TW544549B - Half-tone type phase shift mask blank, process for prodncing half-tone type phase shift mask, pattern transfer method, laminate and method of forming pattern - Google Patents

Half-tone type phase shift mask blank, process for prodncing half-tone type phase shift mask, pattern transfer method, laminate and method of forming pattern Download PDF

Info

Publication number
TW544549B
TW544549B TW91112200A TW91112200A TW544549B TW 544549 B TW544549 B TW 544549B TW 91112200 A TW91112200 A TW 91112200A TW 91112200 A TW91112200 A TW 91112200A TW 544549 B TW544549 B TW 544549B
Authority
TW
Taiwan
Prior art keywords
layer
phase shift
film
etching
light
Prior art date
Application number
TW91112200A
Other languages
Chinese (zh)
Inventor
Yuuki Shiota
Osamu Nozawa
Ryo Ohkubo
Hideaki Mitsui
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001361025A external-priority patent/JP2002258458A/en
Priority claimed from JP2001394311A external-priority patent/JP4027660B2/en
Priority claimed from JP2002047051A external-priority patent/JP3818171B2/en
Priority claimed from JP2002082021A external-priority patent/JP3993005B2/en
Application filed by Hoya Corp filed Critical Hoya Corp
Application granted granted Critical
Publication of TW544549B publication Critical patent/TW544549B/en

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

The present invention relates to a half-tone type phase shift mask blank useful in the production of a half-tone type phase shift mask, comprising on a transparent substrate, a light transmittable portion for transmitting an exposure light, a phase shift portion for shifting the phase of transmitted light to a given extent when a part of the exposure light transmits, and a phase shift film for forming the phase shift portion. It has good optical property that in the vicinity of the margin of the light transmittable portion and phase shift portion, the transmitted lights deny each other, and the contrast of the margin portion of the exposure pattern transferred on the surface of exposed body maintained at good condition. The phase shift film uses silicon, oxygen and nitrogen as the main components and consists of an etching stop film formed between the above film and the transparent substrate.

Description

544549544549

544549 五、發明說明(1) 技術領域 本發明係有關一種半色調型相移光罩空白板、半色 調型相移光罩及其製法,特別是下一世代之適合短波 長曝光光源的ArF準分子雷射(19311111)及F2準分子雷射 (157nm)所使用半色調型相移光罩空白板等。 先前技術 現在,DRAM(Dynamic Random Access Memory)係確 定256Mbit量產體制,今後欲自Mbit級至Gbit級進入 另一高集積體化。伴隨於此集體電路之設計規則愈爲 細微化,要求線寬(半間距)爲1 Ομιη之微細圖案的時間 係爲問題。 爲對應於圖案微細化的方法之一,直至目前藉由曝 光光源之短波長化進行圖案之高解像度化。結果,目 前之微影術中曝光光源主要使用 KrF準分子雷射 (248nm)、ArF 準分子雷射(193nm)。 然而,曝光波長之短波長化與改善解像度成相反關 係、同時焦點深度減少。因此,會有以透鏡爲始的光 學系設計之負擔增大、或步驟安定性降低的不良影 響。 針對該問題時,使用相移(phase shift)法。相移法 係使用相移光罩作爲複製微細圖案之光罩。 相移光罩例如由光罩上形成圖案部分之相移部、與 沒有存在相移部之非圖案部所成。該構成係使兩者透 544549 五、發明說明(2) 過、使光之相位移轉180。,藉由在圖案邊界部分引起 光之互相干涉、以提高複製影像之對比。 使相移部通過之光的相移量cKrad),與相移部之複 折射率實部η及膜厚d相關、且成立下述數式(1)之關 係,係爲已知。 φ - 2 7L d(n- Xs) / λ ......(式 1) (其中’ λ係爲曝光光源之波長,而且,爲使相位移 轉180°時膜厚d可以式(2)表示、 d- λ / { 2(n-l)}......(式 2) 藉由該相移光罩,可達成增大爲得必要解像度之焦點 深度,在曝光波長不需改變下可以改善解像度、同時 提局步驟適用性。 相移光罩實際上分爲藉由形成光罩圖案之相移部光透 過特性之完全透過型(雷本索型)相移光罩、與半色調 型相移光罩。前者係相移部之光透過率與非圖案部(透 光部)同等,對曝光波長而言大致爲透明的光罩,一般 而言可有效地複製線與空間。 另外’後者之半色調型係相移部(半透光部)之光透過 率爲非圖案部(透光部)之數%〜數十%,可有效地作成 接觸孔或孤立圖案。 半色調型相移光罩中係有由主要爲調整透過率之 層、主要爲調整相位之層所成2層型半色調相移光 罩、或以簡卓構造谷易製造的單層型半色調相移光 544549 五、發明說明(3) 罩。 由於單層型容易加工性、故爲目前之主流,半色調 型相移光罩部幾乎皆爲以MoSiN或MoSiON所成單層 膜構成者。 另外,2層型係上述半色調型相移部組合主要控制 透過率之層、主要控制相移量之層所成、可進行獨立 控制透過率典型的分光特性、與相移量(相位角)。 另外,伴隨LSI圖案之微細化、預測使曝光光源之 波長(曝光波長)自目前之KrF準分子雷射(248nm)至 ArF準分子雷射(193nm)、以及將來的F2準分子雷射 (157nm)進行短波長化。 而且,現行的半色調型相移光罩以設計部分半色調 相移部之曝光光源透過率爲6%附近之膜爲主流。然 而’傾向於高解像化時、另要求透過率高者,係指將 來必須爲15%以上之透過率。 伴隨該曝光光源之短波長化或高透過率化,以滿足 所定透過率及相移量之部分半色調型位性移相部的材 料選定寬度有變狹窄的傾向。而且,伴隨透過率高的 透過率化、必須使用光透過性高的材料。另外,伴隨 曝光光源之短波長化,以習知波長觀察時必須爲光透 過性高的材料。爲了該必須性時,於圖案加工時會有 與石英基板之蝕刻選擇性變小的問題。 2層以上多層型半色調型相移部以組合多層膜或2544549 V. Description of the invention (1) TECHNICAL FIELD The present invention relates to a half-tone phase-shift mask blank plate, a half-tone phase-shift mask, and a method for manufacturing the same, especially the ArF standard suitable for a short-wavelength exposure light source in the next generation. A half-tone phase shift mask blank used for molecular laser (19311111) and F2 excimer laser (157nm). Previous technology Currently, DRAM (Dynamic Random Access Memory) has established a mass production system of 256Mbit. In the future, it is expected to enter another high-integration integration from Mbit to Gbit. As the design rules of this collective circuit become more and more refined, the time required for a fine pattern with a line width (half pitch) of 10 μm is a problem. It is one of the methods corresponding to the miniaturization of the pattern. Until now, the high-resolution of the pattern has been achieved by shortening the wavelength of the exposure light source. As a result, KrF excimer laser (248nm) and ArF excimer laser (193nm) are mainly used as the light sources for lithography. However, shortening the exposure wavelength has an inverse relationship with improving the resolution and reducing the depth of focus. Therefore, there is an adverse effect of increasing the burden on the design of the optical system starting from the lens or reducing the stability of the steps. To solve this problem, a phase shift method is used. The phase shift method uses a phase shift mask as a mask to reproduce fine patterns. The phase shift mask is formed of, for example, a phase shift portion in which a pattern portion is formed on the mask and a non-pattern portion in which no phase shift portion is present. This structure is to make the two transparent. 544549 V. Description of the invention (2) The phase shift of light is 180. In order to improve the contrast of the reproduced image, light interference is caused at the border portion of the pattern. The amount of phase shift (cKrad) of the light passing through the phase shift section is known in relation to the real refractive index part η of the phase shift section and the film thickness d, and the following formula (1) is established. φ-2 7L d (n- Xs) / λ (Expression 1) (where 'λ is the wavelength of the exposure light source, and the film thickness d can be expressed by (2) ), D- λ / {2 (nl)} ...... (Equation 2) With this phase shift mask, the focal depth can be increased to obtain the necessary resolution, without changing the exposure wavelength. It can improve the resolution and the applicability of the step. At the same time, phase-shift masks are actually divided into full-transmission type (Rebenso type) phase-shift masks with light transmission characteristics of the phase-shifting portion forming the mask pattern, and halftones. Type phase shift mask. The former is a mask that has the same light transmittance as the non-patterned part (light-transmitting part) of the phase shift part, and is generally transparent to the exposure wavelength. Generally, it can effectively copy lines and space. 'The light transmittance of the halftone type phase shifting part (translucent part) of the latter is a few% to several tens% of the non-pattern part (light transmitting part), which can effectively make a contact hole or an isolated pattern. The phase shift mask is a two-layer halftone phase shift mask consisting of a layer mainly for adjusting the transmittance and a layer mainly for adjusting the phase, or a simple structure Single-layer half-tone phase-shifted light manufactured by Zakuya 544549 5. Description of the invention (3) Mask. Because the single-layer type is easy to process, it is currently the mainstream. Half-tone phase-shifted masks are almost all made of MoSiN or A single-layer film made of MoSiON. In addition, the two-layer type is a combination of the half-tone phase shifting unit and the layer that mainly controls the transmittance, and the layer that controls the amount of phase shift. It can independently control the typical spectral characteristics of transmittance. And phase shift amount (phase angle). In addition, with the miniaturization of LSI patterns, the wavelength of the exposure light source (exposure wavelength) is predicted to be from the current KrF excimer laser (248nm) to ArF excimer laser (193nm), And the future F2 excimer laser (157nm) will be shortened. In addition, the current half-tone phase shift mask is designed with a half-tone phase-shifted part where the light source transmittance is around 6%. 'When a high resolution is preferred and a high transmittance is required, it means that the transmittance must be 15% or more in the future. With the short wavelength or high transmittance of the exposure light source to meet the predetermined transmittance and phase shift Quantity part The material selection of the hue-type phase shifting part tends to have a narrow width. In addition, as the transmittance is increased with high transmittance, it is necessary to use a material with high light transmittance. In addition, as the wavelength of the exposure light source is shortened, it is known When viewing wavelengths, it is necessary to use a material with high light transmittance. For this requirement, there is a problem that the etching selectivity of the quartz substrate becomes smaller during pattern processing. Two or more layers of a halftone phase shifting unit are used to combine multiple layers. Membrane or 2

544549 五、發明說明(4) 層膜、可控制相位差及透過率之材料容易選定。另 外,可選擇達成上層蝕刻阻滯效果之材料作爲下層。 此外,所製作的相移光罩必須使曝光之反射率降低 至某一程度。而且,檢查圖案外觀之步驟通常使用波 長較曝光波長爲長的光作爲檢查光源波長,一般使用 透過型缺陷檢查裝置(例如KLA300系統等)進行檢查。 因此,對檢查波長(例如曝光波長爲KrF準分子雷射 (248im)時,檢查波長爲488nm或364nm)而言透過率過 高(例如40%以上)時不易檢查。 特別是伴隨曝光波長之短波長化,必須使上述光透 過性高的半色調型相移。而且,光透過性高的材料係 指對波長較長側之變化而言有透過率之增加率較大的 傾向。因此,單層之半色調型相移、使對檢查光源波 長而言之透過率降至所定範圍係更爲困難。 此外,於缺陷檢查裝置中新開發使用的透過光及反 射光之檢查方式。以該方式進行檢查時檢查波長之透 過率,與僅使用透過光進行檢查時相比可稍高(例如50 〜60%)。而且,檢查波長之反射率必須控制於與透明 基板具有某一程度差異(例如3 %以上)。 該狀況係使藉由部分半色調相移爲2層以上之多層 型,可容易控制曝光光源與檢查光源之反射特性、透 過特性。 2層型之半色調型相移光罩例如日本特開平4- 544549 五、發明說明(5) 140635號公報中記載具有薄的Cr與塗覆剝離之2層構 造的半色調型相移部者(習知例1)。 另外,多層構造可在同一裝置中作成、以同一触刻 氣予以蝕刻的半色調型相移部係位於特開平6-83034 號公報中記載的具有含由同一元素之多層構造(例如Si 層與SiN層之2層構造)所成的半色調型相移部者(習 知例2)。 此外,降低對檢查光源波長而言之透過率的技術 (習知例3)係爲於特開平7-168343號公報中記載之單 層型半色調相移藉由習知MoSiO或MoSiON之單層 膜、與單層膜之組合中含有透過率之波長相關性小的 透過膜之2層構造,對曝光光源(KrF準分子雷射)與檢 查光源(488nm)雙方而言可得企求的透過率者(習知例 3)。 而且,著重於矽烷化鉅系材料之多層構造的相移部 於特開200卜1 74973號公報中記載的具有以鉅、矽氧 院、及氧爲主成分之上層、與以鉬爲主成分之不含石夕 的下層等2層構成所構成的半色調型相移部者(習知例 4” 另外,於特開200 1 -337436號公報中記載具有以 鉅、矽氧烷、及氧爲主成份之上層、與以鉻或絡鉅合 金爲主成分之下層等2層構造構成的半色調型相移部 者(習知例5)。 544549 五、發明說明(6) 而且,於上述習知例中會有下述的問題。 通常,在半色調型相移膜上使用作爲半色調型相移 膜之蝕刻光罩層、然後爲在光罩上所需處形成遮光部 時,一般形成遮光Cr層。 如習知例1之塗覆剝離/薄Cr層/玻璃基板中,在塗 覆玻璃上形成遮光Cr層。此時,於圖案加工時製造一 般使用使光阻圖案複製的遮光Cr層/塗覆剝離/薄的Cr 層之3層構造光罩圖案,再以一般濕式蝕刻選擇性去 除遮光Cr層。 而且,就遮光Cr層與薄的Cr層爲相同材質而言, 遮光Cr層之選擇性去除步驟中對薄Cr層之影響爲一 課題。具體而言,使薄的Cr層蝕刻、以與剝落法相同 的原理一起去除圖案,薄的Cr層進行側邊蝕刻時,在 圖案蝕刻附近之透過率會有變化。 其次,於習知例2中例如Si層與SiN層以同一濺 射裝置、使用相同的矽作爲目的物、可以連續成膜。 SiN層使用含Si目的物及氮之濺射氣氛的反應性濺 射、進行成膜時,藉由反應性濺射產生目的之孔隙、 且無法再現、生產性會有問題。此外,使用SiN時, 伴隨近年曝光波長之短波長化、會有透過率過量降低 情形。 其次,於習知例3中使用MoSiO或MoSiON作爲單 層膜(上層)之材料。此處,藉由含有金屬會使透過率 544549 五、發明說明 (7) 變 小、不 適合近年曝光波長之短波長化。 而 且 金 屬 含 量變小 時折射率變小,半色調相移之膜 厚 變 厚 、 對 微 細加工 而言不利。 另外, 於習知例4及習知例5中使用TaSi .〇 作 爲 上 層 之材料 。此處,藉由含有金屬會使透過 率 變 小 、 不 適 合近年 曝光波長之短波長化。而且,金 屬 含 量 變 小 時 折射率 變小,半色調相移之膜厚變厚、 對 微 細 加 工 而 言不利 〇 而且, 此等習知例中下層藉由上層之氟 系 氣 體 可 達 成 對乾式 蝕刻而言蝕刻阻滯效果,且再以 藉 由 氯 系 氣 體 之乾式 蝕刻進行下層之蝕刻。 此處, 習知例4由鉅所成的下層係對上 層 氟 系 乾 式 蝕 刻而言 蝕刻選擇比不充分。習知例5之 鉻 鉅 合 金 以 氯 系氣體 之蝕刻速度慢、無法得到高精度圖案^ 本發Φ 目係爲有鑑於上述背景者,以提供 爲 形 成 半 色 調 型相移 部、於蝕刻時微細加工性優異的 半 色 調 型 相 移 光罩空 白板及半色調型相移光罩爲目的< 而且, 本發明特別以提供於曝光光源短 波 長 化 時 1 特 別可使 用於140nm〜200nm之曝光波長 範 圍 具 體 而 言F2準分子雷射波長之157nm附近、以 及 ArF 準 分 子 雷射波 長之193nm附近之高透過率下(透 過 率 8 丨〜 30%)之半 色調型相移光罩空白板及半色調 型 相 移 光 罩 爲 目的。 -9- 544549 五、發明說明(8) 發明之摁示 本發明之半色調型相移光罩空白板,其特徵爲由相 移膜爲以矽、氧、及氮爲主要構成要素之膜、以及在 該膜與透明基板間形成的蝕刻阻滯膜所成。 於本發明中,在透明基板上形成的半色調型相移層 內以透明基板側之膜爲下層、於下層上形成的膜爲上 層。 本發明人等由於SiNx或Si-N鍵使膜之矩陣緻密, 可以使對曝光而言之照射耐性或對洗淨液等而言耐藥 品性高、且SiOx即使在短波長側仍具有較高的透過率 之事實爲基準,故著重於可產生兩材料系優點之 Si〇xNy。 此外,於SiOxNy中控制組成時,發現可得適合短 波長之曝光光源使用的相移膜。而且,藉由使半色調 型相移膜作爲SiOxNy膜(上層)與蝕刻阻滯膜(下層)之2 層構造’發現可實現曝光光源照射耐性、耐藥品性、 及圖案之加工性良好的相移膜。 此處’蝕刻阻滯膜係爲由具有阻止SiOxNy膜進行 蝕刻功能的材料所成之膜、或具有容易檢測相移膜蝕 刻之終點功能、或具有兩者功能之材料所成的膜。 上層材料係實質上由矽、氧、及氮等材料所成。換 言之’上層係由以矽、氧、及氮爲主構成要素之膜所 成。該材料即使曝光光源爲短波長化時,於與下層之 -10- 544549 五、發明說明(9) 組合中可控制企求的透過率及相位差、且可提高對曝 光光源之照射耐性或對洗淨液之耐藥品性。另外,由 .於可使折射率較大,可控制爲得企求相位差之半色調 型相移膜全體之膜厚、且半色調型相移膜之微細加工 性優異。 上述上層材料以使複折射率實部η調整於n2 1.7之 範圍內、複折射率虛部k調整於kS 0.450較佳。藉此 對於伴隨曝光光源之單波長化、滿足半色調型相移光 罩之光學特性極爲有利。而且,ρ2準分子雷射用時以 kS 0.40之範圍較佳、更佳者爲0.07 ‘ 0.35之範 ArF準分子雷射用時以〇. 1〇 $ k S 0.45之範圍較 佳。而且’ F2準分子雷射用時以η^2·〇之範圍較佳、 更佳者爲η》2·2之範圍。ArF準分子用時以η22.0之範 圍較佳、更佳者爲η22.5之範圍。 爲得上述光學特性時,使上述構成元素之組成範圍 係矽爲35〜45原子%、氧爲1〜60原子%、氮爲5〜 60%。換言之,若矽大於45%、或氮大於60%時,膜之 光透過率不充分。反之,若氮小於5%、或氧大於60% 日寸’由於I吴之先透過率過商、會損失半色調型相移膜 之功能。而且’若矽小於35%、或氮大於60%時,膜 之構造的物理性、化學性不安定。 此外’就上述觀點而言52準分子雷射用時,上述 -11- 544549 五、發明說明(1〇) 構成元素之組成範圍係矽以35〜40原子%、氧以25〜 60原子%、氮以5〜35原子%較佳。同樣地ArF準分子 用時上述構成元素之組成範圍係矽以38〜45原子%、 氧以1〜40原子%、氮以30〜60原子%較佳。而且, 除上述組成外亦可含有微量雜質(金屬、碳、氟等)。 本發明之上層係使用實質上由矽所成的目的物、可 使用含稀有氣體及氮及氧之反應性氣體的濺射氣氛之 反應性濺射予以成膜。實質上由矽所成的目的物與使 用金屬矽化物等之混合目的物時,可得數密度或純度 高、安定的目的物。因此,係指所得膜之粒子發生率 少的優點。 另外,蝕刻阻滯層係爲由具有阻止SiOxNy膜進行 蝕刻功能之材料所成的膜、或具有容易檢測相移膜蝕 刻之終點功能、或具有兩者功能之材料所成的膜。 上述具有阻止SiOxNy膜進行蝕刻功能的膜係爲對 相移層之蝕刻而言選擇比低的材料、換言之爲對 Si〇xNy膜蝕刻使用的蝕刻介質而言蝕刻速度較si〇xN x y 膜慢的材料,具體而言對相移膜之蝕刻選擇比爲〇7 以下、較佳者爲0.5以下之材料所成的膜。 另外,後者具有容易檢測相移膜蝕刻之終點功能之 蝕刻阻滯膜,其材料係爲對檢測透明基板(例如合成石 英基板)與蝕刻阻滯之蝕刻終點(例如680nm)而言反射 率差較透明基板與SiOxNy膜差爲大的膜。 -12- 544549 五、發明說明(11) 較佳者,其材料係爲較Si〇xNy膜及透明基板之折 射率(複折射率實部)高的材料。具體而言,以SiOxNy 膜與檢測蝕刻終點之光源波長的折射率差爲0.5以 上、較佳者爲1以上之材料所成的膜較佳,以與透明 基板之折射率差爲0 · 5以上、較佳者爲1以上之材料 所成的膜較佳。 蝕刻阻滯層對基板之鈾刻選擇比爲1.5以上、較佳 者爲2.0以上。換言之,必須去除蝕刻阻滯層時,透 光部之光透過率減少、圖案複製時之對比不佳。即使 可以去除、蝕刻速度必須較基板大時、在蝕刻終點附 近基板亦有可能被蝕刻、加工精度不佳。 就考慮上述時適用的材料例如一種或二種以上選自 於鎂、鋁、鈦、釩、鉻、銦、鉻、鈮、鉬、錫、鑭、 鉬、鎢、砂、給之材料或此等之化合物(氧化物、氮化 物、氧氮化物)等。 蝕刻阻滯膜之膜厚以10〜200埃較佳。換言之,若 小於10埃時,無法完全阻止蝕刻、且無法檢測有意反 射率變化,故會產生圖案加工精度不佳的情形。 另外,進行等方蝕刻之圖案擴大係視蝕刻步驟而 定’最大進行至fe厚之2倍程度。因此,使 0.1μιη=1000埃以下之圖案線寬加工、膜厚大於200埃 時,會產生40%以上之尺寸誤差、對光罩之品質不良 影響深遠。 -13- 544549 五、發明說明(12) 而且,蝕刻阻滯層以具有調整透過率功能較佳。對 蝕刻阻滯層本身之曝光波長(波長140〜200nm、或 l57nm附近、或193nm附近)而言透過率爲3〜4〇%。 藉此可保持相移部之透過率、且可藉由在相移部下部 形成的蝕刻阻滯層(視不同材料之積層而定)、可降低 較曝光波長爲長的檢查波長之透過率。 換言之,製造步驟之光罩檢查係爲現行使用較曝光 波長爲長的波長光、測定該透過光強度之方式。在現 行檢查波長200〜300nm之範圍內,光半透過部(相移 部)之光透過率以40%以下較佳。即爲40%以上時,與 透光部之對比脫離、檢查精度不佳。蝕刻阻滯膜爲遮 光功能高的材料時,材料例如一種或二種以上選自於 鋁、鈦、釩、鉻、锆、鈮、鉬、鑭、鉅、鎢、矽、鈴 之材料所成的膜或此等之氮化物等。 此外,該蝕刻阻滯層之膜厚係以較相移部充分薄的 膜厚導入爲宜、以200埃以下之膜厚較佳。換言之’ 若大於200埃時,曝光波長之光透過率降低爲3%之可 能性極高。此時,可以SiOxNy膜與蝕刻阻滯膜之2餍 調整相位角及透過率。 具體而言,對蝕刻阻滯本身之曝光波長(波長140〜 200nm、或157nm附近、或193nm附近)而言之透過率 爲3〜40%、與SiOxNy膜積層時之透過率調整爲3〜 40 %較佳。設置蝕刻阻滯膜時,必須去除相當於透光 -14- 544549 五、發明說明(13) 部之部分表面露出的蝕刻阻滯層。此係蝕刻阻滯層覆 蓋透光部,致使透光部之透過率減少。 蝕刻阻滯膜之去除方法係蝕刻阻滯膜爲由具有阻止 Si〇xNy膜進行蝕刻功能之材料所成的膜時,必須使用 與SiOxNy膜之蝕刻方法不同的方法。另外,蝕刻阻滯 膜爲由具有容易檢測相移膜蝕刻之終點功能之材料所 成的膜時,SiOxNy膜與蝕刻阻滯膜之蝕刻方法可以相 同或不相同。 由SiOxNy膜所成的相移膜之蝕刻例如藉由(:11?3或 CF4、SF6、C2F6等氟系氣體及其混合氣體進行蝕刻 (RIE : Reactive Ion Etching)。另外,藉由使蝕刻阻滯 膜與相移膜不同的方法去除蝕刻時,使用與去除相移 膜使用者不同的氟系氣體之乾式蝕刻、或例如可使用 (Cl2、Cl2 + 02)等氯系氣體的乾式蝕刻、或藉由酸或鹼 等之濕式蝕刻。 以與由SiOxNy膜所成的相移膜之蝕刻相同的氟系 乾式蝕刻可以去除的蝕刻阻滯膜,例如矽、M〇Six、 TaSix、WSX、CrSix、Zi.Six、HfSix 等爲較佳的材料。 如此設置與SiOxNy膜連續、·可以蝕刻的蝕刻阻滯 膜時,步驟上的優點大。而且,與由SiOxNy膜所成相 移膜之蝕刻不同的方法可蝕刻的蝕刻阻滯膜,例如以 C12之乾式鈾刻可以蝕刻的Ta或含之薄膜例如 TaNx、TaCrx、丁aZrx、TaHfx 等、或 Zi*、Hf、或 Cl2 + 〇2544549 V. Description of the invention (4) The layer film and materials that can control the phase difference and transmittance are easy to choose. In addition, a material that achieves the effect of the upper etch block can be selected as the lower layer. In addition, the phase shift mask must be made to reduce the reflectance of the exposure to a certain degree. In addition, the step of inspecting the appearance of a pattern usually uses light having a longer wavelength than the exposure wavelength as the inspection light source wavelength, and generally uses a transmission-type defect inspection device (such as the KLA300 system) for inspection. Therefore, the inspection wavelength (for example, the exposure wavelength is KrF excimer laser (248im), the inspection wavelength is 488nm or 364nm) is too difficult to inspect when the transmittance is too high (for example, 40% or more). In particular, with the shortening of the exposure wavelength, it is necessary to shift the above-mentioned half-tone type phase having high light permeability. In addition, a material with high light transmittance means that the increase rate of the transmittance tends to be large with respect to the change on the longer wavelength side. Therefore, it is more difficult for a half-tone phase shift of a single layer to reduce the transmittance for the wavelength of the inspection light source to a predetermined range. In addition, a newly developed inspection method for transmitted light and reflected light is used in defect inspection devices. The transmittance of the inspection wavelength when inspected in this way can be slightly higher (for example, 50 to 60%) than when inspected using only transmitted light. In addition, the reflectance of the inspection wavelength must be controlled to a certain extent (for example, 3% or more) from the transparent substrate. This condition is a multilayer type in which a partial halftone phase shift is two or more layers, and the reflection characteristics and transmission characteristics of the exposure light source and the inspection light source can be easily controlled. For example, a two-layer halftone type phase shift mask is disclosed in Japanese Patent Application Laid-Open No. 4-544549. V. Invention Description (5) 140635 describes a halftone type phase shifter having a two-layer structure with thin Cr and coating and peeling. (Knowledge Example 1). In addition, a multi-layered structure that can be formed in the same device and etched with the same etching gas is a half-tone type phase shifter located in Japanese Unexamined Patent Publication No. 6-83034 and having a multi-layered structure containing the same element (such as a Si layer and A half-tone phase shifter formed by a two-layer structure of a SiN layer (conventional example 2). In addition, the technique for reducing the transmittance with respect to the wavelength of the light source (conventional example 3) is a single-layer halftone phase shift described in Japanese Patent Application Laid-Open No. 7-168343. The film and the combination with a single-layer film contain a two-layer structure of a transmission film with a small wavelength dependence of transmittance. The desired transmittance can be obtained for both the exposure light source (KrF excimer laser) and the inspection light source (488 nm). (Known example 3). In addition, the phase shifting section focusing on the multilayer structure of the silylated macro-system material is described in Japanese Patent Application Laid-Open No. 200 1 74973. The phase-shifting section includes a macrolayer, a silicon oxide compound, and an oxygen-based upper layer and a molybdenum-based component. A half-tone phase shifter composed of a two-layer structure including a lower layer that does not include Shi Xi (Knowledge Example 4). In addition, Japanese Patent Application Laid-Open No. 200 1-337436 describes that a macrotone, a siloxane, and an oxygen Halftone type phase shifter composed of a two-layer structure consisting of an upper layer as a main component and a lower layer containing chrome or a giant alloy as a main component (conventional example 5). 544549 5. Description of the invention (6) Conventional examples have the following problems. Generally, when an etching mask layer is used as a halftone type phase shift film on a halftone type phase shift film, and then a light-shielding portion is formed at a desired position on the mask. Form a light-shielding Cr layer. For example, in the coating peeling / thin Cr layer / glass substrate of the conventional example 1, a light-shielding Cr layer is formed on the coated glass. At this time, during the pattern processing, a light-shielding pattern that replicates a photoresist pattern is generally used 3 layers of Cr layer / coating peeling / thin Cr layer to construct a mask pattern The selective etching removes the light-shielding Cr layer. Moreover, as far as the light-shielding Cr layer and the thin Cr layer are made of the same material, the effect of the selective removal step of the light-shielding Cr layer on the thin Cr layer is a problem. Specifically, the The thin Cr layer is etched and the pattern is removed by the same principle as the peeling method. When the thin Cr layer is etched on the side, the transmittance in the vicinity of the pattern etch will change. Second, in the conventional example 2, the Si layer and the The SiN layer can be continuously formed by using the same sputtering device and the same silicon as the target. The SiN layer is formed by reactive sputtering using a sputtering atmosphere containing a Si target and nitrogen. The target pores cannot be reproduced, and productivity is problematic. In addition, when SiN is used, the transmittance may decrease excessively with the reduction of the exposure wavelength in recent years. Secondly, MoSiO or Conventional Example 3 is used. MoSiON is used as the material of the single-layer film (upper layer). Here, the inclusion of a metal causes the transmittance to be 544549. 5. Description of the invention (7) becomes smaller and is not suitable for shortening the exposure wavelength in recent years. When the amount becomes smaller, the refractive index becomes smaller, and the film thickness of the halftone phase shift becomes thicker, which is disadvantageous for microfabrication. In addition, in Conventional Example 4 and Conventional Example 5, TaSi.〇 was used as the material of the upper layer. Here, borrow The inclusion of metal reduces the transmittance and is not suitable for short wavelengths of exposure wavelengths in recent years. In addition, as the metal content becomes smaller, the refractive index becomes smaller, and the film thickness of the halftone phase shift becomes thicker, which is disadvantageous for microfabrication. In conventional examples, the lower layer can achieve an etching blocking effect for dry etching by using an upper fluorine-based gas, and then the lower layer is etched by dry etching using a chlorine-based gas. Here, in the conventional example 4, the lower layer system formed by the giant is insufficient in the etching selectivity ratio for the upper layer fluorine-based dry etching. The chrome giant alloy of the conventional example 5 has a slow etching rate with a chlorine-based gas, and a high-precision pattern cannot be obtained. ^ The purpose of the present invention is to provide a half-tone phase shift portion in view of the above background, and provide fineness during etching. The purpose of the halftone type phase shift mask blank plate and the halftone type phase shift mask which are excellent in processability is < The present invention is provided especially when the exposure light source is shortened1, and it can be particularly used for an exposure wavelength of 140 nm to 200 nm Specifically, the half-tone type phase shift mask blank plate and half at high transmittance (transmittance 8 丨 ~ 30%) near 157 nm of F2 excimer laser wavelength and 193 nm of ArF excimer laser wavelength. The purpose is toned-type phase shift mask. -9- 544549 V. Explanation of the invention (8) The invention shows the blank plate of the halftone phase shift mask of the present invention, which is characterized in that the phase shift film is a film mainly composed of silicon, oxygen, and nitrogen, And an etching stopper film formed between the film and the transparent substrate. In the present invention, the half-tone phase shift layer formed on the transparent substrate has a film on the transparent substrate side as the lower layer and a film formed on the lower layer as the upper layer. The inventors of the present invention made the film matrix dense due to SiNx or Si-N bonds, which made it possible to have high resistance to irradiation for exposure, chemical resistance to cleaning liquids, and the like, and that SiOx was high even on the short wavelength side The fact that the transmission rate is based on, therefore, focuses on SiOxNy which can produce the advantages of two materials. In addition, when the composition was controlled in SiOxNy, it was found that a phase shift film suitable for use with a short-wavelength exposure light source was obtained. Furthermore, by using a half-tone phase shift film as a two-layer structure of a SiOxNy film (upper layer) and an etching retardation film (lower layer), it was found that a phase with good exposure light source irradiation resistance, chemical resistance, and pattern processability can be realized Transfer film. Here, the 'etching retardation film' is a film made of a material having a function of preventing the SiOxNy film from being etched, or a film having a function of easily detecting the end point of the phase shift film, or a material having both functions. The upper material is essentially made of silicon, oxygen, and nitrogen. In other words, the upper layer is made of a film mainly composed of silicon, oxygen, and nitrogen. Even when the exposure light source is short-wavelength, it can control the desired transmittance and phase difference in combination with the lower layer of -10- 544549 V. Description of Invention (9), and can improve the resistance to exposure to the exposure light source or wash Chemical resistance of detergent. In addition, since the refractive index can be made large, the film thickness of the entire halftone type phase shift film can be controlled to obtain a phase difference, and the fine processability of the halftone type phase shift film is excellent. The upper layer material is preferably adjusted so that the real part of the complex refractive index η is in the range of n2 1.7, and the imaginary part of the complex refractive index k is preferably adjusted to kS 0.450. This is extremely advantageous for satisfying the optical characteristics of a halftone-type phase shift mask with the single wavelength of the exposure light source. In addition, a range of kS 0.40 is preferred for ρ2 excimer lasers, and a range of 0.07 ′ 0.35 is more preferred. A range of 0.1F kS 0.45 for ArF excimer lasers is preferred. In the case of the 'F2 excimer laser, a range of η ^ 2 · 0 is preferable, and a range of η "2 · 2 is more preferable. The ArF excimer is preferably in the range of η22.0 and more preferably in the range of η22.5. In order to obtain the above-mentioned optical characteristics, the composition range of the above-mentioned constituent elements is 35 to 45 atom% for silicon, 1 to 60 atom% for oxygen, and 5 to 60% for nitrogen. In other words, if the silicon is more than 45% or the nitrogen is more than 60%, the light transmittance of the film is insufficient. Conversely, if the nitrogen is less than 5%, or the oxygen is more than 60%, the function of the half-tone phase shift film will be lost because the transmittance is too high. In addition, if the silicon content is less than 35% or the nitrogen content is more than 60%, the physical and chemical properties of the film structure are unstable. In addition, from the above point of view when using 52 excimer lasers, the above-mentioned -11-544549 V. Description of the invention (1) The composition range of the constituent elements is 35 to 40 atomic% for silicon, 25 to 60 atomic% for oxygen, Nitrogen is preferably 5 to 35 atomic%. Similarly, when ArF excimer is used, the composition range of the above constituent elements is preferably 38 to 45 atomic% for silicon, 1 to 40 atomic% for oxygen, and 30 to 60 atomic% for nitrogen. In addition to the above-mentioned composition, trace impurities (metal, carbon, fluorine, etc.) may be contained. The upper layer of the present invention is formed by reactive sputtering using a target made of substantially silicon, and reactive sputtering using a sputtering atmosphere containing a rare gas and a reactive gas containing nitrogen and oxygen. When a target substance substantially composed of silicon and a mixed target substance such as a metal silicide are used, a stable target substance having a high number density or purity can be obtained. Therefore, it refers to the advantage that the particle generation rate of the obtained film is small. In addition, the etching retardation layer is a film made of a material having a function of preventing the SiOxNy film from being etched, a film having a function of easily detecting the end point of the phase shift film, or a material having both functions. The above-mentioned film system with the function of preventing the SiOxNy film from being etched is a material with a lower ratio for the etching of the phase shift layer, in other words, the etching speed of the SiOxNy film is slower than that of the SiOxN xy film. Materials, specifically, a film made of a material having an etching selection ratio of a phase shift film of 0 or less, preferably 0.5 or less. In addition, the latter has an etch-blocking film that can easily detect the end point of the phase-shift film etching. Its material is that the reflectance difference between the detection of the transparent substrate (such as a synthetic quartz substrate) and the etch-terminated etch terminal (such as 680nm) is relatively low. A film having a large difference between the transparent substrate and the SiOxNy film. -12- 544549 V. Description of the invention (11) Preferably, the material is a material having a higher refractive index (the real part of the complex refractive index) than the SiOxNy film and the transparent substrate. Specifically, a film made of a material having a refractive index difference between the SiOxNy film and the wavelength of the light source for detecting the end of the etching is 0.5 or more, more preferably 1 or more, and the refractive index difference from the transparent substrate is 0.5 or more. A film made of a material of 1 or more is preferred. The uranium etching selection ratio of the etching retardation layer to the substrate is 1.5 or more, and preferably 2.0 or more. In other words, when it is necessary to remove the etching retardation layer, the light transmittance of the light-transmitting portion decreases, and the contrast at the time of pattern reproduction is not good. Even if it can be removed and the etching speed must be larger than the substrate, the substrate may be etched near the end of the etching, resulting in poor processing accuracy. Considering the materials suitable for the above, for example, one or two or more materials selected from the group consisting of magnesium, aluminum, titanium, vanadium, chromium, indium, chromium, niobium, molybdenum, tin, lanthanum, molybdenum, tungsten, sand, materials, or the like Compounds (oxides, nitrides, oxynitrides), etc. The thickness of the etching retardation film is preferably 10 to 200 angstroms. In other words, if it is less than 10 angstroms, the etching cannot be completely prevented and the change in the intended reflectance cannot be detected, so that the pattern processing accuracy may be poor. In addition, depending on the etching step, the pattern enlargement by isotropic etching is performed to a maximum of twice the thickness of fe. Therefore, when the pattern line width is 0.1 μm = 1000 Angstrom or less and the film thickness is greater than 200 Angstrom, a dimensional error of more than 40% will occur, which will have a profound impact on the quality of the photomask. -13- 544549 5. Explanation of the invention (12) Moreover, it is better to etch the retardation layer to have the function of adjusting the transmittance. For the exposure wavelength of the etching retardation layer itself (wavelength 140 ~ 200nm, or near l57nm, or near 193nm), the transmittance is 3 ~ 40%. In this way, the transmittance of the phase-shifted portion can be maintained, and the transmittance of the inspection wavelength longer than the exposure wavelength can be reduced by the etching retardation layer (depending on the stack of different materials) formed under the phase-shifted portion. In other words, the mask inspection in the manufacturing step is a conventional method of measuring the transmitted light intensity by using light having a longer wavelength than the exposure wavelength. In the current inspection wavelength range of 200 to 300 nm, the light transmittance of the light semi-transmitting portion (phase shift portion) is preferably 40% or less. That is, when it is 40% or more, the contrast with the light transmitting part is detached, and the inspection accuracy is not good. When the etching retardation film is a material having a high light-shielding function, the material is, for example, one or two or more materials selected from the group consisting of aluminum, titanium, vanadium, chromium, zirconium, niobium, molybdenum, lanthanum, giant, tungsten, silicon, and bell. Film or such nitride. In addition, the film thickness of the etching retardation layer is preferably introduced with a film thickness sufficiently thinner than the phase shift portion, and a film thickness of 200 angstroms or less is preferable. In other words, if it is more than 200 angstroms, the possibility of reducing the light transmittance at the exposure wavelength to 3% is extremely high. At this time, the phase angle and transmittance can be adjusted by 2 餍 between the SiOxNy film and the etching retardation film. Specifically, the transmittance for the exposure wavelength (wavelength 140 ~ 200nm, or near 157nm, or near 193nm) of the etching block itself is 3 ~ 40%, and the transmittance when laminated with SiOxNy film is adjusted to 3 ~ 40 % Is better. When an etching retardation film is provided, the etching retardation layer exposed on the surface of part (13) corresponding to the light-transmitting part -14-544549 must be removed. This type of etch-blocking layer covers the light-transmitting portion, causing the transmittance of the light-transmitting portion to decrease. The removal method of the etching retardation film is a method in which the etching retardation film is a film made of a material having a function of preventing the SiOxNy film from being etched, which must be different from the etching method of the SiOxNy film. In addition, when the etching retardation film is a film made of a material having the function of easily detecting the end point of the phase shift film etching, the etching method of the SiOxNy film and the etching retardation film may be the same or different. The etching of the phase shift film made of the SiOxNy film is performed by, for example, (11: 3 or fluorine-based gas such as CF4, SF6, C2F6, and a mixed gas thereof (RIE: Reactive Ion Etching). In addition, by making the etching resist When the etching is performed by a different method from the retardation film and the phase shift film, dry etching using a fluorine-based gas different from the user of the phase-shift film is used, or dry etching using a chlorine-based gas such as (Cl2, Cl2 + 02), or By wet etching with acid, alkali, etc. Etching retardation film that can be removed with the same fluorine-based dry etching as the phase shift film made of SiOxNy film, such as silicon, MoSix, TaSix, WSX, CrSix , Zi.Six, HfSix, etc. are better materials. When the etching stopper film which is continuous with the SiOxNy film and can be etched in this way, the step has great advantages. Moreover, it is different from the etching of the phase shift film formed by the SiOxNy film. Method can be used to etch an etching retardation film, such as Ta or containing films that can be etched with dry uranium etched with C12, such as TaNx, TaCrx, butaZrx, TaHfx, etc., or Zi *, Hf, or Cl2 + 〇2

-15- 544549 五、發明說明(14) 之乾式蝕刻可以蝕刻的Cr等爲較佳的材料。 如此設置與S i 0 x N y膜連續、可以蝕刻的蝕刻阻滯 膜時,步驟上的優點大。而且,與由Sl〇xNy膜所成相 移膜之蝕刻不同的方法可蝕刻的蝕刻阻滯膜,例如以 C12之乾式鈾刻可以蝕刻的T a或含τ a之薄膜例如-15- 544549 V. Description of the invention (14) The dry etching such as Cr which can be etched is a better material. When the etching stopper film which is continuous with the Si 0 x N y film and can be etched in this way is provided, the step has a great advantage. Moreover, the etching retardation film can be etched by a method different from the etching of the phase shift film formed by the S10xNy film, such as T a or a film containing τ a that can be etched with a dry uranium etch of C12, such as

TaCrx、TaZrx、TaHfx 等、或 Zr、Hf、或 α + 〇2 之乾式 蝕刻可以蝕刻的Ch•等爲較佳的材料。 此外,蝕刻阻滯膜爲由具有阻止Si〇xNy膜進行蝕 刻功能之材料所成的膜、且透過率高的材料所成時, 可以爲上述單層構造之半色調型相移光罩之透明基板 與光半透過膜間設置鈾刻阻滯膜、沒有去除在透光部 露出的蝕刻阻滯膜之構造。 蝕刻阻滯層中S i 0 x N y膜之氧爲4 0原子%以上時, 或與透明基板之折射率差爲0 · 5以下、較佳者爲〇. 3以 下時予以設置特別有效。 此外’本發明人等發現上層爲使用氟系氣體之乾式 倉虫刻進行餓刻之層時’下層材料爲使用對氟系氣體而 言具有耐性且與氟系氣體不同的氣體(例如氯系氣體) 之乾式蝕刻、可以蝕刻之所定材料。 該所定材料之第1例如選自於A卜Ga、Hf、Ti、 V、及Zr之第1群金屬單體、或含有二種以上此等金 屬之材料(含有合金之其他混合體等)(以下稱爲第1材 料)。此等選自於第1群金屬單體或第丨材料,係爲使 -16- 544549 五、發明說明(15) 用對氟系氣體具有耐性、且與氟系氣體不同的氣體(例 如氯系氣體)之乾式蝕刻、可以蝕刻的材料。 此等選自於第1群金屬單體或材料係爲於使用系 氣體之乾式蝕刻中蝕刻耐性高、使用與氟系氣體不同 的氣體(例如氯系氣體、溴系氣體、碘系氣體等)之乾 式蝕刻中可容易蝕刻的材料。 下層對使用氟系氣體之乾式蝕刻而言必須具有可得 到對上層而言蝕刻阻滯層之效果的耐性,下層材料之 倉虫刻速度係視下層之厚度、與上層之蝕刻速度(以下稱 爲运擇比)而不同’以0〜數十埃/min較佳。另外,於 使用下層氯系氣體之乾式蝕刻中,可去除所需蝕刻步 驟中所容許程度的蝕刻,與基板材料之選擇比以具有 5個以上高蝕刻速度較佳、更佳者爲具有1 〇倍以上蝕 刻速度之材料。 於選自於第1群金屬單體中,就耐藥品性高而言以 Hf、Zr等較佳。就可容易製作濺射用目的物而言以 Al、Ti、V等較佳。 上述所定材料例如第2爲在一種選自於Ci·、Ge、 Pd、Si、Ta、Nb、Sb、Pt、· Au、Po、Mo 及 w 之第 2 群 金屬中添加至少一種選自於上述第i群(A1、Ga、Hf、 Τι、V、及Zr)之材料(含有合金之其他混合物等)。此 等材料係藉由使選自於第1群之金屬添加於選自於第 2群之金屬中’具有充分對氟系氣體之耐性、且使用 -17- 544549 五、發明說明(16) 與氟系氣體不同的氣體(例如氯系氣體、溴系氣體、職 系氣體等)之乾式蝕刻、可以蝕刻的材料。總之,可得 達成與第1材料相同的作用之材料。 此處,第2群例舉的金屬(除c r外)與第1群例舉的 金屬相比時,對氟系氣體而言耐性不佳。添加有選自 於第1群金屬時,與沒有添加時相比位可提高對氟系 氣體之耐性者,且添加有選自於第1群金屬時具有充 分對氟系氣體而言所需的耐性。而且,Cr具有與第1 群例舉的金屬同等對氟系氣體之耐性。 另外’第2群金屬對氯系氣體而言之蝕刻等級係爲 與第1群金屬同等、或藉由添加第1群可以彌補的程 度稍差的材·料。第1群例舉的金屬如上所述例如由於 對氯系氣體而言可以容易蝕刻的材料,在第2群例舉 的金屬中添加第1群例舉的金屬之材料例如爲可保持 或提高對氯系氣體而言鈾刻特性之材料。 如此本發明人等發現藉由在選自於第2群金屬中少 量添加選自於第1群金屬,可保持對氯系氣體之蝕刻 特性、且可顯著提高對氟系氣體之耐性。對選自於第 2群金屬而言選自於第1群金屬之添加量爲2%以上。 該量以下之添加量中無法具有充分的添加材料特性, 故無法得到上述提高對氟系氣體之耐性等充分效果。 上述所定材料之第3例如在上述第1材料或第2材 料中含有氮及/或碳之材料。在不會損害所需範圍下以 -18- 544549 五、發明說明(17) 含有氮及/或碳較佳。 此處,氟系氣體例如CxFy(例如CF4、C2F6)、 CHF3、此等混合氣體或在此等之中添加氣體(〇2)、稀 有氣體(He、Ai·、Xe)者等。 而且’除氟系氣體外之氣體可使用氟外之鹵素系氣 體(氣系、溴系、碘系或此等之混合氣體)。氯系氣體 例如Cl2、BC13、HC1、此等之混合氣體或於此等中添 加氣體之稀有氣體(He、Ar、Xe)者等。 溴系氣體例如Br2、HBr、此等之混合氣體或於此等 中添加氣體之稀有氣體(He、Ar、Xe)者等。碘系氣體 例如I2、HI、此等之混合氣體或於此等中添加氣體之 稀有氣體(He、Ar、Xe)者等。 此處’與氟系氣體不同的氣體可使用氯系氣體,就 蝕刻等級中較溴系氣體或碘系氣體爲快而言較佳。另 外’可使用同時含有氟與氟外之氣體的氣體。此時, 電漿中活性種之激勵種比例愈多時愈優異。 氟系激勵種多時,規定爲氟系氣體。氟系氣體外之 氣體激勵種(例如氯)多時,規定爲該氟系外之氣體。 而且’於單體氣體組成中含有氟與以外之鹵素時(例如 C1F3等),作爲氟系氣體。 氟系氣體外之氣體以不加入氧作爲添加氣體者較 佳。該理由係加入氧氣時,因表面氧化而降低蝕刻之 故。另外’例如Cr之蝕刻中一般使用的蝕刻氣體TaCrx, TaZrx, TaHfx, etc., or Zr, Hf, or Ch +, etc., which can be etched by dry etching are preferred materials. In addition, when the etching retardation film is a film made of a material having a function of preventing the SiOxNy film from being etched and has a high transmittance, it may be transparent to the halftone type phase shift mask of the single-layer structure described above A structure in which a uranium-etched retardation film is provided between the substrate and the light semi-transmissive film without removing the etching retardation film exposed at the light-transmitting portion. This is particularly effective when the oxygen in the Si 0 x N y film in the etching retardation layer is 40 atomic% or more, or the refractive index difference with the transparent substrate is 0.5 or less, and preferably 0.3 or less. In addition, when the present inventors discovered that the upper layer is a layer of dry-type engraving using a fluorine-based gas, the lower layer is a gas that is resistant to the fluorine-based gas and is different from the fluorine-based gas (for example, a chlorine-based gas). ) Dry etching, can etch any given material. The first of the predetermined material is, for example, selected from the group A metal monomers of Ga, Hf, Ti, V, and Zr, or a material containing two or more of these metals (other alloys containing alloys, etc.) ( Hereinafter referred to as the first material). These are selected from the first group of metal monomers or materials, in order to make -16-544549 V. Description of the invention (15) Use a gas that has resistance to fluorine-based gases and is different from fluorine-based gases (such as chlorine-based gases) Gas) dry etching, etchable materials. These are selected from the first group of metal monomers or materials that are highly resistant to etching in dry etching using system gases and use gases different from fluorine-based gases (such as chlorine-based gases, bromine-based gases, iodine-based gases, etc.) Materials that can be easily etched in dry etching. The lower layer must have resistance to dry etching using a fluorine-based gas to obtain the effect of the etching retardation layer on the upper layer. The speed of the lower layer material depends on the thickness of the lower layer and the etching speed of the upper layer (hereinafter referred to as Operational selection ratio) is different, with 0 ~ tens of angstroms / min being better. In addition, in the dry etching using the lower chlorine-based gas, the degree of etching allowed in the required etching step can be removed, and it is better to have a high etching rate of 5 or more than the selection of the substrate material, and it is better to have 1 〇 A material with an etching speed more than doubled. Among the metal monomers selected from the first group, Hf, Zr and the like are preferred in terms of high chemical resistance. Al, Ti, V, and the like are preferable because the target for sputtering can be easily produced. The second predetermined material is, for example, a second group of metals selected from the group consisting of Ci ·, Ge, Pd, Si, Ta, Nb, Sb, Pt, Au, Po, Mo, and w. Materials of group i (Al, Ga, Hf, Ti, V, and Zr) (including other mixtures of alloys, etc.). These materials are made by adding a metal selected from the first group to a metal selected from the second group, 'having sufficient resistance to fluorine-based gases, and using -17-544549. V. Description of the invention (16) and Dry etching and materials that can be etched for different gases (such as chlorine-based gas, bromine-based gas, and grade-level gas). In short, a material that achieves the same effect as the first material can be obtained. Here, the metal (except c r) exemplified in the second group is less resistant to the fluorine-based gas than the metal exemplified in the first group. When a metal selected from the first group is added, it has a higher resistance to the fluorine-based gas than when it is not added, and when the metal selected from the first group is added, it has a sufficient requirement for the fluorine-based gas. patience. In addition, Cr has the same resistance to fluorine-based gases as the metal exemplified in the first group. In addition, the etching level of the metal of the second group with respect to the chlorine-based gas is the same as that of the metal of the first group, or a material that is slightly inferior by adding the first group. The metals exemplified in the first group are materials that can be easily etched with respect to a chlorine-based gas, as described above, and the materials exemplified by adding the metals exemplified in the first group to the metals exemplified in the second group are, for example, capable of retaining or improving Chlorine gas is a uranium-etched material. In this way, the present inventors have found that by adding a small amount of a metal selected from the first group to a metal selected from the second group, the etching property against a chlorine-based gas can be maintained, and the resistance to a fluorine-based gas can be significantly improved. The addition amount of the metal selected from the first group is 2% or more for the metal selected from the second group. The addition amount of less than this amount cannot have sufficient additive material characteristics, and thus the above-mentioned sufficient effects such as improvement of resistance to a fluorine-based gas cannot be obtained. The third of the predetermined materials is, for example, a material containing nitrogen and / or carbon in the first material or the second material. Without prejudice to the required range, -18- 544549 V. Description of the invention (17) It is preferable to contain nitrogen and / or carbon. Here, the fluorine-based gas is, for example, CxFy (e.g., CF4, C2F6), CHF3, a mixed gas thereof, or a gas (02), a rare gas (He, Ai, Xe), or the like is added thereto. Further, as the gas other than the fluorine-based gas, a halogen-based gas other than fluorine (a gas-based, bromine-based, iodine-based or a mixed gas thereof) can be used. Chlorine-based gas such as Cl2, BC13, HC1, a mixed gas thereof, or a rare gas (He, Ar, Xe) to which a gas is added. The bromine-based gas is, for example, Br2, HBr, a mixed gas thereof, or a rare gas (He, Ar, Xe) to which a gas is added. Iodine-based gas such as I2, HI, a mixed gas thereof, or a rare gas (He, Ar, Xe) to which a gas is added. Here, a chlorine-based gas can be used as a gas different from a fluorine-based gas, and it is preferable that the etching level is faster than that of a bromine-based gas or an iodine-based gas. Alternatively, a gas containing both fluorine and a gas other than fluorine can be used. At this time, the more active species in the plasma, the better the incentive species. When there are many kinds of fluorine-based excitations, the fluorine-based gas is specified. When there are many kinds of gas-excited species other than fluorine-based gas (such as chlorine), it is specified as the gas outside of the fluorine-based gas. Further, when the monomer gas composition contains fluorine and other halogens (for example, C1F3, etc.), it is a fluorine-based gas. The gas other than the fluorine-based gas is preferably one in which oxygen is not added. This reason is that when oxygen is added, etching is reduced due to surface oxidation. In addition, for example, an etching gas commonly used in the etching of Cr

-19- 544549 五、發明說明(18) .Cl2 + 02、因反應複雜而容易脫出蝕刻分佈、例如藉由 Cl2之單獨氣體進行乾式蝕刻時,就可得高精度圖案而 Η較佳。 其次,說明滿足上述要件之各層作用。 下層藉由具有對氟系氣體之耐性、使上層使用氟系 氣體進行乾式蝕刻加工、即使下層表面露出、下層之 膜減少慢。因此,可設定考慮自圖案疏密差等產生的 蝕刻分佈去除產生上層殘膜之充分上層過量蝕刻時 間。結果,光罩圖案可形成忠實的圖案、可提高尺寸 精度。 下層藉由使用與氟系氣體不同的氣體(例如氯系氣 體)之.乾式蝕刻可予以蝕刻的(對氯系氣體而言具有某 種程度的蝕刻等級)材料,可使下層例如使用氯系氣體 進行乾式蝕刻。即使透明基板表面露出,幾乎完全不 會深入透明積層表面。而且,可以避免因深入透明基 板表面、相位差變動及蝕刻之不齊致使面內相位差不 齊的情形,且可得高相位差控制性。此係大多作爲相 移光罩之基板使用的石英基板與下層材料相比、對去 除下層之乾式蝕刻而言蝕刻等級小之故。 對下層氯系氣體而言蝕刻等級愈高預佳,視CD尺 寸精度要求値或蝕刻條件不同而不同,惟以2500埃 /min以上、3000埃/min以上、4000埃/min以上較佳。 具體而言,相移光罩中下層通常爲100埃以下。下層 -20- 544549 五、發明說明(19) 由於蝕刻等級高、下層之蝕刻以數秒完成。過量蝕刻 時間短、蝕刻等級爲3 60埃/mm以上、在1秒內以6 埃/sec以上之蝕刻量(深入量)極少之故。 此外,與以習知技術說明的遮光Cr層/塗覆剝離/薄 Ci:層/透明基板之構成不同,本發明之遮光Cr層/上層 /下層/透明基板之構成,由於遮光Cr層與下層材料由 不同材料所成,故於遮光Cr層之去除步驟中可以選擇 處理。該去除步驟不限於一般所使用的硝酸铈第二銨 液爲主體之濕式步驟,可對應使用乾式蝕刻。總之, 濕式蝕刻不需乾式蝕刻,可防止於遮光Cr層之選擇去 除步驟中下層被蝕刻之不良影響。總之,具有對應該 步驟之適合性。 此外,就進行下層及上層之成膜而言,藉由使此等 之膜構造爲無定形構造或粒界極小構造予以成膜、可 以提高圖案精度。此係此等膜構造爲柱狀構造或結晶 構造時,於蝕刻加工時圖案側產生凹凸(閃耀)情形’ 而此等膜構造爲無定形構造或粒界極小的構造時’於 蝕刻加工時圖案側壁由略平面(略直線)所成。 另外,此等構造爲柱狀構造或結晶構造時’會產生 膜應力的問題。然而,此等之膜構造爲無定形構造或 粒界極小構造之構造時,容易控制膜應力。 而且,相移膜之上層由含有SiOx'SiNx'SiOxNy、 SiCx、SiCxNy、SiCx〇yNz或在此等中含有較佳者 -21 - 544549 五、發明說明(2〇) M/(Si + H)X100爲10原子%以下金屬(例如一種或二種 以上M : Mo、Ta、W、Cr、Zr、Hf)之材料所成時,以 使用氟系氣體之乾式蝕刻可以容易加工,對使用氯系 氣體之乾式蝕刻而言具有高耐性,故較佳。另外,上 層爲由此等材料所成時,曝光波長爲ArF準分子雷射 (1 9 3 n m)或F 2準分子雷射(1 5 7 n m)之短波長化時,可滿 足所定透過率及相移量,可對應於短波長化。 相移光罩空白板例如具有由Si〇x& SiOxNy層/由上 述所定材料所成的下層(具有上述蝕刻特性之層)/透明 基板所成的構成。於該構成下使SiOx& SiOxNy層以使 用氟系氣體之乾式蝕刻予以圖案加工、相當於下層的 部分藉由使用氯系氣體之乾式蝕刻予以加工、可降低 底層之損害率。 藉由利用該構成之空白,於進行短波長化之世代中 可控制光學特性,可得相移效果。具體而言,藉由上 層之31〇,及SiOxNy層的厚度或組成等,主要控制透過 率。藉此可控制光學特性。 另外,使下層藉由使用氯系氣體之乾式蝕刻予以加 工,可迴避底層之透明基板受到傷害。由於藉由深入 透明基板可迴避相移量之變化、可控制上述光學特 性,故可得所定相移效果。 而且,本發明以在相移光罩空白板上具有遮光Cr 層、且在遮光Cr層上形成光阻圖案以形成遮光Cr層 - 22- 544549 五、發明說明(21 ) 圖案、且以光阻圖案與遮光Cr圖案、或僅以遮光Cr 圖案作爲光罩使相移膜蝕刻較佳。相移膜蝕刻後,遮 光Ci•圖案殘留有相移光罩之非複製範圍之遮光帶部 分。此外,去除複製範圍內外之定向標記形成部、或 圖案之邊界附近,去除除所需範圍。而且,遮光Cr層 可以爲Cr、或在Ci·層含有氧、碳、氮等之單層、或 多層膜。 於本發明中,藉由使檢查波長之上層膜的折射率較 下層之折射率小,可以調整對檢查光源之反射率。而 且,於曝光波長中使上層膜之折射率較下層膜之折射 率小,可使對曝光光源之反射率調整於要求値以下之 値。 具體而言,曝光光源之透過率爲3〜20%、較佳者 爲6〜20%、曝光光源之反射率爲30%、較佳者爲20% 之圖案複製,故爲企求。而且,檢查光源透過率爲 40%以下時,就可使用光罩之透過光進行缺陷檢查而 言故較佳。藉由使檢查光源透過率爲60%以下及檢查 光源反射率爲12%以上,就可使用光罩之透過光與反 射光進行缺陷檢查而言故較佳。 使用本發明之半色調型相移光罩時之曝光光源’特 別是使用F2準分子雷射波長之157nm附近、及ArF準 分子波長之193nm附近。可製得使半色調相移部設定 於高透過率(透過率8〜30%)之高透過率品質。 -23 - 544549 五、發明說明(22) 此外,本發明中進行上層係爲主要具有調整相移量 功能之層(相位調整層)、且下層爲主要具有調整透過 率功能之層(透過率調整層)之膜設計。 換言之,通過上層之波長λ之曝光光源的相移量 (Kdeg)爲φ時,相位調整層之膜厚d以下式表示, φ = ( φ / 360) X λ / (η-1)......(式 3) 其中,η係表示對波長λ之光而言相位調整層之折射 率。 半色調型相移部之相移量φ係下層(透過率調整層) 之相移量爲Φ’時,必須設計如下式。 ρ = φ + 180。 Φ’之値大約爲-20° $φ’$20°之範圍。換言之,在該 範圍外時下層之膜厚過厚、曝光光源之透過率無法變 大。因此,上層之膜厚d可在下述式(4)範圍內設計。 0·44Χ λ / (n-l)SdS0.56x λ / (n-1)···(式 4) 具體而言,下層之膜厚爲1〜20nm、更佳者爲1〜 1 5nm。結果,使半色調型相移膜之層膜厚可控制爲 12〇nm以下、更佳者爲l〇〇nm以下。 而且,半色調型相移膜之相移量的理想値爲180。, 實用上可爲180。±5。。 另外,本發明之透明基板可使用合成石英基板等, 特別是使用F 2準分子雷射作爲曝光光源時,可使用F 2 塗漆石英基板、氟化鈣基板等。 -24- 544549 五、發明說明(23) 下層之材料,特別是實質上由鉅及飴所成的材料、 或實質上由矽及給所成的材料較佳。該下層材料具有 對氟系乾式蝕刻之耐性、且可藉由氯系乾式蝕刻氣體 去除者。藉此’半色調型相移膜之加工方法(鈾刻方法) 可使上層藉由使用氟系氣體之乾式蝕刻進行蝕刻、且 使下層藉由使用氯系氣體之乾式蝕刻進行蝕刻。 具體而言,鉅或矽即使爲單體、係爲使用對透明基 板而言不會有傷害性之氯系氣體的乾式蝕刻進行纟虫刻 之材料。然而,對上層之使用氟系氣體之乾式蝕刻的 耐性沒有那麼優異。 另外’給單體係爲對上層之使用氟系氣體的乾式蝕 刻而言耐性優異、且可使用氯系氣體之乾式蝕刻進行 蝕刻的材料。藉由在鉅或矽中添加飴,可較添加前提 高對使用氟系氣體之乾式蝕刻之耐性,且可保持或提 高對氯系氣體之蝕刻特性的材料。對鉅或矽而言之耠 添加量爲2原子%以上,就可得對氟系乾式蝕刻而言 之耐性而言較佳。 下層爲實質上由鉬及給、或砂及給所成的材料時, 下層所含的給添加量以50原子%以下較佳。其理由係 由鉅及矽所成的光半透過膜於曝光波長之透過率與檢 查波長之透過率沒有很大的差別之故。或由於檢查波 長之透過率較曝光波長之透過率爲大、適於光學特性 (曝光光源與檢查光源之透過率及/或反射率)設計,藉 -25- 544549 五、發明說明(24) 由含有充分的鉬或矽、可以容易進行光學特性之設 計。 本發明之半色調型相移光罩空白板及半色調型相移 光罩中,半色調相移膜於成膜後可施予熱處理或雷射 退火處理者。藉由進行熱處理,可以緩和膜應力、提 高耐藥性及照射耐性、可得透過率之微調整等效果。 熱處理溫度爲200°C以上、較佳者爲38CTC以上。 另外,於本發明中可在半色調相移膜上形成以鉻爲 主成分之遮光膜。該遮光膜使用作爲半色調相移膜之 蝕刻光罩層,然後藉由選擇性去除、可以在半色調型 相移光罩上之所需處或範圍形成遮光部。以鉻爲主成 分之遮光膜例如含有鉻、除鉻外之氧、氮、碳、氟等 之一層或多層(包含具連續組成傾斜之膜)構造的膜、 而且,以設計在表層部含有氧之防止反射膜(防止曝光 波長之反射)較佳。 半色調型相移光罩之半色調相移膜上形成以鉻爲主 成分的遮光膜時,可在複製範圍之外周上形成作爲遮 光帶之遮光膜。此外,可形成爲增加調整等之標記對 比時在標記形成處所形成的遮光膜。或者,就可得相 移效果而言爲減低側線光時,可形成除光半透過部之 邊界附近外之範圍所形成的遮光膜。 而且,本發明包含可使上述上層及下層之乾式蝕刻 特性活化、且除上下關係之限定及用途限定外之形 -26- 544549 五 、發明說明(25 ) 態。藉此可適用於蝕刻光罩材料、可活化作爲蝕刻阻 滯材料之利用等範圍的活用蝕刻用積層材料(乾式蝕刻 加工前之積層體材料)。 乾式蝕刻特性優異的材料要求不限於使用上述相移 之光罩,包含適用於以保護底層爲目的之蝕刻阻滯層 (蝕刻停止層)、伴隨要求高選擇性或圖案微細化之薄 月吴化的融刻材料之廣泛利用範圍者。 上述形態係第2層材料係爲於使用氟系氣體之乾式 倉虫刻中蝕刻耐性高、於使用氯系氣體之條件中可容易 鈾刻的材料(以下爲具有所定作用之材料)。該第2層 材料係爲含有 Al、Ga、Hf、Ti、V、Ζι·中任何一種 者’由此等元素單體所成的膜及藉由在其他金屬中添 加此等元素以製得上述所定作用的膜。對其他金屬之 添加量爲2 %以上。於該量以下之添加量時,無法充分 具有添加材料特性之蝕刻中無法得到上述所定之作 用。此處所示之其他金屬係爲對氯系氣體而言可以蝕 刻的材料。其他金屬例如Ci.、Ge、Pd、Si、Ta、Nb、 Sb、Pt、Au、P〇、M〇、W 等。 藉由使用此等材料可以利用視氣體種類之不同乾式 触刻特性的高選擇比蝕刻。該效果係爲可賦予構成層 之薄膜化(例如蝕刻光罩層之薄膜化)者,可提高微細 圖案之精度。 另外’就進行第1層材料及第2層材料之成膜而 -27- 544549 五、發明說明(26) 言,使此等膜構造爲無定形構造或粒界極小的構造下 予以成膜、可賦予圖案精度提高性。此係此等膜構造 爲柱狀構造或結晶構造時,於蝕刻加工時在圖案壁側 產生凹凸(閃耀),惟此等膜構造爲不定形構造或粒界 極小的構造時,蝕刻加工時圖案側壁爲略平面(略直線) 所成。而且,此等膜構造爲柱狀構造或結晶構造時, 會產生膜應力的問題。然而,此等膜構造爲無定形構 造或粒界極小的構造時,容易控制膜應力。 上述形態之第1層包含基板之上層部相位當於第1 層時。總之,第2層作爲蝕刻光罩層時,包含形成深 入基板表層部(雕入部)圖案。而且,上述形態之積層 體包含第2層與基板(上層部相當於第丨層)之積層 體。 圖式簡單說明 第1圖係爲本發明實施例之半色調型相移光罩空白 板及半色調型相移光罩之截面圖。 第2圖係爲實施例2製作的試料之半透光部(相移 部)中透過光譜圖。 弟3圖係爲貫施例7所製作的試料之蝕刻時間與 反射光強度的關係圖。 第4圖係爲說明實施例1 〇中各層之加工順序典型 圖。 第5圖係爲說明實施例11中各層之加工順序典型 •28- 544549 五、發明說明(27 ) 圖。 第6圖係爲說明參考例2中各層之加工順序典型 圖。 第7圖係爲實施例之半色調型相移光罩空白板及 半色調型相移光罩之製作步驟圖。 第8圖係爲實施例之半色調型相移光罩空白板及 半色調型相移光罩的製造步驟圖(續)。 第9圖係爲實施例1 3之半色調型相移光罩空白板 的光學特性之光譜圖。 第10圖係爲實施例14之半色調型相移光罩空白板 的光學特性之光譜圖。 第11圖係爲本發明實施例之半色調型相移光罩空 白板及半色調型相移光罩之變形例圖。 實施發明之最佳形熊 於下述中係爲實施例及參考例、且具體說明本發 明,惟本發明不受下述實施例所限制。 第1 (1)圖係爲藉由上述實施例及參考例之半色調型 相移光罩空白板,第1(2)圖係爲藉由上述實施例及參 考例之半色調型相移光罩的截面。 於第1 (1)圖中,半色調型相移光罩空白板1係在透 明基板2與其上藉由下層3及下層上所形成的上層4 所成半色調型相移膜5構成。 第1(2)圖中,半色調型相移光罩Γ係在透明基板2 -29- 544549 五、發明說明(28) 上藉由下層部3’及下層部3’上所形成的上層部4’所成 半色調型相移部5 ’構成。該構成下形成有形成半色調 相移部之半透光部6與沒有形成半色調相移部之透光 部7所成光罩圖案8。半色調相移膜5及半色調相移 部5’對曝光光源而言具有所需之透過率、且相位移角 大約呈180度。而且,檢查波長之透過率、或透過率 與反射率設計於企求的範圍內。 (實施例1〜8) 實施例1〜8係爲對應於F2準分子雷射曝光之半色 調型相移光罩的具體例,皆在基板上使用合成石英基 板,且在基板與SixNy層之間設置蝕刻阻滯層。 (成膜) 首先,在合成石英基板上順序積層蝕刻阻滯層之層 A、及由SixNy所成的層B。本實施例藉由濺射法製 作。2層膜之層A、B的基本組成及目的物或濺射氣體 之種類等條件、以及各層之層厚,各實施例如表丨所 示。而且,層A、B各膜厚,各層之相移量總合於波 長157nm中爲180°時,利用上述數式(1)予以調整。 (光學特性) 使製作的2層膜之透過率使用真空紫外分光光度計 測定時,F2準分子雷射之波長157nm的透過率如表2 所示,設置蝕刻阻滯層時可得作爲半色調相移光罩之 必要充分3〜40%之光透過率。 -30- 544549 五、發明說明(29) 表1 _目的物 基板 氣體比例(%) 膜厚 氫氣. 氮氣 氧素 (nm) 貫施例1 層A AI2O3 合成石英 100.0 0.00 0.00 15 層B Si 40.0 59.00 1.00 75 實施例2 層A Ta 合成石英 40.0 60.00 0.00 10 層B Si 40.0 59.00 1.00 72 實施例3 層A Ta-Zr 合成石英 100.0 0.00 0.00 8 層B Si 40.0 59.00 1.00 78 實施例4 層A Ta-Hf 合成石英 100.0 0.00 0.00 8 層B Si , 40.0 59.00 1.00 78 實施例5 層A Zr 合成石央 100.0 0.00 0.00 5 層B Si 40.0 .59.00 1.00 80 實施例6 層A Hf 合成石央 100.0 0.00 0.00 5 層B Si 40.0 59.00 1.00 80 實施例7 層A Si 合成石央 100.0 0.00 0.00 4 層B Si .40.0 59.00 1.00 80 實施例8 層A MoSix □成石央 100.0 0.00 0.00 8 層B Si 10.0 60.00 30.00 86 表 2 光透過率(%) (l57nm) 實施例1 13.1 實施例2 7.6 實施例3 6.6 賓施例4 5.8 實施例5 15.7 實施例6 14.2 :實施例7 ‘ 9.8 實施例8 10.1 -31- 544549 五、發明說明(3〇) 此外,實施例2之透過光譜如表2所示。h準分子 雷射曝光用半色調型相移光罩之檢查波長約爲 25 0nm,由於在該範圍之透過率爲40%以下’故可得充 分的檢查精度。而且’實施例1、3〜7相同地250nm 前後之透過率爲40%以下。 在實施例1〜6所製作的2層膜上塗覆光阻劑、經 由曝光•顯像步驟形成光阻圖案。然後,以該光阻圖 案作爲光罩,藉由乾式蝕刻法使2層膜之上層B(SixNy 膜)蝕刻。本實施例中使用CF4氣體,且蝕刻時間設定 爲較可使SixNy層之膜厚充分蝕刻的時間長30%之時 間。結果,SixNy膜以光阻圖案爲基準予以圖案化、且 蝕刻之進行藉由下層之蝕刻阻滯膜停止。 藉由其他實驗求得的本實施例之合成石英基板、層 A、層B(SixNy)之鈾刻速度如表3所示。 -表3 CF4、I虫刻率· (A/xnin) 選擇比 (A7B) 選擇比 (對基板) 石英基板 118.83 層 B(Si〇xNy) 148.7 ^-- 1.25 層A(A1〇J N.D. η ^<01 «0.1 A(TaNx) 15 0.101 0:13 層 A(Ta-Zr) 10 0.067 0.08 層 A(Ta-Hf) 20 Γ 0134 0.17 層 A(Zr) N.D. «0.1 層 A(Hf) 8 l—_〇^〇54 0.07 [* 1 · N · D · (η 〇 t d e t e c t e d) ’係表不無法測定之小値] -32- 544549 五、發明說明(μ ) 對層B而言層A之蝕刻速度減少至1 /5以下,實施 例1、2之層a可確認爲「具有阻止sixNy膜進行蝕刻 之功能」蝕刻阻滯膜。 然後,使表面上露出的層A藉由蝕刻去除。蝕刻氣 係實施例1使用過氫硫酸、實施例2〜6使用Cl2氣體 時’皆可得良好圖案形狀。藉由其他實驗所求得的合 成石英基板、層A之蝕刻速度如表4所示。對合成石 英基板而言層A之蝕刻速度爲5倍以上,實施例1、2 之層A可確認爲「可去除的」層。 表 4-19- 544549 V. Description of the invention (18). Cl2 + 02. It is easy to remove the etching distribution due to the complex reaction. For example, when dry etching is performed with a separate gas of Cl2, a high-precision pattern can be obtained. Next, the functions of the layers that satisfy the above requirements will be described. The lower layer has resistance to a fluorine-based gas, so that the upper layer is dry-etched using a fluorine-based gas, and even if the surface of the lower layer is exposed, the film of the lower layer decreases slowly. Therefore, it is possible to set a sufficient upper-layer overetching time which takes into account the removal of the etching distribution due to the pattern density difference and the like to generate the upper-layer residual film. As a result, the mask pattern can form a faithful pattern, and the dimensional accuracy can be improved. The lower layer uses a gas different from fluorine-based gas (such as chlorine-based gas). Dry etching can be etched (with a certain degree of etching level for chlorine-based gases). Perform dry etching. Even if the surface of the transparent substrate is exposed, it hardly penetrates into the surface of the transparent laminate. In addition, it is possible to avoid in-plane phase difference due to penetration into the surface of the transparent substrate, variation in phase difference, and uneven etching, and high phase difference controllability can be obtained. This type of quartz substrate, which is mostly used as a substrate for a phase shift mask, has a lower etching level than the underlying material for dry etching to remove the underlying layer. For the lower chlorine-based gas, the higher the etching level is, the better it is, depending on the CD size accuracy requirements or the etching conditions, but it is preferably 2500 Angstroms / min or more, 3000 Angstroms / min or more, and 4000 Angstroms / min or more. Specifically, the lower layer in the phase shift mask is usually 100 angstroms or less. Lower layer -20- 544549 V. Description of the invention (19) Due to the high etching level, the etching of the lower layer is completed in a few seconds. The excessive etching time is short, the etching level is 3 60 angstroms / mm or more, and the amount of etching (deep penetration) at 6 angstroms / sec or more in 1 second is extremely small. In addition, the structure of the light-shielding Cr layer / upper layer / lower layer / transparent substrate of the present invention is different from the structure of the light-shielding Cr layer / coating and peeling / thin Ci: layer / transparent substrate explained by the conventional technology. The material is made of different materials, so it can be selected in the step of removing the light-shielding Cr layer. This removing step is not limited to the wet step in which the second ammonium cerium nitrate solution is generally used, and dry etching can be used correspondingly. In short, wet etching does not require dry etching, which can prevent the adverse effect of the lower layer being etched during the selective removal step of the light-shielding Cr layer. In short, it is suitable for the corresponding steps. In addition, in the case of forming a film on the lower layer and the upper layer, patterning these films into an amorphous structure or a structure with a very small grain boundary can increase the pattern accuracy. When the film structure is a columnar structure or a crystalline structure, unevenness (shine) occurs on the pattern side during the etching process, and when the film structure is an amorphous structure or a structure with a very small grain boundary, the pattern is during the etching process. The side wall is formed by a slightly flat (slightly straight). In addition, when such a structure is a columnar structure or a crystalline structure, a problem of film stress occurs. However, when these film structures have an amorphous structure or a structure with extremely small grain boundaries, it is easy to control the film stress. Moreover, the upper layer of the phase shift film is composed of SiOx'SiNx'SiOxNy, SiCx, SiCxNy, SiCxOyNz or better among them-21-544549 5. Description of the invention (2) M / (Si + H) When X100 is made of 10 atomic% or less metal (for example, one or two or more types of M: Mo, Ta, W, Cr, Zr, Hf), it can be easily processed by dry etching using a fluorine-based gas. Gas dry etching is preferred because it has high resistance. In addition, when the upper layer is made of such materials, the short wavelength of the exposure wavelength of ArF excimer laser (193 nm) or F 2 excimer laser (15 7 nm) can satisfy the predetermined transmittance. And the amount of phase shift can correspond to a shorter wavelength. The phase shift mask blank plate has a structure made of, for example, a SiOx & SiOxNy layer / a lower layer (a layer having the above-mentioned etching characteristics) made of the above-mentioned predetermined material / a transparent substrate. With this structure, the SiOx & SiOxNy layer is pattern-processed by dry etching using a fluorine-based gas, and the portion corresponding to the lower layer is processed by dry-etching using a chlorine-based gas to reduce the damage rate of the bottom layer. By using the blank of this structure, the optical characteristics can be controlled in the generation where the wavelength is shortened, and a phase shift effect can be obtained. Specifically, the transmittance is mainly controlled by the upper layer of 310 and the thickness or composition of the SiOxNy layer. This makes it possible to control the optical characteristics. In addition, the lower layer can be processed by dry etching using a chlorine-based gas to avoid damage to the transparent substrate on the bottom layer. Since the change in the amount of phase shift can be avoided and the optical properties can be controlled by penetrating the transparent substrate, a predetermined phase shift effect can be obtained. Moreover, in the present invention, a light-shielding Cr layer is formed on a blank plate of a phase shift mask, and a photoresist pattern is formed on the light-shielding Cr layer to form a light-shielding Cr layer-22- 544549 V. Description of the Invention (21) The pattern and the photoresist The pattern and the light-shielding Cr pattern, or only using the light-shielding Cr pattern as a photomask make the phase shift film etching better. After the phase shift film is etched, the light-shielding Ci • pattern remains with a portion of the light-shielding band in the non-replication range of the phase shift mask. In addition, the directional mark forming portion inside or outside the reproduction range or the vicinity of the boundary of the pattern is removed to remove the required range. The light-shielding Cr layer may be Cr, or a single layer or a multilayer film containing oxygen, carbon, nitrogen, or the like in the Ci · layer. In the present invention, by making the refractive index of the upper layer film smaller than that of the lower layer, the reflectance to the inspection light source can be adjusted. In addition, in the exposure wavelength, the refractive index of the upper layer film is smaller than that of the lower layer film, so that the reflectance of the exposure light source can be adjusted to be less than or equal to 値. Specifically, a pattern reproduction of the exposure light source having a transmittance of 3 to 20%, preferably 6 to 20%, a reflectance of the exposure light source of 30%, and preferably 20% is desirable. In addition, when the transmittance of the inspection light source is 40% or less, it is preferable to perform defect inspection using the transmitted light of the mask. Since the inspection light source transmittance is 60% or less and the inspection light source reflectance is 12% or more, it is preferable to use the transmitted light and reflected light of the photomask for defect inspection. The exposure light source ' when using the halftone type phase shift mask of the present invention is particularly around 157 nm of F2 excimer laser wavelength and around 193 nm of ArF excimer wavelength. It is possible to obtain a high transmittance quality in which the halftone phase shift portion is set to a high transmittance (transmittance of 8 to 30%). -23-544549 V. Explanation of the invention (22) In addition, in the present invention, the upper layer is the layer mainly having the function of adjusting the phase shift amount (phase adjustment layer), and the lower layer is the layer mainly having the function of adjusting transmittance (transmittance adjustment). Layer). In other words, when the phase shift amount (Kdeg) of the exposure light source with the wavelength λ of the upper layer is φ, the film thickness d of the phase adjustment layer is expressed by the following formula, φ = (φ / 360) X λ / (η-1) ... (Expression 3) Here, η represents the refractive index of the phase adjustment layer for light having a wavelength of λ. When the phase shift amount φ of the halftone type phase shift section is the phase shift amount of the lower layer (transmittance adjustment layer) is Φ ', it must be designed as follows. ρ = φ + 180. The range of Φ 'is approximately -20 ° $ φ' $ 20 °. In other words, when the thickness is outside the range, the film thickness of the lower layer is too thick, and the transmittance of the exposure light source cannot be increased. Therefore, the film thickness d of the upper layer can be designed within the range of the following formula (4). 0.44 × λ / (n-1) SdS0.56xλ / (n-1) ... (Equation 4) Specifically, the film thickness of the lower layer is 1 to 20 nm, and more preferably 1 to 15 nm. As a result, the layer thickness of the halftone type phase shift film can be controlled to 120 nm or less, and more preferably 100 nm or less. Moreover, the ideal phase shift amount of the halftone type phase shift film is 180. , Practically 180. ± 5. . In addition, as the transparent substrate of the present invention, a synthetic quartz substrate or the like can be used. In particular, when an F 2 excimer laser is used as an exposure light source, an F 2 painted quartz substrate, a calcium fluoride substrate, or the like can be used. -24- 544549 V. Description of the invention (23) The materials of the lower layer, especially the materials made of giant and plutonium, or the materials made of silicon and silicon are preferred. This lower layer material has resistance to fluorine-based dry etching and can be removed by a chlorine-based dry etching gas. With this method of processing the halftone phase shift film (uranium etching method), the upper layer can be etched by dry etching using a fluorine-based gas, and the lower layer can be etched by dry etching using a chlorine-based gas. Specifically, giant or silicon is a material that is etched by dry etching using a chlorine-based gas that is not harmful to a transparent substrate, even if it is a single body. However, the resistance to dry etching using a fluorine-based gas in the upper layer is not so excellent. In addition, the single-feed system is a material that is excellent in resistance to dry etching using a fluorine-based gas in the upper layer and can be etched using dry etching using a chlorine-based gas. By adding gadolinium to giant or silicon, it is a material that has higher resistance to dry etching using a fluorine-based gas than the prerequisite for addition, and can maintain or improve the etching characteristics of a chlorine-based gas. The addition amount of rhenium to giant or silicon is 2 atomic% or more, and the resistance to fluorine-based dry etching can be obtained. When the lower layer is a material substantially made of molybdenum and feed, or sand and feed, the added amount contained in the lower layer is preferably 50 atomic% or less. The reason is that the transmittance of the light semi-transmitting film made of giant and silicon at the exposure wavelength and the transmittance of the inspection wavelength are not significantly different. Or because the transmittance of the inspection wavelength is larger than that of the exposure wavelength, and it is suitable for the design of optical characteristics (transmittance and / or reflectance of the exposure light source and the inspection light source), -25-544549 V. Description of the invention (24) Contains sufficient molybdenum or silicon, making it easy to design optical characteristics. In the blank plate of the halftone type phase shift mask and the halftone type phase shift mask of the present invention, the halftone phase shift film can be subjected to heat treatment or laser annealing after film formation. By performing heat treatment, effects such as reducing film stress, improving chemical resistance and irradiation resistance, and fine adjustment of transmittance can be achieved. The heat treatment temperature is 200 ° C or higher, preferably 38CTC or higher. In the present invention, a light-shielding film containing chromium as a main component can be formed on the half-tone phase shift film. This light-shielding film uses an etching mask layer as a half-tone phase-shifting film, and can be selectively removed to form a light-shielding portion at a desired place or range on the half-tone type phase-shifting mask. A light-shielding film containing chromium as a main component includes, for example, a film having a structure of one or more layers including chromium, oxygen other than chromium, nitrogen, carbon, and fluorine (including a film having a continuous composition tilt), and is designed to contain oxygen in the surface layer An anti-reflection film (preventing reflection at an exposure wavelength) is preferred. When a light-shielding film containing chromium as a main component is formed on a half-tone phase-shifting film of a half-tone type phase-shifting mask, a light-shielding film serving as a light-shielding belt can be formed on the periphery of the reproduction range. In addition, it is possible to form a light-shielding film which is formed at the mark formation position when the mark comparison for adjustment and the like is performed. Alternatively, in the case where the phase shift effect is obtained to reduce the side-line light, a light-shielding film formed in a range other than the vicinity of the boundary of the light semi-transmitting portion may be formed. In addition, the present invention includes a form that can activate the dry etching characteristics of the upper layer and the lower layer, and excluding the limitation of the upper and lower relationship and the limitation of use. -26- 544549 V. State of the Invention (25). This makes it suitable for a wide range of etchable lamination materials (laminated materials before dry-etching processing) that can be used in areas such as etching mask materials and activating the use as etch blocking materials. The requirements for materials with excellent dry etching characteristics are not limited to the use of the above-mentioned phase-shifted photomasks, including an etch stop layer (etch stop layer) suitable for the purpose of protecting the underlying layer, and a thin layer of metal that requires high selectivity or pattern refinement Widely used range of melting materials. The second layer of the above-mentioned morphology system is a material which has high resistance to etching in a dry barn engraving using a fluorine-based gas, and can be easily uranium-etched under conditions using a chlorine-based gas (hereinafter, a material having a predetermined effect). The second layer material is a film containing any one of these elements, including Al, Ga, Hf, Ti, V, and Z, and the above elements are obtained by adding these elements to other metals. The intended function of the membrane. Addition to other metals is more than 2%. When the amount is less than this amount, the above-mentioned effect cannot be obtained in etching that does not have sufficient characteristics of the added material. The other metals shown here are materials which can be etched with respect to a chlorine-based gas. Other metals include, for example, Ci., Ge, Pd, Si, Ta, Nb, Sb, Pt, Au, Po, Mo, W, and the like. By using these materials, it is possible to etch with a high selection ratio depending on the type of dry contact characteristics depending on the type of gas. This effect is capable of imparting a thin film to a constituent layer (for example, a thin film of an etching mask layer), and can improve the accuracy of a fine pattern. In addition, the film formation of the first layer material and the second layer material is -27-544549 V. Description of the invention (26) The film is formed with an amorphous structure or a structure with a very small grain boundary. Improves pattern accuracy. When these film structures have a columnar structure or a crystalline structure, unevenness (shine) is generated on the pattern wall side during the etching process, but when the film structure is an irregular structure or a structure with a very small grain boundary, the pattern is formed during the etching process. The side wall is made of a slightly flat (slightly straight). In addition, when these films have a columnar structure or a crystalline structure, a problem of film stress occurs. However, when these films are structured as an amorphous structure or a structure with extremely small grain boundaries, it is easy to control the film stress. The first layer of the above-mentioned aspect includes the phase above the substrate when the phase is at the first layer. In short, when the second layer is used as an etching mask layer, it includes forming a pattern of the surface layer portion (carved portion) of the deep substrate. The laminated body of the above-mentioned form includes a laminated body of the second layer and the substrate (the upper layer corresponds to the first layer). Brief Description of the Drawings Fig. 1 is a sectional view of a blank plate of a halftone type phase shift mask and a halftone type phase shift mask according to an embodiment of the present invention. Fig. 2 is a transmission spectrum diagram of a semi-transmissive portion (phase shift portion) of the sample prepared in Example 2. Figure 3 is a graph showing the relationship between the etching time and the reflected light intensity of the sample produced in Example 7. Fig. 4 is a typical diagram illustrating the processing sequence of each layer in Example 10. Figure 5 is a typical illustration of the processing sequence of each layer in Example 11. 28-544549 V. Description of the invention (27). Fig. 6 is a typical diagram illustrating the processing sequence of each layer in Reference Example 2. FIG. 7 is a manufacturing step diagram of the blank plate of the halftone type phase shift mask and the halftone type phase shift mask of the embodiment. FIG. 8 is a manufacturing step diagram of the half-tone type phase shift mask blank plate and the half-tone type phase shift mask of the embodiment (continued). Fig. 9 is a spectral diagram of the optical characteristics of the blank plate of the halftone-type phase shift mask of Example 13; Fig. 10 is a spectral diagram of the optical characteristics of the blank plate of the halftone type phase shift mask of Example 14. Fig. 11 is a diagram showing a modification of the half-tone type phase shift mask empty whiteboard and the half-tone type phase shift mask according to the embodiment of the present invention. The best-shaped bears for carrying out the invention are examples and reference examples in the following, and specifically describe the present invention, but the present invention is not limited by the following examples. Fig. 1 (1) is a blank plate of a halftone type phase shift mask by the above embodiments and reference examples, and Fig. 1 (2) is a halftone type phase shift light by the above embodiments and reference examples Section of the hood. In Fig. 1 (1), the halftone type phase shift mask blank plate 1 is composed of a transparent substrate 2 and a halftone type phase shift film 5 formed thereon by a lower layer 3 and an upper layer 4 formed on the lower layer. In Figure 1 (2), the half-tone phase shift mask Γ is on the transparent substrate 2 -29- 544549 V. Description of the invention (28) The upper layer portion formed by the lower layer portion 3 'and the lower layer portion 3' 4 'is a halftone type phase shift portion 5'. In this configuration, a mask pattern 8 formed by a semi-transmissive portion 6 forming a half-tone phase shift portion and a translucent portion 7 without forming a half-tone phase shift portion is formed. The half-tone phase shift film 5 and the half-tone phase shift portion 5 'have a required transmittance for the exposure light source, and the phase shift angle is approximately 180 degrees. In addition, the transmittance of the inspection wavelength, or the transmittance and reflectance, are designed within the desired range. (Examples 1 to 8) Examples 1 to 8 are specific examples of halftone phase shift masks corresponding to F2 excimer laser exposure. All of them use a synthetic quartz substrate on the substrate, and the substrate and the SixNy layer An etching retardation layer is provided in between. (Film formation) First, a layer A of an etching retardation layer and a layer B made of SixNy were sequentially laminated on a synthetic quartz substrate. This embodiment is made by a sputtering method. The basic composition of the layers A and B of the two-layer film, the conditions of the target object or the type of the sputtering gas, and the layer thickness of each layer are shown in Table 丨 for each example. When the film thickness of each of the layers A and B and the total phase shift amount of each layer are 180 ° with a wavelength of 157 nm, the above equation (1) is used for adjustment. (Optical characteristics) When the transmittance of the produced two-layer film is measured using a vacuum ultraviolet spectrophotometer, the transmittance of the F2 excimer laser at a wavelength of 157 nm is shown in Table 2. When the etching retardation layer is provided, it can be used as a halftone phase. It is necessary to have a light transmittance of 3 to 40%. -30- 544549 V. Description of the invention (29) Table 1 _ Proportion of substrate gas (%) film thickness hydrogen. Nitrogen oxygen (nm) Example 1 layer A AI2O3 synthetic quartz 100.0 0.00 0.00 15 layer B Si 40.0 59.00 1.00 75 Example 2 layer A Ta synthetic quartz 40.0 60.00 0.00 10 layer B Si 40.0 59.00 1.00 72 example 3 layer A Ta-Zr synthetic quartz 100.0 0.00 0.00 8 layer B Si 40.0 59.00 1.00 78 example 4 layer A Ta-Hf Synthetic quartz 100.0 0.00 0.00 8 layers B Si, 40.0 59.00 1.00 78 Example 5 layer A Zr synthetic stone center 100.0 0.00 0.00 5 layer B Si 40.0 .59.00 1.00 80 Example 6 layer A Hf synthetic stone center 100.0 0.00 0.00 5 layer B Si 40.0 59.00 1.00 80 Example 7 layer A Si synthetic stone center 100.0 0.00 0.00 4 layer B Si .40.0 59.00 1.00 80 Example 8 layer A MoSix □ formed stone center 100.0 0.00 0.00 8 layer B Si 10.0 60.00 30.00 86 Table 2 Light Transmission (%) (l57nm) Example 1 13.1 Example 2 7.6 Example 3 6.6 Binshi Example 4 5.8 Example 5 15.7 Example 6 14.2: Example 7 '9.8 Example 8 10.1 -31- 544549 V. Invention Explanation (30) In addition, Example 2 As shown in Table 2 through the spectrum. The inspection wavelength of the half-tone phase shift mask for h excimer laser exposure is approximately 250 nm. Since the transmittance in this range is 40% or less', sufficient inspection accuracy can be obtained. In addition, in Examples 1, 3 to 7, the transmittance before and after 250 nm was 40% or less. A photoresist was applied to the two layers of films prepared in Examples 1 to 6, and a photoresist pattern was formed through the steps of exposure and development. Then, using this photoresist pattern as a photomask, the upper layer B (SixNy film) of the two films was etched by a dry etching method. In this embodiment, CF4 gas is used, and the etching time is set to be 30% longer than the time that can fully etch the film thickness of the SixNy layer. As a result, the SixNy film is patterned on the basis of the photoresist pattern, and the progress of the etching is stopped by the underlying etching stopper film. Table 3 shows the uranium engraving velocities of the synthetic quartz substrate, layer A, and layer B (SixNy) of this example obtained through other experiments. -Table 3 CF4, I cut rate (A / xnin) selection ratio (A7B) selection ratio (opposite substrate) quartz substrate 118.83 layer B (Si〇xNy) 148.7 ^-1.25 layer A (A1〇J ND η ^ < 01 «0.1 A (TaNx) 15 0.101 0:13 Layer A (Ta-Zr) 10 0.067 0.08 Layer A (Ta-Hf) 20 Γ 0134 0.17 Layer A (Zr) ND« 0.1 Layer A (Hf) 8 l —_〇 ^ 〇54 0.07 [* 1 · N · D · (η 〇tdetected) 'It is a small size that cannot be measured] -32- 544549 V. Description of the invention (μ) For layer B, the etching of layer A The speed is reduced to less than 1/5, and the layer a in Examples 1 and 2 can be confirmed as an "etch stop film having a function of preventing the sixNy film from being etched." Then, the layer A exposed on the surface is removed by etching. Etching gas The good pattern shape was obtained when using perhydrosulfuric acid in Example 1 and Cl2 gas in Examples 2 to 6. The etching rates of the synthetic quartz substrate and layer A obtained by other experiments are shown in Table 4. For synthetic quartz substrates, the etching speed of layer A is 5 times or more, and the layer A of Examples 1 and 2 can be confirmed as a "removable" layer. Table 4

Cl2蝕刻率. (A/min) 選擇比 (對基板) 過水硫酸 :蝕刻率 (A7min) 選擇比 (對基板) 石央基板 269.8 0 層 B(SiOxNv) 415.9 1.54 0 層Α(Α1〇χ) 101 0.37- 瞬間溶解_, »10 層 A(TaNx) 2039.6 7.56 層 A(Ta-Zr) 4020 14.90 1 A(Ta-Hf) 3000 11.12 層 A(Zr) 3300 12.23 層 Α(Ηΰ 2800 10.38 [* 1 : N.D.(not detected);係表示無法測定之小値] 實施例7、8係在作成的2層膜上塗覆光阻劑、且 經由曝光•顯像步驟、形成光阻圖案。然後,以該光 阻圖案作爲光罩;藉由CF4氣體使2層膜之上層 B(SixNy)及下層A蝕刻。此時,蝕刻時間、與對波長 67 8nm之光而言被蝕刻部分之反射光強度的關係,有 33· 544549 五、發明說明(32) 關實施例7係如第3圖所示、可確定在某一時間下反 射光強度劇減。 此時,使蝕刻停止時層A、B皆以光阻圖案爲基 準,可得良好的圖案形狀。換言之,實施例7之層A 係爲「容易檢測具有SixNy膜之蝕刻終點功能」蝕刻阻 滯膜,且爲「可去除的」膜。而且,波長678nm之合 成石英基板、層A、層B之折射率(複折射率實部)各 爲1.47、4.70、1.67。如此層B之折射率與合成石英基 板、層A相比大1以上時,層B於蝕刻前後可得如第 3圖所示反射光強度之劇烈變化,故容易檢測終點。 同樣的反射光強度於實施例8中亦可得到。 而且,SiON層單層例中蝕刻時間與反射光強度之 關係平面圖並用於第3圖所示。爲S i 0 N層單層時可檢 測終點、較實施例7之終點明確。 (實施例9) 本實施例進行檢討下層材料。表5係表示使用氟系 及氯系氣體進行乾式蝕刻時之TaZrx(係表示含Ta與Zr 之材料、沒有表示Ta與Ζι·之組成比,以下皆相同)、 可確認Zr之蝕刻特性結果。表6係可確認使用氟系及 氯系氣體進行乾式蝕刻時之TaAl、TaHf特性結果。總 之’本實施例中可確認主要以Ta爲主材料、且考慮本 發明之效果時添加材料(Al、Hf、Ζι·)之膜的乾式蝕刻特 性。 -34- 544549 五、發明說明(π) 表5 Zr含有率 (%) 蝕刻氣體 蝕刻率 (A/inin) 選擇比 、L,QZ) TaZrx Cl2 4020 ^ ^_U.2 Zr 100 Cl2 3370 ^ QZ 0 Cl2 360、 TaZrx 1.8 C2F6 40 TaZrx 2.6 C2F6 40 ^ TaZrx 4.3 1 c2f6 10 ^ ___0.1 Zr 100 c2f6 7 、 QZ 0 c2f6 120 ^ ^ 各膜材料係爲使用濺射法成膜者。材3ff4 ^ 0 $ Ta 目的物上乘載對象材料之金屬片、實施成膜。膜中有 無添加可使用X線光電子分光法(X P S)確認是否添加。 乾式蝕刻係使用表6所示之氣體。而且,本實施例係 藉由使用衍生鍵結型電漿源之高密度電漿進行蝕刻。 表6 蝕刻氣體 .跸刻率 (A/min) 選擇比 (/QZ) TaAI Cl2 2880 11.5 TaHf Cl2 2980 11.0 QZ Cl2 260 —— TaAI C2F6 70 0.6 TaHf C2F6 20 0.2 QZ C2F6 110 一 實驗結果可知,藉由添加少量本發明之材料(A1、 Hf、Zr),可保持氯系特性且可提高氟系氣體耐性。而 且,本發明之Zr單體金屬膜於使用氟系氣體之乾式1虫Cl2 etching rate. (A / min) selection ratio (for substrate) persulfuric acid: etching rate (A7min) selection ratio (for substrate) Shiyang substrate 269.8 0 layer B (SiOxNv) 415.9 1.54 0 layer A (Α1〇χ) 101 0.37- Instantaneous dissolution_, »10 layer A (TaNx) 2039.6 7.56 layer A (Ta-Zr) 4020 14.90 1 A (Ta-Hf) 3000 11.12 layer A (Zr) 3300 12.23 layer A (Ηΰ 2800 10.38 [* 1 : ND (not detected); indicates that it cannot be measured.] Examples 7 and 8 were coated with a photoresist on the two-layer film produced, and a photoresist pattern was formed through the exposure and development steps. The photoresist pattern is used as a photomask; the upper layer B (SixNy) and the lower layer A of the two layers are etched by CF4 gas. At this time, the relationship between the etching time and the reflected light intensity of the etched portion for light with a wavelength of 67 8nm There are 33.544549 V. Description of the invention (32) Example 7 shows that the intensity of the reflected light decreases sharply at a certain time as shown in Fig. 3. At this time, when the etching stops, the layers A and B are both The photoresist pattern is used as a reference, and a good pattern shape can be obtained. In other words, the layer A of Example 7 is "easy to detect erosion with SixNy film The "etching end function" etching retardation film is a "removable" film. In addition, the refractive index (the real part of the complex refractive index) of the synthetic quartz substrate, layer A, and layer B with a wavelength of 678 nm is 1.47, 4.70, and 1.67, respectively. When the refractive index of the layer B is larger than that of the synthetic quartz substrate and the layer A by 1 or more, the intensity of the reflected light before and after the etching of the layer B can be drastically changed as shown in FIG. It can also be obtained in Example 8. In addition, the plan view of the relationship between the etching time and the intensity of the reflected light in the example of the single layer of the SiON layer is shown in Figure 3. The end point can be detected when the single layer of Si 0 N layer is used. The end point of 7 is clear. (Example 9) This example reviews the underlying materials. Table 5 shows TaZrx when dry etching is performed using fluorine-based and chlorine-based gases (represents materials containing Ta and Zr, and Ta and Z are not shown). · The composition ratio is the same below.) The results of Zr etching characteristics can be confirmed. Table 6 shows the results of TaAl and TaHf characteristics when dry etching is performed using fluorine-based and chlorine-based gases. Ta is the main material, and When considering the effect of the present invention, the dry etching characteristics of the film of the added material (Al, Hf, Z ··). -34- 544549 V. Description of the invention (π) Table 5 Zr content rate (%) Etching gas etching rate (A / inin ) Selection ratio, L, QZ) TaZrx Cl2 4020 ^ ^ _U.2 Zr 100 Cl2 3370 ^ QZ 0 Cl2 360, TaZrx 1.8 C2F6 40 TaZrx 2.6 C2F6 40 ^ TaZrx 4.3 1 c2f6 10 ^ ___ 0.1 Zr 100 c2f6 7, QZ 0 c2f6 120 ^ ^ Each film material is formed by a sputtering method. Material 3ff4 ^ 0 $ Ta The target material is loaded with the metal sheet of the target material and filmed. The presence or absence of addition in the film can be confirmed by X-ray photoelectron spectroscopy (XPS). For dry etching, the gases shown in Table 6 were used. Moreover, in this embodiment, etching is performed by using a high-density plasma using a derivative-bonded plasma source. Table 6 Etching gas. Etching rate (A / min) Selection ratio (/ QZ) TaAI Cl2 2880 11.5 TaHf Cl2 2980 11.0 QZ Cl2 260 —— TaAI C2F6 70 0.6 TaHf C2F6 20 0.2 QZ C2F6 110 An experimental result shows that Adding a small amount of the material (A1, Hf, Zr) of the present invention can maintain chlorine-based characteristics and improve fluorine-based gas resistance. Moreover, the Zr monomer metal film of the present invention is applied to a dry type 1 insect using a fluorine-based gas.

-35- 544549 五、發明說明(34) 刻中蝕刻耐性高(蝕刻速度低)、使用氯系氣體之乾式 蝕刻中可容易蝕刻(蝕刻速度高)的材料。 (參考例1) 爲確認實施例9之添加效果時,可確認參考例中沒 有添加上述材料之Ta單體金屬膜的乾性蝕刻特性。如 表7所示Ta單體金屬膜,有關氟系氣體與石英基板之 選擇性不充分。而且,本比較例之蝕刻條件以實施例 9爲基準予以實施。 表7 蝕刻氣體 蝕刻率 (A/min) 選擇比 (/QZ) Ta Cl2 2900 8.1 QZ Cl2 360 Ta c2F6 110 0.9 QZ c2f6 120 爹 (實施例10) 本實施例係試行使Ζι:膜作爲蝕刻光罩進行SiON層 加工。 以光阻劑/Zi:/Si〇N爲膜構成(第4(a)圖)、在Si基板 上進行成膜的各層加工、確認作爲蝕刻光罩材料之效 果。本實施例之各層膜厚係Zr層200埃、SiON層800 埃。以光阻圖案作爲光罩、使Zr層以氯系氣體加工後 (第4(b)圖)。SiON層加工後測定Zr層之殘膜結果’可 -36- 544549 五、發明說明(35) 確認60%以上之殘膜,具有作爲蝕刻光罩材料之充分 乾式蝕刻耐性。 .(實施例11) 本發明例中試行製作具有相移效果之光罩。此處,考 慮材料間選擇比、且實施由Si〇N/TaZr/QZ基板之構成 所成空白之微細加工。 QZ基板上2層膜使用RF磁控管濺射、使SiON層 約800埃、TaZr層約60埃成膜。爲圖案加工(或遮光 Cr層形成)時,在SiON層上使Cr膜約500埃成膜後塗 覆電子線用ZEP光阻劑、經由電子線描繪及顯像步驟 以形成0.5μιη寬度之試驗圖案(第5(a)圖)。 此處.,各層之膜厚係考慮光罩透過光之相位差予以 設定。 使該光阻圖案與Ci·加工同時以氯+氧之混合氣體 (氧比約20%)實施(第5(b)圖)。 然後,使SiON層使用C2F6氣體加工(第5(c)圖)。 然後,使TaZr層藉由氯氣蝕刻(第5(d)圖)、且藉由以 硝酸鈽第2銨液爲主體之濕式步驟去除Ci:層(含有光 阻膜)(或使遮光帶部、選擇去除)(第5(e)圖)、形成企 求的試驗圖案, 圖案加工係使用衍生鍵結型電漿源之高密度電漿蝕 刻裝置。加工後圖案形狀之截面使用SEM(掃描型電子 顯微鏡)觀察的結果,可確認形成幾乎完全沒有深入 -37- 544549 五、發明說明(36) QZ基板情形之良好圖案。 而且,於SION層加工中停止加工處理之試料進行 相同圖案觀察的結果,可確認幾乎完全沒有TaZi.層之 膜減少情形。藉由設定考慮在所定乾式蝕刻時間分佈 之過量蝕刻時間,可實現形成沒有SiON層之殘膜圖 案。另外,可確認沒有因去除Cr層而產生TaZr層之 副鈾刻情形。 (參考例2) 本參考例中使實施例11之TaZr層藉由氟系氣體形 成触刻耐性與SiON層相近的TaN者。除改變QZ基板 上之材料外進行與實施例3相同的處理。而且,有關 TaN膜係以藉由氬氣+氮氣之混合氣體之反應性濺射進 行成膜。具體而言,使光阻圖案與Cr加工實施(第6、 (a)(b)圖),然後使SiON層使用C2F6氣體予以加工(第 6(c)圖)。然後使TaN層藉由氯氣触刻(第6(d)圖)、且 在以硝酸鈽第2銨液爲主體的濕式步驟中去除Ci•層 (含光阻膜)(第6 (e)圖)以形成所定試驗圖案。 與實施例1 1相同地進行形成〇.5μηι試驗圖案的結 果,可確認圖案形狀可與上述者相同地進行具有良好 形狀的加工、深入底層QZ基板中。而且,藉由氟系 氣體之TaN膜的蝕刻速度大約與QZ同等。 (實施例12) 本實施例中除實施例 11記載之TaZr層改爲Hf -38- 544549 五、發明說明(37) 層、Zr層外進行相同的處理。 以相同的處理形成微細圖案、且藉由sEM觀察圖 案形狀的結果,可確認形成與實施例11相同程度的 圖案。幾乎完全不具對QZ基板之傷害性,可確認進 行良好圖案之形成。 (實施例13〜18,參考例3〜5) 實施例1 3〜1 5、1 8及參考例3〜5係使用F2準分 子雷射(波長157nm)作爲曝光光源、使用波長257nm 光作成的相移光罩空白板及相移光罩。實施例 1 6及 17中使用 ArF準分子雷射(波長193nm)作爲曝光光 源、使用波長364nm之光作爲檢查光源製作的相移光 罩.空白板及相移光罩。 其次,參照第7圖及第8圖說明本發明之製造步驟。 首先,在由合成石英型所成的透明基板2上有關表 1所示組成之目的物(惟參考例3及5中各爲鉅及矽單 體)、及使用稀有氣體(氬氣)作爲濺射氣體、使用DC 磁控管濺射裝置使下層3成膜。. 然後,以Si爲目的物、且藉由以Ar、〇2、N2作爲 濺射氣體之反應性濺射法、在下層3上使用DC磁控 管濺射裝置使上層4成膜(第7(1)圖)。 繼後,使上述所得半色調型相移光罩空白板在400 °C下進行熱處理1小時。 再於上述2層膜上順序積層以鉻爲主成分之遮光膜 -39- 544549 五、發明說明(38) 9、電子線掃描光阻10 (第7(2)圖)。因此,在光阻膜 上藉由電子線進行圖案描繪後,藉由浸漬法進行顯像 及烘烤,形成光阻圖案10’(第7(3)圖)。 然後,以該光阻圖案作爲光罩、藉由Cl2 + 〇2氣體之 乾式蝕刻以進行遮光帶膜圖案9 ’形成。另外,改變氣 體、進行半色調相移部之圖案形成。此時,上層4之 蝕刻係使用CH4 + 02、下層3之蝕刻使用Cl2氣體(第 7(4)圖)。惟有關比較例3由於下層以0114 + 02蝕刻,無 法使用Cl2氣體進行蝕刻。 其次,使所形成的圖案上之光阻劑剝離(第8(1) 圖)、再度在全面上塗覆光阻圖案(第8(2)圖)後,經由 雷射描繪•顯像步驟,形成光阻圖案11,(第8(3.)圖)。 因此,藉由濕式蝕刻,除複製範圍I外在非複製範圍 上形成遮光帶1 2。然後,使光阻圖案剝離、製得半色 調型相移光罩(第8(4)圖)。 而且’透明基板材料、上層之組成、膜厚、曝光光 源及檢查光源之光學特性、蝕刻特性等如表8〜11所 示。此外’下層之組成係實質上與目的物的組成相 同。 -40- 544549 五、發明說明(39) 5 ί 4 ! 3 M 實_ 16 ί m a L=1 實麵! 13 nmv 12 F塗漆 F塗漆 F塗漆 CaF2 I F塗漆 CaF2 F塗漆 11 SiON④ SiON③ SiON④ SiON③ SiON® SiON② SiON® ; 1 SiON① j SiON① 1 上層撕 CO • ο g O CD g CD g 1- 00 g g o 5 o a Ζβ TaCr Hf-Si ^ Hf-Si Ta-Hf ① Ta-Hf® . I Ta-Hf①! 1 Ta-Hf ① 下層撕 ο o o 〇 CO o\ cn cn g o ^iai »—» h-* cn l·-» 3 cn s . 00 h-1 CO CO h-* 百'薄羅 •E跏决 CD Oi CO o <1 DJ CO 11.35 15.83 b CD c^> g 曝光波長 顏率 (%) 11.95 18.20 14.37 1_ QD k) 00 I 18.58 17.00 12.00 13.55 15.60 曝光波長| 反射率 (%)' to α\ ο to cn <3 to cn <1 to Ol CO A CO a bo cn <ϊ bo cn <1 to 3 i讓露 1 43.4 i 29.40 35.4 1 46.58 h-1 CD CD 30.40 49.30 32.39 s 1 19.91 檢査波長 通率 (%) 25.13 1 24.06 17.83 38.89 21.50 16.80 24.78 32-79 檢査波長 反射率 (%) -41 - 544549 五、發明說明(40) 表 9 157nm 193nm 組成(原子%) Si〇N① η k n k Si 〇 N 2.00 0.20 — — 36 48 16 SiON© — — 2.22 0.18 40 27 33 Si〇N③ 2.05 0.22 一 一 36 46 18 Si〇N④ 2.17 0.30 2.05 0.10 38 38 24 表1〇 .Ta Hf Si Cr Zr Ta-Hf® 90 10 Ta-Hf® 80 20 . Hf-Si 17 83 Ta-Cr 96 4 表 11 對上層而言下層 •之触刻選擇比 (SF6+He) /對基板而言下層 .之蝕刻ρρ比 (Cl2) 實施例12 0.25 >5 章施例13 0.25 >5 i施例14 0.08 >5 實施例15 0.25 >5 實施例16 0.17 >5 實施例17 0.17 >5 参考例3 0.67 >5 参考例4 0.25 2.50. •参考例5 8.08 一 -42- 544549 五、發明說明(41) 第9圖及第1 〇圖係各爲對實施例1 3及1 4之波長 而g透過率曲線及反射率曲線者。於實施例1 3、1 4 中對曝光光源(F2準分子雷射)之透過率係各實現標準 品(6%)附近、及高透過率品(9%)附近者。曝光光源之 反射率低、可滿足要求範圍(2〇%以下)。另外,檢查光 源之透過率較要求値之上限爲低(4 〇 %以下)、可對應於 充分檢查者。 另外,於實施例15中可實現對曝光光源(匕準分子雷 射)而言高透過率(15%)者。曝光波長之反射率低、可 滿足要求範圍(2 0 %以下)。另外’檢查波長之透過率稍 高。然而,爲滿足進行使用透過光與反射光之檢查的 要求値(透過率60%以下、反射率爲1〇%以上)時,使用 透過光與反射光之檢查係爲可對應於充分檢查者。 此外,於實施例 16中可實現曝光率(15%附近)者。 曝光波長之反射率低、可滿足要求範圍(2 0 %以下)者。 而且’檢查光源之透過率較要求値之上限爲低(40 %以 下)、可對應充分檢查者。 而且,實施例 17及 18中下層材料爲沒有上述實 施例13〜16之TaHf、係爲HfS:者。實施例17對曝 光光源(ArF準分子雷射)而言實現高透過率、實施例 18對曝光光源(F2準分子雷射)而言實現高透過率(11% 附近)。曝光波長之反射率低、可滿足要求範圍(30 %以 下)者。此外,檢查光源之透過率較要求値之上限爲低 -43- 544549 五、發明說明(42 ) (40%以下)’可對應充分檢查者。 此外,於上述實施例 1 3〜1 8之任一實施例中,下 層對上層而言對SF6 + He乾式蝕刻氣體而言蝕刻選擇比 小。另外,對上層之蝕刻而言下層具有充分的耐性、 且下層對透明基板而言對Cl2乾式蝕刻氣體而言蝕刻 選擇比大。藉此,由於於去除下層時對透明基板之傷 害性小,故可形成極爲良好的截面形狀、且藉由透明 基板之過量蝕刻極力控制光學特性變化以形成半色調 型相移光罩。 而且,參考例3及參考例5係各爲下層材料中不含 給、爲鉬單體及矽單體之例。此等之參考例係下層對 上層而言對CH4 + 02乾式蝕刻氣體而言蝕刻選擇比大。 此外,使上層使用氟系氣體進行乾式蝕刻加工,即使 下層表面露出、下層之膜減少情形變快。結果,不易 設定考慮由以圖案疏密差等產、生的蝕刻分佈去除所產 生的上層殘膜之充分過量蝕刻時間。 換言之,沒有進行充分過量蝕刻時無法形成良好截 面形狀之圖案,進行充分過量蝕刻時,下層在經蝕刻 的透明基板被深入、使光學特性產生變化。 於參考例3中上層沒有進行充分過量蝕刻的結 果’無法得到良好截面形狀之圖案。於參考例5中下 層對上層而言對CH4 + 〇2乾式蝕刻氣體之蝕刻選擇比非 常大。上層進行充分過量蝕刻的結果,透明基板被深 -44- 544549 五、發明說明(43) 入、相移量產生變化。 另外,參考例4由於對Cl2乾式蝕刻氣體而言蝕刻 選擇比小’故於去除下層時對基板之傷害性大、光學 特性產生產生變化。 在半色調型相移光罩之半色調型相移部上形成遮光 膜的其他例如第1 1圖所示、爲除光半透過部6與透光 部7之交界附近外在所需範圍形成遮光層丨3者。如此 藉由形成遮光膜1 3,就可得相移效果而言可降低副線 光。半色g周相移部之透過率闻時》由考慮gij線光之影 響,故該構造、特別是高透過率品(半色調相移部之透 過率爲8〜3 0 %)時有效。 產業上之利用僭値 ’本發明於爲形成半色調相移部之蝕刻時、可製得微 細加工性優異的半色調型相移光罩空白板及半色調型 相移光罩。 而且,特別是爲形成半色調相移部之蝕刻時微細加 工性優異。 此外,特別是曝光光源爲短波長化時,特別在 140nm〜200nm之曝光範圍中可使用準分子雷射波 長之157nm附近、及ArF準分子雷射波長之193nm附 近之局透過率品(透過率8〜30 %)。 結果藉由本發明之半色調型相移光罩,可使高精度 複製圖案複製。 -45 --35- 544549 V. Description of the invention (34) Materials with high etching resistance during etching (low etching speed) and materials that can be easily etched (high etching speed) during dry etching using chlorine-based gas. (Reference Example 1) In order to confirm the addition effect of Example 9, it was confirmed that the dry etching characteristics of the Ta single metal film in which the above material was not added in the reference example. As shown in Table 7, the selectivity of the fluorine-based gas and the quartz substrate for the Ta single metal film is insufficient. In addition, the etching conditions of this comparative example were implemented based on Example 9. Table 7 Etching Gas Etching Rate (A / min) Selection Ratio (/ QZ) Ta Cl2 2900 8.1 QZ Cl2 360 Ta c2F6 110 0.9 QZ c2f6 120 D (Example 10) This example is a trial test using a film: a film as an etching mask The SiON layer is processed. The photoresist / Zi: / SiON was used as the film structure (Fig. 4 (a)), and each layer formed on the Si substrate was processed to confirm its effect as an etching mask material. The film thickness of each layer in this embodiment is 200 angstroms of Zr layer and 800 angstroms of SiON layer. The photoresist pattern was used as a photomask, and the Zr layer was processed with a chlorine-based gas (Fig. 4 (b)). Result of measuring the residual film of the Zr layer after the SiON layer is processed 'OK -36- 544549 V. Description of the invention (35) It is confirmed that more than 60% of the residual film has sufficient dry etching resistance as an etching mask material. (Embodiment 11) In the embodiment of the present invention, a photomask having a phase shift effect is produced on a trial basis. Here, considering the selection ratio between materials, the microfabrication of the blank formed by the structure of the SiON / TaZr / QZ substrate is performed. Two layers of the QZ substrate were sputtered using RF magnetrons to form a SiON layer of about 800 angstroms and a TaZr layer of about 60 angstroms. For pattern processing (or formation of a light-shielding Cr layer), a Cr film of about 500 angstroms was formed on the SiON layer, and then a ZEP photoresist for electron wires was applied. The electron wire was drawn and developed to form a 0.5 μm width test. Pattern (Figure 5 (a)). Here, the film thickness of each layer is set in consideration of the phase difference of the light transmitted by the mask. This photoresist pattern was simultaneously implemented with Ci · processing using a mixed gas of chlorine + oxygen (oxygen ratio of about 20%) (Fig. 5 (b)). Then, the SiON layer was processed using a C2F6 gas (Fig. 5 (c)). Then, the TaZr layer is etched with chlorine gas (Fig. 5 (d)), and the Ci: layer (containing a photoresist film) is removed by a wet step consisting mainly of erbium nitrate second ammonium solution (or the light-shielding belt portion (Selective removal) (Figure 5 (e)), forming the desired test pattern. The pattern processing is a high-density plasma etching device using a derivative bonding plasma source. The cross-section of the pattern shape after processing was observed using a SEM (scanning electron microscope), and it was confirmed that the formation of the pattern was almost completely incomplete -37- 544549 V. Description of the invention (36) A good pattern in the case of a QZ substrate. In addition, as a result of observing the same pattern in the sample whose processing was stopped during the processing of the SION layer, it was confirmed that there was almost no film reduction of the TaZi. Layer. By setting the excess etching time taking into account the distribution of the dry etching time, the formation of a residual film pattern without a SiON layer can be achieved. In addition, it was confirmed that the TaZr layer was not sub-uranium-etched by removing the Cr layer. (Reference Example 2) In this reference example, the TaZr layer of Example 11 was made of TaN having a contact resistance close to that of the SiON layer by a fluorine-based gas. The same processing as in Example 3 was performed except that the material on the QZ substrate was changed. The TaN film is formed by reactive sputtering using a mixed gas of argon gas and nitrogen gas. Specifically, the photoresist pattern and Cr processing are implemented (Figure 6, (a) (b)), and then the SiON layer is processed using C2F6 gas (Figure 6 (c)). Then, the TaN layer was etched with chlorine gas (Figure 6 (d)), and the Ci • layer (including the photoresist film) was removed in a wet step mainly composed of rhenium nitrate second ammonium solution (Section 6 (e) Figure) to form a predetermined test pattern. As a result of forming a 0.5 μm test pattern in the same manner as in Example 11, it was confirmed that the pattern shape can be processed with a good shape in the same manner as described above to penetrate into the underlying QZ substrate. The etching rate of the TaN film by a fluorine-based gas is about the same as that of QZ. (Example 12) In this example, except that the TaZr layer described in Example 11 was changed to Hf-38-544549. 5. Description of the Invention (37) The same process was performed except for the layer (37) and the Zr layer. As a result of forming a fine pattern by the same process and observing the shape of the pattern by sEM, it was confirmed that the same pattern as that of Example 11 was formed. There is almost no damage to the QZ substrate, and it can be confirmed that a good pattern is formed. (Examples 13 to 18, Reference Examples 3 to 5) Examples 1 to 3, 15, 18, and Reference Examples 3 to 5 were made by using F2 excimer laser (wavelength 157nm) as an exposure light source and using light with a wavelength of 257nm. Phase shift mask blank plate and phase shift mask. In Examples 16 and 17, an ArF excimer laser (having a wavelength of 193 nm) was used as an exposure light source, and a phase shift mask, a blank plate, and a phase shift mask were produced using light having a wavelength of 364 nm as an inspection light source. Next, the manufacturing steps of the present invention will be described with reference to FIGS. 7 and 8. First, on a transparent substrate 2 made of a synthetic quartz type, a target having the composition shown in Table 1 (except that the reference examples 3 and 5 are giant and silicon monomers), and a rare gas (argon) is used as a sputtering agent. The lower layer 3 was formed by spraying a gas and using a DC magnetron sputtering device. Then, the upper layer 4 was formed into a film by using a reactive sputtering method using Ar, 〇2, and N2 as a sputtering gas on the lower layer 3 using a DC magnetron sputtering device (Seventh (1) Figure). Then, the obtained blank halftone-type phase shift mask blank was heat-treated at 400 ° C for 1 hour. Then, a light-shielding film containing chromium as a main component is sequentially laminated on the above two layers of films -39- 544549 V. Description of the invention (38) 9, Electron line scanning photoresistor 10 (Figure 7 (2)). Therefore, after pattern drawing is performed on the photoresist film by an electron beam, development and baking are performed by a dipping method to form a photoresist pattern 10 '(Fig. 7 (3)). Then, the photoresist pattern is used as a photomask, and dry-etching with Cl 2 + 0 2 gas is performed to form a light-shielding tape film pattern 9 ′. In addition, the gas is changed to form a halftone phase shift portion. At this time, the etching of the upper layer 4 uses CH4 + 02, and the etching of the lower layer 3 uses Cl2 gas (Fig. 7 (4)). However, in Comparative Example 3, since the lower layer was etched with 0114 + 02, it was impossible to etch using Cl2 gas. Next, the photoresist on the formed pattern is peeled off (Fig. 8 (1)), and the photoresist pattern is applied on the whole surface again (Fig. 8 (2)), and then formed by laser drawing and developing steps. Photoresist pattern 11, (Fig. 8 (3.)). Therefore, by the wet etching, a light-shielding band 12 is formed on the non-replication range in addition to the reproduction range I. Then, the photoresist pattern was peeled to obtain a half-tone phase shift mask (Fig. 8 (4)). Tables 8 to 11 show the materials of the transparent substrate, the composition of the upper layer, the film thickness, the optical characteristics of the exposure light source and the inspection light source, and the etching characteristics. The composition of the lower layer is substantially the same as that of the object. -40- 544549 V. Description of the invention (39) 5 ί 4! 3 M real _ 16 ί ma L = 1 real surface! 13 nmv 12 F paint F paint F paint CaF2 IF paint CaF2 F paint 11 SiON④ SiON③ SiON④ SiON③ SiON® SiON② SiON®; 1 SiON① j SiON① 1 Upper Tear CO • ο g O CD g CD g 1- 00 ggo 5 oa Zn β TaCr Hf-Si ^ Hf-Si Ta-Hf ① Ta-Hf®. I Ta-Hf①! 1 Ta-Hf ① Lower tear ο oo 〇CO o \ cn cn go ^ iai »—» h- * cn l ·-»3 cn s. 00 h-1 CO CO h- * Hundred's thin Luo • E depends on CD Oi CO o < 1 DJ CO 11.35 15.83 b CD c ^ > g exposure wavelength face rate (%) 11.95 18.20 14.37 1_ QD k) 00 I 18.58 17.00 12.00 13.55 15.60 exposure wavelength | reflectance (% ) 'to α \ ο to cn < 3 to cn < 1 to Ol CO A CO a bo cn < ϊ bo cn < 1 to 3 i Jean Lu 1 43.4 i 29.40 35.4 1 46.58 h-1 CD CD 30.40 49.30 32.39 s 1 19.91 Check wavelength pass rate (%) 25.13 1 24.06 17.83 38.89 21.50 16.80 24.78 32-79 Check wavelength reflectance (%) -41-544549 V. Description of the invention (40) Table 9 Composition of 157nm 193nm (atomic%) Si〇N① η knk Si 〇N 2.0 0 0.20 — — 36 48 16 SiON © — — 2.22 0.18 40 27 33 Si〇N③ 2.05 0.22-36 46 18 Si〇N④ 2.17 0.30 2.05 0.10 38 38 24 Table 10. Ta Hf Si Cr Zr Ta-Hf® 90 10 Ta-Hf® 80 20. Hf-Si 17 83 Ta-Cr 96 4 Table 11 Etch selection ratio (SF6 + He) for the upper layer / etched ρρ ratio (Cl2) for the lower layer for the substrate Example 12 0.25 > Chapter Example 13 0.25 > 5i Example 14 0.08 > 5 Example 15 0.25 > 5 Example 16 0.17 > 5 Example 17 0.17 > 5 Reference Example 3 0.67 > 5 Reference example 4 0.25 2.50. • Reference example 5 8.08-42- 544549 5. Explanation of the invention (41) Figures 9 and 10 are graphs of the transmittance of g for the wavelengths of Examples 1 and 14 respectively. And reflectance curve. The transmittances to the exposure light source (F2 excimer laser) in Examples 1 and 14 were near each of the achieved standard (6%) and the high transmittance (9%). The reflectivity of the exposure light source is low and can meet the required range (less than 20%). In addition, the transmittance of the inspection light source is lower than the required upper limit (40% or less), which can correspond to a sufficient inspection. In addition, in Example 15, a person having a high transmittance (15%) with respect to the exposure light source (excimer laser) can be realized. The reflectance of the exposure wavelength is low, which can meet the required range (less than 20%). In addition, the transmittance of the inspection wavelength is slightly higher. However, in order to satisfy the requirements for inspection using transmitted light and reflected light (transmission of 60% or less, and reflectance of 10% or more), inspections using transmitted light and reflected light are suitable for a sufficient inspector. In addition, in Example 16, an exposure rate (near 15%) can be achieved. Those with low reflectance at the exposure wavelength can meet the required range (less than 20%). In addition, the transmittance of the 'inspection light source' is lower than the required upper limit (less than 40%), and can be used for a sufficient inspector. In addition, the materials of the lower layer in Examples 17 and 18 are those without TaHf of Examples 13 to 16 and HfS :. Example 17 achieved high transmittance for the exposure light source (ArF excimer laser), and Example 18 achieved high transmittance (around 11%) for the exposure light source (F2 excimer laser). Those with low reflectance at the exposure wavelength can meet the required range (less than 30%). In addition, the transmittance of the inspection light source is lower than the upper limit of the required 値 -43- 544549 V. Description of the invention (42) (less than 40%) 'can correspond to a sufficient inspector. In addition, in any of the above embodiments 1 to 18, the lower layer has a smaller etching selection ratio to the upper layer than to the SF6 + He dry etching gas. In addition, the lower layer has sufficient resistance to the etching of the upper layer, and the etching selectivity ratio of the lower layer to the Cl2 dry etching gas is large for the transparent substrate. Thereby, since the damage to the transparent substrate is small when the lower layer is removed, a very good cross-sectional shape can be formed, and the change in optical characteristics can be controlled as much as possible by excessive etching of the transparent substrate to form a halftone type phase shift mask. In addition, Reference Example 3 and Reference Example 5 are examples in which the lower layer material does not contain molybdenum monomer and silicon monomer. These reference examples have a large etching selectivity ratio between the lower layer and the upper layer for the CH4 + 02 dry etching gas. In addition, if the upper layer is dry-etched by using a fluorine-based gas, even if the surface of the lower layer is exposed, the number of films on the lower layer decreases. As a result, it is difficult to set a sufficient excessive etching time that takes into consideration the removal of the upper residual film by the etching distribution produced by the pattern density and the like. In other words, a pattern with a good cross-sectional shape cannot be formed when sufficient over-etching is not performed. When sufficient over-etching is performed, the underlying transparent layer is penetrated into the etched transparent substrate, which changes the optical characteristics. As a result of Reference Example 3, the upper layer was not sufficiently etched. As a result, a pattern with a good cross-sectional shape could not be obtained. In Reference Example 5, the etching selection ratio of the lower layer to the upper layer for the CH4 + 0 2 dry etching gas is very large. As a result of sufficient over-etching of the upper layer, the transparent substrate was deep. -44- 544549 V. Description of the Invention (43) The amount of phase shift has changed. In addition, since Reference Example 4 has a small etching selectivity ratio for Cl2 dry etching gas, the substrate is more harmful and the optical characteristics are changed when the lower layer is removed. Other examples of forming a light-shielding film on the half-tone phase-shifting portion of the half-tone phase-shifting mask are shown in FIG. 11 and formed in a desired range except for the vicinity of the boundary between the light-transmitting portion 6 and the light-transmitting portion 7. Light-shielding layer 丨 3. By forming the light-shielding film 13 in this way, it is possible to reduce the sub-line light in terms of obtaining a phase shift effect. The transmissivity of the half-color g-phase phase shifting section is affected by gij line light. Therefore, this structure is effective especially for high-transmittance products (the transmissivity of the half-tone phase shifting section is 8 to 30%). Industrial application 僭 値 'The present invention can produce a halftone type phase shift mask blank plate and a halftone type phase shift mask which are excellent in fine processability during etching for forming a halftone phase shift portion. In addition, it is excellent in fine workability especially in etching for forming a halftone phase shift portion. In addition, especially when the exposure light source is short-wavelength, a local transmittance product (transmittance near 157 nm of the excimer laser wavelength and 193 nm near the ArF excimer laser wavelength) can be used in the exposure range of 140 nm to 200 nm. 8 ~ 30%). As a result, with the halftone type phase shift mask of the present invention, a high-precision copy pattern can be reproduced. -45-

Claims (1)

544549 2/10 000000000001 0987654321 ... I ,眚 一—一 / 貫‘ 5也1夕丨J 2 0^ (次)褂頰鳃 40 160 160 200 220 240 260 280 300 波長(nm) 第2圖 544549544549 2/10 000000000001 0987654321 ... I, 眚 one-one / consistent ‘5 also 1 eve J 2 0 ^ (time) gill buccal gill 40 160 160 200 220 240 260 280 300 wavelength (nm) Figure 2 544549 蝕刻時間(a「b.unit) 第3國 544549 4/10 (a)Etching time (a "b.unit) Country 3 544549 4/10 (a) 光阻. Zr · SiON Si基板Photoresist. Zr · SiON Si substrate 乾式蝕刻丨α2)Dry etching 丨 α2) (c) !77Ί 71 ΡΊ(c)! 77Ί 71 ΡΊ 乾式蝕刻(C2F6:)Dry etching (C2F6 :) 第4圖 544549 5/10 (a) ⑹ (c) (d) (e) 光阻 Cr SiON TaZr QZ基板 乾式蝕刻 (CI2+〇2) __ 乾式f虫刻 (c2 f6) ::::::: 響/人 r y / / y V //// ,々////, V////A r / J b / // 第5 乾式蝕刻 (CI2) Cr膜剝離 544549 6/10 (a)Figure 4 544549 5/10 (a) ⑹ (c) (d) (e) Photoresist Cr SiON TaZr QZ substrate dry etching (CI2 + 〇2) __ dry f insect engraving (c2 f6) :::::::响 / 人 ry // y V ////, 々 ////, V //// A r / J b / // 5th dry etching (CI2) Cr film peeling 544549 6/10 (a) 光阻 Cr Si〇N TaNx 〇Z基板 乾式蝕刻 (C!2+〇2)Photoresist Cr Si〇N TaNx 〇Z substrate dry etching (C! 2 + 〇2) % W//人 〆/ / 7 >}/丁/ 7 ⑸ (c). (d)% W // person 〆 / / 7 >} / 丁 / 7 ⑸ (c). (D) 乾式蝕刻 (C2 F6) ·:·:·:· Ψ///Α ^/λ / 乾式蝕刻 (Cl2)Dry etching (C2 F6) ·: ·: ·: · Ψ /// Α ^ / λ / Dry etching (Cl2) Cr'膜剝離Cr 'film peeling 544549 7/10544549 7/10 (2)(2) 10 910 9 驗 »^\SS^S^sS^\\SS^\\S\\SSS>^ 1〇,9 (3) 丨丨丨I丨丨丨丨丨丨丨川II丨IIIIIIIH丨丨丨I丨丨丨丨丨丨丨丨I丨丨丨川丨丨丨丨丨Check »^ \ SS ^ S ^ sS ^ \\ SS ^ \\ S \\ SSS > ^ 1〇, 9 (3) 丨 丨 I 丨 丨 丨 丨 丨 丨 chuanII 丨 IIIIIIIH 丨 丨 I 丨 丨丨 丨 丨 丨 丨 丨 I 丨 丨 丨 chuan 丨 丨 丨 丨 丨 (4) 544549 8/10(4) 544549 8/10 第S圖 12 (4) 544549 9/10 50 40Figure S 12 (4) 544549 9/10 50 40 {SIS 3{SIS 3 544549 10/10 (%)ioe5y544549 10/10 (%) ioe5y 波長、(nm) 110圓 13Wavelength, (nm) 110 circle 13 6 66 6
TW91112200A 2000-12-26 2002-06-06 Half-tone type phase shift mask blank, process for prodncing half-tone type phase shift mask, pattern transfer method, laminate and method of forming pattern TW544549B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000395982 2000-12-26
JP2001361025A JP2002258458A (en) 2000-12-26 2001-11-27 Halftone phase shift mask and mask blank
JP2001394311A JP4027660B2 (en) 2000-12-26 2001-12-26 Halftone phase shift mask blank and mask
JP2002047051A JP3818171B2 (en) 2002-02-22 2002-02-22 Phase shift mask blank and manufacturing method thereof
JP2002082021A JP3993005B2 (en) 2002-03-22 2002-03-22 Halftone phase shift mask blank, halftone phase shift mask, method of manufacturing the same, and pattern transfer method

Publications (1)

Publication Number Publication Date
TW544549B true TW544549B (en) 2003-08-01

Family

ID=29716330

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91112200A TW544549B (en) 2000-12-26 2002-06-06 Half-tone type phase shift mask blank, process for prodncing half-tone type phase shift mask, pattern transfer method, laminate and method of forming pattern

Country Status (1)

Country Link
TW (1) TW544549B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383247B (en) * 2004-03-09 2013-01-21 Hoya Corp Method for fabricating a transfer mask
TWI406085B (en) * 2008-02-27 2013-08-21 Hoya Corp Photomask blank, photomask, and methods of manufacturing the same
US8715893B2 (en) 2010-03-18 2014-05-06 Micron Technology, Inc. Masks for use in lithography including image reversal assist features, lithography systems including such masks, and methods of forming such masks
TWI460530B (en) * 2009-01-09 2014-11-11 S&S Tech Co Ltd A blank mask, a photomask using the same and method of fabricating the same
TWI461830B (en) * 2008-06-25 2014-11-21 Hoya Corp Phase shift mask blank, phase shift mask, and method for manufacturing phase shift mask blank
TWI461833B (en) * 2010-03-15 2014-11-21 Hoya Corp Multi-tone photomask, method of manufacturing a multi-tone photomask, and pattern transfer method
TWI479257B (en) * 2008-06-30 2015-04-01 Hoya Corp Photomask blank, photomask and its manufacturing method
TWI480675B (en) * 2004-03-31 2015-04-11 Shinetsu Chemical Co Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method
TWI651583B (en) * 2015-08-31 2019-02-21 日商Hoya股份有限公司 Photomask substrate, method for manufacturing photomask substrate, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
TWI769223B (en) * 2017-03-28 2022-07-01 日商Hoya股份有限公司 Phase-shift photomask substrate and method for manufacturing phase-shift photomask using the same, and pattern transfer method
TWI793338B (en) * 2018-06-19 2023-02-21 日商信越化學工業股份有限公司 Method for evaluating the surface state of blank photomask-related substrates

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383247B (en) * 2004-03-09 2013-01-21 Hoya Corp Method for fabricating a transfer mask
TWI480676B (en) * 2004-03-31 2015-04-11 Shinetsu Chemical Co Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method
TWI480675B (en) * 2004-03-31 2015-04-11 Shinetsu Chemical Co Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method
TWI406085B (en) * 2008-02-27 2013-08-21 Hoya Corp Photomask blank, photomask, and methods of manufacturing the same
TWI461830B (en) * 2008-06-25 2014-11-21 Hoya Corp Phase shift mask blank, phase shift mask, and method for manufacturing phase shift mask blank
TWI479257B (en) * 2008-06-30 2015-04-01 Hoya Corp Photomask blank, photomask and its manufacturing method
TWI460530B (en) * 2009-01-09 2014-11-11 S&S Tech Co Ltd A blank mask, a photomask using the same and method of fabricating the same
TWI461833B (en) * 2010-03-15 2014-11-21 Hoya Corp Multi-tone photomask, method of manufacturing a multi-tone photomask, and pattern transfer method
TWI461834B (en) * 2010-03-18 2014-11-21 Micron Technology Inc Microlithography masks including image reversal assist features, microlithography systems including such masks, and methods of forming such masks
US8715893B2 (en) 2010-03-18 2014-05-06 Micron Technology, Inc. Masks for use in lithography including image reversal assist features, lithography systems including such masks, and methods of forming such masks
TWI651583B (en) * 2015-08-31 2019-02-21 日商Hoya股份有限公司 Photomask substrate, method for manufacturing photomask substrate, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
US11226549B2 (en) 2015-08-31 2022-01-18 Hoya Corporation Mask blank, phase shift mask, method for manufacturing thereof, and method for manufacturing semiconductor device
TWI769223B (en) * 2017-03-28 2022-07-01 日商Hoya股份有限公司 Phase-shift photomask substrate and method for manufacturing phase-shift photomask using the same, and pattern transfer method
TWI793338B (en) * 2018-06-19 2023-02-21 日商信越化學工業股份有限公司 Method for evaluating the surface state of blank photomask-related substrates

Similar Documents

Publication Publication Date Title
TWI453531B (en) Phase shift mask blank and phase shift mask
JP3722029B2 (en) Phase shift mask blank manufacturing method and phase shift mask manufacturing method
TWI522728B (en) A mask substrate and its manufacturing method and transfer mask
JP6053836B2 (en) Manufacturing method of mask blank and phase shift mask
KR101780068B1 (en) Mask blank and method for manufacturing transfer mask
KR100864375B1 (en) Blank mask and manufacturing method of Photo-mask using the same
KR100815679B1 (en) Halftone phase shift mask blank, halftone phase shift mask, and manufacturing method thereof
KR101930556B1 (en) Mask blank, transfer mask, manufacturing method of transfer mask, and manufacturing method of semiconductor device
JP6545795B2 (en) Mask blank, transfer mask, method of manufacturing mask blank, method of manufacturing transfer mask, and method of manufacturing semiconductor device
TW200949430A (en) Photo mask blank and manufacturing method thereof
JP2009104174A (en) Method for manufacturing phase shift mask blank, method for manufacturing phase shift mask, and method for transferring pattern
TW544549B (en) Half-tone type phase shift mask blank, process for prodncing half-tone type phase shift mask, pattern transfer method, laminate and method of forming pattern
JP2018116269A (en) Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and method for manufacturing display device
JP3993005B2 (en) Halftone phase shift mask blank, halftone phase shift mask, method of manufacturing the same, and pattern transfer method
JP3472528B2 (en) Phase shift mask and phase shift mask blank
WO2019188397A1 (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device
JP6821865B2 (en) Manufacturing method for mask blanks, transfer masks and semiconductor devices
JP6828221B2 (en) Manufacturing method for mask blanks, transfer masks and semiconductor devices
JP2005316512A (en) Method of manufacturing phase shift mask blank, method for manufacturing phase shift mask, and method of transferring pattern
JP2005284216A (en) Target for forming film and method for manufacturing phase shift mask blank
JPH07209849A (en) Halftone phase shift photomask and blank for halftone phase shift photomask
JP7490485B2 (en) Photomask blank, photomask manufacturing method, and display device manufacturing method
JP7258717B2 (en) Photomask blank, method for manufacturing photomask blank, method for manufacturing photomask, and method for manufacturing display device
JP3951704B2 (en) Halftone phase shift mask, blank thereof, and manufacturing method thereof
TW202217433A (en) Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent