TWI246841B - Digital transmission system and method for transmitting digital signals - Google Patents

Digital transmission system and method for transmitting digital signals Download PDF

Info

Publication number
TWI246841B
TWI246841B TW91121622A TW91121622A TWI246841B TW I246841 B TWI246841 B TW I246841B TW 91121622 A TW91121622 A TW 91121622A TW 91121622 A TW91121622 A TW 91121622A TW I246841 B TWI246841 B TW I246841B
Authority
TW
Taiwan
Prior art keywords
strong
packet
bit
packets
stream
Prior art date
Application number
TW91121622A
Other languages
Chinese (zh)
Inventor
Dagnachew Birru
Vasanth R Gaddam
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/127,531 external-priority patent/US7111221B2/en
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Application granted granted Critical
Publication of TWI246841B publication Critical patent/TWI246841B/en

Links

Abstract

A digital transmission system and method that improves upon the ATSC A/53 HDTV signal transmission standard includes: a first forward error correction (FEC) unit for encoding packets belonging to each of robust and normal data bit streams; a robust processor unit for receiving robust packets comprising priority data and processing the packets for generating the robust bit stream; a trellis encoder unit for producing a stream of trellis encoded data bits corresponding to bits of the normal and robust streams, the encoder employing mapping of encoded data bits of said robust packets into symbols according to one or more symbol mapping schemes; and, an optional second forward error correction (FEC) encoding unit for ensuring backward compatibility with a receiver device by reading in only packets of the robust bit stream and enabling generation of parity bytes only for the robust stream packets; and, a transmitter device for transmitting the robust bit streams in a backwards compatible manner, separately or in conjunction with said normal bit stream over a fixed bandwidth communications channel to a receiver device, wherein an existing receiver device is capable of receiving and processing packets of the robust bit stream as null packets.

Description

12468411246841

玫、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 發明背景 —本發明係關於一種之竣位傳輸系統,透別是關於「先 進電視系統委員會(ATSC)」數位電視(DTV)標準(A/53)。 本發明說明一種能夠按回溯相容的方式,連同採ATSC標 準之標準位元率流,來傳送一強固性位元率流的方法。 在地面式廣播頻道上之高解析電視(HDTV)傳輸的ATSC 標準,是利用一種含有一序列十二(1 2)個獨立時間多工 trellis編碼信號串流,按10.76 MHz的速率,經調變為八(8) 階餘殘邊帶(VSB)符號串流之信號。這種信號,會被轉換為 一對應於標準VHF或UHF地面式電視頻道之六(6) MHz頻 帶,該信號會被按每秒19.39百萬位元(Mbps)的資料速率 而廣播其上。關於(ATSC)「數位電視標準」的細節以及 最新近修訂 A/53,請參照 http://www.atsc.org/。 圖1係一概略說明一示範性先前技藝高解析電視(HDTV) 傳送器100之區塊圖。首先,會在一資料隨機處理器105 中將MPEG相容資料封包予以隨機化,而各封包係藉一 Reed Solomon (RS)編碼器單元110按前向錯誤校正(FEC)所 編碼。然後,由資料錯置器120將各資料攔位之接續性區 段裡的資料封包加以錯置,接著在將經錯置之資料封包 由trellis編碼器單元130進一步交錯及編碼。該trellis編碼 器單元130可產生一各者具三(3)位元之資料符號串流。 這三個位元其中一者為預編碼,而另二位元為由一 1固四 (4)狀態trellis編碼器所產生。然後將這三(3)個位元映對BACKGROUND OF THE INVENTION 1. The present invention relates to a clamp transmission system, which is related to "advanced" Television Systems Committee (ATSC) Digital Television (DTV) Standard (A/53). The present invention describes a method for transmitting a strong bit rate stream in a backwards compatible manner, along with a standard bit rate stream using the ATSC standard. The ATSC standard for high resolution television (HDTV) transmission over terrestrial broadcast channels utilizes a sequence of twelve (12) independent time multiplex trellis encoded signal streams that are modulated at a rate of 10.76 MHz. It is the signal of the eight (8) order residual sideband (VSB) symbol stream. This signal is converted to a six (6) MHz band corresponding to a standard VHF or UHF terrestrial TV channel, which is broadcast on a data rate of 19.39 megabits per second (Mbps). For details on the (ATSC) "Digital TV Standard" and the latest revision A/53, please refer to http://www.atsc.org/. 1 is a block diagram schematically illustrating an exemplary prior art high resolution television (HDTV) transmitter 100. First, the MPEG compatible data packets are randomized in a data random processor 105, and each packet is encoded by forward error correction (FEC) by a Reed Solomon (RS) encoder unit 110. Then, the data packet in the contiguous section of each data block is misplaced by the data misplacer 120, and then the misplaced data packet is further interleaved and encoded by the trellis encoder unit 130. The trellis encoder unit 130 can generate a stream of data symbols each having three (3) bits. One of the three bits is precoded, and the other two bits are generated by a one solid four (4) state trellis encoder. Then map the three (3) bits

wmmM 1246841 ⑺ 到一 8階符號。 即如眾知,先前技藝的trellis編碼器單元130含有十二 (12)個平行trellis編碼‘器及預編碼器單元以提供十二個經 鐵置之編碼資料序列。在多工器140裡,各trellis編碼器 單元的符號會與來自一同步單元(未以圖示)之「區段同 步(segment sync)」及「欄位同步(Held sync)」同步位元序 列150相合併。然後,前導插置單元160會將簡短的共相 位前導信號插置於内,並由滤波裝置16 5選擇性地預等 化。然後’將此符號串流叉由V S B1周變器17 〇進行餘殘邊 帶(VSB)壓縮載波調變處理。而最後,由射頻(RF)轉換器 180將此符號串流予以上行轉換至一射頻。 圖2係一說明示範性先前技藝高解析電视(HDTV)接收 器200之區塊圖。接著’所接收之RF信號會被諧調器21〇 下行轉換成中頻(IF) °然後由IF滤波器及偵測器220將此 信號加以濾波並轉換至數位形式。而所偵測的信號會按 資料符號串流的形式,各者表示八(8)階層信號星座圖中 的一個階層。接著,將信號提供給NTSC拒除滤波器23〇 及同步單元240。信號會被該NTSC拒除濾波器23〇所滤 波,並交由等化器及相位追蹤器250進行等化及相位追 縱。然後’所復原的編碼資料符號會再由trellis解碼處理 器;260進行trellis解碼。此解碼資料符號會進一步再由資 料解錯置器270予以解錯置。然後此資料符號會再由Reed Solomon解碼器280進行Reed Solomon解碼。這會復原出由兮 傳送器100所傳送之MPEG相容資料封包。 , 爹明說明績頁 1246841 而現有的八丁808-¥83八/53數位電視標準雖足以能夠傳 送信號,克服像是在地面式設定方式之鬼影、雜訊突 波、信號衰減及干擾的許多頻道壞損問題,然確實需要 二種擁有彈性的ATSC標举,而能夠接納具各種優先權及 資料速率之串流。 發明概述 如此,本發明之一目的係於一 ATSC數位傳輸系統中提 供一種用以連同標準ATSC位元串流而傳送新式強固位 元串流之技術,其中該新式位元_流相較於ATSC串流會 具有較低的「可見門檻值(TOV)」,且因此可適用於傳送 高優先權資訊位元。 , 本發明之進一步目的在於提供一種彈性ATSC數位傳輸 系統與方法,可與現有的數位接收器裝置回溯相容。 本發明之又另一目的在於提供一種彈性ATSC數位傳輸 系統與方法,可提供優先權位元組產生器機制,可與現 有的接收器裝置回溯相容。 根據本發明較佳具體實施例,玆提供一種能夠改善 ATSC A/53 HDTV信號傳輸標準之數位傳輸系統及方法, 其中包含: - 一第一前向錯誤校正(FEC)單元,可用以對屬於各強 固,及正常資料位元串流之封包進行編碼; ——強固處理器單元,用以接收各個含優先權資料的 強固封包,並以處理該等封包以產生該強固位元串流; -一 trellis編碼器單元,用以產生對應於該等正常'且強 1246841 (4) iaim 固串流各位元之trellis編碼資料位元的串流,該編碼器採 用的是根據一或更多符號應對法則之從強固封包轉映 至符號的編碼資料位元映圖; —-一選擇性第二前向鍺誤校正(FEC)編碼單元,藉由僅 讀入強固位元串流封包,並能僅對該等強固串流封包來 產生對位位元組,俾確保與一接收器裝置的回溯相容 性;以及wmmM 1246841 (7) to an 8th order symbol. As is well known, the prior art trellis encoder unit 130 contains twelve (12) parallel trellis coded & precoder units to provide twelve iron-coded encoded data sequences. In the multiplexer 140, the symbols of each trellis encoder unit are synchronized with the "segment sync" and "Held sync" sync bit sequences from a sync unit (not shown). 150 phases merged. The preamble insertion unit 160 then inserts the short co-phase preamble signal and is selectively pre-equalized by the filtering means 16 5 . Then, the symbol stream is forked by the V S B1 transformer 17 to perform a residual sideband (VSB) compression carrier modulation process. Finally, the symbol stream is upconverted by the radio frequency (RF) converter 180 to a radio frequency. 2 is a block diagram illustrating an exemplary prior art high resolution television (HDTV) receiver 200. The received RF signal is then down-converted to an intermediate frequency (IF) by the tuner 21 ° and then filtered by the IF filter and detector 220 and converted to digital form. The detected signals are in the form of data symbol streams, each representing a level in the eight (8) hierarchical signal constellation. Next, the signal is supplied to the NTSC rejection filter 23 and the synchronization unit 240. The signal is filtered by the NTSC rejection filter 23 and passed to the equalizer and phase tracker 250 for equalization and phase tracking. Then the 'reconstructed coded data symbols are then decoded by the trellis decoder; 260 is trellis decoded. This decoded data symbol is further misinterpreted by the data demultiplexer 270. This data symbol will then be Reed Solomon decoded by Reed Solomon decoder 280. This will restore the MPEG compatible data packets transmitted by the 传送 transmitter 100. , Ming Ming explained the performance page 12468841 and the existing eight 808-¥83 eight/53 digital TV standard is enough to transmit signals, to overcome many ghosts, noise surges, signal attenuation and interference like ground-based setting methods. The channel corruption problem, indeed, requires two flexible ATSC standards, and can accommodate streaming with various priorities and data rates. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a technique for transmitting a new strong bit stream in conjunction with a standard ATSC bit stream in an ATSC digital bit transmission system, wherein the new bit stream is compared to ATSC. Streaming will have a lower "visible threshold (TOV)" and can therefore be applied to transmit high priority information bits. It is a further object of the present invention to provide an elastic ATSC digital transmission system and method that is backward compatible with existing digital receiver devices. It is yet another object of the present invention to provide an elastic ATSC digital transmission system and method that provides a priority byte generator mechanism that is compatible with existing receiver devices. According to a preferred embodiment of the present invention, there is provided a digital transmission system and method capable of improving ATSC A/53 HDTV signal transmission standards, comprising: - a first forward error correction (FEC) unit, which can be used to belong to each Strong, and normal data bit stream packets are encoded; - a strong processor unit for receiving strong packets containing priority data, and processing the packets to generate the strong bit stream; a trellis encoder unit for generating a stream corresponding to the trellis-encoded data bits of the normal 'and strong 12468841 (4) iaim solid stream elements, the encoder is based on one or more symbolic rules The coded data bit map that is transferred from the strong packet to the symbol; - a selective second forward error correction (FEC) coding unit, by reading only the strong bit stream packet, and can only The strong stream packets are used to generate a bit byte to ensure backward compatibility with a receiver device;

——傳送器裝置,以按回溯相容方式,將該等強固位 元串流個別地或共集地併於該正常位元串流,而在一固 定頻寬通訊頻道上傳送至一接收器裝置,其中現存的接 收器裝置能夠接收並依空值封包來處理該強固位元串 流的各封包。- a transmitter device for transmitting the strong bit streams individually or collectively and in the normal bit stream in a backtrack compatible manner, and transmitting to a receiver on a fixed bandwidth communication channel Apparatus wherein the existing receiver device is capable of receiving and processing the packets of the strong bit stream in accordance with a null packet.

為確保與現有各製造廠商販售之接收器的回溯相容 性,可採用一選擇性非系統性Reed Solomon編碼器以將對 位位元組增入至該強固位元_流封包内。在此,會利用 ATSC FEC法則(A/53)來對標準8-VSB位元串流進行編碼。 而利用新位元串流所傳送的封包會被現有接收器的傳 送層解碼器所忽略不計。 圖式簡單說明 現將參照於隨附各圖以說明本揭發明之細節,其中: _ 1說明一根據先前技藝之示範性高解析電視(HDTV) 傳送器區塊圖; 圖2說明一根據先前技藝之示範性高解析電視(HDTV) 接收器區塊圖; -10- 1246841 (5) 園mpg 圖3係根據本發明之改良ATSC標準之第一具體實施例 201高階圖式; 圖4係一根據本發明之改良ATSC標準之第二具體實施 珂300高階圖式; 圖5係說明一實作如圖3及4傳輸系統内之trellis編碼法 則330區塊圖; 圖6係說明根據本發明之經修飾trellis編碼器330的外部 編碼電路3 3 5簡化區塊圖;To ensure traceback compatibility with receivers sold by existing manufacturers, a selective non-systematic Reed Solomon encoder can be employed to add the alignment bits to the strong bit_stream packet. Here, the standard 8-VSB bitstream is encoded using the ATSC FEC rule (A/53). Packets transmitted using the new bit stream are ignored by the transport layer decoder of the existing receiver. BRIEF DESCRIPTION OF THE DRAWINGS The details of the present invention will now be described with reference to the accompanying drawings, in which: FIG. 1 illustrates an exemplary high resolution television (HDTV) transmitter block diagram according to the prior art; FIG. 2 illustrates a Exemplary high resolution television (HDTV) receiver block diagram of the art; -10- 1246841 (5) Park mpg FIG. 3 is a high-order diagram of a first embodiment 201 of the improved ATSC standard according to the present invention; FIG. A second embodiment of the improved ATSC standard according to the present invention is a high-order diagram; FIG. 5 is a block diagram showing the trellis coding rule in the transmission system of FIGS. 3 and 4; FIG. 6 is a diagram illustrating the invention according to the present invention. The outer coding circuit of the modified trellis encoder 330 simplifies the block diagram;

圖7係強固封包錯置器區塊400之詳細說明,圖中顯示 含有一錯置處理器401及一封包格式器單元402 ; 圖8A及8B說明當MODE=2或3時,和分別,對於NRS=0 (圖8A)及NRS= 1 (圖8B)的情況,將封包位元組複製成兩個 位元組之基本格式器功能; 圖9A及9B說明當MODE=l時,和分別對於NRS=0 (圖9A) 及NRS= 1 (圖9B)的情況,將一輸入封包的各位元予以重 組成兩個位元組之基本格式器功能;以及Figure 7 is a detailed description of the strong packet dislocation block 400, which shows a dislocation processor 401 and a packet formatter unit 402; Figures 8A and 8B illustrate when MODE = 2 or 3, and respectively, for In the case of NRS=0 (Fig. 8A) and NRS=1 (Fig. 8B), the packet byte is copied into the basic formatter function of two bytes; Figs. 9A and 9B illustrate when MODE=l, and respectively In the case of NRS = 0 (Fig. 9A) and NRS = 1 (Fig. 9B), the elements of an input packet are reassembled into a basic formatter function of two bytes;

圖10說明一示範性情境之對位「置放·握存」插入·機制。 本發明詳細說明 一種新的ATSC數位傳輸系統標準方·式,其中含有用以 併同於標準ATSC(8位元)位元串流而傳送新式「強固」位 元,串流的裝置及方法,其中該新式位元串流相較於8-VSB ATSC串流會具有較低的「可見門檻值(TOV)」,且因此可 適用於傳送高優先權資訊位元,而此方式可如共同受 讓、共同申審之美國專利申請第10/078933號[US010173, -11 - 發明說碉績炅 1246841 (, 事務所檔號第15062號],標題為「加強型ATSC數位電視 系統」所述,玆引用謗文之全部内容及揭示而如本案文 整體併入。 —最應注意者,如本文所列述提議之ATSC數位傳輸系統 及方法且併合共審美國專利申請案第60/280782號 [US010173,事務所檔號第15〇62號]的各項新式特點,包 含用以提供一種對新式位元串流強固性之標準位元串 流資料速率的取捨機制,此機制可讓新式接收器裝置能 夠解碼強固封包,而無錯誤,即使是在具降低CNR及降 低TOV之嚴苛靜態及動態多重路徑千擾環境下亦然,而 進一步,一種可供與現有數位接收器裝置回溯相容之傳 輸作業的機制。所述系統可藉提供「強固及標準」串流 之彈性傳^速率’來特別改善目前ATSC數位傳輸系統標 準’以容納廣大範圍的載波對雜訊比及頻道條件。 圖3係一頂層圖式,根據本發明之加強型ATSC標準的第 一具體實施例201。即如圖3所示,這個根據第一具體實 施例之改良式ATSC數位信號傳輸標準,包含一資料隨機 處理器元件105,首先根據一種已知的虛擬隨機數值產生 模式來改變輸入資料位元組數值。.例如,按照ATSC標 準,該資料隨機處理器會將所有的入方資料位元組按一 16隹元最大長度虛擬隨機二元序列(Prbs)予以X〇R,此者 是在一資料攔位的起點處所初始化。所輸出的隨機化資 料會接著被輪入至Reed Solomon (RS)編碼器元件11〇,此者 依一 187位元組之資料區塊大小所運作,並增入供以’錯誤 1246841 ⑺ 聲明說确績頁 5·%、 ' '' ΐ 、>、、、、'ν ί、>匕''和 (-'νFigure 10 illustrates an exemplary "placement and holding" insertion mechanism for an exemplary scenario. The present invention details a new ATSC digital transmission system standard method, which includes a device and method for transmitting a new "strong" bit, stream, in conjunction with a standard ATSC (8-bit) bit stream. The new bit stream will have a lower "visible threshold (TOV)" than the 8-VSB ATSC stream, and thus can be adapted to transmit high priority information bits, which can be U.S. Patent Application Serial No. 10/078,933, the entire disclosure of which is incorporated herein by reference. The entire contents of the text and the disclosures are hereby incorporated by reference in its entirety in its entirety. US010173, the firm's file number 15〇62], the new features include a trade-off mechanism for providing standard bitstream data rates for new-bit stream ruggedness. This mechanism allows new receivers. The device can decode strong Packets, without errors, even in harsh static and dynamic multipath interference environments with reduced CNR and reduced TOV, and further, a mechanism for transmission operations that are compatible with existing digital receiver devices The system can improve the current ATSC digital transmission system standard by providing the elastic transmission rate of "strong and standard" streaming to accommodate a wide range of carrier-to-noise ratios and channel conditions. Figure 3 is a top-level diagram A first embodiment 201 of the enhanced ATSC standard according to the present invention. As shown in FIG. 3, the improved ATSC digital signal transmission standard according to the first embodiment includes a data random processor component 105. First, the input data byte value is changed according to a known virtual random number generation mode. For example, according to the ATSC standard, the data random processor will virtualize all the entry data bytes by a maximum length of 16 隹. The random binary sequence (Prbs) is X〇R, which is initialized at the beginning of a data block. The randomized data output will be followed by the round. To the Reed Solomon (RS) encoder component 11〇, which operates according to the data block size of a 187-bit tuple, and is added to the 'error 1246881 (7) statement that the performance page is 5·%, ' '' ΐ , >,,,, 'ν ί,>匕'' and (-'ν

校正的廿(20) RS對位位元組,產生一每個資料區段上總 計為207位元組的RS區塊大小。然後,會利用強固信號星 座圖來後處理這些位元組並加以送出。在RS編碼作業 復,這207個位元組資料''區段會被輸入到新區塊115,其 中含有強固錯置器、封包格式器及封包多工器元件,以 進一步處理/重格式化這些強固輸入位元組。關於該封包 格式器區塊之個別元件運作的細節可如本揭共審美國 專利申請案第10/078933號[US010173,事務所檔號第15062 號],以及共有、共審之美國專利申請案第10/ 1 18876號 [US010278,事務所檔號第15061號],標題為「對於改良 式ATSC 8-VSB系統在傳送器及接收器處之封包識別機 制」所詳述,玆引用該文之全部内容及揭示而如本案文 整體併入。更一般地,該等用以重格式化這些入方位元 組的強固錯置器、封包格式器及封包多工器元件,可回 應於一模式信號113,這是表示該入方位元組是否屬既經 處理(為強固位元組),或未經處理(為正常位元組)。經 於強固錯置器内將強固封包予以錯置後,屬於入方強固 位元樂流的各資料位元組會於封包格式器裝置内加以 缓衝,並且被分群成為許多預先定義之數量,即如207 個位元組,的位元組集群。通常,對於強固封包而言, 在封包格式器輸出處各個位元組會僅有4個位元,即LSB (6,4,2,0),對應到該入方串流。各個位元組的其他4個 位元,MSB (7, 5, 3, 1),可被設定為任何數值,其原因將 於後文詳細說明。在經該封包格式化器11 5内的位元'組重 -13 - !246841 ⑻ 格式化後’會將屬於強固封包的位元組與屬於標準串流 的各位兀組加以多工處理。此強固及標準位元組的經多 工申流116會接著被輸入到迴旋錯置器機制12〇,在此, 各貝料搁位4連續區段内的資料封包會進一步錯置,俾 根據ATSC A/53標準將資料串流的循列順序加以擾動。即 如後文詳述’會在目前處理控制區塊中(未以圖示)追蹤 與各個強固或標準封包有關的位元組。而又如圖3所1 進一步顯’接著會藉一新式trelUs編碼器裝置33〇,將 經錯置、RS編碼及格式化之資料位元組m予以訌^以編 碼。該trellis編碼器單元33〇會特別回應於該模式信號 113,且可按如後為所詳述方式,與該回溯相容性對位位 元組產生器元件125相合地進行互動,在此稱之為回溯相 容性(選擇性RS編碼器)區塊丨25,俾產生一輸出經trellis 編碼之資料符號輸出事流,此者具有三(3)個位元,各者 又會映對到一 8階符號。接著,將該treins編碼之輸出符 號傳送至多工器單元140,在此彼等會與來自於一同步單 元(未以圖示)之「區段同步(segment sync)」和「攔位同步 (field sync)」同步位元序列138相合併。然後由前導插置 單元160插置一前導信號。然後,將此符號串流交由VSB 調變器170進行餘殘邊帶(VSB)壓縮載波調變處理,最後 交,由射頻(RF)轉換器180將此符號串流上行轉換成射頻。 圖4係一根據本發明之改良ATSC標準之第二具體實施 例300高階圖式。即如圖4所示,此根據於第二具體實施 例之經改良ATSC數位電視傳輸標準含有如圖3所述,之第 -14- 1246841 一具體實施例的相同功能區塊,然而,如圖4之系統300 的前端含有一包含「強固」處理器元件205之新式區塊, 供以處理歸屬收自於一輸入強固位元串流207之強固封 邑的位元組,並將彼等 '前傳至MPEG多工器單元210内, 此者可另外接收屬於正常(標準)位元串流208的位元 組。該多工器單元210將強固及標準封包予以多工處理, 以輸入至例如像是標準資料隨機處理器元件。然後將所 輸出的隨機化資料輸入到Reed Solomon (RS)編碼器元件The corrected 廿(20) RS alignment byte generates an RS block size totaling 207 bytes per data segment. The strong signal star map is then used to post-process these bytes and send them out. In the RS encoding operation, the 207 byte data '' section is input to the new block 115, which contains the strong dislocation, packet formatter, and packet multiplexer elements to further process/reformat these Strong input bytes. The details of the operation of the individual components of the packet formatter block can be found in US Patent Application No. 10/078,933 [US Patent 010, file No. 15062], and the commonly-owned, co-investigated US patent application. No. 10/1 18876 [US010278, Firm File No. 15061], entitled "Package Identification Mechanism for Improved ATSC 8-VSB System at Transmitter and Receiver", citing this article All contents and disclosures are incorporated as a whole in this text. More generally, the strong dislocations, packet formatters, and packet multiplexer elements for reformatting the in-field elements can be responsive to a mode signal 113, indicating whether the incoming azimuth tuple is Both processed (for strong bytes) or unprocessed (for normal bytes). After the strong packet is misplaced in the strong dislocation device, each data byte belonging to the incoming strong bit stream is buffered in the packet formatter device and grouped into a plurality of predefined quantities. That is, a tuple cluster of 207 bytes. In general, for a strong packet, each byte at the output of the packet formatter will have only 4 bits, LSB (6, 4, 2, 0), corresponding to the incoming stream. The other 4 bits of each byte, MSB (7, 5, 3, 1), can be set to any value, the reason of which will be explained in detail later. After the bit 'group' in the packet formatter 117 is -13 - !246841 (8) formatted, the byte belonging to the strong packet is multiplexed with the group of bits belonging to the standard stream. The multiplexed application stream 116 of the strong and standard bytes will then be input to the convolutional misplacer mechanism 12〇, where the data packets in successive sections of each bedding position 4 will be further misplaced, according to The ATSC A/53 standard perturbs the order of the data streams. That is, as described later in detail, the byte associated with each strong or standard packet will be tracked in the current processing control block (not shown). Further, as shown in Fig. 3, a new type of trelUs encoder device 33 is used to encode the misplaced, RS encoded and formatted data bits m. The trellis encoder unit 33 will specifically respond to the mode signal 113 and may interact with the backtracking compatibility bitstream generator component 125 in a manner detailed as described hereinafter. The backtracking compatibility (selective RS encoder) block 丨25, generates an output trellis-encoded data symbol output stream, which has three (3) bits, each of which will be reflected An 8th order symbol. Then, the output symbols of the treins code are transmitted to the multiplexer unit 140, where they will be synchronized with the segment sync (segment sync) and the "station sync" from a sync unit (not shown). Sync)" The sync bit sequence 138 is merged. A preamble signal is then inserted by the preamble insertion unit 160. Then, the symbol stream is streamed to the VSB modulator 170 for residual residual sideband (VSB) compression carrier modulation processing, and finally, the radio frequency (RF) converter 180 up-converts the symbol stream into a radio frequency. Figure 4 is a high level diagram of a second embodiment 300 of an improved ATSC standard in accordance with the present invention. That is, as shown in FIG. 4, the modified ATSC digital television transmission standard according to the second embodiment includes the same functional block as described in FIG. 3, which is a specific functional block of FIG. The front end of system 300 of 4 contains a new block containing "strong" processor elements 205 for processing the strong-packed bytes that are received from an input strong bit stream 207 and their Forwarded to the MPEG multiplexer unit 210, this may additionally receive a byte belonging to the normal (standard) bitstream 208. The multiplexer unit 210 multiplexes the strong and standard packets for input to, for example, a standard data random processor component. The input randomized data is then input to the Reed Solomon (RS) encoder component

110,此者係例如依187位元組之資料區塊大小所運作,110, which is operated, for example, by a data block size of 187 bytes.

並增入供以錯誤校正的廿(20) RS對位位元組,產生一每 個資料區段上總計為207位元組的RS區塊大小。經RS編碼 後,這207位元組資料區段214會接著被輸入至一選擇性 位元組擾列區塊215,此者會僅進一步處理強固位元串流 的位元組,而讓正常封包傳通不變。此位元組擾列區塊 215的作用,是為將由前述RS編碼器區塊110所增入的對 位位元組替換成零值並擾列這207位元組,而使得在經過 該資料錯置器後,由該強固處理器所產生之184資料位元 組的資料(除標頭位元組以外),將會來到該對位位元組 之前。即如圖4所觀察得知,此新式‘位元組擾列區塊215 會特別回應於該模式信號113,而這是表示該等入方位元 组是否會經此區塊處理。即如按圖3所繪之第一方式, 從該位元組擾列區塊2 1 5所輸出之強固及標準位元組2 16 的資料區段會接著輸入至該迴旋錯置器機制120,在此, 會進一步將各資料欄位之接續性區段裡的資料封咆加 -15- (10) (10)1246841 以錯置,俾根據ATSC A/53標準將資料串流的循列順序加 以擾動。即如圖4所進一步詳述,由一新式trellis編碼卷 裝置330將經錯置、RS編碼及格式化之資料位元組217予 汉trellis編碼。即如後文所進一步詳述,該trellis編碼器單 元330會與回溯相容性(選擇性rs編碼器)區塊125相合地 進行互動,產生一輸出經trellis編碼之資料符號輸出串 流,此者具有三(3)個位元,各者又會映對到一 8階符號。 接著,將該trellis編碼之輸出符號傳送至多工器單元 140’在此彼等會與來自於一同步單元(未以圖示)之「區 段同步(segment sync)」和「攔位同步(field sync)」同步位 元序列138相合併。然後由前導插置單元ι6〇插置一前導 信號’接著再將此符號串流交由VSB調變器170進行餘殘 邊帶(VSB)壓縮載波調變處理,最後交由射頻(RF)轉換器 180將此符號串流上行轉換成射頻。 即如圖4所示,該r強固」處理器元件2〇5包括一用以 接收待按強固串流所傳通之mpEg資料封包207的輸入 端。此強固處理器元件2〇5包含如下組成單元:一 Reed-Solomon編螞處理器,其後是錯置器裝置,而其後是 一格式器區塊’以構成188位元組長度的封包(MPEG相容 封包)°此最後區塊(MPEG封包構成作業)會插置冗餘位 元,以構成一 184位元封包’然後加入四(4)個MPEG標頭位 凡組以構成一宅整188 MPEG封包。來自該處理器區塊205 的強固封包206會與該MpEG封包串流2〇8的正常封包相互 多工’以透過Mpeg多工器裝置210而按含正常與強’固封 1246841 〇1) mmm 包兩者之ATSC串流209進行傳輸。最好是按照預先定義演 算法,將正常串流封包與強固封包相互多工,其一示範 性演算法可如可如本揭後文所詳述。為便討論,且如共It is added to the 廿(20) RS alignment byte for error correction, resulting in an RS block size totaling 207 bytes per data segment. After RS coding, the 207-bit data section 214 is then input to a selective byte scrambling block 215, which will only further process the byte of the strong bit stream, and let the normal The packet is unchanged. The function of the byte scrambling block 215 is to replace the align byte added by the aforementioned RS encoder block 110 with a zero value and to scramble the 207 octets so that the data is passed. After the misplacer, the data of the 184 data bytes generated by the rugged processor (except the header byte) will come before the alignment byte. That is, as seen in Figure 4, the new 'bit tuple block 215 will specifically respond to the mode signal 113, and this indicates whether the in-situ tuple will be processed through this block. That is, as in the first mode depicted in FIG. 3, the data segment of the strong and standard byte 2 16 output from the byte scrambling block 2 15 is then input to the gyroscope mechanism 120. Here, the data in the continuity section of each data field will be further blocked by -15-(10) (10) 1246881, and the data will be streamed according to the ATSC A/53 standard. The order is disturbed. That is, as further detailed in Fig. 4, the misplaced, RS encoded and formatted data bits 217 are encoded by Hantrellis by a new trellis coded volume device 330. That is, as further detailed below, the trellis encoder unit 330 interacts with the traceback compatibility (selective rs encoder) block 125 to produce an output trellis encoded data symbol output stream. The person has three (3) bits, each of which will reflect an eighth-order symbol. Then, the output symbol of the trellis code is transmitted to the multiplexer unit 140' where they will be synchronized with the segment sync (segment sync) and the "station sync" from a sync unit (not shown). Sync)" The sync bit sequence 138 is merged. Then, a preamble signal is inserted by the preamble insertion unit ι6', and then the symbol stream is streamed to the VSB modulator 170 for residual residual sideband (VSB) compression carrier modulation processing, and finally by radio frequency (RF) conversion. The device 180 upconverts the symbol stream to a radio frequency. That is, as shown in Figure 4, the r-strong processor component 2〇5 includes an input for receiving an mpEg data packet 207 to be transmitted by the strong stream. The rugged processor component 2〇5 comprises the following components: a Reed-Solomon processor, followed by a misplacer device, followed by a formatter block 'to form a packet of 188 bytes in length ( MPEG compatible packet) This last block (MPEG packet forming job) will insert redundant bits to form a 184-bit packet 'and then add four (4) MPEG header bits to form a house 188 MPEG packets. The strong packet 206 from the processor block 205 will be multiplexed with the normal packet of the MpEG packet stream 2〇8 to pass through the Mpeg multiplexer device 210 with normal and strong 'solid seals 1246841 〇 1) mmm The ATSC stream 209 of both packets is transmitted. Preferably, the normal stream packet and the strong packet are mutually multiplexed according to a predefined algorithm, and an exemplary algorithm can be as described later in this document. For discussion, and

矿、共審之美國專利申請案第10/ 1 1 8876號[US 010278號, 事務所檔號第15061號]按文所詳述,玆將該案内容及揭 示整體引用併入本文,在此供置一種控制機制以追蹤所 傳封包的型態,即如正常或強固。如此,即如圖3及4所 述,會相關於各位元組而產生一正常/強固(N/R)信號, 而其中含有一位元211,此位元可於内強化ATSC數位信號 傳輸法則中,用以追蹤各位元組進度並識別各位元組。U.S. Patent Application Serial No. 10/1 1 8876 [US Patent No. 010278, file No. 15061] is hereby incorporated by reference in its entirety herein in A control mechanism is provided to track the type of the packet being transmitted, ie, normal or strong. Thus, as shown in Figures 3 and 4, a normal/strong (N/R) signal is generated in relation to each tuple, and contains a bit 211, which can enhance the ATSC digital signal transmission rule internally. Used to track the progress of the tuples and identify the tuples.

一般說來,對參照圖4所述之ATSC系統的具,體實施例, 強固封包傳輸作業會要求瞭解在該MPEG多工器元件210 處對於該強固封包206與該正常封包208進行多工處理的 方式。而插置這些封包的方式必須要是這些封包能夠改 善接收器裝置的動態及靜態多重路徑效能。有一種於該 強固處理器區塊205内主導強固串流封包與正常串流封 包多工作業的示範性演算法可現參照表1所描述·。而本 封包插置演算法能夠充分利用強固封包,俾獲較佳與強 固接收器設計結果。 在MPEG欄位起點處會鄰接地放置一組強固封包,然後 利,用預先決定演算法插置剩下的封包,即如現參照表1 所述。第一組封包將會有助於等化器更快速地取得靜態 及動態頻道兩者。可在錯置每一個欄位之前先實作本強 固封包插置演算法。按照如表1之示範性強固封包'插置 -17- 1246841 (12) 隱飯r頁: 、、 演算法,首先會定義如後的量值及名詞:一稱為「nrp 之第一量值,此值可表示每個欄位裡由強固封包所佔據 之強固區段的數量(亦即表示一訊框内的「強固封包 數」);一稱為「M」之量值,係由緊隨該攔位同步後之 強固位元串流所佔據的鄰接封包位置數;字元「ΐτ U」表 示兩個集合的聯集;以及「底數」,這是表示一個十近 位數值的截位值,使該數值會被約近至一整數值。即如 表1所示,此演算法包含執行下列求值作業,俾以決定In general, for the ATSC system described with reference to FIG. 4, the strong packet transmission operation requires knowledge of multiplexing processing of the strong packet 206 and the normal packet 208 at the MPEG multiplexer component 210. The way. The way these packets are interposed must be that these packets improve the dynamic and static multipath performance of the receiver device. An exemplary algorithm for leading a strong stream packet and a normal stream packet in the robust processor block 205 can be described with reference to Table 1. This packet insertion algorithm can take advantage of strong packets and capture better and robust receiver design results. A set of strong packets is placed adjacently at the beginning of the MPEG field, and then the remaining packets are interpolated with a predetermined algorithm, as described in Table 1. The first set of packets will help the equalizer to get both static and dynamic channels faster. This strong block insertion algorithm can be implemented before each field is misplaced. According to the exemplary strong package as shown in Table 1 'interpolation -17-1246841 (12) hidden rice r page: ,, algorithm, first will define the following magnitude and noun: one is called the first value of "nrp This value indicates the number of strong segments occupied by strong packets in each field (that is, the number of "strong packets" in a frame); the value of a type called "M" is tight The number of contiguous packet positions occupied by the strong bit stream after synchronization with the block; the character "ΐτ U" indicates a union of two sets; and the "base", which is a truncation indicating a ten nearest value The value is such that the value will be approximated to an integer value. That is, as shown in Table 1, this algorithm involves performing the following evaluation tasks, so as to determine

強固封包在一位元串流裡的插放位置: 如 0<NRP$M,貝Ij 強固封包位置= {0?15...5NRP-1} 1The location of the strong packet in a meta stream: such as 0 < NRP $ M, Bay Ij strong packet location = {0?15...5NRP-1} 1

如 M<NRP£floor((3 12-M)/4),貝1J 強固封包位置= {0,l,...,M-l}U{M+4i,i=0,l,...,(NRP- M-1)} 如 fl〇〇r((312-M)/4) + M<NRP$floor((312-M-2)/4) + fl〇〇For example, M<NRP£floor((3 12-M)/4), Bay 1J strong packet position = {0,l,...,Ml}U{M+4i,i=0,l,..., (NRP- M-1)} as fl〇〇r((312-M)/4) + M<NRP$floor((312-M-2)/4) + fl〇〇

((312-M)/4) + M,則 強固封包位置= {0,l”..,M-l}U{M+4i,i=0,l,"·,floor((312-M)/4)-1} U{M+2+4i,i=0,l,···,NRP -(floor((312-M)/4) + M)-l}((312-M)/4) + M, then strong packet location = {0,l"..,Ml}U{M+4i,i=0,l,"·,floor((312-M) /4)-1} U{M+2+4i,i=0,l,···,NRP -(floor((312-M)/4) + M)-l}

如floor((312M-2)/4) + flooΓ((312-M)/4)+M<NRP:^312,貝ιJ 強固封包位置= {0,1,…,M-l}U{M+4i,i=0,l,···,floor((312_M)/4)-l}U {M+2 + 4i,i = 0,l,...,(fl〇or((312-M-2)/4)-l}U{M+l+2i,i= 0,1,..., NRP-(M+fl〇or((312-M)/4) + floor((3 12-M-2)/4))-l} (表1) -18- 1246841 (13) _____ 如是,在對於當M= 1 8時的示範性實作裡,上述演算法 會產生下列強固封包置放的演算法:Such as floor((312M-2)/4) + flooΓ((312-M)/4)+M<NRP:^312, BeimJ strong package position = {0,1,...,Ml}U{M+4i ,i=0,l,···,floor((312_M)/4)-l}U {M+2 + 4i,i = 0,l,...,(fl〇or((312-M- 2)/4)-l}U{M+l+2i,i= 0,1,..., NRP-(M+fl〇or((312-M)/4) + floor((3 12- M-2)/4))-l} (Table 1) -18- 1246841 (13) _____ If yes, in the exemplary implementation for M = 18, the above algorithm will produce the following strong packet placement Algorithm:

如 0<NRP$18,貝|J 虿固封包位置={0,1,...,NRP-1} 噙口 18<NRPS91 ,貝 ij 強固封包位置={0,l,...,17}U{18+4i,卜0,1,._.,(NRP-19)}Such as 0 < NRP $ 18, Bay | J tamping packet position = {0, 1, ..., NRP-1} 18 mouth 18 < NRPS91, Bay ij strong package position = {0, l, ..., 17} U{18+4i, Bu 0,1,._.,(NRP-19)}

如 91<NRPS164,貝丨JSuch as 91<NRPS164, Bellow J

強固封包位置={ 0, 1,…,1 7 } U { 1 8 + 4i5 i = 0,1,…,72 } U {20+4i,i=0,l,···,NRP - 92} 決口 164<NRP<312,貝 強固封包位置={ 0,1,…,1 7 } U { 1 8 + 4 i,i = 0。1,…,7 2 } U {20+4i,i=05l5…,72}U{19+2i,i=0,l,.",NRP-165}Strong packet location = { 0, 1,..., 1 7 } U { 1 8 + 4i5 i = 0,1,...,72 } U {20+4i,i=0,l,···,NRP - 92} Break 164 < NRP < 312, Bay strong package position = { 0,1,...,1 7 } U { 1 8 + 4 i,i = 0. 1,...,7 2 } U {20+4i,i=05l5 ...,72}U{19+2i,i=0,l,.",NRP-165}

在如圖3和圖4的第一及第二具體實施例裡,會供置一 回溯相容性「對位位元組產生器」元件125 (又另稱為選 擇性非系統RS編碼器 >,以從該trellis解碼器讀取各位元 組。特別是,此區塊125含有一位元組解錯置器區塊及一 選擇性「非系統」RS編碼器區塊以從該位元組解錯置器 區塊讀入一封包,然後再予RS編碼以產生對位位元組。 這會產生僅對於強固串流封包而用·於回溯相容性之對 位位元組。其一用以執行此功能的示範性演算法現可按 如奉2所示: 定義一 52χ 207的陣列「data__bytes」, 初始化各變數 byte—no、row_no、col_no、row—add為零, 如 byte一no=207* 52則設定 read—flag及 start一flag為 1, , -19- 1246841 (14) «.s) ^ Λ 、、明說明績頁: t P 二、'' 如start_flag=l則每208個位元組即設定read—flag=l (對於此 項規則之例外’請參見packet_formatter區塊描述), 如start_flag=l則每當read_flag被設定由封包〇開始即循序 請出封包(row—n0=0), 、 將訊息位元組(trellis編碼器的輸出)置放於data_bytes [row_no][col_no]内 如byte_stb(來自trellis編碼器的信號)=1則增量byte_no,In the first and second embodiments of FIGS. 3 and 4, a backtracking compatibility "alignment byte generator" component 125 (also referred to as a selective non-systematic RS encoder) is provided. The block 125 is read from the trellis decoder. In particular, the block 125 includes a one-bit tuner block and a selective "non-system" RS encoder block from the bit. The group solver block reads a packet and then RS codes to generate the alignment byte. This produces a parity byte that is used for backtracking compatibility only for strong stream packets. The exemplary algorithm used to perform this function can now be as shown in Figure 2: Define a 52 χ 207 array "data__bytes", initialize each variable byte-no, row_no, col_no, row-add to zero, such as byte-no =207* 52 sets read_flag and start_flag to 1, -19- 1246841 (14) «.s) ^ Λ , , and clear description page: t P 2, '' as start_flag=l then every 208 Set the read_flag=l for each byte (for the exception of this rule 'see packet_formatter block description), such as start_flag=l Whenever read_flag is set from the beginning of the packet, the packet is sent out sequentially (row_n0=0), and the message byte (the output of the trellis encoder) is placed in data_bytes [row_no][col_no] as byte_stb (from The trellis encoder signal) = 1 increments byte_no,

利用下列條件邏輯來更新 row_no及 col__no變數 雀口 byte—no=207* 52貝1J byte_no=0 ; row_add=0 ; col_no=0 ; row+no^O ; 否貝1J 若(byte一no mod 208) = 0則 row_add=(row_add+1) mod 52 ; col_no=row_add ;Use the following conditional logic to update row_no and col__no variables toques byte-no=207* 52 to 1J byte_no=0; row_add=0; col_no=0; row+no^O; nobe 1J if (byte-no mod 208) = 0 then row_add=(row_add+1) mod 52 ; col_no=row_add ;

row_no=row_add ; 對所有其他情況 co^no^ ( col_no+52) mod 207 ; row—no= (row—no-1) mod 52 ; (士口 row—no-1 <0貝ll 將、会吉果力口上 52) 前,進到步驟3 (表2) 對於有些封包(即如1到7 mod 52),會有必要具有關於隨 機化標頭位元組的先前資訊,這是因為並非這些封'包的 -20- 1246841 〇5) mmm 所有標頭位元組在進行RS編碼作業時都會是可用。亦 即,對於該組的封包’在迴旋錯置器輸出處是部分的標 頭位元組會後隨於該對位位元組的情況。因此’不是要 事待這婆標頭位元組來計算這20個對位位元組,而是利 用關於該等標頭位元組的先前資訊(此屬命定性質者)’ 然後取用這些來計算該等對位位元組。 即如 Arnold Michelson及 Allen Levesque所著之「Error ControlRow_no=row_add ; for all other cases co^no^ ( col_no+52) mod 207 ; row-no= (row—no-1) mod 52 ; (Shishirow row-no-1 <0 shell ll will, will Before the 52), go to step 3 (Table 2). For some packets (ie 1 to 7 mod 52), it may be necessary to have previous information about the randomized header bytes, because these are not -20' 1246841 〇 5) mm of the package 'all headers will be available for RS coding. That is, for the group of packets 'being at the output of the gyr-displacer is part of the header byte followed by the alignment of the bit. So 'not to wait for this header header to calculate the 20 alignments, but to use the previous information about the headers (this is the nature of the destiny)' and then take these To calculate the alignment bytes. That is, "Error Control" by Arnold Michelson and Allen Levesque

Techniques for Digital Communication」(John Wiley, NY,1984)乙 書中所述,一(N,K) RS解碼器可校正達(N-K)/2錯誤或擦 除填滿達(N-K)擦拭,其中N為編碼字元長度,而K為訊 息字π長度。一般說來,如在一長度為N的字元長度裡 存有1個擦拭及Eb個錯誤,則只要(Ea+2*Eb)小於等於 (N-K) ’此解碼器可完整地復原該編碼字元,即如下列等 式(1): (Ea+2xEb)$(N - K) ⑴ 其中Ea和Eb分別為該編碼字元内的擦拭個數及錯誤個 數。 可利用此RS編碼性質來產生2〇個對位位元組。然後計 开出1^ 20個對位位元組位置用來作為RS解碼器的擦拭位 置。對位位元組位置的計算程序類似於封包格式器所採 订,的方式。屬於某封包的位元組(在各對位位元組位置 為零值)會被傳通至RS解碼器作為輸入編碼字元。在處 理擦拭填充時,解碼器會計算出擦拭位置的位元組。這 些位元組對應於這20個對位位元組。如此,「對位位元組 -21 - (16) 1246841 產生器」區塊也會產生對位位元組位置資訊。對位位元 組及標頭位元組會總是按標準8-VBS符號所編碼。、 然後將對於各封包的對位位元組及其位置資訊送至一 經修飾之trellis編碼器裝置,以按照新的符號映對法則來 對映強固位元組。然應暸解對於某些封包(即如封包1到 7),有必要具有關於隨機標頭位元組的先前資訊,因為 在RS編碼作業時並非這些封包的所有標頭位元組皆屬 可用。Techniques for Digital Communication" (John Wiley, NY, 1984), as described in Book B, an (N, K) RS decoder can correct up to (NK)/2 errors or erase fill up (NK) wipes, where N To encode the character length, and K is the message word π length. In general, if there is one wipe and Eb error in the length of a character of length N, then (Ea+2*Eb) is less than or equal to (NK) 'This decoder can completely restore the codeword The element is as follows (1): (Ea+2xEb)$(N - K) (1) where Ea and Eb are the number of wipes and the number of errors in the coded character, respectively. This RS coding property can be utilized to generate 2 对 alignment bytes. Then, 1^20 alignment bit positions are counted as the wipe position of the RS decoder. The calculation procedure for the alignment bit position is similar to the way the packet formatter is ordered. The byte belonging to a packet (zero value at each alignment byte) is passed to the RS decoder as an input code character. When processing the wipe fill, the decoder calculates the byte of the wipe position. These bytes correspond to the 20 alignment bytes. Thus, the "Alignment Bits -21 - (16) 1246841 Generator" block also generates alignment bit position information. The alignment bit and header bytes are always encoded by the standard 8-VBS symbol. The alignment byte and its location information for each packet are then sent to a modified trellis encoder device to map the strong bit groups according to the new symbol mapping rule. It should be understood, however, that for certain packets (i.e., packets 1 through 7), it is necessary to have prior information about the random header bytes, since not all of the header bytes of these packets are available at the time of the RS encoding operation.

此經修飾之trellis編碼器裝置的頂層作業是由如ATSC A/53傳輸標準第4.2.5節列述之規則所主導。該頂層作業 是有關於trellis錯置作業、符號映對、將位禾組讀入各 trellis編碼器内的方式...等等。正常的8-VSB封包則不會被 替換。然而,根據ATSC A/53標準的trellis編碼器區塊會被 修改,以便執行如下功能:1)如位元組屬於強固位元串 流則傳通預編碼器;2)如該位元組屬於強固位元串流則 導出各MSB位元,然後送出新的位元組給「位元組解錯 置器」區塊;3)從「位元組解錯置器」區塊讀出對位位 元組然後利用該者(倘屬強固位元串流)進行編碼;以及 4)利用經修飾之映對法則來對映屬於強固位元串流之符 號。應瞭解最好是將位位元組映對到八(8)個階層為宜。 p於傳通該預編碼器及構成位元組的功能,此程序方 法係模式相關,而將於後文中參照於如圖5及6之經修飾 trellis編碼器圖式所詳述。 特別是,圖5係一說明trellis編碼法則330,而按如圖3及 -22- 1246841 (17) :明說明續頁 4傳輸系統所實作之區塊圖。對於加強型8-VSB (E-VSB) 或2-VSB串流,各個trellis編碼器會接收一位元組,僅4個 位元(LSB)含有資訊位元。當trellis編碼器收到一屬於強 串流之位元組時,資訊位元(LSB,位元(6, 4, 2, 0))(經 對強固模式編碼後)會被置換到乂1上。然後決定待被置換 於X2以取得特定符號映對法則的位元。一旦決定X2及 Xi,即已決定一位元組的所有位元對於後續「非系統性」 RS編碼作業。然後透過資料線路355,將此位元組傳給回 溯相容性對位位元組產生器125 (亦即「非系統性」 Reed-Solomon編碼器)。而該「非系統性」Reed-Solomon編 碼器的對位位元組與PID位元組則是利用8-乂SB編碼法則 來編碼。現將參照圖6來說明針對各種數位信號調變模 式,該trellis編碼器330之上部trellis編碼區塊335的作業内 容。 如圖6所示之上部trellis編碼區塊335會計算該標準trellis 編碼器區塊359之預編碼器360輸入X2及X!,來達到所欲之 符號映對或編碼法則。例如,這些編碼法則係為標準 8-VSB、(強化型)E-VSB及2-VSB和「8/2」控制位元353, 經提供以表示出正確的編碼方式(符號映對法則)。此區 塊的輸出位元會被分組成個別的位元組,並最終會被饋 送羊「非系統性」RS編碼區塊以進行對位位元組產生作 業。而為以組態設定該等多工器336a、...、336d所需要的 正常/強固控制位元2 11,會按如圖3及圖4由追蹤/控制機 制區塊所提供。 < -23 - 1246841 (18)The top level operation of this modified trellis encoder device is dominated by the rules set forth in Section 4.2.5 of the ATSC A/53 Transmission Standard. The top-level job is about trellis misplaced jobs, symbol mapping, how to read bits into each trellis encoder, and so on. Normal 8-VSB packets will not be replaced. However, the trellis encoder block according to the ATSC A/53 standard will be modified to perform the following functions: 1) if the byte belongs to a strong bit stream, the precoder is passed; 2) if the byte belongs to The strong bit stream exports each MSB bit, and then sends a new byte to the "byte demodulator" block; 3) reads the alignment from the "byte tuple" block The byte is then encoded using the person (if it is a strong bit stream); and 4) the modified symbol pair is used to map the symbols belonging to the strong bit stream. It should be understood that it is better to map the bit tuples to eight (8) levels. The function of the precoder and the constituent tuples is related to the mode, and will be described later in detail with reference to the modified trellis encoder diagrams of Figs. 5 and 6. In particular, Figure 5 is a block diagram of the trellis coding law 330, and as shown in Figures 3 and -22-1246841 (17): a block diagram of the implementation of the continuation system. For enhanced 8-VSB (E-VSB) or 2-VSB streams, each trellis encoder receives a tuple and only 4 bits (LSB) contain information bits. When the trellis encoder receives a byte belonging to a strong stream, the information bit (LSB, bit (6, 4, 2, 0)) (after encoding the strong mode) is replaced by 乂1. . It then determines the bits to be replaced by X2 to obtain a particular symbol mapping rule. Once X2 and Xi are determined, all bits of a tuple have been determined for subsequent "non-systematic" RS coding jobs. This byte is then passed through the data line 355 to the traceability compatibility bit tuple generator 125 (i.e., "non-systematic" Reed-Solomon encoder). The alignment bits and PID bytes of the "non-systematic" Reed-Solomon encoder are encoded using the 8-乂SB coding rule. The job content of the trellis encoder block 335 above the trellis encoder 330 will now be described with respect to various digital signal modulation modes with reference to FIG. The upper trellis coding block 335, as shown in Figure 6, calculates the precoder 360 input X2 and X! of the standard trellis encoder block 359 to achieve the desired symbol mapping or coding law. For example, these encoding laws are standard 8-VSB, (enhanced) E-VSB and 2-VSB and "8/2" control bits 353, which are provided to indicate the correct encoding (symbol mapping rule). The output bits of this block are grouped into individual bytes and will eventually be fed to the "non-systematic" RS-coded block for the work of the alignment. The normal/strength control bits 2, 11 required to configure the multiplexers 336a, ..., 336d, are provided by the tracking/control mechanism block as shown in Figures 3 and 4. < -23 - 1246841 (18)

¥明婕明績:I 如此’對於正常(標準)8_VSB符號映對模式,從先前錯 置區塊收到並被輸入到該trellis編碼器33〇之上部編碼器 335的輸入位元又’2及X、,會未變地傳通到含有預編碼器 3~50及編碼器370單元的正、常trellis編碼器。這可藉由令n/R 位元211選擇N個多工器輸入來達到。而8/2位元353則表示 當N/R (強固性)時,所待加運用之trellies映對法則的進一 步控制位元。 對於2-VSB模式及4_VSB符號映對模式,MSB並不載荷任 何資訊。為滿足映對要求,會首先計算Z2位元,然後與 預編碼器記憶體的内容363 (如圖5)按模數2加總來導出 MSB X2。可從所算出的MSB及輸入資訊位元Xi,構成新的位 元組。然後以Z2來更新記憶體元件。如此,在此情況下, 该trellis編碼益輸出^2及&會等於该資訊位元。亦即,計 算輸入X2,而令當預編碼時該預編碼輸出z2會等於該資 訊位元。在此,是利用如圖6的上部編碼電路335來實作 這項運算。此外,Xi會等於該資訊位元。這些運算,連 同現有由trellis編碼符號映對器380所供之符號映對法 則,會產生從字母卜7,-5,5,7}的符號。基本上此係一 2-VSB信號,這是因為資訊位元是以此符號之代號(sign) 所傳送的。真實符號為能夠被现有的trellis解碼器所解碼 之有效trellis編碼4階符號。例如,為要進行2-VSB編碼作 業,將會設定N/R位元211以選择R輸入,並且設定8/2交 換器353以選擇多工器336a、…、336d的「2」輸入。 對於加強型8-VSB (E-VSB)模式,X2及Χι對應於加強,型編 1246841 (19) 斧明— ft頁 碼器(亦即上編碼器335)的輸出。在此,會利用這些位 元,而不是真實輸入,來構成位元組。從而,在此模式 下,會藉將該資訊經trellis編碼之版本置於X上以令Z2等 於資訊位元。為此,計算此X2的方式是,當預編碼時, 會產生該資訊位元。該資訊位元也會被傳通經過另外一 個trellis編碼器以產生X】。整個來說,對於E 8-VSB,外部 編碼器335及正常trellis編碼器359會等於更高狀態(即如16 狀態)的1/3速率trellis編碼器。所獲符號為一 8階trellis編碼¥明婕明: I is so 'for the normal (standard) 8_VSB symbol mapping mode, the input bit received from the previous misplaced block and input to the trellis encoder 33〇 upper encoder 335 is '2 and X, will be transmitted unchanged to the positive and constant trellis encoder containing precoder 3~50 and encoder 370 unit. This can be achieved by having n/R bits 211 select N multiplexer inputs. The 8/2-bit 353 indicates that when N/R (strongness), the trellies to be applied are further controlled by the pair of rules. For 2-VSB mode and 4_VSB symbol mapping mode, the MSB does not load any information. In order to meet the mapping requirements, the Z2 bit is first calculated, and then the MSB X2 is derived by summing the contents of the precoder memory 363 (Fig. 5) by the modulus 2. A new byte group can be formed from the calculated MSB and the input information bit Xi. The memory component is then updated with Z2. Thus, in this case, the trellis encoding benefit output ^2 and & will be equal to the information bit. That is, the input X2 is calculated so that the precoding output z2 will be equal to the information bit when precoding. Here, this operation is implemented using the upper encoding circuit 335 of Fig. 6. In addition, Xi will be equal to the information bit. These operations, in conjunction with the existing symbol mapping rules provided by the trellis coded symbol map 380, produce symbols from the letters Bu, 7,-5, 5, 7}. Basically this is a 2-VSB signal, because the information bits are transmitted with the sign of this symbol. The real symbol is a valid trellis coded 4th order symbol that can be decoded by an existing trellis decoder. For example, to perform a 2-VSB encoding operation, N/R bit 211 will be set to select the R input, and 8/2 switch 353 will be set to select the "2" input of multiplexers 336a, ..., 336d. For the enhanced 8-VSB (E-VSB) mode, X2 and Χι correspond to the enhancement, and the 1246841 (19) Axe-ft pager (ie, the upper encoder 335) outputs. Here, these bits are used instead of the real input to form a byte. Thus, in this mode, the version of the information encoded by trellis is placed on X to make Z2 equal to the information bits. To this end, the way to calculate this X2 is that when precoding, the information bit is generated. The information bit is also passed through another trellis encoder to generate X]. Overall, for E 8-VSB, the external encoder 335 and the normal trellis encoder 359 would be equal to the 1/3 rate trellis encoder of the higher state (i.e., 16 states). The obtained symbol is an 8th order trellis code

符號。為進行加強型8-VSB編碼,將會設定N/R位元211以 選擇R輸入,並且設定8/2交換器353以選擇多工器 336a、…、336d的 「8」輸入。 , 在各個模式下,符號至速率轉換器會引入12位元組的 延遲。symbol. For enhanced 8-VSB encoding, N/R bit 211 will be set to select the R input, and 8/2 switch 353 will be set to select the "8" input of multiplexers 336a, ..., 336d. In each mode, the symbol-to-rate converter introduces a 12-bit delay.

關於從位元組解錯置器中讀取對位位元組的功能,這 只會在當NRS= 1時(亦即實作有非系統性RS編碼作業)才 實作。對於不同模式這項功能單元的行為皆屬相同。該 trellis編碼器330會從該對位位元組產生器125處取得該對 位位元組其彼等對各封包的位置資訊。然後,該trellis 編碼器330可決定某個待予編碼之特·定位元組是否屬於 該組的對位位元組集合。如該位元組確屬此強固串流對 位位元組集合,則會從位元組解錯.置器中讀出一位元 組,並利用此者而不是trellis編碼。在此,會總是利用原 始編碼及映對法則,將從對位位元組產生的符號映對到 八個(8)階層。 〃 -25 - 1246841 (20)Regarding the function of reading the alignment byte from the byte demultiplexer, this will only be implemented when NRS = 1 (i.e., the implementation of a non-systematic RS coding job). The behavior of this functional unit is the same for different modes. The trellis encoder 330 retrieves the location information of the pair of bits from the pair of bitstream generators 125 for each of the packets. The trellis encoder 330 can then determine if a particular contiguous tuple to be encoded belongs to the set of aligned tuples of the group. If the byte is indeed a set of strong concatenated bit tuples, a tuple is read from the byte decipherer and used to encode the trellis instead. Here, the original encoding and mapping rules are always used to map the symbols generated from the alignment bits to the eight (8) levels. 〃 -25 - 1246841 (20)

Hill,續頁 而更特別是,會由如圖3及4之傳輸系統的封包格式器 元件來插置該對位「位置-握存」。 圖7更詳細說明該強固封包處理器區塊400,此者含有 二錯置器401、一封包格 '式器單元402及一正常/強固多工 器(N/R MUX) 405。該強固封包錯置器401最好是僅錯置強 固封包。該封包格式器402會按照是否採用「非系統性」 RS編碼器來處理強固封包,以確保對既存之接收器的回 溯相容性。如此者決定NRS= 1,則確採用「非系統性」 RS編碼器,而該封包格式器402會從錯置器中讀出184位 元組,並將這些位元組分割置入兩個184位元組區塊。一 般說來,各個強固位元組中僅4個位元,LSB, (6, 4, 2, 0), 對應於入方串流。而各強固位元組中的其他4個位元, MSB (7, 5, 3, 1),可被設定成任一數值。在封包分割後, 接著將三個隨機空值封包ID (或3個NULL PID)位元組插 置入這兩個184位元組長度資料區塊各者的起點處。然 後,會將廿(20)個「位置-握存」對位位元組加入各個 資料區塊内,以產生一 207位元組封包。在產生這些207 位元組時,會重排這些184個含有資訊串流的位元組以及 20個「位置-握存」對位位元組,其方式是經標準8-VSB 資料錯置器後,這20個位元組會出現在這些184個含有資 訊;元之位元組的結束處。在此階段,這20個位元組的 數值會被設定為零值。此種方式,併入以為確保與現存 接收器的回溯相容性,會降低有效資料速率,因為必須 逐個封包地加入23個位元組(20個對位位元組及3個|標頭 -26- 1246841 (21) mmm 位元組)。這項結果是減少約12%的酬載。如既已決定 NRS=0,貝1J未採用「非系統性」RS編碼器。在此情況下, 封包格式器402會從錯置器讀出207位元組並將這些位元 組分割置入兩個207位元'組封包。一般說來,各位元組中 僅4個位元,LSB (6, 4, 2, 0),對應於入方串流。而各位元 組的其他4個位元,MSB (7,5,3,1),可被設定成任一數 值。在兩種情況下,應瞭解強固/正常封包MUX 405係一 封包(207位元組)階層多工器。此者可按逐一封包的方式 來多工處理強固及正常封包。 封包格式器的功能係按MODE及NRS參數而定。如 NRS=0,則封包格式器基本上會執行位元組,複製或位元 組重組的功能。如BRS = 1,則這會在π位置握存π插置額 外的標頭及對位位元組。表3歸納了對於MODE與NRS參數 不同組合的封包格式器功能。 NRS MODE 輸入封包個數 輸出封包個數 功能性 0 2, 3 1 2 位元組複製 0 1 2 2 重排位元 1 2, 3 4 9 位元組複製,插入 「位置握存」 1 1 8 9 重排位元,插入「位 置握存」 表3 其中「MODE」參數包括強固封包規格並被用來識別強 固封包格式;以及,如前述,該「NRS」參數表示是否 未使用該非系統性RS編碼器(當NRS=0),例如產生,被 FEC區塊所編碼成兩個符號區段之強固封包,或是是否 1246841 (22) 發明說明績頁: !、、说二、...... 須使用該非系統性RS編碼器(當NRS= 1),例如產生一組被 FEC區塊所編碼成九個封包區段之強固封包。按照該 MODE參數,會最好利用兩個位元來識別四種可能模式: 印如MODE 00表示無強H]封包待加傳送之標準串流; MODE 01表示一 H-VSB 串流;MODE 10表示一 4-VSB 串流; 以及MODE 11表示一虛擬2-VSB串流。如MODE=00,則可 略除其他的參數。Hill, continuation page and more particularly, the alignment "position-hold" is interposed by the packet formatter component of the transmission system of Figures 3 and 4. Figure 7 illustrates the strong packet processor block 400 in more detail, which includes a second misplacer 401, a packet 'cell unit 402, and a normal/strong multiplexer (N/R MUX) 405. Preferably, the strong packet misplacer 401 is only a misplaced strong package. The packet formatter 402 will process the strong packets according to whether a "non-systematic" RS encoder is used to ensure backward compatibility with existing receivers. If NRS = 1, then a "non-systematic" RS encoder is used, and the packet formatter 402 reads 184 bytes from the misplacer and splits the bytes into two 184. A byte block. In general, only 4 bits in each strong byte, LSB, (6, 4, 2, 0), correspond to the incoming stream. The other 4 bits in each strong byte, MSB (7, 5, 3, 1), can be set to any value. After the packet is split, three random null packet ID (or three NULL PID) bytes are then inserted into the beginning of each of the two 184 byte length data blocks. Then, 廿 (20) "position-hold" bit bytes are added to each data block to generate a 207-bit packet. When these 207 bytes are generated, these 184 bytes containing the information stream and 20 "location-hold" bit bytes are rearranged by the standard 8-VSB data misplacer. After that, these 20 bytes will appear at the end of these 184 bits containing information; At this stage, the values of these 20 bytes are set to zero. This approach, incorporated to ensure backwards compatibility with existing receivers, reduces the effective data rate because 23 bytes (20 alignment bytes and 3 | headers) must be added on a packet-by-packet basis. 26- 1246841 (21) mmm byte). The result is a reduction of about 12% in payload. If NRS=0 has been determined, Bayi 1J does not use a "non-systematic" RS encoder. In this case, packet formatter 402 reads 207 bytes from the misplacer and splits the bytes into two 207-bit 'packets. In general, there are only 4 bits in each tuple, LSB (6, 4, 2, 0), which corresponds to the incoming stream. The other 4 bits of each tuple, MSB (7, 5, 3, 1), can be set to any value. In both cases, it should be understood that the strong/normal packet MUX 405 is a packet (207 octets) hierarchical multiplexer. This allows multiplex processing of strong and normal packets on a one-by-one basis. The function of the packet formatter is determined by the MODE and NRS parameters. If NRS=0, the packet formatter basically performs the function of byte, copy or bit reorganization. If BRS = 1, this will hold the π extra header and the alignment byte at the π position. Table 3 summarizes the packet formatter functions for different combinations of MODE and NRS parameters. NRS MODE Input packet number Output packet number Function 0 2, 3 1 2 Byte copy 0 1 2 2 Rearrange bit 1 2, 3 4 9 Byte copy, insert "position hold" 1 1 8 9 Rearrange the bit and insert the “Position Hold” Table 3 where the “MODE” parameter includes the strong packet specification and is used to identify the strong packet format; and, as mentioned above, the “NRS” parameter indicates whether the non-systematic RS is not used. The encoder (when NRS = 0), for example, generates a strong packet that is encoded by the FEC block into two symbol segments, or is it 1246881 (22) Description of the invention: !,, say two, .... The non-systematic RS encoder (when NRS = 1) shall be used, for example to generate a set of strong packets encoded as FEC blocks into nine packet segments. According to the MODE parameter, it is better to use two bits to identify the four possible modes: Print as MODE 00 means no strong H] packet to be transmitted standard stream; MODE 01 means an H-VSB stream; MODE 10 Indicates a 4-VSB stream; and MODE 11 represents a virtual 2-VSB stream. If MODE=00, other parameters can be omitted.

更詳細地說,該封包格式器區塊402包含三個功能單 元:1)基本格式器,2)對位位元組位置計算器;以及3) 「位置握存器」插置器。即如圖8A與8B所示,當MODE=2 或3時,且分別為對NRS=0 (圖8A)及NRS=1 (圖$B),MODE=2 或3的情況’該基本格式器會將封包411位元組複製成兩 個位元組412a及412b。如MODE=l,即如圖9A及圖9B所表 示,且分別為NRS=0 (圖9A)以及NRS= 1 (圖9B),該基本格 式器會將輸入封包的各位元予以重排。位元重排是在 H-VSB模式下進行,以例如確保屬於該「強固串流」之 位元415會總疋進入MSB位元位置,.而屬於該「後入串流」 之位元417會總是進入經重格式之封包418a、418b的LSB 位元位置,即如圖9A及9B所示。即如前述,圖7的封包 格式器單元402會包括一對位「位置握存器」插置器功 能,。而只有在當NRS= 1時(即如當用到額外對位位元組產 生器),才會用到該對位「位置握存器」插置器區塊。 此者會藉由將三(3)個標頭位元組及廿(2〇)個對位位元組 之「位置握存」插置於八(8)個所構成之封包各者内,,以 -28- 1246841 (23) mwmwrn 广 s <. f t.· ^ %<svxv. ·· «· 、<、、> 裝:玫:i:※:i嫌:!:灘叙纖领:i麵S撕機?·爹嫩嫩知热微 特別地將八(8)個封包轉換成九(9)個封包。該標頭位元 組會總是被放在各封包内的位置0、1和2且加擾動。當既 經構成時,對應於對位位元組位置的位元組位置可為首 先填滿零值。而可依序地對所有其他的剩餘位元組位置 填滿説息位元組。 圖10說明一示範性情境(NRS=1)之對位「位置預留」機 制。基本格式器將一 207位元組的資料封包450轉換成414 位元組(亦即等於兩(2)個封包)。對各封包的對位位元組 預留位置460a、460b及460c會根據下式(2)所決定: m=(52*n+(k mod 52)) mod 207 (2)In more detail, the packet formatter block 402 includes three functional units: 1) a basic formatter, 2) a parity byte position calculator; and 3) a "position buffer" interposer. That is, as shown in FIGS. 8A and 8B, when MODE=2 or 3, and respectively for NRS=0 (FIG. 8A) and NRS=1 (FIG. $B), MODE=2 or 3's the basic formatter The packet 411 bytes are copied into two bytes 412a and 412b. If MODE = 1, that is, as shown in Figures 9A and 9B, and NRS = 0 (Figure 9A) and NRS = 1 (Figure 9B), the basic format will rearrange the elements of the input packet. The bit rearrangement is performed in the H-VSB mode to ensure, for example, that the bit 415 belonging to the "strong stream" will always enter the MSB bit position, and the bit 417 belonging to the "post stream" The LSB bit locations of the re-formatted packets 418a, 418b will always be entered, as shown in Figures 9A and 9B. That is, as described above, the packet formatter unit 402 of Figure 7 will include a pair of "positional gripper" interposer functions. The alignment "Position Holder" interposer block is only used when NRS = 1 (i.e., when an additional alignment bit generator is used). This will be inserted into each of the eight (8) packets by placing the "positional hold" of three (3) header bytes and 廿 (2〇) alignment bytes. Take -28- 1246841 (23) mwmwrn wide s <. f t.· ^ %<svxv. ·· «· , <,,> Pack: Mei:i:※:i suspect:!: Fiber collar: i-face S tear machine? · 爹嫩嫩知热微 Specially converts eight (8) packets into nine (9) packets. The header byte will always be placed at positions 0, 1, and 2 within each packet and scrambled. When constructed, the location of the byte corresponding to the location of the alignment byte may be first filled with a zero value. All other remaining byte locations can be filled in sequence with the speaking bit tuple. Figure 10 illustrates an alignment "location reservation" mechanism for an exemplary scenario (NRS = 1). The basic formatter converts a 207-byte data packet 450 into 414 bytes (i.e., equals two (2) packets). The reserved bit positions 460a, 460b, and 460c for each packet are determined according to the following equation (2): m = (52 * n + (k mod 52)) mod 207 (2)

其中m為輸出位元組數而η為輸入位元組數,亦即n=0到 206,而k=0到3 11對應於封包數。為確保對各封包的20個 對位位元組位置會總是對應於該封包的最後20個位元 組,可僅對n= 187到206來計算對位位元組位置的m值(這 些η值會對應到一封包的最後20個位元組)。即以一範 例,代輸入k=0及187到206會對封包0的對位位元組位置 給定為 202、47、99、151、203、48、100、152、204-、49、 101、153、205、50、102、154、206、51、103、155。這表 示該對位位元組ΡΒ0應被放置在封包0内的位置202,使得 經錯置後其位置會是在封包0内的1 87處。類似地,對位 位禾組ΡΒ1必須被放在位置47處等等。 既已觀察到對某些封包而言,對位位元組或將落於封 包標頭位置内(m=0、1及/或2),亦即m應不等於0、1或2, 這是因為會將封包的前三個位置保留給三個空值’標頭 -29- 1246841 (24) 聲連辑親應難 位元組。為避免這種情形,或需將η的範圍提高落於標 頭位置範圍内之對位位元組的個數(即達3個)。如此,當 計算不同封包數的20個m值時,可觀察到當k mod 52 = 1 -TB寺,部分的這些m值會是0、1及/或2。例如,當k mod 52 = 0 時,可觀察到沒有一個m值會是落在標頭位元組位置 内。在此情況下,所有的20個m值會被設定為對位位元 組位存器位置。而當k mod 52 == 1時,可觀察到所計算之 其中一個m值會是0 (而這是標頭位元組)。在此情況下,Where m is the number of output bytes and η is the number of input bytes, that is, n=0 to 206, and k=0 to 311 corresponds to the number of packets. To ensure that the 20-bit byte locations for each packet will always correspond to the last 20 bytes of the packet, the m-values of the alignment byte locations can be calculated for only n=187 to 206 (these The η value will correspond to the last 20 bytes of a packet). That is, in an example, the input of k=0 and 187 to 206 will give the position of the bit byte of the packet 0 to 202, 47, 99, 151, 203, 48, 100, 152, 204-, 49, 101. , 153, 205, 50, 102, 154, 206, 51, 103, 155. This means that the alignment byte ΡΒ0 should be placed at position 202 within packet 0 so that its position will be at 1 87 within packet 0 after being misplaced. Similarly, the alignment bit ΡΒ1 must be placed at position 47 and so on. It has been observed that for some packets, the alignment byte will either fall within the packet header position (m=0, 1 and/or 2), ie m should not equal 0, 1 or 2, which This is because the first three positions of the packet are reserved for three null values 'header -29-1246841 (24). To avoid this situation, it is necessary to increase the range of η by the number of alignment bytes (i.e., up to three) that fall within the range of the header position. Thus, when calculating 20 m values for different packets, it can be observed that when k mod 52 = 1 -TB, some of these m values will be 0, 1, and/or 2. For example, when k mod 52 = 0, it can be observed that no m value will fall within the header byte location. In this case, all 20 m values will be set to the parity bit position. When k mod 52 == 1, it can be observed that one of the calculated m values will be 0 (and this is the header byte). In this situation,

會將η的範圍延伸1,使得η變成1 8 6 - 2 0 6。如此,會計算 21個m值而拋除不計這些落於標頭位元組位置内之mThe range of η is extended by 1, so that η becomes 1 8 6 - 2 0 6 . In this way, 21 m values are calculated and discarded by m in the position of the header byte.

值。剩下的2 0個m值會被設定為對位位元f且位存器位 置。當k mod 52 = 2時,可觀察到所計算之其中兩個m值會 恰為0及1 (而這是標頭位元組)。在此情況下,會將η的範 圍延伸2,使得η現變成185-206。如此,會計算22個m值(20+2 額外者),並拋除不計這些落於標頭位元組位置内之m 值。剩下的2 0個m值會被設定為對位位元組位存器位 置。表4現列出所有其他例外情況的封包個數。表中亦 列出需計算的額外m個數。 封包數mod 52 需另計算的m數 η的範圍 0 0 187- 206 1 1 186- 206 2 2 185 - 206 3 3 184-206 4 3 184-206 -30- 1246841 _____ (25) 5 3 184 - 206 6 2 185 - 206 7 1 186 - 206 8-51 0 、 187-206 表4 特別是,即如圖10所示,因各封包450含有207個位元 组,該基本格式器會將此分割成兩個新封包4 5 1、4 5 2, 各者含有207個封包。由該封包格式器所執行的對位位置 握存器插置機制會特別處理各個新封包45 1、452,俾以 納入20個對位位元組於錯置位置460a、460b、...等和3個 標頭位元組454。如此,從新的封包451、452,封包格式 器會產生新的封包45 Γ、452’,藉此容納所有對位及標頭 位元。如此,新的207位元組封包45Γ包含184位元組的 451、20位元組的位置預留以及3個空值標頭位元組454。 即如圖10所示,這意味著一個原始資料封包450會被映對 到三個新封包451’、452’及一第三453,,前兩者為完全填 滿,而該第三者453’會僅部分填入。在將一資料位元組 插置入此新封包451,、452’、453’之前,會檢查位置以瞭 解是否屬於一對位位元組。如該位置並不對應於任何對 位位元組的位置,則該資料封包會被放在該位置處。如 該位置確屬於某一對位位元組的位置,則會跳過該位元 組位置並檢查下一個位元組位置。重複此程序,一直到 所有的位元組都被放在該新封包内。此項轉換的結果 是,9個輸出封包各者會包括92個來自該輸入封包(亦即 輸入封包450)的位元組。在一具體實施例中,當NRS=1 -31 - 1246841 (26) WMmm I A Ήϋυ*、、 時會對NRP選定最小粒度為9個區段。當於隨機化處理器 讀入資料時,9個封包區塊中的4個封包會含有資訊位元 組,而剩下的5個封.包則不含任何資訊。封包格式器會 經由如前述程序,將位在4個封包内的資訊展開到9個封 包。這可確保不會佔用掉高於確所必要的酬載資料速 率。value. The remaining 20 m values are set to the parity bit f and the location of the register. When k mod 52 = 2, it can be observed that two of the calculated values of m will be exactly 0 and 1 (and this is the header byte). In this case, the range of η is extended by 2 so that η now becomes 185-206. Thus, 22 m values (20+2 extra) are calculated and discarded by m values that fall within the position of the header tuple. The remaining 20 m values are set to the bit byte location. Table 4 now lists the number of packets for all other exceptions. The table also lists the additional m numbers to be calculated. The number of packets mod 52 needs to be calculated from the range of the number of m η 0 0 187- 206 1 1 186- 206 2 2 185 - 206 3 3 184-206 4 3 184-206 -30- 1246841 _____ (25) 5 3 184 - 206 6 2 185 - 206 7 1 186 - 206 8-51 0 , 187-206 Table 4 In particular, as shown in Figure 10, since each packet 450 contains 207 bytes, the basic formatter will split this Into two new packets 4 5 1 , 4 5 2, each containing 207 packets. The alignment position register insertion mechanism executed by the packet formatter specially processes each new packet 45 1 , 452 to include 20 alignment bits in the misplaced positions 460a, 460b, ..., etc. And 3 header bytes 454. Thus, from the new packets 451, 452, the packet formatter will generate new packets 45 Γ, 452', thereby accommodating all alignment and header bits. Thus, the new 207-bit tuple packet 45 contains 184, 203, 20-bit location reservations and 3 null header bits 454. That is, as shown in FIG. 10, this means that an original data packet 450 will be mapped to three new packets 451', 452' and a third 453, the first two being completely filled, and the third party 453 'It will only be partially filled in. Before a data byte is inserted into the new packet 451, 452', 453', the location is checked to see if it belongs to a pair of bytes. If the location does not correspond to the location of any of the alignment bytes, the data packet will be placed at that location. If the location does belong to the location of an alignment byte, the location of the byte is skipped and the next location of the byte is checked. Repeat this process until all the bytes are placed in the new packet. As a result of this conversion, each of the nine output packets will include 92 bytes from the input packet (i.e., input packet 450). In a specific embodiment, when NRS = 1 - 31 - 1246841 (26) WMmm I A Ήϋυ *, , the minimum granularity selected for NRP is 9 segments. When the randomized processor reads in the data, 4 of the 9 packet blocks will contain the information byte, while the remaining 5 packets contain no information. The packet formatter expands the information in the four packets to nine packets via the aforementioned procedure. This ensures that the rate of payload data that is more than necessary is not taken up.

按如本發明之新式提議技術,必須傳送數個位元至一 接收器裝置,使得接收器可解碼正確的傳輸模式。此模 式通常會含有強固封包個數、調變型態和經插置以供 trellis編碼作業的冗餘層級。可於欄位同步區段138中的 保留位元部分裡傳送這項資訊。 , 特別是,為有效地偵測所傳資訊,會有必要加置額外 的編碼位元。根據一較佳具體實施例,可供置展頻型態 的編碼’以將各項資訊編碼成N位元,即如下述·In accordance with the novel proposed technique of the present invention, a number of bits must be transmitted to a receiver device so that the receiver can decode the correct transmission mode. This mode typically contains the number of strong packets, modulation patterns, and redundancy levels that are interpolated for trellis encoding operations. This information can be transmitted in the reserved bit portion of the field sync section 138. In particular, in order to effectively detect the transmitted information, it is necessary to add additional coding bits. According to a preferred embodiment, the code of the spread spectrum type can be used to encode the information into N bits, as described below.

例如,位元1可編碼為b,其中b= { 1 1 0 0 1 1 0 0}。本例 中,N=8。然後,位元0可編碼為{ 1 1 1 1 1 1 1 1} xor b,產 生出{ 0 0 1 1 0 0 1 1}。將各個位元按此方式編碼,並插入 於該欄位同步中。如此,在HDTV接收器處,可採用標準 校正演算法以偵測所傳位元。這種編碼技術可在極為嚴 峻干擾條件的情況下,利用簡易編碼硬體,來提供一種 能,夠達到偵測資訊位元的方式。 所提議之DTV系統會需要傳輸數個位元。例如,2個位 元以表示調變型態,1個位元以表示trellis編碼冗餘,4個 位元以表示每個欄位中的強固封包個數,和1個位’元以 -32- 1246841 (27)For example, bit 1 can be encoded as b, where b = { 1 1 0 0 1 1 0 0}. In this example, N=8. Then, bit 0 can be encoded as { 1 1 1 1 1 1 1 1} xor b, resulting in { 0 0 1 1 0 0 1 1}. Each bit is encoded this way and inserted in this field sync. Thus, at the HDTV receiver, a standard correction algorithm can be employed to detect the transmitted bits. This coding technique provides a way to detect information bits by using simple coding hardware under extremely severe interference conditions. The proposed DTV system will need to transmit a few bits. For example, 2 bits to represent the modulation type, 1 bit to represent trellis coding redundancy, 4 bits to represent the number of strong packets in each field, and 1 bit 'to $-32 - 1246841 (27)

WmnmWMWmnmWM

表示Reed- Solomon資訊。需要在此範例中傳送總共8個位 元。如各個位元被編碼成8個位元,則在一欄位同步區 段裡會總共需要64個.位元(亦即82)。由於這會佔據資料區 段同步裡大部分的保留位元,因此一種減少這些位元所 佔據位元數的方式是,經編碼位元可被分成兩組,各者 含有32位元長度。然後其中一組會被在偶數欄位傳輸作 業時送出(亦即當A53 ATSC標準的中間PN63未被反置 時),而另外3 2位元會被在奇數欄位傳輸作業時送出(亦 即當中間PN63被反置時)。按此方式,可利用現有的欄位 同步序列結構,以減少每個攔位所需傳送的位元數。 另一替代性技術或要求加置一(1)個由該緙位元所載 荷並載傳有型態資訊的編碼位元。按此方式,該組位元 即不需要被綁連於該欄位同步型態。Reed- Solomon information. A total of 8 bits need to be transmitted in this example. If each bit is encoded into 8 bits, a total of 64 bits (i.e., 82) will be required in a field sync segment. Since this occupies most of the reserved bits in the data segment sync, one way to reduce the number of bits occupied by these bits is that the coded bits can be divided into two groups, each containing a 32-bit length. Then one of the groups will be sent when the job is transferred in the even field (that is, when the middle PN63 of the A53 ATSC standard is not reversed), and the other 32 bits will be sent when the odd field is transmitted (ie, When the middle PN63 is reversed). In this way, the existing field synchronization sequence structure can be utilized to reduce the number of bits needed to be transmitted per block. Another alternative technique may require the addition of one (1) coded bit carried by the unit and carrying the type information. In this way, the group of bits does not need to be tied to the field synchronization pattern.

前文所述者雖為被視為本發明之最適具體實施例,然 應瞭解確可進行各種按形式或細節所為之修飾與變 化,而無虞悖離本發明精神。從而,所欲者為本發明自 不限於前揭與所述之精確形式,而應被視為涵蓋所有或 將落屬於後載申請專利範圍範圍之修飾結果。 圖式代表符號說明 元件編號 中文 100 先前技藝高解析電視(HDTV)傳送器 105 資料隨機處理器 110 ReedSolomon(RS)編碼器單元 •33 - (28) (28) 降萌說明績頁 核处於放丨:财減滅规後晶翁叙秘汾晚!毅緣:¾ 模式信號 強固錯置器、封包格式器及封包多工器 資料錯置器 回溯相容性對位位元組產生器元件 trellis編碼器單元 同步位元序列 多工器 同步位元序列 前導插置單元 濾波裝置 VSB調變器 , 射頻(RF)上行轉換器 先前技藝高解析電視(HDTV)接收器 強固封包 資料封包 標準位元串流 AT S C串流 - 諧調器 位元 位元組擾列區塊 資料位元組 IF濾波器及偵測器 NTSC濾波器 同步單元 •34- 1246841 (29) 250 等化器及相位追蹤器 260 trellis解碼器單元 270 資料解錯置器 2~B0 Reed Solom ό η 解碼器 330 trellis編碼器 335 外部編碼電路 336a -336d 多工器 353 8/2控制位元 355 資料線路 3 59 標準trellis編碼器區塊 360 預編碼器 363 内容 370 編碼器 3 80 符號映對器 400 強固封包錯置器區塊 40 1 錯置器 402 封包格式器單元 405 正常/強固多工器 412a-412b 位元組 4 15 位元 4 1 7 位元 418a-418b 位元組 450 資料封包 45 1 封包 is·!·While the invention has been described as being the preferred embodiment of the present invention, it is understood that various modifications and changes may be made in the form and details without departing from the spirit of the invention. Accordingly, it is intended that the present invention be construed as being limited by the scope of the invention Schematic Representation Symbol Description Component Number Chinese 100 Prior Art High Resolution Television (HDTV) Transmitter 105 Data Random Processor 110 ReedSolomon (RS) Encoder Unit • 33 - (28) (28)丨 晶 财 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶 晶Encoder unit synchronization bit sequence multiplexer synchronization bit sequence preamble insertion unit filter device VSB modulator, radio frequency (RF) upstream converter prior art high resolution television (HDTV) receiver strong packet data packet standard bit string Stream AT SC Streaming - Tuner Bits Bits Scrambling Blocks Data Bits IF Filters and Detectors NTSC Filter Synchronization Units • 34- 1246841 (29) 250 Equalizers and Phase Trackers 260 trellis Decoder unit 270 data de-interleaver 2~B0 Reed Solom η η decoder 330 trellis encoder 335 external coding circuit 336a-336d multiplexer 353 8/2 control bit 355 data line 3 59 standard trelli s encoder block 360 precoder 363 content 370 encoder 3 80 symbol mapper 400 strong packet misplacer block 40 1 misplacer 402 packet formatter unit 405 normal / rugged multiplexer 412a-412b bit Group 4 15 Bits 4 1 7 Bits 418a-418b Bytes 450 Data Packets 45 1 Packets is·!

-35- 1246841 (30) 發明說ΐ績頁 452 封包 45 1、4 5 3 ’ 封包 454 標頭位元組 4—6 0 a - 4 6 0 c 對位位元組預留位置 -36--35- 1246841 (30) Invention report page 452 Packet 45 1、4 5 3 ′ Packet 454 Header byte 4—6 0 a - 4 6 0 c Reserved position of the alignment byte -36-

Claims (1)

1246料!1121622號專利申請案 …裏备I 替換本(94年6月) — ‘.. _.:::..、丨 拾、申請專利範圍 1. 一種用以傳送編碼資料封包之數位信號傳輸系統 (201,300),該等封包含有按正常傳輸之正常封包,並 且含有按強固位元串流而傳輸之資訊的強固封包,該 系統包括: 一 一第一前向錯誤校正(FEC)單元(110),可用以對 屬於各強固及正常資料位元串流的封包進行編碼; - 一強固處理器單元(115,205),用以接收各個含 優先權資料的強固封包(207),並以處理該等封包以產 生該強固位元串流; - 一 trellis編碼器單元(330),用以產生對應於該等 正常且強固串流各位元之trellis編碼資料位元的串 流,該編碼器採用的裝置(380),是用以根據一或更多 符號應對法則之從強固封包轉映至符號(R)的編碼資 料位元映圖; - 一選擇性第二前向錯誤校正(FEC)編碼單元 (125),藉由僅讀入強固位元_流封包,並能僅對該等 '強固串流封包來產生對位位元組,俾確保與一接收器 裝置的回溯相容性;以及 - 一傳送器裝置(160,170,180),以按回溯相容方 式,將該等強固位元夢流個別地或共集地併於該正常 位元串流,而在一固定頻寬通訊頻道上傳送至一接收 器裝置(200), - 其中現存的接收器裝置(200)能夠接收並依空值 ί $ 月 正κ: I I 封包來處理該強固位元辛流的各封包。 2. 如申請專利範圍第1項之數位信號傳輸系統(300, 400),其中該接收器裝置包括一新式接收器裝置,此 者能夠接收並且按相比於標準位元串流為低之T0V, 來處理該強固位元争流的封包。 3. 如申請專利範圍第1項之數位信號傳輸系統,其中用以 處理強固封包之強固處理器單元(115,205,400),含 有: 一接收裝置(401),用以接收該等強固封包並錯置一 輸入位元事流之各強固封包;以及 一封包格式器單元(402),用以按照一運用於該等強 固封包之符號映對法則,以及選擇是否具與現有接收 器裝置之回溯相容性,來處理強固封包(450); 該格式器裝置(402)含有用以從該強固錯置器讀出 強固位元組(411)並產生兩個以上對應於各強固封包 (450)之資料區塊(412a,412b)的裝置,以利於該trellis 編碼器單元内的強固編碼作業。 4. 如申請專利範圍第3項之數位信號傳輸系統,其中該封 包格式器(402)進一步包含: 排置裝置,用以將各強固位元組中資訊位元排置至 該兩個以上資料區塊(412a,412b)内最低位有效位元 (LSB)位置,以利於該trellis編碼器單元中進行編碼作 業, 其中最高位有效位元(MSB)位置内的剩餘位元會依 年 更)正替換1246 material! Patent application No. 1121622... I am replacing this (June 94) — '.. _.:::.., picking up, applying for patent range 1. A digital signal for transmitting encoded data packets Transmission systems (201, 300) that contain a strong packet that is normally transmitted and that contains information transmitted over a strong bit stream, the system comprising: a first forward error correction (FEC) Unit (110), which can be used to encode packets belonging to each of the strong and normal data bit streams; - a strong processor unit (115, 205) for receiving each strong packet (207) containing priority data, And processing the packets to generate the strong bit stream; - a trellis encoder unit (330) for generating a stream corresponding to the trellis encoded data bits of the normal and strong stream elements, The apparatus (380) used by the encoder is a coded data bit map for mapping from a strong packet to a symbol (R) according to one or more symbol handling rules; - a selective second forward error correction ( FEC) coding unit (125), By reading only the strong bit_stream packet, and only for the 'strong stream packet to generate the bit byte, ensuring backward compatibility with a receiver device; and - a transmitter device (160, 170, 180), in a backwards compatible manner, the strong bit dream streams are individually or collectively streamed and streamed to the normal bit, and transmitted to a fixed frequency bandwidth communication channel The receiver device (200), - wherein the existing receiver device (200) is capable of receiving and processing the packets of the strong bit symplectic stream according to a null value ί $月正κ: II packet. 2. The digital signal transmission system (300, 400) of claim 1, wherein the receiver device comprises a new receiver device capable of receiving and at a lower T0V than the standard bit stream , to handle the packet of the strong bit contention. 3. The digital signal transmission system of claim 1, wherein the strong processor unit (115, 205, 400) for processing the strong package comprises: a receiving device (401) for receiving the strong packets And misregistering each of the strong packets of the input bit stream; and a packet formatter unit (402) for using the symbol mapping rules for the strong packets and selecting whether to have the existing receiver device Backtracking compatibility to process the strong packet (450); the formatter device (402) includes means for reading the strong bit group (411) from the strong dislocation device and generating two or more corresponding to each strong packet (450) The device of the data block (412a, 412b) facilitates the robust coding operation within the trellis encoder unit. 4. The digital signal transmission system of claim 3, wherein the packet formatter (402) further comprises: a arranging device for arranging information bits in each of the strong octets to the two or more data The least significant bit (LSB) position in the block (412a, 412b) to facilitate the encoding operation in the trellis encoder unit, wherein the remaining bits in the most significant bit (MSB) position will be more year-old) Positive replacement 序地根據採行之符號映對法則所決定。 5. 如申請專利範圍第4項之數位信號傳輸系統,其中該封 包格式器進一步包含插置裝置用以在該兩個以上資 料區塊裡各位置處插置複數個位置預留位元組 (460a,460b),當選擇以確保回溯相容性時,該位置預 留位元組可用來最終地接收由該第二FEC編碼單元 (125)所提供之對位位元組。The order is determined according to the rules of the adopted symbols. 5. The digital signal transmission system of claim 4, wherein the packet formatter further comprises an insertion device for inserting a plurality of position reservation bytes at each of the two or more data blocks ( 460a, 460b), when selected to ensure traceback compatibility, the location reserved byte can be used to ultimately receive the alignment byte provided by the second FEC encoding unit (125). 6. 如申請專利範圍第5項之數位信號傳輸系統,其中該封 包格式器(402)進一步包含插置裝置,用以將三個標頭 位元組(454)插置於各資料區塊内以於接收器裝置處 識別該封包,其中各位置預留位元組包括在兩個以上 資料區塊(451,452)各者内的一預標定位置,以最終地 接收該等三個標頭位元組。6. The digital signal transmission system of claim 5, wherein the packet formatter (402) further comprises an insertion device for inserting three header bytes (454) into each data block. Identifying the packet at the receiver device, wherein each location reserved byte includes a pre-calibrated location within each of the two or more data blocks (451, 452) to ultimately receive the three headers Bytes. 7. 如申請專利範圍第5項之數位信號傳輸系統,其中該等 位置預留位元組會被插置於包含散佈在整個各資料 區塊(451,452)上之位元組位置的一或更多個位置,而 該等位置預留位元組在該資料區塊内的一或更多個 ,位置之定位方式,係為當經錯置後,能夠在該封包的 結束處獲得按接續性位元組位置的對位位元組排置 結果。 8. 如申請專利範圍第6項之數位信號傳輸系統,其中進一 步包含對位位元組產生器裝置(125),以當選定為確保 回溯相容性時,可將從經對於強固封包之trellis編碼作 業後所取得的位元組予以解錯置,該產生器進一步取7. The digital signal transmission system of claim 5, wherein the position reserved bytes are inserted in a position including a byte position spread over the entire data block (451, 452). Or more than one location, and one or more of the location reserved bytes in the data block, the location is located in such a way that when misplaced, the button can be obtained at the end of the packet The result of the alignment of the alignment byte of the contiguous byte location. 8. The digital signal transmission system of claim 6, further comprising a bit byte generator device (125) for selecting trellis for strong packets when selected to ensure backward compatibility The byte obtained after the encoding operation is decoded, and the generator further takes 修(更)正替換頁 得各強固封包的對位位元組位置資訊(460a、460b、 460c),從該第二FEC單元產生該對位位元組,並將該 對位位元組置放在該強固封包内的位置握存器位置 處。 9. 如申請專利範圍第1項之數位信號傳輸系統,其中進一 步包含多工器裝置(405, 210)以根據預先定義演算法來 多工處理正常串流封包與強固封包。 10. 如申請專利範圍第1項之數位信號傳輸系統,其中該一 或更多映對法則(370,380)包括從如下群組選出其一 者··虛擬2_VSB符號映對法則、4-VSB符號映對法則以 及H-VSB映對法貝,J。 11. 如申請專利範圍第1項之數位信號傳輸系統,其中該對 位位元組會被映對到8-VSB階層中其一者,根據「先進 電視系統委員會(ATSC)」標準8-VSB位元串流標準。 12. —種傳輸數位信號(201,300)之方法,該數位信號含有 編碼資料封包,該等封包含有按正常傳輸之正常封 包,並且含有按強固位元串流而傳輸之資訊的強固封 包,該方法包括: a) 在一第一前向錯誤校正(FEC)單元(110)中,對屬 於各強固及正常資料位元串流的封包進行編碼; b) 接收各個含優先權資料的強固封包,並處理該 等封包以產生該強固位元串流(115,205); c) 產生一對應於該等正常且強固串流各位元之 trellis編碼資料位元的串流(330),並根據一或更多符號Correcting (more) replacing the alignment bit position information (460a, 460b, 460c) of each strong packet, generating the alignment byte from the second FEC unit, and placing the alignment byte Placed in the position of the holder in the strong package. 9. The digital signal transmission system of claim 1, wherein the multiplexer device (405, 210) is further included to multiplex the normal stream packet and the strong packet according to a predefined algorithm. 10. The digital signal transmission system of claim 1, wherein the one or more mapping rules (370, 380) comprise selecting one of the following groups: a virtual 2_VSB symbol mapping rule, 4-VSB The symbol mapping principle and H-VSB mapping to Fabe, J. 11. The digital signal transmission system of claim 1, wherein the alignment byte is mapped to one of the 8-VSB classes, according to the Advanced Television Systems Committee (ATSC) standard 8-VSB Bit stream standard. 12. A method of transmitting a digital signal (201, 300), the digital signal comprising encoded data packets comprising a normal packet of normal transmission and a strong packet containing information transmitted by the strong bit stream, The method comprises: a) encoding, in a first forward error correction (FEC) unit (110), packets belonging to each of the strong and normal data bit streams; b) receiving each strong packet containing priority data And processing the packets to generate the strong bit stream (115, 205); c) generating a stream (330) corresponding to the trellis encoded data bits of the normal and strong stream elements, and One or more symbols ^1246841 應對法則,將該強固封包之trellis編碼資料位元轉映至 符號; d) 在一第二前向錯誤校正(FEC)編碼單元(125) 中,藉由僅讀入該強固位元串流的封包,並僅對該等 強固_流封包來產生對位位元組,俾選擇性地確保(與 一接收器裝置的)回溯相容性;以及 e) 在一固定頻寬通訊頻道上,按回溯相容方式, 個別地或共集地併於該正常位元_流,將該等強固位 元串流(160,170,180)傳送至一接收器裝置,其中一 現存的接收器裝置(200)能夠接收並依空值封包來處 理該強固位元串流的各封包。 13. 如申請專利範圍第12項之傳輸數位信號之方法,其中 該接收器裝置包括一新式接收器裝置,其能夠接收並 按相較於標準位元串流為低之TOV來處理該強固位元 串流各封包。 14. 如申請專利範圍第12項之傳輸數位信號之方法,其中 處理該強固封包(400)之步騾包含: - 接收該強固封包並錯置一輸入位元串流(4 0 1)之 強固封包;以及 - 根據一運用於該等強固封包之符號映對法則 ( 3 80),選擇是否具與一接收器裝置之回溯相容性,來 格式化該等強固封包(402),其中該格式化步騾包含從 該錯置器讀出強固位元組(411,450),並且產生兩個以 上對應於各強固封包之資料區塊(412a,412b),以利於 1246841^1246841 The law of response, the trellis coded data bits of the strong packet are mapped to symbols; d) in a second forward error correction (FEC) coding unit (125), by reading only the strong bit string Streaming packets, and only those strong_stream packets to generate alignment bytes, selectively ensuring backward compatibility with a receiver device; and e) on a fixed bandwidth communication channel Passing the strong bit stream (160, 170, 180) to a receiver device, one of the existing receivers, in a backtracking compatible manner, individually or collectively and in the normal bit stream The device (200) is capable of receiving and processing the packets of the strong bit stream in accordance with a null packet. 13. The method of transmitting a digital signal according to claim 12, wherein the receiver device comprises a new receiver device capable of receiving and processing the strong bit in accordance with a TOV that is lower than a standard bit stream The metadata stream is packetized. 14. The method of transmitting a digital signal according to claim 12, wherein the step of processing the strong packet (400) comprises: - receiving the strong packet and misplace an input bit stream (400) Decapsulating; and - formatting the strong packets (402) according to a symbol mapping rule (380) for the strong packets, selecting whether to have backward compatibility with a receiver device, wherein the format The step of decoding includes reading the strong bit groups (411, 450) from the misplacer and generating two or more data blocks (412a, 412b) corresponding to the respective strong packets to facilitate 1246881 該trellis編碼器單元内的強固編碼作業。 15. 如申請專利範圍第14項之傳輸數位信號之方法,其中 該封包格式化步騾進一步包含將各強固位元組中資 訊位元排置至該等兩個以上資料區塊内最低位有效 位元(LSB)位置,以利於該trellis編碼器單元中進行編碼 作業的步驟,且循序地根據所採行之符號映對法則, 決定其中最高位有效位元(MSB)位置内的剩餘位元。A strong coding job within the trellis encoder unit. 15. The method of transmitting a digital signal according to claim 14 of the patent scope, wherein the packet formatting step further comprises: arranging information bits in each strong byte to be the lowest in the two or more data blocks; Bit (LSB) position to facilitate the step of encoding the trellis encoder unit, and sequentially determine the remaining bits in the most significant bit (MSB) position according to the symbol mapping rule of the taken line . 16. 如申請專利範圍第14項之傳輸數位信號之方法,其中 該封包格式化步騾進一步包含將複數個位置預留位 元組(460a、460b、460c)插置在該等兩個以上資料區塊 (451,,452’,453’)内的各位置處之步騾,該等位置預 留位元組係為當選擇性地確保回溯相容性時,可最終 接收由該第二FEC編碼單元所供置之該等對位位元 組。16. The method of transmitting a digital signal according to claim 14, wherein the packet formatting step further comprises inserting a plurality of location reserved bytes (460a, 460b, 460c) in the two or more data. Steps at locations within blocks (451, 452', 453') that are ultimately received by the second FEC when selectively ensuring traceback compatibility The alignment bit groups provided by the coding unit. 17. 如申請專利範圍第16項之傳輸數位信號之方法,其中 該封包格式化步驟進一步包含將三個標頭位元組(454) 插置於各資料區塊(451,、452’、453,)内以於接收器裝 ;置處識別該封包的步驟,其中各位置預留位元組包括 在兩個以上資料區塊各者内的一預標定位置,以最終 地接收該等三個標頭位元組。 18. 如申請專利範圍第16項之傳輸數位信號之方法,其中 該等複數個位置預留位元組會被插置於包含散佈在 整個各資料區塊上之位元組位置的一或更多個位 置,而該等位置預留位元組在該資料區塊内的一或更17. The method of transmitting a digital signal according to claim 16 wherein the packet formatting step further comprises inserting three header bytes (454) into each data block (451, 452', 453). , in the receiver; setting the step of identifying the packet, wherein each location reserved byte includes a pre-calibrated location within each of the two or more data blocks to ultimately receive the three Header byte. 18. The method of transmitting a digital signal according to claim 16 wherein the plurality of location reserved bytes are interpolated to one or more locations comprising a byte group spread over the entire data block. Multiple locations, and the location reserved bytes are one or more within the data block 多個位置之定位方式,係為當經錯置後,能夠於後續 錯置步騾中,在該封包的結束處獲得按接續性位元組 位置的對位位元組排置結果。 19. 如申請專利範圍第17項之傳輸數位信號之方法,其中 進一步包含如下步騾:The positioning manner of the multiple positions is such that, after being misplaced, the alignment result of the alignment bit group according to the position of the contiguous byte group can be obtained at the end of the packet in the subsequent misplacement step. 19. The method of transmitting a digital signal according to claim 17 of the patent application, further comprising the steps of: - 當選定為確保回溯相容性時,可將從經對於強 固封包之trellis編碼作業後所取得的位元組予以解錯 置, - 取得對各強固封包的對位位元組位置資訊, - 從該第二FEC單元產生該對位位元組,以及 - 將該對位位元組置放在該強固封包内的位置握 存器位置處。 20. 如申請專利範圍第12項之傳輸數位信號之方法,其中 進一步包含根據預先定義演算法來多工處理(210, 405) 正常率流封包與強固封包。- When selected to ensure traceback compatibility, the byte obtained after the trellis encoding operation for the strong packet can be de-proposed, - the position information of the alignment bit of each strong packet is obtained, - The alignment byte is generated from the second FEC unit, and the alignment byte is placed at a location buffer location within the strong packet. 20. The method of transmitting a digital signal according to claim 12, further comprising multiplexing (210, 405) a normal rate stream packet and a strong packet according to a predefined algorithm. 21. 如申請專利範圍第12項之傳輸數位信號之方法,其中 該將該強固封包之trellis編碼資料位元轉映至符號之 ;步·驟,包括利用從如下群組選出之一或更多映對法則 (370,380):虛擬2-VSB符號映對法則、4-VSB符號映對 法則以及H-VSB映對法則。 22.—種高解析數位電視信號傳輸系統(201,300),可用以 傳送由數位電視接收裝置所接收之經編碼MPEG相容 資料封包,該等封包含有按正常傳輸之正常封包,並 且含有按強固位元_流而傳輸之資訊的強固封包,該21. The method of transmitting a digital signal according to claim 12, wherein the strong packet trellis encoded data bit is transferred to a symbol; the step comprises using one or more selected from the following group The law of mapping (370, 380): the virtual 2-VSB symbol mapping rule, the 4-VSB symbol mapping rule and the H-VSB mapping rule. 22. A high resolution digital television signal transmission system (201, 300) operable to transmit encoded MPEG compatible data packets received by a digital television receiving device, the packets comprising normal packets transmitted as normal, and containing A strong packet of information transmitted by a strong bit_stream, which 系統包括· -一第一前向錯誤校正(FEC)單元(110),可用以對屬 於各強固及正常資料位元争流的封包進行格式化; -一強固處理器單元(115,205),用以接收各個含優 先權資料的強固封包(207),並以處理該等封包以產生 該強固位元串流;The system includes - a first forward error correction (FEC) unit (110), which can be used to format packets belonging to each of the strong and normal data bits; - a strong processor unit (115, 205), Used to receive each strong packet (207) containing priority data, and to process the packets to generate the strong bit stream; -一 trellis編碼器單元(330),用以產生對應於該等正 常且強固串流各位元之trellis編碼資料位元的串流,該 編碼器採用的裝置(380),是用以根據一或更多符號應 對法則之從強固封包轉映至符號的編碼資料位元映 圖, -一選擇性第二前向錯誤校正(FEC)編碼單元(125), 藉由僅讀入強固位元寧流封包,並能僅對該等強固串 流封包來產生對位位元組,俾確保與一接收器裝置的 回溯相容性;以及a trellis encoder unit (330) for generating a stream corresponding to the trellis encoded data bits of the normal and strong stream elements, the apparatus (380) used by the encoder to More symbolic response law is transmitted from the strong packet to the coded data bit map of the symbol, a selective second forward error correction (FEC) coding unit (125), by reading only the strong bit stream Encapsulating, and capable of generating a parity byte only for the strong stream packets, ensuring backward compatibility with a receiver device; -一數位電視信號傳送器裝置(160,170,180),以按 回溯相容方式,將該等強固位元串流個別地或共集地 併於該正常位元串流,而在一固定頻寬通訊頻道上傳 送至一接收器裝置(200),以及 -一用以傳送由該接收器裝置接收之位元的裝置,其 中含有資訊而讓該接收器能夠根據所採用的符號映 對法則,來正確地解碼該等強固封包, -其中現存的接收器裝置(200)能夠接收並依空值封 包來處理該強固位元_流的各封包,且一新式接收器- a digital television signal transmitter device (160, 170, 180) for streaming the strong bit streams individually or collectively and in the normal bit stream in a backtrack compatible manner, while at a fixed The bandwidth communication channel is transmitted to a receiver device (200), and - a device for transmitting a bit received by the receiver device, wherein the information is included to enable the receiver to map according to the symbol used To correctly decode the strong packets, wherein the existing receiver device (200) is capable of receiving and processing the packets of the strong bit_stream according to the null packet, and a new receiver 1246841 ai 〇. ] 夂q m n正替換頁I 裝置能夠接收並按相較於標準位元串流為低之TOV來 處理該強固位元串流各封包。 23. 如申請專利範圍第22項之高解析數位電視信號傳輸系 統(201,300),其中該等供接收器裝置(200)接收之所傳 位元包括多個資訊位元,可根據強固封包數、調變型 態以及為trellis編碼所插置之冗餘層級,來描述出數位 信號傳輸模式。 24. 如申請專利範圍第22項之高解析數位電視信號傳輸系 統,其中該等所傳資訊位元係在傳輸前先經展頻編 碼,而該等經編碼以供傳輸之位元係位在資料欄位同 步區段(138)内的保留位元部分。 25. 如申請專利範圍第22項之高解析數位電視信號傳輸系 統,其中該模式資訊位元代表一運用於該強固封包之 符號映對技術,此符號映對技術(370,380)可包括從 2-VSB、4-VSB及H-VSB符號映對模式中選出其一者,以 及表示是否利用該選擇性第二FEC編碼單元。1246841 ai 〇. ] 夂q m n positive replacement page I The device is capable of receiving and processing the strong bit stream packets in a TOV that is lower than the standard bit stream. 23. The high resolution digital television signal transmission system (201, 300) of claim 22, wherein the transmitted bits received by the receiver device (200) comprise a plurality of information bits, which are based on strong packets The number, modulation, and redundancy levels interpolated for trellis coding are used to describe the digital signal transmission mode. 24. The high resolution digital television signal transmission system of claim 22, wherein the transmitted information bits are spread-spectrum coded prior to transmission, and the bit lines that are encoded for transmission are The reserved bit portion within the data field sync segment (138). 25. The high resolution digital television signal transmission system of claim 22, wherein the mode information bit represents a symbol mapping technique applied to the strong packet, the symbol mapping technology (370, 380) may include One of the 2-VSB, 4-VSB, and H-VSB symbol mapping modes is selected, and whether the selective second FEC encoding unit is utilized.
TW91121622A 2001-04-22 2002-09-20 Digital transmission system and method for transmitting digital signals TWI246841B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32448201A 2001-04-22 2001-04-22
US10/127,531 US7111221B2 (en) 2001-04-02 2002-04-22 Digital transmission system for an enhanced ATSC 8-VSB system

Publications (1)

Publication Number Publication Date
TWI246841B true TWI246841B (en) 2006-01-01

Family

ID=37193846

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91121622A TWI246841B (en) 2001-04-22 2002-09-20 Digital transmission system and method for transmitting digital signals

Country Status (1)

Country Link
TW (1) TWI246841B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8887020B2 (en) 2003-10-06 2014-11-11 Digital Fountain, Inc. Error-correcting multi-stage code generator and decoder for communication systems having single transmitters or multiple transmitters
US9136983B2 (en) 2006-02-13 2015-09-15 Digital Fountain, Inc. Streaming and buffering using variable FEC overhead and protection periods
US9178535B2 (en) 2006-06-09 2015-11-03 Digital Fountain, Inc. Dynamic stream interleaving and sub-stream based delivery
US9191151B2 (en) 2006-06-09 2015-11-17 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel HTTP and forward error correction
US9237101B2 (en) 2007-09-12 2016-01-12 Digital Fountain, Inc. Generating and communicating source identification information to enable reliable communications
US9240810B2 (en) 2002-06-11 2016-01-19 Digital Fountain, Inc. Systems and processes for decoding chain reaction codes through inactivation
US9246633B2 (en) 1998-09-23 2016-01-26 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US9264069B2 (en) 2006-05-10 2016-02-16 Digital Fountain, Inc. Code generator and decoder for communications systems operating using hybrid codes to allow for multiple efficient uses of the communications systems
US9270299B2 (en) 2011-02-11 2016-02-23 Qualcomm Incorporated Encoding and decoding using elastic codes with flexible source block mapping
US9281847B2 (en) 2009-02-27 2016-03-08 Qualcomm Incorporated Mobile reception of digital video broadcasting—terrestrial services
US9294226B2 (en) 2012-03-26 2016-03-22 Qualcomm Incorporated Universal object delivery and template-based file delivery
US9319448B2 (en) 2010-08-10 2016-04-19 Qualcomm Incorporated Trick modes for network streaming of coded multimedia data
US9380096B2 (en) 2006-06-09 2016-06-28 Qualcomm Incorporated Enhanced block-request streaming system for handling low-latency streaming
US9386064B2 (en) 2006-06-09 2016-07-05 Qualcomm Incorporated Enhanced block-request streaming using URL templates and construction rules
US9432433B2 (en) 2006-06-09 2016-08-30 Qualcomm Incorporated Enhanced block-request streaming system using signaling or block creation
US9485546B2 (en) 2010-06-29 2016-11-01 Qualcomm Incorporated Signaling video samples for trick mode video representations
US9602802B2 (en) 2010-07-21 2017-03-21 Qualcomm Incorporated Providing frame packing type information for video coding
US9660763B2 (en) 2009-08-19 2017-05-23 Qualcomm Incorporated Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
US9843844B2 (en) 2011-10-05 2017-12-12 Qualcomm Incorporated Network streaming of media data
US9917874B2 (en) 2009-09-22 2018-03-13 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246633B2 (en) 1998-09-23 2016-01-26 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US9240810B2 (en) 2002-06-11 2016-01-19 Digital Fountain, Inc. Systems and processes for decoding chain reaction codes through inactivation
US8887020B2 (en) 2003-10-06 2014-11-11 Digital Fountain, Inc. Error-correcting multi-stage code generator and decoder for communication systems having single transmitters or multiple transmitters
US9136983B2 (en) 2006-02-13 2015-09-15 Digital Fountain, Inc. Streaming and buffering using variable FEC overhead and protection periods
US9264069B2 (en) 2006-05-10 2016-02-16 Digital Fountain, Inc. Code generator and decoder for communications systems operating using hybrid codes to allow for multiple efficient uses of the communications systems
US9432433B2 (en) 2006-06-09 2016-08-30 Qualcomm Incorporated Enhanced block-request streaming system using signaling or block creation
US9386064B2 (en) 2006-06-09 2016-07-05 Qualcomm Incorporated Enhanced block-request streaming using URL templates and construction rules
US9191151B2 (en) 2006-06-09 2015-11-17 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel HTTP and forward error correction
US9628536B2 (en) 2006-06-09 2017-04-18 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel HTTP and forward error correction
US9178535B2 (en) 2006-06-09 2015-11-03 Digital Fountain, Inc. Dynamic stream interleaving and sub-stream based delivery
US11477253B2 (en) 2006-06-09 2022-10-18 Qualcomm Incorporated Enhanced block-request streaming system using signaling or block creation
US9380096B2 (en) 2006-06-09 2016-06-28 Qualcomm Incorporated Enhanced block-request streaming system for handling low-latency streaming
US9237101B2 (en) 2007-09-12 2016-01-12 Digital Fountain, Inc. Generating and communicating source identification information to enable reliable communications
US9281847B2 (en) 2009-02-27 2016-03-08 Qualcomm Incorporated Mobile reception of digital video broadcasting—terrestrial services
US9876607B2 (en) 2009-08-19 2018-01-23 Qualcomm Incorporated Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
US9660763B2 (en) 2009-08-19 2017-05-23 Qualcomm Incorporated Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
US11743317B2 (en) 2009-09-22 2023-08-29 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
US10855736B2 (en) 2009-09-22 2020-12-01 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
US9917874B2 (en) 2009-09-22 2018-03-13 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
US11770432B2 (en) 2009-09-22 2023-09-26 Qualcomm Incorporated Enhanced block-request streaming system for handling low-latency streaming
US9485546B2 (en) 2010-06-29 2016-11-01 Qualcomm Incorporated Signaling video samples for trick mode video representations
US9992555B2 (en) 2010-06-29 2018-06-05 Qualcomm Incorporated Signaling random access points for streaming video data
US9602802B2 (en) 2010-07-21 2017-03-21 Qualcomm Incorporated Providing frame packing type information for video coding
US9456015B2 (en) 2010-08-10 2016-09-27 Qualcomm Incorporated Representation groups for network streaming of coded multimedia data
US9319448B2 (en) 2010-08-10 2016-04-19 Qualcomm Incorporated Trick modes for network streaming of coded multimedia data
US9270299B2 (en) 2011-02-11 2016-02-23 Qualcomm Incorporated Encoding and decoding using elastic codes with flexible source block mapping
US9843844B2 (en) 2011-10-05 2017-12-12 Qualcomm Incorporated Network streaming of media data
US9294226B2 (en) 2012-03-26 2016-03-22 Qualcomm Incorporated Universal object delivery and template-based file delivery

Similar Documents

Publication Publication Date Title
TWI246841B (en) Digital transmission system and method for transmitting digital signals
US7675994B2 (en) Packet identification mechanism at the transmitter and receiver for an enhanced ATSC 8-VSB system
US7111221B2 (en) Digital transmission system for an enhanced ATSC 8-VSB system
KR100950015B1 (en) An improved digital transmission system for an enhanced ???? ?-??? system
US8638860B2 (en) Digital television transmission and receiving apparatus and method using 1/4 rate coded robust data
CA2680191C (en) Transmitter and system for transmitting/receiving digital broadcasting stream and method thereof
US7856590B2 (en) Digital television transmitter and receiver for using 16 state trellis coding
US8127210B2 (en) Digital broadcasting transmission capable of improving receiving and equalizing performance and signal processing method thereof
CA2625018C (en) Trellis encoding device for encoding transmission stream and method thereof
US20030099303A1 (en) Digital television (DTV) transmission system using enhanced coding schemes
KR100657819B1 (en) Double Stream Structure Digital Television Transmission and Receiving Method using Hybrid of E-8VSB, E-4VSB and P-2VSB
US7680108B2 (en) Digital broadcasting transmission and reception systems for stream including normal stream and turbo stream and methods thereof
US8290035B2 (en) Systems for reducing adverse effects of deep fades in DTV signals designed for mobile reception
JP2010051022A (en) Digital broadcasting system and method thereof
US8503488B2 (en) Packet insertion mechanism for an improved ATSC DTV system
CN101674394B (en) Digital broadcast receiver and method thereof
KR100576551B1 (en) Digital television transmitter and receiver for using 16 state trellis coding
US7814389B2 (en) System for processing and transmitting digital broadcasting signal and method thereof
TWI410135B (en) Apparatus and method for transmitting/receiving transport stream in a digital broadcasting system
MXPA04010332A (en) Synchronization loss resilient digital communication system using forward erasure correction.
KR20090009173A (en) Transmitting/receiving system and method of processing data
KR20080063259A (en) Transmitting/receiving system and method of processing data
KR20090014325A (en) Transmitting/receiving system and method of processing data
KR20070008474A (en) Transmitting/receiving system and data processing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees