TWI269546B - Method and system for impulse noise rejection in OFDM system - Google Patents

Method and system for impulse noise rejection in OFDM system Download PDF

Info

Publication number
TWI269546B
TWI269546B TW94115989A TW94115989A TWI269546B TW I269546 B TWI269546 B TW I269546B TW 94115989 A TW94115989 A TW 94115989A TW 94115989 A TW94115989 A TW 94115989A TW I269546 B TWI269546 B TW I269546B
Authority
TW
Taiwan
Prior art keywords
pulse
pulse noise
noise
waveform
signal
Prior art date
Application number
TW94115989A
Other languages
Chinese (zh)
Other versions
TW200642339A (en
Inventor
Tsung-Liang Chen
Original Assignee
Afa Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Afa Technologies Inc filed Critical Afa Technologies Inc
Priority to TW94115989A priority Critical patent/TWI269546B/en
Publication of TW200642339A publication Critical patent/TW200642339A/en
Application granted granted Critical
Publication of TWI269546B publication Critical patent/TWI269546B/en

Links

Landscapes

  • Noise Elimination (AREA)

Abstract

An impulse noise rejection system for an orthogonal frequency division multiplexing (OFDM) communications system and related methods are disclosed. The impulse noise rejection system detects presence of impulse noise in an OFDM symbol in time domain, and compensates for the impulse noise in frequency domain. Impulse noise corrupted OFDM symbol is ""down-converted"" such that the impulse noise component of the FFT output is a slow-varying waveform. Impulse noise at all subcarriers is estimated by interpolating the estimated impulse noise at pilot subcarriers in the slow-varying waveform. Impulse noise free FFT output is obtained using the estimated impulse noise and an ""up-converting"" process. The apparatus and algorithm for optimizing the down-converting frequency and up-converting frequency are described.

Description

1269546 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種用在正交分頻多工(Orthogonal 1 .1269546 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an orthogonal frequency division multiplexing (Orthogonal 1 .

Frequency Division Multiplexing,OFDM)通訊系統之方法 及其系統,尤指一種用來消除正交分頻多工通訊系統中脈 衝雜訊的方法及其系統。 【先前技術】 正交分頻多工技術是一種受歡迎的多載波調變技 術,已被廣泛使用在今日許多的通訊標準之中,如:數位 音訊廣播(Digital Audio Broadcasting,DAB)、數位視訊廣 播(Digital Video broadcasting,DVB )、無線區域網路以及 無障礙家庭網路(HomePlug)。現代化的正交分頻多工通訊 系統在頻道選擇上具有可塑性及可靠性之特點,且具有低 載波雜訊比值(Carrier to Noise Ratio, C/N ratio)的特性。由 於次載波之間的正交特性,每一個次載波可用來依據其所 使用的頻道之傳輸環境,來採用不同的傳輸率。此外,頻 道的編碼程序經常結合了正交分頻多工的調變機制,而可 達到錯誤校正的功能。因此,正交分頻多工技術可使用在 極端惡劣的通訊環境中。 1269546 然而’正交分頻多m统卻特別地容易受到脈衝 雜訊㈣響,而所謂的脈衝雜訊係指在很短的時間内所產 生的高能量干擾訊號,而發生脈衝雜訊的原因通常是通味 設備經過了電器設備(如運輪電器設備或家電用品)。高$ 響力的脈衝雜訊很可能會導致接收端_比/數位轉: 發生钳牢(clip)或飽和的ί見象/此夕卜,脈衝雜訊在頻域= 屬於寬頻寬(wide-band)的雜訊,故脈衝雜訊會影響到所有 頻道中的次載波並降低通訊設備的通訊品質。 一般來說,類比/數位轉換器因發生鉗牢現象所帶來的 影響會被忽視,因此類比/數位轉換器所發生的鉗牢現象通 常不予以討論。在歐洲專利號碼第1,1Μ1號及第 1,043,874號中,Dawkins等人以及Haffenden等人皆揭露 在時域(time domain)上空白(blaking)所輸入的訊號,來達到 使類比/數位轉換器零輸出(zero out)被脈衝雜訊所影響的 輸出取樣的目的。請參考第1圖’第1圖表示了一種具有 於時域上空白輸入訊號功能之正交分頻多工接收器。所輸 入的類比訊號會被一類比/數位轉換器110先行轉換成數位 訊號。若在所輸入的訊號中偵測出脈衝雜訊的話,空白模 組120會在傳送訊號到快速傅立葉轉換(Fast F〇urier Transform, FFT)模組140之前,零輸出被影響的取樣至時域 7 1269546 處理器130,以使得其後的頻域(freqUenCy domain)處理器 150的操作不會受到因脈衝雜訊而受到影響的取樣之破 壞。然而,這些方法的效能卻因其未採用一些已被熟知的 傳送訊號之結構,而大大地受限,例如:未使用藉由導向 次載波(pilot subcarriers)來傳輸訊號的電路。 另有一類先前技術提供了一些方式來消除脈衝雜 訊。例如,Jukka在WIP0專利申請號WO03073683中、 Asjati在英國專利號GB2388500中,以及Sliskovic刊載於 1995 年七月所出版的「7(IEEE Transactions on Signal Processing」第 43 卷(Volume)第 7 主題(lssue# 1651〜1662 頁之“Signal Processing Algorithm for OFDM Channel withFrequency Division Multiplexing (OFDM) communication system method and system thereof, especially a method and system for eliminating pulse noise in an orthogonal frequency division multiplexing communication system. [Prior Art] Orthogonal frequency division multiplexing technology is a popular multi-carrier modulation technology, which has been widely used in many communication standards today, such as: Digital Audio Broadcasting (DAB), digital video broadcasting. Digital Video broadcasting (DVB), wireless local area network, and home-friendly network (HomePlug). The modern orthogonal frequency division multiplexing communication system has the characteristics of plasticity and reliability in channel selection, and has a low carrier-to-noise ratio (C/N ratio). Due to the orthogonal nature between the subcarriers, each subcarrier can be used to employ different transmission rates depending on the transmission environment of the channel in which it is used. In addition, the channel's encoding process often combines the orthogonal frequency division multiplexing modulation mechanism to achieve error correction. Therefore, the Orthogonal Frequency Division Multiplexing technique can be used in extremely harsh communication environments. 1269546 However, the 'orthogonal frequency division multi-m system is particularly susceptible to pulse noise (four), and the so-called pulse noise refers to the high-energy interference signal generated in a short period of time, and the cause of the pulse noise. Usually the odorous equipment passes through electrical equipment (such as truck electrical equipment or household appliances). High-pulse pulse noise is likely to cause the receiver to turn _//bit: the occurrence of a clip or saturation ί / /, pulse noise in the frequency domain = wide bandwidth (wide- Band) of noise, so pulse noise will affect the secondary carrier in all channels and reduce the communication quality of communication equipment. In general, the effect of the analog/digital converter due to pinching is neglected, so the pinching phenomenon of the analog/digital converter is usually not discussed. In European Patent Nos. 1,1,1 and 1,043,874, Dawkins et al. and Haffenden et al. disclose the signals input in the time domain to achieve analog/digital conversion. Zero out is the purpose of the output sample that is affected by the pulse noise. Please refer to Fig. 1'. Fig. 1 shows an orthogonal frequency division multiplexing receiver with a blank input signal function in the time domain. The analog signal input is converted into a digital signal by a type of digital/digital converter 110. If the pulse noise is detected in the input signal, the blank module 120 will send the affected sample to the time domain before transmitting the signal to the Fast Fourier Transform (FFT) module 140. 7 1269546 The processor 130 is such that the operation of the subsequent frequency domain (freqUenCy domain) processor 150 is not corrupted by samples affected by pulse noise. However, the performance of these methods is greatly limited by the fact that they do not employ well-known transmission signals, for example, circuits that transmit signals by pilot subcarriers are not used. Another type of prior art provides some way to eliminate pulsed noise. For example, Jukka is in WIP0 Patent Application No. WO03073683, Asjati is in British Patent No. GB2388500, and Sliskovic is published in July 1995. "7 (IEEE Transactions on Signal Processing) Volume 43 (Volume) Theme 7 (lssue) # 1651~1662 "Signal Processing Algorithm for OFDM Channel with

Impulse Noise”一文中,皆揭露了藉由導向次載波而有效地 在頻域上消除脈衝雜訊的方法。在這些先前技術中,導向 次載波的技術被用來預估脈衝雜訊,而所預估出來的脈衝 雜訊會被傳送至時域上進行消除動作,而藉由這一類方法 來實現的訊號接收器係如第2圖所示。雜訊估計器280藉 由導向次載波的技術來預估脈衝雜訊,而被預估出來的雜 A會被送到逆向快速傅立葉轉換(Inverse Fast Fourier Transfonn,IFFT)模組270來使其經由逆向快速傅立葉轉換而 成為時域的§fl號。一雜訊消除模組被用來將預估雜訊 1269546 :逆向快速傅立葉轉換式自空白模組22〇所輪出的訊號中 纽。雜訊消除模、组260所輪出的訊號會再送到一快速傅 立葉轉換模組290,以進行快速傅立葉轉換。而快速傅立 葉轉換模組29G的輸出訊號會再進—步傳送到— 器250來進行後續處理。_,這-類的習知方法卻需要 額外的軟硬體,以應付複雜的方程式運算需求。因此,利 用這些方法的通訊裝置常會發生訊號延料理的問題。 【發明内容】 因此’本發明的目的即在於提供一種用來消除正交分 頻多工通訊系統中脈衝雜訊的系統及其方法以改善上述 先前技術中的問題。In the article Impulse Noise, the method of effectively eliminating pulse noise in the frequency domain by guiding the subcarrier is disclosed. In these prior art, the technique of guiding the subcarrier is used to estimate the pulse noise. The estimated pulse noise is transmitted to the time domain for cancellation, and the signal receiver implemented by this method is shown in Figure 2. The noise estimator 280 is guided by the subcarrier technique. To estimate the pulse noise, the estimated miscellaneous A is sent to the Inverse Fast Fourier Transfonn (IFFT) module 270 to make it the time domain §fl number via the inverse fast Fourier transform. A noise cancellation module is used to estimate the noise 1269546: reverse fast Fourier transform from the signal in the blank module 22 。. The noise cancellation mode, the signal of the group 260 will be sent again To a fast Fourier transform module 290 for fast Fourier transform, the output signal of the fast Fourier transform module 29G is further forwarded to the processor 250 for subsequent processing. _, the conventional method of this class Additional hardware and software are required to cope with complex equations. Therefore, communication devices using these methods often have problems with signal extension. [Invention] Therefore, the object of the present invention is to provide an algorithm for eliminating orthogonality. A system and method for pulse noise in a frequency division multiplexing communication system to improve the problems in the prior art described above.

I …簡單地來說,本發明揭露了一種用於正交分頻多工通 I系、、先中的脈衝雜訊消除系統。該脈衝雜訊消除系統包含 有輕接於該脈衝雜訊消除系統之輸入端的脈衝雜訊债測 為、-祕於該脈衝雜訊消除祕之輸人端的快速傅立葉 轉換模' 以及—頻域脈衝雜訊消除模組。該脈衝雜訊债 、J疋用來偵測其所輪入的訊號轉換碼(symbol),而該快速 傅立葉轉換__是用來產生快速傅立葉轉換式。該頻域 脈衝雜A >肖除_組包含有_ _接於該快速傅立葉轉換模組I ... Briefly, the present invention discloses a pulse noise cancellation system for a quadrature frequency division multiplexing system. The pulse noise cancellation system includes a pulse noise signal that is lightly connected to an input end of the pulse noise cancellation system, and a fast Fourier transform mode of the input end of the pulse noise cancellation function and a frequency domain pulse. Noise cancellation module. The pulsed noise symbol, J疋 is used to detect the signal conversion code (wheel) it is in, and the fast Fourier transform __ is used to generate the fast Fourier transform. The frequency domain pulse hybrid A > Xiao divide_group includes _ _ connected to the fast Fourier transform module

1269546 的第-處理單元、—耦接於該第一處理單元之安插器 „p 〃 °r)以及轉接於該快速傅立葉轉換模組和-安 二處理單元。該第_處理單元會依據該正 ^^^^^(predicted pil〇t ^繼㈣、自雜逮傅立葉轉換模組所接㈣訊號以及 :插㈣號,來纽1變波形(siw却ngwavef_)的 中的預估脈衝雜訊。該安插器係用來安插該缓 二r、向次載波中的該預估脈衝雜訊,以獲得該正交 衝雜二ΐ為統於該緩變波形内之所有次載波的預估脈 衝雜δΚ。弟二虛:辟- 上八相、— 兀則是用來依據該描述符號以及該正 ::雜波形内之所有次載波的預估 '急變波形(fast-varying waveform)内 斤有:人载波皆未含有預估脈衝雜訊之訊號。 脈衝了—種⑽正交分财μ訊系統之 該脈衝雜訊消料Γ脈衝雜訊消除系統包含有一麵接於 系統的訊藏轉換碼φ之輸入端而用來制該脈衝雜訊消除 接於該該脈衝雜心之脈衝雜訊的脈衝雜訊價測器、一耗 接於該循環位移^除系統之輸入端的循環位移器、一輕 立葉轉換模組為而用來產生快速傅立葉轉換式的快速傅 乂及一頻域脈衝雜訊消除模組。當該脈衝 1269546 雜訊摘測器價測出脈衝雜訊時,該循環位移器會循環地位 移遠―虎轉換石馬之取樣一第一距離。該頻域脈衝雜訊消除 / ^、且匕❺_ •一第一處理單元、一安插器以及〆第二處理 一 ^ 第處理單元搞接於該快速傅立葉轉換模組,用 來依據該正交分頻多工通訊系統之預期導向次載波、自該 快速傅立葉轉換模組所接收的訊號以及-描述符號,來產 ❿生缓、艾波形的導向次載波中的預估脈衝雜訊。該安插器 轉接於二第4理單元,用來安插該緩變波形的導向次載 皮:預估脈衝雜訊,以獲得該正交分頻多工通訊系統 =:!=:皮形内之所有次載波的預估脈衝雜訊。該第二處 來贫攄^接⑼快速傅立葉轉換模組以及該安插器,用 來依據該描述轉缺 號、以及該正交分頻、夕自該快速傅立葉轉換模組的訊 癱二欠載波的預估脈衝雜Γ工通訊系統於該緩變波形内之所有 载波皆未含有預估’來產生於一急變波形内之所有次 頂估脈衝雜訊之訊號。 - 本發明亦揭露 —統之訊號轉換竭中的用來消除正交分頻多工通訊系 驟有:偵測該正交分=雜訊之方法。該方法所包含的步 否有脈衝雜訊;產^多工通訊系統的—訊號轉換碼中是 換碼的快速傅立葉^正又分頻多工通訊系統之該訊號轉 、、式,依據該正交分頻多工通訊系統 1269546 :預㈣向次載波、自-快速傅立葉轉換魅所接收㈣ =:描述符號’來產生-缓變波形的導向次載波中的 預估脈衝雜訊;安插該缓變波形的導向次载波中的該預估 脈衝雜訊’以獲得該正交分頻多m統於該緩變波形 内^所有次餘的懸脈讎訊4及依據該描述符號以 及该正交分頻多玉通訊㈣於該緩變波形内之所有次載波 的預估脈衝雜訊,來產生於—急變波形内之所有次載波皆 未含有預估脈衝雜訊之訊號。 【實施方式】 本發明揭露_種有效率且可藉㈣單t路結構來實現 的方法’㈣侧及消除正交分頻多謂訊系統中的脈衝 雜訊。在本發財’導向次载波的技術會加以使用,並且 訊號會在安插處理程序之前藉由降頻轉換至一緩 變波形a first processing unit of 1269546, an interposer „p 〃 °r coupled to the first processing unit, and a relay unit coupled to the fast Fourier transform module and the second processing unit. The _ processing unit is configured according to the Positive ^^^^^(predicted pil〇t ^ followed by (four), self-mixed Fourier transform module connected (four) signal and: insert (four), to the new 1 waveform (siw but ngwavef_) in the estimated pulse noise The interpolator is configured to insert the estimated pulse noise in the sub-carrier and the sub-carrier to obtain the prediction pulse of all the sub-carriers in the gradual waveform. Miscellaneous δ Κ. 弟二虚: 辟 - 八八相, - 兀 is used to refer to the description symbol and the positive:: all the subcarriers within the hybrid waveform's estimate of the 'fast-varying waveform' : The human carrier does not contain the signal of the estimated pulse noise. The pulse-type (10) orthogonal noise division system of the pulse noise cancellation Γ pulse noise cancellation system includes a signal exchange code connected to the system The input end of φ is used to make the pulse noise to cancel the pulse of the pulse noise connected to the pulse The noise detector, a cyclic shifter that is connected to the input end of the cyclic displacement system, and a light-leaf conversion module are used to generate fast Fourier transform type fast repeat and one frequency domain pulse noise cancellation. When the pulse 1269546 noise detector detects the pulse noise, the cyclic shifter will cyclically shift the distance - the first distance of the tiger to convert the stone horse. The frequency domain pulse noise elimination / ^ And a first processing unit, an interpolator, and a second processing unit are connected to the fast Fourier transform module for using the expected steering times of the orthogonal frequency division multiplexing communication system. The carrier, the signal received from the fast Fourier transform module, and the - description symbol are used to generate the estimated pulse noise in the guided subcarrier of the slow and new waveform. The plug-in is switched to the second fourth unit. The guided sub-skin for inserting the gradual waveform: predicting pulse noise to obtain the orthogonal frequency division multiplexing communication system =:!=: estimated pulse noise of all subcarriers in the picoform. The second place is poor. (8) Fast Fourier The conversion module and the inserter are configured to use the description to turn the missing number, and the orthogonal frequency division, and the estimated pulse hybrid communication system of the signal from the fast Fourier transform module All carriers in the variable waveform do not contain the signal of all the top estimated impulse noises generated in a sharply varying waveform. - The present invention also discloses the use of the signal conversion to eliminate the orthogonal frequency division. The multiplex communication system has the following methods: detecting the orthogonal sub-range = noise. The method includes no pulse noise; the multiplex communication communication system - the signal conversion code is the escaped fast Fourier ^ The signal conversion and the type of the crossover multiplex communication system are based on the orthogonal frequency division multiplexing communication system 1269546: pre (four) to subcarrier, self-fast Fourier transform enchantment reception (four) =: description symbol 'to generate - predicting pulse noise in the guided subcarrier of the slowly varying waveform; and inserting the estimated impulse noise in the guided subcarrier of the graded waveform to obtain the orthogonal frequency division multi-m system within the graded waveform ^All the rest of the hanging pulse 4 and according to the description The symbols and Orthogonal Frequency Division Multiplexing (iv) correspond to the Yu the estimated pulse noise grading of all sub-carriers within the waveform, to be generated - of all sub-carriers within the blast wave signal which does not contain all of the estimated impulse noise. [Embodiment] The present invention discloses a method for performing (b) side and eliminating pulse noise in an orthogonal frequency division multi-predicate system by an efficient (4) single-t-channel structure. The technique of this sub-carrier will be used, and the signal will be down-converted to a gradual waveform before the insertion process.

Uc^vatyingw—M。本方法具有高度絲脈衝雜訊 的月b力’且本發明之系統較先前技術而言有較簡潔的硬體 其m耗量會較少。此外,藉由本發明 ‘可即日守地/肖除正父分頻多卫通訊系統中的脈衝雜訊,而可 避免訊號處理延宕的問題。 i考第3圖’第3圖為本發明第一實施例之脈衝雜 1269546 說消除系統的方塊圖。類比輸入訊號經由一類比/數位轉換 裔(anal〇g_t〇-digital converter,ADC)310 轉換成一數位訊 號,而這所接收到的且包含有高斯雜訊的訊號可以用下列 方程式(1)來表示: r (W) = x(w) ® Λ(«) + ν(«),π e {1,…,TV} (1) 其中, 17為 取樣指數 X⑻用來表示傳送訊號 办0)用來表示頻道脈衝響應 v(均用來表示高斯雜訊 #用來表示快速傅立葉轉換式的大小 ®用來表示迴旋運算處理 當有脈衝雜訊存在時, 用下列方程式(2)表示: 所接收到的訊號在時域上可以 rin) + ρ{ή) ⑺ 其中ρΟΟ用來表示脈衝雜訊。 13 1269546 -快速傅立葉轉換模組340會被用來將類比/數位轉換器 310所輸㈣時域取樣減機成賴城,減_+咖] 在頻域上所對應訊號可表示成·· m+p(k) 以、 其中 R(k) = X(k)·H(k) + V{k\ ks{\9..^N} 而 k 為 I㈨用來表示 汉⑷用來表示 厂㈧用來表示 Y用來表示 次载波指數 次載波k的傳送聚集點 次載波k的頻道增益 次載波k的雜訊 快速傅立葉轉換(FFT)的大小 自類比/數位轉換器310所輸出的訊號轉換碼(symbol) 會被傳送到一脈衝雜訊偵測器320來偵測其内是否含、有脈 衝雜訊。當從類比/數位轉換器310所輸出的訊號轉換碼中 偵測出有脈衝雜訊時,自快速傅立葉轉換模組340所輸出 的訊號[Λ㈨+ P(1)]會被傳送到一頻域脈衝雜訊消除模組 14 1269546 350。頻域脈衝雜訊消除模組350包含有一耦接於快速傅立 葉轉換模組340的第一處理單元352、一麵接於第一處理 單元352的安插器354,以及一耦接於快速傅立葉轉換模 組340和安插器354的第二處理單元356。於導向次載波 (pilot subcarriers)中的頻域訊號+尸⑷]會被擷取出來,並 依據正交分頻多工通訊系統的預期導向次載波(predicted pilot subcarriers)以及接收自快速傅立葉轉換模組340的訊 號,來產生於一緩變波形中的導向次載波之預估脈衝雜 訊。預期導向次載波可藉由導向值(pilot values)以及預估/ 預期頻道增益來理解,並可以下列方程式(5)來加以表示·· 左⑹|k{導向次載波} (5) 脈衝雜訊八幻除了在導向次載波中,並未由接收器所知。是 以,導向次載波中的脈衝雜訊可以下列方程式(6)來加以估 計: 声(灸)=及⑷+ iW -左(灸),灸e傳向次載波} (6) 為了取得所有次載波中的脈衝雜訊,則需將預估脈衝雜訊 安插到導向次載波[声⑹導向次載波}]之中。然而,當波形 15 1269546 憂化劇烈的時候,上述安插的動作並不能進行得非常正 確。因此,在本發明中,第一處理單元352會執行一降頻 轉換動作,來將導向次載波的幻,&e{導向次載波}]中預估脈衝 雜訊降頻轉換到一緩變的波形之中·· ή/⑽(幻丨户W ·厂,免e傅向次載波} (7) 須庄思的疋上述之參數d為一描述符號(descriptor),其係 依據一些演算法來提供一合適的頻率予導向次載波中的預 估脈衝雜訊用以降頻之用,而這些被用來產生並最佳化描 述符號d的演算法有很多種。 被轉換到缓變波形之中的導向次載波中的預估脈衝雜 訊iAi)丨咖導向次載波}],會被輪入到安插器354 以進行安插處理,進而在上述的缓變波形中取得正交分頻 多工通訊系統之全部次載波中的預估脈衝雜訊: 安插處理 {户―⑻丨灸e導向次載波} => ⑻丨灸€戶斤有次載波} (8) 在缓變波形中所取得的正交分頻多工通訊系統之全 16 1269546 部次載波中的預估脈衝雜訊之後會被送到第二處理單元單 元356。第二處理單元單元356會進行一減法運算以及— 升頻轉換,其中此升頻轉換係相對於先前第—處理單元單 元352所進行的降頻轉換,而經由減法運算以及升頻轉換 後,即會產生在各個次載波中皆無脈衝雜訊的訊號: .細)|聯)+尸⑻一声⑷,灸G {所有次載波} (9) 其中Uc^vatyingw—M. The method has a monthly b-force for highly pulsed noise and the system of the present invention has a cleaner hardware than the prior art, which has less m consumption. In addition, by the present invention, the problem of delay in signal processing can be avoided by the pulse noise in the Orthodox/Divided-Frequency Communication System. Fig. 3 is a block diagram of the pulse canceling system of the first embodiment of the present invention. The analog input signal is converted into a digital signal by an analog/digital converter (ADC) 310, and the received signal containing Gaussian noise can be expressed by the following equation (1) : r (W) = x(w) ® Λ(«) + ν(«), π e {1,...,TV} (1) where 17 is the sampling index X(8) used to indicate that the transmission signal is 0) Indicates the channel impulse response v (both used to indicate that Gaussian noise # is used to indicate the size of the fast Fourier transform type. ® is used to indicate the convolution operation. When there is pulse noise, it is expressed by the following equation (2): The signal can be rin) + ρ{ή) in the time domain (7) where ρΟΟ is used to represent the pulse noise. 13 1269546 - The fast Fourier transform module 340 is used to reduce the time domain sampling of the analog/digital converter 310 into a Laicheng, minus _+ coffee. The corresponding signal in the frequency domain can be expressed as ·· m +p(k) is , where R(k) = X(k)·H(k) + V{k\ ks{\9..^N} and k is I (nine) to indicate that Han (4) is used to represent the factory (eight) The size of the noise fast Fourier transform (FFT) used to represent the channel gain subcarrier k of the transmission aggregation point subcarrier k of the subcarrier index subcarrier k, and the signal conversion code output by the analog/digital converter 310. (symbol) will be transmitted to a pulse noise detector 320 to detect whether or not there is pulse noise. When the pulse noise is detected from the signal conversion code outputted by the analog/digital converter 310, the signal [Λ(9) + P(1)] output from the fast Fourier transform module 340 is transmitted to a frequency domain. Pulse noise cancellation module 14 1269546 350. The frequency domain pulse noise cancellation module 350 includes a first processing unit 352 coupled to the fast Fourier transform module 340, an interposer 354 coupled to the first processing unit 352, and a coupled to the fast Fourier transform module. Group 340 and second processing unit 356 of plug 354. The frequency domain signal + corpse (4) in the pilot subcarriers will be extracted and according to the predicted pilot subcarriers of the orthogonal frequency division multiplexing communication system and the received fast Fourier transform mode. The signal of group 340 is generated from the predicted pulse noise of the guided subcarrier in a slowly varying waveform. The expected guided subcarrier can be understood by the pilot values and the estimated/expected channel gain, and can be expressed by the following equation (5). · Left (6)|k{directed subcarrier} (5) Impulse noise Eight illusions are not known to the receiver except for the guided subcarriers. Therefore, the pulse noise in the guided subcarrier can be estimated by the following equation (6): Acoustic (moxibustion) = and (4) + iW - left (moxibustion), moxibustion e to subcarrier} (6) In order to obtain all times For pulse noise in the carrier, the estimated impulse noise needs to be inserted into the guided subcarrier [sound (6) oriented subcarrier}]. However, when the waveform 15 1269546 is severely anxious, the above-mentioned insertion action cannot be performed very accurately. Therefore, in the present invention, the first processing unit 352 performs a down conversion operation to down-convert the estimated impulse noise in the phantom, & e{directed subcarrier}] of the guided subcarrier to a gradual change. Among the waveforms·· ή/(10)(幻丨户W·厂, ex-e-subcarriers} (7) 必庄思疋 The above parameter d is a descriptor, which is based on some algorithms. To provide a suitable frequency to predict the pulse noise in the subcarrier for down-conversion, and there are many algorithms for generating and optimizing the descriptor d. Converted to a slowly varying waveform The estimated pulse noise iAi) in the guided subcarrier is turned into the interpolator 354 for interpolation processing, and then the orthogonal frequency division multiplexing is obtained in the above-mentioned slowly varying waveform. Predictive pulse noise in all subcarriers of the communication system: Insertion processing {household-(8) acupuncture e-guided subcarrier} => (8) acupuncture and moxibustion has a secondary carrier} (8) Obtained in the slowly varying waveform The orthogonal frequency division multiplexing communication system is full of 16 1269546, and the estimated pulse noise in the subcarriers will be Unit to the second processing unit 356. The second processing unit unit 356 performs a subtraction operation and an up-conversion conversion, wherein the up-conversion conversion is performed with respect to the down-conversion performed by the previous first processing unit unit 352, and after the subtraction and the up-conversion, It will generate a signal with no pulse noise in each subcarrier: .)))) + corpse (8) one (4), moxibustion G {all subcarriers} (9)

Hk) I pshw(k) · e+j2M/\ k e 頻域脈衝雜訊消除模組可藉由❹種方式來實現,其 中只要第-處理單元能夠依據正交分頻多工通訊系統的預 #期導向次載波以及接收自快速傅立葉轉換模組的訊號,來 產生於-緩變波形的導向次載波中之預估脈衝雜訊;以及 第二處理單元能夠依據在緩變波形中之正交分頻多工通訊 系統的所有次載波中的預估脈衝雜訊,來產生在一急變波 形(fast-varying wavefom〇的各個次载波中皆無脈衝雜訊的 訊號。請參考第4圖,第4圖為本發明符合上述功能要求 之第一實施例之頻域脈衝雜訊消除模組45〇的方塊圖。頻 域脈衝雜訊消除模組450的第一處理單元452包含有一減 17 1269546 2的4521以及一轉換器4522。減法器4521被用來將預期 ^向次载波自導向次載波中所接收到的訊 > ( ) PW|k{導向次載波}]扣除,以得到導向次載波中的預估 、脈衝雜Λ⑽),λs傳向次麵],如方程式⑹所示。前導次載波 。中的=估脈衝雜訊會再輸人到轉換器Mu,以依據描述符 旒d來卜頻轉換至緩變的波形中。安插器454會將緩變波 鲁形内之;向次載波中的預估脈衝雜訊安插至缓變波形内之 所有次載波中的預估脈衝雜訊·· 安插處理Hk) I pshw(k) · e+j2M/\ ke The frequency domain pulse noise cancellation module can be implemented by any means, as long as the first processing unit can be based on the prescaling of the orthogonal frequency division multiplexing communication system. a period-oriented subcarrier and a signal received from the fast Fourier transform module to generate an estimated pulse noise in the guided subcarrier of the -graded waveform; and the second processing unit is capable of depending on the orthogonality in the graded waveform The estimated pulse noise in all subcarriers of the frequency multiplex communication system generates a signal with no pulse noise in each of the fast-varying wavefom〇 sub-carriers. Please refer to Figure 4, Figure 4 The first processing unit 452 of the frequency domain pulse noise cancellation module 450 includes a 4521 minus 17 1269546 2 for the first embodiment of the present invention. And a converter 4522. The subtractor 4521 is configured to subtract the received signal from the subcarrier to the subcarrier (> PW|k{ to the subcarrier}] to obtain the guided subcarrier. Estimation, pulse chowder (10)), λs pass Face], as shown in Equation ⑹. Leading subcarrier. The = estimated pulse noise will be input to the converter Mu to convert to the slowly changing waveform according to the descriptor 旒d. The interpolator 454 will insert the estimated impulse noise in the subcarrier into the estimated pulse noise in all subcarriers in the gradual waveform.

/V {之/mv(Λ) I灸e導向次載游} f - ,7… ^ 守丨」人戦姒 => {K幻I k所有次載波} 第一處理單元456包含有一轉換器4561以及一減法器 _ 4562。轉換器4561會依據相同的描述符號d,來將緩變波 形内之所有次載波中的預估脈衝雜訊[{為_(幻丨灸 e所有次載波}], 轉換成急變波形内之所有次載波中的預估脈衝雜訊 [{母)14(幻.f所有次載波}]。急變波形内之所有次載波中 的預估脈衝雜訊[{細I t e所有次載波}]會從所有次 載波中的接收訊號和導向次載波}]被擷取出來,以獲 得在急變波形内之各個次載波中皆無脈衝雜訊的訊號: 1269546 除了第3圖所示的結構之外,本發明之頻域脈衝雜訊 消除模組的設計可稍加改變。請參考第5圖,第5圖為本 發明第二實施例之頻域脈衝雜訊消除模組550的方塊圖。 頻域脈衝雜訊消除模組550的第一處理單元552包含有一 轉換器5521、一減法器5522以及一轉換器5523。轉換器 5521用來將所接收到的訊號[{雄)+增)|&所有次載波}]降頻轉 換到緩變波形+ 所有次載波}]内,而轉換器5523 用來將預期導向次載波[》(幻I k {導向次載波}]降頻轉換至下列缓 變波形之中: 夂W⑷Θ W f2咖/AU E {所有次載波} 〇 減法器5522自緩變波形内之所有的次載波中接收訊號中 所擷取出的緩變波形内之導向次載波中的接收訊號,扣除 緩變波形内之預期導向次載波[足導向次載波}],以獲得 緩變波形内之導向次載波中的預估脈衝雜訊 [為w(A:),k傳向次載波}]。此緩變波形内之導向次載波中的預估 脈衝雜訊⑻,導向次載波}]會被送到安插器554,進而使其 被安插至缓變波形内之所有次載波中的預估脈衝雜訊: 19 1269546 安插處理 {4^幻I ^導向次載波} 二 {4^(幻I ^所有次載波} 第二處理單元556包含有一減法器5561以及一轉換器 5562。減法器 5561自降頻轉換後的訊號 [{U幻+ 所有次載波}]中扣除掉由安插器554所產生 的訊號,以獲得在缓變波形内之各個次載波中皆無脈衝雜 訊的訊號: ΚίοΛ^) I rs1〇ww+Psi〇^)-psi〇,{k\ {k e m^xmm ° 轉換器5562會再依據相同的描述符號d,將緩變波形中之 各個次載波中皆無脈衝雜訊的訊號予以升頻轉換至急變波 形中之各個次載波中皆無脈衝雜訊的訊號: 永幻丨先w W f Ά e {所有次載波}。 如第4圖及第5圖所示,本發明的創新處之一在於將 訊號降頻處理至一緩變波形之中,因此為獲得在所有次載 波中預估的脈衝雜訊之訊號安插動作可以較先前技術執行 20 1269546 地更為有效、率。在訊號安插動作之後,先前被予以降頻轉 換的訊號會經過升頻轉換而回復到原先頻率,以獲得各次 載波中皆無脈衝雜訊的訊號。因此,凡任何結構或演算法 可達成以上概念者,皆可屬本發明所欲保護之範轉。 在本發明之頻域脈衝雜訊消除模組之中,描述模號d 被用來決定升頻轉換及降頻轉換時的轉換頻率。描述模號 d是依據演算方法來動態產生或是預先設定的固定值,而 達到最佳化之目的。在本發明中,一脈衝雜訊消除(Impulse Noise Rejection,INR)控制器會於之後的說明中提出來最 佳化地產生描述模號d。請參考第6圖,第6圖為本發明 第二實施例之脈衝雜訊消除系統的方塊圖。此脈衝雜訊消 除系統包含有-脈衝雜訊消除控制器㈣,而#脈衝雜訊 φ被脈衝雜訊摘測器62(M貞測出來時,脈衝雜訊消除控· ㈣會依攄脈衝雜訊位於訊號轉換碼中的位置,來產生: 述符號d以使雜訊預估動作得以最佳化。 田 請癸考弟7〜1〇圖,第7〜10圖係用來表示 位於訊號轉換巧的位置時的四種不同狀況,而下面;^ 中即會藉由這些圖示來說明脈衝雜訊消除控制器是如何: 產生描切號d。在此我們依循先前所假設的、正交分 1269546 頻夕工的吼號轉換碼包含有N個類比/數位轉換器的輸出 取樣。請先參考第7圖,第7圖表示了第—種情況:於訊 號轉換碼700中,只有發生單一次的脈衝雜訊事件(impulse event) 72,其中Ns表示事件的起始位置,而Ne表示事 件的結束位置。在此情況下,脈衝雜訊消除控制器可以選 擇將描述付號d设疋為〔(Ns+Ne)/2〕,亦即設定為此脈衝 雜訊事件7 2之中點,而當頻域脈衝雜訊消除祕採用此描 述付號日守,此脈衝雜訊會被轉化成直流的形式。請參考第 8圖第8圖表示了第二種情況:有兩個脈衝雜訊事件μ、 84毛生在讯號轉換碼8〇〇中。兩脈衝雜訊事件、料之 間的間距D1係小於訊號轉換碼咖的總長度的一半,因此 D1 j於Ν/2。在第二種情況下,在前的脈衝雜訊事件u 的=始位置㈣為Ns而在後的脈衝雜訊事件84的結束位 置=為Ne’本發明之脈衝雜訊消除控制器會將描述符號 d、又疋為〔(Ns+Ne)/2〕,亦即設、定為兩脈衝雜訊事件82、 84之中點。請參考第9圖,第9圖表示了第三種情況··有 雨個脈衝雜訊事件92、94發生在訊號轉換碼_中。兩脈 衝雜訊事件92、94之p弓λα v 3的間距D2係大於訊號轉換碼8〇〇 的總長度的-半,因此D2大於。在這第三種情況下, 在前的脈衝雜訊喜侔^ ^ i 的、、、u束位置標示為Ne而在後的脈 衝雜訊事件94的起舲仞上 的起始位置標示為Ns,本發明之脈衝雜訊 22 1269546 消除控制器會將描述符號d設定為〔(Ns+Ne)/2〕。請參考 第10圖,第10圖表示了第四種情況:有超過兩個的脈衝 雜訊事件102、104、106發生在訊號轉換碼1〇〇〇中。每兩 個相鄰脈衝雜訊事件之間的間距分別為D3、D4、D5,其 中D5=D51+D52。!^與Ne的位置係依據其中最大的間距 來進行a又疋,以第1〇圖為例,因為最大的間距為D4,所 以Ns被設定為脈衝事件1〇6的起始位置,而贝6被設定為 脈衝事件104的結束位置。此情況下,本發明之脈衝雜訊 消除控制器亦會將描述符號d設定為〔(Ns+Ne)/2〕。在第9 圖及第10圖的情況下,脈衝雜訊消除控制器會循環地處理 訊號轉換碼中的取樣。 下面即以程式化的語法來舉出一例,用以說明如何在 正交分頻多工訊號轉換碼中的脈衝事件中,決定出起始伋 置Ns以及結束位置Ne: // Sample_counter :取樣數 // // Computation done ··完成計算指標 // // impulse event :脈衝事件 // //Start:開始位置;End :結束位置// 23 1269546/V { /mv(Λ) I moxibustion e-guided sub-running tour} f - , 7... ^ 守丨"人戦姒=> {K illusion I k all subcarriers} The first processing unit 456 includes a converter 4561 and a subtractor _ 4562. The converter 4561 converts the estimated pulse noise [{for _ (magic moxibustion all subcarriers)] in all subcarriers in the gradual waveform into all the blast waveforms according to the same descriptive symbol d. Estimated pulse noise in the subcarrier [{female] 14 (magic.f all subcarriers}]. The estimated pulse noise in all subcarriers within the jerk waveform [{fine I te all subcarriers}] will be The received signal and the guided subcarrier in all subcarriers} are extracted to obtain signals without pulse noise in each subcarrier within the sharp waveform: 1269546 In addition to the structure shown in Fig. 3, the present invention The design of the frequency domain pulse noise cancellation module can be slightly changed. Please refer to FIG. 5, which is a block diagram of the frequency domain pulse noise cancellation module 550 according to the second embodiment of the present invention. The first processing unit 552 of the signal cancellation module 550 includes a converter 5521, a subtractor 5522, and a converter 5523. The converter 5521 is configured to send the received signal [{雄)+)|& Carrier}] downconverts to ramping waveform + all subcarriers}], while converter 5523 is used to The period-oriented subcarrier [" (phantom I k {guided subcarrier}] is down-converted into the following slowly varying waveforms: 夂W(4)Θ W f2//E E {all subcarriers} 〇subtractor 5522 self-grading waveform The received signal in the guided subcarrier in the slowly varying waveform extracted from the received signal in all the subcarriers is deducted from the expected steering subcarrier [foot-oriented subcarrier] in the slowly varying waveform to obtain the slowly varying waveform. The estimated impulse noise in the guided subcarrier [is w(A:), k is transmitted to the secondary carrier}]. The estimated impulse noise (8) in the guided subcarrier within the graded waveform is directed to the secondary carrier}] It is sent to the interpolator 554, so that it is inserted into the estimated pulse noise in all the subcarriers in the ramp waveform: 19 1269546 Insertion processing {4^ 幻 I ^ Guided subcarrier} 2 {4^(幻I ^All subcarriers} The second processing unit 556 includes a subtractor 5561 and a converter 5562. The subtractor 5561 is subtracted from the downconverted signal [{U magic + all subcarriers}] by the installer 554. Signal to obtain no pulse noise in each subcarrier within the ramp waveform: Κ Λο〇^) I rs1〇ww+Psi〇^)-psi〇,{k\ {kem^xmm ° The converter 5562 will follow the same descriptive d, and there will be no pulse noise in each subcarrier in the ramp waveform. The signal is upconverted to a signal with no pulse noise in each subcarrier in the turbulent waveform: 永幻丨先 w W f Ά e {all subcarriers}. As shown in FIG. 4 and FIG. 5, one of the innovations of the present invention is that the signal is down-converted into a slowly varying waveform, so that the signal insertion operation for estimating the impulse noise in all subcarriers is obtained. It can be more efficient and efficient than the previous technology implementation 20 1269546. After the signal is inserted, the signal that was previously down-converted will be upconverted and returned to the original frequency to obtain the signal without pulse noise in each carrier. Therefore, any structure or algorithm that achieves the above concepts may be the subject of the invention. In the frequency domain pulse noise cancellation module of the present invention, the description of the mode number d is used to determine the switching frequency at the up-conversion and down-conversion. Describe the model number d is a fixed value that is dynamically generated or preset according to the calculation method to achieve the purpose of optimization. In the present invention, an Impulse Noise Rejection (INR) controller will be proposed in the following description to optimally produce a description of the model number d. Please refer to FIG. 6. FIG. 6 is a block diagram of a pulse noise cancellation system according to a second embodiment of the present invention. The pulse noise cancellation system includes a -pulse noise cancellation controller (4), and the #pulse noise φ is pulsed noise detector 62 (M贞 is detected, the pulse noise cancellation control (4) will rely on the pulse miscellaneous The position of the signal is located in the signal conversion code to generate: The symbol d is used to optimize the noise estimation action. The field is called the 7~1 map, and the 7th to 10th lines are used to indicate the signal conversion. The four different conditions in the clever position, and below; ^ will use these illustrations to illustrate how the pulse noise cancellation controller: Generate the trace number d. Here we follow the previously assumed, orthogonal The 1207546 frequency conversion code contains the output samples of N analog/digital converters. Please refer to Figure 7 first, and Figure 7 shows the first case: in the signal conversion code 700, only the occurrence order A primary impulse event 72, where Ns represents the start position of the event and Ne represents the end position of the event. In this case, the pulse noise cancellation controller may choose to set the description of the payout d to [(Ns+Ne)/2], that is, set to this pulse Event 7 2 midpoint, and when the frequency domain pulse noise cancellation secret uses this description to pay the number, the pulse noise will be converted into DC form. Please refer to Figure 8 and Figure 8 for the second case. There are two pulse noise events, μ, 84 are generated in the signal conversion code 8〇〇. The distance between the two pulse noise events and the material D1 is less than half of the total length of the signal conversion code, so D1 j In the second case, the initial pulse position of the preceding pulse noise event u (4) is Ns and the end position of the subsequent pulse noise event 84 = Ne' is the pulse noise cancellation of the present invention. The controller will set the descriptive symbol d to [(Ns+Ne)/2], which is set to be the midpoint of the two-pulse noise events 82, 84. Please refer to Figure 9, Figure 9 shows In the third case, the rain pulse noise events 92, 94 occur in the signal conversion code _. The pitch D2 of the p-bend λα v 3 of the two-pulse noise events 92, 94 is greater than the signal conversion code 8 〇〇 The total length is -half, so D2 is greater than. In this third case, the front pulse noise magpie ^ ^ i , , u beam position is marked as Ne The starting position on the crepe of the subsequent pulse noise event 94 is denoted as Ns, and the pulse noise 22 1269546 of the present invention eliminates the controller to set the descriptive symbol d to [(Ns+Ne)/2]. Figure 10, Figure 10 shows the fourth case: more than two pulsed noise events 102, 104, 106 occur in the signal conversion code 1〇〇〇. Between every two adjacent pulse noise events The spacing is D3, D4, D5, where D5=D51+D52. The position of !^ and Ne is based on the maximum spacing of the a and 疋, taking the first map as an example, because the maximum spacing is D4, Therefore, Ns is set to the start position of the pulse event 1〇6, and the Bay 6 is set to the end position of the pulse event 104. In this case, the pulse noise canceling controller of the present invention also sets the descriptive symbol d to [(Ns + Ne)/2]. In the case of Figures 9 and 10, the pulse noise cancellation controller cyclically processes the samples in the signal conversion code. The following is an example of a stylized syntax to illustrate how to determine the initial set Ns and the end position Ne in the pulse event in the orthogonal frequency division multiplexing signal conversion code: // Sample_counter: number of samples // // Computation done ··Complete the calculation index // // impulse event : pulse event // //Start: start position; End: end position // 23 1269546

Sample—counter = 0;Sample—counter = 0;

While (Computation done = false) { //當計算未完成時//While (Computation done = false) { //When the calculation is not completed //

If (Impulse noise event detected) { //偵測到脈衝雜訊事件//If (Impulse noise event detected) { //Detected a pulse noise event //

If (First impulse event detected) { //偵測到第一個脈衝事件//If (First impulse event detected) { //Detected the first pulse event //

Ns = Start of the first impulse event. Ne = End of the first impulse event. //Ns為第一脈衝事件的起始位置// //Ne為第一脈衝事件的結束位置// } Else {Ns = Start of the first impulse event. //Ns is the starting position of the first pulse event // //Ne is the end position of the first pulse event //} Else {

If (D>N/2) { //間距D大於N/2 //If (D>N/2) { //The spacing D is greater than N/2 //

Ns = Start of the new impulse event· 24 1269546Ns = Start of the new impulse event· 24 1269546

Ne = End + Ν·Ne = End + Ν·

Computation done = true. //Ns為新的脈衝事件之起始位置" // Ne = Ne + N // } Else {Computation done = true. //Ns is the starting position of the new pulse event" // Ne = Ne + N // } Else {

Ne ~ End of the new impulse event. //Ne為新的脈衝事件之結束位置//Ne ~ End of the new impulse event. //Ne is the end of the new pulse event //

Sample—counter = Sample—counter + 1; If (Sample—counter is N)Sample—counter = Sample—counter + 1; If (Sample—counter is N)

Computation done = true; 結構及運用 脈衝雜訊偵測器亦可具有不同的 不同 演算法,以用來偵測訊號轉換碼中的脈衝雜兮 问的 口 第 11圖,第11圖為本發明一實施例中之脈衝雜訊偵測器11〇〇 25 1269546 的方塊圖。脈衝雜訊偵測器1100包含有一絕對值取值器 1120、一飽和偵測器1140、一缓衝器116〇以及一飽和計算 , 器1180°絕對值取值器1120係用來計算輸入的訊號轉換碼 、 r之絕對值丨rl,飽和偵測器1140則耦接於絕對值取值器112〇 迷用來依據所輸入的絕對值|r|來決定其輸出Sn ,其中當所 輪入的絕對值|r|大於一臨界值時,則表示所輸入的輸入的 % 訊號轉換碼是飽和的,此時飽和偵測器1140會產生一第一 數值;而當所輸入的絕對值|r|不大於該臨界值時,飽和偵 剛器1140產生一第二數值。舉例來說,上述的第一數值可 選定為1,而第二數值可選定為〇 :Computation done = true; The structure and the use of the pulse noise detector can also have different algorithms for detecting the pulse jamming in the signal conversion code. Figure 11 is a A block diagram of the pulse noise detector 11 〇〇 25 1269546 in the embodiment. The pulse noise detector 1100 includes an absolute value evaluator 1120, a saturation detector 1140, a buffer 116 〇, and a saturation calculation. The 1180° absolute value evaluator 1120 is used to calculate the input signal. The conversion code, the absolute value of r is 丨rl, and the saturation detector 1140 is coupled to the absolute value finder 112 for determining the output Sn according to the input absolute value |r| When the absolute value |r| is greater than a threshold, it indicates that the input signal conversion code of the input is saturated, and the saturation detector 1140 generates a first value; and when the absolute value |r| When not greater than the threshold, the saturation detector 1140 generates a second value. For example, the first value described above can be selected to be 1, and the second value can be selected as:

1, I叫 >=臨界値 〇,其他 (11) 緩衝器1160耦接於飽和偵測器114〇,用以緩衝處理來自飽 和偵測為1140的數值資料。飽和計算器輕接於緩衝 器1160,用來計算飽和偵測器114〇所產生的連續Q個數 值資料之和。若連續Q個數值資料之和等於p,亦即若在 連績Q個取樣中包含至少p個飽和的取樣,則脈衝雜訊偵 測器11〇〇會债測出脈衝雜訊。.加法器1182會將飽和備測 器1140所輸出的數值與絲的數值相加,並減去緩衝器 H60所輸出的數值。舉例來說,假設Q等於7而p等於$, 26 1269546 ^等於G,累積缓衝㈣84所暫存的累積和為4,而心 、、於i^sn被累加到累積緩衝器1184所暫存的累積和, 且V7自累積缓衝器U84所暫存的累積和扣除之後,脈衝 雜訊偵測器1100則會偵測出脈衝雜訊。 飽和制器所使用的臨界值可以為一預設的固定值, 或是在有訊號封包(envelope)偵測協助的情況下採用訊號 的變動值為該臨界值。請參考第12圖,第12圖為本發明 一實施例之飽和偵測裔1200的方塊圖。飽和镇測器12〇〇 包含有一封包债測器1210,用來摘測輸入到飽和偵測器 1200的訊號之中的封包,亦即用來偵測所輪入之絕對值|r| 的封包’以產生合適的無界值。本實施例中的飽和偵測器 1200另包含有一多工器1220,用來使用來偵測飽和狀態的 臨界值具有可選擇性。一預設的臨界值或是依據絕對值|r| 的封包所產生的合適之臨界值,可以被選擇出來,用以判 斷各個取樣是否為飽和。飽和偵測單元1230會依據取樣的 飽和狀況來輸出Sn。 在本發明中,可利用一選擇性模組,來降低脈衝雜訊 所帶來的不好影響。請參考第13圖,第13圖為本發明快 速傅立葉轉換模組1300之方塊圖。在快速傅立葉轉換模組 27 1269546 1300之中,一脈衝雜訊消除器1320被用來預先地降低脈 衡雜訊之功率,以及一快速傅立葉轉換單元134〇被用來表 現快速傅立葉轉換之功能方塊。在本實施例中,所輸入的 訊號轉換碼會經由緩衝器1322予以緩衝處理。在未偵測到 脈衝雜訊的情況下,多工器1326則自緩衝器1322輸出訊 號轉換碼。然而,當脈衝雜訊偵測器偵測到脈衝雜訊時, 儲存在緩衝器1322的資料會被替代取樣產生器1324所產 生的值所取代。在一特殊情況下,替代取樣產生器1324會 輸出零;而在另一特殊情況下,替代取樣產生器1324會輸 出前幾個取樣之平均值。藉由上述實施方式,本發明可具 以下之優點:在被偵測到的脈衝雜訊取樣之前或之後,而 由類比/數位轉換器所輸出的取樣亦可自動地被有效抑 制,而這些取樣可能含有無法偵測到的脈衝雜訊能量。 如上所述,本發明所帶來的優點及對於本技術領域之 貢獻係在於在安插處理程序之前,將訊鍊降頻轉換至一缓 變的波形,因此安插處理可有效地進行,而在所有次載波 上獲得無脈衝雜訊的訊號。然而,這效果亦可藉由預先地 在時域循環地位移取樣來達成。請參考第14圖,第14圖 為本發明第三實施例之脈衝雜訊消除系統14〇〇的方塊 圖。一脈衝雜说偵測裔1420輕接於一類比/數位轉換哭141 〇 28 1269546 =__比/數位轉換器141()所輪出的訊號轉換碼中 換碼二t,雜訊_1420偵測出訊號轉 脈J 脈衝雜料除控㈣剛會根據 使:訊在訊號轉換碼中的位置來產生-描述符號d,以 =訊的估計過程得以最佳化。脈衝雜訊消除控制器剛 樣㈣演算法亦可如前面第頂〜第_所述的方式- 數位細貞測111420編脈衝雜訊時,由類比/ fη _所輸出的取樣會在經由—快速傅 料組1440進行快速傅立㈣換之前,被傳猶環式 轉器屬。循環式位移器觸會依據脈衝雜訊消除控 43G所產生的描述符號d’來循環地位移正交分頻多 工之訊號轉換碼的取樣一第一距離,藉此脈 的中點會隸正交分頻h之訊__的第 其中上述的第-距離係依據描述符號d來決定。經過循環 位移處理的訊號可以表示成·· rsloM) + PsloM) (12) 步由快速傅立葉轉 而此經過循環位移處理的訊號會再進— 換器1440處理後得到: 29 (13) 12695461, I called >=critical 値 〇, other (11) The buffer 1160 is coupled to the saturation detector 114A for buffering the value data from the saturation detection 1140. The saturation calculator is lightly coupled to the buffer 1160 for calculating the sum of the consecutive Q data generated by the saturation detector 114A. If the sum of the consecutive Q values is equal to p, that is, if at least p saturated samples are included in the consecutive Q samples, the pulse noise detector 11 will detect the pulse noise. The adder 1182 adds the value output by the saturated spare 1140 to the value of the wire and subtracts the value output by the buffer H60. For example, suppose Q is equal to 7 and p is equal to $, 26 1269546 ^ is equal to G, cumulative buffer (four) 84 is temporarily stored as a cumulative sum of 4, and heart, and i^sn are added to the accumulation buffer 1184 for temporary storage. After the accumulation and deduction of the V7 self-accumulation buffer U84, the pulse noise detector 1100 detects the pulse noise. The threshold used by the saturation controller can be a predetermined fixed value, or the value of the signal used in the case of signal detection assistance is the threshold. Please refer to FIG. 12, which is a block diagram of a saturation detecting 1200 according to an embodiment of the present invention. The saturation detector 12A includes a packet detector 1210 for extracting a packet input into the signal of the saturation detector 1200, that is, a packet for detecting the absolute value of the rounded |r| 'To produce a suitable unbounded value. The saturation detector 1200 in this embodiment further includes a multiplexer 1220 for selectively detecting the threshold value of the saturation state. A predetermined threshold or a suitable threshold generated by the packet of the absolute value |r| can be selected to determine whether each sample is saturated. The saturation detecting unit 1230 outputs Sn according to the saturation condition of the sample. In the present invention, a selective module can be utilized to reduce the adverse effects of pulse noise. Please refer to FIG. 13, which is a block diagram of the fast Fourier transform module 1300 of the present invention. Among the fast Fourier transform modules 27 1269546 1300, a pulse noise canceller 1320 is used to previously reduce the power of the pulse balance noise, and a fast Fourier transform unit 134 is used to represent the function block of the fast Fourier transform. . In this embodiment, the input signal conversion code is buffered via the buffer 1322. In the case where no pulse noise is detected, the multiplexer 1326 outputs a signal conversion code from the buffer 1322. However, when the pulse noise detector detects the pulsed noise, the data stored in the buffer 1322 is replaced by the value generated by the substitute sample generator 1324. In a special case, the alternate sample generator 1324 will output zero; in another special case, the substitute sample generator 1324 will output the average of the first few samples. With the above embodiments, the present invention can have the following advantages: the samples output by the analog/digital converter can be automatically and effectively suppressed before or after the detected pulse noise sampling, and these samples are automatically suppressed. May contain undetectable pulse noise energy. As described above, the advantages brought by the present invention and the contribution to the technical field are that the frequency chain is down-converted to a slowly changing waveform before the insertion processing procedure, so that the interpolation processing can be performed efficiently, and at all A signal with no pulse noise is obtained on the secondary carrier. However, this effect can also be achieved by periodically shifting the sampling in the time domain. Please refer to FIG. 14, which is a block diagram of a pulse noise canceling system 14A according to a third embodiment of the present invention. A pulse of miscellaneous detection of the 1420 light connected to a class / digital conversion cry 141 〇 28 1269546 = __ ratio / digital converter 141 () in the signal conversion code in the escape code two t, noise _1420 Detect The signal-to-pulse J-pulse miscellaneous control (4) is just generated according to the position of the signal in the signal conversion code to describe the symbol d, and the estimation process of the signal is optimized. The pulse noise cancellation controller just like the (4) algorithm can also be as described in the previous paragraph ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Before the fast Fourier (four) change was made, the Fu group 1440 was transferred to the genus. The cyclic shifter will cyclically shift the sampling of the orthogonal frequency division multiplexing signal to a first distance according to the descriptive symbol d' generated by the pulse noise cancellation control 43G, whereby the midpoint of the pulse will be corrected The first-distance of the above-mentioned first-distance of the cross-frequency __ is determined according to the descriptive symbol d. The signal processed by the cyclic shift can be expressed as ·· rsloM) + PsloM) (12) The step is changed by fast Fourier and the signal processed by the cyclic shift will be re-introduced - after the processor 1440 is processed: 29 (13) 1269546

Rsl〇w(k) + Psi〇w(k) 此循環位移處理訊梦 合、±扁、、,, 〜在¥向前導波中的快速傅立葉轉換式 會被傳达到頻域脈衝 ^ 雜矾消除模組1450。頻域脈衝雜訊消 除杈組1450的第〜卢 一 油以 冬理單元14^2會依據預期的導向次載 波向次載波}]以 ,及由脈衝雜訊消除控制器1430所產 生的描述符號… 泸,π 义理導向前載波中的循環位移處理訊 疏,以獲得緩變波氺 ι斷嫩_ Λ之導向次載波㈣預估脈衝雜訊 ⑷2,用來將導向大/插1 1454 _於第-處理單元 形内,以在緩較2波巾的冊脈衝誠安插至緩變波 次載波中的職脈衝=得正交分财工軌純的所有 安插處理Rsl〇w(k) + Psi〇w(k) This cyclic shift processing is performed, and the fast Fourier transform in the forward guided wave is transmitted to the frequency domain pulse. Module 1450. The frequency domain pulse noise cancellation 杈 group 1450 of the first ~ Lu Yi oil to the winter unit 14 ^ 2 according to the expected guided subcarrier to the subcarrier }], and the description symbol generated by the pulse noise cancellation controller 1430 ... 泸, π 理 导向 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前 前In the shape of the first processing unit, in order to slow down the pulse of the 2 wave towel, the pulse is inserted into the slow-changing wave carrier, and all the interpolation processing is performed.

AaDlk所有次載波} &_(幻丨A e導向次載波> -第二處理單元1456搞接於快速傅立葉轉換模組浦及 安插器鼎,用來依據來自快速傅立葉轉換模組浦的 訊號、缓變波形_所有次触巾_估_雜訊以及描 述符號d,來產生急變波形_所有次較中未含有預估 脈衝雜訊的訊號。因此,藉由上述方式,可在時域上預先 30 1269546 地來循環位移取樣的脈衝雜訊消除系統及其方法即可實 現0 為實現本發明第三實施例之脈衝雜訊消除系統的頻域 脈衝雜訊消除模組’基本上有許多不同的結構可以用來實 現這個頻域脈衝雜訊消除模組,而其實施條件係只要其第 _ 一處理模組可以依據正交分頻多工通訊系統中的預期導向 次載波以及自快速傅立葉轉換模組所接收的訊號,來產生 在緩變波形中之導向次載波的預估脈衝雜訊,以及其第二 處理权組可以依據正交分頻多工通訊系統於緩變波形的所 有導向次載波中之預估脈衝雜訊,來產生在急變波形之所 有次載波中皆無脈衝雜訊的訊號即可。請參考第15圖,第 15圖為本發明第三實施例之頻域脈衝雜訊消除模組⑽ ⑩之方塊圖。頻域脈衝雜訊消除模組1550之第一處理一 1说包含有-轉換器15521以及一減法器15522,= 15521係用來依據脈衝雜訊消除控制器所產生 、、时 、d,來將預期前導次载波_丨㈣前導次載波降頻轉換述付#u . 波形中:谀至一緩變 4肩細)·〆·,如前導次_ ⑽ 31 1269546 步被减法器 以在緩 上述缓變波形中的預期前導次载波會再進〜 15522自前導次載波中所接收到的訊號中扣除, 波形中獲得前導次載波中的預估脈衝雜訊:Μ緩變AaDlk all subcarriers} &_ (the illusion A e-directed subcarriers) - the second processing unit 1456 is connected to the fast Fourier transform module and the inserter for the signal from the fast Fourier transform module The gradual change waveform _ all the touch _ estimate _ noise and the description symbol d, to generate the tremor waveform _ all times less than the signal of the estimated impulse noise. Therefore, in the above way, in the time domain The pulse noise cancellation system and the method thereof for the cyclic displacement sampling in advance 30 1269546 can realize 0. The frequency domain pulse noise cancellation module of the pulse noise cancellation system of the third embodiment of the present invention basically has many differences. The structure can be used to implement the frequency domain pulse noise cancellation module, and the implementation condition is as long as the first processing module can be based on the expected guided subcarrier and the fast Fourier transform in the orthogonal frequency division multiplexing communication system. The signal received by the module is used to generate the predicted pulse noise of the guided subcarrier in the gradual change waveform, and the second processing right group can be used for the gradual change wave according to the orthogonal frequency division multiplexing communication system All the predicted pulse noises in the subcarriers are generated to generate signals without pulse noise in all the subcarriers of the turbulent waveform. Please refer to Fig. 15, which is the frequency of the third embodiment of the present invention. A block diagram of the domain pulse noise cancellation module (10) 10. The first processing of the frequency domain pulse noise cancellation module 1550 includes a converter 15521 and a subtractor 15522, and the 15521 system is used for pulse noise. Eliminate the generation, time, and d generated by the controller to reduce the expected preamble subcarrier_丨(4) leading subcarrier down-conversion to #u. In the waveform: 谀 to a slowly varying 4 shoulder thin)·〆·, such as the preamble _ (10) 31 1269546 The step is subtracted by the subtractor to deduct the expected preamble subcarrier in the slow-changing waveform from the received signal from the preamble subcarrier, and the estimated pulse in the preamble subcarrier is obtained in the waveform. Noise: Μ 变

Psio^ik) I Rslow{k) + Pslow(k) - Rsl〇w(kl k e ( χ 5) 安插Is 1554會將緩變波形的 文㈣的導向次載波中的 訊安插至緩變波形的所有攻哉★& 頂估脈衝雜 載波中的預估脈衝雜訊: 女插處理 導向次載波} {Psi〇Jk)\k :所有次載波} 第二處理單元1556包含有一、、 15562。減法器15561會自許咸套1" 15561以及—轉換器 有次載波中的預估脈_^訊號巾扣除掉緩變波形的所 波形上獲得所有次載波中If娜成有次咖,以在缓變 自無脈衝雜訊的訊號·· WI ^W+Pshw(k) -PslUk) k - 之後,轉換器15562依據相η 波# 士 相同的描述符號d,來將在緩變 皮形上所獲付的在所有次 以/忠中自無脈衝雜訊的訊號升頻 32 1269546 中 轉換到急變波形的所有次載波中的預估脈衝雜訊之 (17) {m | Rsl0^ye+jk2^\ k gPsio^ik) I Rslow{k) + Pslow(k) - Rsl〇w(kl ke ( χ 5) Inserting Is 1554 will insert the slowly-changing waveform (4) into the subcarrier of the subcarrier to all the slowly varying waveforms. Attack ★ & Estimated Predictive Impulse Noise in Pulse Miscellaneous Carrier: Female Plug-In Processing-Oriented Subcarrier} {Psi〇Jk)\k: All Secondary Carriers} The second processing unit 1556 includes one, 15562. The subtracter 15561 will obtain the sub-cafe from all the sub-carriers from the waveform of the Xuan Xian 1" 15561 and the converter with the estimated pulse in the sub-carrier to subtract the slow-changing waveform. After slowly changing the signal from the pulseless noise·· WI ^W+Pshw(k) -PslUk) k - , the converter 15562 will be on the slowly changing shape according to the same descriptive symbol d of the phase η wave# The estimated impulse noise in all subcarriers that are converted to the sharp-changing waveform in all the signals from the no-pulse noise up/down 32 1269546 (17) {m | Rsl0^ye+jk2^ \ kg

先前所述的脈衝雜訊消除器可以I 、、内入本發明的脈衝雜 訊消除系統並包含循環式位移p。姓会i^ 哨參考弟16圖,第16 圖為本發明第四實施例之脈衝雜訊消除系統1_的方塊 圖。脈衝雜訊消除系統16〇〇白人士 ^ ^ 匕3有一脈衝雜訊消除器 1662’而其功能及結構與第13岡从 弟13圖的脈衝雜訊消除器1320 一樣。類比/數位轉換器161〇 汴翰出的取樣會被傳送到脈 衝雜訊消除器1662。當脈徐雜%古从 脈衝雜訊事件被脈衝雜訊偵測器 1620偵測出來時,脈衝雜訊 月丨示1662可以用替代取樣 來取代原先的取樣,如此一办 此來,因脈衝雜訊高能量所帶來 的負面影響將可事先地消除。& ’、在本實施例中,循環位移取 樣的功能及裝置係由猶環位移單元 班 單元1664祕㈣_ 。㈣位移 位移器刪。^核器搬,而與其構成循環 本發明的正交分頻多 a 7 从 y 、 k訊系統中的脈衝雜訊消 統的效能及表現係經過實 % 、不驗设過的。請參考第17 18圖,第17圖為未麵说邮& ^ V脈衝雜訊消除處理過的訊號 33 1269546 圖’第18圖為經過本發明脈衝雜訊消除方法及裝置處理過 之訊號分佈圖,而其中其所接收的基頻訊號(DVB-T 2K mode 64 QAM)的訊號雜訊比值⑸㈣ -to-Noise Ratio, SNR) 為30dB ’且其中有2〇個取樣被脈衝雜訊所影響。很明顯 地’本發明之脈衝雜訊的消除方法及其系統很成功地將脈 衝雜成的影響給消除了,並大大地改善了接收器的效能。 • 乂 相較於先前技術,本發明揭露了 —種以導向次載波為基 準的而用於正父分頻多卫通訊系統中的脈衝雜訊消除系 、、先在接收盗端,脈衝雜訊可以被摘測出來,並在時域中 有放地抑制’而在頻域中得到補償。在本發明頻域脈衝雜 I肖除杈組中’脈衝雜訊先是在導向次載波中予以預估, 之後在被降頻處理至一緩變波形之中。一安插器被用來預 _估非^向-人載波中的脈衝雜訊,而使得經安插處理過的波 形得以用來消除脈衝雜訊。此外,為實施本發明,其所需 的電路之複雜度|德,且其功率消耗亦較先前技術來得 低,因此本發明可以被應用在須即時地(real-time)消除訊號 中脈衝雜訊的裝置上。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利fe圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 34 1269546 【圖式簡單說明】 第1圖為一種習知可在時域上空 輸入5凡5虎之正交分頻多 工接收器的方塊圖。 第2圖為另-則知正交分頻多卫接收器的方塊圖。 第3圖為本發明第—實施例之脈衝雜訊消除系統的方塊圖。 L圖為本U第—實施例之頻域脈衝雜訊消除模組的方塊圖。 "圖為本U第—實侧之頻域脈衝雜訊消賴組的方塊圖。 =6圖為本發明第二實施例之脈衝雜訊齡祕的方塊圖。 弟7用來表示脈衝雜訊位於訊號轉換碼中的位置的第一種 狀況。 末表示脈衝雜訊位於訊號轉換碼中的位置的第二種 狀況。 第9用來表不脈衝雜訊位於訊號轉換碼中的位置的第三種 狀況。 第1〇用來表示脈衝雜訊位於訊號轉換碼中的位置的第四 種狀況。 第11圖為本發明—實施射之脈衝雜訊偵測器的方塊圖。 第12圖為本發明—實施例之飽和偵測器的方塊圖。 第13圖為本發明快速傅立葉轉換模組之方塊圖。 第14圖為本發明第三實施例之脈衝雜訊消除系統的方塊圖。 35 1269546 弟15圖為本發明第二杏 二貝施例之頻域脈衝雜訊消除模組之 方塊圖。 $圖為本1明第四實施例之脈衝雜訊消除系統的方塊圖。 第 /7圖為未經過脈衝雜訊消除處理過的訊號分佈圖。 第18圖為^過本發明脈衝雜訊消除方法及裝置處理過之 訊號分佈圖。 【主要元件符號說明】 72、82、84、92、94、1〇2、1〇4、1〇6 脈衝雜訊事件 110、210、310、610、1410、1610 類比/數位轉換器 120、220 空白模組 13G' 23〇 ,時域處理器 140、240、290、340、640、1300、1440、1640 150、250 260 270 280 320、620、1100、1420 快速傅立葉轉換模組 頻域處理器 雜訊消除模組 逆向快速傅立葉轉換模組 雜訊估計器 1620脈衝雜訊偵測器 350、450、550、650、1450、1550、1650 頻域脈衝雜訊消除模組 36 1269546 352、452、552、1452、1552 第一處理單元 354、454、554、1454、1554 安插器 356 、 456 、 556 、 1456 、 1556The previously described pulse noise canceller can incorporate the pulsed noise cancellation system of the present invention and include a cyclic shift p. The last name will be i^ whistle reference 16, and Fig. 16 is a block diagram of the pulse noise canceling system 1_ of the fourth embodiment of the present invention. The pulse noise cancellation system 16 is a white person ^ ^ 匕3 has a pulse noise canceller 1662' and its function and structure are the same as those of the pulse noise canceller 1320 of the 13th. The analog/digital converter 161 汴 出 出 sample will be transmitted to the pulse noise canceller 1662. When the pulse noise is detected by the pulse noise detector 1620, the pulse noise month 1662 can replace the original sample with the substitute sample, so that the pulse is mixed. The negative impact of high energy will be eliminated in advance. &', in this embodiment, the function and device for cyclic displacement sampling is performed by the U.S. ring displacement unit unit 1664 (4)_. (4) Displacement Displacement is deleted. The core is moved, and the loop is formed. The orthogonal frequency division of the present invention is a7. The performance and performance of the pulse noise cancellation in the y, k-signal system are verified by the actual and non-tested. Please refer to Figure 17 18, Figure 17 for the unexamined mail & ^ V pulse noise cancellation processed signal 33 1269546 Figure 18 is the signal distribution processed by the pulse noise cancellation method and device of the present invention Figure, in which the received signal frequency (DVB-T 2K mode 64 QAM) signal noise ratio (5) (four) -to-Noise Ratio, SNR) is 30dB ' and two of them are affected by pulse noise . It is apparent that the method of eliminating pulse noise of the present invention and its system have succeeded in eliminating the effects of pulse hybridization and greatly improving the performance of the receiver. • Compared with the prior art, the present invention discloses a pulse noise cancellation system for use in a positive-family crossover multi-wei communication system based on a guided subcarrier, first receiving a pirate, and a pulse noise. Can be extracted and has a ground suppression in the time domain and compensated in the frequency domain. In the frequency domain pulsed MIMO group of the present invention, the 'pulse noise is first estimated in the guided subcarrier and then down-converted into a gradual waveform. An interpolator is used to pre-estimate the pulse noise in the non-transient-human carrier, so that the waveform processed by the interpolation can be used to eliminate the pulse noise. In addition, in order to implement the present invention, the complexity of the circuit required is zero, and its power consumption is lower than that of the prior art. Therefore, the present invention can be applied to real-time cancellation of pulse noise in a signal. On the device. The above are only the preferred embodiments of the present invention, and all changes and modifications made in accordance with the present invention should be within the scope of the present invention. 34 1269546 [Simple description of the diagram] Figure 1 is a block diagram of a conventional OFDM crossover multiplex receiver that can be input over the time domain. Figure 2 is a block diagram of another quaternary crossover multi-processor receiver. Figure 3 is a block diagram of a pulse noise canceling system of the first embodiment of the present invention. L is a block diagram of the frequency domain pulse noise cancellation module of the U-first embodiment. " Figure is a block diagram of the U-first-real side frequency domain pulse noise squaring group. Fig. 6 is a block diagram showing the pulse noise of the second embodiment of the present invention. Brother 7 is used to indicate the first condition of the position of the pulse noise in the signal conversion code. The last condition indicating the position of the pulse noise in the signal conversion code. The ninth is used to indicate the third condition in which the pulse noise is located in the signal conversion code. The first case is used to indicate the fourth condition in which the pulse noise is located in the signal conversion code. Figure 11 is a block diagram of the invention - a pulsed noise detector for shooting. Figure 12 is a block diagram of a saturation detector of the present invention. Figure 13 is a block diagram of the fast Fourier transform module of the present invention. Figure 14 is a block diagram of a pulse noise canceling system in accordance with a third embodiment of the present invention. 35 1269546 Figure 15 is a block diagram of the frequency domain pulse noise cancellation module of the second april and second embodiment of the present invention. $ is a block diagram of the pulse noise cancellation system of the fourth embodiment. Figure /7 shows the signal distribution that has not been processed by pulse noise cancellation. Figure 18 is a diagram showing the signal distribution processed by the pulse noise canceling method and apparatus of the present invention. [Description of main component symbols] 72, 82, 84, 92, 94, 1〇2, 1〇4, 1〇6 pulse noise events 110, 210, 310, 610, 1410, 1610 analog/digital converters 120, 220 Blank module 13G' 23〇, time domain processor 140, 240, 290, 340, 640, 1300, 1440, 1640 150, 250 260 270 280 320, 620, 1100, 1420 fast Fourier transform module frequency domain processor Signal elimination module reverse fast Fourier transform module noise estimator 1620 pulse noise detector 350, 450, 550, 650, 1450, 1550, 1650 frequency domain pulse noise cancellation module 36 1269546 352, 452, 552, 1452, 1552 first processing unit 354, 454, 554, 1454, 1554, interpolator 356, 456, 556, 1456, 1556

630 、 1430 、 1630 700 、 800 、 900 、 1000 1120 1140 、 1200 1160 、 1322 1180 1182 1184 1210 1220 、 1326 1230 1320 、 1662 1324 1340 1400 、 1600 1460 、 1660 第二處理單元 脈衝雜訊消除控制器 訊號轉換碼 絕對值取值器 飽和禎測器 缓衝器 飽和計算器 加法器 累積緩衝器 封包偵測器 多工器 飽和偵測單元 脈衝雜訊消除器 替代取樣產生器 快速傅立葉轉換單元 脈衝雜訊消除系統 循環位移器 1664 循環位移單元 4521、4562、5522、5561、15522、15561 減法器 37 1269546 4522、4561、5521、5523、5562、15521、15562 轉換器 38630, 1430, 1630 700, 800, 900, 1000 1120 1140, 1200 1160, 1322 1180 1182 1184 1210 1220, 1326 1230 1320, 1662 1324 1340 1400, 1600 1460, 1660 Second processing unit pulse noise cancellation controller signal conversion Code absolute value finder saturation detector buffer saturation calculator adder accumulation buffer packet detector multiplexer saturation detection unit pulse noise eliminator alternative sampling generator fast Fourier transform unit pulse noise cancellation system Cyclic Displacer 1664 Cyclic Displacement Unit 4521, 4562, 5522, 5561, 15522, 15561 Subtractor 37 1269546 4522, 4561, 5521, 5523, 5562, 15521, 15562 Converter 38

Claims (1)

1269546 十、申請專利範圍: 用於正父 77 頻多工(Orthogonal Frequency Division Multiplexing,OFDM)通訊系、统之脈衝雜訊消除系統,其包 含有·· 一脈_訊勤〗器,耦接於該脈衝雜訊消除祕之輸入 端,用來摘測該脈衝雜訊消除系統的一訊號轉換碼 (symbol)中的脈衝雜訊; 决速傅立葉轉換(fast F〇urier加耶加㈤,模組柄 接於該脈衝雜訊消除系統之輸入端,用來產生快速傅 立葉轉換式;以及 頻域脈衝雜机消除模組,該頻域脈衝雜訊消除模組包 含有: -第-處理單元,魄於該快速傅立轉換模組,用 來依據該正交分頻多工通訊系統之預期 導向次 載波(predicted Pil〇t subcarriers)、自該快速傅立 葉轉換模組所純的峨以及―描述符號,來產 生一緩變波形的導向次載波中的預估脈衝雜訊; -安插β ’減於該第—纽單元,肖來安插該缓變 波形的導向次載波中的該預估脈衝雜訊,以獲得 該正交分頻多工通訊純於該緩變波形内之所 有-人載波的預估脈衝雜訊;以及 39 1269546 第二處理單元,耦接於該安插器, 符號以及該正交分頻多:來依據該描述 $统於該绣_冰 形内之所有次載波的預估脈衝辛 雜机’來產生於一 急變波形内之所有次載波皆去人 5有預估脈衝雜 、訊之訊號。 2·如申請專利範圍第1項之脈衝雜訊消除系 一處理單元包含有: 減法器,耦接於該快速傅立葉轉換模級,用來將詨正 交分頻多工通訊系統的預期導向次载波,自該:速 傅立葉轉換模組所接收且於導向次载波内的訊。虎 扣除,以產生導向次載波的預估脈衝雜訊·以及a1269546 X. Patent application scope: It is used in the Orthogonal Frequency Division Multiplexing (OFDM) communication system and the pulse noise cancellation system. It includes a · _ _ _ _ _ _ _ _ The pulse noise cancellation input is used to extract the pulse noise in a signal conversion code of the pulse noise cancellation system; the fast Fourier transform (fast F〇urier Gaya (5), the module a handle is connected to the input end of the pulse noise cancellation system for generating a fast Fourier transform type; and a frequency domain pulse noise elimination module, the frequency domain pulse noise cancellation module comprises: - a first processing unit, The fast Fourier conversion module is configured to: according to the predicted Pil subsubcarriers of the orthogonal frequency division multiplexing communication system, the pure 峨 and the description symbol from the fast Fourier transform module, To generate a predicted pulse noise in the guided subcarrier of the slowly varying waveform; - inserting β' minus the first-new unit, and inserting the predicted pulse in the guided subcarrier of the slowly varying waveform Obtaining the estimated cross-talk of the orthogonal frequency division multiplexing communication purely for all the human carriers in the ramp waveform; and 39 1269546 the second processing unit coupled to the interpolator, the symbol and the orthogonal The frequency division is more: according to the description, the estimated pulse multiplexer of all the subcarriers in the embroidery_ice shape is generated in all the subcarriers in a violent waveform, and all the subcarriers are sent to the human 5 with an estimated pulse, The signal of the signal is as follows: 2. The processing unit of the pulse noise cancellation system of claim 1 includes: a subtractor coupled to the fast Fourier transform mode for use in the 詨 orthogonal frequency division multiplexing communication system The expected-oriented subcarrier, from which the fast Fourier transform module receives and is directed to the subcarrier, the tiger deducts to generate the predicted pulse noise for the guided subcarrier, and a 統’其中該第 一轉換器,耦接於該減法器,用來依據該描述符號,將 導向次載波中的該預估脈衝雜訊降頻轉換到該緩 變波形之中。 3·如申請專利範圍第.1項之脈衝雜訊消除系統,其中該第 一處理單元包含有: 一轉換器,耦接於該安插器,用來依據該描述符號,將 該緩變波形的所有次載波中的該預估脈衝雜訊升 頻轉換到該急變波形之中;以及 1269546 減法為’搞接於该快速傅立整^ 哥策轉換模組,用來將該急 變波形的所有次载波中的哕 μ預估脈衝雜訊,自該快 速傅立葉轉換模組所接收 51且於所有次載波内的訊 號扣除,⑽得在财麵心未含有預估脈衝雜 訊之訊號。 第1項之脈衝雜訊消除綠,其中該第 第一轉換器,耦接於該快速傅 <1守JL葉轉換模組,用來將 訊號降頻轉換至一缓變波形中; 弟-轉換盗’用來依據該描述符號,來將該導向次載 波中的該預估脈衝雜訊降頻轉換至該緩變波形 中;以及 、咸去接於該第一轉換器與該第二轉換器,用來 ' ,是波形的預期導向次載波自該第一轉換器 所降頻轉換過的訊號中扣除 ,以在缓變波形中獲得 ^向人载波的該預估脈衝雜訊。 一 月專利範園第1項之脈衝雜訊消除系統,其中該第 〜處理單元包含有: '咸去,耦接於該安插器,用來將該急變波形的所有 1269546 次載波中的該預估脈衝雜訊,自該快速傅立葉轉換 =所接收且於所有次誠内被降頻轉換至該緩 =波形的訊號中扣除,以獲得在該緩變波形的所有 次载波皆未含有預估脈衝雜訊之訊號;以及 轉換器,耦接於談第二處理單元的減法器,用來伖據 該描述符號,將該緩變波形的所有次載波中的^預 估脈衝雜訊升頻轉換到該急變波形之中。 有如申睛專利範圍第丨項之脈衝雜訊消除系統,其另含 氏衝雜戒消除(Impulse Noise Rejection,INR)控制 為’輕接於該脈衝雜訊偵測器以及該頻域脈衝雜訊 消除模組’用來當該脈衝雜訊偵測器於該訊號轉換 碼中價測出脈衝雜訊時,依據脈衝雜訊事件於請訊 说轉換碼中的位置來產生該描述符號。 η 如 少 申請專利範圍第丨項之脈衝雜訊消除系統,其中該 衡雜訊偵測器包含有: ’ 、纟巴對值取值器,耦接於該脈衝雜m消除系統之輪入 端’用來計算該訊號轉換碼之取樣的絕對值·; 〜飽和债測器,耦接於該絕對值取值器,用來當所輪入 42 1269546 的絶對值大於一臨界值時產生一第一數值,以及用 來當所輸入的絕對值不大於該臨界值時產生一第 二數值; 一緩衝器,耦接於該飽和值偵測器,用來暫存來自該飽 和偵測器的數值資料;以及 -飽和計算n,麵接於該緩衝器,用來計算該飽和_ 器所產生的連續Q嗰數值資料之和。 8.如申請專利範圍第7項之脈衝雜訊消除系統,其中該臨 界值係預先設定的。 9.如申請專利範圍第7項之脈衝雜訊消除系統,並中該臨 界值係㈣於該絕對值偵測器之輸^對㈣一封包 (envelope) ° 10.如申請專利範圍第i項之脈衝雜訊消除系統,其中該, 速傅立葉轉純組包含有—脈衝雜訊消除器,碰於該) 衝雜訊消除系統之輸人端以及該脈衝雜,,用1 衝該脈衝雜訊消除系統之輪入取樣,火 TO I 4 t t 儿馬脈衝雜訊偵測 未偵測到脈衝雜訊時用來輪出經緩衝 的取樣,以及當, 衝雜訊偵測器偵測到脈衝雜訊時用來輪 1 515暂代取樣以取 43 1269546 备緩衝過的取樣。 Π·如申請專利範圍第10項之脈衝雜訊消除系統,其中該 脈衝雜訊消除器包含有: —緩衝器,用來缓衝處理所輪入的取樣; —替代取樣產生器,用來依據一預設規則,於該脈衝雜 訊偵測器偵測出脈衝雜訊時,產生替代的取樣;以 及 —多工器,耦接於該緩衝器以及該替代取樣產生器,用 來當該脈衝雜訊偵測器未偵測出脈衝雜訊時自該 緩衝器輸出取樣,以及用來當該脈衝雜訊偵測器偵 測出脈衝雜訊時自該替代取樣產生器輸出替代的 取樣。 12·如申請專職圍第1項之脈衝雜訊消除线,其輕接於 —解調器’其中該解調器係用來將該頻域脈衝雜訊消除模 組所產生而在财絲波皆無脈娜料訊舒以解調後 輸出。 13.-種用於正交分頻多卫(⑽hGg_以心⑽ 偷卿exing,OFDM)通訊系統之脈衝雜訊消除系統,其包 1269546 含有: 一脈衝雜訊偵測器,耦接於該脈衝雜訊消除系統之輸入 端’用來偵測該脈衝雜訊消除系統的一訊號轉換碼 • (symbol)中的脈衝雜訊; 一循環位移器,耦接於該該脈衝雜訊消除系統之輸入 端,用來當該脈衝雜訊偵測器偵測出脈衝雜訊時,循 環地位移該訊號轉換碼之取樣一第一距離; ❿ 一快速傅立葉轉換(fast Fourier transform,FFT)模組,孝馬 接於該循環位移器,用來產生快速傅立葉轉換式;以 i ' 一頻域脈衝雜訊消除模組,該頻域脈衝雜訊消除模組包 含有: 一第一處理單元,耦接於該快速傅立葉轉換模組,用 來依據該正交分頻多工通訊系統之預期導向一欠 • 载波(Predicted subcarriers)、自該快速傅立 葉轉換模組所接收的訊號以及一描述符號,來產 生一缓變波形的導向次載波中的預估脈衝雜訊· 一安插器,耦接於該第一處理單元,用來安插該緩變 波形的導向次載波中的該預估脈衝雜訊,以择得 該正交分頻多工通訊系統於該緩變波形内 有次載波的預估脈衝雜訊;以及 45 1269546 一第二處理單元,耦接於該快速傅立葉轉換模組以及 該安插器,用來依據該描述符號、接收自該快速 傅立葉轉換模組的訊號、以及該正交分頻多工通 訊系統於該缓變波形内之所有次載波的預估脈 衝雜訊,來產生於一急變波形内之所有次載波皆 未含有預估脈衝雜訊之訊號。 14. 如申請專利範圍第13項之脈衝雜訊消除系統,其中該 第一處理單元包含有: 一轉換器,用來依據該描述符號,來將該正交分頻多工 通訊系統的該導向次載波降頻轉換至一緩變波形 中;以及 一減法器,耦接於該快速傅立葉轉換器及該安插器,用 來將該轉換器所降頻轉換至該缓變波形中的導向 次載波,自經該快速傅立葉轉換模組於前導次載波 上所接收的訊號中扣除,以在缓變波形中獲得導向 次載波的該預估脈衝雜訊。 15. 如申請專利範圍第13項之脈衝雜訊消除系統,其中該 第二處理單元包含有: 一減法器,耦接於該快速傅立葉轉換模組,用來將該緩 46 1269546 變波形的所有次載波中的該預估脈衝雜訊,自該快 速傅立葉轉換模組於所有次載波内所接收的訊號 中扣除’以獲得在該緩變波形的所有次載波皆未含 有預估脈衝雜訊之訊號;以及 轉換器’麵接於該減法器,用來依據該描述符號,將 該緩變波形的所有次載波中的該預估脈衝雜訊升 頻轉換到該急變波形之中。 16·如申請專利範圍第13項之脈衝雜訊消除系統,其另含 有: 脈衝雜訊消除(Impulse Noise Rejection,INR)控制 器’輕接於該脈衝雜訊偵測器以及該頻域脈衝雜訊 消除模組,用來當該脈衝雜訊偵測器於該訊號轉換 碼中债測出脈衝雜訊時,依據脈衝雜訊事件於該訊 唬轉換碼中的位置來產生該描述符號。 二·如申請專鄉圍第13項之脈_訊消除鋒,其中該 第一距離係依據該描述符號來決定。 18·如申明專利範圍第13項之脈衝雜訊消除系統,其中該 循%位移裔會循環地位移該訊號轉換碼之取樣,以致該訊 1269546 號轉換碼之脈衝雜訊持續期的中點會p 最前面的取樣。 胃落在該訊號轉換碼中 19·如申請專利範圍第13項之脈衝雜—、、, 脈衝雜訊偵測器包含有: 〃吼消除系統,其中該 肖除系統之輸入The first converter is coupled to the subtractor for downconverting the estimated pulse noise in the guided subcarrier into the gradual waveform according to the descriptive symbol. 3. The pulse noise cancellation system of claim 1, wherein the first processing unit comprises: a converter coupled to the interposer for arranging the gradual waveform according to the descriptive symbol The estimated pulse noise in all subcarriers is upconverted into the sharp waveform; and the 1269546 subtraction is 'connected to the fast Fourier transform module to use for all of the sharp waveforms The 哕μ estimated pulse noise in the carrier, the signal received from the fast Fourier transform module 51 and deducted from all the subcarriers, (10) has no signal in the financial center that does not contain the estimated pulse noise. The pulse noise of the first item cancels the green, wherein the first converter is coupled to the fast-fusing <1 defensive JL leaf conversion module for down-converting the signal into a gradual waveform; Converting the thief' is used to downconvert the estimated impulse noise in the guided subcarrier to the gradual waveform according to the descriptive symbol; and splicing to the first converter and the second conversion , for the waveform, the expected steering subcarrier is subtracted from the downconverted signal of the first converter to obtain the estimated impulse noise of the human carrier in the slowly varying waveform. In the pulse noise cancellation system of the first patent of the patent model, the first processing unit includes: 'salt, coupled to the interpolator, used to pre-determine the 1269546 subcarriers of the sharp waveform. Estimating pulse noise, subtracted from the fast Fourier transform = received signal that is down-converted to the slow = waveform in all sub-senses to obtain no prediction pulses for all subcarriers in the ramp waveform a signal of the noise; and a converter coupled to the subtractor of the second processing unit for upconverting the estimated pulse noise of all the subcarriers of the graded waveform to the descriptor Among the sharp waveforms. A pulse noise cancellation system according to the scope of the patent application scope is further characterized in that the Impulse Noise Rejection (INR) control is 'lightly connected to the pulse noise detector and the frequency domain pulse noise. The elimination module is configured to generate the descriptor according to the position of the pulse noise event in the request conversion code when the pulse noise detector detects the pulse noise in the signal conversion code. η If the pulse noise cancellation system of the patent application scope is less, the balance noise detector includes: ', the value of the value of the 纟巴, coupled to the wheel of the pulse m elimination system 'The absolute value of the sample used to calculate the signal conversion code. · The saturation detector is coupled to the absolute value evaluator to generate a first time when the absolute value of the rounded 42 1269546 is greater than a critical value. a value, and a second value is generated when the absolute value of the input is not greater than the threshold; a buffer coupled to the saturation detector for temporarily storing the value from the saturation detector And the saturation calculation n, which is connected to the buffer, is used to calculate the sum of the continuous Q嗰 value data generated by the saturation sigma. 8. The pulse noise cancellation system of claim 7, wherein the threshold value is preset. 9. If the pulse noise cancellation system of claim 7 is applied, and the critical value is (4) the input to the absolute value detector (4) an envelope ° 10. If the patent application scope i The pulse noise cancellation system, wherein the speed Fourier transform pure group includes a pulse noise canceller, which is encountered by the input end of the noise canceling system and the pulse, and the pulse noise is used by 1 Eliminate the round-in sampling of the system, the fire is used to detect the pulsed noise when the pulse noise is not detected, and when the noise detector detects the pulse The signal is used for round 1 515 temporary sampling to take 43 1269546 buffered samples. Π · The pulse noise cancellation system of claim 10, wherein the pulse noise canceller comprises: a buffer for buffering the processed samples; and an alternative sampling generator for a preset rule for generating an alternate sampling when the pulsed noise detector detects the pulsed noise; and a multiplexer coupled to the buffer and the substitute sampling generator for the pulse The noise detector outputs a sample from the buffer when the pulse noise is not detected, and is used to output an alternative sample from the substitute sample generator when the pulse noise detector detects the pulse noise. 12. If applying for the pulse noise cancellation line of the full-time first item, it is connected to the demodulator, where the demodulator is used to generate the frequency domain pulse noise cancellation module. All of them are pulsed and demodulated and output. 13.-A pulse noise cancellation system for orthogonal frequency division multi-wei ((10)hGg_heart (10) stealing, OFDM) communication system, the package 1269546 contains: a pulse noise detector coupled to the The input end of the pulse noise cancellation system is configured to detect pulse noise in a signal conversion code of the pulse noise cancellation system; a cyclic shifter coupled to the pulse noise cancellation system The input end is configured to cyclically shift the sampling of the signal conversion code by a first distance when the pulse noise detector detects the pulse noise; ❿ a fast Fourier transform (FFT) module, Xiaoma is connected to the cyclic shifter for generating a fast Fourier transform type; and the i'-frequency domain pulse noise canceling module includes: a first processing unit coupled The fast Fourier transform module is configured to: according to the expected steering of the orthogonal frequency division multiplexing communication system, a predicted subcarrier, a signal received from the fast Fourier transform module, and a description symbol. An estimated pulse noise in a guided subcarrier of a slowly varying waveform is coupled to the first processing unit for interpolating the estimated pulse noise in the guided subcarrier of the graded waveform. Selecting the orthogonal frequency division multiplexing communication system to have a subcarrier predicted pulse noise in the graded waveform; and 45 1269546 a second processing unit coupled to the fast Fourier transform module and the inserter And generating, according to the description symbol, the signal received from the fast Fourier transform module, and the estimated pulse noise of all subcarriers in the gradual division multiplexing communication system in the gradual change waveform. All subcarriers within the turbulent waveform do not contain signals for predicting pulse noise. 14. The pulse noise cancellation system of claim 13, wherein the first processing unit comprises: a converter for guiding the orthogonal frequency division multiplexing communication system according to the description symbol Subcarrier down-converting into a ramp-up waveform; and a subtractor coupled to the fast Fourier converter and the interpolator for down-converting the converter to a pilot subcarrier in the ramp-up waveform And subtracting from the signal received by the fast Fourier transform module on the preamble subcarrier to obtain the predicted pulse noise of the guided subcarrier in the graded waveform. 15. The pulse noise cancellation system of claim 13, wherein the second processing unit comprises: a subtractor coupled to the fast Fourier transform module for transforming the buffer 46 1269546 The estimated pulse noise in the subcarrier is deducted from the signal received by the fast Fourier transform module in all subcarriers to obtain that all subcarriers in the graded waveform do not contain estimated pulse noise. And the converter is coupled to the subtractor for upconverting the estimated pulse noise in all subcarriers of the ramped waveform into the sharp waveform according to the descriptive symbol. 16. The pulse noise cancellation system of claim 13 of the patent application, further comprising: an Impulse Noise Rejection (INR) controller that is connected to the pulse noise detector and the frequency domain pulse The signal cancellation module is configured to generate the descriptor according to the position of the pulse noise event in the signal conversion code when the pulse noise detector detects the pulse noise in the signal conversion code. 2. If you apply for the 13th item of the township, the signal is eliminated. The first distance is determined according to the descriptive symbol. 18. The pulse noise cancellation system of claim 13 wherein the % displaced person cyclically shifts the sampling of the signal conversion code such that the midpoint of the pulse noise duration of the signal 1269546 is converted. p The first sample. The stomach falls in the signal conversion code. 19. The pulse noise detector of the 13th item of the patent application scope includes: 〃吼 elimination system, wherein the input of the radix removal system 器,用來當所輸入 的絕對值大於一臨界值時產生一 丁度王弟一數值,以及用 絕對值取值器,輕接於該脈衡雜訊 端,用來計算該訊號轉換碼之 飽和偵測器,_於該絕對值取值,的絕對值; 來當所輸入的絕對值不大於該臨界值時產生一第 二數值; 一缓衝為,柄接於該飽和值偵測器,用來暫存來自該飽 和偵測器的數值資料;以及 一飽和計算器,耦接於該缓衝器,用來計算該飽和摘測 器所產生的連續Q個數值資料之和。 20·如申請專利範圍第19項之脈衝雜訊消除系統,其中該 臨界值係預先設定的。 21·如申請專利範圍第19項之脈衝雜訊消除系統,其中該 臨界值係相對於該絕對值偵測器之輸入絕對值的一封包 48 1269546 (envelope)。 22. Γ申請專利範圍第13項之脈衝雜訊消除系,统,其中該 循%位移杰包含有一脈衝雜訊消除器,搞接於該脈衝雜訊 ' /肖除系、,4之輸人端以及該脈衝雜㈣測器,用來缓衝該脈 衡雜訊消除系統之輸入取樣,並當脈衝雜訊偵測器未倾 到脈=雜訊時用來輸出經緩衝過的取樣,以及當脈衝雜訊 [貞/則益㈣到脈衝雜訊時用來輪出替代取樣以取代經缓衝 過的取樣。 23. 如申請專利範圍第22項之脈衝雜訊消除系統,其中該 脉衝雜机消除器包含有: -缓衝器:用來緩衝處理所輪入的取樣; 曰代取樣產生$ ’用來依據-預設關,於該脈衝雜 暴 W貞測1出脈衝雜訊時,產生替代的取樣;以 及 ^ :輕接於該緩衝器以及該替代取樣產生器用 來t該脈衝雜訊偵測器未制出脈衝雜訊時自該 緩衝器輸出取樣,以及用來當該脈衝雜訊個器偵 測出脈衝雜訊時自該替代取樣產生器輸出替 取様。 49 1269546 24·如申請專利範圍第13項之脈衝雜訊消 认姑丄 于、系統,其耦接 後輸出 於一㈣器,其中該解翻制來將該料脈_訊消除 模組所產生而在所有次載波皆無脈衝雜訊的訊號予以解調 25· —種用來消除正交分頻多工(〇rth〇g〇nal Frequency Division Multiplexing,OFDM)通訊系統之訊號轉換碼 (symbol)中的脈衝雜訊之方法,該方法包含有下列步驟: (a) 偵測該正交分頻多工通訊系統的一訊號轉換碼 (symbol)中是否有脈衝雜訊; (b) 產生該正交分頻多工通訊系統之該訊號轉換瑪的 快速傅立葉轉換式; (c) 依據該正交分頻多工通訊系統之預期導向次载波 (predicted pilot subcarriers)、自一快速傅立葉轉換 模組所接收的訊號以及一描述符號,產生一缓變波、 形的導向次載波中的預估脈衝雜訊; (d) 安插該緩變波形的導向次載波中的該預估脈衝雜 訊,以獲得該正交分頻多工通訊系統於該缓變波形 内之所有次載波的預估脈衝雜訊·,以及 (e) 依據該描述符號以及該正交分頻多工通訊系统於 50 1269546 雜訊之訊號 r二=:= ’ 26.如申請專利範圍第25項+ 心万/2r兵甲步驟(C)包含有下 列步驟: • (f)將該正S分頻多m统的預期導向次載波,自 該快速傅立葉轉換模組所接收且於導向次載波内 的㉟IX產生導向次載波的預估脈衝雜訊; 以及 (g)依據該描述錢,將導向次餘中的該預估脈衝雜 訊降頻轉換到該緩變波形之中。 • 27·如申研專利範圍第25項之方法,其中步驟(e)包含有下 列步驟: (〇依據該描述符號,將該緩變波形的所有次載波中的 該預估脈衝雜訊升頻轉換到該急變波形之中;以及 (g)將該急變波形的所有次載波中的該預估脈衝雜 汊自該快速傅立葉轉換模組所接收且於所有次載 波内的訊號扣除,以獲得在所有次載波皆未含有預 估脈衝雜訊之訊號。 5.1 1269546 28.如申請專利範圍第25項之方法,其另包含有下列步驟: (f)當一脈衝雜訊偵測器於該訊號轉換碼中偵測出脈 衝雜訊時,依據脈衝雜訊事件於該訊號轉換碼中的 位置來產生該描述符號。 29. 如申請專利範圍第28項之方法,其中該訊號轉換碼包 含有N個取樣,而步驟(f)另包含有下列步驟: (g) 當該訊號轉換碼中有一脈衝事件時,利用一參數Ns 來表示該脈衝事件的起始位置,並利用另一參數 Ne來表示該脈衝事件的結束位置;以及 (h) 將該描述符號設定成(Ns+Ne)/2。 30. 如申請專利範圍第28項之方法,其中該訊號轉換碼包 含有N個取樣,而步驟⑴另包含有下列步驟: (g)當該訊號轉換碼中有複數個脈衝事件,且一第一脈 衝事件與一第二脈衝事件之間的取樣數大於N/2 時,其中該第一脈衝事件較該第二脈衝事件發生得 早,則利用一參數Ns來表示該第二脈衝事件的起 始位置,並利用另一參數Ne來表示該第一脈衝事 件的結束位置;以及 52 1269546 (h)將該描述符號設定成(Ns+Ne)/2。 31. 如申請專利範圍第28項之方法,其中該訊號轉換碼包 含有N個取樣,而步驟⑴另包含有下列步驟: (g) 當該訊號轉換碼中有複數個脈衝事件,且任兩個脈 衝事件之間的取樣數不大於N/2時,則利用一參數 Ns來表示一第一脈衝事件的起始位置,並利用另 一參數Ne來表示一第二脈衝事件的結束位置,其 中該第一脈衝事件相鄰於該第二脈衝事件;以及 (h) 將該描述符號設定成(Ns+Ne)/2。 32. 如申請專利範圍第25項之方法,其中步驟(a)包含有下 列步驟: 當該正交分頻多工通訊系統之訊號轉換碼的連續Q個 取樣中的P個取樣之絕對值皆大於一臨界值時,判 斷該訊號轉換碼中是否,含有脈衝雜訊。 33. 如申請專利範圍第32項之方法,其中步驟(a)包含有下 列步驟: (f) 計算該訊號轉換碼中其中一取樣之絕對值; (g) 當該絕對值大於該臨界值時,產生一第一數值; 53 1269546 (h) 計算一飽和偵測器所產生的連續Q個數值資料之 和;以及 (i) 當步驟(h)中所求得的和符合一預設規則時,則判斷 該正交分頻多工通訊系統之訊號轉換碼中是否含 有脈衝雜訊。 34. 如申請專利範圍第32項之方法,其中步驟(a)包含有下 列步驟: (f) 計算該訊號轉換碼中其中一取樣之絕對值; (g) 當該絕對值不大於該臨界值時,產生一第二數值; (h) 計算一飽和偵測器所產生的連續Q個數值資料之 和;以及 (i) 當步驟(h)中所求得的和符合一預設規則時,則判斷 該正交分頻多工通訊系統之訊號轉換碼中是否含 有脈衝雜訊。 35. 如申請專利範圍第25項之方法,其另包含下列步驟: (f) 缓衝處理該正交分頻多工通訊系統之訊號轉換碼的 取樣;以及 (g) 當偵測到脈衝雜訊時,依據一預設規則,產生替代 取樣; 54 1269546 其中當偵測到脈衝雜訊時,步驟(b)會產生該替代取樣 的快速傅立葉轉換式。 36. 如申請專利範圍第25項之方法,其另包含下列步驟: (f) 當在該訊號轉換碼中偵測出脈衝雜訊時,循環地位 移該訊號轉換碼之取樣一第一距離;以及 其中步驟⑴循環地位移該訊號轉換碼之取樣該第一距 > 離時,步驟(b)會產生該該訊號轉換碼之取樣的快速傅 立葉轉換式。 37. 如申請專利範圍第36項之方法,其中步驟(c)包含有下 列步驟: (g) 依據該描述符號,來將該正交分頻多工通訊系統的 該導向次載波降頻轉換至一缓變波形中;以及 (h) 將該經降頻轉換至該緩變波形中的導向次載波,自 、 經該快速傅立葉轉換模組於前導次載波上所接收 的訊號中扣除,以在該缓變波形中獲得導向次載波 的該預估脈衝雜訊。 38. 如申請專利範圍第36項之方法,其中步驟(e)包含有下 列步驟: 55 1269546 (g) 將該緩變波形的所有次載波中的該預估脈衝雜 訊,自該快速傅立葉轉換模組於所有次載波内所接 收的訊號中扣除,以獲得在該緩變波形的所有次載 波皆未含有預估脈衝雜訊之訊號;以及 (h) 依據該描述符號,將該缓變波形的所有次載波中的 該預估脈衝雜訊升頻轉換到該急變波形之中。 I ^ 39.如申請專利範圍第36項之方法,其另包含下列步驟: (g)依據該描述符號來節定該第一距離。 40.如申請專利範圍第36項之方法,其中該第一距離係一 預先設定的距離。The device is configured to generate a value of one degree when the absolute value of the input is greater than a threshold value, and use an absolute value valuer to lightly connect to the pulse balance noise end to calculate the saturation of the signal conversion code. The detector, _ the absolute value of the absolute value; to generate a second value when the absolute value of the input is not greater than the threshold; a buffer is, the handle is connected to the saturation value detector, The data stored in the saturation detector is temporarily stored; and a saturation calculator is coupled to the buffer for calculating a sum of consecutive Q data generated by the saturated detector. 20. The pulse noise cancellation system of claim 19, wherein the threshold is predetermined. 21. The pulse noise cancellation system of claim 19, wherein the threshold is a packet 48 1269546 (envelope) relative to an absolute value of the input of the absolute value detector. 22. 脉冲Applicable to the pulse noise cancellation system of the 13th patent scope, where the 位移% displacement includes a pulse noise eliminator, which is connected to the pulse noise ' / xiao xiao, 4, the input And the pulse (four) detector for buffering the input sampling of the pulse balance noise cancellation system, and for outputting the buffered sample when the pulse noise detector is not tilted to pulse=noise, and When the pulse noise [贞/则益(四) to pulse noise is used to turn off the alternate sampling to replace the buffered sample. 23. The pulse noise cancellation system of claim 22, wherein the pulse noise canceller comprises: - a buffer: a buffer for buffering processing; and a generation sampling to generate $' According to the preset switch, when the pulse noise is detected, a substitute sample is generated; and ^: lightly connected to the buffer and the substitute sample generator is used for the pulse noise detector The sampling is output from the buffer when no pulse noise is generated, and is used to substitute the output from the alternate sampling generator when the pulse noise detector detects the pulse noise. 49 1269546 24·If the pulse noise of the 13th item of the patent application scope is removed, the system is coupled and outputted to a (4) device, wherein the solution is turned over to generate the pulse pulse elimination module. The signal with no pulse noise on all secondary carriers is demodulated. The signal is used to eliminate the signal conversion code (symbol) of the orthogonal frequency division multiplexing (OFDM) communication system. The method of pulse noise includes the following steps: (a) detecting whether there is a pulse noise in a signal conversion code of the orthogonal frequency division multiplexing communication system; (b) generating the orthogonality The fast Fourier transform of the signal conversion megaphone of the frequency division multiplexing communication system; (c) receiving from the predicted pilot subcarriers of the orthogonal frequency division multiplexing communication system, from a fast Fourier transform module And a descriptive symbol to generate a predictive pulse noise in a slowly varying wave, shaped guided subcarrier; (d) inserting the estimated impulse noise in the guided subcarrier of the graded waveform to obtain the Orthogonal frequency division The estimated pulse noise of all subcarriers in the gradual change waveform, and (e) according to the description symbol and the signal of the orthogonal frequency division multiplexing communication system at 50 1269546 noise r== = ' 26. For example, the 25th item of the patent application scope + the step of the heart (2) armor (C) contains the following steps: • (f) The expected S-divided multi-frequency system is directed to the sub-carrier from the fast Fourier The 35IX received by the conversion module and directed to the secondary carrier generates predicted impulse noise for the secondary carrier; and (g) down-converting the predicted impulse noise in the secondary remainder to the Among the slowly changing waveforms. • 27· The method of claim 25, wherein step (e) comprises the following steps: (〇) upscaling the estimated pulse noise in all subcarriers of the graded waveform according to the descriptive symbol Converting to the turbulent waveform; and (g) subtracting the estimated pulse from all subcarriers of the blast waveform from the signal received by the fast Fourier transform module and subtracting all subcarriers to obtain All subcarriers do not contain the signal of the estimated impulse noise. 5.1 1269546 28. The method of claim 25, further comprising the following steps: (f) when a pulse noise detector converts the signal When the pulse noise is detected in the code, the description symbol is generated according to the position of the pulse noise event in the signal conversion code. 29. The method of claim 28, wherein the signal conversion code includes N Sampling, and step (f) further comprises the following steps: (g) when there is a pulse event in the signal conversion code, a parameter Ns is used to indicate the starting position of the pulse event, and another parameter Ne is used to indicate the pulse The end position of the event; and (h) the descriptive symbol is set to (Ns+Ne)/2. 30. The method of claim 28, wherein the signal conversion code includes N samples, and step (1) The method includes the following steps: (g) when there are a plurality of pulse events in the signal conversion code, and the number of samples between a first pulse event and a second pulse event is greater than N/2, wherein the first pulse event is The second pulse event occurs early, using a parameter Ns to indicate the starting position of the second pulse event, and another parameter Ne to indicate the end position of the first pulse event; and 52 1269546 (h) The descriptive symbol is set to (Ns+Ne)/2. 31. The method of claim 28, wherein the signal conversion code comprises N samples, and the step (1) further comprises the following steps: (g) when the When there are a plurality of pulse events in the signal conversion code, and the number of samples between any two pulse events is not greater than N/2, a parameter Ns is used to indicate the starting position of a first pulse event, and another parameter is utilized. Ne to represent the knot of a second pulse event a position, wherein the first pulse event is adjacent to the second pulse event; and (h) setting the descriptive symbol to (Ns+Ne)/2. 32. The method of claim 25, wherein the step ( a) comprising the following steps: when the absolute values of P samples in consecutive Q samples of the signal conversion code of the orthogonal frequency division multiplexing communication system are greater than a threshold value, determining whether the signal conversion code contains Pulse noise. 33. The method of claim 32, wherein the step (a) comprises the following steps: (f) calculating an absolute value of one of the signal conversion codes; (g) when the absolute value is greater than At the threshold, a first value is generated; 53 1269546 (h) calculating the sum of consecutive Q values produced by a saturation detector; and (i) the sum obtained in step (h) is consistent with one When the rule is preset, it is determined whether the signal conversion code of the orthogonal frequency division multiplexing communication system contains pulse noise. 34. The method of claim 32, wherein the step (a) comprises the steps of: (f) calculating an absolute value of one of the signal conversion codes; (g) when the absolute value is not greater than the threshold a second value is generated; (h) calculating a sum of consecutive Q values generated by a saturation detector; and (i) when the sum obtained in step (h) conforms to a predetermined rule, Then, it is determined whether the signal conversion code of the orthogonal frequency division multiplexing communication system contains pulse noise. 35. The method of claim 25, further comprising the steps of: (f) buffering a sample of the signal conversion code of the orthogonal frequency division multiplexing communication system; and (g) detecting a pulse miscellaneous At the time of the communication, an alternative sampling is generated according to a preset rule; 54 1269546 wherein when the pulse noise is detected, the fast Fourier transform of the substitute sampling is generated in the step (b). 36. The method of claim 25, further comprising the steps of: (f) cyclically shifting the sampling of the signal conversion code by a first distance when detecting pulse noise in the signal conversion code; And wherein the step (1) cyclically shifts the sampling of the signal conversion code by the first distance >, the step (b) generates a fast Fourier transform of the sampling of the signal conversion code. 37. The method of claim 36, wherein the step (c) comprises the following steps: (g) down-converting the guided subcarrier of the orthogonal frequency division multiplexing communication system to the descriptive symbol to And a (h) the downconverted to the pilot subcarrier in the graded waveform, subtracted from the signal received by the fast Fourier transform module on the preamble subcarrier, to The estimated pulse noise of the guided subcarrier is obtained in the ramp waveform. 38. The method of claim 36, wherein the step (e) comprises the following steps: 55 1269546 (g) converting the estimated impulse noise in all subcarriers of the graded waveform from the fast Fourier transform The module deducts the signal received in all subcarriers to obtain a signal that does not contain the estimated pulse noise in all the subcarriers of the ramp waveform; and (h) according to the description symbol, the ramp waveform The estimated pulse noise in all of the subcarriers is upconverted into the sharp waveform. I ^ 39. The method of claim 36, further comprising the step of: (g) delimiting the first distance in accordance with the descriptive symbol. 40. The method of claim 36, wherein the first distance is a predetermined distance. 十一、圖式: 56XI. Schema: 56
TW94115989A 2005-05-17 2005-05-17 Method and system for impulse noise rejection in OFDM system TWI269546B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94115989A TWI269546B (en) 2005-05-17 2005-05-17 Method and system for impulse noise rejection in OFDM system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94115989A TWI269546B (en) 2005-05-17 2005-05-17 Method and system for impulse noise rejection in OFDM system

Publications (2)

Publication Number Publication Date
TW200642339A TW200642339A (en) 2006-12-01
TWI269546B true TWI269546B (en) 2006-12-21

Family

ID=38291590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94115989A TWI269546B (en) 2005-05-17 2005-05-17 Method and system for impulse noise rejection in OFDM system

Country Status (1)

Country Link
TW (1) TWI269546B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139673B2 (en) 2008-04-09 2012-03-20 Industrial Technology Research Institute Transmission method of wireless signal and transmitter using the same
TWI382708B (en) * 2008-03-03 2013-01-11 Samsung Electronics Co Ltd Method and apparatus for transmitting/receiving control information in a wireless communication system
US8433005B2 (en) 2004-01-28 2013-04-30 Qualcomm Incorporated Frame synchronization and initial symbol timing acquisition system and method
US8718030B2 (en) 2007-03-26 2014-05-06 Qualcomm Incorporated Methods and apparatus for performing channel tree operations
US8724447B2 (en) 2004-01-28 2014-05-13 Qualcomm Incorporated Timing estimation in an OFDM receiver
US9723529B2 (en) 2007-01-26 2017-08-01 Wi-Lan Inc. Multiple network access system and method
US10516713B2 (en) 2007-01-12 2019-12-24 Wi-Lan Inc. Convergence sublayer for use in a wireless broadcasting system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8433005B2 (en) 2004-01-28 2013-04-30 Qualcomm Incorporated Frame synchronization and initial symbol timing acquisition system and method
US8724447B2 (en) 2004-01-28 2014-05-13 Qualcomm Incorporated Timing estimation in an OFDM receiver
US11621990B2 (en) 2007-01-12 2023-04-04 Wi-Lan Inc. Convergence sublayer for use in a wireless broadcasting system
US11057449B2 (en) 2007-01-12 2021-07-06 Wi-Lan Inc. Convergence sublayer for use in a wireless broadcasting system
US10516713B2 (en) 2007-01-12 2019-12-24 Wi-Lan Inc. Convergence sublayer for use in a wireless broadcasting system
US10231161B2 (en) 2007-01-26 2019-03-12 Wi-Lan Inc. Multiple network access system and method
US11134426B2 (en) 2007-01-26 2021-09-28 Wi-Lan Inc. Multiple network access system and method
US9723529B2 (en) 2007-01-26 2017-08-01 Wi-Lan Inc. Multiple network access system and method
US8718030B2 (en) 2007-03-26 2014-05-06 Qualcomm Incorporated Methods and apparatus for performing channel tree operations
US9980252B2 (en) 2008-03-03 2018-05-22 Smsung Electronics Co., Ltd Method and apparatus for transmitting/receiving control information in a wireless communication system
US10299253B2 (en) 2008-03-03 2019-05-21 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving control information in a wireless communication system
US10595305B2 (en) 2008-03-03 2020-03-17 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving control information in a wireless communication system
US9008037B2 (en) 2008-03-03 2015-04-14 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving control information in a wireless communication system
US9001776B2 (en) 2008-03-03 2015-04-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control information in a wireless communication system
US11252700B2 (en) 2008-03-03 2022-02-15 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving control information in a wireless communication system
US11622345B2 (en) 2008-03-03 2023-04-04 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving control information in a wireless communication system
TWI382708B (en) * 2008-03-03 2013-01-11 Samsung Electronics Co Ltd Method and apparatus for transmitting/receiving control information in a wireless communication system
US8139673B2 (en) 2008-04-09 2012-03-20 Industrial Technology Research Institute Transmission method of wireless signal and transmitter using the same

Also Published As

Publication number Publication date
TW200642339A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
TWI269546B (en) Method and system for impulse noise rejection in OFDM system
TWI382672B (en) Progressive parallel interference canceller and method thereof and receiver thereof
TWI258937B (en) Mode detection for OFDM signals
JP5477480B2 (en) Method and apparatus for accurate time synchronization in a wireless communication system
WO2009089753A1 (en) A method and device for peak-to-average ratio suppression in multi-carrier orthogonal frequency division multiplexing system
WO2006134578A1 (en) Receiver apparatus for receiving a multicarrier signal
US20100046599A1 (en) Apparatus and method for acquiring initial coefficient of decision feedback equalizer using fast fourier transform
EP2544391A1 (en) Channel estimation circuit, channel estimation method, and receiver
US7340000B1 (en) Decision feedback equalizer in an OFDM WLAN receiver
WO2010094672A1 (en) Ofdm receiver having a plurality of ffts according to g-rake structure
TWI481220B (en) Estimating method for maximum channel delay and cyclic prefix (cp) averaging method in ofdm receiver
TWI251988B (en) Channel gain estimation in a rake receiver using complex weight generation (CWG) algorithms
TWI404380B (en) Signal selection apparatus and method thereof
Singh et al. An overview of ICI self cancellation techniques in OFDM systems
US8964916B2 (en) Signal-to-noise ratio (SNR) dependent channel tracking for smart utility networks (SUN) orthogonal frequency division multiplexing (OFDM)
KR100849799B1 (en) Ofdm receiver co-using time and frequency domain equalizing and time domain equalizer
JP3869374B2 (en) Symbol timing detection circuit
JP2004282613A (en) Equalization apparatus and receiving apparatus with the same
KR20100088969A (en) Frequency offset estimation apparatus of ofdm system
JP2021522699A (en) Methods and equipment for energy efficient transmission and reception of signals using aliasing
JP2007104574A (en) Multicarrier wireless receiver and receiving method
KR100695005B1 (en) Channel Estimation Apparatus and Method of OFDM based Receiver
EP1684479B1 (en) Method and system for impulse noise rejection in an OFDM system
JP2011049937A (en) Apparatus and method for removing inter-carrier interference
JP5371722B2 (en) Receiving device, receiving method, and receiving program

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees