process parameters of the 'happiness" value to select the most appropriate 1269990, the combination of the good weight and the function data required by the estimation method or prediction method, The operational phase is based on the pluggable ": estimation/predictive accuracy. The following steps are included: · According to the most:: 2: in the township module, the operation phase to the estimation model Newton-heavy, the function data is used for function setting; the eight steps are used to make use of the production by 篦_ Process parameter data of the machine: pass: type embedded device, the estimated quality value of one batch of products, and the estimated value obtained by the production machine is producing the first-class neural network, a fuzzy fuzzy two-order estimation mode step Use the estimation method selected from the technical street of 由, 相, _, data exploration and other populations with estimation ability; provide the prediction mode step, so as to use the current estimation Twist α actual quality test value to predict; 22nd quality value 'plus the predicted quality value of the batch product of the previous batch product, wherein the pre-mode step system is selected from the weighted moving average, the second type of neural network and A prediction method for a group of other algorithms with predictive capabilities. Therefore, 'the application of the present invention can be put into the universal embedded device inside the equipment (production machine and measuring machine), so that the current process parameters of the production machine itself and the previous few can be used before the product is produced yet. The quality inspection data of the batch products predicts the quality of the next-batch products to effectively improve the product quality and the use efficiency and proper rate of Xinfengtai, thereby enhancing the competitiveness of the manufacturing industry. [Embodiment] Please refer to FIG. 1 , which illustrates the architecture of the general-purpose embedded device of the present invention, which includes three main parts: a remote host 80 , a universal embedded device 90 , and a universal embedded device . 50 and a pluggable quality prediction module 40 interconnected with a universal embedded device, wherein the universal embedded device % is installed in the raw 12 1269990 ^ machine 20, and the universal embedded device 5 is installed in the amount Test machine %. • The remote host 80 and the universal embedded devices 9 and 5 are connected via a network 60 such as Ethernet or Ethernet. The three main sections are explained below. The back-end host 80 is mainly responsible for receiving the process parameters and the quality prediction analysis result data transmitted by the general-purpose embedded device 9 and receiving the quality inspection data of the products transmitted by the universal embedded device 50, and The data is stored in the database. The remote host 8〇 of the present invention is not responsible for the analysis and prediction of the state information of the production machine, but distributes the function to the quality prediction module of the general-purpose embedded device 9 of the production machine 20 4〇 to deal with, this architecture can avoid the problem of the entire analysis and monitoring system stall due to the central host failure. At the same time, this architecture only transmits a small amount of analysis and prediction results back to the remote host for storage, or as an integrated evaluation of the overall device status and performance, and does not require sending a large amount of process parameter data for each production machine. The remote host is 8〇, so the problem of network data transmission and network congestion can be greatly reduced. The universal embedded device 90 can be embedded in the interior of the production machine 2, and has three main functions: one is to capture the process parameter data of the production machine 20, and send it to the pluggable quality prediction module 40. Analysis, monitoring, and prediction; second, the prediction and analysis results are transmitted to the remote host 8 through the communication agent 82; third, the remote host 80 can perform relevant parameters on the production machine 2 through the universal embedded device 90. Data inquiry. In addition, the dynamically loadable pluggable quality prediction module is responsible for monitoring and predicting the state of the machine 20 and proposing quality predictions for the production process.壬, 口 The general-purpose embedded device 50 mainly uses the measurement data acquisition plan 58 from 13 1269990 • The measuring machine 30 collects the actual quality detection value of the product. Since the structure of the 9〇 is equivalent to the general-purpose embedded device 5〇, therefore, the two-two-quality prediction system can directly extract the measurement data into the device of the second type, and the general type is omitted. The rear-loading device W is placed in a universal type embedding: referring to FIG. 2 and FIG. 2', FIG. 2 is a schematic structural view showing the general-purpose embedded government of the present invention. The general-purpose embedded system and the 9-inch structure shown in Fig. i are roughly equivalent to the general-purpose embedded device 7〇 shown in Fig. 2, except that the universal embedded device 5G does not need to be connected to the application. Modules, without the application of Lu interface 74. The system function requirements of the universal embedded device f 70 and its module functions are described as follows: The system function requirement of the universal embedded device 70 of the present invention is that it must be able to break into various devices, such as a production machine. Station, measuring machine, transport equipment, etc., and must meet SEM such as semiconductor or electronics industry [Organization to meet some specifications requirements of EEC (Equipment Engineering Capability)" such as E132 (Authentication and Authorization; A&A) , E120 ^(Common Equipment Model ; CEM) > E125 (Equipment Self

Description,· ESD)、與 E134 (Data Collection Management,· DCM) 等。其中A&A提供一種與工廠内設備進行通訊與連結時的認證 與授權方法;CEM的目的在於提供一個一般化的靜態模型,用 以描述實體設備的結構以及應該具備的屬性;ESD是一個抽象 的設備多重資料(Metadata)模型,此多重資料係用以描述生產機 台或量測機台之單位(Units)、型式(Types)、結構(Structure)、狀 態模型(State Models)、事件(Events)、警報(Alarms)、和例外 14 1269990 (Exceptions)等;* DCM|lJ係用以描述抽象的擷取計劃模型。 -當可插人式品質預測模組4 G預測出下—批產品的_ 〇 ’值時,通用型嵌入式震置7〇必須要能夠將此預測品質值的: 息傳送到遠端主機80。另—方面’通用型嵌入式裝置7〇必須要 能夠接收從遠端主機8〇傳送過來的—組最佳權重與函數資料至 通用龍人式裝置70中,以設定可插人式品質預_組4” 功此。此外,通用型嵌人式裝置7〇必須要提供—個通用的應用 介面,以便能夠根據不同之生產機台或量測機台的特性,來動 春態載入適當的可插入式品質預測模組4〇。 如第2圖所示’通用㈣人式裝置7()包含有:通訊代理者 72、資料擷取管理者76、資料掘取計劃78、資料擷取報告η、 裝置驅動器75和應用介面74等功能模組。通訊代理者?!為通 用型後入式裝置70對外的通訊模組,其負責處理遠端主機8〇 的要,’並且在必要時回覆給遠端主機8〇。根據讓1£132規 範’遂端客戶端與通訊代理者72溝通時所呼叫的動作須實作簡 單物件連結協定(Simple 0bject Access p_c〇i ; s〇Ap)所規範 分傳遞機制,若有需要通訊代理者72也可以支援無線通訊功能。 資料操取管理者76是通用型嵌人式裝置%的核心,其負 責處理所有通用型鼓人式裝署% ' 乃、州i甘入八式衣置7〇内部的訊息傳遞,以處理生產 機。20或量測機纟3〇、可插入式品質預測模、组利和遠端主機 8〇輸出輸人至通用型嵌人式裝置7Q的訊息以顧的膽(顧) 規格提供了㈣㈣管理者26的設計準貝卜遠端主機8〇可經 ^心理者72將_個資_取計劃78制資料摘取管理者 %的介面傳送到通用型嵌人式裝置7Q的㈣,在取得這個㈣ 15 1269990 擷取計劃78之後,資料擷取管理者76可以根據此資料擷取計 -劃78產生一個資料擷取報告73的樣版,然後要求裝置驅動器 • 75根據資料擷取報告73的需求來擷取生產機台或量測機台的資 料’並填入資料擷取報告73之中。然後,資料擷取管理者76 經由通訊代理者72將資料擷取報告73送到遠端主機80。 同樣地’可插入式品質預測模組4〇也可以經由應用介面74 將一個資料擷取計劃78傳送到資料擷取管理者76,資料擷取管 理者76將根據資料擷取計劃78經由裝置驅動器75擷取所需之 φΐ產機台或量測機台的資料,並填入資料擷取報告73之中。資 料擷取管理者76將經由應用介面74將資料擷取報告73送到可 插入式品質預測模組40供其分析、監控、或預測之用。 資料擷取計劃78負責描述遠端主機與可插入式品質預測模 組40所需要之事件(Events)、資料追蹤(Trace Data)與例外 (Exceptions)的資料型態,且資料擷取計劃π可支援如診斷 (Diagnostics)、健康監視(Health M〇nit〇ring)、使用率追蹤 (Utilization Tracking)與製程控制(process c〇ntr〇1)等各種不同 馨用的資料蒐集需求。資料擷取報告73負責定義包括事件、資 料追蹤與例外等各種不同類型資料的延伸性標示語言(xml)訊 心袼式,同日守也疋義如時間戳章(Timestamp)與解決手段 (Resolution)的格式與規格。資料擷取報告73並根據semiei28 所制定的XML訊息結構的規格,將資料經由通訊代理者72送 到遠端主機80。通訊代理者72的規袼與遠端主機8〇之通訊代 理者8 2 (如第1圖所示)相同。 裝置驅動器75經由標準的串列介面(如rs_232、rs_485 16 1269990 等)、乙太網路介面、或類比數位轉換器連接到受控設備的資料 ,輸出端。此處,SEMI的CEM(E120)規格提供了一個描述設備架 .構的一致性語彙規範,ESD(E125)規格則提供了 一個標準的資 料結構用來描述設備的單位、型式、結構、狀態模型、事件、 警報、和例外等資訊。又,為了達到動態載入可插入式品質預 測模組40的目的,必須要設計一通用的應用介面74,以讓具有 各種不同功能的應用模組載入,以達到可交換性 (Interchangeability)、區域化(L〇calizati〇n)、客製化 馨(Customization)、分散和強化(Empowerment)的特點。 本品質預測系統的特徵之一是可以根據各種不同生產機台 j量測機台的需求,選擇適當的可插入式品質預測模組4〇。同 枯,為了讓使用者能夠很容易地選擇與建立所需的品質預測系 統,本發明將可插入式品質預測模組40設計成可動態載入的方 式,使用者可以根據設備的特性與需求,從可插入式應用模組 庫之中選擇所需的模組載入到通用型嵌入式裝置70之中,以進 行认備刀析、監控、預測等工作。可插入式品質預測模組扣可 馨^透過應用介面74接收遠端主機8〇經由通訊代理者Μ送進來 ^相關貝讯,同時當可插入式品質預測模組40偵測到受控設備 可能發生異常時,也可透過應用介面74與通訊代理者72將異 常訊息傳送給遠端主機80。 為了要fb夠動態載入可插入式品質預測模組4〇,必須在通 用型嵌入式裝置70之中設計-通用的應用介面74,以讓具有各 種不同應用功能的模組載入,其做法是先將各種品質預測的功 能與資料格式定義完整,然後根據不同的功能與資料型態定義 17 1269990 不同的方法(Method),供可插入式應用模组呼叫使用。此外,若 '使用者想要開發自己的可插入式應用模組,只需要利用應用介 .面74所提供的方法,就可以和通用型喪人式裝4 進行資料 接收與傳送工作。為了要能夠動態載入通用型喪入式裝置7〇, 必須要將設計好的可插入式應用模組包裝成如dll⑺殍⑽卜 Link Library)、ActiveX等型式,並加入可插入式應用模組庫中。 與目前一般監控系統如SPC(Statistic Pr〇cess、 APC(AdVanced Process Control)等最大的不同,本發明係在產品 參未生產之前,就可根據設備(生產機台)本身之目前製程參數二 前幾批產品的品質檢測資料,預測出下一批產品的品質。 請參照帛3圖,其為繪示本發明之可插入式品質預測模組 的主要結構圖,其中,此可插入式品質預測模組係由推估模式 裝置100與預測模式裝置200所組成。此品質預測系統可以同 時作為虛擬量測與品質預測來使用,推估模式裝置1〇〇即可當 作虛擬量測來使用。此種雙層式架構可使本發明之品質預測^ 統依照工廠的實際需求,來進行適當的組合,因而在實際應用 #更有彈性。另外,推估模式裝置1〇〇内所使用的推估方^具 有可替換性,可根據實際生產設備的物理與參數特性,選擇: ^人工智慧、統計學方法或是數學演算法等,如類神經網路、 模糊理論和資料探勘技術等。至於預測模式裝置2〇〇内所使用 的預測方法則可為權重移動平均、類神經網路或其他具預測能 力之演算法。 請參照第1圖和第4圖,第4圖為繪示本發明之具有自我 搜尋裝置與自我調適裝置之品質預測系統的結構示意圖,其 18 1269990 中推估模式裝置1 Ο Ο、推估準確率評 、及預測準確率評估⑴10二’置13°、預測模式裝置 ^ ’置21G#、位於可插人式品質預測模組 ’〇中’而選擇與設定介面 和預測模式之自我調適褒置410/位估=土式山之自我調適裝置彻 衣罝410係位於遠端主機80中,而原始 資料前處理裝置1 1 0則可位& <彳 ’、 型嵌人式裝置9〇中。Η插入式品質預測模組40或通用 首先’將生產機台2〇的劍寂炎杳々沾甘# 資料前處理裝置m處理。由:生產;二:測器資料送至原始 处埋由於生產機台2〇的製程參數與豆减 •彳器資料的種類繁多,而推 Ί 推估杈式咸置1 00所要使用到的參數 些資料的—部份’故需要由原始資料前處理裝置m =1選,從眾多的資料中取出所需的製程參數或感測器 ㈣擇哪些資料作為輸入參數則是依據生產機台 Γ ΓΛ與所選定的推估方法或預測方法而有所不同。此 ⑦備取得的製程參數與感測器資料,可能有不同的 =格式,原始資料前處理裝置110必須要能處理這些不同的 1,轉換為推估模式裝置刚所需要的特定資料格式。 至推估二:原始貧料前處理裝£ 11〇處理過的輸入資料傳送 機二〇〇。推估模式裝置1〇0的目的係在於利用生產 資料來推估正在生產之產品的品質,而獲得推估 予^模二/:二#估品f值輸人至_模式裝置2〇0’ ,,〇 ^ ^ 的目的是利用目前推估出來的本批產品的推 估口口負值(y ),六l t 〇 所 加上由I測機台30而得之前幾批產品的實際品Description, ESD), E134 (Data Collection Management, DCM), etc. A&A provides a method of authentication and authorization when communicating and connecting with equipment in the factory; CEM aims to provide a generalized static model to describe the structure of the physical device and the attributes it should have; ESD is an abstraction The Metadata model of the device, which is used to describe the units of the production machine or measuring machine, Types, Structure, State Models, Events. ), Alerts, and Exceptions 14 1269990 (Exceptions), etc.; * DCM|lJ is used to describe the abstract capture plan model. - When the pluggable quality prediction module 4G predicts the _ 〇' value of the next-batch product, the general-purpose embedded oscillating 7 〇 must be able to transmit the predicted quality value to the remote host 80 . On the other hand, the 'general-purpose embedded device 7〇 must be able to receive the best weight and function data transmitted from the remote host 8〇 to the universal dragon-type device 70 to set the pluggable quality pre-_ In addition, the universal embedded device 7〇 must provide a common application interface, so that it can be loaded according to the characteristics of different production machines or measuring machines. The pluggable quality prediction module 4〇. As shown in Fig. 2, the general (four) human device 7 () includes: a communication agent 72, a data retrieval manager 76, a data mining plan 78, and a data acquisition report. η, device driver 75 and application interface 74 and other functional modules. Communication agent?! is the general-purpose rear-entry device 70 external communication module, which is responsible for processing the remote host 8〇, and reply if necessary To the remote host 8. According to the 1£132 specification, the action that the client calls when communicating with the communication agent 72 must be implemented as a simple object connection agreement (Simple 0bject Access p_c〇i; s〇Ap). Sub-delivery mechanism, if necessary The agent 72 can also support the wireless communication function. The data manipulation manager 76 is the core of the universal embedded device, which is responsible for handling all the general-purpose drum-type installations. 7〇 Internal message transmission to process the production machine. 20 or measuring machine 纟 3 〇, pluggable quality prediction mode, component and remote host 8 〇 output input to the universal embedded device 7Q message The daring (Gu) specification provides (4) (4) The design of the manager 26 is the same as that of the remote host. The 心理 心理 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ After the (4) of the human device 7Q, after obtaining the (4) 15 1269990 acquisition plan 78, the data retrieval manager 76 can generate a data acquisition report 73 based on the data acquisition plan 78, and then request the device driver. • 75 to retrieve the data of the production machine or measuring machine according to the requirements of the data retrieval report 73 and fill in the data acquisition report 73. Then, the data extraction manager 76 sends the data through the communication agent 72. The capture report 73 is sent to the remote host 80. The sample pluggable quality prediction module 4 can also transmit a data capture plan 78 to the data capture manager 76 via the application interface 74, and the data capture manager 76 will use the device capture program 78 via the device driver. 75: Extract the data of the required φ ΐ production machine or measuring machine, and fill in the data retrieval report 73. The data retrieval manager 76 will send the data retrieval report 73 via the application interface 74 to the insertable The quality prediction module 40 is used for analysis, monitoring, or prediction. The data acquisition plan 78 is responsible for describing events (Events) and data tracking (Trace Data) required by the remote host and the pluggable quality prediction module 40. With the Exceptions data type, and the data capture plan π can support such as Diagnostics, Health M〇nit〇ring, Utilization Tracking and Process Control (process c〇ntr) 〇 1) A variety of different data collection needs. The data capture report 73 is responsible for defining the extended markup language (xml) message format of various types of data including events, data tracking and exceptions, and the same as the timestamp and time resolution (Resolution). Format and specifications. The data capture report 73 sends the data to the remote host 80 via the correspondent agent 72 in accordance with the specifications of the XML message structure defined by semiei 28. The protocol of the correspondent agent 72 is the same as that of the remote host 8's communication agent 8 2 (as shown in Fig. 1). The device driver 75 is connected to the data and output of the controlled device via a standard serial interface (such as rs_232, rs_485 16 1269990, etc.), an Ethernet interface, or an analog digital converter. Here, SEMI's CEM (E120) specification provides a conformance vocabulary specification that describes the equipment frame. The ESD (E125) specification provides a standard data structure to describe the unit, type, structure, and state model of the device. , events, alerts, and exceptions. Moreover, in order to achieve the purpose of dynamically loading the pluggable quality prediction module 40, it is necessary to design a general application interface 74 to load application modules having various functions to achieve interchangeability (Interchangeability). Regionalization (L〇calizati〇n), Customization, Decentralization and Empowerment. One of the characteristics of this quality prediction system is that it can select an appropriate pluggable quality prediction module according to the requirements of various production machines. In order to allow the user to easily select and establish the required quality prediction system, the present invention designs the pluggable quality prediction module 40 into a dynamically loadable manner, and the user can select the characteristics and requirements according to the device. The selected modules are selected from the pluggable application module library and loaded into the general-purpose embedded device 70 for performing the analysis, monitoring, prediction, and the like. The pluggable quality prediction module can receive the remote host 8 through the application interface 74, and then send the incoming message to the relevant client, and the pluggable quality prediction module 40 detects the controlled device. When an exception occurs, the exception message can also be transmitted to the remote host 80 via the application interface 74 and the communication agent 72. In order to fb dynamically load the pluggable quality prediction module 4, a universal application interface 74 must be designed in the general-purpose embedded device 70 to load modules with various application functions. The functions and data formats of various quality predictions are defined first, and then different methods (Methods) of 17 1269990 are defined according to different functions and data types for callable application module calls. In addition, if the user wants to develop his own pluggable application module, he/she only needs to use the method provided by the application interface 74 to perform data receiving and transmitting work with the universal mourning device 4. In order to be able to dynamically load the universal type of enter-in device, it is necessary to package the designed pluggable application module into a type such as dll (7) 10 (10) 卜 (Link Library), ActiveX, etc., and add a pluggable application module. In the library. Compared with the current general monitoring system such as SPC (Statistic Prence, APC (AdVanced Process Control), etc., the present invention can be based on the current process parameters of the equipment (production machine) itself before the product is produced. The quality inspection data of the previous batches of products predicts the quality of the next batch of products. Please refer to Figure 3, which is the main structural diagram of the pluggable quality prediction module of the present invention, wherein the pluggable quality The prediction module is composed of the estimation mode device 100 and the prediction mode device 200. This quality prediction system can be used as both virtual measurement and quality prediction, and the estimation mode device can be used as a virtual measurement. The two-layer architecture allows the quality prediction system of the present invention to be appropriately combined according to the actual needs of the factory, and thus is more flexible in practical application. In addition, the estimation mode device is used in the first embodiment. The estimation method is replaceable and can be selected according to the physical and parameter characteristics of the actual production equipment: ^ artificial intelligence, statistical methods or mathematical algorithms, such as the nerves Roads, fuzzy theory, data mining techniques, etc. As for the prediction method used in the prediction mode device, it can be a weighted moving average, a neural network or other algorithm with predictive ability. Please refer to Figure 1 and 4, FIG. 4 is a structural diagram showing the quality prediction system of the self-searching device and the self-adaptation device of the present invention, and the estimation mode device 1 Ο Ο, estimation accuracy rate, and prediction accuracy rate in 18 1269990 Evaluation (1) 10 2 'set 13 °, prediction mode device ^ 'set 21G#, located in the pluggable quality prediction module '〇中' and select and set the interface and prediction mode self-adjustment device 410 / position estimate = soil type The self-adapting device of the mountain is located in the remote host 80, and the original data pre-processing device 1 1 0 can be used in the &<彳', type embedded device 9〇. Module 40 or General First, the production machine 2 〇 寂 寂 杳々 杳々 # # 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料 资料Process parameters and bean subtraction There are a wide variety of data, and it is necessary to estimate the part of the data to be used in the 咸 咸 1 1 1 1 1 ' ' ' ' ' ' ' ' 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始 原始Process parameters or sensors (4) Which data is selected as the input parameter is different according to the production machine Γ ΓΛ and the selected estimation method or prediction method. The process parameters and sensor data obtained by this 7 preparations may be There are different = formats, the original data pre-processing device 110 must be able to handle these different 1 and convert to the specific data format that the estimation mode device just needs. To the estimation 2: the original poor material pre-processing package is 11 〇 processing The input data transmitter is second. The purpose of the estimation mode device 1〇0 is to use the production data to estimate the quality of the product being produced, and obtain the estimation to the ^2/: 2# estimation f value input to the _ mode device 2〇0' ,, 〇^ ^ The purpose is to use the estimated negative value (y) of the estimated products of the current evaluation, and the actual products of the previous batches of products obtained by the I machine 30

貝檢測值(少·一, V 口所 〜,& ···,U ’來預測出下一批產品的品質而得預測 、(U預’則模式裝置200和推估模式裝置1〇〇 一樣,可 19 1^69990 以依據生產機a * ’ σ 20本身的特性,搜姐、+ (測模式,如移動 、擇適當的預測方法來建立預 —砂勖干均、類神經網路等。 只 著將推估品質值(免)送至推仕、隹 此批產品的實卩八口睹认t 推估準確率評估裝置130,盎 俨η .實示〇口質檢測值U)相較,以择r 士、隹念玄 ^ 才示。同時,將預測口曾棺、、、, 乂獲侍推估準確率評估指 盥此板盡σ > 凡+/运至預測準確率呼估F置21Γ) ”此批產品的實際品質檢測值Η估4置210, 估指標。評估推 ζ+/)相杈,以獲得預測準確率評 τ 1古推估/預測準確率的 τ 估對象的特性選 会有很多種,可依據所要評 «μαρε)與最大誤 干估才曰“,如平均絕對百分比誤差 取人為差(Max Error)等均可於达丄々 準確率的評估指標。 0 了作為本發明之推估/預測 另外’由於半導體盥TFT T rn e 各種設備特if x 廠之生產設備的種類繁多, 用於各種^ m 雞僅私用一種推估演算法使其能適 π趴夺禋的機台。因此,本 、 置1〇〇和預測模式裝置200,盆 、弋衣 使用者1〇透過選握盥 介面120,根據生產機二2〇的蛀沾七 圪、、擇與β又疋 座钱σ 20的特性,來選擇各種不同的人工 慧、統計學方法、或數學演曾 赢语制y壯堪η 数于肩开法成為建立推估模式裝置100和 肇預利核式裝置200的推姑方、本&猫 的^ η 法和預測方法。隨著使用機台種類 的、加,…些預測演算法正逐步增加之 測演算法越來越多的時候,太褚制加樓从* j用的預 97予候本預測架構的適用性也會越來越 s H设疋:,面120的目的便是要協助使用者1〇選擇適當 的推估或預測方法,並夺g* Μ /dr Α4» 卫叹疋相關的初始值。使用者1〇在完成選 擇與設定之後,品質預測系統即可開始執行。 另外,推估模式之自我搜尋裝置3〇〇和預測模式之自我搜 尋裝置310、及推估模式之自我調適裝置彻和預測模式之自我 20 1269990 ^周適裝置410是本發明的另―項 •立推估/預測架構的人力與時間。、、點’其主要目的是要減少建 •地建構-個推估模式或預測模 ―圖所不’為了要有效率 演算法選擇的自我搜尋裝置。'心’本發明提供—個可内建不同 神經網路來建立推估模式,則自:撞::用者10選擇倒傳遞類 10所設定的隱藏層層數、每個 寸、置300會根據使用者 數種類等,自動搜尋出一最母::二層:個數範圍… 使用者!0採用模糊理論來建立推函數組合及權重值,·若 .根據所設定可能的歸屬函數==則自我搜尋装置3。。 地’若使用者10採用權重移動 出最佳的歸屬函數。同樣 尋裝置31〇將根據使用者10所設定的::剩模式,則自我搜 權重值組合。因此,使用者1〇 尋找出最佳的 數的種類,自我搜尋裝置300和參數的範圍或函 參數或函數組合與權重值。通常。:會生去 數與感測器特性也不同, α備’其製程參 預測模式。而要建立一η 特性建立推估模式和 ,源與時間,故自我搜:::::通常需要投入相當多的人力 響又目我技哥裝置的目的就是為 減少人力需求’藉由一個個已經預先建構好的模:::與 之推估/預測系統在移植到新機台時的設定校=本發明 地縮短。 W杈時間可以大幅 產生,備在生產的過程中’可能會隨時間的增加而 零件老化、衣退,因而造成設備特性偏移;或者是 』檢修、^換零件等,導致復機後的機台特性與之前不—致^ 1題此Τ預測架構應該要有自我調適的能力。推估模式之自 21 1269990 裝置·和預測模式之自我調適裝置4i〇就是 14方面的問題。藉由監控推估/預,、則進a亦 «置400/410可以隨時了解品質=確率評估指標,自我調 的預„ 解為推估/預測模式裝置100/200 的見况,並且依據實際設備需求訂定一 限值M%(如9G%至99%)。 確率的預設下 次(如]a $ ) 推/預測系統準確率已經連續η -人至5 -人)低於此預設下限 會被Μ翻*耐入Α Μ艮值時,自我調適裝置400/410 曰破啟動並配合自我搜尋裝置3〇〇 特性,建立一個新Μσ, 且根據最近的設備參數 漫立個新的口口質預測系統,俾# 、/ _ ’使推估/預測準確率能回復、'預測糸 練資料與測試資料的取樣範圍,則由:用要者“广:於新的訓 中的自我調適機制,選擇發生…吏 1用广。本說明範例 ^ΜΑ^ΙΙΦΦ , 生連、戈2久準確率超限前的5〇筆資 為4練資料⑵筆)與測試資料(25筆)。 第4圖中的預測模式之自我^ 表示此自我調適裝置41()二置410係使用虛線,以 所選擇的預測模式來決定是=的,預測系統建構者可根據 丨六八木/天疋疋否要加入此自 若預測模式裝置採用權重移 ^ :。例如 麵^使得自我嘴嗝她^ 則因為此次异法本身的特 測模式自我調“置4:·果^易突顯,所以可考慮不需加入預 構方法,則加入自、我^^ 神經網路做為預測模式的建 剛結果更加準確ΓΓ 0將可降低預測誤差,並使預 建立的叙 新架構的節點數範圍設定可用先前所 我調適裝置的搜尋時間。 較小減的搜尋,以節省自 4::::ft-lcd廠之濺鍍機為應用實例來說明本發明。 明參恥第5圖,豆盔絡-士成 ^ n Ώ /、為繪不本應用實例之TFT_LCI^之錢鍍 22 1269990 機的設備示意圖。此機台内部共有16個模組,每個模組 5勺力卫動作’其目的係在玻璃(原物料)上鍍上—層薄 膜,而此金屬膜的功用係作為LCD面板的顏色邊框。第、 圖中之箭頭方向為製程的加工順序。首先,玻璃由進出入 後接:°杈組’依妝杈組編號順序加工。在完成前8個模缸 f ’接者旋轉模組將玻璃旋轉到編號第9號模組繼續加工,最 ίΓ=入口送出,而運作過程中每個模組都是處於真空的 :負貝抽真线模組設置有真空度感測器,用以掏取直办 。負責輸送惰性氣體的模組設置有氣體濃度感測器: ^氣體濃度的實際狀態。對於控制加^域中正負離子電^ =二卜加電場、,也裝設有偵測電壓、電流及功率的感測器: 實際加工過私中’將會紀錄一連串的感測器資料。生 ^在◎過程中紀錄製程參數(感測器)資料,玻璃完成加 ㈣母百片成品隨機抽測兩片送至量測機台,量測並纪 錄其濺鍍層膜厚資料。 、 請參照第6圖,其騎示本應用實例之品質預測流程示意 #,猎由量測機台所提供的過去數批產品的量測品質值& ···,3^) ’力口上由生產機台目前正尤 推估出來之本批產品的推估品二&生2程中的製程參數所 .^ 負值(凡Ο即可預測出下一批即將 生產之產品的預測品質值(U。 本應用實例所使用的類神經網路推估模式是採用 機制來建立,系統開發者只需要輸入可能的隱藏層層數、每個 隱藏層節點數範圍、轉移函數種類、與終止條件等,自我搜尋 機制就會根據這㈣定自動尋找出最佳的類神經網路推估模型 23 1269990 值’惟搜尋最佳模型的時間與設定的 有關。如希望縮短搜尋時間,/数觀圍 即可。一妒來今 田整 > 數搜尋範圍大小 B# Μ · -r- ^ ^ ^ 、 〇又疋的#數範圍可降低搜尋 予間,右不考慮時間因素,則增加參 广1 更好的類神經網路模型。 ,I δ將有機會找到 另外’本應用實例係使用移動平均來建立預 此移動平均是採用兩個由量 、工哀置, 值⑶里“田H又備付到的前兩批實際品質檢測 =°:: 測出下一批產品品質⑸)。本應用實例 ㈣預別^間早移動平均與加權移動平均兩種預測模式來比 較其預測效果,其中權重值範圍 η # m a 耗圍P又疋亦疋使用自我搜尋機制(裝 置)來搜哥最佳的預測模式。加權移動平均公式如下: = Wiy{ + w^jy^j + w^2y^2 其中M^.,VV/_/,VVi·—2為權重值。 使用者只需設定權重參數的範圍’自我搜尋機制將會測試 各種可能的權重組合’並根據預測值(u與實際品質檢測值 馨$間的块差大小找出最佳的權重組合。 又,本應用實例以評估指標判斷預測準確率。本應用實例 之評估指標可採用平均絕對百分比誤差(心抓Abs〇iuteBay detection value (less one, V port ~, & ···, U ' to predict the quality of the next batch of products to be predicted, (U pre-then mode device 200 and estimation mode device 1〇〇) Similarly, according to the characteristics of the production machine a * ' σ 20 itself, according to the characteristics of the production machine a * ' σ 20, the search mode, such as the movement, the appropriate prediction method to establish the pre-sand-dry, neural network Etc. Just send the estimated quality value (exempt) to the company, and the actual product of this batch of products is recognized by the estimated accuracy evaluation device 130, 俨 η. The actual 〇 mouth quality detection value U) In contrast, the choice of 士士, 隹念玄^ is shown. At the same time, the forecast mouth Zeng Yi,,,, 乂 侍 侍 侍 侍 侍 侍 准确 & & & & & & & & & & & & & & & & & & & & & Recalling F set 21Γ) ” The actual quality test value of this batch of products is estimated to be 4, 210, and the index is estimated. The evaluation is based on +/), to obtain the prediction accuracy rate τ 1 ancient estimation / prediction accuracy τ There are many kinds of characteristics of the object to be evaluated, which can be evaluated according to the desired evaluation of "μαρε" and the maximum error, such as the average absolute percentage error. x Error), etc. can be used to assess the accuracy of the indicator. 0 as the estimation/prediction of the present invention, because of the wide variety of production equipment of various devices, such as semiconductor 盥 TFT T rn e, it is used for various kinds of chickens.趴 趴 趴 。 。 。 。. Therefore, the present invention and the predictive mode device 200, the user of the basin and the sputum, pass through the selection interface 120, according to the production machine, the 蛀 圪 圪 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The characteristics of 20, to choose a variety of different artificial Hui, statistical methods, or mathematics to play a win-win system y 堪 η 于 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩 肩Fang, Ben & cat's ^ η method and prediction method. With the use of machine types, plus, ... some prediction algorithms are gradually increasing the number of measurement algorithms more and more, the applicability of the pre-97 prediction structure for the use of the building It will be more and more s H: The purpose of face 120 is to assist the user to select the appropriate estimation or prediction method and to capture the initial value associated with g* Μ /dr Α4» 卫 疋. After the user completes the selection and setting, the quality prediction system can be executed. In addition, the self-searching device 3 of the estimation mode and the self-searching device 310 of the prediction mode, and the self-adapting device of the estimation mode and the prediction mode self 20 1269990 ^the device 410 is another item of the present invention. The manpower and time of the estimation/prediction architecture. The main purpose of the point is to reduce the construction of the ground - a estimation model or a prediction model - the map does not require a self-search device for efficient algorithm selection. 'Heart' This invention provides a built-in different neural network to establish the estimation mode. From: collision: The user 10 selects the number of hidden layers set by the reverse transmission class 10, each inch, and 300. According to the number of users, etc., automatically search for a mother:: Layer 2: number range... User! 0 uses fuzzy theory to establish the combination of the push function and the weight value. If the possible attribution function == is set, the device 3 is self-searched. . If the user 10 uses the weight to move out the best attribution function. Similarly, the search device 31 will combine the self-search weights according to the :: remaining mode set by the user 10. Therefore, the user 1 〇 finds the best type of number, self-searching device 300 and parameter range or function parameter or function combination and weight value. usually. : The number of generators and the characteristics of the sensor are also different. To establish a η characteristic to establish the estimation model and source and time, so self-search::::: usually need to invest a considerable amount of manpower and the purpose of my technology device is to reduce the manpower demand 'by one by one The model that has been pre-built is::: The setting of the estimation/prediction system when it is transplanted to the new machine = the invention is shortened. W杈 time can be generated in a large amount. In the process of production, it may increase the time and parts of the parts, and the clothes will be retired, which may cause the equipment to shift. Otherwise, it may be used to repair and replace parts. The characteristics of the platform are not the same as before. The prediction architecture should have the ability to self-adjust. The self-adapting device 4i〇 from the 21 1269990 device and prediction mode is a 14-point problem. By monitoring the estimation/pre-test, then entering a also «set 400/410 can always know the quality = the rate of evaluation indicators, the self-adjusted pre-solution is the situation of the estimation/prediction mode device 100/200, and according to the actual situation The equipment demand sets a limit of M% (such as 9G% to 99%). The default rate of the next time (such as]a $) push/predict system accuracy has been continuous η - person to 5 - person) below this pre- When the lower limit is overturned*, the self-adapting device 400/410 breaks up and cooperates with the self-searching device to establish a new Μσ, and a new one is based on the recent equipment parameters. Oral quality prediction system, 俾#, / _ 'Enable estimation/predictive accuracy rate can be recovered, 'predicting the sampling range of training materials and test data, by: the use of the person "wide: self in the new training Adaptation mechanism, choose to happen... 吏 1 with wide. Examples of this description ^ΜΑ^ΙΙΦΦ, Shenglian, Ge 2 long-term accuracy rate before the 5 〇 pen-funded for 4 training materials (2) pen) and test data (25 pens). The self-^ of the prediction mode in Fig. 4 indicates that the self-adaptation device 41() is set to use the dotted line, and the selected prediction mode is determined to be =, and the prediction system constructor can be based on the six-eight wood/day疋 Do you want to add this self-predictive mode device to use weight shift ^ :. For example, the face ^ makes the self-mouthed her ^ because the special test mode of the different method itself self-adjusts "set 4: · fruit ^ easy to highlight, so consider not to add the pre-construction method, then join the self, I ^ ^ nerve The result of the network as a predictive mode is more accurate. 将 0 will reduce the prediction error, and the pre-established node number range setting can be used for the search time of the previous adaptive device. The sputter machine saved from the 4::::ft-lcd factory is used as an application example to illustrate the present invention. The 5th picture of the shame of shame, the bean helmet-shicheng ^ n Ώ /, the TFT_LCI of the application example The machine is plated with 22 1269990 machine schematic diagram. There are 16 modules inside the machine, and each module has 5 scoops of action. The purpose is to apply a layer of film on the glass (raw material), and the metal film The function is used as the color border of the LCD panel. The direction of the arrow in the figure is the processing sequence of the process. First, the glass is processed by the entrance and exit: the °杈 group is processed in the order of the makeup group. The first 8 modes are completed. Cylinder f 'connector rotation module rotates the glass to number 9 The group continues to process, the most Γ = the entrance is sent out, and each module is in vacuum during the operation: the negative shell pumping line module is equipped with a vacuum sensor for direct handling. It is responsible for conveying inert gas. The module is provided with a gas concentration sensor: ^ The actual state of the gas concentration. For the control of the positive and negative ion electric field ^ 2 two electric field, there is also a sensor for detecting voltage, current and power: The actual processing of the private 'will record a series of sensor data. Raw ^ in the process of ◎ record process parameters (sensor) data, glass finish plus (four) mother hundred pieces of finished products random sampling two pieces sent to the measuring machine , measure and record the film thickness of the sputter layer. Please refer to Figure 6, which shows the quality prediction process of this application example. #测测质量质量质量质量的质量质量质量;···,3^) 'The test parameters of the product of the batch of products that are currently estimated by the production machine are estimated by the production machine. ^ Negative value (everything can be predicted) The predicted quality value of the next batch of products to be produced (U. The neural network estimation model used in the application example is established by using a mechanism. The system developer only needs to input the possible number of hidden layers, the number of each hidden layer node, the type of transfer function, and the termination condition. According to this (4), the mechanism will automatically find the best neural network estimation model 23 1269990 value', but the time to search for the best model is related to the setting. If you want to shorten the search time, you can count the number.妒来今田整> Number of search range size B# Μ · -r- ^ ^ ^, 〇 and 疋# range can reduce the search to the right, right does not consider the time factor, then increase the ginseng 1 better neural network Road model. , I δ will have the opportunity to find another 'this application example is to use the moving average to establish the pre-this moving average is to use two quantity, work sorrow, value (3) in the "two H of the first two batches actually paid Quality inspection = °:: Measure the quality of the next batch of products (5)). This application example (4) compares the early moving average and the weighted moving average prediction modes to compare the prediction effects, wherein the weight value range η # ma consumes P and also uses the self-search mechanism (device) to search for the most Good prediction mode. The weighted moving average formula is as follows: = Wiy{ + w^jy^j + w^2y^2 where M^., VV/_/, VVi·-2 is the weight value. The user only needs to set the range of weight parameters. The self-searching mechanism will test various possible weight combinations and find the best weight combination based on the predicted value (the difference between the u and the actual quality detection value Xin$.) This application example uses the evaluation index to judge the prediction accuracy. The evaluation index of this application example can use the average absolute percentage error (the heart grabs Abs〇iute)

Percentage Error,MAPE)與最大誤差(MaxErr〇r)兩項誤差指 標值,以進行品質預測模型的績效評估,如下所示: ΜΑΡΕ^±±Λ〇/ο n 4Percentage Error (MAPE) and maximum error (MaxErr〇r) are two error metrics for performance evaluation of the quality prediction model as follows: ΜΑΡΕ^±±Λ〇/ο n 4

MaxError = Μαχ\Α. - Ff\ 24 1269990 具中 、 n 實際值,巧··預測值,n:樣本數 - MAPE誤差指挪处& & 私払值越趨近於零,表示模型之預測能力越佳; "决扣私則代表實際值與預測值之間的最大差異。 請參昭第 7 4+ 切 …、 圖’其繪示本應用實例之預測結果。經過篩選 ,曰t、倒傳遞類神經網路使用的資料量為85筆。m _5〇筆資 =乍為貝料,51_85筆資料作為測試資料,並且利用自我搜 哥機制找最佳的品質預測架構,其預測結果如第7圖所示。 本:用實例測試結…APE值為2 〇536%,最大誤差值為 顆⑽(相當於標準膜厚值7GGnm的5.8%)。 此外本發明所提出的品質預測架構除了使用上述範例所示 她的類神經網路_推估模式與權重移動平均(WMA)預測模式 的口之外’亦可採用其他的組合方式來建構品質預測系統。 ^ a類神纟二網路(NN)推估模式與類神經網路(NN)預測模式; 或者是合併為單-類神經網路(CNN)推估預測模式的組合等。 以下說明本發明之應用通用型喪入式裝置之生產製程的品 質預測方法的運作流程。 ’口月參照第1圖和第8圖’第8圖為繪示本發明之應用通用 型嵌入式裝置(GED)之生產製程的品質預測方法的流程示意 圖。本發明之應㈣用型嵌人式裝置之生產製程的品質預測方 法提供了訓練階段、運轉階段和自我調適階段。在訓練階段中, 首先初始化通用型嵌入式裝置50(步驟5〇〇)和通用型嵌入式裝 置90(步驟_),其中通用錢人式裳置9()係安裝於生產機: 2〇中,通用型嵌入式裝置50係安裝於量測機台3〇中,通用型 嵌入式裝置90並安裝有可插入式品質預測模組4〇,而通用型嵌 25 1269990 入式表置5 〇具有量測資料擷取计劃5 8。接著,使用通用型後入 •式裝置90來週期性地蒐集生產機台2〇的製程參數資料(步驟 • 610)。然後,通用型嵌入式裝置9〇傳送製程參數資料至遠端主 機80(^驟62〇)。同時,使用通用型嵌入式裝置5〇之量測資料 擷取計劃58,來週期性地蒐集自量測機台3〇測得之至少一前批 產品的至少一實際品質檢測值(步驟510)。然後,通用型嵌入式 裝置50傳送實際品質檢測值至遠端主機80(步驟52〇)。 接者,遠端主機80進行步驟71〇和步驟72〇,以分別儲存 鲁實際品質檢測值和製程參數資料至f料庫。在輸人實際品質檢 測值和製程參數資料後(步驟722),遠端主貞8〇進行自我搜尋 步驟,以訓練可插入式品質預測模,组4〇(步驟730),巾製定並發 ^ 最仏權重與函數資料給通用型嵌入式裝置90 (步驟 740) ’其中自我搜尋步驟係根據製程參數資料和實際品質檢測 值’來挑選出推估方法或預測方法所需之最佳權重與函數資料 的組合’以增加推估/預测準確度。 然後,本系統進入運轉階段,此運轉階段主要係於可插入 #式品質預測模組4G中進行。首先’初始化可插人式品質預測模 組40並開始線上品f預測(步驟63()) ’其中通用型嵌入式裝置 9 0係根據最佳權重與& ^ f A #, ^ ’來對可插入式品質預測模組40 進订功…。在輸入即時冤集來之實際品質檢測值和製程灸 數資料後(步驟632)後,可择λ + Q # 表枉> (步驟“〇),可插二:“質預測模組4〇便開始運轉 式口0貝預測模組40的運轉主要係透過推估 模式步驟和預測模式步驟來 文推估 ㈣入式裝置90即時苗隹 推估模式步驟係利用由通用 夺鬼集來之生產機台20的製程參數資料, 26 1269990 來推估獲得正在生產機台20 4:方a -中推估m 20生產之-批產品的推估品質值,盆 探勘“ ⑲第―類神經網路、模_理論、資料 用目前括斗山* 筏衍的推估方法。預測模式步驟係利 際。質二!:此批產品的推估品質值’加上前批產品的實 二 =測值’來預測出下一批產品的預測品質值,其中預測 且系使用例如:權重移動平均、第二類神經網路或其他 ”預測此力之演算法的預測方法。 接者’通用型嵌入式裝置90傳送預測結果(預測品至 響通端主機80(步驟65G),遠端主機8G再儲存預測結果至資料庫 (步驟750)。同時’進行步驟66()以判斷推估/預測準確度是否連 績—預設次數(例如:i次至5次)低於一預設下限值(例如:9〇% 至99%),若步驟660的結果為否,則繼續運轉(步驟64〇广若步 驟660的結果為是,則進入自我調適階段,即喚起遠端主機⑼ 進行自我調適機制(步驟670)。此自我調適機制係根據最新的製 程參數資料和實際品質檢測值,以重新訓練可插入式品質預測 楔組40(步驟760),而挑選出並發送另一組最佳權重與函數資料 鲁给通用型嵌入式裝置90 (步驟770),其中自我搜尋步驟係根據 製程參數資料和實際品質檢測值。然後,初始化可插入式品質 預剛模組40並重新開始線上品質預測(步驟68〇),而再次進入 運轉階段。 另外,本發明之預測方法的訓練階段亦可在第一通用型# 入式裝置中進行,藉以不需要將設備資料傳送到遠端主機,來 滅少網路資料流量與頻寬不足的問題。請參照第!圖和第9圖, 第9圖為繪示根據本發明之另一較佳實施例之應用通用型散 27 1269990 入式裝置之生產製程的品質預丨 # 預^方法的流程示意圖,其申只使 用早一通用型嵌入式裝置99來盥 交連。 /、、產機口 20和量測機台3〇 在訓練階段中’ #先初始化通_ 8〇〇),通用型嵌入式裝置9 俶曰、A ^ u 女凌有可插入式品質預測模組4〇 與篁測貧料擷取計劃58。接荖,祛田、s t0 .,... 者使用通用型嵌入式裝置99來週 也鬼集生產機纟2G的製程參數資m步驟及週期性 ,檢測值(步驟別)。κι _產品的至少一實際品質 、接著,通用型喪入式裝置99進行步驟71〇和步驟頂,以 为別儲存實際品質檢測值和製程參數資料至資料庫。在輸 際品質檢龍和製程參數資料後(步驟722),通用型喪 99進行自我搜尋步驟,以 、置 7M、工制— w八式口口為預測杈組40(步驟 730),而“並發送一組最佳權重與函數資料給通用型嵌 置99之可插入式品質預測模組4〇 (步驟μ 苴 、 驟係根據製程參數資料和實際品質 :、自我搜尋步 或預測方法所需之最佳權重盥函數 去 測準確度。 υ數貝枓的組合’以增加推估/預 然後,本系統進入運轉階段,此運轉階段 式品質預測模組則進行。首先,初始化可插人式品=插入 組40並開始線上品質預測(步驟63〇),其中通用、、測核 99係根據最佳權重與函數資料, 插 &入式裝置 進行功能設定。在輸入_集來: 數資料後(㈣叫後,可插入式品質預測模組4〇便 28 1269990 (步驟64〇),可插入式品質預測模組4〇的 -模式步驟和預測模式步驟來進行纟要係透過推估 .型傲人式裝置99即時蕙集來之生產機台係利用由通用 來推估獲得正在生產機台2〇生產之_ σ氣程參數資料, 中推估模式步驟係使用例如第一類神經網路。的推:品質值’其 探勘或其他具推估能力之技術的推估拉糊理論、資料 用目前推估出來之此批產品的推估品質值\力預=模式步驟係利 際品質檢測值,來預測出下一批產品的預^^批=的實 籲模式步驟係使用例如:權重移動 } /、預測 目:® :日丨A t 乐一類神經網路或其他 -、預測此力之演算法的預測方法。 、 接著,通用型嵌入式奘詈QQ捕 土 土甘入八八衷置99傳送預測結果(預測品 Γ步端驟主=)8()(门步驟650) ’遠端主機80再儲存預測結果至資料庫 驟75〇)。同時,進行步驟660以判斷推估/預測準確度是否連 :T设,列如:1…次)低於—預設下限值(例如:90% )若步驟660的結果為否,則繼續運轉(步驟64〇);若牛 :60的_果為疋,則進人自我調適階段,即喚起自我調適機 I:,67G)。此自我調適機制係根據最新的製程參數資料和實 際口口質檢測值,以重新訓練可插入式品質預測模組叫步驟 ?而挑選出並發达另一組最佳權重與函數資料給通用型嵌入 j凌置99之可插入式品質預測模組4〇 (步驟77〇),其中自我 =步驟係根據製程參數資料和實際品質檢測值。然後,初始化 可插入式品質預測模組40並重新 上品 M〇),而再次進入運轉階段。 由上述本發明較佳實施例可知,纟發明之應用通用型嵌入 29 1269990 式裳置之品質預測系統可容易地與生產製程設備連結,而不需 ,受限於既有的資料擷取系統,或耗費金錢再建構一套資料擷= •裝置;在每一個設備都嵌入一個通用型嵌入式裝置,來進行資 料擷取與分析工作,可避免因集中式預測監控系統故障造成= 個預測監控功能癱瘓的問題;將品質預測功能模組設計成可動 態載入的方式,使用者可以根據設備的特性與需求,從品質預 測功能模組庫之中選擇所需的模組載入到通用型嵌入式裝置之 中,以進行設備分析、監控、與預測工作;只將極少量的分析、 _預測結果傳回遠端主機進行儲存,或作為整體設備狀態與效能 的整合性評估,不需將每部設備的大量狀態參數資料送到遠2 主機,因而可大量減少網路資料傳輸與網路壅塞的問題丨可= 產品尚未生產之前,就可根據生產機台目前之製程參數與前幾 批產品的品質檢測資料,預測出下一批產品的品質,因而可大 量地減少不良品的產纟,不僅提高了工廠的產能與產品的良 率,同枯也降低了生產成本,更提高了工廠的競爭力。又,本 發明可同時作為虛擬量測與品質預測來使用,且具有泛用性。 _又,本發明具有自我搜尋機制與自我調適機制,可有效地 推估/預測準確度。 间 —雖然本發明已以一較佳實施例揭露如上,然其並非用以限 疋本=明’任何熟習此技藝者,在不脫離本發明之精神和範圍 内田可作各種之更動與潤冑,因此本發明之保護範圍 附之申請專利範圍所界定者為準。 田 30 1269990 【圖式簡單說明】 晴參照上述欽述並配 型嵌入式裝置之生產製 為了更完整了解本發明及其優點 合下列之圖式,其中: 第1圖為繪示本發明之應用通用 程的品質預測系統的架構示意圖。 第2 第3 構示意圖 圖為繪示本發明之通用$ 圖為繪示本發明之可才番 欲入式裝置的結構示意圖。 入式品質預測系統的主要結 φ 第4圖為繪示本發明之具右白洗 制裝置之品質預測系統的結構示音、圖Y寸在置與自我網適機 第5圖為繪示本發明之應用實例 的設備示意圖。 < 機錢機 第6圖為繪示本應用實例 口 4〈口口貝預測流程示意圖。 第7圖為繪示本應用實例夕益、 a π之預硎結果。 第8圖為繪不根據本發明 < 一較佳實施例之應用通用刑 散入式裝置之生產製程的品質释 ^ 貝預測方法的流程示意圖。 _ 第9圖為緣示根據本發明 型嵌入式裝置之生產製程的品質t另〜較佳實施例之應用通用 、頂蜊方法的流程示意圖。 【主要元件符號說明】 10 使用者 2〇 30 量測機台 4〇 50、 70、90 通用型嵌入 式裴 58 量測資料擷取報告 生產機台 可插入式品質預測模組 置 1269990MaxError = Μαχ\Α. - Ff\ 24 1269990 with medium, n actual value, clever · predictive value, n: number of samples - MAPE error means that the value of the && private value is closer to zero, indicating the model The better predictive power; "deductive private represents the biggest difference between the actual value and the predicted value. Please refer to Chapter 7 4+ Cut ..., Figure ' to show the prediction results of this application example. After screening, the amount of data used by the 曰t and inverted transmission neural networks was 85. m _5 〇 资 乍 = 乍 贝 , 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 Ben: Test the junction with an example... APE value is 2 〇536%, and the maximum error value is (10) (equivalent to 5.8% of the standard film thickness value of 7GGnm). In addition, the quality prediction architecture proposed by the present invention can use other combinations to construct quality predictions in addition to using the neural network _ estimation mode and the weight moving average (WMA) prediction mode shown in the above example. system. ^ a class of neural network (NN) estimation mode and neural network (NN) prediction mode; or a combination of single-class neural network (CNN) estimation prediction mode. The operation flow of the quality prediction method for the production process of the general-purpose enter-type device of the present invention will be described below. Referring to Fig. 1 and Fig. 8', Fig. 8 is a flow chart showing the quality prediction method of the production process of the universal embedded device (GED) according to the present invention. The quality prediction method of the production process of the invention (IV) using the embedded type device provides a training phase, an operation phase and a self-adjustment phase. In the training phase, the universal embedded device 50 (step 5) and the universal embedded device 90 (step _) are first initialized, wherein the universal money type 9 () is installed in the production machine: The universal embedded device 50 is installed in the measuring machine 3〇, the universal embedded device 90 is installed with the pluggable quality prediction module 4〇, and the universal embedded 25 1269990 input type is set to 5 Measurement data acquisition plan 5 8. Next, the general-purpose post-input device 90 is used to periodically collect process parameter data for the production machine 2 (steps 610). Then, the general-purpose embedded device 9 transmits the process parameter data to the remote host 80 (^62). At the same time, using the general-purpose embedded device 5's measurement data acquisition plan 58 to periodically collect at least one actual quality detection value of the at least one previous batch of products measured by the self-measuring machine 3 (step 510) . Then, the general-purpose embedded device 50 transmits the actual quality detection value to the remote host 80 (step 52A). In succession, the remote host 80 performs step 71〇 and step 72〇 to store the actual quality detection value and the process parameter data to the f-seed respectively. After inputting the actual quality detection value and the process parameter data (step 722), the remote host 8〇 performs a self-searching step to train the pluggable quality prediction mode, the group 4〇 (step 730), and the towel formulates the concurrent ^ most The weights and function data are given to the general-purpose embedded device 90 (step 740) 'where the self-searching step selects the optimal weight and function data required for the estimation method or the prediction method based on the process parameter data and the actual quality detection value'. The combination 'to increase the estimation/prediction accuracy. Then, the system enters an operation phase, which is mainly performed in the pluggable quality prediction module 4G. First, 'initialize the pluggable quality prediction module 40 and start the online product f prediction (step 63 ()) 'where the general-purpose embedded device 90 is based on the optimal weight and & ^ f A #, ^ ' The pluggable quality prediction module 40 advances the work. After inputting the actual quality detection value and the process moxibustion data from the instant collection (step 632), you can select λ + Q #表枉> (step "〇", you can insert two: "Quality prediction module 4" The operation of the start-up port 0 prediction module 40 is mainly based on the estimation mode step and the prediction mode step. (4) The input device 90 instant nursery estimation mode step is produced by the general ghost collection. The process parameter data of the machine 20, 26 1269990, is estimated to obtain the estimated quality value of the batch product which is being produced in the production machine 20 4: square a - medium estimation, and the basin exploration "19th class-type neural network , model _ theory, data using the current estimation method of Doosan* 筏 。. The prediction mode steps are profitable. Quality II!: The estimated quality value of this batch of products plus the real two = measured value of the previous batch of products To predict the predicted quality values of the next batch of products, where predictions are used, for example, weighted moving averages, second type neural networks, or other prediction methods that predict the algorithm of this force. The receiver's general-purpose embedded device 90 transmits the prediction result (predicted to the ring-end host 80 (step 65G), and the remote host 8G stores the prediction result to the database (step 750). At the same time, 'go step 66() Determining whether the estimation/predictive accuracy is a succession—the preset number of times (for example, i to 5 times) is lower than a predetermined lower limit value (for example, 9〇% to 99%), and if the result of step 660 is no, Then continue to operate (step 64 〇 If the result of step 660 is yes, then enter the self-adjustment phase, that is, evoke the remote host (9) to perform self-adaptation mechanism (step 670). This self-adaptation mechanism is based on the latest process parameter data and actual The quality detection value is to retrain the pluggable quality prediction wedge set 40 (step 760), and another set of optimal weights and function data is selected and sent to the universal embedded device 90 (step 770), wherein the self-search The step is based on the process parameter data and the actual quality detection value. Then, the pluggable quality pre-rigid module 40 is initialized and the online quality prediction is restarted (step 68〇), and the operation phase is again entered. In addition, the present invention is pre-processed. The training phase of the method can also be performed in the first universal type of input device, so that the device data need not be transmitted to the remote host, so as to eliminate the problem of insufficient network data traffic and bandwidth. Please refer to the figure! FIG. 9 is a flow chart showing the quality pre-processing method of the production process of the general-purpose dispersing 27 1269990-input device according to another preferred embodiment of the present invention. A general-purpose embedded device 99 is used for cross-connection. /, Product machine port 20 and measuring machine 3〇 in the training phase '#First initialization pass_ 8〇〇), general-purpose embedded device 9 俶曰, A ^ u Female Ling has a pluggable quality prediction module 4〇 and a poor material extraction plan 58. Next, Putian, s t0 .,... Use the universal embedded device 99 to come to Zhou Process parameters of the production machine 2G and the periodicity, the detection value (steps). κι _ at least one actual quality of the product, and then, the general-purpose mortal-type device 99 performs step 71 〇 and the top of the step, so as not to store Actual quality test value and process parameter data to the database. After the quality check and process parameter data (step 722), the general type funeral 99 performs the self-searching step, and sets the 7M, the work system-w-eight port as the predictive group 40 (step 730), and "sends one. The best weight and function data of the group is given to the pluggable quality prediction module of the universal embedded type 99 (step μ 苴, according to the process parameter data and actual quality: self-search step or prediction method) The weight 盥 function is used to measure the accuracy. The combination of the number of 枓 枓 以 以 增加 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以The group 40 starts the online quality prediction (step 63〇), wherein the universal, and the core 99 are based on the optimal weight and function data, and the plug-in & input device performs function setting. After inputting the _set: number data ((4), the pluggable quality prediction module 4 28 28 1269990 (step 64 〇), the pluggable quality prediction module 4 〇 - mode step and prediction mode step The production machine system that is based on the estimation of the arrogant device 99 is used to estimate the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The use of, for example, the first type of neural network. The value of the quality value of its exploration or other estimator's technology is estimated, and the data is estimated by the current estimated product value of the batch. The pre-mode step is a quality test value to predict the actual batch mode of the next batch of products. For example, the weight shift is used. /, the forecast target: ®: the sundial A t music class Network or other - predictive method of predicting the algorithm of this force. Then, the general-purpose embedded 奘詈QQ captures the soil and enters the eight-eighth transmission of the prediction result (predicted product step-by-step main =) 8 () (gate step 650) 'Remote host 80 then stores the predicted results to the database Step 75)). At the same time, step 660 is performed to determine whether the estimation/prediction accuracy is connected: T is set, the column is: 1... times) is lower than the preset lower limit value (for example: 90%). If the result of step 660 is no, then continue. Operation (step 64 〇); If the cow: 60 _ fruit is 疋, then enter the self-adjustment stage, that is, evoke the self-adjusting machine I:, 67G). This self-adaptation mechanism selects and develops another set of optimal weights and function data for general-purpose embedding based on the latest process parameter data and actual mouth-and-mouth quality detection values to retrain the pluggable quality prediction module. The pluggable quality prediction module 4〇 (step 77〇), wherein the self=step is based on the process parameter data and the actual quality detection value. Then, the pluggable quality prediction module 40 is initialized and re-introduced, and then enters the operation phase again. It can be seen from the above-described preferred embodiments of the present invention that the application of the invention can be easily embedded with the production process equipment without the need for an existing data acquisition system. Or spend money to construct a set of data • = • device; embedded in each device a universal embedded device for data extraction and analysis, to avoid the failure of centralized predictive monitoring system caused by = predictive monitoring function The problem of designing the quality prediction function module into a dynamic loading mode, the user can select the required module from the quality prediction function module library to load into the universal embedding according to the characteristics and requirements of the device. In the device, for equipment analysis, monitoring, and forecasting; only a small amount of analysis, _ prediction results are transmitted back to the remote host for storage, or as an integrated assessment of the overall device status and performance, no need to A large amount of state parameter data of the device is sent to the far 2 host, thus greatly reducing the problem of network data transmission and network congestion. Before the production, the quality of the next batch of products can be predicted according to the current process parameters of the production machine and the quality inspection data of the previous batches of products, so that the production of defective products can be greatly reduced, and the production capacity of the factory is not only improved. Compared with the yield of the product, the production cost is also reduced, and the competitiveness of the factory is further improved. Further, the present invention can be used as both virtual measurement and quality prediction, and has versatility. Further, the present invention has a self-searching mechanism and a self-adapting mechanism, which can effectively estimate/predict accuracy. The present invention has been described above with reference to a preferred embodiment. However, it is not intended to limit the scope of the invention, and various modifications and improvements can be made without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention is defined by the scope of the patent application. Field 30 1269990 [Simplified description of the drawings] The following is a more complete understanding of the present invention and its advantages in order to more fully understand the following drawings, in which: Figure 1 shows the application of the present invention. Schematic diagram of the general-purpose quality prediction system. 2 is a schematic view showing the structure of the present invention. The main knot φ of the input quality prediction system Fig. 4 is a schematic diagram showing the structure of the quality prediction system of the right white washing device of the present invention, Fig. Y inch and the self-networking machine, Fig. 5 is a drawing Schematic diagram of the device of the application example of the invention. < Machine money machine Figure 6 is a schematic diagram showing the flow of the mouth of the mouth. Figure 7 is a graph showing the results of the application of Xiyi and a π. Fig. 8 is a flow chart showing the method of predicting the quality of the production process of the production process using the universal pen-in device according to the preferred embodiment of the present invention. _ Fig. 9 is a flow chart showing the quality of the production process of the embedded device according to the present invention, and the general application and the top method of the preferred embodiment. [Main component symbol description] 10 User 2〇 30 Measuring machine 4〇 50, 70, 90 Universal embedded 裴 58 Measurement data acquisition report Production machine Pluggable quality prediction module Set 1269990

60 網路 73 資料擷取報告 75 裝置驅動器 78 資料擷取計劃 82 通訊代理者 90 通用型嵌入式裝置 100推估模式裝置 110 原始資料前處理裝 120選擇與設定介面 130 推估準確率評估裝 200 預測模式裝置 z 通訊代理者 74 應用介面 76 資料擷取管理者 80 遠端主機 210 300 310 400 410 500 510 52060 Network 73 Data Capture Report 75 Device Driver 78 Data Capture Plan 82 Communication Agent 90 Universal Embedded Device 100 Estimation Mode Device 110 Raw Data Pre-Processing Device 120 Selection and Settings Interface 130 Estimation Accuracy Evaluation Device 200 Predictive mode device z communication agent 74 application interface 76 data retrieval manager 80 remote host 210 300 310 400 410 500 510 520

600 610 620 預測準確率評估裝置 推估模式之自我搜尋裳置 預測模式之自我搜尋襄置 推估模式之自我調適袭置 預測模式之自我調適裳置 初始化通用型嵌入式敦置 週期性地蒐集產品的實際σ 由… 貝Lt、品質檢測值 傳送實際品質檢測值 初始化通用型敌入式敦置 週期性地蒐集生產機台的製程參數資料 傳送製程參數資料 630初始化可插人式品質預測模組並開始線上品質預測 632輸入即時t集來之實際品質檢測值和製程參數資料 32 1269990 640 運轉 ^ 650 傳送預測結果 ^ 660 推估/預測準確度是否連續預設次數低於預設下限值 670 喚起自我調適機制 680 重新開始線上品質預測 710 儲存實際品質檢測值 720 儲存製程參數資料 722 輸入實際品質檢測值和製程參數資料 φ 730 訓練可插入式品質預測模組 740 發送最佳權重與函數資料 750 儲存預測結果 760 重新訓練可插入式品質預測模組 770 發送另一組最佳權重與函數資料 800 初始化通用型嵌入式裝置600 610 620 Predictive Accuracy Assessment Device Estimation Mode Self-Searching Scenario Prediction Model Self-Searching Predictive Model Self-Adjustment Attack Prediction Mode Self-Adjustment Swing Initialization General-purpose embedded Duntage periodically collects products The actual σ is... By Lt, the quality detection value is transmitted, the actual quality detection value is initialized, and the general type of enemy type is periodically collected. The process parameter data transmission process parameter data 630 of the production machine is initialized and the pluggable quality prediction module is initialized. Start online quality prediction 632 Enter the actual quality detection value and process parameter data from the instant t set 32 1269990 640 Operation ^ 650 Transfer prediction result ^ 660 Estimate/predictive accuracy is the continuous preset number lower than the preset lower limit value 670 Self-adaptation mechanism 680 Restart online quality prediction 710 Store actual quality detection value 720 Store process parameter data 722 Enter actual quality detection value and process parameter data φ 730 Training pluggable quality prediction module 740 Send optimal weight and function data 750 Storage Forecast Results 760 Retrain Pluggable Quality Forecast Another group of preferred transmission right group 770 and the weight function information embedded device 800 initializes the general type

3333

Claims (1)

1269990 十、申請專利範圍 、 k 一種應用通用型嵌入式裝置(Generic Embedded ^ Device·’ GED)之生產製程的品質預測系統,至少包括: 一第一通用型嵌入式裝置,安裝於一生產機台,其中該 第一通用型嵌入式裝置連結有一可插入式(pluggaMe)品質 預測模組; 一遠端主機(Remote Host),用以負責處理由該第一通 用型嵌入式裝置傳送回來的資料,並顯示與儲存預測結果與 _ 異常狀況;以及 一量測資料擷取計劃(Data Collection Plan),連接至一 量測機台,其中該量測資料擷取計劃負責描述該遠端主機與 該可插入式品質預測模組所需要的資料型態,以自該量測機 台蒐集產品的實際品質檢測值; 其中該第一通用型嵌入式裝置至少包括: 一第一資料擷取計劃,用以描述該遠端主機與該可 插入式品質預測模組所需要的資料型態,並產生一第一 φ 資料擷取報告(Data Collection Report); 一第一裝置驅動器(Equipment Driver),用以根據 該第一資料擷取報告,來取得該生產機台的製程參數資 料; 一第一通訊代理者(Communication Agent),用以處 理該遠端主機的要求; 一應用介面(Application Interface),交連於該可插 入式品質預測模組,藉以使該可插入式品質預測模組透 34 1269990 過該應用介面經由該通訊代理者,來與該遠端主機進行 資料傳輸;以及 一第一資料擷取管理者(Data c〇Uecti⑽ M_ge〇’係負責處理該第一通用型嵌入式褒置内部的 所有訊息傳遞’以處理該生產機台、該可插入式品質預 測模組和1¾遠端主機輸出輸入至豸第一通用型私入 裝置的訊息; 、》 其中忒可插入式品質預測模組至少包括: -推估模式裝置(Means) ’係利用該生產機台的製 程參數資料來推估獲得正在該生產機台生產之一批產 品的-推估品質值’其中該推估模式裝置係由一推估方 法:::立’而該推估方法係選自由—第一類神經網路、 成之一族群;以及 成推估-力之技術所組 =模式裝置,係利用目前推估出來之該批產品 °〇質值,加上由該量測機台蒐集得之至少一前 批產品的至少—實際品f檢測值,來制” 的-預測品質值,其中該預測模: 而該預測方法係選自由-權重移動平均、一第 一類神經網路和其他具 _ 族群。 ,、預U之Μ法所組成之- 35 1269990 組更至少包括: —原如》次” 之原始製處理裝置,用以將由該生產機台所輪入 >數資料轉換為具有特定資料格式的輸入資料。 3·如申請專 置之生產製程的 組更至少包括: 利範圍第1項所述之應用通用型嵌入式裴 品質預測系統,其中該可插入式品質預蜊模 %,a 我调適裝置,其中在該生產機台運轉-段時間 ^ 估/預測準確度降低於一預設準確度時,或因定 檢修與更換零件而導致該生產機台之特性改變時,該自Α 凋適機制就會啟動,以修正並且滿足新的該生產機台 性及推估/預測準確度要求。 令 4·如申請專利範圍第丨項所述之應用通用型嵌入式裝 置之生產製程的品質預測系統,其中該推估模式裝置具備虛 擬量測(Virtual Metrology)的功能。 5 ·如申請專利範圍第1項所述之應用通用型嵌入式裳 置之生產製程的品質預測系統,其中該量測資料擷取計劃可 位於該第一通用型嵌入式裝置中,用以產生一第二資料擷取 報告,該第一裝置驅動器根據該第二資料擷取報告,來自該 量測機台蒐集產品的實際品質檢測值,該第一資料擷取管理 者並負責處理該量測機台、該可插入式品質預測模組和該遠 端主機輸出輸入至該第一通用型後入式裝置的訊息。 36 1269990 6·如申請專利範圍第5項 置之生產製裎的口所 、 應用通用型嵌入式裝 <玍屋氣転的品質預測系統,其中 通用型嵌入式裝置傳送 二、機將由該第- 發送-資料查詢要求存在一資料庫之中,並可 j邊弟一通用型嵌入式裝置, 通用型嵌入式裳置在取得資料後傳回該遠端主機。 7·如申明專利聋巳圍帛丨項所述之應用通用型嵌入式裝 ⑩ 1裏私的°口質預测系統,其中該量測資料擷取計劃係 位於帛一通用型嵌入式裳置中,該第二通用型嵌入式裝置 的結構等同於該第一通用型嵌入式裝置,其中該第二通用型 嵌入式裝置更至少包括: 忒里測資料擷取計劃,用以描述該遠端主機與該可 插入式品質預測模組所需要的資料型態,並產生一第二 資料擷取報告; 一第二裝置驅動器,用以根據該第二資料擷取報 馨告’來自該量測機台蒐集產品的實際品質檢測值; —第二通訊代理者,用以處理該遠端主機的要求; 以及 一第二資料擷取管理者,係負責處理該第二通用塑 甘入入式裝置内部的所有訊息傳遞,以處理該量測機台、 δ亥可插入式品質預測模組和該遠端主機輸出輸入至該 第二通用型嵌入式襞置的訊息。 37 1269990 8.如申睛專利範圍第7項所述之應用通用型嵌入式裝 -置之生產製程的品質預測系統,其中該遠端主機將由該第一 _通用型嵌入式裝置和該第二通用型嵌入式裝置傳送回來的 資料存在-資料庫之中,並可發送一資料查詢要 通用型嵌入式裝置和該第二通用型嵌入式裝置,而該第一通 用型嵌入式裝置和該第二通用型嵌入式裝置在取得資料後 傳回該遠端主機。 • 9·如申請專利範圍第1項所述之應用通用型嵌入式裝 置之生產製程的品質預測系統,其中該遠端主機透過一自我 搜尋裝置,來製定該推估方法或該預測方法所需之一組最 佳權重與函數資料的組合。 10 ·如申請專利範圍第9項所述之應用通用型嵌入式裂 置之生產製程的品質預測系統,其中該遠端主機發送該組最 佳權重與函數資料給該第一通用型嵌入式裝置,以進行該可 籲插入式品質預測模組的功能設定。 η·如申請專利範圍第丨項所述之應用通用型嵌入式裝 置之生產製程的品質預測系統,其中該遠端主機發送一品質 預測查肩要求給該品質預測功能模組,而該品質預測功能楔 組根據該些品質預測查詢要求回覆相關結果給該遠端主機。 12·如申請專利範圍第1項所述之應用通用型嵌入式裝 38 1269990 置之生產製程的品質預測系統,其中該應用介面係根據該受 ' 控設備的特性,來動態載入適當的該可插入式品質預測模 13·如申請專利範圍第1項所述之應用通用型嵌入式裝 置之生產製程的品質預測系統,其中該資料擷取報告負責定 義包括有事件(Events)、資料追蹤(Trace DaU)與例外 (Exceptions)之各種不同類型資料的延伸性標示語言(xml) 訊息格式;以及定義時間戳章(Timestamp)與解決手段 (Resolution)的格式與規格。 14.如申請專利範圍第1項所述之應用通用型嵌入式裝 置之生產製程的品質預測系統,其中該裝置驅動器係經由一 標準的串列介面、一乙太網路(Ethernet)介面或一類比數位 轉換器連接到該生產機台或該量測機台。 15·—種應用通用型嵌入式裝置之生產製程的品質預 測方法,至少包括: 提供一訓練階段,其中該訓練階段至少包括: 使用一第一通用型嵌入式裝置來蒐集一生產機台 的製程參數資料,其中該第一通用型嵌入式裝置係安 裝於該生產機台中,該第一通用型嵌入式裝置安裝有 一可插入式品質預測模組; 該第一通用型嵌入式裝置傳送製程參數資料至 39 1269990 一遠端主機; 使用^ 一置测資料;jig而μ 、针顯取叶劃來蒐集自一量測機台測 得之至少一前批產品的石I 由、、 的至少一實際品質檢測值; 傳送實際品質檢| 、子双利值至该遠端主機;以及 該遠端主機進彳千, - 運订一自我搜尋步驟,以製定並發送一 組最佳權重與函數資料仏 Jr ^ ^ 貝丁卞、、、口 5亥第一通用型嵌入式裝置, 其中°亥自我搜哥步驟係根據製程參數資料和實際品質 檢測值,來挑選出_ | 、 出 推估方法或一預測方法所需之該1269990 X. Patent application scope, k A quality prediction system for a production process of a general-purpose embedded device (Generic Embedded ^ Device·' GED), comprising at least: a first universal embedded device mounted on a production machine The first universal embedded device is coupled to a pluggable quality prediction module; and a remote host is configured to process the data transmitted by the first universal embedded device. And displaying and storing the predicted result and the _ abnormal condition; and a data collection plan (Data Collection Plan) connected to a measuring machine, wherein the measuring data capturing plan is responsible for describing the remote host and the The data type required by the plug-in quality prediction module is used to collect the actual quality detection value of the product from the measuring machine; wherein the first universal embedded device includes at least: a first data acquisition plan for Describe the data type required by the remote host and the pluggable quality prediction module, and generate a first φ data acquisition report (Dat a Collection Report); a first device driver (Equipment Driver) for obtaining a process parameter data of the production machine according to the first data acquisition report; a first communication agent (Communication Agent) for Processing the requirements of the remote host; an application interface is interconnected to the pluggable quality prediction module, so that the pluggable quality prediction module passes through the application interface through the communication agent, To transmit data to the remote host; and a first data capture manager (Data c〇Uecti(10) M_ge〇' is responsible for processing all message passing inside the first universal embedded device to process the production machine The pluggable quality prediction module and the 13⁄4 remote host output the information input to the first universal private device; , wherein the pluggable quality prediction module comprises at least: - an estimated mode device (Means) ) 'Using the process parameter data of the production machine to estimate the quality value of the batch of products being produced in the production machine Wherein the estimation mode device is determined by a method of estimation::: and the estimation method is selected from the group consisting of: a first type of neural network, a group of people; and a method of estimating a force-force group = mode The device utilizes the current estimated value of the batch of products, plus the at least one actual product f detection value of at least one of the previous batches collected by the measuring machine, to produce a predicted quality value. Where the prediction mode is: and the prediction method is selected from a weighted moving average, a first type of neural network, and other _ groups. The composition of the pre-U method - 35 1269990 group includes at least: - the original processing device of the original "secondary", used to convert the data entered by the production machine into a specific data format. Enter the data. 3. If the application for the dedicated production process group includes at least: The general-purpose embedded defect quality prediction system described in item 1 of the scope of interest, wherein the pluggable quality pre-modeling %, a Suitable device, wherein when the production machine is operated - the time is estimated / the accuracy of the prediction is reduced to a preset accuracy, or the characteristics of the production machine are changed due to the repair and replacement of the parts, the self-destruction The appropriate mechanism will be activated to correct and meet the new requirements for the production machine and the estimation/predictive accuracy. 4. The quality of the production process for the application of the universal embedded device as described in the scope of the patent application. a prediction system, wherein the estimation mode device is provided with a virtual metrology function. 5 · The quality of the production process of the general-purpose embedded device as described in claim 1 a prediction system, wherein the measurement data acquisition plan is located in the first general-purpose embedded device for generating a second data retrieval report, the first device driver extracting a report according to the second data, The measuring machine collects the actual quality detection value of the product, and the first data extraction manager is responsible for processing the measuring machine, the pluggable quality prediction module and the remote host output input to the first universal type The message of the rear-loading device. 36 1269990 6·The application of the general-purpose embedded device & the quality prediction system of the 玍 転 転 如 如 如 如 如 如 如 如 如The second transmission will be stored in the database by the first-send-data query request, and the general-purpose embedded device will be sent back to the remote host after obtaining the data. · As stated in the patent pending 聋巳 之 之 应用 通用 通用 通用 通用 通用 通用 通用 通用 通用 通用 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° The structure of the second general-purpose embedded device is equivalent to the first general-purpose embedded device, wherein the second universal embedded device further comprises: a data acquisition plan for describing the remote end a data type required by the host and the pluggable quality prediction module, and generating a second data capture report; a second device driver for extracting an advertisement according to the second data from the measurement The machine collects the actual quality detection value of the product; - the second communication agent handles the request of the remote host; and a second data retrieval manager who is responsible for processing the second universal plastic input device All internal messages are transmitted to process the measurement machine, the delta pluggable quality prediction module, and the remote host output input to the second universal embedded device. 37 1269990 8. The quality prediction system for a general-purpose embedded-mounted production process as described in claim 7 of the scope of the patent application, wherein the remote host is to be the first-general-type embedded device and the second The data transmitted by the universal embedded device exists in the database, and can send a data query to the universal embedded device and the second universal embedded device, and the first universal embedded device and the first The second general-purpose embedded device returns the remote host after obtaining the data. • The quality prediction system for the production process of the universal embedded device as described in claim 1, wherein the remote host develops the estimation method or the prediction method through a self-search device A combination of the best weights of a group and the function data. 10. The quality prediction system for a production process using a general-purpose embedded split as described in claim 9 wherein the remote host transmits the set of optimal weights and function data to the first general-purpose embedded device To perform the function setting of the callable quality prediction module. η. The quality prediction system for a production process of a general-purpose embedded device as described in the scope of the patent application, wherein the remote host sends a quality prediction shoulder to the quality prediction function module, and the quality prediction The functional wedge group responds to the quality prediction query request to reply the relevant result to the remote host. 12. The quality prediction system for the production process of the general-purpose embedded device 38 1269990, as described in claim 1, wherein the application interface dynamically loads the appropriate one according to the characteristics of the controlled device. The pluggable quality prediction module 13 is the quality prediction system for the production process of the universal embedded device as described in claim 1, wherein the data retrieval report is responsible for defining events, data tracking ( Trace DaU) Extensible Markup Language (XML) message format for various types of data with exceptions; and formats and specifications for defining Timestamps and Resolutions. 14. The quality prediction system for a production process using a general-purpose embedded device according to claim 1, wherein the device driver is via a standard serial interface, an Ethernet interface or a An analog digital converter is connected to the production machine or the measuring machine. 15. A quality prediction method for a production process using a general-purpose embedded device, comprising at least: providing a training phase, wherein the training phase includes at least: collecting a process of a production machine using a first general-purpose embedded device Parameter data, wherein the first universal embedded device is installed in the production machine, the first universal embedded device is provided with a pluggable quality prediction module; and the first universal embedded device transmits process parameter data To 39 1269990 a remote host; use ^ a test data; jig and μ, the needle to draw the leaf stroke to collect at least one actual product of at least one of the previous batch products measured from a measuring machine Quality detection value; Transmit actual quality check |, Sub-double value to the remote host; and the remote host enters thousands, - Schedule a self-search step to develop and send a set of optimal weights and function data仏Jr ^ ^ Beiding卞,,, 口5hai first general-purpose embedded device, in which the self-search step is based on process parameter data and actual quality detection values. To pick out _ |, which required a conjecture of a prediction method or methods 組最佳權重與函|^ ^ / A 山数貝枓的組合,以增加推估/預測準確 度;以及 提供-運轉階段,其中該運轉階段主要係於該可插入式 品質預測模組中進行,該運轉階段至少包括: f據該組最佳權重與函數資料進行功能設定; 山提供一推估模式步驟,藉以利用由該第一通用型 肷入式裝置即時蒐集來之該生產機台的製程參數資 料,來推估獲得正在該生產機台生產之一批產品的一 推估品質值,其中該推估模式步驟係使用該推估方法 而遁推估方法係選自由一第一類神經網路、— 觸、一貝料探勘和其他具推估能力之技術所組成之〜a 提供一預測模式步驟,藉以利用目前推估出來< a 批產品的該推估品質值,加上該前批產品的為 、 不質;[:人 測值’來預測出下一批產品的一預測品質值,其中^ ^ 測模式步驟係使用該預測方法,而該預測方法係弯Λ ^ 、、自由 1269990 一權重移動平均、一第二類神經網路和其他具預測能力 之决异法所組成之一族群。 16·如申請專利範圍第15項所述之應用通用型嵌入式 裝置之生產製程的品質預測方法,更至少包括: 進行一原始資料前處理步驟,藉以將由該生產機台所輪 入之原始的製程參數資料轉換為具有特定資料格式的輸入 貝料’其中該原始資料前處理步驟係於該可插入式品貲預 %模組中進行。 。 17·如申請專利範圍第15項所述之應用通用型嵌入式 裝置之生產製程的品質預測方法,其中該推估模式步驟X 備虛擬量測的功能。 /、 18·如申請專利範圍第15項所述之應用通用型嵌入、 裝置之生產製程的品質預測方法,更至少包括: 式 % 提供一評估指標,藉以以評估該生產製程之品質預 統的準確率。 、系 1 9 ·如申請專利範圍第1 8項所述之應用通用型嵌入气 裝置之生產製程的品質預測方法,其中該評估指標係選自由 平均絕對百分比誤差、和最大誤差所組成之一族群。 2〇·如申請專利範圍第ι5項所述之應用通用型嵌入、 式 41 1269990 裝置之生產製程的品質預測方直 ^ /、甲β豕預’貝丨方法将栋用兮 權重移動平均,該權重移動 ,、用^ ^ Λ ... 句疋採用由5亥®測機台所得到 的刖兩批產品之該些實際品 乂木口随/士卜、 負才欢,則值(少卜7,υ,再加上該推 估口口髮值(乃),來預測出該 批產°口δ亥預刪品質值(U, β權重移動平均的公式為.〜 ^ 、两·少…= + + U门 其中 為權重值。 •如申請專利範圍第15項所述之應用通用型嵌入式 •名置,生產製程的品質預測方法,更至少包括: 提供一自我調適階段,藉以當推估/預测準確度連續一 預汉^數降低至小於一預設下限值時,由該第一通用型嵌 入式裝置喚起該遠端主機進行一自我調適機制,其中該自 我周L機制係根據最新的製程參數資料和實際品質檢測 值,來挑選出另一組最佳權重與函數資料,以讓該可插入式 口口質預測模組根據該另一組最佳權重與函數資料重新進行 功能設定。 22.如申請專利範圍第21項所述之應用通用型嵌入式 咸置之生產製程的品質預測方法,其中該預設次數係介於 1次至5次之間。 23·如申請專利範圍第21項所述之應用通用型嵌入式 表置之生產製程的品質預測方法,其中該預設下限值係介 於90%至99%之間。 42 1269990 ★ 24·如申請專利範圍第1 5項所述之應用通用型嵌入式 _裝置之生產製程的品質預測方法,其中該量測資料擷取計 劃可位於該第一通用型嵌入式裝置中。 25·如申請專利範圍第1 5項所述之應用通用型嵌入式 裝置之生產製程的品質預測方法,其中該量測資料擷取計 劃係位於一第二通用型嵌入式裝置中,該第二通用型嵌入式 鲁裝置的結構等同於該第一通用型嵌入式裝置,該第二通用 型肷入式裝置係安裝於該量測機台中。 26.—種應用通用型嵌入式裝置之生產製程的品質預 測方法,至少包括: 提供一訓練階段,其中該訓練階段至少包括:The best weight of the group and the combination of the |^ ^ / A mountain number to increase the estimation/prediction accuracy; and the provide-operation phase, wherein the operation phase is mainly performed in the pluggable quality prediction module. The operation phase includes at least: f performing function setting according to the optimal weight of the group and function data; and providing a step of estimating mode to utilize the production machine of the first universal type of intrusion device Process parameter data to estimate a derived quality value of a batch of products being produced in the production machine, wherein the estimation mode step uses the estimation method and the estimation method is selected from a first type of nerve The network, the touch, the one-shot exploration, and other techniques of estimating the ability to provide a predictive mode step to utilize the current estimated quality value of the < a batch of products, plus The pre-production product is not qualified; [: human measurement value] predicts a predicted quality value of the next batch of products, wherein the ^^ measurement mode step uses the prediction method, and the prediction method is curved Λ, , Weight of 1,269,990 a weighted moving average, and a second neural network with other predictive ability of the method depends isobutyl group consisting of one. 16. The method for predicting the quality of a production process using a general-purpose embedded device as described in claim 15 of the patent application, further comprising: performing a raw data pre-processing step whereby the original process to be rotated by the production machine The parameter data is converted into an input material having a specific data format, wherein the original data pre-processing step is performed in the pluggable product pre-module module. . 17. The quality prediction method for a production process using a general-purpose embedded device as described in claim 15 of the patent application, wherein the estimation mode step X is provided with a virtual measurement function. /, 18· As described in claim 15 of the scope of application of the general-purpose embedded, the quality prediction method of the production process of the device, at least include: Formula% provides an evaluation index to evaluate the quality of the production process Accuracy. The system for predicting the quality of a production process using a universal embedded gas device as described in claim 18, wherein the evaluation index is selected from the group consisting of an average absolute percentage error and a maximum error. . 2〇·Assessing the application of general-purpose embedding as described in the application of the scope of the patent, the quality prediction method of the production process of the type 41 12699900 device, and the method of moving the average weight of the building The weight is moved, and ^ ^ Λ ... sentence is used to obtain the actual products of the two batches of products obtained by the 5 Hai® measuring machine. The actual value of the wooden mouth is / / /, and the value is negative. υ, plus the estimated mouth value (yes), to predict the mass value of the batch δ hai hai pre-deletion (U, β weight moving average formula is .~ ^, two less...= + + U-gate is the weight value. • As applied in the general scope of the application, the application of the general-purpose embedded name, the quality prediction method of the production process, at least include: Provide a self-adjustment stage, so as to estimate / When the prediction accuracy is continuously reduced to less than a predetermined lower limit value, the first universal embedded device evokes the remote host to perform a self-adaptation mechanism, wherein the self-peripheral L mechanism is based on the latest Process parameter data and actual quality test value To select another set of optimal weights and function data, so that the pluggable oral quality prediction module re-functions according to the other set of optimal weights and function data. 22. For example, claim 21 The method for predicting quality of a production process using a general-purpose embedded salty method, wherein the preset number of times is between 1 and 5 times. 23· Applying universal embedding as described in claim 21 of the patent application scope The method for predicting the quality of the production process, wherein the preset lower limit value is between 90% and 99%. 42 1269990 ★ 24· Application general-purpose embedded as described in claim 15 The method for predicting the quality of the production process of the device, wherein the measurement data acquisition plan can be located in the first general-purpose embedded device. 25· Applying the universal embedded device as described in claim 15 The quality prediction method of the production process, wherein the measurement data acquisition plan is located in a second general-purpose embedded device, and the structure of the second universal embedded device is equivalent to the first universal embedded device The second universal type of intrusion device is installed in the measuring machine. 26. A quality prediction method for a production process for applying a universal embedded device, comprising at least: providing a training phase, wherein the training phase is at least include: 使用一通用型肷入式裝置來蒐集一生產機台的製 程參數資料、及自一量測機台測得之至少一前批產品的 至少-實際品質檢測值,其中該通用型嵌入式裝置係 分別與該生產機台和該量测機台交連,該通用型嵌入 式裝置安裝有一可插入式品質預測模組和一量測資料 擷取計劃; 該通用型嵌入式裝置進耔 , 運仃一自我搜尋步驟,以製 定並發送一組最佳權重與函數眘Μ μ ^ ^ 默貝枓給該可插入式品質 預測模組’其中該自我搜尋步驟後& 乂 ·鄉係根據製程參數資料和 實際品質檢測值,來挑選出—你^ 推估方法或一預測方法 43 1269990 所需之該組最佳權重與函數資料的組合,以增加推 預測準確度;以及 #/ 提供一運轉階段,其中該運轉階段主要係於該可插入 口口貝預測模組中進行,說運轉階段至少包括: ^ 根據該組最佳權重與函數資料進行功能設定; 提供一推估模式步驟,藉以利用由該通用型嵌入 式裝置即時蒐集來之該生產機台的製程參數資料,來 推估獲得正在該生產機台生產之一批產品的一推估品 質值,其中該推估模式步驟係使用該推估方法,而該推 估方法係選自由一第一類神經網路、一模糊理論、一資 料彳木勘和其他具推估能力之技術所組成之一族群;以及 提供一預測模式步驟,藉以利用目前推估出來之該 批產品的該推估品質值,加上該前批產品的實際品質: 測值,來預測出下一批產品的一預測品質值,其中該預 =挺式步驟係使用該預測方法,而該預測方法係選自由 杻重移動平均、一第二類神經網路和其他具預測 之演算法所組成之一族群。 裝置之生產製程 進行一原始 •士申μ專利範圍第26項所述之應用通用型嵌入式 的品質預測方法Using a general-purpose intrusion device to collect process parameter data of a production machine and at least an actual quality detection value of at least one pre-batch product measured from a measuring machine, wherein the universal embedded device is Interconnected with the production machine and the measuring machine respectively, the universal embedded device is equipped with a pluggable quality prediction module and a measurement data acquisition plan; the universal embedded device enters, Self-search steps to develop and send a set of optimal weights and functions to be cautious μ ^ ^ 默贝枓 to the pluggable quality prediction module 'after the self-search step & 乂·乡乡 according to process parameters and The actual quality detection value is used to select the combination of the best weight and the function data required by the estimation method or a prediction method 43 1269990 to increase the prediction accuracy; and #/ provide an operation phase, wherein The operation phase is mainly performed in the pluggable mouth prediction module, and the operation phase includes at least: ^ function setting according to the optimal weight and function data of the group Providing an estimation mode step, by using the process parameter data of the production machine collected by the universal embedded device, to estimate a quality value of a batch of products being produced by the production machine, Wherein the estimation mode step uses the estimation method, and the estimation method is selected from the group consisting of a first type of neural network, a fuzzy theory, a data arbor and other techniques with estimation capabilities. a group; and providing a predictive model step to utilize the estimated quality value of the batch of products currently estimated, plus the actual quality of the previous batch of products: the measured value to predict a predicted quality of the next batch of products The value, wherein the pre-step method uses the prediction method, and the prediction method is selected from the group consisting of a weighted moving average, a second type of neural network, and other predictive algorithms. The production process of the device is carried out as a raw • The general-purpose embedded quality prediction method described in item 26 of the patent application scope 貝預測方法,更至少包括: Γ處理步驟,藉以將由該生產機台所輸 曼料轉換為具有特定資料格式的輸入 前處理步驟係於該可插入式品質預測 44 1269990 26項所述之應帛通帛型嵌入式 測方法,其中該推估模式步驟具 28·如申請專利範圍第 裝置之生產製程的品質預 備虛擬量測的功能。The Bayer prediction method further comprises: a Γ processing step, wherein the input pre-processing step of converting the man-made material input by the production machine into a specific data format is based on the plug-in quality prediction 44 1269990 26 The 嵌入式 type embedded measuring method, wherein the estimating mode step has the function of preparing a virtual measurement of the quality of the production process of the device of the patent application. 提供一評估指標,藉以以評估 統的準確率。 29·如申請專利範圍第 裝置之生產製程的品質預測 26項所述之應用通用型散入式 方法,更至少包括: 該生產製程之品質預測系 3〇·如申請專利範圍第29項所述之應用通用型嵌入式 裝置之生產製程的品質預測方法,其中該評估指標係選自由 平均絕對百分比誤差、和最大誤差所組成之一族群。 3 1 ·如申請專利範圍第26項所述之應用通用型嵌入式 裝置之生產製程的品質預測方法,其中該預測方法係使用該 鲁權重移動平均,該權重移動平均是採用由該量測機台所得到 的前兩批產品之該些實際品質檢測值(h,D,再加上該推 估品質值(免·),來預測出該下一批產品該預測品質值(义+/), 。亥權重移動平均的公式為:L = + w /兄··y + 其中 為權重值。 32·如申請專利範圍第26項所述之應用通用型嵌入式 裝置之生產製程的品質預測方法,更至少包括: 45 1269990 箱自我調適階段’藉以當推估/預測準 切署: 值時,喚起該通用型取入 :展罝進行一自我調適機制’其中該自我調 : 最新的製程參數資料和眚^ 口 @^ 係根據 ^ 数貝枓和貫際品質檢測值,來挑選出另—組最 佳權重與函數資料’以讓該可插人式品質預測模組根據該另 ’’且最彳土權重與函數資料重新進行功能設定。 33·如申請專利範圍第32項所述之應用通用型嵌入式 裝置之生產製程的品質預測方法,其中該預設次數係介於 1次至5次之間。 3 4 ·如申請專利範圍第3 2項所述之應用通用型敗入式 裝置之生產製程的品質預測方法,其中該預設下限值係介 於90%至99%之間。 46Provide an evaluation indicator to assess the accuracy of the system. 29. If the quality of the production process of the device for applying for the patent range is predicted, the general-purpose method for the application of the method is more than at least: the quality prediction system of the production process is as described in item 29 of the patent application scope. A quality prediction method for a production process using a general-purpose embedded device, wherein the evaluation index is selected from the group consisting of an average absolute percentage error and a maximum error. 3 1 · A quality prediction method for a production process using a general-purpose embedded device as described in claim 26, wherein the prediction method uses the Lu weight moving average, and the weight moving average is adopted by the measuring machine The actual quality test values (h, D, plus the estimated quality value (free)) of the first two batches of products obtained by the station to predict the predicted quality value (meaning +/) of the next batch of products, The formula for the weighted moving average of the sea weight is: L = + w / brother · · y + where is the weight value. 32 · The quality prediction method of the production process using the universal embedded device as described in claim 26 of the patent application scope, More than at least: 45 1269990 Box self-adjustment stage 'by the time when estimating/predicting the Bureau of Punishment: value, evoking the universal type of access: exhibiting a self-adapting mechanism' where the self-tuning: the latest process parameters and眚^口@^ is based on the number of shells and the quality detection value to select the other group of the best weight and function data 'to make the pluggable quality prediction module according to the other '' and finally Soil weight The function data is re-configured. 33. The quality prediction method for the production process of the general-purpose embedded device described in claim 32, wherein the preset number is between 1 and 5 times. 4. The quality prediction method for the production process using the universal type septic device as described in claim 3, wherein the preset lower limit value is between 90% and 99%.
TW94103745A 2005-02-04 2005-02-04 Quality prognostics system and method for manufacturing processes with generic embedded devices TWI269990B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94103745A TWI269990B (en) 2005-02-04 2005-02-04 Quality prognostics system and method for manufacturing processes with generic embedded devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94103745A TWI269990B (en) 2005-02-04 2005-02-04 Quality prognostics system and method for manufacturing processes with generic embedded devices

Publications (2)

Publication Number Publication Date
TW200629117A TW200629117A (en) 2006-08-16
TWI269990B true TWI269990B (en) 2007-01-01

Family

ID=38318520

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94103745A TWI269990B (en) 2005-02-04 2005-02-04 Quality prognostics system and method for manufacturing processes with generic embedded devices

Country Status (1)

Country Link
TW (1) TWI269990B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8095484B2 (en) 2008-05-20 2012-01-10 National Cheng Kung University System and method for automatic virtual metrology
TWI410871B (en) * 2009-12-18 2013-10-01 China Steel Corp Universal interface module
TWI587236B (en) * 2013-02-05 2017-06-11 廣達電腦股份有限公司 Apparatus and method for generating bill of sampling material
TWI727323B (en) * 2019-01-30 2021-05-11 鴻齡科技股份有限公司 Repairable board detection device, method and storage medium
TWI745256B (en) * 2021-04-12 2021-11-01 南亞塑膠工業股份有限公司 Operation management system
TWI765001B (en) * 2017-04-05 2022-05-21 日商荏原製作所股份有限公司 Semiconductor manufacturing apparatus, failure prediction method for semiconductor manufacturing apparatus, and failure prediction program for semiconductor manufacturing apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI528123B (en) 2013-11-25 2016-04-01 財團法人資訊工業策進會 Embedded system, fool-proof control method and computer-readable storage medium
US11568198B2 (en) 2018-09-12 2023-01-31 Applied Materials, Inc. Deep auto-encoder for equipment health monitoring and fault detection in semiconductor and display process equipment tools
CN116724328A (en) * 2021-01-06 2023-09-08 杰富意钢铁株式会社 Quality abnormality analysis method, method for producing metal material, and quality abnormality analysis device
TWI819318B (en) * 2021-06-17 2023-10-21 台達電子工業股份有限公司 Machine monitoring device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8095484B2 (en) 2008-05-20 2012-01-10 National Cheng Kung University System and method for automatic virtual metrology
TWI410871B (en) * 2009-12-18 2013-10-01 China Steel Corp Universal interface module
TWI587236B (en) * 2013-02-05 2017-06-11 廣達電腦股份有限公司 Apparatus and method for generating bill of sampling material
TWI765001B (en) * 2017-04-05 2022-05-21 日商荏原製作所股份有限公司 Semiconductor manufacturing apparatus, failure prediction method for semiconductor manufacturing apparatus, and failure prediction program for semiconductor manufacturing apparatus
TWI727323B (en) * 2019-01-30 2021-05-11 鴻齡科技股份有限公司 Repairable board detection device, method and storage medium
TWI745256B (en) * 2021-04-12 2021-11-01 南亞塑膠工業股份有限公司 Operation management system

Also Published As

Publication number Publication date
TW200629117A (en) 2006-08-16

Similar Documents

Publication Publication Date Title
TWI269990B (en) Quality prognostics system and method for manufacturing processes with generic embedded devices
Zhang et al. ZipNet-GAN: Inferring fine-grained mobile traffic patterns via a generative adversarial neural network
Golovin et al. Online distributed sensor selection
CN110278102A (en) A kind of IT automation operational system and method
CN104102875B (en) Software service quality monitoring method and system based on weighted naive Bayes classifier
CN109597014A (en) A kind of electric energy meter error diagnostic method based on artificial intelligence technology
CN109905696A (en) A kind of recognition methods of the Video service Quality of experience based on encryption data on flows
Nováczki An improved anomaly detection and diagnosis framework for mobile network operators
CN110865924B (en) Health degree diagnosis method and health diagnosis framework for internal server of power information system
CN102789219A (en) Energy management system
Paradiso et al. ANN-based appliance recognition from low-frequency energy monitoring data
Marais et al. A review of the topologies used in smart water meter networks: A wireless sensor network application
TWI395965B (en) Fuel cell faulty predicting system and its establishing method
CN112801411B (en) Network traffic prediction method based on generation of countermeasure network
TW201917671A (en) Power consumption analyzing server and power consumption analyzing method thereof
Jirsik et al. Quality of service forecasting with LSTM neural network
CN115580446A (en) Non-intrusive load detection method based on decentralized federal learning
CN115526265A (en) Non-invasive load decomposition method based on progressive learning structure
Lee et al. Smart metering system capable of anomaly detection by bi-directional LSTM autoencoder
CN107247797A (en) Time scale measurement data-storage system and method in electric power scheduling automatization system based on Redis
CN109409629A (en) Acquisition terminal production firm evaluation method based on Multiple Attribute Decision Model
CN110543509B (en) Monitoring system, method and device for user access data and electronic equipment
JP2011197768A (en) Sensor network system, organizational behavior information collection method, organizational behavior analysis server and portable sensor node
CN116714469A (en) Charging pile health monitoring method, device, terminal and storage medium
Ridi et al. Processing smart plug signals using machine learning