TW536637B - Improved positioning and data integrating method and system thereof - Google Patents

Improved positioning and data integrating method and system thereof Download PDF

Info

Publication number
TW536637B
TW536637B TW91101204A TW91101204A TW536637B TW 536637 B TW536637 B TW 536637B TW 91101204 A TW91101204 A TW 91101204A TW 91101204 A TW91101204 A TW 91101204A TW 536637 B TW536637 B TW 536637B
Authority
TW
Taiwan
Prior art keywords
navigation
processor
gps
data
ins
Prior art date
Application number
TW91101204A
Other languages
Chinese (zh)
Inventor
Ching-Fang Lin
Original Assignee
Ching-Fang Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/006,447 external-priority patent/US6516272B2/en
Application filed by Ching-Fang Lin filed Critical Ching-Fang Lin
Application granted granted Critical
Publication of TW536637B publication Critical patent/TW536637B/en

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

An improved positioning and data integrating process and system can substantially solve the problems encountered in system integration for personal hand-held applications, air, land, and water vehicles, wherein an integrated global positioning system/inertial measurement unit, enhanced with optional other devices to derive user position, velocity, attitude, and body acceleration and rotation information, and distributes these data to other onboard systems, for example, in case of aircraft application, flight management system, flight control system, automatic dependent surveillance, cockpit display, enhanced ground proximity warning system, weather radar, and satellite communication system.

Description

536637536637

五、發明說明(1) 相關的專利申請: 本申請書為臨時申請書的分案,其申請號為· 09/764,776,申請日期為2001年1月23日,它又為正式申 請書,其申請號為:6 0 / 2 5 7,5 1 6,申請日期為2 0 0 0年1 2月 23日。 發明說明 本發明的領域V. Description of the invention (1) Relevant patent applications: This application is a division of the provisional application. Its application number is 09 / 764,776. The application date is January 23, 2001. It is also an official application. The application number is: 6 0/2 5 7, 5 1 6 and the application date is February 23, 2000. Description of the invention Field of the invention

本發明係一般定位和數據整合方法和系統,更具體地 講係一種改進的個體手持式應用的定位和數據整合方法和 系統,例如,空中、地面和水中運載體。該方法應用全球 定位系統/慣性測量組件配以可選的其它導航設備,來獲 得運載體之位置,速度,姿態,載體加速度,和轉動信 息,並把這些信息分配給其它的子系統,例如,飛行管理 系統,飛行控制系統,自動相關監視系統,駕駛艙顯示系 統,加強型地面鄰近告警系統,氣像雷達,和衛星通信系 統。The present invention is a general positioning and data integration method and system, and more specifically, an improved positioning and data integration method and system for individual handheld applications, such as air, ground, and water carriers. This method uses GPS / inertial measurement components with optional other navigation equipment to obtain the position, velocity, attitude, acceleration, and rotation information of the carrier, and assigns this information to other subsystems, for example, Flight management system, flight control system, automatic related surveillance system, cockpit display system, enhanced ground proximity warning system, aerial imaging radar, and satellite communication system.

相關方法的描述 在個體手持式應用和各種車輛的定位和數據整合方法 和系統設計中存在著一些困難問題,飛機的航空電子也一 樣。商用飛機航空電子系統,例如多個雷達,導航系統,Description of related methods There are some difficult problems in individual handheld applications and various vehicle positioning and data integration methods and system designs, as well as aircraft avionics. Commercial aircraft avionics systems, such as multiple radars, navigation systems,

第5頁 ^36637 五、發明說明(2) 飛行管理系統,駕駛艙顯示系統,變得越來越複雜。每個 系統都有專有的控制需要飛行員的關照,特別是處於危機 飛行狀態時。更有甚者,當飛行員對專有控制的可能性受 到駕駛艙空間限制時,這個任務是很複雜的。 飛行管理系統(F MS )包括飛行導航管理,飛行計劃, 及綜合執跡產生器和導引律。飛行器之FMS與測量系統和 機上慣性參考系統協同作用,來操縱飛行器沿執跡飛行, 離開執跡迂回,結束飛行和接近操作。今天先進的飛行器 裝備了用於計算執跡的飛行管理電腦和使飛行器沿這些執 跡飛行的組合控制系統,因而使直接操作費用降至最小。 導引功能由FMS來完成。在一些應用中,巡航控制規 律和自動執跡跟蹤控制規律(特別是四維控制和橫轉)也被 包括在FMS中。這樣以來它們與導引規律緊密偶合。在接 近和著陸階段,F M S通過執跡計算獲得飛行器之最優位 置。因為橫向誤差和相對位置偏移對導引精度很敏感,因 此需要精確導引和控制。所以,F MS中導引功能之精度很 大程度上決定了飛行器接近和著陸之性能以及其他重要任 務處理。然而,考慮操作和故障的重要處理功能應包括在 自動飛行控制系統(FCS)中,而不是FMS中,因為像高通帶 内環這樣的功能通常由自動飛行控制系統(F C S )來處理。 所以,人們總希望避免在F M S中結合這些功能,即使它們 可以用FMS中獨立的處理器來解決。 假定快控制環為1 0 0赫茲,慢控制環為5 0赫茲,選5 ◦ 赫茲作為主框架來以2 0毫秒更新主框架。傳感器輸入為Page 5 ^ 36637 V. Description of the invention (2) The flight management system and cockpit display system have become more and more complicated. Each system has proprietary controls that require the attention of the pilot, especially during a crisis flight. What's more, this task is complicated when the pilot's possibilities for proprietary control are limited by cockpit space. The flight management system (F MS) includes flight navigation management, flight planning, and integrated track generator and guidance law. The FMS of the aircraft cooperates with the measurement system and the onboard inertial reference system to control the aircraft to fly along the track, detour from the track, and end the flight and approach operations. Today's advanced aircraft are equipped with flight management computers for calculating tracks and a combined control system that allows the aircraft to fly along those tracks, thereby minimizing direct operating costs. The guidance function is performed by the FMS. In some applications, cruise control rules and automatic tracking control rules (especially 4D control and roll) are also included in the FMS. In this way, they are closely coupled with the guiding law. During the approach and landing phases, F M S obtains the optimal position of the aircraft through tracking calculations. Because lateral errors and relative position offsets are sensitive to guidance accuracy, precise guidance and control are required. Therefore, the accuracy of the guidance function in F MS largely determines the aircraft's approach and landing performance and other important tasks. However, important handling functions that consider operations and faults should be included in the automatic flight control system (FCS), not in the FMS, because functions like the high-pass band inner loop are usually handled by the automatic flight control system (FCS). Therefore, people always want to avoid combining these functions in FMS, even if they can be solved by independent processors in FMS. Assume that the fast control loop is 100 Hz and the slow control loop is 50 Hz. Select 5 ◦ as the main frame to update the main frame in 20 milliseconds. The sensor input is

536637 五、發明說明(3) 2 0 0赫茲。如果它被選為次框架,那麼次框架為5毫秒。其 他50赫茲的子系統有導引命令,FCS數據輸入,FCS數據輸 出,及作動伺服命令。在每一個主框架中,傳感器輸入更 新四次,快控制環計算兩次。慢控制環,導引命令,FCS 數據輸入,F C S數據輸出,及作動伺服命令各更新一次。 飛行管理系統和飛行控制系統,以及其他航空電子系 統不斷增加的複雜性需要航空電子系統之整合設計,或整 合之航空電子系統。例如,可以預料新一代之民用飛機將 應用集成模塊電子系統,作為這些飛機電子系統結構之不 可分割之一部分。集成模塊電子系統系列使得集成電子系 統可以共享如處理,輸入/輸出,内存,和電源發生這樣 的功能。新一代民航機的飛行曱板將加入先進功能如平面 顯示螢幕,而不是陰極射線管(CRT),用於顯示飛行,導 航及發動機信息。 慣性器件,顯示,及超大規模超高速集成電路技術之 發展使得可用全數字慣性參考系統(I n e r t i a 1 R e f e r e n c e System, IRS)為民用航空器設計導航系統。IRS與一個典 型的運輸機飛行管理系統接口。該系統主要輸出為線加速 度,角速率,俯仰橫滾姿態,和北東地速度數據,用來作 為輸入到運輸飛行控制系統。 慣性導航系統由一個慣性測量組件,一個處理器,和 一個嵌入式導航軟體組成。通過應用從機上慣性器件得到 之載體比力和轉動速率測量,數字式地解牛頓運動方程而 得到位置解。機上慣性器件由加速度計和陀螺組成,與相536637 V. Description of the invention (3) 2 0 0 Hz. If it is selected as the secondary frame, the secondary frame is 5 milliseconds. Other 50 Hz subsystems have guidance commands, FCS data input, FCS data output, and actuation servo commands. In each main frame, the sensor input is updated four times and the fast control loop is calculated twice. Slow control loop, guidance command, FCS data input, F C S data output, and actuating servo command are updated once. The increasing complexity of flight management systems and flight control systems, as well as other avionics systems, requires the integrated design of avionics systems, or integrated avionics systems. For example, it is expected that a new generation of civil aircraft will use integrated modular electronic systems as an integral part of the structure of these aircraft electronic systems. The integrated module electronics system family enables integrated electronics to share functions such as processing, input / output, memory, and power generation. Instead of a cathode ray tube (CRT), advanced features such as a flat-screen display will be added to the flight deck of the new generation of civil aircraft, which will display flight, navigation and engine information. The development of inertial devices, displays, and ultra-large-scale ultra-high-speed integrated circuit technology has made it possible to design a navigation system for civil aircraft using an all-digital inertial reference system (I n e r t i a 1 R e f e r c e System, IRS). The IRS interfaces with a typical transport flight management system. The main output of this system is linear acceleration, angular rate, pitch and roll attitude, and northeast ground speed data, which are used as input to the transport flight control system. The inertial navigation system consists of an inertial measurement component, a processor, and an embedded navigation software. By applying the carrier specific force and rotation rate measurements obtained from the inertial device on board, the Newton equation of motion is solved digitally to obtain the position solution. The onboard inertial device consists of an accelerometer and a gyroscope,

536637 五、發明說明(4) 關的硬體及電子電路構成慣性測量組件。 慣性導航系統可由框架式或者捷聯式機械結構實現。 在框架式慣導系統中,加速度計和陀螺被安裝在一個支架 _ 平台上,傳感器與載體的轉動隔離,把測量及導航計算保 持在一個穩定的導航坐標系中。可能的導航坐標系包括地 -心慣性系(ECI ),地心地球系(ECEF),當地水平北東地 (NED )系,和當地水平游移方位系。在捷聯式慣導系統 中,慣性傳感器剛性地安裝在載體系上,一個坐標轉換陣 (解析平台)被用來把表達在載體系上的加速度和轉動測量 變換到導航系,在穩定的導航系中作導航計算。框架式比 捷聯式慣導系統更精確和易於校正。捷聯式慣導系統可處 馨 於高動態狀態下,如大速率轉動機動,使慣性傳感器的性 能受影響。然而,由於低成本與可靠性,隨著新型陀螺和 加速度計的出現,捷聯式慣導系統正成為主導機械編排。 原理上講,通過初始化起始位置和一個對準後,慣性 導航系統允許純粹的自主運行並輸出連續的載體位置,速 度和姿態數據。除了自主運行外,慣性導航系統的其它優 點包括完整之導航解和寬通帶。然而,慣性導航系統成本 高,且長時間上存在漂移。這意味著位置誤差隨時間增 長。這一誤差傳播特性主要由它的慣性傳感器誤差源引 起,例如陀螺漂移,加速度計零偏,和刻度係數誤差。 在前面的專利申請中發明了飛機航空電子系統的定位 ® 和數據整合的創新方法和系統的設計,發明名稱為π運載 體導航定位和數據整合之方法與系統’’,其申請號為:536637 V. Description of the invention (4) The related hardware and electronic circuit constitute the inertial measurement component. The inertial navigation system can be realized by a frame-type or strap-down mechanical structure. In the frame-type inertial navigation system, the accelerometer and gyroscope are mounted on a stand _ platform, the sensor is isolated from the rotation of the carrier, and the measurement and navigation calculations are maintained in a stable navigation coordinate system. Possible navigation coordinate systems include the Earth-Central Inertial System (ECI), the Earth-Central Earth System (ECEF), the local horizontal North East Territory (NED) system, and the local horizontal migration azimuth system. In the strapdown inertial navigation system, the inertial sensor is rigidly mounted on the carrier system, and a coordinate conversion matrix (analysis platform) is used to transform the acceleration and rotation measurements expressed on the carrier system to the navigation system, in a stable navigation The system makes navigation calculations. The frame type is more accurate and easier to calibrate than the strapdown inertial navigation system. The strapdown inertial navigation system can be used under high dynamic conditions, such as high-speed rotating maneuvers, which affects the performance of the inertial sensor. However, due to low cost and reliability, with the advent of new gyroscopes and accelerometers, strapdown inertial navigation systems are becoming the dominant mechanical orchestration. In principle, by initializing the starting position and an alignment, the inertial navigation system allows purely autonomous operation and outputs continuous carrier position, speed and attitude data. In addition to autonomous operation, other advantages of inertial navigation systems include complete navigation solutions and wide passbands. However, inertial navigation systems are costly and drift over time. This means that the position error increases over time. This error propagation characteristic is mainly caused by its inertial sensor error sources, such as gyro drift, accelerometer bias, and scale factor errors. In the previous patent application, the invention of the aircraft avionics system positioning ® and the innovative method and system design of data integration was invented as the method and system of π carrier navigation and positioning and data integration. Its application number is:

第8頁 536637 五、發明說明(5) 09/374,480 ,申請日期為1999年8月13日。雖然前面的專 利可以用於陸地、空中和水中的運載體,這裡提供了前面 的專利在陸地和水中的運載體以及手持設備的特定嵌入方 法。 發明總結 本發明之主要目的是提供一個改進的運載體定位和數 據整合方法與系統,該方法與系統用一個控制板來管理和 分配導航數據及慣性傳感器數據給空中、陸地和水中的運 載體上子系統。Page 8 536637 V. Description of the invention (5) 09 / 374,480, the application date is August 13, 1999. Although the previous patent can be applied to land, air and water carriers, the previous patents for land and water carriers and specific embedding methods for handheld devices are provided here. SUMMARY OF THE INVENTION The main object of the present invention is to provide an improved carrier positioning and data integration method and system. The method and system use a control board to manage and distribute navigation data and inertial sensor data to air, land and water carriers Subsystem.

本發明之另一目的是提供一個改進的手持應用定位和 數據整合方法與系統,其中控制面板管理和分配導航數據 和慣性傳感器數據到顯示設備和無線通訊設備。 本發明之又一目的是提供一個改進的空中、陸地和水 中運載體定位和數據整合方法與系統,其中一個、多個或 所有的下列設備··高度測量設備、指北儀、速度傳感器、 地形數據庫和目標檢測系統接口和全球定位系統/慣性測 量組件組合導航系統協調,增強位置解和控制性能以適應 各種應用。Another object of the present invention is to provide an improved method and system for positioning and data integration of handheld applications, in which a control panel manages and distributes navigation data and inertial sensor data to a display device and a wireless communication device. Yet another object of the present invention is to provide an improved method and system for positioning and data integration of air, land and water carriers, in which one, more or all of the following equipments: an altitude measuring device, a north compass, a speed sensor, a terrain The database and target detection system interface is coordinated with the global positioning system / inertial measurement component integrated navigation system to enhance the position solution and control performance to adapt to various applications.

本發明之又一目的是提供一個空中通用的運載體定位 和數據整合方法與系統,該方法與系統中飛行管理系統從 一高度測量單元輔助下的全球定位系統/慣性測量組件組 合導航系統得到位置、速度、姿態和時間,以進行飛行管 理。Yet another object of the present invention is to provide a general method and system for carrier positioning and data integration in the air. In this method and system, the flight management system obtains a position from a global positioning system / inertial measurement component integrated navigation system assisted by an altitude measurement unit. , Speed, attitude, and time for flight management.

第9頁 536637 五、發明說明(6) 本發明之又一目的是提供一個空中通用的運載體定位 和數據整合方法與系統,該方法與系統中飛行控制系統從 一高度測量單元輔助下的全球定位系統/慣性測量組件組 合導航系統得到運載體姿態和速度、運載體的加速度和轉 動數據,以進行飛行控制。 本發明之又一目的是提供一個空中通用的運載體定位 和數據整合方法與系統,該方法與系統中自動相關監視系 統從一高度測量單元輔助下的全球定位系統/慣性測量組 件組合導航系統得到運載體位置和時間數據,以報導運載 體位置。 本發明之又一目的是提供一個通用的空中運載體定位 和數據整合方法與系統,該方法與系統中駕駛艙顯示系統 從一高度測量單元辅助下的全球定位系統/慣性測量組件 組合導航系統獲得載體位置,姿態,航向,速度和時間數 據來顯不導航信息。 本發明之又一目的是提供一個通用的空中運載體定位 和數據整合方法與系統,該方法與系統中加強型地面累加 告警系統從一高度測量單元辅助下的全球定位系統/慣性 測量組件組合導航系統獲得載體位置,速度和航向時間數 據來查詢地形數據,並預測運輸路徑。 本發明之又一目的是提供一個通用的空中運載體定位 和數據整合方法與系統,該方法與系統中氣像雷達從一高 度測量單元辅助下的全球定位系統/慣性測量組件組合導 航系統獲得平台姿態及載體加速度數據來穩定氣像雷達天Page 9 536637 V. Description of the invention (6) It is another object of the present invention to provide a universal carrier positioning and data integration method and system in the air. The method and system of the flight control system are assisted by an altitude measurement unit worldwide. The positioning system / inertial measurement component integrated navigation system obtains the attitude and speed of the carrier, acceleration and rotation data of the carrier for flight control. Yet another object of the present invention is to provide a general method and system for carrier positioning and data integration in the air. The automatic correlation monitoring system in the method and system is obtained from a GPS / inertial measurement component integrated navigation system assisted by an altitude measurement unit Carrier position and time data to report carrier position. Yet another object of the present invention is to provide a universal air carrier positioning and data integration method and system. The cockpit display system in the method and system is obtained from a global positioning system / inertial measurement component integrated navigation system assisted by an altitude measurement unit. Carrier position, attitude, heading, speed and time data to display navigation information. Yet another object of the present invention is to provide a universal air carrier positioning and data integration method and system. The method and system of the enhanced ground cumulative alarm system are assisted by a global positioning system / inertial measurement component integrated navigation assisted by an altitude measurement unit. The system obtains carrier position, speed, and heading time data to query terrain data and predict transportation routes. Yet another object of the present invention is to provide a universal air carrier positioning and data integration method and system, in which the aerial imaging radar obtains a platform from a global positioning system / inertial measurement component integrated navigation system assisted by an altitude measurement unit. Attitude and carrier acceleration data to stabilize aerial radar

第10頁 536637 五、發明說明(7) 線。 本發明之又一目的是提 和數據整合方法與系統,該 一高度測量單元輔助下的全 合導航系統獲得載體位置及 星。 通過應用最新的慣性器 測量單元輔助下的全球定位 系統,以及先進的總線和計 決航空電子系統整合中遇到 於現代航空電子系統設計與 度,可靠性,小體積,輕重 護,及便於修改。 圖號說明: 11 -飛行管理系統 1 3 -自動相關監視系統 1 5 -數據總線 17 -加強型地面鄰近告: 1 8 -氣像雷達 2 0 -慣性測量組件 3 1 -氣壓表 3 3 -空氣數據傳感器 3 5 -目標檢測系統 供一個通用的空中運載體定位 方法與系統中衛星通信系統從 球定位系統/慣性測量組件組 姿態數據來把通信天線指向衛 件,全球定位系統技術,高度 系統/慣性測量組件組合導航 算技術,本發明可從根本上解 的問題。本發明平衡了多個加 製造上的要求··低成本,高精 量,低功耗,易於操作和維 1 2 -飛行控制系統 14 -通用導航與控制盒 1 6 -駕駛艙顯示系統 系統 1 9 -衛星通信系統 3 0 -高度測量器件 32-雷達高度計 3 4 -地形數據庫 3 6 -無線通訊設備Page 10 536637 V. Description of the invention (7) line. Another object of the present invention is to provide a data integration method and system. The integrated navigation system assisted by the altitude measurement unit obtains the carrier position and the satellite. Through the application of the latest inertial measurement unit assisted global positioning system, as well as the integration of advanced buses and avionics systems encountered in modern avionics system design and reliability, small size, light protection, and easy modification . Description of drawing number: 11-Flight management system 1 3-Automatic related surveillance system 1 5-Data bus 17-Enhanced ground proximity report: 1 8-Aerographic radar 2 0-Inertial measurement unit 3 1-Barometer 3 3-Air Data sensor 3 5-Target detection system for a universal air carrier positioning method and system Satellite communication system from the ball positioning system / inertial measurement component group attitude data to point the communication antenna at the guard, GPS technology, altitude system / The inertial measurement component integrated navigation arithmetic technology can fundamentally solve the problem of the present invention. The present invention balances the requirements of multiple fabrications .. Low cost, high precision, low power consumption, easy operation and maintenance. 1 2-Flight control system 14-Universal navigation and control box 1 6-Cockpit display system system 1 9-Satellite communication system 3 0-Altitude measurement device 32-Radar altimeter 3 4-Terrain database 3 6-Wireless communication equipment

第11頁 536637 五、發明說明(8) 3 7 -顯示設備 4 3 -變頻器 4 5 -信號處理器 5 0 _中央導航與控制處理 51-公用内存卡 5 3 -控制板 5 5 -公用總線 6 1 -模擬信號接口 6 3 -脈衝信號接口 70 -高度接口和處理板 72 -雷達高度計接口 8 1-INS處理器 8 3 -卡爾曼遽波器 9 3 -空氣數據接口和處理 9 4 -目標檢測系統接口與 451 -Q用多普勒頻移去除 4 5 2 -相關器 454 -微處理器 4 5 6 -編碼器 6 1 1 -多通道低通濾波器 6 1 3 -定時電路 621-RS-4 8 5 接 口電路 6 3 1 -加減脈衝分離電路 6 3 3 -總線接口電路 4 0 -全球定位系統處理器 44- IF採樣及A/D轉換器 46-振盪器電路 器 5 2 -總線裁決器 5 4 -總線接口 60-IMU接口和處理板 6 2 -串行信號接口 6 4 -並行數字信號接口 7 1 -氣壓表接口 80_導航處理板 8 2 -載波整相位模糊解模塊 9 0 -處理板 板 處理板 器 4 5 3 -累加器 4 5 5 -載波數字控制振盪器 4 5 7 -碼數字控制振盪器 612-多通道AD轉換電路 614-DMA 接口 6 2 2 -中斷電路 632_多通道頻率-數字電路 6 3 4-中斷電路Page 11 536637 V. Description of the invention (8) 3 7-Display device 4 3-Inverter 4 5-Signal processor 5 0 _ Central navigation and control processing 51-Common memory card 5 3-Control board 5 5-Common bus 6 1-Analog signal interface 6 3-Pulse signal interface 70-Altitude interface and processing board 72-Radar altimeter interface 8 1-INS processor 8 3-Kalman chirp 9 3-Air data interface and processing 9 4-Target Detection system interface and 451-Q Doppler frequency removal 4 5 2-Correlator 454-Microprocessor 4 5 6-Encoder 6 1 1-Multi-channel low-pass filter 6 1 3-Timing circuit 621-RS -4 8 5 Interface circuit 6 3 1-Add / subtract pulse separation circuit 6 3 3-Bus interface circuit 4 0-GPS processor 44-IF sampling and A / D converter 46-Oscillator circuit device 5 2-Bus ruling 5 4-bus interface 60-IMU interface and processing board 6 2-serial signal interface 6 4-parallel digital signal interface 7 1-barometer interface 80_ navigation processing board 8 2-carrier phase phase fuzzy solution module 9 0- Processing Board Board Processing Board Device 4 5 3-Accumulator 4 5 5-Carrier Digital Control Oscillator 4 5 7-Code Digital Control Oscillator 612-Multi-channel AD conversion circuit 614-DMA interface 6 2 2 -Interrupt circuit 632_Multi-channel frequency-digital circuit 6 3 4-Interrupt circuit

第12頁 536637 五、發明說明(9) 642-中斷電路 712-A/D轉換電路 714-DMA 接口 7 2 2 -地形數據庫 8 1 2 -坐標變換計算模塊 模塊 8 2 1 -幾何距離計算模塊 率計算模塊 823 -衛星時鐘模型 8 2 5 -對流層模型 8 2 7 -搜索空間確定模塊 8 3 2 -協方差傳播模塊 834 -方差更新模塊 8 3 6 -狀態向量預測模塊 8 3 8 -計算測量殘差模塊 3 2 0 1 -RF速度傳感器 3203 -激光速度傳感器 3 3 0 2 -探測器 3 5 0 2 -傳感器 6 4 1 -總線接口電路 7 1 1 -低通濾波器 7 1 3 -定時電路 7 2 1 -數據融合模塊 8 1 1 - I M U誤差補償模塊 8 1 3 -姿態位置速度計算 8 1 4 -變換矩陣計算模塊 815 -地球與載體轉動速 8 2 2 -最小二乘調整模塊 824-電離層模型 8 2 6 -衛星預測模塊 8 3 1 -殘差監控模塊 8 3 3 -計算最優增益模塊 8 3 5 -預處理模塊 8 3 7 -GPS誤差補償模塊 8 3 9 -更新狀態向量模塊 3 2 0 2 -聲速度傳感器 3204-里程計接口 3 5 0 1 -圖像 3503 -設計數據鏈 優選方案之詳細說明 本發明提供了一種改進的通用定位和數據整合方法和 系統,它採用一個控制板為空中、陸地和水中運載體的子Page 12 536637 V. Description of the invention (9) 642- Interrupt circuit 712-A / D conversion circuit 714-DMA interface 7 2 2-Terrain database 8 1 2-Coordinate transformation calculation module module 8 2 1-Geometric distance calculation module rate Calculation module 823-Satellite clock model 8 2 5-Tropospheric model 8 2 7-Search space determination module 8 3 2-Covariance propagation module 834-Variance update module 8 3 6-State vector prediction module 8 3 8-Calculation of measurement residuals Module 3 2 0 1-RF speed sensor 3203-Laser speed sensor 3 3 0 2-Detector 3 5 0 2-Sensor 6 4 1-Bus interface circuit 7 1 1-Low-pass filter 7 1 3-Timing circuit 7 2 1-Data fusion module 8 1 1-IMU error compensation module 8 1 3-Attitude position speed calculation 8 1 4-Transformation matrix calculation module 815-Earth and carrier rotation speed 8 2 2-Least square adjustment module 824-Ionospheric model 8 2 6-Satellite prediction module 8 3 1-Residual monitoring module 8 3 3-Calculation of optimal gain module 8 3 5-Preprocessing module 8 3 7-GPS error compensation module 8 3 9-Update state vector module 3 2 0 2 -Sound speed sensor 3204-Odometer interface 3 5 0 1 -Image 350 3-Designing a detailed description of a preferred data link scheme The present invention provides an improved universal positioning and data integration method and system, which uses a control board as a carrier for air, land, and water carriers.

第13頁 536637 五、發明說明(ίο) 系統管理和分配導航數據和慣性傳感器數據。 本發明的方法和系統能應用於手持式應用,它採用一 個控制板為顯示設備和無線通訊設備管理和分配導航數據 和慣性傳感器數據。 本發明的方法與系統應用於全球定位系統/慣性測量 組件組合導航系統’其中一個、多個或所有的下列設備: 咼度測1設備、指北儀、速度傳感器、地形數據庫和目標 檢測系統接口和全球定位系統/慣性測量組件組合導航系 統協調,增強位置解和控制性能以適應各種應用。 一般的講’慣性導航系統(Inertial Navugation System,INS)精度之改進可通過採用高精度慣性器件或用 外部數據加以補償。開發和製造慣性器件的成本隨著精度 水平的提高而增加。新的慣性傳感器技術和電子技術的進 步使得有低成本慣性傳感器可供使用,例如微電子機械系 統(Microelectromechanical, MEMS)慣性傳感器。微電子 機械系統慣性傳感器借用半導體工藝過程在矽片上製作微 小的傳感器和作動器。這些新慣性傳感器的精度可能不如 傳統的傳感器,但它們在成本,體積,重量,熱穩定性, 和寬動態範圍方面遠遠超過傳統的慣性傳感器。 本發明採用有高度測量單元偶合之組合全球定位系統 /慣性測量組件來提供連續的高精度的載體定位,高精度 的姿態確定,平台體加速度和轉動數據,以及時間數據輸 出。這些數據由一個控制板來管理和分配。 本發明與傳統系統相比有很多優點,例如本發明應用Page 13 536637 V. Description of the Invention (ίο) The system manages and distributes navigation data and inertial sensor data. The method and system of the present invention can be applied to handheld applications. It uses a control panel to manage and distribute navigation data and inertial sensor data for display devices and wireless communication devices. The method and system of the present invention are applied to a global positioning system / inertial measurement component integrated navigation system 'one, more, or all of the following devices: a degree measurement 1 device, a north compass, a speed sensor, a terrain database, and a target detection system interface Coordinates with the global positioning system / inertial measurement component integrated navigation system to enhance the position solution and control performance to adapt to various applications. Generally speaking, the improvement of the accuracy of the Inertial Navugation System (INS) can be compensated by using high-precision inertial devices or using external data. The cost of developing and manufacturing inertial devices increases as accuracy levels increase. New inertial sensor technology and advances in electronic technology have made low-cost inertial sensors available, such as microelectromechanical (MEMS) inertial sensors. Microelectromechanical system inertial sensors use semiconductor processes to make tiny sensors and actuators on silicon wafers. These new inertial sensors may not be as accurate as traditional sensors, but they are far superior to traditional inertial sensors in terms of cost, volume, weight, thermal stability, and wide dynamic range. The present invention uses a combined global positioning system / inertial measurement component coupled with a height measurement unit to provide continuous high-precision carrier positioning, high-precision attitude determination, platform body acceleration and rotation data, and time data output. This data is managed and distributed by a dashboard. The invention has many advantages compared with traditional systems, such as the application of the invention

536637 五、發明說明(11) 於空中運載器的優越性包括: 1. 慣性導航導航系統具有短時間高精度定位能力,但受長 時間漂移影響,導致長時間導航解很差。全球定位系統有 長期高精度導航性能。這兩種獨立系統之組合,可望獲得 高精度的長期和短期導航解。 2. 組合全球定位系統慣性測量組件於一高度測量單元偶 合,例如氣壓高度計或雷達高度計,來改善垂向定位精 度。 3. 從慣性測量組件獲得的速度和加速度被反饋到全球定位 系統處理器,以輔助全球定位系統衛星之載波相位及碼跟 蹤,用來提高全球定位和慣性導航系統性能,特別在重阻 · 塞高動態環境中。 4. 來自有高度測量單元偶合之組合全球定位系統/慣性測 量組件之高精度導航解被用來輔助全球定位系統載波相位 模糊解。通過這一方法,從全球定位系統處理器來的載波 相位數據可被混合在一個卡爾曼濾波器中,進一步改善導 航解。 5. 陀螺和加速度計提供飛行控制系統所需之平台體轉動及 加速度基本數據。這些數據連同平台速度和姿態信息一起 分配給飛行控制系統。這樣一來,飛行控制系統不需要附 加之陀螺和加速度計。 6. 機上飛行管理系統從通用導航與控制盒之控制板上直接 · 獲得載體位置,速度,姿態,和時間數據,因此它不需要 附加的導航辅助。536637 V. Description of the invention (11) The advantages of the air carrier include: 1. The inertial navigation navigation system has the short-term high-precision positioning capability, but it is affected by long-term drift, resulting in poor long-term navigation solutions. GPS has long-term high-precision navigation performance. The combination of these two independent systems is expected to achieve highly accurate long-term and short-term navigation solutions. 2. Combine the GPS inertial measurement unit with an altitude measurement unit, such as a barometric altimeter or radar altimeter, to improve vertical positioning accuracy. 3. The speed and acceleration obtained from the inertial measurement component are fed back to the GPS processor to assist the carrier phase and code tracking of GPS satellites, and are used to improve the performance of GPS and inertial navigation systems. In a highly dynamic environment. 4. The high-precision navigation solution from the combined GPS / inertial measurement unit coupled with the height measurement unit is used to assist the GPS carrier phase fuzzy solution. In this way, the carrier phase data from the GPS processor can be mixed in a Kalman filter to further improve the navigation solution. 5. The gyro and accelerometer provide the basic body rotation and acceleration data required by the flight control system. This data is distributed to the flight control system along with platform speed and attitude information. In this way, the flight control system does not require additional gyroscopes and accelerometers. 6. The onboard flight management system directly obtains the carrier position, speed, attitude, and time data from the control panel of the universal navigation and control box, so it does not require additional navigation assistance.

第15頁 536637 五、發明說明(12) 7 ·機上自動相關監視系統從通用導航與控制盒之控制板上 直接獲得載體位置和時間數據,因此它不需要附加的導航 輔助和時鐘。 8·通用導航與控制盒提供載體位置,速度,和姿態數據, 並把這些數據分配給加強型地面鄰近告警系統,以提高它 的功能與性能。這樣一來,機上加強型地面鄰近告警系統 不需要附加的導航辅助來提供載體位置,速度,和姿態信 息0 9 ·通用載體導航與控制盒把從I μ U加速度計組件得到之加 速度數據,連同平台姿態信息,分配給氣像雷達。這些數 據用來穩定雷達天線系統,因此省去了附加的加速度計和 姿態傳感器。 1 0 ·通用載體導航與控制盒之控制板分配平台位置和姿態 給衛星通信系統。這些數據用來把通信系統天線指向通信 衛星,因此省去了附加的指向系統和姿態傳感器。 如第一圖,通用導航與控制盒1 4連接於數據總線1 5。 數據總線1 5為一標準總線,如Μ I L 1 5 5 3 Β總線,A R I N C 4 2 9總 線,A R I N C 6 2 9總線。飛行管理系統1 1 ,飛行控制系統1 2, 自動相關監視系統1 3,駕駛艙顯示系統1 6,加強型地面鄰 近告警系統1 7,氣像雷達1 8,衛星通信系統丨9也被連接於 數據總線1 5。數據總線1 5負責通用導航與控制盒丨4與飛行 管理系統1 1 ,飛行控制系統1 2,自動相關監視系統1 3,駕 駛艙顯示系統1 6加強型地面鄰近告警系統1 7,氣像雷達 1 8,衛星通信系統1 9之間的數據傳輸。Page 15 536637 V. Description of the invention (12) 7 · The on-board automatic related monitoring system obtains the carrier position and time data directly from the control panel of the universal navigation and control box, so it does not require additional navigation assistance and clock. 8. The universal navigation and control box provides carrier position, speed, and attitude data, and assigns these data to the enhanced ground proximity alarm system to improve its function and performance. In this way, the on-board enhanced ground proximity alert system does not require additional navigation assistance to provide carrier position, speed, and attitude information. 0 9 · The universal carrier navigation and control box uses acceleration data obtained from the I μ U accelerometer assembly. Along with the platform attitude information, it is assigned to the aerial radar. This data is used to stabilize the radar antenna system, thus eliminating the need for additional accelerometers and attitude sensors. 1 0 · The control board of the universal carrier navigation and control box assigns the platform position and attitude to the satellite communication system. This data is used to point the communication system antenna at the communication satellite, thus eliminating the need for additional pointing systems and attitude sensors. As shown in the first figure, the universal navigation and control box 14 is connected to the data bus 15. The data bus 15 is a standard bus, such as the M I L 1 5 5 3 B bus, the A R I N C 4 2 9 bus, and the A R I N C 6 2 9 bus. Flight management system 1 1, flight control system 12, automatic related surveillance system 1 3, cockpit display system 16, enhanced ground proximity warning system 17, aerial imaging radar 18, and satellite communication system 9 are also connected to Data bus 1 5. The data bus 15 is responsible for the universal navigation and control box 丨 4 and the flight management system 1 1, the flight control system 12, the automatic related monitoring system 1 3, the cockpit display system 16, the enhanced ground proximity warning system 17, the aerial image radar 18, data transmission between satellite communication systems 19.

第16頁 536637 五、發明說明^13) ^ ---~ - 如第二圖所示,通用導 件20 ’高度測量器件3〇,全 $連接與中央導航與控制處 器5 0連接於數據總線1 5。 航與控制盒14包含慣性測量組 球定位系統處理器4 〇,它們分 理器5 0。中央導航與控制處理 口知旁第三圖所不,中央導航與控制處理器50包含ΙΜϋ接 ::工板60 ’高度接口和處理板7〇,導航處理板8〇,公 她括^卡51,總線裁決器52,和控制板53,它們通過公用 〜線5 5互相連接。中央導航與控制處理器5 〇進一步包含總 線接口 54,以提供控制板53與數據總線15之間的連接。w 如第一圖、第二圖、第三圖、第四圖、第五圖_八、第 六圖-Α 、第七圖、第八圖、第九圖、第十圖、第十一圖、 第十二圖、第十三圖、第十六圖、第十七圖及第十八圖所 示’表達了本發明第一優選實現方案,其包含以下步驟: 1 ·進行G P S處理和接收G P S測量,包括來自全球定位系 統處理器4 0的偽距,載波相位,多普勒頻移,和時間。它 們被送到中央導航與控制處理器5 〇之導航處理板8 0。 2 ·接收來自慣性測量組件2 〇之慣性測量,包括機體角 速率及比力,通過IMlJ接口和處理板60把它們轉換為機體 加速度和轉動之數字量,並通過公用總線5 5把它們送到導 航處理板80和控制板53。 3 ·從高度測量器件3 〇接收高度測量,用高度接口和處 理板70轉換其為數字量之平均海拔(Mean Sea Level, M S L )高度,並通過公用總線5 5把它們送到導航處理板8 0和Page 16 536637 V. Description of the invention ^ 13) ^ --- ~-As shown in the second figure, the universal guide 20 'height measurement device 30, full $ connection and central navigation and control device 50 0 connection to the data Bus 1 5. The navigation and control box 14 includes an inertial measurement system processor 40, which is a processor 50. The central navigation and control processing is not shown in the third figure. The central navigation and control processor 50 includes 1M connection :: work board 60 'height interface and processing board 70, navigation processing board 80, and public card ^ Card 51 The bus arbiter 52 and the control board 53 are connected to each other through a common line 5 5. The central navigation and control processor 50 further includes a bus interface 54 to provide a connection between the control board 53 and the data bus 15. w as the first, second, third, fourth, fifth, fifth_eighth, sixth-A, seventh, eighth, ninth, tenth, eleventh The twelfth, thirteenth, thirteenth, sixteenth, seventeenth, and eighteenth drawings' show the first preferred implementation solution of the present invention, which includes the following steps: 1 · Perform GPS processing and reception GPS measurements include pseudorange, carrier phase, Doppler shift, and time from the GPS processor 40. They are sent to the navigation processing board 80 of the central navigation and control processor 50. 2 · Receive inertial measurements from the inertial measurement module 20, including the angular rate and specific force of the body, convert them into digital quantities of the body's acceleration and rotation through the IMlJ interface and the processing board 60, and send them to the public bus 5 5 The navigation processing board 80 and the control board 53. 3. Receive the altitude measurement from the altitude measuring device 3.0, convert it to digital mean sea level (MSL) altitude using the altitude interface and processing board 70, and send them to the navigation processing board 8 through the common bus 5 5 0 and

第17頁 536637 五、發明說明(14) 控制板5 3。 4 .用慣性導航系統I N S處理器進行I N S處理。 5·在卡爾曼濾波器83中混合INS處理器81輸出,高度 測量,和G P S測量。 6 ·反饋卡爾曼濾波器8 3輸出到I N S處理器8 1 ,以修正 INS導航解。 7.從INS處理器81把速度和加速度數據注入全球定位 系統處理器4 0之信號處理器4 5,用於辅助全球定位系統衛 星信號碼及載波相位跟蹤。 8 .把全球定位系統處理器4 0之信號處理器4 5輸出, I N S處理器8 1輸出,卡爾曼濾波器8 3輸出,注入載波整相 位模糊解模塊8 2,以確定全球定位系統衛星信號載波相位 整模糊數。 9.從載波整相位模糊解模塊8 2輸出載波相位整糊數給 卡爾曼濾波器8 3,以進一步改善定位精度。 1 0 .通過公用總線5 5把導航數據:平台速度,位置, 高度,航向和時間從I N S處理器8 1輸出給控制板5 3。 1 1 .送平台速度,位置,姿態,航向和時間數據給飛 行管理系統1 1。 12.送平台速度,姿態,機體加速度和轉動數據給飛 行控制系統1 2。 1 3.送平台位置和時間數據給自動相關監視系統1 3。 1 4.送平台速度,位置,和姿態數據給加強型地面鄰 近告警系統1 7。Page 17 536637 V. Description of the invention (14) Control board 5 3. 4. I N S processing with I N S processor of inertial navigation system. 5. Mix INS processor 81 output, height measurement, and GPS measurement in Kalman filter 83. 6 · The feedback Kalman filter 8 3 is output to the I N S processor 8 1 to modify the INS navigation solution. 7. The speed and acceleration data are injected from the INS processor 81 into the signal processor 45 of the global positioning system processor 40, which is used to assist the GPS signal code and carrier phase tracking. 8. Output the signal processor 45 of the global positioning system processor 40, the output of the INS processor 81, the output of the Kalman filter 83, and inject the carrier phase adjustment fuzzy solution module 8 2 to determine the GPS satellite signal. Carrier phase integer fuzzy number. 9. The carrier phase phase ambiguity resolution module 8 2 outputs the carrier phase phase correction number to the Kalman filter 83 to further improve the positioning accuracy. 1 0. The navigation data: platform speed, position, altitude, heading, and time are output from the INS processor 8 1 to the control board 5 3 through the common bus 5 5. 1 1. Send platform speed, position, attitude, heading and time data to the flight management system 1 1. 12. Send platform speed, attitude, body acceleration and rotation data to the flight control system. 1 3. Send the platform position and time data to the automatic related monitoring system 1 3. 1 4. Send platform speed, position, and attitude data to the enhanced ground proximity alarm system.

536637 五、發明說明(15) 15·送平台姿態和機體加速度數據給氣像雷達18。 1 6 ·送平台位置和姿態數據給衛星通信系統丨9。 在步驟1中,GPS衛星在L1波段以高頻(Radi〇 Frequency, RF)發送粗捕獲碼(C/A)和精確碼(p): A ⑴=⑴C0S(^V 十少)十 ⑺ sin(〇v 十少) GPS衛星在L2波段以高頻發送精確碼?··536637 V. Description of the invention (15) 15 · Send platform attitude and body acceleration data to the air image radar 18. 1 6 · Send platform position and attitude data to satellite communication system 9. In step 1, the GPS satellite sends a coarse acquisition code (C / A) and an accurate code (p) in the L1 band at high frequency (Radio Frequency, RF): A ⑴ = ⑴C0S (^ V ten few) ten⑺ sin ( 〇v Ten less) GPS satellites send accurate codes at high frequencies in the L2 band? ··

Sl2 (t) = ^2P^P(t)D(t) cos(〇)2r + φ2) 公式中ω 1為L 1載波角頻率,0為小相位噪聲和振盪 器漂移分量,Pe為C/A信號功率,pp為p信號功率,D(t)為導 航數據,CA(t)為C/A碼,P(t)為P碼,為L2載波角頻 率,Ρ2是L2-P信號功率,02為小相位噪聲和振盪器漂移分 量。 在步驟1中,如第五圖- Α所示,在全球定位系統天線 4 1上收到的高頻信號分別為: ^/! (0 = Λ/2Ρ^〇Α(ί - τ)Ο(ϊ) cos[(a}, + ω, )t + 0)] + A/2P^P(i)D(〇sin[(〇)l + )r + ^)1 〜⑺-τ)Ζ)⑴ cos[(〇)2 十 ω, )ί + 02)] 公式中τ是碼延遲,是多普勒角頻率。 在步驟1中,如第五圖-Α所示,收到的GPSRF信號由一 前置放大電路42加以放大。放大後之GPSRF信號被送到全Sl2 (t) = ^ 2P ^ P (t) D (t) cos (〇) 2r + φ2) In the formula, ω 1 is L 1 carrier angular frequency, 0 is small phase noise and oscillator drift component, and Pe is C / A signal power, pp is p signal power, D (t) is navigation data, CA (t) is C / A code, P (t) is P code, is L2 carrier angular frequency, P2 is L2-P signal power, 02 is small phase noise and oscillator drift components. In step 1, as shown in the fifth figure-A, the high-frequency signals received on the global positioning system antenna 41 are: ^ /! (0 = Λ / 2Ρ ^ 〇Α (ί-τ) 〇 ( ϊ) cos [(a), + ω,) t + 0)] + A / 2P ^ P (i) D (〇sin [(〇) l +) r + ^) 1 ~ ⑺-τ) Z) ⑴ cos [(〇) 2 十 ω,) ί + 02)] In the formula, τ is the code delay and the Doppler angle frequency. In step 1, as shown in the fifth figure-A, the received GPSRF signal is amplified by a preamplifier circuit 42. The amplified GPSRF signal is sent to the full

ΗΗ

第19頁 536637 五、發明說明(16) 球定位系統處理器40之下變頻器43 之高卿信號到中頻IF信號。IF信號被IF採樣大換麦 器44處理,把IF信號轉換為信號包絡之印正交分量。轉在u 採樣及A/D轉換器44中,作為模擬信號的IF信號,先用一 低通濾波器過濾」然後採樣,最後由模擬信號轉換為數字 信號A/D。數字信號被輪入一信號處理器45,以提取調整 在GPS信號生的導航數據,如Gps衛星星歷,大氣參數,衛 星時鐘參數,和時間信息。信號處理器4 5也處理從[F採樣 及A/D轉換器44來的數字數據,以推算偽距,載波相位, 和多普勒頻移。在全球定位系統處理器4 〇中,振盪器電路Page 19 536637 V. Description of the invention (16) The high-frequency signal from the inverter 43 of the ball positioning system processor 40 to the intermediate frequency IF signal. The IF signal is processed by the IF sampling converter 44 to convert the IF signal into the orthogonal component of the signal envelope. In the u sampling and A / D converter 44, the IF signal as an analog signal is first filtered by a low-pass filter, and then sampled, and finally the analog signal is converted into a digital signal A / D. The digital signal is turned into a signal processor 45 to extract and adjust navigation data generated in the GPS signal, such as GPS satellite ephemeris, atmospheric parameters, satellite clock parameters, and time information. The signal processor 45 also processes the digital data from the [F-sampling and A / D converter 44 to estimate the pseudorange, carrier phase, and Doppler shift. In GPS processor 40, the oscillator circuit

46為下變頻器43 ’IF採樣及a/d轉換器44,和信號處理器 4 5提供時鐘信號。 如第五圖- A,在步驟1中,信號處理器4 5輸出G P S測 量’包括偽距,載波相位,和多普勒頻移給導航處理板 80。在步驟7中,信號處理器45從導航處理板80接收速度 和加速度信息,以進行外部速度-加速度辅助碼和載波相 位^跟縱。46 provides a clock signal for the down converter 43'IF sampling and a / d converter 44, and the signal processor 45. As in the fifth figure-A, in step 1, the signal processor 45 outputs the G P S measurement 'including the pseudorange, the carrier phase, and the Doppler frequency shift to the navigation processing board 80. In step 7, the signal processor 45 receives the speed and acceleration information from the navigation processing board 80 to perform external speed-acceleration assistance code and carrier phase ^ tracking.

如第六圖-A,在步驟1中,偽距測量從GPS碼跟蹤環得 到。GPS碼跟蹤環包含相關器4 5 2 ,累加器4 5 3,微處理器 454,碼數字控制振盪器(Numerical Controlled Oscillator, NC0)457,和編碼器456。多普勒頻移和載波 相位測量從衛星信號載波相位跟蹤環得到。載波相位跟蹤 環包含多普勒頻移去除器4 5 1 ,相關器4 5 2 ,累加器4 5 3 , 微處理器4 5 4,載波數字控制振盪器(NC0 ) 4 5 5。As shown in Figure 6-A, in step 1, the pseudo-range measurement is obtained from the GPS code tracking loop. The GPS code tracking loop includes a correlator 4 5 2, an accumulator 4 5 3, a microprocessor 454, a code numerically controlled oscillator (NC0) 457, and an encoder 456. The Doppler shift and carrier phase measurements are obtained from the satellite signal carrier phase tracking loop. The carrier phase tracking loop includes a Doppler frequency shift remover 4 5 1, a correlator 4 5 2, an accumulator 4 5 3, a microprocessor 4 5 4, and a carrier digitally controlled oscillator (NC0) 4 5 5.

第20頁 536637 五、發明說明(17) 如第六圖-A ’在步驟1中,從IF採樣及AD轉換器44來 的數字數據I和Q用多普勒頻移去除器451處理,以去除調 制在G P S信號上的多普勒頻移。載波跟縱環用多普勒^移 去除器451來跟蹤進來信號的相位和頻率。多普勒頻移去 除由一個單邊帶調制器之數字實現來完成。載9波數字控制 振盈器(NC0)455以它的基於輸入頻率數的時鐘速度累計相 位。每次當累加器溢出時’產生一個新的週期。它做此事 ,用時間即是一循環週期。載波數字控制振盪器NC〇4 5 5由 從振盪器電路4 6來的時鐘和從微處理器454來的頻率增量 來驅動。載波數字控制振盪1NC045 5輸出參考相位( 和Qref)之IQ正交分量。參考相位被輸出到多普勒 除器451 。 ^ 如第,、圖,在步驟1中,通過多普勒頻移去除的GPS 信號被送到j目關器4 5 2,進行相關處理。累加器4 5 3接著相 關,4σ5 2 ’ θ完成後相關處理’並在微處理器處理前,對相 關^^量1 2和Q2進行過濾。.累加處理是相關採樣在Τ秒 t的^單累加。這裡Τ通常是一個CA碼1毫秒的週期長度。 =加結果1 3和Q 3被微處理器4 5 4收集存儲。累加器4 5 3被騰 產生 種信號分量的累加-騰空濾波。 如第六A所示,在步驟1中,在相關器4 5 2中使用的 石自、來自編,器4 5 6。編碼器4 5 6由來自振盪器4 6的時鐘和來 微處理器4 5 4的增量延遲來驅動。編碼器4 5 6負責C / A碼 P碼的產生。累加器4 5 3由碼N C 0 4 5 7產生的時鐘驅動。碼 0457由振盈器46和微處理器454驅動。碼NC0457也驅動Page 20 536637 V. Description of the invention (17) As shown in Figure 6-A 'In step 1, the digital data I and Q from the IF sampling and AD converter 44 are processed by Doppler frequency shift remover 451, Remove the Doppler shift modulated on the GPS signal. The carrier and longitudinal loop use Doppler shift remover 451 to track the phase and frequency of the incoming signal. Doppler frequency removal is accomplished by a digital implementation of a single sideband modulator. The 9-wave digital control oscillator (NC0) 455 accumulates phase at its clock speed based on the input frequency. Every time when the accumulator overflows, a new cycle is generated. It does this by using time as a cycle. The carrier digitally controlled oscillator NC 05 4 is driven by a clock from the oscillator circuit 46 and a frequency increment from the microprocessor 454. The carrier digitally controlled oscillation 1NC045 5 outputs the IQ quadrature component of the reference phase (and Qref). The reference phase is output to the Doppler divider 451. ^ As shown in Figures and Figures, in step 1, the GPS signal removed by the Doppler frequency shift is sent to the JM gate 4 5 2 for relevant processing. The accumulator 4 5 3 then correlates, and 4σ5 2 ′ θ performs correlation processing after completion, and filters the correlation quantities 1 2 and Q2 before processing by the microprocessor. The accumulation process is a single accumulation of correlation samples at T seconds t. Here T is usually a period of 1 millisecond of a CA code. = Add result 1 3 and Q 3 are collected and stored by microprocessor 4 5 4. The accumulator 4 5 3 is vacated to generate an accumulation-vacation filtering of the signal components. As shown in the sixth A, in step 1, the source and source code used in the correlator 4 5 2 and the source 4 5 6 are used. The encoder 4 5 6 is driven by a clock from the oscillator 4 6 and an incremental delay from the microprocessor 4 5 4. The encoder 4 5 6 is responsible for the C / A code and P code generation. Accumulator 4 5 3 is driven by a clock generated by code N C 0 4 5 7. Code 0457 is driven by the oscillator 46 and the microprocessor 454. Code NC0457 also drives

536637536637

編碼器4 5 6。 〇 如第六圖-A,在步驟7中,微處理器454接收來自累加 器453的數據,和來自導航處理板8〇的速度和加速度數、° 據,用於進行環濾波採樣處理,鎖定檢測,數據恢復,和 /則ϊ處理。這一工作模態被稱為速度-加速度輔助載波相 位及碼跟蹤。在步驟1中,微處理器4 54輸出GPS測量,包 括偽距,載波相位,多普勒頻移,以及時間信息給導航處 理板8 0。 如第六圖-Α所示,在步驟1中,在信號處理器信號跟 蹤環中,當GPS跟蹤誤差大於信號跟蹤環跟蹤帶寬時,發 生GPS衛星信號的丟失。跟蹤環失鎖狀態主要由收到衛星 信號的低信噪比SNR和多普勒頻移引起。前者可能由輸入 噪聲或阻塞產生。後者,多普勒頻移,由載體的高速運動 引起。一般地講,跟蹤環帶寬的增加可以改善鎖相環 在高動態下的跟蹤能力,但同時使GPS接收機的抗干擾= 力變壞,因為更多的不需要對嗓聲信號被允許進 號跟蹤環。用修正的慣性導航INS解來輔助GPS化號/^一。 在GPS跟蹤環帶寬和抗阻塞能力之間獲得一個最\ 加速 如第六圖-A,在步驟7中,修正的慣性導航速/足夠短 度信息輔助GPSPLL回路的目的是快速準讀地在一 (t)近 的估計週期上估計中頻信號0 I ( t )的載波相位 1 似地以下式表示 = θ/0 + ω/0ί + γ/(/2 + 5/〇,3 十...Encoder 4 5 6. 〇 As shown in the sixth figure-A, in step 7, the microprocessor 454 receives the data from the accumulator 453, and the speed and acceleration data and ° data from the navigation processing board 80, which is used to perform the loop filtering sampling processing and lock. Detection, data recovery, and / or processing. This operating mode is called speed-acceleration assisted carrier phase and code tracking. In step 1, the microprocessor 454 outputs GPS measurements, including pseudorange, carrier phase, Doppler frequency shift, and time information to the navigation processing board 80. As shown in Figure 6-A, in step 1, in the signal processor signal tracking loop, when the GPS tracking error is greater than the signal tracking loop tracking bandwidth, the GPS satellite signal is lost. The tracking loop out-of-lock state is mainly caused by the low SNR and Doppler frequency shift of the received satellite signal. The former may be caused by input noise or blocking. The latter, Doppler shift, is caused by the high-speed motion of the carrier. Generally speaking, the increase of the bandwidth of the tracking loop can improve the tracking capability of the phase-locked loop under high dynamics, but at the same time, the anti-interference of the GPS receiver = the force is deteriorated, because it is more unnecessary to allow the voice signal to be numbered. Tracking ring. The modified inertial navigation INS solution is used to assist the GPS number / ^ 1. Obtain a maximum between the GPS tracking loop bandwidth and the anti-blocking capability. As shown in Figure 6-A, in step 7, the modified inertial navigation speed / short enough information to assist the GPSPLL loop is to quickly read accurately (T) Estimate the carrier phase of the intermediate frequency signal 0 I (t) on the near estimation period 1 Likely expressed by the following formula = θ / 0 + ω / 0ί + γ / (/ 2 + 5 / 〇, 3 ten ...

第22頁 536637 五、發明說明(19) 這樣問題變成估計上式的參數。描述飛行體動態特性 的速度-加速度信息,被轉換為視線LOS速度加速度信息。 所以,中頻信號載波相位的估計可用以下LOS速度-加速度 值公式表示: g ⑴v,+ /?2al,2 + V,3 + …Page 22 536637 V. Description of the invention (19) Such a problem becomes to estimate the parameters of the above formula. Velocity-acceleration information describing the dynamic characteristics of the flying body is converted into the line-of-sight LOS velocity acceleration information. Therefore, the estimation of the carrier phase of the intermediate frequency signal can be expressed by the following LOS speed-acceleration formula: g ⑴v, + /? 2al, 2 + V, 3 +…

式中(bp b2,b3) 為與載波頻率有關的常量和光速,由下式 給出Where (bp b2, b3) are constants related to the carrier frequency and the speed of light, given by

VL0S, AL0S和aL(3S 對應於衛星和接收機之間沿LOS之速度, 加速度和加加速度。所以,辅助PLL環的跟縱和抗干擾能 力嚴重地依賴VLQS和ALQS的估計精度。VLQS和ALQS由來自INS 處理器8 1的速度和加速度信息來計算,然後結合到微處理 器4 5 4的回路濾波器中。VL0S, AL0S, and aL (3S correspond to the speed, acceleration, and jerk along the LOS between the satellite and the receiver. Therefore, the tracking and anti-interference ability of the auxiliary PLL loop depends heavily on the estimation accuracy of VLQS and ALQS. VLQS and ALQS It is calculated from the velocity and acceleration information from the INS processor 81 and then incorporated into the loop filter of the microprocessor 4 5 4.

如第六圖-A,在步驟1中,信號處理器45的碼跟蹤環 跟蹤到來之直接序列擴頻信號的碼相位。碼跟蹤環提供了 機大化收到信號和内部產生的及時碼之間相關所需的時間 偏移值的估計。微處理器4 5 4用時間延遲信息來計算初始As in the sixth figure-A, in step 1, the code tracking loop of the signal processor 45 tracks the code phase of the incoming direct sequence spread spectrum signal. The code tracking loop provides an estimate of the time offset required for correlation between the received signal and the internally generated time code. Microprocessor 4 5 4 uses time delay information to calculate initial

第23頁 536637 五、發明說明(20) 載體衛星之間距離估計,也就是偽距。步驟7中,來自導 航處理板80的速度和加速度信息被轉換為L0S速度和加速 度(VLQS和ALQS),用於精確地估計碼延遲。這樣以來,提高 了動態性能和抗阻塞能力。 IMU接口和預處理板60包括模擬信號接口61,串行信 號接口 6 2,脈衝信號接口 6 3,和並行數字信號接口 6 4,安 裝在慣性測量組件2 0和公用總線5 5之間。它們用來把從慣 性測量組件2 0獲得的I MU信號轉換為體加速度和轉動的數 字數據,然後通過公用總線5 5把轉換後之數字數據送到導 航處理板80和控制板53。Page 23 536637 V. Description of the invention (20) Distance estimation between carrier satellites, that is, pseudorange. In step 7, the speed and acceleration information from the navigation processing board 80 is converted into LOS speed and acceleration (VLQS and ALQS) for accurate estimation of the code delay. In this way, the dynamic performance and anti-blocking ability are improved. The IMU interface and the pre-processing board 60 include an analog signal interface 61, a serial signal interface 62, a pulse signal interface 63, and a parallel digital signal interface 64, and are installed between the inertial measurement module 20 and the common bus 55. They are used to convert the I MU signal obtained from the inertial measurement unit 20 into digital data of body acceleration and rotation, and then send the converted digital data to the navigation processing board 80 and the control board 53 through the common bus 55.

在許多應用中,I M U的輸出為模擬信號,特別是低精 度IMU,它們經常用來與GPS接收機構成組合系統。如第七 圖所示,模擬信號接口 6 1是一個多通道A / D轉換電路板, 用於把模擬I MU信號轉換為數字數據。它包含連接於慣性 測量組件20的多通道低通濾波器611 ,連接於多通道低通 濾波器611與公用總線55之間的多通道AD轉換電路612,及 連接於公用總線5 5的DMA接口 614。模擬接口61進一步包人 定時電路613,連接於多通道AD轉換電路612與題 々 P一弓 ft ^ u 1 4: ⑽Λ第Λ圖Λ式,在步驟2中,來自慣性測量組件2〇的 I ΜΙΜ5旒由多通道低通濾波器6丨】加以In many applications, the output of I M U is an analog signal, especially a low-precision IMU, which is often used to form a combined system with a GPS receiver. As shown in the seventh figure, the analog signal interface 61 is a multi-channel A / D conversion circuit board for converting analog I MU signals into digital data. It includes a multi-channel low-pass filter 611 connected to the inertial measurement module 20, a multi-channel AD conversion circuit 612 connected between the multi-channel low-pass filter 611 and the common bus 55, and a DMA interface connected to the common bus 55. 614. The analog interface 61 further includes a timing circuit 613, which is connected to the multi-channel AD conversion circuit 612 and the title 々P a bow ft ^ u 1 4: ⑽Λ FIG. Λ, in step 2, I from the inertial measurement component 20 ΜΙΜ5 旒 is added by a multi-channel low-pass filter 6 丨]

信號被送到多通道A/D轉換電路612。定;=後之厂11 道A/D轉換電路612提供採 首電路:1:為夕通 採樣並數字化過渡後的模擬IMU车多””轉換電路612 、聚號。定時電路613也觸發The signal is sent to a multi-channel A / D conversion circuit 612. =; 11 A / D conversion circuits 612 in the rear factory provide the first circuit: 1: for the Xitong sampled and digitally converted analog IMU cars are more "" conversion circuit 612, poly number. Timing circuit 613 also triggers

536637 五、發明說明(21) DMA接口 614。多通道A/D轉換電路612採樣後數字化操作 後,DMA接口614通過公用總線55通知導航處理板80和控制 板53,在公用總線55上來取IMU數據。導航處理板80和控 制板53收到DMA信號後,多通道A/D轉換電路612輸出數字 化的I M U數據到公用總線5 5。 因為許多IMU製造商趨於在IMU中埋入一個高性能的微 處理器來構成所謂的智能型IMU,IMU輸出信號由微處理器 通過標準串行總線送出,如RS-4 2 2/4 8 5,MIL-STD- 1 5 5 3 B 等,如第八圖所示。串行信號接口62是一多通道RS-485通 信控制電路板,以接收串行I M U數據。它包含連接於慣性 測量組件20和公用總線55之間的RS-4 8 5接口電路621 ,和 連接於R S - 4 8 5接口電路6 2 1與公用總線5 5之間的中斷電路 6 2 2 〇 如第八圖所示,在步驟2中,RS-485接口電路621從慣 性測量組件2 0接收串行I M U信號。一旦接收操作完成, 485接口電路通知中斷電路622。中斷電路622接著通過 公用總線55告訴導航處理板8〇和控制板53 IMU數據已經就 緒。導航處理板80和控制板53從中斷電路622收到中斷信 號後,RS-48 5接口電路621輸出IMU數據到公用總線55。導 航處理板80和控制板53從公用總線55得到作為機體角速度 和角速度的IMU數據。 & 由於事實上許多高性能陀螺和角速度計提供脈衝輸 出,激光陀螺(RLG)和光纖陀螺(FOG)本質上是數字傳感 器,許多高性能機電陀螺和角速度計有脈衝調制力平衡回536637 V. Description of the invention (21) DMA interface 614. After the multi-channel A / D conversion circuit 612 is sampled and digitized, the DMA interface 614 notifies the navigation processing board 80 and the control board 53 through the common bus 55, and fetches the IMU data on the common bus 55. After the navigation processing board 80 and the control board 53 receive the DMA signals, the multi-channel A / D conversion circuit 612 outputs the digitized I M U data to the common bus 55. Because many IMU manufacturers tend to embed a high-performance microprocessor in the IMU to form the so-called intelligent IMU, the IMU output signal is sent by the microprocessor through a standard serial bus, such as RS-4 2 2/4 8 5, MIL-STD- 1 5 5 3 B, etc., as shown in the eighth figure. The serial signal interface 62 is a multi-channel RS-485 communication control circuit board to receive serial I M U data. It includes an RS-4 8 5 interface circuit 621 connected between the inertial measurement module 20 and the common bus 55, and an interrupt circuit 6 2 1 connected between the RS-4 8 5 interface circuit 6 2 1 and the common bus 55. As shown in the eighth figure, in step 2, the RS-485 interface circuit 621 receives a serial IMU signal from the inertial measurement unit 20. Once the receiving operation is completed, the 485 interface circuit notifies the interrupt circuit 622. The interrupt circuit 622 then informs the navigation processing board 80 and the control board 53 that the IMU data is ready via the common bus 55. After the navigation processing board 80 and the control board 53 receive the interrupt signal from the interrupt circuit 622, the RS-48 5 interface circuit 621 outputs the IMU data to the common bus 55. The navigation processing board 80 and the control board 53 obtain the IMU data of the body angular velocity and the angular velocity from the common bus 55. & Due to the fact that many high-performance gyroscopes and angular velocity meters provide pulse output, laser gyroscopes (RLG) and fiber-optic gyroscopes (FOG) are essentially digital sensors.

536637 五、發明說明(22) ,。如第九圖所示,脈衝信號接口63是一多通道頻率-數 字轉,電路板63用以接收脈衝IMU信號。它包含連接於慣 性測量組件2 0的加減脈衝分離電路6 3 1 ,分別連接於公用 總線55的總線接口電路6 3 3和中斷電路634。多通道頻率-數字轉換電路板63進一步包含連接於加減脈衝分離電路 63 1與總線接口電路6 3 3之間的多通道頻率—數字電路632。 如第九圖所示,在步驟2中,從慣性測量組件2 〇,通 過加+減脈衝分離電路6 3 i,脈衝〗Mu信號被送到多通道頻率 -數字電路6 3 2 ’這裡加減脈衝分離電路631對脈衝IMU信號 進行調整。。多通道頻率-數字電路632把脈衝IMU信號轉換 為數字信號。一旦轉換完成,數字丨MU信號被送到總線接 _ 口電路6 3 3。總線接口電路6 3 3把數字IMU信號轉換成與公 用總線兼容的數字數據,並送到公用總線5 5。總線接口電 路633觸發中斷電路634產生中斷信號。中斷信號通知導航 處理板80和控制板53在公用總線55上IMU數據已經就緒。 有些IMU有嵌入式邏輯電路或微處理器,可輸出並行數字 信號,甚至實現一個標準的並行總線。如第十圖所示,並 行數字信號接口 6 4包含連接於慣性測量組件2 0與公用總線 55之間的總線接口電路641,和連接於總線接口電路64^與 公用總線5 5之間的中斷電路6 4 2。 如第十圖所示’在步驟2中,總線接口電路6 4 1從慣性 測量組件2 0接收並行I M U信號,並轉換為與公用總線兼容 拳 的數據。收到並行I M U數據後,總線接口電路6 4 1觸發中斷 電路64 2,產生中斷信號,用於從公用總線55通知導&航處536637 V. Description of Invention (22). As shown in the ninth figure, the pulse signal interface 63 is a multi-channel frequency-digital converter, and the circuit board 63 is used to receive the pulse IMU signal. It includes an addition / subtraction pulse separation circuit 6 3 1 connected to the inertia measurement module 20, a bus interface circuit 6 3 3 and an interrupt circuit 634 connected to the common bus 55, respectively. The multi-channel frequency-to-digital conversion circuit board 63 further includes a multi-channel frequency-to-digital circuit 632 connected between the addition / subtraction pulse separation circuit 63 1 and the bus interface circuit 6 3 3. As shown in the ninth figure, in step 2, from the inertial measurement component 2 0, the pulse signal Mu is sent to the multi-channel frequency-digital circuit 6 3 2 'by adding + subtracting the pulse separation circuit 6 3 i, and here adding and subtracting pulses. The separation circuit 631 adjusts the pulsed IMU signal. . The multi-channel frequency-digital circuit 632 converts the pulsed IMU signal into a digital signal. Once the conversion is completed, the digital MU signal is sent to the bus interface circuit 6 3 3. The bus interface circuit 6 3 3 converts the digital IMU signal into digital data compatible with the public bus and sends it to the public bus 5 5. The bus interface circuit 633 triggers the interrupt circuit 634 to generate an interrupt signal. The interrupt signal notifies the navigation processing board 80 and the control board 53 that the IMU data on the common bus 55 is ready. Some IMUs have embedded logic circuits or microprocessors that can output parallel digital signals and even implement a standard parallel bus. As shown in the tenth figure, the parallel digital signal interface 64 includes a bus interface circuit 641 connected between the inertial measurement module 20 and the common bus 55, and an interrupt connected between the bus interface circuit 64 ^ and the common bus 55. Circuit 6 4 2. As shown in the tenth figure ', in step 2, the bus interface circuit 6 41 receives the parallel I M U signal from the inertial measurement unit 20 and converts it into data compatible with the common bus. After receiving the parallel I M U data, the bus interface circuit 6 41 triggers the interrupt circuit 64 2 and generates an interrupt signal for notifying the pilot & navigation department from the common bus 55

第26頁 536637 五、發明說明(23) 理板80和控制板53,IMU數據已經就緒。總線接口電路6 41 輪出IMU數據到公用總線55 ’導航處理板80和控制板53從 公用總線5 5接收I M U數據。 根據可能的I MU輸出信號類型’我們設計了不同類型 的信號轉換板,產生機體加速度和轉動數字數據。這些信 號轉換板被設計成一系列任選模塊’以涵蓋不同的原始 號輸出。在這個設計中’整個通用運載體導航與控 制盒是可重構的。Page 26 536637 V. Description of the invention (23) IMU data is ready for the management board 80 and control board 53. The bus interface circuit 6 41 turns out the IMU data to the common bus 55 ′. The navigation processing board 80 and the control board 53 receive I M U data from the common bus 55. According to the possible I MU output signal types ’, we have designed different types of signal conversion boards to generate digital data for the body ’s acceleration and rotation. These signal conversion boards are designed as a series of optional modules' to cover different original signal outputs. In this design, the entire universal carrier navigation and control box is reconfigurable.

眾所周知,全球定位系統垂直精度較差。而全球定位 與慣性系統組合解的長期精度主要取決於全球定位系統的 性能。這意味著,全球定位和慣性組合導航系統不能改善 垂直定位性能。在本發明中,用組合進一個高度測量器件 來改善這一缺點。 有許多不同的高度測量器件,例如氣壓表3 1和雷達高 度計32。高度接口和處理板70包括氣壓表接口 71和雷達高 度計接口 7 2。它們用來把氣壓表3 1和雷達高度計3 2測量轉 換為平台的平均海平面(MSL)高度數字數據。As we all know, GPS has poor vertical accuracy. The long-term accuracy of the combined solution of GPS and inertial system mainly depends on the performance of GPS. This means that global positioning and inertial integrated navigation systems cannot improve vertical positioning performance. In the present invention, this disadvantage is improved by incorporating a height measuring device. There are many different altimeter devices, such as barometer 31 and radar altimeter 32. The altitude interface and processing board 70 includes a barometer interface 71 and a radar altimeter interface 72. They are used to convert barometer 31 and radar altimeter 3 2 measurements to digital mean sea level (MSL) altitude data for the platform.

許多飛機裝了氣壓測量器件,提供飛機的平均海平面 (M SL)高度。如第十一圖所示,氣壓測量器件接口71是一 個多通道A / D轉換電路板,用以把模擬高度信息轉換為數 字數據。它包含一個連接於氣壓表3 1的低通濾波器7 1 1, 連接於低通濾波器7 1 1和公用總線5 5之間的A / D轉換電路 712 ’及連接於公用總線5 5的DMA接口 714。氣壓測量器件 接口 71進一步包含連接於A/D轉換電路712和DMA接口 714之Many aircraft are equipped with barometric measurement devices that provide the aircraft's mean sea level (M SL) altitude. As shown in the eleventh figure, the air pressure measuring device interface 71 is a multi-channel A / D conversion circuit board for converting analog height information into digital data. It includes a low-pass filter 7 1 1 connected to the barometer 3 1, an A / D conversion circuit 712 ′ connected between the low-pass filter 7 1 1 and the common bus 55 5, and an DMA interface 714. The barometric pressure measuring device interface 71 further includes an interface between the A / D conversion circuit 712 and the DMA interface 714.

第27頁 536637 間的定時電路7 1 3。 古 ^第十一圖所示,在步驟3中,從氣壓表31來的模擬 =度^號用低通濾波器71 1來過濾。過濾後的模擬高度信 號被胃送到f/D轉換電路712。定時電路713為A/D轉換電路 71 2»提供^採樣^頻率。A/D轉換電路712採樣並數字化被過濾 的核擬南度<信號。定時電路713也觸發〇1〇接口 714 〇A/D轉 換電路712採樣和數字化操作後,DMA接口通過公用總線5 5 通知導航處理板8〇和控制板53,在公用總線55上取高度數 據。導航處理板8〇和控制板53收到DMA信號後,A/D轉換電 路7 1 2把數字化的高度數據輸出到公用總線5 5上。Page 27 536637 timing circuit 7 1 3. As shown in the eleventh figure, in step 3, the analog = degree ^ from the barometer 31 is filtered by the low-pass filter 71 1. The filtered analog height signal is sent to the f / D conversion circuit 712 by the stomach. The timing circuit 713 provides a sampling frequency to the A / D conversion circuit 71 2 ». The A / D conversion circuit 712 samples and digitizes the filtered nuclear pseudo-south < signal. The timing circuit 713 also triggers the sampling and digitization operation of the 〇IO interface 714 〇A / D conversion circuit 712. The DMA interface notifies the navigation processing board 80 and the control board 53 through the common bus 55, and takes the height data on the common bus 55. After the navigation processing board 80 and the control board 53 receive the DMA signal, the A / D conversion circuit 7 1 2 outputs the digitized height data to the common bus 55.

許多,機也裝了雷達高度計,提供飛機相對地面的高 度。雷達南度計所產生的高度稱為地形高度。如第十二圖 所示,雷達南度計接口72包含一個連接於雷達高度計32和 公用總線55之間的數據融合模塊κι,及一個連接於數據 融合模塊721和公用總線55之間的地形數據庫7 2 2。地形數 據庫7 2 2通過公用總線5 5接收來自導航處理板8 〇的位置信 息。基於當時的位置,數據庫查出地形平均海平面Μ S [高 度,並輸出到數據融合模塊7 2 1。 數據融合模塊721結合從雷達高度計32來的地形高度 和從地形數據庫722來的地形高度產生飛機在平均海平面 MSL上的高度。Many aircraft are also equipped with radar altimeters, which provide the altitude of the aircraft relative to the ground. The altitude produced by the radar southmeter is called terrain altitude. As shown in the twelfth figure, the radar southerly interface 72 includes a data fusion module κι connected between the radar altimeter 32 and the common bus 55, and a terrain database connected between the data fusion module 721 and the common bus 55. 7 2 2. The terrain database 7 2 2 receives the position information from the navigation processing board 80 through the common bus 55. Based on the position at that time, the database finds the terrain average sea level MS [height] and outputs it to the data fusion module 721. The data fusion module 721 combines the terrain height from the radar altimeter 32 and the terrain height from the terrain database 722 to generate the altitude of the aircraft at the mean sea level MSL.

依照本發明第一優選方案,第十三圖給出了導航處理 板8 0。在圖中,從慣性測量組件2 0,全球定位系統處理器 40之信號處理器45,及高度測量器件30來的測量被混合^According to the first preferred embodiment of the present invention, the thirteenth figure shows the navigation processing board 80. In the figure, the measurements from the inertial measurement unit 20, the signal processor 45 of the GPS processor 40, and the height measurement device 30 are mixed ^

第28頁 536637 五、發明說明(25) 導出高精度的導航信息,包括三維位置,三維速度,及三 維姿態。這些數據從I N S處理器8 1輸出,並通過公用總線 5 5傳到控制板5 3。如上所述,速度和加速度信息也被反饋 到全球定位系統處理器4 0之信號處理器4 5來輔助全球定位 系統衛星信號碼和載波相位跟縱。 如第十三圖所示,在步驟2中,來自IMU接口和處理板 6 0的I M U測量,即載體角速度和加速度,被I N S處理器8 1接 收,用以進行慣性導航處理。 如第四圖所示,在步驟2中,來自IMU接口和處理板60 的I M U測量,即載體角速度和加速度,被通過公用總線5 5 送到控制板5 3。 如第十三圖所示,在步驟3中,來自高度接口和處理 板7 0的高度測量被卡爾曼濾波器8 3接收用以進行組合濾波 處理。 如第四圖所示,在步驟3中,來自高度接口和處理板 7 0的高度測量被通過公用總線5 5送到控制板5 3。 如第十三圖所示,在步驟5中,全球定位系統處理器 4 0之微處理器4 5 4輸出偽距,多普勒頻移,全球定位系統 衛星星歷,以及大氣數據到卡爾曼濾波器8 3。卡爾曼濾波 器83整合從INS處理器81 ,高度接口和處理板70,載波相 位整模糊解模塊4 2,及全球定位系統處理器4 0之微處理器 454來的數據,導出位置誤差,速度誤差,和姿態誤差。 在步驟4中,I N S處理器8 1處理慣性測量,即機體角速度和 加速度,以及來自卡爾曼濾波器83的位置誤差,速度誤Page 28 536637 V. Description of the invention (25) Derive high-precision navigation information, including 3D position, 3D velocity, and 3D attitude. These data are output from the I NS processor 8 1 and transmitted to the control board 5 3 through the common bus 5 5. As mentioned above, the speed and acceleration information is also fed back to the signal processor 45 of the GPS processor 40 to assist the GPS satellite signal code and carrier phase tracking. As shown in the thirteenth figure, in step 2, the I M U measurements from the IMU interface and the processing board 60, that is, the angular velocity and acceleration of the carrier, are received by the I NS processor 81 for inertial navigation processing. As shown in the fourth figure, in step 2, the I M U measurements from the IMU interface and the processing board 60, that is, the angular velocity and acceleration of the carrier, are sent to the control board 53 through the common bus 5 5. As shown in the thirteenth figure, in step 3, the height measurement from the height interface and the processing board 70 is received by the Kalman filter 83 for the combined filtering process. As shown in the fourth figure, in step 3, the height measurement from the height interface and the processing board 70 is sent to the control board 53 through the common bus 55. As shown in the thirteenth figure, in step 5, the microprocessor 4 5 of the GPS processor 40 outputs pseudorange, Doppler shift, GPS satellite ephemeris, and atmospheric data to Kalman. Filter 8 3. Kalman filter 83 integrates the data from INS processor 81, height interface and processing board 70, carrier phase ambiguity resolution module 4 2 and microprocessor 454 of GPS processor 40 to derive position error and speed Error, and attitude error. In step 4, the INS processor 81 handles the inertial measurements, that is, the angular velocity and acceleration of the body, and the position error, speed error from the Kalman filter 83.

536637 五、發明說明(26) 差,和姿態誤差來導出修正的導航解。導航解包括三維位 置,三維速度,及三維姿態。這些數據被輸出到卡爾曼濾 波器8 3。另一方面,在步驟十中,這些數據被通過公用總 線5 5送到控制板5 3。 如第十六圖所示,INS處理器81包含IMU誤差補償模塊 8 1 1,坐標變換計算模塊8 1 2,姿態位置速度計算模塊 8 1 3,變換矩陣計算模塊8 1 4,和地球與載體轉動速率計算 模塊81 5。 如第十六圖所示,在步驟4中,IMU誤差補償模塊811 klMU接口和預處理板60接收載體角速度和加速度數據。 這些數據受慣性傳感器測量誤差影響。I M U誤差補償模塊 8 1 1接收從卡爾曼濾波器8 3得到的傳感器誤差估計用以在 數字化的I M U數據上進行I M U誤差修正。修正後的慣性數據 被送到坐標變換計算模塊8 1 2和變換矩陣計算模塊8丨4,其 中載體角速度被送到變換矩陣計算模塊8 1 4,加速度被送' 到坐標變換計算模塊812。 & 如第十六圖所不,在步驟4中,變換矩陣計算模塊8丄4 從IMU誤差補償模塊811接收載體角速度,從地球與載體轉 動速率計算模塊8 1 5接收地球與載體轉動速率,用以進行 變換矩陣計算。變換矩陣計算模塊814把算出的 送到坐標變換計算模塊8 1 2和姿態位置速度計算樓. 。 在變換矩陣計算模塊8 14中的姿態更新算法採^四元數方 法,因其優越的數字計算和穩定特性。機體和當 坐 標系之間相對四元數微分方程為:536637 V. Description of the invention (26) Difference and attitude error to derive the modified navigation solution. The navigation solution includes three-dimensional position, three-dimensional velocity, and three-dimensional attitude. These data are output to the Kalman filter 8 3. On the other hand, in step X, these data are sent to the control board 53 through the public bus 55. As shown in the sixteenth figure, the INS processor 81 includes an IMU error compensation module 8 1 1, a coordinate transformation calculation module 8 1 2, an attitude position velocity calculation module 8 1 3, a transformation matrix calculation module 8 1 4, and the earth and the carrier. Rotation rate calculation module 81 5. As shown in the sixteenth figure, in step 4, the IMU error compensation module 811 klMU interface and the pre-processing board 60 receive the carrier angular velocity and acceleration data. These data are affected by inertial sensor measurement errors. The I M U error compensation module 8 1 1 receives the sensor error estimates obtained from the Kalman filter 8 3 to perform I M U error correction on the digital I M U data. The corrected inertial data is sent to the coordinate transformation calculation module 8 12 and the transformation matrix calculation module 8 丨 4, wherein the carrier angular velocity is sent to the transformation matrix calculation module 8 1 4 and the acceleration is sent to the coordinate transformation calculation module 812. & As shown in the sixteenth figure, in step 4, the transformation matrix calculation module 8 丄 4 receives the carrier angular velocity from the IMU error compensation module 811, and receives the earth and carrier rotation rate from the earth and carrier rotation rate calculation module 8 1 5. Used to perform transformation matrix calculations. The transformation matrix calculation module 814 sends the calculated data to the coordinate transformation calculation module 8 1 2 and the attitude position velocity calculation building. The attitude update algorithm in the transformation matrix calculation module 8 14 adopts the quaternion method because of its superior digital calculation and stability characteristics. The relative quaternion differential equation between the body and the current coordinate system is:

第30頁 536637 五、發明說明(27) 式中qT = Cq° Q1 q2 q3〕 是四元 數參數的四分 量向量, 月是 向量 ωώ 的反對稱 陣。 ⑴i 由陀螺感測, 為載體系 B相對於 慣性系I的角 速度向量 0 -0 一0h. X - Q)by -| [^J = 0 ζ 〇 一〜 d①by,〜]T 5 - °hx 0 Ωη 是向量 的 反對稱陣 〇 ω[ :為當地導航生 :標系Ν相 對於慣性系I的角 速度向量 表示在 導航坐標系中 0 • 0 一1 一 C0 - /〇, [Ωη] = 0 ωη7 - -ωην ηζ 0 η> j ωί 0 如果導航坐標系定義為當地水平北東地坐標系,則有Page 30 536637 V. Description of the invention (27) where qT = Cq ° Q1 q2 q3] is a quaternion vector with quaternion parameter, and month is the antisymmetric matrix of vector ωώ. ⑴i is sensed by the gyro, and is the angular velocity vector of the carrier system B relative to the inertial system I 0 -0-0h. X-Q) by-| [^ J = 0 ζ 〇 ~~ d①by , ~] T 5-° hx 0 Ωη is the antisymmetric matrix of the vector ωω [: is a local navigation student: the angular velocity vector of the standard system N relative to the inertial system I is represented in the navigation coordinate system 0 • 0-1-C0-/ 〇, [Ωη] = 0 ωη7 --ωην ηζ 0 η > j ωί 0 If the navigation coordinate system is defined as the local horizontal North East coordinate system, then

+ 义)cos L+ Meaning) cos L

-L-L

-(ω(, + A) sin L-(ω (, + A) sin L

第31頁 536637 五、發明說明(28) 。塊 度模 經算 曰疋計 又換 ,變 度標 緯坐£ , JI 地中 是糾 L步 率在速, 勤示 轉所 球圖 地六 是十 第 e 3如 中 式 來 和 力 比 的 標速 坐角 。的 換系 變標 標坐 1坐的 81行示 塊進表 模以陣 償用換 補,變 差陣由 誤換到 MU變換 I的變 自 _ 4 送 ί 11 來 ΟΟ 2 收塊81 接模魄 矩 換 變 模位 算態 計姿 換給 變度 模 算 tt 度 置 位 態 姿 中 4 驟 步 在 Ο 3示 81所 塊圖 模六 算十 計第 度如ί 丄^一 1Χ 速 8 置 塊 來 和 度 速 加 換 變 的 2 1± 8 塊 模 算 ,tt 換 變 標 坐 自 來 收 接 塊表 模球: 算地式 計述形 陣描下 矩。以 換新有 變更程 度 置 位 態 姿 行 進 以 用 換 變 的 方 航 導 的 般 I 的 FC 點 質 近 附 球 地 或 面 V(r) = α -(2ω,, +〇^JxV-χχr 式中,a和V為在導航坐標系中載體相對地球的加速度和速 度,Oie為地球自轉向量,6Jen為導航坐標系相對地球的 角速度,r為載體相對地心的位置向量。 因為加速度計不能區分載體加速度和萬有引力,加速 度計感測到的比力為: ί二a-g(r)Page 31 536637 V. Description of the invention (28). The block mode is calculated, and the scale is changed again. The change scale is set to £. JI is the correct L step rate. The ground map is the tenth e 3 as the standard of the Chinese formula and the force ratio. Sit back. Change the system to change the standard. Sit on the 81-line display block into the table mode to replace the matrix with the compensation. The variation matrix is changed from the wrong to the MU transformation. I change from _ 4 to send 11 to ΟΟ 2 to receive block 81. Moment change mode change position posture attitude change to change mode calculation tt degree set posture pose 4 steps in 〇 3 show 81 block diagram six calculations ten counts for the first time as 丄 一 ^ 一 1 × speed 8 set 2 1 ± 8 block calculations for block and degree-speed acceleration and transformation, tt change the standard to receive the block table model ball: calculate the moment of the formation matrix. Set the posture with a new degree of change, and use the FC-like point I with the changed square pilot to approximate the ground or surface V (r) = α-(2ω ,, + 〇 ^ JxV-χχr Where a and V are the acceleration and velocity of the carrier relative to the earth in the navigation coordinate system, Oie is the earth's rotation vector, 6Jen is the angular velocity of the navigation coordinate system relative to the earth, and r is the position vector of the carrier relative to the center of the earth. Because the accelerometer cannot distinguish The acceleration of the carrier and the gravitational force, and the specific force detected by the accelerometer are: ί 二 ag (r)

第32頁 *ttPage 32 * tt

536637 五、發明說明(29) 式中g ( r )是在載體位置上,地球引力與離心力的和。因此 V(〇 = /-(2^+〇}^)xi/ + g(r)536637 V. Description of the invention (29) where g (r) is the sum of the gravity and centrifugal force of the earth at the position of the carrier. So V (〇 = /-(2 ^ + 〇) ^) xi / + g (r)

coe cosL ' AcosL 式中 ω:二 0 -〇)e sin L ,ωη = 5 tn -ί 一 AsinLcoe cosL 'AcosL where ω: two 0 -〇) e sin L, ωη = 5 tn -ί one AsinL

載體速度依照下式更新:MV 式中,是從機體系到導航系的方向餘弦陣,並且 "v/ ,广= 'Λ/ fby "0 ' 0The carrier speed is updated according to the following formula: In the MV formula, it is the cosine array in the direction from the aircraft system to the navigation system, and " v /, 广 = 'Λ / fby " 0' 0

0 — {2cog + λ) sin L L0 — (2cog + λ) sin L L

(2coe + λ) sin L 0 (2〇)e + A)cosL -L -(2^ -hA)cosL 0(2coe + λ) sin L 0 (2〇) e + A) cosL -L-(2 ^ -hA) cosL 0

第33頁 536637 五、發明說明(30) 對WGS-84橢球應用規範的重力公式可得到下列表達式:Page 33 536637 V. Description of the invention (30) Applying the standard gravity formula to the WGS-84 ellipsoid can obtain the following expression:

Sd =<?〇[1-2(ΐ4-/+/7ζ)~ + (~/7ζ~/)5ίη2^ a 2 {m - Qla2bIGM) 式中,是赤道上的重力,f是橢球扁率,h是高 度,a是半長值,b是短半值,GM是地球重力常數。Sd = <? 〇 [1-2 (ΐ4-/ + / 7ζ) ~ + (~ / 7ζ ~ /) 5ίη2 ^ a 2 {m-Qla2bIGM) where is the gravity on the equator and f is an ellipsoid Rate, h is the height, a is the half-length value, b is the short-term half value, and GM is the earth's gravity constant.

用於地理緯度L,經度,和高度h,位置更新的微分方 程為:The differential equation for geographic latitude L, longitude, and height h, location update is:

Rka + h λ:Rka + h λ:

(Rn +h)cosL 式中,rm是子午線曲率半徑,rn是酉卯圈曲率半 徑。(Rn + h) cosL where rm is the radius of curvature of the meridian and rn is the radius of curvature of the ring.

如第十六圖所示,在步驟4中,位置速度計算後,在 姿態位置速度計算模塊8 1 3中用卡爾曼濾波器8 3算出的位 置速度誤差來修正慣性解。對姿態修正可以用兩種方法。 第一種方法是由卡爾曼濾波器8 3送算出的姿態誤差到姿態 位置速度計算模塊8 1 3,在姿態位置速度計算模塊8 1 3中進 行姿態修正。第二種方法是由卡爾曼濾波器8 3送算出的姿 態誤差到變換矩陣計算模塊8 1 4,在姿態位置速度計算模 塊8 1 3之前進行姿態修正。As shown in the sixteenth figure, in step 4, after the position velocity calculation, the position velocity error calculated by the Kalman filter 83 in the attitude position velocity calculation module 8 1 3 is used to correct the inertial solution. There are two methods for attitude correction. The first method is to send the calculated attitude error from the Kalman filter 8 3 to the attitude position and speed calculation module 8 1 3, and perform attitude correction in the attitude position and speed calculation module 8 1 3. The second method is to send the calculated attitude error by the Kalman filter 8 3 to the transformation matrix calculation module 8 1 4 and perform the attitude correction before the attitude position speed calculation module 8 1 3.

第34頁 536637 五、發明說明(31) 如第十六圖所示,在步驟5中,從姿態位置速度計算 模塊8 1 3得到的修正慣性解被送到卡爾曼濾波器8 3,用以 構成卡爾曼遽波器8 3的測量值。如第十三圖所示,在步驟 8中,修正慣性解也被送到載波相位整模糊解模塊8 2,用 以輔助全球定位系統衛星載波相位整模糊確定。如第十三 圖所示,在步驟7中,修正的速度和加速度被送到全球定 位系統處理器4 0之微處理器4 5 4,用以辅助全球定位系統 衛星信號載波相位和碼跟蹤。如第十六圖所示,在步驟1 0 中,姿態位置和速度信息通過公用總線5 5被送到控制板 53 〇Page 34 536637 V. Description of the invention (31) As shown in the sixteenth figure, in step 5, the modified inertial solution obtained from the attitude position velocity calculation module 8 1 3 is sent to the Kalman filter 8 3 for The measured values constituting the Kalman chirper 83 As shown in the thirteenth figure, in step 8, the modified inertial solution is also sent to the carrier phase ambiguity resolution module 82, which is used to assist the GPS carrier phase ambiguity determination. As shown in the thirteenth figure, in step 7, the corrected speed and acceleration are sent to the microprocessor 4 54 of the global positioning system processor 40 to assist the GPS satellite signal carrier phase and code tracking. As shown in the sixteenth figure, in step 10, the attitude position and speed information is sent to the control board 53 through the common bus 55.

如第十六圖所示,在步驟4中,姿態位置速度計算模 塊8 1 3得到姿態位置和速度被送到地球與載體轉動速率計 算模塊8 1 5用以計算地球速率和載體轉動速率。算出的地 球和載體轉動速率被送到變換矩陣計算模塊8 1 4。 眾所周知,卡爾曼濾波器用完全確定的統計特性產生最優 估計。估計是無偏的,並且在線性無偏估計族中有最小的 方差。然而,估計的性能僅在數學模型的假定成立時才有 保證。模型中的任何指標偏差可能使濾波結果以及建立其 上的結論無效。As shown in the sixteenth figure, in step 4, the attitude position velocity calculation module 8 1 3 obtains the attitude position and velocity and sends it to the earth and carrier rotation rate calculation module 8 1 5 to calculate the earth velocity and the carrier rotation rate. The calculated earth and carrier rotation rates are sent to the transformation matrix calculation module 8 1 4. It is well known that Kalman filters use fully defined statistical properties to produce optimal estimates. The estimates are unbiased and have the smallest variance in the family of linear unbiased estimates. However, the estimated performance is only guaranteed if the assumptions of the mathematical model are valid. Any bias in the model may invalidate the filtering results and the conclusions based on them.

在通用運載體導航與控制板中,卡爾曼濾波器位置和 姿態求解的另一模態為魯棒卡爾曼濾波器。這一魯棒卡爾 曼濾波器可以足夠穩定地在多個環境下運行。如果動態模 型急劇變化,或傳感器發生故障,例如GPS衛星信號失 效,慣性傳感器信號失效,濾波器必須檢測,修正且隔離In the general vehicle navigation and control board, another mode of Kalman filter position and attitude solution is the robust Kalman filter. This robust Kalman filter is stable enough to operate in multiple environments. If the dynamic model changes suddenly or the sensor fails, such as GPS satellite signal failure, inertial sensor signal failure, the filter must be detected, corrected and isolated

第35頁 536637 五、發明說明(32) 故障情形。 魯棒卡爾曼濾波器具有這樣的特性,即在一個大的處 理與測量模型組上提供接近最優的特性。純卡爾曼濾波器 不是魯棒的,因為它僅在一個特定的處理與測量模型上是 最優的。如果濾波器不正確,濾波器協方差所報告的精度 與實際可達到的精度是不一樣的。濾波器置信度的目的是 保證從誤差協方差得到的性能預測接近於實際估計誤差統 計。此外,濾波器的發散通常由過程,模型的變化,或傳 感器故障引起。 本發明採用殘差監控方法獲得魯棒卡爾曼濾波器,用 以混合全球定位系統數據,慣性傳感器測量,以及來自高 度測量器件的高度測量。當有合適的冗餘度可用時,殘差 監控方法可有效地檢測軟硬故障及濾波器發散。殘差監控 方法的一個優點是當濾波器模型正確時,殘差序列的統計 分布是已知的。因此,可以用殘差測量上的一個分布檢測 來產生測量編輯和發散檢測方法。同樣的統計方法可被用 來評估濾波器調諧和當檢測到發散時調整協方差的大小。 第十七圖表示了包含殘差監控功能的魯棒卡爾曼渡波器的 實現方法。 如第十七圖所示,在步驟5中,GPS誤差補償模塊8 3 7 從全球定位系統處理器40取得GPS原始測量,包括偽距, 載波相位,和多普勒頻率,從更新狀態向量模塊8 3 9取得 位置和速度修正,用以進行GPS誤差補償。補償後的原始 數據被送到預處理模塊8 3 5。Page 35 536637 V. Description of the invention (32) Failure situation. The robust Kalman filter has the characteristic of providing near-optimal characteristics over a large set of processing and measurement models. A pure Kalman filter is not robust because it is optimal only on a specific processing and measurement model. If the filter is incorrect, the reported accuracy of the filter covariance will be different from the actual achievable accuracy. The purpose of the filter confidence is to ensure that the performance prediction from the error covariance is close to the actual estimated error statistics. In addition, filter divergence is usually caused by process, model changes, or sensor failure. The present invention adopts a residual monitoring method to obtain a robust Kalman filter for mixing GPS data, inertial sensor measurements, and height measurements from height measurement devices. When appropriate redundancy is available, residual monitoring methods can effectively detect soft and hard faults and filter divergence. An advantage of the residual monitoring method is that when the filter model is correct, the statistical distribution of the residual sequence is known. Therefore, a distribution test on residual measurements can be used to generate measurement editing and divergence detection methods. The same statistical method can be used to evaluate filter tuning and adjust the covariance when divergence is detected. Figure 17 shows the implementation of a robust Kalman wavelet with residual monitoring. As shown in the seventeenth figure, in step 5, the GPS error compensation module 8 3 7 obtains the GPS raw measurements from the global positioning system processor 40, including the pseudorange, the carrier phase, and the Doppler frequency, and updates the state vector module 8 3 9 Obtain position and speed correction for GPS error compensation. The compensated raw data is sent to the pre-processing module 8 3 5.

536637536637

五、發明說明(33) 如第十七圖所不’在巧5中,預處理模塊—從高度 接口和處理板30接收高度測置’從全球定位系統處理器4〇 接收GSP衛星星歷’從GPS誤差補償模塊83?接收修正後的 GPS原始數據’包括偽距’載波相位,和多普勒頻率,從 INS處理器81接收INS導航解。 預處理模塊8 3 5進行狀態轉移陣計算,並把它以及前 一狀態向量送到狀態向量預測模塊8 3 6。算出的狀態轉移 陣也被送到協方差傳播模塊8 3 2。預處理模塊8 3 5根據算出 的測量陣和測量模型計算測量矩陣和當前測量向量。測量 矩陣和算出的當前測量向量被傳到計算測量殘差模塊 8 3 8。如第十七圖所示,在步驟5中,狀態向量預測模塊 8 3 6從預處理模塊8 3 5接收狀態轉移陣和前一狀態向量,用 以進行當前週期的狀態預測。預測的當前狀態向量被送到 計算測量殘差模塊8 3 8。 如第十七圖所示,在步驟5中,計算測量殘差模塊8 3 8 從狀態向量預測模塊8 3 6接收預測的當前狀態向量’從預 處理模塊8 3 5接收測量陣和當前測量向量。計算測量殘差 模塊8 3 8通過從當前測量向量減去測量陣與預測的當前狀 態向量的乘積來計算測量殘差。測量殘差被送到殘差監控 模塊831以及更新狀態向量模塊8 3 9。 如第十七圖所示,在步驟5中,殘差監控模塊831對從 計算測量殘差模塊8 3 8收到的測量殘差進行判別。判別規 律是看測量殘差的平方除以殘差的方差是否大於一個給定 的閾值。如果測量殘差的平方除以殘差的方差大於這個給V. Description of the invention (33) As shown in the seventeenth figure, in the “Precision 5, the pre-processing module—receiving the altitude measurement from the altitude interface and the processing board 30” receives the GSP satellite ephemeris from the GPS processor 40. Receive the modified GPS raw data 'including pseudo-range' carrier phase and Doppler frequency from the GPS error compensation module 83 ', and receive the INS navigation solution from the INS processor 81. The preprocessing module 8 3 5 calculates the state transition matrix and sends it and the previous state vector to the state vector prediction module 8 3 6. The calculated state transition matrix is also sent to the covariance propagation module 8 3 2. The pre-processing module 8 3 5 calculates the measurement matrix and the current measurement vector based on the calculated measurement matrix and measurement model. The measurement matrix and the calculated current measurement vector are passed to the calculated measurement residual module 8 3 8. As shown in the seventeenth figure, in step 5, the state vector prediction module 8 3 6 receives the state transition matrix and the previous state vector from the pre-processing module 8 3 5 to perform the state prediction of the current cycle. The predicted current state vector is sent to the calculated measurement residual module 8 3 8. As shown in the seventeenth figure, in step 5, the measurement residual module 8 3 8 receives the predicted current state vector from the state vector prediction module 8 3 6 'receives the measurement matrix and the current measurement vector from the preprocessing module 8 3 5 . Calculate measurement residuals Module 8 3 8 calculates the measurement residuals by subtracting the product of the measurement matrix and the predicted current state vector from the current measurement vector. The measurement residuals are sent to a residual monitoring module 831 and an update state vector module 8 3 9. As shown in the seventeenth figure, in step 5, the residual monitoring module 831 discriminates the measurement residuals received from the calculated measurement residual module 8 3 8. The discrimination rule is to see if the square of the measurement residual divided by the variance of the residual is greater than a given threshold. If the square of the measurement residual divided by the variance of the residual is greater than this gives

第37頁 536637 五、發明說明(34) — 定的閾值’當前測量可能導致卡爾曼濾波器的發散。如果 它發生的話,殘差監控模塊8 3 1算出一個新的系統過程方 差’後拒絕當前測量。如果測量殘差的平方除以殘差的方 差小於這個給定的閾值,卡爾曼濾波器不改變當前系統過 程方差地用當前測量來獲得當前導航解。系統過程方差被 送到協方差傳播模塊8 3 2。 如第十七圖所示,在步驟5中,協方差傳播模塊8 3 2接 收從殘差監控模塊8 3 1來的系統過程方差,從預處理模塊 8 3 5來的狀態轉移陣,和前一估計誤差方差,用以計算估 計誤差的當前方差。算出的估計誤差的當前方差被送到計 算最優增益模塊8 3 3。 如第十七圖所示,在步驟5中,計算最優增益模塊833 從協方差計算模塊8 3 2接收估計誤差的當前方差用以計算 最優增益。這一最優增益被傳遞到方差更新模塊8 3 4以及 更新狀態向量模塊8 3 9。方差更新模塊8 3 4更新估計誤差的 方差,並把它送到協方差傳播模塊8 3 2。 如第十七圖式,在步驟5中,更新狀態向量模塊8 3 9從 計算最優增益模塊8 3 3接收最優增益,從計算測量殘差模 塊8 3 8接收測量殘差。更新狀態向量模塊8 3 9計算狀態向量 的當前估計,包括位置,速度,及姿態誤差,並把它們送 到GPS誤差補償模塊8 3 7和INS處理器81。 眾所周知,用載波相位測量能獲得比僅用偽距測量更 高的GPS定位精度。這是因為,在全球定位系統衛星li廣 播頻率157542MHZ上,一個載波週期僅為19厘米,相比之Page 37 536637 V. Description of the Invention (34)-Certain Threshold value 'The current measurement may cause the Kalman filter to diverge. If it happens, the residual monitoring module 8 31 calculates a new system process variance 'and rejects the current measurement. If the square of the measurement residual divided by the variance of the residual is less than this given threshold, the Kalman filter uses the current measurement to obtain the current navigation solution without changing the current system process variance. The system process variance is sent to the covariance propagation module 8 3 2. As shown in the seventeenth figure, in step 5, the covariance propagation module 8 3 2 receives the system process variance from the residual monitoring module 8 3 1, the state transition matrix from the pre-processing module 8 35, and the former An estimated error variance used to calculate the current variance of the estimated error. The current variance of the calculated estimation error is sent to the calculation optimal gain module 8 3 3. As shown in the seventeenth figure, in step 5, the calculation optimal gain module 833 receives the current variance of the estimation error from the covariance calculation module 8 3 2 to calculate the optimal gain. This optimal gain is passed to the variance update module 8 3 4 and the update state vector module 8 3 9. The variance update module 8 3 4 updates the variance of the estimation error and sends it to the covariance propagation module 8 3 2. As in the seventeenth diagram, in step 5, the update state vector module 8 3 9 receives the optimal gain from the calculation optimal gain module 8 3 3 and receives the measurement residual from the calculation measurement residual module 8 3 8. The updated state vector module 8 3 9 calculates the current estimates of the state vector, including position, velocity, and attitude errors, and sends them to the GPS error compensation module 8 37 and the INS processor 81. It is well known that using carrier phase measurements can achieve higher GPS positioning accuracy than using only pseudorange measurements. This is because on the GPS satellite li broadcasting frequency 157542MHZ, a carrier period is only 19 cm, compared to

536637 五、發明說明(35) 下,CA碼的一個週期在3 0 0米左右。GPS載波相位測量定位 的高精度基於相位模糊度求解這一先決條件。相位測量特 有的模糊性同時取決於全球定位系統接收機和衛星。在沒 有載波相位跟蹤誤差及已知接收機和衛星真實位置的理想 假定下,相位模糊可通過一個簡單的數學計算即時求解。 然而實際存在著衛星星歷誤差,衛星時鐘偏移,大氣傳播 延遲,多徑效應,接收機時鐘誤差,以及從G P S碼跟蹤回 路來的接收機測距噪聲,我們僅可獲得不精確的從接收機 到衛星的幾何距離,稱為碼偽距。 I M U辅助相位模糊解和週期滑動檢測的優點是,從修 正的INS解來的精確載體坐標和速度可用來辅助決定初始 模糊和搜索範圍。此外,I NS輔助信號跟蹤提高了接收機 保持全球定位系統衛星信號的能力,因而信號丟失或週期 滑動的可能性減小了。 如第十三圖所示,在步驟8中,載波相位整模糊解模 塊8 2從I N S處理器8 1接收位置和速度數據,從全球定位系 統處理器4 0之微處理器4 5 4接收載波相位及多普勒頻移測 量,從卡爾曼濾波器8 3接收協方差陣,用以確定全球定位 系統衛星信號整模糊數。確定載波相位模糊度後,在步驟 9,載波相位整模糊數被送到卡爾曼濾波器8 3,進一步改 善全球定位系統原始數據的測量精度。 如第十八圖所示,I M U辅助的全球定位系統衛星信號 載波相位整模糊解模塊8 2包含幾何距離計算模塊8 2 1 ,最 小二乘調整模塊8 2 2,衛星時鐘模型8 2 3,電離層模型536637 V. Description of the invention (35), one cycle of the CA code is about 300 meters. The high accuracy of GPS carrier phase measurement and positioning is based on the prerequisite of phase ambiguity solution. The phase-specific ambiguity depends on both the GPS receiver and the satellite. Under the ideal assumption of no carrier phase tracking error and known true position of the receiver and satellite, the phase ambiguity can be solved instantly by a simple mathematical calculation. However, there are actually satellite ephemeris errors, satellite clock offsets, atmospheric propagation delays, multipath effects, receiver clock errors, and receiver ranging noise from the GPS code tracking loop. We can only obtain inaccurate slave receivers. The geometric distance from the aircraft to the satellite is called code pseudorange. The advantage of I M U auxiliary phase fuzzy solution and periodic slip detection is that the precise carrier coordinates and velocity from the modified INS solution can be used to assist in determining the initial blur and search range. In addition, the NS auxiliary signal tracking improves the receiver's ability to maintain GPS satellite signals, thereby reducing the possibility of signal loss or periodic slippage. As shown in the thirteenth figure, in step 8, the carrier phase reshaping module 82 receives the position and velocity data from the INS processor 81, and receives the carrier from the microprocessor 4 5 4 of the GPS processor 40. Phase and Doppler frequency shift measurements. The covariance matrix is received from the Kalman filter 8 3 to determine the integer fuzzy number of the GPS satellite signal. After the carrier phase ambiguity is determined, the carrier phase integer ambiguity number is sent to the Kalman filter 8 3 in step 9 to further improve the measurement accuracy of the GPS raw data. As shown in the eighteenth figure, the IMU-assisted GPS signal carrier phase adjustment fuzzy solution module 8 2 includes a geometric distance calculation module 8 2 1, a least squares adjustment module 8 2 2, a satellite clock model 8 2 3, and an ionosphere. model

第39頁 536637 五、發明說明(36) 8 2 4,對流層模型8 2 5,衛星預測模塊8 2 6,和搜索空間確 定模塊8 2 7。 全球定位系統衛星信號載波相位整模糊的一個基本特 點是,只要跟蹤保持不中斷,便沒有時間依賴性。載波相 位測ϊ可被表不為.Page 39 536637 V. Description of the invention (36) 8 2 4; tropospheric model 8 2 5; satellite prediction module 8 2 6; and search space determination module 8 2 7. A basic feature of GPS satellite signal carrier phase ambiguity is that as long as the tracking remains uninterrupted, there is no time dependence. The carrier phase measurement can be interpreted.

λ Λ A A 式中,Φ 是測量的載波相位,又是信號波長,P 是接收機和衛星之間真實的幾何距離,f是信號頻率, △ 5 = 5 S-5R是時鐘誤差,5s是衛星時鐘偏移,h 是 接收機誤差。N是載波相位整模糊,deph是星歷誤差引起 的距離誤差,di_是電離層引起的傳播誤差,dt_ 是對流 層引起的傳播誤差,ε 是相位噪聲。 當可採用雙頻率時,(使用L 1和L 2雙頻率全球定位系 統接收機),雙頻率載波相位測量可被用來消除幾乎所有 的電離層誤差,這是主要的測距誤差源。更進一步,I M U 輔助的載波相位模糊解也用於在雙頻載波相位測量之間形 成的寬道信號。寬道信號可表示為: Φνν 式中,是L1通道載波相位測量,是L2通道載波相 位測量。相應的寬道頻率和相位模糊度為:λ Λ AA where Φ is the measured carrier phase and signal wavelength, P is the true geometric distance between the receiver and the satellite, f is the signal frequency, △ 5 = 5 S-5R is the clock error, and 5s is the satellite Clock offset, h is the receiver error. N is the carrier phase integer blur, deph is the distance error caused by ephemeris error, di_ is the propagation error caused by the ionosphere, dt_ is the propagation error caused by the troposphere, and ε is the phase noise. When dual frequencies are available (using the L 1 and L 2 dual-frequency GPS receivers), dual-frequency carrier phase measurements can be used to eliminate almost all ionospheric errors, which are the main sources of ranging errors. Furthermore, the I M U-assisted carrier phase ambiguity solution is also used for wide-channel signals formed between dual-frequency carrier phase measurements. The wide channel signal can be expressed as: Φνν where is the carrier phase measurement of the L1 channel and the carrier phase measurement of the L2 channel. The corresponding wide-channel frequency and phase ambiguities are:

f、v 二 fL「fLl,Νw 二 NNf, v two fL, fLl, Nw two NN

第40頁 536637 五、發明說明(37) 求解載波相位模糊的問題被進一步複雜化,因需要每 次當衛星失鎖時(這種現像稱為週期滑動)要再確定模糊 度。週期滑動必須被檢測和修復以保持高精度導航解。週 期滑動的原因可分為三種。首先,週期滑動由衛星信號的 遮擋引起,如樹,建築物,橋梁,山峰的遮擋。第二個週 期滑動源是低的信噪比S N R,由惡劣的電離層條件,多 徑,接收機高動態,或低的衛星高度引起。第三個源是接 收機振盪器。在本發明中,I M U輔助也被用於週期滑動的 檢測和修復。 如第十八圖所示,在步驟8中,衛星預測模塊8 2 6從全 球定位系統處理器4 0接收可見全球定位系統衛星的星歷。 預測的衛星位置被傳到幾何距離計算模塊8 2 1。 幾何距離計算模塊821從INS處理器81接收載體的精確 位置信息。基於衛星和載體的位置信息,幾何距離計算模 塊8 2 1計算衛星和載體之間的幾何距離,這與從全球定位 系統處理器4 0碼跟蹤環導出的偽距是不同的。解出的幾何 距離被送到最小二乘調整模塊8 2 2。 如第十八圖所示,在步驟8中,對流層模型8 2 5從全球 定位系統處理器8 2 6接收時間標記,並用嵌入式對流層滯 後模型計算全球定位系統衛星信號的延遲。算出的對流層 滯後被送到最小二乘調整模塊8 2 2。Page 40 536637 V. Explanation of the invention (37) The problem of solving the carrier phase ambiguity is further complicated, because it is necessary to determine the ambiguity every time when the satellite loses lock (this phenomenon is called periodic sliding). Cyclic slip must be detected and repaired to maintain a high-precision navigation solution. There are three reasons for periodic slippage. First, periodic sliding is caused by the occlusion of satellite signals, such as trees, buildings, bridges, and mountain peaks. The second cycle sliding source is a low signal-to-noise ratio S N R, caused by harsh ionospheric conditions, multipath, high receiver dynamics, or low satellite altitude. The third source is the receiver oscillator. In the present invention, I M U assist is also used for the detection and repair of periodic slip. As shown in Figure 18, in step 8, the satellite prediction module 8 2 6 receives the ephemeris of the visible GPS satellites from the global positioning system processor 40. The predicted satellite position is transmitted to the geometric distance calculation module 8 2 1. The geometric distance calculation module 821 receives the precise position information of the carrier from the INS processor 81. Based on the position information of the satellite and the carrier, the geometric distance calculation module 8 2 1 calculates the geometric distance between the satellite and the carrier, which is different from the pseudo-range derived from the 40-position tracking loop of the GPS processor. The solved geometric distance is sent to the least squares adjustment module 8 2 2. As shown in Figure 18, in step 8, the troposphere model 8 2 5 receives the time stamp from the GPS processor 8 2 6 and calculates the delay of the GPS satellite signal using the embedded tropospheric lag model. The calculated tropospheric lag is sent to the least squares adjustment module 8 2 2.

第41頁 536637 五、發明說明(38) 如第十八 疋位系統處理 布的電離層參 型’電離層模 出的電離層滯 如第十八 全球定位系統 算。衛星時鐘 如第十八 伙卡爾曼滤波 陣’搜索空間 系統衛星載波 空間被送到最 如第十八 從幾何距離計 幾何距離,從 模塊8 2 4收集1 鐘修正,用以 822也從搜索3 乘調整算法用 相位模糊度。 如第三圖 與數據總線1 5 和第四圖所示 圖所示,在步驟8中,雷 器40接收時間標記以及電入離^ 數。利用電離層數據和=束=位系統衛星發 塊8 24計算由電離層弓丨&入式電離層滯後模 德祜逆到是d + 起的負時間延遲。算 mt-乘調整模塊822。 圖所不,在步驟8中,椒母士 衛星時鐘參數,用以&衛生時鐘模型823接收 修正也被送到最時鐘修正計 圖所示,在步驟8中,搜'換塊j22。 器83接收測量向量搜索空間確定模塊827 確定模塊8 2 7導出測量矩;V,於方差矩 相位整模糊搜索空間/巷、’疋全球定位 小二乘調整模塊8 2 2。冑波相位整模糊搜索 】::821在:I·中,最小二乘調整模塊8 2 2 載體到全球定位系統衛星的 r離^5收集對流層滯後,從電離層 :離,滯後’從衛星時鐘模型8 2 3收集衛星時 :卞弄初始搜索的起點。最小二乘調整模塊 【間確定模塊8 2 7接收搜索空間。標準最小二 於知始搜索的起點和搜索空間,以確定載波 所示,總線接口 5 5在通用載體導航與控制盒 之間提供了一個接口。 如第一圖、第三^ ’在步驟1 1中,通過總線接口 5 4和數據總線Page 41 536637 V. Description of the invention (38) The ionospheric hysteresis of the ionospheric parameter model of the cloth treated by the eighteenth niche system is calculated by the eighteenth global positioning system. The satellite clock such as the eighteenth Kalman filter array's search space system satellite carrier space is sent to the eighteenth as the geometric distance from the geometric distance meter, collects 1 clock correction from module 8 2 4 and uses 822 also from search 3 The multiplication adjustment algorithm uses phase ambiguity. As shown in the third diagram and the data bus 15 and the fourth diagram, in step 8, the arrester 40 receives the time stamp and the ionization number. Using the ionospheric data and the = satellite system satellite block 8 24 to calculate the negative time delay from the ionospheric bow & entry ionospheric hysteresis mode. Calculate the mt-multiplication adjustment module 822. As shown in the figure, in step 8, the satellite clock parameters of the mother pepper are received by the & hygienic clock model 823 and the correction is also sent to the most clock correction plan. The receiver 83 receives the measurement vector search space determination module 827 and the determination module 8 2 7 derives the measurement moment; V, the moment of variance; phase adjustment fuzzy search space / lane; ′ 疋 global positioning; least squares adjustment module 8 2 2. Sine wave phase integer fuzzy search] :: 821 in: I ·, the least squares adjustment module 8 2 2 carrier to the GPS satellite r ^ 5 to collect tropospheric hysteresis, from ionosphere: ion, lag 'from satellite clock model 8 2 3 When collecting satellites: Get the starting point for the initial search. Least squares adjustment module [Interval determination module 8 2 7 receives the search space. The standard least square is the starting point of the search and the search space to determine the carrier. As shown in the figure, the bus interface 5 5 provides an interface between the universal carrier navigation and the control box. As shown in the first figure and the third ^ 'in step 11 through the bus interface 54 and the data bus

第42頁 536637 五、發明說明(39) 1 5給飛行管理系統1 1送平台位置,速度,姿態,航向,和 時間數據。 如第一圖、第三圖和第四圖所示,在步驟12中,控制 板5 3通過總線接口 5 4和數據總線1 5給飛行控制系統1 2送平 台速度,姿態,體加速度和轉動數據。 如第一圖、第三圖和第四圖所示,在步驟13中,控制 板53通過總線接口 54和數據總線1 5給自動相關監視系統1 3 送送平台位置和時間數據。 如第一圖、第三圖和第四圖所示,在步驟13中,控制 板53通過總線接口 54和數據總線1 5給自動相關監視系統1 3 送送平台位置和時間數據。 如第一圖、第三圖和第四圖所示,在步驟13中,控制 板5 3通過總線接口 5 4和數據總線1 5給自動相關監視系統1 3 送送平台位置和時間數據。 如第一圖、第三圖和第四圖所示,在步驟14中,控制 板5 3通過總線接口 5 4和數據總線1 5給加強型地面鄰近告警 系統1 7送平台位置,速度,和姿態數據。 如第一圖、第三圖和第四圖所示,在步驟15中,控制 板53通過總線接口 54和數據總線1 5給氣像雷達送平台姿 態,和體加速度數據。 如第一圖、第三圖和第四圖所示,在步驟16中,控制 板53通過總線接口 54和數據總線1 5給衛星通信系統送平台 位置和姿態數據。 以上描述的本發明第一優選實現方案被稱為應用加強Page 42 536637 V. Description of the invention (39) 1 5 Send the platform position, speed, attitude, heading, and time data to the flight management system 1 1. As shown in the first, third, and fourth figures, in step 12, the control board 5 3 sends the platform speed, attitude, body acceleration, and rotation to the flight control system 12 through the bus interface 54 and the data bus 15. data. As shown in the first diagram, the third diagram, and the fourth diagram, in step 13, the control board 53 sends the platform position and time data to the automatic related monitoring system 13 through the bus interface 54 and the data bus 15. As shown in the first diagram, the third diagram, and the fourth diagram, in step 13, the control board 53 sends the platform position and time data to the automatic related monitoring system 13 through the bus interface 54 and the data bus 15. As shown in the first diagram, the third diagram, and the fourth diagram, in step 13, the control board 5 3 sends the platform position and time data to the automatic related monitoring system 1 3 through the bus interface 54 and the data bus 15. As shown in the first diagram, the third diagram, and the fourth diagram, in step 14, the control board 53 sends the platform position, speed, and speed to the enhanced ground proximity alarm system 17 via the bus interface 54 and the data bus 15. Posture data. As shown in the first diagram, the third diagram, and the fourth diagram, in step 15, the control board 53 sends the platform attitude and the body acceleration data to the aerial imaging radar through the bus interface 54 and the data bus 15. As shown in the first diagram, the third diagram, and the fourth diagram, in step 16, the control board 53 sends the platform position and attitude data to the satellite communication system through the bus interface 54 and the data bus 15. The first preferred implementation of the present invention described above is referred to as application enhancement

536637 五、發明說明(40) 的有高度測量的全偶合的全球定位系統/慣性測量組件的 通用導航與控制盒,其中全球定位系統偽距,載波相位, 和多普勒頻移測量,以及慣性測量和高度測量在卡爾曼濾 波器中進行混合。536637 V. Description of the invention (40) Universal navigation and control box for fully coupled global positioning system / inertial measurement module with height measurement, in which GPS pseudorange, carrier phase, and Doppler frequency shift measurement, and inertia The measurement and height measurement are mixed in a Kalman filter.

該通用導航與控制盒也可用全偶合的全球定位系統/ 慣性測量組件與高度測量的整合來實現。這是本發明第二 優選實現方案,其中,卡爾曼濾波器用來混合全球定位系 統偽距和多普勒頻移測量,慣性測量,以及從高度測量器 件來的高度測量。與本發明第一優選實現方案不同的是, 在這個方法中,全球定位系統衛星信號載波相位沒有用在 組合方案中。 如如第一圖、第三圖、第四圖、第五圖-B 、第六圖 -B、第七圖、第八圖、第九圖、第十圖、第十一圖、第十 二圖、第十四圖、第十六圖和第十七圖所示,用以說明本 發明第二優選實現方案,包含有效步驟: 1進行GPS處理和接收GPS測量,包括從全球定位系統 處理器4 0來的偽距,多普勒頻移和時間,並把它們送到導 航處理板8 0。The universal navigation and control box can also be implemented with the integration of a fully coupled GPS / inertial measurement unit and altitude measurement. This is the second preferred implementation of the present invention, in which a Kalman filter is used to mix GPS pseudorange and Doppler frequency shift measurements, inertial measurements, and altitude measurements from an altitude measurement device. Different from the first preferred implementation of the present invention, in this method, the carrier phase of the GPS satellite signal is not used in the combination scheme. Such as the first, third, fourth, fifth, -B, sixth -B, seventh, eighth, ninth, tenth, eleventh, twelfth Figures, fourteenth, sixteenth, and seventeenth diagrams are used to illustrate the second preferred implementation of the present invention, which includes effective steps: 1 Perform GPS processing and receive GPS measurements, including from the global positioning system processor Pseudorange, Doppler frequency and time from 40, and send them to the navigation processing board 80.

2從慣性測量組件2 0接收慣性測量,即載體角速度和 比力,用I MU接口和預處理板6 0把它們轉換為載體加速度 和轉動數字數據,並通過公用總線5 5送到導航處理板8 0和 控制板5 0。 3從高度測量器件3 0接收高度測量,用高度接口和處 理板70把它轉換為平均海平面(MSL)數字數據高度,並通2 Receive inertial measurements from the inertial measurement module 20, that is, the angular velocity and specific force of the carrier, use the I MU interface and the pre-processing board 60 to convert them into carrier acceleration and rotation digital data, and send them to the navigation processing board through the common bus 55. 8 0 and control board 50. 3 Receive the altitude measurement from the altitude measurement device 30, convert it to the mean sea level (MSL) digital data altitude with the altitude interface and processing board 70, and communicate

第44頁 536637 五、發明說明(41) ' a用總線5 5送到中心導航與控制板8 0和控制板5 0。 4用INS處理器81進行INS處理。 、 5在卡爾曼濾波器8 3中混合I N S處理器8 1的輪出,高度 測量,和GPS測量。 , 6把卡爾曼濾波器83的輸出反饋到INS處理器81 ’用以 修正I NS導航解。 7從INS處理器81 ,通過公用總線55,輸出導航數據, 即平台速度’位置,高度,航向,和時間到控制板5 3。 8送平台速度,位置,姿態,航向,和時間數據到飛 行管理系統11。 9送平台速度’姿態,體加速度,和轉動數據到飛行 控制系統1 2。 1 0送平台位置和時間數據到自動相關監視系統1 3。 11送平台位置’速度,和姿態數據到加強型地面鄰近 告警系統17。 1 2送平台姿態和體加速度數據到氣像雷達丨8。 1 3送平台位置和姿態數據到衛星通信系統丨9。 在步驟6之後’可再加一附加步驟6 ( a )從I N S處理器8 1 才^速度和加速度數據注入全球定位系統處理器4 〇之微處理 器4 54 \以輔助全球定位系統碼跟蹤,如第六圖—B所示。 如第五圖-B、第六圖—β和第十四圖所示,在步驟1 中,本發明第二優選實現方案,除了載波相位跟蹤與速度 -加β速度辅助載波相位跟蹤外,與本發明第一優選實現方 案是一樣的。導航處理板8 〇從全球定位系統處理器4 〇僅接Page 44 536637 V. Description of the invention (41) 'a Use the bus 5 5 to send to the central navigation and control board 80 and the control board 50. 4 The INS processor 81 performs INS processing. , 5 In the Kalman filter 8 3, the I N S processor 8 1 turns out, the height measurement, and the GPS measurement are mixed. 6 The output of the Kalman filter 83 is fed back to the INS processor 81 'to modify the I NS navigation solution. 7 From the INS processor 81, through the common bus 55, the navigation data, that is, the platform speed 'position, altitude, heading, and time are output to the control board 53. 8 Send platform speed, position, attitude, heading, and time data to the flight management system11. 9 Send the platform speed ’attitude, body acceleration, and rotation data to the flight control system 1 2. 1 0 Send the platform position and time data to the automatic related monitoring system 1 3. 11 Send the platform position 'speed and attitude data to the enhanced ground proximity alarm system17. 1 2 Send the platform attitude and body acceleration data to the aerial imaging radar. 1 3 Send the platform position and attitude data to the satellite communication system 9. After step 6 ', an additional step 6 (a) can be added from the INS processor 8 1 to inject the speed and acceleration data into the GPS processor 4 0's microprocessor 4 54 \ to assist the GPS code tracking, As shown in Figure 6-B. As shown in the fifth figure-B, the sixth figure-β and the fourteenth figure, in step 1, the second preferred implementation of the present invention, in addition to carrier phase tracking and speed-plus β speed assisted carrier phase tracking, The first preferred implementation of the present invention is the same. Navigation processing board 8 〇 from GPS processor 4 〇 only access

第45頁 536637 五、發明說明(42) 收偽距和多普勒頻移,不包括載波相位測量。 如第五圖-B,在步驟1中,除了信號處理器45外,全 球定位系統天線4 1 ,前置放大器4 2,下行變頻器4 3,I F採 樣和A/D轉換器44,和振盪器46,與本發明第一優選實現 方案中的作用是一樣的。信號處理器45從IF採樣和A/D轉 換器44接收數字化的數據,以提取調制在GPS信號上導航 數據,像GPS衛星星歷’大氣數據,衛星鐘參數,和時間 信息。信號處理器45也處理從IF採樣和A/D轉換器44來的 數字信號,以提取偽距和多普勒頻移。提取的偽距和多普 勒頻移送到導航處理板8 0。在步驟6 A中,信號處理器4 5從 導航處理板8 0接收速度和加速度,以進行碼跟蹤輔助。 如第六圖-B所示,在步驟1中,從GPS碼跟縱回路導出 偽距測量。GPS碼跟蹤回路包含相關器4 5 2,累加器4 5 3, 微處理器4 5 4,碼數字控制振盪器(NC0 ) 4 5 7,和編碼器 456。從GPS衛星信號頻率跟蹤回路獲得多普勒頻移。這個 GPS衛星信號頻率跟蹤回路與本發明第一優選實現方案中 的載波相位跟縱回路是不一樣的。頻率跟縱回路包含多普 勒去除451 ,相關器452,累加器4 53 ,微處理器4 54,載波 數字控制振盪器(NCO)455,其中微處理器454不進行載波 相位檢測。 如第六圖_B ,在步驟1中,多普勒去除451 ,相關器 452,累加器453 ,載波NC0455,碼NC0457的功能與本發明 第一優選實現方案中是一樣的。微處理器454在本發明第 二優選實現方案中有不同的功能。Page 45 536637 V. Description of the invention (42) Receive pseudorange and Doppler frequency shift, excluding carrier phase measurement. As shown in the fifth figure-B, in step 1, in addition to the signal processor 45, the GPS antenna 4 1, the preamplifier 4 2, the down converter 4 3, the IF sampling and A / D converter 44, and the oscillation The device 46 has the same function as that in the first preferred implementation of the present invention. The signal processor 45 receives the digitized data from the IF sampling and A / D converter 44 to extract the navigation data modulated on the GPS signal, such as GPS satellite ephemeris' atmospheric data, satellite clock parameters, and time information. The signal processor 45 also processes the digital signals from the IF samples and the A / D converter 44 to extract pseudorange and Doppler shifts. The extracted pseudorange and Doppler frequency are shifted to the navigation processing board 80. In step 6A, the signal processor 45 receives speed and acceleration from the navigation processing board 80 for code tracking assistance. As shown in Figure 6-B, in step 1, a pseudo-range measurement is derived from the GPS code and the vertical loop. The GPS code tracking loop includes a correlator 4 5 2, an accumulator 4 5 3, a microprocessor 4 5 4, a code digitally controlled oscillator (NC0) 4 5 7, and an encoder 456. Doppler shift is obtained from the GPS satellite signal frequency tracking loop. This GPS satellite signal frequency tracking loop is different from the carrier phase and vertical loop in the first preferred implementation of the present invention. The frequency and vertical loops include Doppler removal 451, correlator 452, accumulator 4 53, microprocessor 4 54, carrier digitally controlled oscillator (NCO) 455, of which microprocessor 454 does not perform carrier phase detection. As shown in the sixth figure_B, in step 1, the functions of the Doppler removal 451, the correlator 452, the accumulator 453, the carrier NC0455, and the code NC0457 are the same as those in the first preferred implementation of the present invention. The microprocessor 454 has different functions in the second preferred implementation of the present invention.

第46頁 536637 五、發明說明(43) 如第六圖-B ’在步驟1中,來自累加器4 5 3的累加值 (13和14)由微處理器454存儲和收集,並騰空累加器453, 產生一種信號分量的累加·~騰空滤波方法。微處理器454進 行碼跟蹤回路滤波,碼捕獲處理,碼鎖定檢測,數據恢 復,和偽距及多普勒頻移處理。在步驟6Α中,微處理器 4 5 4從導航處理器8 0接收速度和加速度信息,用以進行外 部辅助碼跟蹤回路濾波,碼捕獲處理,碼鎖定檢測,數據 恢復,以及偽距和多普勒頻移處理。 如第六圖-Β,在步驟1中,微處理器454把偽距和多普 勒頻移輸出到導航處理板8 0。 如第十四圖所示’在步驟2中,IMU接口和預處理板60 把機體角速度和加速度的慣性測量輸出到導航處理板8〇之 INS處理器81。在步驟3中,高度接口和處理板7〇把高度測 量輸出到導航處理板8 〇之卡爾曼渡波8 3。 如第十四圖所示,在步驟5中,入\ ^ ^ ^ 60之微處理器4 54,輸出偽距,多並二. ^統處J ° 衛星星歷,以及大氣數據到卡Λ曰Λ上球定位系統 波器8 3中從I NS處理器8 1 ,高度拯八、波15 8 3。在卡爾曼濾 球定位系統處理器6 0之微處理器4二和處理板7 0,以及全 提取位置誤差,速度誤差,和姿雖,來的數據被整合’以 處理器8 1處理慣性測量,即機體g誤差。在步驟4中,1 NS 卡爾曼濾波器83來的位置誤差,速度和加速度,以及從 以導出修正的導航解。導航解包誤差,和姿態誤差’ 三維姿態。這些數據被輸出到卡取二維位置’三維速度’ 爾曼濾波器8 3 。另〆方Page 46 536637 V. Description of the invention (43) As shown in Figure 6-B 'In step 1, the accumulated values (13 and 14) from the accumulator 4 5 3 are stored and collected by the microprocessor 454, and the accumulator is emptied 453. Generate a signal accumulation and flying filtering method. The microprocessor 454 performs code tracking loop filtering, code capture processing, code lock detection, data recovery, and pseudorange and Doppler frequency shift processing. In step 6A, the microprocessor 4 54 receives speed and acceleration information from the navigation processor 80 for external auxiliary code tracking loop filtering, code capture processing, code lock detection, data recovery, and pseudorange and Doppler. Le frequency shift processing. As in the sixth figure-B, in step 1, the microprocessor 454 outputs the pseudorange and Doppler frequency shift to the navigation processing board 80. As shown in FIG. 14 ', in step 2, the IMU interface and the pre-processing board 60 outputs the inertial measurement of the angular velocity and acceleration of the body to the INS processor 81 of the navigation processing board 80. In step 3, the altitude interface and processing board 70 outputs the altitude measurement to the Kalman crossing wave 83 of the navigation processing board 80. As shown in the fourteenth figure, in step 5, enter the microprocessor 4 54 of \ ^^^^ 60, output the pseudo-range, and multiply the two. ^ Department of J ° satellite ephemeris, and atmospheric data to the card The Λ ball positioning system waver 8 3 is from the NS processor 8 1, and the height is 8 and the wave 15 8 3. In the Kalman filter ball positioning system processor 60, the microprocessor 4 2 and the processing board 70, as well as the full extraction of position error, speed error, and attitude, the data is integrated 'with the processor 8 1 processing inertial measurement , Which is the body g error. In step 4, 1 NS Kalman filter 83 comes from the position error, velocity and acceleration, and from it to derive the corrected navigation solution. Navigation unpacking error, and attitude error ’3D attitude. These data are output to a card-echoing two-dimensional position 'three-dimensional velocity' of a Kalman filter 8 3. Another party

第 47^^- 536637 五、發明說明(44) 面’在步驟7中’這些數據也被通過公用總線5 5傳遞到控 制板5 3。 如第十六圖所不,在步驟4中,在本發明第二優選實 現方案中INS處理器81與在本發明第一優選實現方案中作 用一樣。 如第十七圖所示,在步驟5中,除卡爾曼濾波器83之 G P S誤差補償模塊8 3 7外,在本發明第二優選實現方案中魯 棒卡爾曼濾波器與在本發明第一優選實現方案中工作一 樣。G P S誤差補償模塊8 3 7從全球定位處理器4 〇收集g P S偽 距和多普勒頻移的原始測量,載波相位除外,從更新姿鮮、 向量模塊8 3 9收集位置和速度修正,用以進行g p s誤差補 償。修正後的G P S偽距和多普勒頻移的原始數據被送到預 處理模塊8 3 5。 如第三圖所示,總線接口 5 5在通用導航與控制盒和數 據總線1 5之間提供了一個接口。如第一圖、第三圖和第四 圖所示’在步驟8中,控制板5 3通過總線接口 5 4和數據總 線1 5,送平台位置,速度,姿態,航向,和時間數據給飛 行管理系統1 1。 如第一圖、第三圖和第四圖所示,在步驟9中,控制 板5 3通過總線接口 5 4和數據總線1 5 ’送平台速度,姿態, 機體加速度,和轉動數據給飛行控制系統1 2。 如第一圖、第三圖、和第四圖所示,在步驟1〇中,控 制板53通過總線接口 54和數據總線15,送平台位置和時間 數據給自動相關監視系統13。47 ^^-536637 V. Description of the invention (44) In the step 7, these data are also transmitted to the control board 5 3 through the common bus 5 5. As shown in the sixteenth figure, in step 4, the INS processor 81 in the second preferred implementation of the present invention functions the same as in the first preferred implementation of the present invention. As shown in the seventeenth figure, in step 5, in addition to the GPS error compensation module 8 3 7 of the Kalman filter 83, the robust Kalman filter in the second preferred implementation of the present invention is the same as that in the first embodiment of the present invention. The same works in the preferred implementation. The GPS error compensation module 8 3 7 collects the raw measurements of the g PS pseudorange and Doppler frequency shift from the global positioning processor 4 except the carrier phase. It collects position and velocity corrections from the updated pose and vector module 8 3 9. For gps error compensation. The corrected G P S pseudorange and Doppler shifted raw data are sent to the preprocessing module 8 3 5. As shown in the third figure, the bus interface 55 provides an interface between the universal navigation and control box and the data bus 15. As shown in the first picture, the third picture, and the fourth picture, in step 8, the control board 5 3 sends the platform position, speed, attitude, heading, and time data to the flight through the bus interface 54 and the data bus 15. Management system 1 1. As shown in the first, third, and fourth figures, in step 9, the control board 5 3 sends the platform speed, attitude, body acceleration, and rotation data to the flight control through the bus interface 54 and the data bus 15 ′. System 1 2. As shown in the first diagram, the third diagram, and the fourth diagram, in step 10, the control board 53 sends the platform position and time data to the automatic correlation monitoring system 13 through the bus interface 54 and the data bus 15.

第48頁 536637 五、發明說明(45) 如第一圖、第三圖、和第四圖所示,在步驟11中,控 制板5 3通過總線接口 5 4和數據總線1 5,送平台位置,速度 和姿態數據給加強型地面鄰近告警系統1 7。 如第一圖、第三圖、和第四圖所示,在步驟12中,控 制板5 3通過總線接口 5 4和數據總線1 5,送平台姿態和體加 速度數據給氣像雷達1 8。 如第一圖、第三圖、和第四圖所示,在步驟13中,控 制板5 3通過總線接口 5 4和數據總線1 5,送平台位置和姿態 數據給衛星通信系統1 9。 全球定位系統和慣性導航系統的松偶合整合是最簡單 的整合模式,其利用全球定位系統導出的位置和速度在卡 爾曼濾波器中作為測量。這一整合模式不需要高速度整合 處理器和複雜的全球定位系統處理器。這導致它的成本優 勢。 通用導航與控制盒也可應用松偶合全球定位系統慣性 測量組件整合及高度測量來實現,這導致本發明的第三優 選實現方案。本發明的第三優選實現方案用卡爾曼濾波器 混合全球定位系統導出的位置和速度,慣性測量,和來自 高度測量器件的高度測量。與本發明的第一,第二優選實 現方案不同的是,在這一方法中,全球定位系統衛星信號 碼跟蹤和載波相位跟蹤,沒有外部I N S解辅助。並且,與 本發明的第一,第二優選實現方案不同,這一方法在卡爾 曼濾波器中採用全球定位系統導出的位置和速度,而不是 偽距,多普勒頻移,和載波相位。Page 48 536637 V. Description of the invention (45) As shown in the first, third, and fourth figures, in step 11, the control board 5 3 sends the platform position through the bus interface 54 and the data bus 15. , Speed and attitude data to the enhanced ground proximity alert system 17. As shown in the first picture, the third picture, and the fourth picture, in step 12, the control board 5 3 sends the platform attitude and volume acceleration data to the aerial imaging radar 18 through the bus interface 54 and the data bus 15. As shown in the first diagram, the third diagram, and the fourth diagram, in step 13, the control board 5 3 sends the platform position and attitude data to the satellite communication system 19 through the bus interface 54 and the data bus 15. Loose coupling integration of GPS and inertial navigation system is the simplest integration mode, which uses the position and velocity derived by GPS as measurements in the Kalman filter. This integration model does not require high-speed integrated processors and complex GPS processors. This leads to its cost advantage. The universal navigation and control box can also be implemented by the integration of loosely coupled GPS inertial measurement components and height measurement, which results in the third preferred implementation of the present invention. The third preferred implementation of the present invention uses a Kalman filter to mix position and velocity derived from the global positioning system, inertial measurements, and altitude measurements from an altitude measurement device. Different from the first and second preferred implementation schemes of the present invention, in this method, GPS satellite signal code tracking and carrier phase tracking are not assisted by an external I NS solution. And, unlike the first and second preferred implementations of the present invention, this method uses positions and velocities derived from the global positioning system in the Kalman filter instead of pseudorange, Doppler shift, and carrier phase.

第49頁 536637 五、發明說明(46) 如第一圖、第二圖、第三圖、第四圖、第五圖—C 、第 六圖-C 、第七圖、第九圖、第十圖、第十一圖、第十二 圖、第十五圖、第十六圖及第十七圖所示,用以描述本發 明的第三優選實現方案,其包含以下步驟: 1 ·進行GPS處理及接收GPS導航解,包括從全球定位系 統處理器8 0接收位置,速度和時間,並把它們送到導航處 理器板80。 2 ·從慣性測量組件2 0接收慣性測量,包括載體加速度 和比力,通過IMU接口和處理板60把它們轉換為體加速度 和轉動的數字數據,並通過公用總線55送到導航處理板80 和控制板5 3。 3 ·從高度測量器件3 0接收高度測量,用高度接口和處 理板70轉換為數字數據形式的平均海平面MSL高度,並通 過公用總線55送到導航處理板80和控制板53。 4.用INS處理器81進行INS處理。 5 ·在卡爾曼濾波器8 3中混合I NS處理器8 1的輸出,高 度測量,和GPS測量。 6 ·反饋卡爾曼濾波器8 3的輸出到I N S處理器8 1 ,用以 修正I N S導航解。 7·通過公用總線55,從INS處理器81輸出導航數據, 即平台速度,位置,高度,航向,和時間給控制板W。 8·送平台位置,送到,姿態,航向,和時間數據給 行管理系統1 1。 9 ·送平台速度’姿態,體加速度和轉動數據給飛行控Page 49 536637 V. Description of the invention (46) Such as the first picture, the second picture, the third picture, the fourth picture, the fifth picture—C, the sixth picture-C, the seventh picture, the ninth picture, and the tenth picture. Figure 11, Figure 12, Figure 12, Figure 15, Figure 16, and Figure 17 are used to describe the third preferred implementation of the present invention, which includes the following steps: 1 · GPS Process and receive GPS navigation solutions, including receiving position, speed, and time from the global positioning system processor 80 and sending them to the navigation processor board 80. 2 · Receive inertial measurements from the inertial measurement module 20, including carrier acceleration and specific force, convert them into digital data of body acceleration and rotation through the IMU interface and processing board 60, and send them to the navigation processing board 80 and Control board 5 3. 3. Receive the altitude measurement from the altitude measuring device 30, convert it to the average sea level MSL height in the form of digital data using the altitude interface and processing board 70, and send it to the navigation processing board 80 and control board 53 through the common bus 55. 4. INS processing is performed by the INS processor 81. 5 · Mix the output of the I NS processor 81, the altitude measurement, and the GPS measurement in the Kalman filter 83. 6 · The output of the Kalman filter 8 3 is fed back to the I NS processor 8 1 to modify the I NS navigation solution. 7. Through the common bus 55, the navigation data, that is, the platform speed, position, altitude, heading, and time are output from the INS processor 81 to the control board W. 8. Send the platform position, delivery, attitude, heading, and time data to the line management system 1 1. 9 · Send platform speed ’attitude, body acceleration and rotation data to flight control

第50頁 536637 五、發明說明 制系統12。 1 〇 ·送平台位置和時間數 11.送平台位置’速度, 近告警系統1 7。 據到自動相關監視系統1 3。 和姿態數據到加強型地面鄰 12·送平台姿態和體加速度數據到氣像雷達18。 13·送平台位置和姿態數據到衛星通信系統19。 如第五圖-C,在步驟1中,全球定位系統天線41 , 置放大器42,下行變頻器43 ’ IF採樣和A/D轉換器44 振盪器46,其作用與在本發明的第一,第二優選實現方案 中是一樣的,除信號處理器45之外。信號處理器45從IF採 樣和AD轉換器44接收數字化數據,用以提取調制在GPS信 號上的導航數據,如GPS衛星星歷,大氣數據,衛星時鐘 參數’和時間數據。信號處理器4 5也處理從I F採樣和A / D 轉換器44來的數字數據以提取偽距和多普勒頻移。信號處 理器4 5不作碼和載波相位跟蹤的速度和加速度輔助。 如第五圖-C所示,在步驟1中,全球定位系統導航處 理器4 7用來計算平台的位置和速度。全球定位系統導航處 理器47從信號處理器45接收偽距和多普勒頻移,旅進行卡 爾曼濾波或最小二乘算法,以導出位置和速度。位置和速 度被送到導航處理器8 0。 如第六圖-C所示,在步驟1中,偽距測量從p S碼跟縱 回路得到,其包含相關器4 5 2,累加器4 5 3,微處理器 454 ’碼數控振盪器(nc〇)457,和編碼器456。多普勒頻移 從GPS衛星信號頻率跟縱回路得到,其與本發明的第一優Page 50 536637 V. Description of the Invention System 12. 1 〇 Send platform position and time number 11. Send platform position ’speed, approach alarm system 17. According to the automatic correlation monitoring system 1 3. And attitude data to the enhanced ground neighbor 12. Send the platform attitude and body acceleration data to the airborne radar 18. 13. Send the platform position and attitude data to the satellite communication system 19. As shown in the fifth figure-C, in step 1, the GPS antenna 41, the amplifier 42, the down-converter 43'IF sampling and the A / D converter 44, the oscillator 46, have the same function as the first in the present invention, The second preferred implementation is the same except for the signal processor 45. The signal processor 45 receives digitized data from the IF sampling and AD converter 44 to extract navigation data modulated on GPS signals, such as GPS satellite ephemeris, atmospheric data, satellite clock parameters' and time data. The signal processor 45 also processes digital data from the I F samples and the A / D converter 44 to extract pseudorange and Doppler shifts. The signal processor 45 does not assist in speed and acceleration for code and carrier phase tracking. As shown in the fifth figure-C, in step 1, the GPS navigation processor 47 is used to calculate the position and speed of the platform. The GPS navigation processor 47 receives pseudorange and Doppler frequency shifts from the signal processor 45, and performs a Kalman filter or a least squares algorithm to derive the position and speed. The position and speed are sent to the navigation processor 80. As shown in Figure 6-C, in step 1, the pseudo-range measurement is obtained from the p S code and the vertical loop, which includes a correlator 4 5 2, an accumulator 4 5 3, and a microprocessor 454 ′ code numerically controlled oscillator ( nc) 457, and encoder 456. The Doppler frequency shift is obtained from the GPS satellite signal frequency and the vertical loop.

536637 五、發明說明(48) 選實現方案中的載波相位跟蹤回路是不一樣的。頻率跟縱 回路包含多普勒去除451 ,相關器452 ,累加器453,微處 理器454,和載波數控振盪器(NC〇)455,其中微處理器454 不進行載波相位檢測。 如第六圖-C所示,在步驟1中,多普勒去除451 ,相關 器4 5 2 ’累加器4 5 3 ,載波NC〇4 5 5,編碼器456 ,和碼 NC0457 ’其作用與在本發明的第一,第二優選實現方案中 是一樣的。微處理器4 54在本發明的第三優選實現方案中 起不同的作用。 如第六圖-C所示,在步驟1中,來自累加器4 5 3的累加 $ (13和Q3)被微處理器4 54儲存和收集,累加器4 5 3被騰 產生一種信號分量的累加騰空濾波。微處理器4 5 4進 ,碼跟蹤回路濾波’碼捕獲處理,碼鎖定檢測,數據恢 復’及偽距和多普勒頻移處理。微處理器4 5 4不接收外部 速度和^加速度信息進行外部辅助碼跟蹤回路濾波及載波相 位跟縱回路濾波。從微處理器454導出的偽距和多普勒頻 移被送到全球定位系統導航處理器4 7。 如第六圖-C所示,在步驟1中,微處理器454輸出位置 和速度到導航處理器板80。 別乐十五園尸rr不,在步驟2中,IMU接口和處理板6〇幸 出機體角速度和加速度的慣性測量給導航處理板8〇 處理器81。在步驟3中,高度^ 到導航處理器板8 0之卡爾曼濾波器8 3。 如第十五圖所*,在步驟5中。,全球定位系統處理器536637 V. Description of the invention (48) The carrier phase tracking loop in the selected implementation scheme is different. The frequency and vertical loops include Doppler removal 451, correlator 452, accumulator 453, microprocessor 454, and carrier numerically controlled oscillator (NC0) 455, where the microprocessor 454 does not perform carrier phase detection. As shown in Figure 6-C, in step 1, Doppler removes 451, correlator 4 5 2 'accumulator 4 5 3, carrier NC〇 4 5 5, encoder 456, and code NC0457'. Its role is as follows: It is the same in the first and second preferred implementations of the present invention. The microprocessor 4 54 plays a different role in the third preferred implementation of the invention. As shown in Figure 6-C, in step 1, the accumulated $ (13 and Q3) from the accumulator 4 5 3 is stored and collected by the microprocessor 4 54, and the accumulator 4 5 3 is vacated to generate a signal component. Cumulative vacancy filtering. Microprocessor 4 5 4 advanced, code tracking loop filtering 'code capture processing, code lock detection, data recovery' and pseudorange and Doppler frequency shift processing. The microprocessor 4 5 4 does not receive external speed and acceleration information for external auxiliary code tracking loop filtering and carrier phase and vertical loop filtering. The pseudorange and Doppler frequency derived from the microprocessor 454 are sent to the GPS navigation processor 47. As shown in the sixth figure-C, in step 1, the microprocessor 454 outputs the position and speed to the navigation processor board 80. No, the 15th Garden corp. No, in step 2, the IMU interface and the processing board 60 fortunately measure the angular velocity and acceleration of the body to the navigation processing board 80 processor 81. In step 3, the height ^ is to the Kalman filter 83 of the navigation processor board 80. As shown in Figure 15 *, in step 5. , GPS processor

536637 五、發明說明(49) 4 0之$球定位系統導航處理器4 7輸出位置和速度到卡爾曼 滤波器8 3。在卡爾曼濾波器8 3中從丨N s處理器8丨,高度接 口和處理板70 ’及全球定位系統處理器4〇之微處理器454 來的數據被整合以獲得位置誤差,速度誤差,和姿態誤 差。在步驟4中,I N S處理器8 1處理慣性測量,即機體角速 度和加速度’以及從卡爾曼濾波器83來的位置誤差,速度 誤差’和姿態誤差,以獲得修正的導航解。導航解包括三 維位^ ’三維速度,和三維姿態。這些數據被送到卡爾曼 渡波器8 3。在另一方面,步驟7中,這些數據也被通過公 用總線5 5傳到控制板5 3。 如第十六圖所示,在步驟4中,在本發明第三優選實 現方案中INS處理器81的作用與在本發明的第二優選實現 方案中是一樣的。 如第十七圖所示,在步驟5中,在本發明第三優選實 現方案中魯棒卡爾曼濾波器本發明的第一,第二優選實現 方案中是一樣的,除卡爾曼濾波器8 3的G p S誤差補償模塊 8 y 7之外。GP S誤差補償模塊8 3 7從全球定位系統導航處理 器47收集GPS導出的位置和速度。從更新姿態向量模塊8 3 9 收集位置和速度修正’用以進行GpS誤差補償。修正的gps 位置和速度被送到預處理器模塊8 3 5。 、 如第一圖、第三圖及第四圖所示,總線接口 5 5在通用 導航與控制盒和數據總線1 5之間提供了一個接口。在步驟 8中,控制板53通過總線接口 54和數據總線15給飛行管理 系統1 1送平台位置,速度,姿態,航向,和時間數據。536637 V. Description of the invention (49) The ball positioning system navigation processor 4 7 outputs the position and speed to the Kalman filter 83. In the Kalman filter 83, the data from the 丨 N s processor 8 丨, the height interface and processing board 70 ', and the microprocessor 454 of the GPS processor 40 are integrated to obtain position errors, speed errors, And attitude errors. In step 4, the INS processor 81 processes the inertial measurements, i.e. the angular velocity and acceleration of the airframe, and the position error, velocity error 'and attitude error from the Kalman filter 83 to obtain a modified navigation solution. The navigation solution includes three-dimensional position ^ 'three-dimensional velocity, and three-dimensional attitude. These data are sent to the Kalman ferrule 8 3. On the other hand, in step 7, these data are also transmitted to the control board 53 through the public bus 55. As shown in FIG. 16, in step 4, the role of the INS processor 81 in the third preferred implementation of the present invention is the same as that in the second preferred implementation of the present invention. As shown in the seventeenth figure, in step 5, the robust Kalman filter in the third preferred implementation of the present invention is the same in the first and second preferred implementations of the present invention, except for the Kalman filter 8 G p S error compensation module of 3 is beyond 8 y 7. The GP S error compensation module 8 3 7 collects the GPS-derived position and speed from the GPS navigation processor 47. The position and velocity corrections are collected from the updated attitude vector module 8 3 9 for GpS error compensation. The corrected GPS position and speed are sent to the preprocessor module 8 3 5. As shown in the first, third and fourth figures, the bus interface 55 provides an interface between the universal navigation and control box and the data bus 15. In step 8, the control board 53 sends the platform position, speed, attitude, heading, and time data to the flight management system 11 via the bus interface 54 and the data bus 15.

第53頁 536637 五、發明說明(50) 如第一圖、第三圖及第四圖所示,在步驟9中,控制 板53通過總線接口 54和數據總線1 5給飛行控制系統1 2送平 台速度,姿態,體加速度和轉動數據。 如第一圖、第三圖及第四圖所示,在步驟10中,控制 板53通過總線接口 54和數據總線1 5給自動相關監視系統1 3 送平台位置和時間數據。 如第一圖、第三圖及第四圖所示,在步驟11中,控制 板53通過總線接口 54和數據總線1 5給加強型地面鄰近告警 系統1 7送平台位置,速度,和姿態數據。 如第一圖、第三圖及第四圖所示,在步驟12中,控制 板53通過總線接口 54和數據總線1 5給氣像雷達1 8送平台姿 態和體加速度數據。 如第一圖、第三圖及第四圖所示,在步驟13中,控制 板53通過總線接口 54和數據總線1 5給衛星通信系統1 9送平 台位置和姿態數據。 在包括陸地和水中運載體的一些應用中,提供精確高 度測量不重要。如第十九圖所示,通用導航和控制盒1 4能 刪除高度測量設備3 0、相應的高度接口和處理板7 0。卡爾 曼濾波器僅僅整合INS處理器80的輸出和GPS的測量。 因此,本發明的第一種優選方案的第一種變異方案包括以 下步驟: (1 )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器4 0的偽距,載波相位,多普勒頻移,和時 間。它們被送到中央導航與控制處理器5 0之導航處理板Page 53 536637 V. Description of the invention (50) As shown in the first, third and fourth figures, in step 9, the control board 53 sends the flight control system 12 through the bus interface 54 and the data bus 15. Platform speed, attitude, body acceleration and rotation data. As shown in the first diagram, the third diagram, and the fourth diagram, in step 10, the control board 53 sends the platform position and time data to the automatic related monitoring system 13 through the bus interface 54 and the data bus 15. As shown in the first diagram, the third diagram, and the fourth diagram, in step 11, the control board 53 sends the platform position, speed, and attitude data to the enhanced ground proximity alarm system 17 through the bus interface 54 and the data bus 15. . As shown in the first diagram, the third diagram, and the fourth diagram, in step 12, the control board 53 sends the platform attitude and body acceleration data to the aerial imaging radar 18 through the bus interface 54 and the data bus 15. As shown in the first diagram, the third diagram, and the fourth diagram, in step 13, the control board 53 sends the platform position and attitude data to the satellite communication system 19 through the bus interface 54 and the data bus 15. In some applications, including land and water carriers, it is not important to provide accurate height measurements. As shown in the nineteenth figure, the universal navigation and control box 14 can delete the height measuring device 30, the corresponding height interface and the processing board 70. The Kalman filter only integrates the output of the INS processor 80 and GPS measurements. Therefore, the first variant of the first preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including pseudorange, carrier phase, and Doppler from the global positioning system processor 40 Frequency shift, and time. They are sent to the navigation processing board of the central navigation and control processor 50.

第54頁 536637 五、發明說明(51) 80。 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過IMU接口和處理板60把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8 0和控制板5 3。 (3 )用慣性導航系統INS處理器進行INS處理。 (4 )在卡爾曼濾波器8 3中混合I NS處理器8 1輸出和 G P S測量。 (5 )反饋卡爾曼濾波器8 3輸出到I NS處理器8 1 ,以修 正I N S導航解。 (6)從INS處理器81把速度和加速度數據注入全球定 位系統處理器4 0之信號處理器4 5,用於辅助全球定位系統 衛星信號碼及載波相位跟蹤。 (7 )把全球定位系統處理器4 0之信號處理器4 5輸 出,INS處理器81輸出,卡爾曼濾、波器83輸出,注入載波 整相位模糊解模塊8 2,以確定全球定位系統衛星信號載波 相位整模糊數。 (8 )從載波整相位模糊解模塊8 2輸出載波相位整糊 數給卡爾曼濾波器8 3,以進一步改善定位精度。 (9 )通過公用總線5 5把導航數據:平台速度,位 置,高度,航向和時間從I N S處理器8 1輸出給控制板5 3。 本發明的第二種優選方案的第一種變異方案包括以下步 驟: (1 )進行G P S處理和接收G P S測量,包括來自全球定Page 54 536637 V. Description of the invention (51) 80. (2) Receive the inertial measurements from the inertial measurement module 20, including the angular velocity and specific force of the body, convert them into digital quantities of the body's acceleration and rotation through the IMU interface and the processing board 60, and send them through the common bus 55 Go to the navigation processing board 80 and the control board 53. (3) INS processing is performed by the INS processor of the inertial navigation system. (4) In the Kalman filter 83, the I NS processor 8 1 output and G PS measurement are mixed. (5) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to correct the I N S navigation solution. (6) Inject the speed and acceleration data from the INS processor 81 into the signal processor 45 of the global positioning system processor 40, which is used to assist the GPS signal code and carrier phase tracking. (7) Output the signal processor 45 of the global positioning system processor 40, the output of the INS processor 81, the output of the Kalman filter and the wave filter 83, and inject the carrier phase adjustment fuzzy solution module 8 2 to determine the GPS satellites. Signal carrier phase integer fuzzy number. (8) The carrier phase phase ambiguity resolution module 82 outputs the carrier phase phase correction number to the Kalman filter 83 to further improve the positioning accuracy. (9) The navigation data: platform speed, position, altitude, heading, and time are output from the INS processor 81 to the control board 53 through the common bus 55. The first variant of the second preferred solution of the present invention includes the following steps: (1) Perform G PS processing and receive G PS measurements, including those from global

第55頁 i'發明說明(52) 位系統處理器4 0的偽距,多普勒頻移,和時間。它們被送 到導航處理板80。 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過IMU接口和處理板60把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板80和控制板53。 (3)用INS處理器進行INS處理。 (4 )在卡爾曼濾波器8 3中混合I N S處理器8 1輸出和 GPS測量。Page 55 i 'Description of the Invention (52) Pseudorange, Doppler shift, and time for a system processor of 40 bits. They are sent to the navigation processing board 80. (2) Receive the inertial measurements from the inertial measurement module 20, including the angular velocity and specific force of the body, convert them into digital quantities of the body's acceleration and rotation through the IMU interface and the processing board 60, and send them through the common bus 55. Go to the navigation processing board 80 and the control board 53. (3) INS processing is performed by the INS processor. (4) In the Kalman filter 83, the I N S processor 8 1 output and the GPS measurement are mixed.

(5 )反饋卡爾曼濾波器8 3輸出到I N S處理器8 1 ,以修 正INS導航解。 (6 )通過公用總線5 5把導航數據:平台速度,位 置,高度’航向和時間從I N S處理器8 1輸出給控制板5 3。 (7)從INS處理器81把速度和加速度數據注入全球定 位系統處理器4 〇之信號處理器4 5 4,用於辅助全球定位系 統衛星信號碼跟蹤。 本發明的第三種優選方案的第一種變異方案包括以下步 驟:(5) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to correct the INS navigation solution. (6) The navigation data: platform speed, position, altitude 'heading and time are output from the INS processor 81 to the control board 53 through the common bus 55. (7) The speed and acceleration data are injected from the INS processor 81 into the signal processor 4 5 4 of the global positioning system processor 4 0, which is used to assist the GPS positioning of the satellite signal code. The first variation of the third preferred solution of the present invention includes the following steps:

(1 )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器4 0的位置,速度,和時間。它們被送到導航 處理板8 0 ° (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過IMU接口和處理板60把它們轉換為 機體力ο速度和轉動之數字量,並通過公用總線5 5把它們送(1) Perform GPS processing and receive GPS measurements, including position, speed, and time from the global positioning system processor 40. They are sent to the navigation processing board 80 ° (2) to receive the inertial measurements from the inertial measurement module 20, including the angular rate and specific force of the body, and they are converted into body force through the IMU interface and the processing board 60. Speed and rotation Digital quantities and send them through the common bus 5 5

第56頁 536637Page 536 637

五、發明說明(53) 到導航處理板80和控制板53。 (3 )用INS處理器進行INS處理。 理器8 1輸出和 處理器8 1 ,以修 (4 )在卡爾曼濾波器8 3中混合I N S處 G P S測量。 (5 )反饋卡爾曼濾波器83輸出到INS 正I NS導航解。 置, 所示 度, 北儀 曼渡 感地 的載 導航 板8 0 轉換 切可 Λ6) 用總線55把·導航數據:平台速度,位 =和時間從INS處理器81輸出給控制板53。 如第一十圖、第二十三圖、第二十四圖和 通ί 高通用,航和控制盒的方位測量精 1: 制盒進一步包括-個找北儀,通過找 波83提供道〇和公用總線9〇為導航處理板80的卡爾 I 3 ί ”導航和控制盒“的載體航向測量。 ,選的找北儀3丨是一個磁傳感器 球磁場’測量用戶的航向角。 1如磁測里儀’敏 mr的1 J圍感器:$測”用導航和控制盒 和控制盒的4滾和二:,f據5供航向計算’通用 導水平坐標^;81。獲得。1量的磁場元素從載體坐標系 獲得磁航向角、。通過汁异水平坐標系元素比率的反正 為了獲得高_疮 工作前,需要對磁p的磁航向/則量,在通用導航和控制盒 當地磁場是磁測眚】^量誤差建模,並進行高精度補償。 、夏儀31附近的地球磁場和磁干擾的總和。5. Description of the invention (53) To the navigation processing board 80 and the control board 53. (3) INS processing is performed by the INS processor. The processor 8 1 outputs and the processor 8 1 to modify (4) the G P S measurement at the I N S in the Kalman filter 83. (5) The feedback Kalman filter 83 is output to the INS positive I NS navigation solution. The position, display degree, Beiyi Mandu ground-sensing navigation board 80 is converted to Keke Λ6) The navigation data: platform speed, bit = and time are output from the INS processor 81 to the control board 53 using the bus 55. As shown in the tenth, twenty-third, twenty-fourth and Tong Gao GM, the azimuth measurement precision of the navigation and control box 1: The box further includes a north finder, which provides the way through the wave 83. And the common bus 90 is the carrier heading measurement of the Carl I 3 ′ “navigation and control box” of the navigation processing board 80. The selected Northfinder 3 丨 is a magnetic sensor. The ball magnetic field ’measures the heading angle of the user. 1 Such as the magnetic measuring instrument 'Min mr's 1 J surround sensor: $ Measure' with the navigation and control box and control box 4 rolls and two :, f according to 5 for heading calculation 'universal guide horizontal coordinates ^; 81. Get 1 amount of magnetic field element obtains the magnetic heading angle from the carrier coordinate system. Anyway, by the ratio of the element ratio of the horizontal coordinate system, anyway, in order to obtain high ulcers, the magnetic heading / magnitude of the magnetic p is required. In general navigation and control The local magnetic field of the box is a magnetic measurement error model, and high-precision compensation is performed. The sum of the Earth's magnetic field and magnetic interference near Xia Yi 31.

第57頁 536637 五、發明說明(54) 磁測量儀3 1附近的干擾受安裝的影響,可以由失調角、刻 度因子和偏差減模。 這些誤差可以通過解線性方程校正,線性方程由矩陣 元素的最小二乘曲線擬合產生。需要輸入的數據由轉動整 個載體產生,磁測量儀安裝在載體上的不同位置,並已知 俯仰、橫滾和航向。通過處理數據可獲得3 X 3的刻度因子 和失調角矩陣以及3X1的磁偏差向量。只要對每個磁測量 進行補償,可以獲得安裝後的高精度航向測量。 因此,本發明的第一種優選方案的第二種變異方案包 括以下步驟:、 (1 )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器4 〇的偽距,載波相位,多普勒頻移,和時 間。它們被送到中央導航與控制處理器5 0之導航處理板 80 〇 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過IMU接口和處理板60把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板80和控制板53。 (3 )通過公用總線5 5從磁測量儀接收地球磁場向 量,從導航板8 0接收俯仰和橫滾角,由找北儀接口和處理 板9 0用地球磁場向量測量、俯仰和橫滾計算磁航向角,通 過公用總線將磁航向角送到導航處理板8 0。 (4 )用慣性導航系統I N S處理器進行I N S處理。 (5 )在卡爾曼濾波器8 3中混合I N S處理器8 1輸出、Page 57 536637 V. Description of the invention (54) The interference near the magnetic measuring instrument 3 1 is affected by the installation and can be reduced by the offset angle, the scale factor and the deviation. These errors can be corrected by solving a linear equation, which is generated by a least square curve fit of the matrix elements. The data to be entered is generated by turning the entire carrier. The magnetic measuring instrument is installed at different positions on the carrier, and the pitch, roll, and heading are known. By processing the data, a scale factor of 3 X 3 and an offset angle matrix, and a magnetic deviation vector of 3X1 can be obtained. As long as each magnetic measurement is compensated, high-precision heading measurement after installation can be obtained. Therefore, the second variant of the first preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including pseudorange, carrier phase, Doppler from the global positioning system processor 4 Le frequency shift, and time. They are sent to the navigation processing board 80 of the central navigation and control processor 50 (2) to receive inertial measurements from the inertial measurement module 20, including the body angular rate and specific force, and convert them through the IMU interface and the processing board 60 Are digital quantities of the body acceleration and rotation, and send them to the navigation processing board 80 and the control board 53 through the common bus 55. (3) Receive the earth's magnetic field vector from the magnetic measuring instrument through the common bus 55, and the pitch and roll angles from the navigation board 80, and calculate and measure the pitch and roll with the earth's magnetic field vector from the northbound interface and the processing board 90 The magnetic heading angle is sent to the navigation processing board 80 through a common bus. (4) I N S processing is performed by the I N S processor of the inertial navigation system. (5) Mixed I N S processor 8 1 output in Kalman filter 8 3,

第58頁 536637 五、發明說明(55) G P S測量和磁航向角。 (6 )反饋卡爾曼濾波器8 3輸出到I N S處理器8 1 ,以修 正INS導航解。 (7)從INS處理器81把速度和加速度數據注入全球定 位系統處理器4 0之信號處理器4 5,用於辅助全球定位系統 衛星信號碼及載波相位跟蹤。 (8 )把全球定位系統處理器4 0之信號處理器4 5輸 出,INS處理器81輸出,卡爾曼濾波器83輸出,注入載波 整相位模糊解模塊8 2,以確定全球定位系統衛星信號載波 相位整模糊數。Page 58 536637 V. Description of the invention (55) G PS measurement and magnetic heading angle. (6) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to correct the INS navigation solution. (7) The speed and acceleration data are injected from the INS processor 81 into the signal processor 45 of the global positioning system processor 40, which is used to assist the GPS signal code and carrier phase tracking. (8) The signal processor 45 of the global positioning system processor 40 is output, the INS processor 81 is output, the Kalman filter 83 is output, and the carrier phase phase fuzzy solution module 8 2 is injected to determine the GPS satellite signal carrier Phase integer fuzzy number.

(9 )從載波整相位模糊解模塊8 2輸出載波相位整糊 數給卡爾曼濾波器8 3,以進一步改善定位精度。 (1 0 )通過公用總線5 5把導航數據:平台速度,位 置,高度,航向和時間從I N S處理器8 1輸出給控制板5 3。 本發明的第二種優選方案的第二種變異方案包括以下步 驟: (1 )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器4 0的偽距,多普勒頻移,和時間。它們被送 到導航處理板8 0 〇(9) The carrier phase phase ambiguity resolution module 8 2 outputs the carrier phase phase correction number to the Kalman filter 83 to further improve the positioning accuracy. (1 0) The navigation data: platform speed, position, altitude, heading, and time are output from the INS processor 81 to the control board 53 through the common bus 55. The second variant of the second preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including pseudorange, Doppler frequency shift, and time from the global positioning system processor 40 . They are sent to the navigation processing board 8 0 〇

(2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過I M U接口和處理板6 0把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8 0和控制板5 3。 (3 )通過公用總線5 5從磁測量儀3 1接收地球磁場向(2) Receive the inertial measurements from the inertial measurement module 20, including the angular velocity and specific force of the body, convert them into digital quantities of the body's acceleration and rotation through the IMU interface and the processing board 60, and convert them through the common bus 55 To the navigation processing board 80 and the control board 53. (3) Receive the Earth's magnetic field from the magnetic measuring instrument 3 1 through the common bus 5 5

第59頁 536637 五、發明說明(56) 量,從導航板8 0接收俯仰和橫滾角,由找北儀接口和處理 板9 0用地球磁場向量測量、俯仰和橫滾計算磁航向角,通 過公用總線將磁航向角送到導航處理板8 0。 (4)用INS處理器進行INS處理。 (5 )在卡爾曼濾波器8 3中混合I N S處理器8 1輸出、 G P S測量和磁航向角。 (6 )反饋卡爾曼濾波器8 3輸出到I NS處理器8 1 ,以修 正INS導航解。 (7 )通過公用總線5 5把導航數據:平台速度,位 置,高度,航向和時間從I N S處理器8 1輸出給控制板5 3。 (8)從INS處理器81把速度和加速度數據注入全球定 位系統處理器4 0之微處理器4 5 4,用於輔助全球定位系統 衛星信號碼跟蹤。 本發明的第三種優選方案的第二種變異方案包括以下 步驟: (1 )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器4 0的位置,速度,和時間。它們被送到導航 處理板8 0。 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過I Μ ϋ接口和處理板6 0把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8 0和控制板5 3。 (3 )通過公用總線5 5從磁測量儀3 1接收地球磁場向 量,從導航板8 0接收俯仰和橫滾角,由找北儀接口和處理Page 59 536637 V. Description of the invention (56). Receive the pitch and roll angles from the navigation board 80. The northbound interface and the processing board 90 calculate the magnetic heading angle with the measurement, pitch and roll of the earth ’s magnetic field vector. The magnetic heading angle is sent to the navigation processing board 80 through a common bus. (4) INS processing is performed by the INS processor. (5) In the Kalman filter 83, the output of the I NS processor 81, the GPS measurement, and the magnetic heading angle are mixed. (6) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to correct the INS navigation solution. (7) The navigation data: platform speed, position, altitude, heading, and time are output from the INS processor 81 to the control board 53 through the common bus 55. (8) The speed and acceleration data are injected from the INS processor 81 into the microprocessor 4 5 4 of the global positioning system processor 40, which is used to assist the GPS signal code tracking. The second variation of the third preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including the position, speed, and time from the global positioning system processor 40. They are sent to the navigation processing board 80. (2) Receive inertial measurements from the inertial measurement component 20, including the angular velocity and specific force of the body, and convert them into digital quantities of the body's acceleration and rotation through the IM interface and the processing board 60, and pass the common bus 5 5 Send them to the navigation processing board 80 and the control board 53. (3) The earth magnetic field vector is received from the magnetic measuring instrument 31 through the common bus 55, and the pitch and roll angles are received from the navigation board 80, which is interfaced and processed by the north finder.

第60頁 536637 五、發明說明(57) ---- 板9 0用地球磁場向量測量、他介< ^ ^ ^ ^ ,俯仰和橫滾計算磁航向角,通 過么用總線將磁航向角达到導航處理板80。 (4)用INS處理器進行INS處理。 Γρς、ai (曰5 )在卡爾曼濾波器83中混合INS處理器81輸出和 GPS測篁。 (6 )反饋卡爾曼濾波器83輸出到INS處理以 正INS導航解。 j 7 )通過公用總線5 5把導航數據:平台速度,位 置,高度,,向和時間從INS處理器81輸出給控制板53。 々 當GPS信號不可獲得,為了補償INS位置誤差漂移,如 第一十圖、第一十二圖、第二十四圖及第二十五圖所示, 通用導航和控制盒進一步包括一個速度傳感器32,通過找 速度傳感器接口、處理板9 0和公用總線9 〇為導航處理板8 〇 的卡爾曼濾波器8 3提供導航和控制盒1 4的載體速度測量。 速度傳感器3 2用來產生用戶相對地面和水的速度測量。如 第二十二圖所示,優選的速度傳感器32基於多普勒效應原 理,包括: 一個RF (無線電頻率)速度傳感器32〇1 ,包括一個雷 達; 一個聲速度傳感器3202,包括一個聲納; 一個激光速度傳感器3203,包括一個激光雷達。 基於多普勒效應,速度傳感器32通過敏感多普勒頻率 用戶相對地面的速度測量。多普勒效應是從速度傳感器3 2 發射的波被運動物體反射產生的頻率移動。在本發明中,Page 60 536637 V. Description of the invention (57) ---- Plate 9 0 is measured with the earth's magnetic field vector, he < ^ ^ ^ ^, pitch and roll are used to calculate the magnetic heading angle, and the magnetic heading angle can be changed through the bus. Reach the navigation processing board 80. (4) INS processing is performed by the INS processor. Γρς, ai (say 5) mix the output of the INS processor 81 and the GPS measurement in a Kalman filter 83. (6) The feedback Kalman filter 83 is output to the INS process to correct the INS navigation solution. j 7) The navigation data: platform speed, position, altitude, direction, and time are output from the INS processor 81 to the control board 53 via the common bus 55. 々When GPS signals are not available, in order to compensate for INS position error drift, as shown in Figures 10, 12, 12, 24 and 25, the universal navigation and control box further includes a speed sensor 32. Through finding a speed sensor interface, a processing board 90 and a common bus 90, the Kalman filter 83 of the navigation processing board 80 is provided with a carrier speed measurement of the navigation and control box 14. The speed sensor 32 is used to generate a user's speed measurement relative to the ground and water. As shown in Figure 22, the preferred speed sensor 32 is based on the Doppler effect principle and includes: an RF (radio frequency) speed sensor 3201 including a radar; a sound speed sensor 3202 including a sonar; A laser speed sensor 3203 includes a lidar. Based on the Doppler effect, the speed sensor 32 measures the speed of the user relative to the ground through a sensitive Doppler frequency. The Doppler effect is a frequency shift generated by a wave emitted from the speed sensor 3 2 reflected by a moving object. In the present invention,

第61頁 536637 五、發明說明(58) 多 普 勒 頻 移 由 於 用 戶 相 對 地 面 運 動 引 起 無 線 電 波 Λ 聲 波 和 激 光 的 反 射 波 頻 移 0 如 果 用 戶 相 對 地 面 的 距 離 減 少 波 被 壓 縮 0 它 們 的 波 長 減 小 頻 率 增 大 0 如 果 距 離 增 大 y 則 效 應 相 反 0 來 白 地 面 回 波 的. 多 普 勒 頻 率 可 計 算 為 fd 二 nVRcosL λ 其 中 f d ~ 地 面 回 波 的 多 普 勒 頻 率 ,HZ V R ~ 用 戶 的 速 度 英 尺 ( 米 )/ ,秒 L =速度VR 和 視 線 的 夾 角 λ = 發 送 波 長 單 位 與VR 相 同 如 第 二 十 二 圖 所 示 速 度 傳 感 器 32 進 一 步 包 括 里 程 計 接 α 3 2 0 4 因 此 當 本 發 明 的 系 統 應 用 於 陸 地 車 輛 速 度 傳 感 器 32 可 以 從 安 裝 於 車 體 中 的 里 程 計 輸 入 里 程 計 測 量 0 里 程 計 測 量 可 以 變 換 為 用 戶 相 對 地 面 的 速 度 測 量 〇 如 第 二 十 _ 一 圖 所 示 速 度 傳 感 器 32 進 一 步 包 括 水 速 表 接 π 3 2 0 4 因 此 當 本 發 明 的 系 統 應 用 於 水 中 運 載 體 速 度 傳 感 器 32 可 以 從 安 裝 於 水 中 運 載 體 中 的 水 速 表 輸 入 速 度 測 量 〇 因 此 , 本 發 明 的 第 一 種 優 選 方 案 的 第 二 種 變 異 方 案 包 括 以 下 步 驟 • ( 1 ; )進行GPS 處 理 和 接 收GPS測量 ,包括來ϊ 1全球定 位 系 處 理 器 40 的 偽 距 載 波 相 位 5 多 普 勒 頻 移 , 和 時 間 〇 它 們 被 送 到 中 央 導 航 與 控 制 處 理 器 50 之 導 航 處 理 板Page 61 536637 V. Description of the invention (58) Doppler shift Radio waves caused by the user's relative ground motion Frequency of acoustic waves and reflected waves of laser light 0 If the user's distance to the ground decreases, the wave is compressed 0 Their wavelength decreases The frequency increases by 0. If the distance increases by y, the effect is reversed. 0 The white ground echoes. The Doppler frequency can be calculated as fd two nVRcosL λ where fd ~ Doppler frequency of the ground echo, HZ VR ~ user speed feet (M) /, second L = the angle between the speed VR and the line of sight λ = the transmission wavelength unit is the same as VR. As shown in Figure 22, the speed sensor 32 further includes an odometer connected to α 3 2 0 4 so when the system of the present invention is applied For land vehicle speed sensors 32 Odometer input Odometer measurement 0 The odometer measurement can be converted to the user's speed measurement relative to the ground. As shown in the twentieth_one figure, the speed sensor 32 further includes a water speedometer connected to π 3 2 0 4 The underwater vehicle speed sensor 32 can input speed measurement from a water speed meter installed in the underwater vehicle. Therefore, the second variation of the first preferred solution of the present invention includes the following steps: (1;) GPS processing And receive GPS measurements, including the pseudo-range carrier phase of the GPS processor 40, the 5 Doppler shift, and time. They are sent to the navigation processing board of the central navigation and control processor 50.

第62頁 〜O〇j7 五、發明說明(59) 8〇 〇 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 撤角速率及比力,通過IMU接口和處理板60把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8〇和控制板53。 吞 (3)從速度傳感器31接收與相對地面和水的載體坐 ‘系速度成比例的原始信號測量,由速度傳感器接口和處 理板9、1轉換原始信號測量到相對地面和水的載體坐標系速 度並將相對地面和水的載體坐標系速度由公用總線5 5送 到導航處理板8 〇。 (4 )用慣性導航系統INS處理器進行INS處理。 (5 )在卡爾曼濾波器8 3中混合I n S處理器8 1輸出、 G P S測量和磁航向角。 (6 )反饋卡爾曼濾波器8 3輸出到丨N s處理器8 1 ,以修 正I NS導航解。 (7)從INS處理器81把速度和加速度數據注入全球定 位系統處理器40之信號處理器45,用於辅助全球定位系統 衛星信號瑪及載波相位跟縱。 (8 )把全球定位系統處理器4 〇之信號處理器4 5輸 出,INS處理器81輸出,卡爾曼濾波器83輸出,注入載波 ,^糊解模塊82,以確定全球定位系統衛星信號載波 相位整模糊數。 數二)上載=相位模糊解模塊82輸出載波相位整糊 數給卡爾曼滤波器83,以進一步改善定位精度。Page 62 ~ O〇j7 V. Description of the invention (59) 800 (2) Receives inertial measurements from the inertial measurement module 20, including the angle of withdrawal and specific force, and converts them through the IMU interface and processing board 60 Are digital quantities of the body acceleration and rotation, and send them to the navigation processing board 80 and the control board 53 through the common bus 55. (3) Receive the original signal measurement proportional to the speed of the carrier relative to the ground and water from the speed sensor 31, and convert the original signal measurement to the carrier coordinate system relative to the ground and water by the speed sensor interface and the processing board 9, 1 The speed of the carrier coordinate system relative to the ground and water is sent from the common bus 55 to the navigation processing board 80. (4) INS processing is performed by the INS processor of the inertial navigation system. (5) In the Kalman filter 83, the output of the I n S processor 81, the GPS measurement, and the magnetic heading angle are mixed. (6) The feedback Kalman filter 8 3 is output to the N s processor 8 1 to correct the I NS navigation solution. (7) Speed and acceleration data are injected from the INS processor 81 into the signal processor 45 of the global positioning system processor 40, which is used to assist the global positioning system satellite signal and carrier phase tracking. (8) Output the GPS signal processor 45 from the GPS processor 4; output from the INS processor 81; output from the Kalman filter 83; inject the carrier; and disintegrate the module 82 to determine the GPS signal carrier phase Integer fuzzy number. Number two) upload = phase ambiguity resolution module 82 outputs the carrier phase integer number to the Kalman filter 83 to further improve the positioning accuracy.

第63頁 536637 五、發明說明(60) (1 0 )通過公用總線5 5把導航數據·平台速度’位 置,高度,航向和時間從I N S處理器8 1輸出給控制板5 3。 本發明的第二種優選方案的第三種變異方案包括以下 步驟: (1 )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器4 0的偽距,多普勒頻移,和時間。它們被送 到導航處理板8 0。 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過IMU接口和處理板60把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板80和控制板53。 (3 )從速度傳感器3 1接收與相對地面和水的載體坐 標系速度成比例的原始信號測量,由速度傳感器接口和處 理板9 1轉換原始信號測量到相對地面和水的載體坐標系速 度,並將相對地面和水的載體坐標系速度由公用總線5 5送 到導航處理板80。 (4) 用INS處理器進行INS處理。 (5) 在卡爾曼濾波器83中混合INS處理器81輸出、 GPS測量和磁航向角。 (6 )反饋卡爾曼濾波器8 3輸出到I N S處理器8 1 ,以修 正INS導航解。 (7 )通過公用總線5 5把導航數據··平台速度,位 置,高度,航向和時間從I N S處理器8丨輸出給控制板5 3。 (8)從INS處理器81把速度和加速度數據注入全球定Page 63 536637 V. Description of the invention (60) (1 0) The navigation data · platform speed ’position, altitude, heading and time are output from the INS processor 81 to the control board 53 through the common bus 55. The third variation of the second preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including pseudorange, Doppler frequency shift, and time from the global positioning system processor 40 . They are sent to the navigation processing board 80. (2) Receive the inertial measurements from the inertial measurement module 20, including the angular velocity and specific force of the body, convert them into digital quantities of the body's acceleration and rotation through the IMU interface and the processing board 60, and send them through the common bus 55. Go to the navigation processing board 80 and the control board 53. (3) receiving the original signal measurement proportional to the speed of the carrier coordinate system relative to the ground and water from the speed sensor 31, and converting the original signal measurement to the speed of the carrier coordinate system relative to the ground and water by the speed sensor interface and the processing board 91 The carrier coordinate system speed relative to the ground and water is sent to the navigation processing board 80 from the common bus 55. (4) INS processing is performed by the INS processor. (5) The output of the INS processor 81, the GPS measurement, and the magnetic heading angle are mixed in a Kalman filter 83. (6) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to correct the INS navigation solution. (7) The navigation data, platform speed, position, altitude, heading, and time are output from the INS processor 8 to the control board 53 through the common bus 55. (8) Inject speed and acceleration data into the global

第64頁 536637 五、發明說明(61) 位系統處理器4 0之微處理器4 5 4,用於辅助全球定位系統 衛星信號碼跟蹤。 本發明的第三種優選方案的第三種變異方案包括以下 步驟: (1 )進行GPS處理和接收Gps測量,包括來自全球定 位系統處理器4 0的位置,速度,和時間。它們被送到導航 處理板8 0。Page 64 536637 V. Description of the invention (61) The microprocessor 4 5 4 of the system processor 40 is used to assist the GPS satellite signal code tracking. The third variation of the third preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including position, speed, and time from the global positioning system processor 40. They are sent to the navigation processing board 80.

(2 )接收來自慣性測量組件2 〇之慣性測量,包括機 體角速率及比力’通過IMU接口和處理板60把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8 〇和控制板5 3。 (3 )從速度傳感器3 1接收與相對地面和水的載體坐 標系速度成比例的原始信號測量,由速度傳感器接口和處 理板9 1轉換原始信號測量到相對地面和水的載體坐標系速 度’並將相對地面和水的載體坐標系速度由公用總線5 5送 到導航處理板8 〇。 (4)用INS處理器進行INS處理。 (5 )在卡爾曼濾波器8 3中混合I N S處理器8 1輸出和 G P S測量。 (6 )反饋卡爾曼濾波器8 3輸出到1 N S處理器8 1 ,以修(2) Receive the inertial measurements from the inertial measurement module 20, including the angular velocity and specific force of the body, and convert them into digital quantities of the body's acceleration and rotation through the IMU interface and the processing board 60, and send them through the common bus 55. Go to the navigation processing board 80 and the control board 53. (3) Receive the original signal measurement proportional to the speed of the carrier coordinate system relative to the ground and water from the speed sensor 31, and convert the original signal measurement to the speed of the carrier coordinate system relative to the ground and water by the speed sensor interface and the processing board 91 And the speed of the carrier coordinate system relative to the ground and water is sent from the common bus 55 to the navigation processing board 80. (4) INS processing is performed by the INS processor. (5) In the Kalman filter 83, the I N S processor 8 1 output and G P S measurement are mixed. (6) The feedback Kalman filter 8 3 is output to the 1 N S processor 8 1 to repair

正INS導航解。 (7 )通過公用總線55把導航數據:平台速度’位 置,高度,航向和時間從INS處理器81輸出給控制板53。 在一些應用中,找北儀、速度傳感器32可以和全球定位系Positive INS navigation solution. (7) The navigation data: platform speed 'position, altitude, heading and time are output from the INS processor 81 to the control board 53 via the common bus 55. In some applications, Northfinder, speed sensor 32 and GPS

第65貢 536637No. 65 536637

統處理器4 0以及慣性測量單元2〇聯合使用。 因此,本發明的第一種優選方案的第四種變異方案包 (1 )進行GPS處理和接收GPS測量,包括來自全 位系統處理器4 0的偽距,載波相位,多普勒頻移,和 間。它們被送到中央導航與控制處理器5 〇之導航處理板 8 0 〇 (2 )接收來自慣性測量組件2 〇之慣性測量,包括機 體角速率及比力,通過IMU接口和處理板60把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8 0和控制板5 3。 (3 )通過公用總線5 5從磁測量儀3 1接收地球磁場向 量,從導航板8 0接收俯仰和橫滾角,由找北儀接口和處理 板9 0用地球磁場向量測量、俯仰和橫滾計算磁航向角,通 過公用總線將磁航向角送到導航處理板8 〇。 (4 )從速度傳感器3 1接收與相對地面和水的載體坐 標系速度成比例的原始信號測量,由速度傳感器接口和處 理板9 1轉換原始信號測量到相對地面和水的載體坐標系速 度,並將相對地面和水的載體坐標系速度由公用總線5 5送 到導航處理板8 0。 (5 )用慣性導航系統I N S處理器進行I N S處理。 (6 )在卡爾曼濾波器8 3中混合I N S處理器8 1輸出、 G P S測量和磁航向角。 (7 )反饋卡爾曼濾波器8 3輸出到I NS處理器8 1 ,以修The system processor 40 and the inertial measurement unit 20 are jointly used. Therefore, the fourth variation package (1) of the first preferred solution of the present invention performs GPS processing and receiving GPS measurements, including pseudorange, carrier phase, and Doppler frequency shift from the full-bit system processor 40, And between. They are sent to the navigation processing board 800 of the central navigation and control processor 5 0 (2) to receive inertial measurements from the inertial measurement module 2 0, including the angular rate and specific force of the body. They are sent through the IMU interface and the processing board 60 It is converted into digital quantities of the body acceleration and rotation, and they are sent to the navigation processing board 80 and the control board 53 through the common bus 55. (3) Receive the earth's magnetic field vector from the magnetic measuring instrument 31 through the common bus 55, and receive the pitch and roll angles from the navigation board 80. The north finder interface and the processing board 90 use the earth's magnetic field vector to measure, pitch and roll Roll to calculate the magnetic heading angle, and send the magnetic heading angle to the navigation processing board 80 through the common bus. (4) Receive the original signal measurement proportional to the speed of the carrier coordinate system relative to the ground and water from the speed sensor 31, and convert the original signal measurement to the speed of the carrier coordinate system relative to the ground and water by the speed sensor interface and the processing board 91. And the speed of the carrier coordinate system relative to the ground and water is sent from the common bus 55 to the navigation processing board 80. (5) I N S processing is performed by the I N S processor of the inertial navigation system. (6) In the Kalman filter 83, the output of the I NS processor 81, the GPS measurement, and the magnetic heading angle are mixed. (7) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to repair

第66頁 536637Page 66 536637

五、發明說明(63) 正1 NS導航解。 (8)從INS處理器81把速度和加速度數據注入全球定 位系統處理器4 0之信號處理器4 5,用於辅助全球定位系統 衛生彳s號碼及載波相位跟縱。 (9 )把全球定位系統處理器4 0之信號處理器4 5輸 出’INS處理器81輸出,卡爾曼濾波器83輸出,注入載波 整相位模糊解模塊8 2,以確定全球定位系統衛星信號載波 相位整模糊數。 (1 〇 )從載波整相位模糊解模塊8 2輸出載波相位整糊 數給卡爾曼濾波器8 3,以進一步改善定位精度。V. Description of the invention (63) Positive 1 NS navigation solution. (8) Speed and acceleration data are injected from the INS processor 81 into the signal processor 45 of the global positioning system processor 40, which is used to assist the GPS hygienic 彳 s number and carrier phase tracking. (9) The signal processor 45 of the global positioning system processor 4 5 outputs the output of the INS processor 81 and the output of the Kalman filter 83 is injected into the carrier phase ambiguity resolution module 8 2 to determine the GPS satellite signal carrier Phase integer fuzzy number. (10) The carrier phase phase ambiguity resolution module 82 outputs the carrier phase phase correction number to the Kalman filter 83 to further improve the positioning accuracy.

(1 1 )通過公用總線5 5把導航數據:平台速度,位鲁 置 兩度’航向和時間從INS處理器81輸出給控制板53。 本發明的第二種優選方案的第四種變異方案包括以下 步驟: (1 )進行G P S處理和接收G P S測量,包括來自全球定 位系統處理器4 〇的偽距,多普勒頻移,和時間。它們被送 到導航處理板8〇。 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過丨MU接口和處理板6 〇把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8 〇和控制板5 3。(1 1) The navigation data: platform speed, position two degrees' heading and time are output from the INS processor 81 to the control board 53 via the common bus 55. The fourth variation of the second preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including pseudorange, Doppler frequency shift, and time from the global positioning system processor 40. . They are sent to the navigation processing board 80. (2) Receive the inertial measurement from the inertial measurement module 20, including the angular velocity and specific force of the body, and convert them into digital quantities of the body's acceleration and rotation through the MU interface and the processing board 60, and pass the common bus 55 They are sent to the navigation processing board 80 and the control board 53.

曰 3 )通過公用總線5 5從磁測量儀3 1接收地球磁場向 量’從導航板8 〇接收俯仰和橫滾角,由找北儀接口和處理 板9 0用地球磁場向量測量、俯仰和橫滾計算磁航向角,通3) Receive the earth's magnetic field vector from the magnetic measuring instrument 31 through the common bus 55, and receive the pitch and roll angles from the navigation board 80. The northbound interface and the processing board 90 will use the earth's magnetic field vector to measure, pitch and roll. Roll calculation of magnetic heading angle, pass

536637 五、發明說明(64) 過公用總線將磁航向角送到導航處理板8 Q。 (4 )從速度傳感器3 1接收與相對地面和水的載體坐 標系速度成比例的原始信號測量,由速度傳感器接口和處 理板9 1轉換原始信號測量到相對地面和水的載體坐標系速 度’並將相對地面和水的載體坐標系速度由公用總線5 5送 到導航處理板8 0。 (5 )用INS處理器進行INS處理。 (6 )在卡爾曼濾波器8 3中混合I N S處理器8 1輸出、 G P S測量和磁航向角。 (7 )反饋卡爾曼濾波器8 3輸出到I N S處理器8 1 ,以修 正INS導航解。 (8 )通過公用總線5 5把導航數據:平台速度,位 置,高度,航向和時間從INS處理器81輸出給控制板53。 (9)從INS處理器81把速度和加速度數據注入全球定 位系統處理器4 0之微處理器4 5 4,用於輔助全球定位系統 衛星信號碼跟蹤。 本發明的第三種優選方案的第四種變異方案包括以下 步驟: (1 )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器4 0的位置,速度,和時間。它們被送到導航 處理板80。 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過IMU接口和處理板6〇把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送536637 V. Description of the invention (64) The magnetic heading angle is sent to the navigation processing board 8 Q via the common bus. (4) Receive the original signal measurement proportional to the speed of the carrier coordinate system relative to the ground and water from the speed sensor 31, and convert the original signal measurement to the speed of the carrier coordinate system relative to the ground and water by the speed sensor interface and the processing board 91 And the speed of the carrier coordinate system relative to the ground and water is sent from the common bus 55 to the navigation processing board 80. (5) INS processing is performed by the INS processor. (6) In the Kalman filter 83, the output of the I NS processor 81, the GPS measurement, and the magnetic heading angle are mixed. (7) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to correct the INS navigation solution. (8) The navigation data: platform speed, position, altitude, heading, and time are output from the INS processor 81 to the control board 53 via the common bus 55. (9) The speed and acceleration data are injected from the INS processor 81 into the microprocessor 4 5 4 of the global positioning system processor 40, which is used to assist the GPS signal code tracking. The fourth variation of the third preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including the position, speed, and time from the global positioning system processor 40. They are sent to the navigation processing board 80. (2) Receive inertial measurements from the inertial measurement module 20, including the angular velocity and specific force of the body, and convert them into digital quantities of the body's acceleration and rotation through the IMU interface and the processing board 60, and convert them through the common bus 55 give away

第68頁 536637 五、發明說明(65) 到導航處理板80和控制板53。 β (3 )通過公用總線5 5從磁測量儀3 1接收地球磁場向 量,從導航板8 0接收俯仰和橫滚角,由找北儀接口和處 板9 0用地球磁場向量測量、俯仰和橫滾計算磁航向角’ · 過公用總線將磁航向角送到導航處理板8 0。 、 (4 )從速度傳感器3 1接收與相對地面和水的載體坐 標系速度成比例的原始信號測量,由速度傳感器接口和處 理板9 1轉換原始信號測量到相對地面和水的載體坐標系速 度,並將相對地面和水的載禮坐標系速度由公用總線5 5送 到導航處理板80。 (5)用INS處理器進行INS處理。 (6 )在卡爾曼濾波器8 3中混合I N S處理器8 1輸出和 G P S測量。 (7 )反饋卡爾曼濾波器8 3輸出到I NS處理器8 1 ,以修 正INS導航解。 (8 )通過公用總線5 5把導航數據:平台速度,位 置,咼度’航向和時間從INS處理器81輸出給控制板53。 因此’本發明的第一種優選方案的第五種變異 括以下步驟: '系匕 (1 )進行GPS處理和接收GPS測量,包括來自全 — 位系統處理器4 0的偽距,載波相位,多普勒頻移, 疋 間。它們被送到中央導航與控制處理器5 〇之導 時 8〇。 年机恳理板 (2 )接收來自慣性測量組件2 〇之慣性測 1,包括機Page 68 536637 V. Description of the invention (65) To the navigation processing board 80 and the control board 53. β (3) receives the earth's magnetic field vector from the magnetic measuring instrument 31 through the common bus 55, and receives the pitch and roll angles from the navigation board 80, and the earth finding vector measurement, pitch and Roll calculation of magnetic heading angle '· Send the magnetic heading angle to the navigation processing board 80 through the common bus. (4) Receive the original signal measurement proportional to the speed of the carrier coordinate system relative to the ground and water from the speed sensor 31, and convert the original signal to the speed of the carrier coordinate system relative to the ground and water by the speed sensor interface and the processing board 9 1 And send the speed of the coordinate system relative to the ground and water from the common bus 55 to the navigation processing board 80. (5) INS processing is performed by the INS processor. (6) In the Kalman filter 83, the I N S processor 8 1 output and the G P S measurement are mixed. (7) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to correct the INS navigation solution. (8) The navigation data: platform speed, position, angle's heading and time are output from the INS processor 81 to the control board 53 via the common bus 55. Therefore, the fifth variation of the first preferred solution of the present invention includes the following steps: 'The dagger (1) performs GPS processing and receives GPS measurements, including pseudorange and carrier phase from the full-bit system processor 40, Doppler frequency shift. They are sent to the central navigation and control processor 50 at 80. The annual machine management board (2) receives the inertial measurement 1 from the inertial measurement module 2 〇, including the machine

第69頁 536637 五、發明說明(66) 體角速率及比力,通過IMU接口和處理板6〇把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8 0和控制板5 3。 (3 )接收來自高度測量設備3 0的高度測量,由高度 接口和處理板將它轉變為數字形式的海平面高度,通過公 用總線55送到導航處理板80和控制板53。 (4 )通過公用總線5 5從磁測量儀3 1接收地球磁場向 量,從導航板8 0接收俯仰和橫滾角,由找北儀接口和處理 板9 0用地球磁場向量測量、俯仰和橫滾計算磁航向角,通 過公用總線將磁航向角送到導航處理板8 〇。 (5 )從速度傳感器3 1接收與相對地面和水的載體坐 標系速度成比例的原始信號測量,由速度傳感器接口和處 理板9 1轉換原始信號測量到相對地面和水的載體坐標系速 度,並將相對地面和水的載體坐標系速度由公用總線5 5送 到導航處理板8 〇。 (6 )用慣性導航系統丨N s處理器進行I N S處理。 (7 )在卡爾曼濾波器8 3中混合I N S處理器8 1輸出、 G P S測量和磁航向角。 (8 )反饋卡爾曼濾波器8 3輸出到〗NS處理器8 1 ,以修 正I NS導航解。 (9)從INS處理器81把速度和加速度數據注入全球定 位系統處理器4 〇之信號處理器4 5,用於輔助全球定位系統 衛星信號碼及載波相位跟縱。 (1 〇 )把全球定位系統處理器4 〇之信號處理器4 5輸Page 69 536637 V. Description of the invention (66) The body angular velocity and specific force are converted into digital quantities of the body acceleration and rotation through the IMU interface and the processing board 60, and sent to the navigation processing through the common bus 5 5 Board 8 0 and control board 5 3. (3) Receive the altitude measurement from the altitude measuring device 30, convert it into digital form sea level altitude by the altitude interface and processing board, and send it to the navigation processing board 80 and control board 53 through the public bus 55. (4) The earth magnetic field vector is received from the magnetic measuring instrument 31 through the common bus 55, and the pitch and roll angles are received from the navigation board 80, and the north finder interface and the processing board 90 are used to measure, pitch and roll the earth magnetic field vector Roll to calculate the magnetic heading angle, and send the magnetic heading angle to the navigation processing board 80 through the common bus. (5) Receive the original signal measurement proportional to the speed of the carrier coordinate system relative to the ground and water from the speed sensor 31, and convert the original signal measurement to the speed of the carrier coordinate system relative to the ground and water by the speed sensor interface and the processing board 91. And the speed of the carrier coordinate system relative to the ground and water is sent from the common bus 55 to the navigation processing board 80. (6) I N S processing is performed by the inertial navigation system 丨 N s processor. (7) In the Kalman filter 83, the output of the I NS processor 81, the GPS measurement, and the magnetic heading angle are mixed. (8) The feedback Kalman filter 8 3 is output to the NS processor 8 1 to correct the I NS navigation solution. (9) Speed and acceleration data are injected from the INS processor 81 into the signal processor 45 of the global positioning system processor 40, which is used to assist the global positioning system satellite signal code and carrier phase tracking. (10) the signal processor 45 of the GPS processor 40

第70頁 、發明說明(67) 卡爾曼濾波器8 3輸出,注入載波 以確定全球定位系統衛星信號載波 INS處理器81輸出 f相位模糊解模塊82 目仅整模糊數。 數& ( 1 1 )從載波整相位模糊解模塊8 2輸出載波相位整糊 給卡爾曼濾波器8 3,以進一步改善定位精度。 (1 2 )通過公用總線5 5把導航數據:平台速度,位 置 向度’航向和時間從I N S處理器8 1輸出給控制板5 3。 本發明的第二種優選方案的第五種變異方案包括以下 步驟: ^ ( 1 )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器4 〇的偽距,多普勒頻移,和時間。它們被送 到導航處理板8〇。 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過IMU接口和處理板60把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8 〇和控制板5 3。 (3 )接收來自高度測量設備3 0的高度測量,由高度 接口和處理板將它轉變為數字形式的海平面高度,通過公 用總線5 5送到導航處理板8 〇和控制板5 3。 (4 )通過公用總線5 5從磁測量儀3 1接收地球磁場向 量,從導航板8 〇接收俯仰和橫滚角,由找北儀接口和處理 板9 0用地球磁場向量測量、俯仰和橫滾計算磁航向角,通 過公用總線將磁航向角送到導航處理板8 0。 (5 )從速度傳感器3丨接收與相對地面和水的載體坐Page 70, description of the invention (67) The output of the Kalman filter 8 3 is injected into the carrier to determine the GPS satellite signal carrier. The output of the INS processor 81 f phase ambiguity resolution module 82 is only the integer fuzzy number. (1 1) Carrier phase ambiguity resolution module 8 2 outputs carrier phase rectification to the Kalman filter 8 3 to further improve the positioning accuracy. (1 2) The navigation data: platform speed, position orientation 'heading and time are output from the NS processor 81 to the control board 53 through the common bus 55. A fifth variation of the second preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including pseudoranges, Doppler frequency shifts from the global positioning system processor 40, and time. They are sent to the navigation processing board 80. (2) Receive the inertial measurements from the inertial measurement module 20, including the angular velocity and specific force of the body, convert them into digital quantities of the body's acceleration and rotation through the IMU interface and the processing board 60, and send them through the common bus 55 Go to the navigation processing board 80 and the control board 53. (3) Receive the altitude measurement from the altitude measuring device 30, convert it into digital form sea level altitude by the altitude interface and processing board, and send it to the navigation processing board 80 and the control board 53 through the public bus 55. (4) Receive the earth's magnetic field vector from the magnetic measuring instrument 31 through the common bus 55, and receive the pitch and roll angles from the navigation board 80. The north finder interface and the processing board 90 use the earth's magnetic field vector to measure, pitch and roll Roll to calculate the magnetic heading angle, and send the magnetic heading angle to the navigation processing board 80 through the common bus. (5) Receive from the speed sensor 3 丨 the carrier sitting opposite the ground and water

536637 五、發明說明(68) 標系速度成比例的原始信號測量,由速度傳感器接口和處 理板9 1轉換原始信號測量到相對地面和水的載體坐標系速 度,並將相對地面和水的載體坐標系速度由公用總線5 5送 到導航處理板8 0。 (6)用INS處理器進行INS處理。 (7 )在卡爾曼濾波器83中混合INS處理器81輸出、 G P S測量和磁航向角。 (8 )反饋卡爾曼濾波器8 3輸出到I N S處理器8 1 ,以修 正INS導航解。 (9 )通過公用總線5 5把導航數據:平台速度,位 置,高度,航向和時間從I N S處理器8 1輸出給控制板5 3。 (10)從INS處理器81把速度和加速度數據注入全球 定位系統處理器4 0之微處理器4 5 4,用於輔助全球定位系 統衛星信號碼跟蹤。 本發明的第三種優選方案的第五種變異方案包括以下 步驟: (1 )進行G P S處理和接收G P S測量,包括來自全球定 位系統處理器4 0的位置,速度,和時間。它們被送到導航 處理板80。 (2 )接收來自慣性測量組件2 0之慣性測量,包括機 體角速率及比力,通過I M U接口和處理板6 0把它們轉換為 機體加速度和轉動之數字量,並通過公用總線5 5把它們送 到導航處理板8 0和控制板5 3。 (3 )接收來自高度測量設備3 0的高度測量,由高度536637 V. Description of the invention (68) Measurement of the original signal proportional to the speed of the standard system, the speed sensor interface and the processing board 9 1 convert the original signal to measure the speed of the coordinate system relative to the ground and water, and the vector The coordinate system speed is sent from the common bus 55 to the navigation processing board 80. (6) INS processing is performed by the INS processor. (7) The output of the INS processor 81, the GPS measurement, and the magnetic heading angle are mixed in a Kalman filter 83. (8) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to correct the INS navigation solution. (9) The navigation data: platform speed, position, altitude, heading, and time are output from the INS processor 81 to the control board 53 through the common bus 55. (10) Speed and acceleration data are injected from the INS processor 81 into the microprocessor 4 5 4 of the global positioning system processor 40, which is used to assist GPS signal code tracking. The fifth variation of the third preferred solution of the present invention includes the following steps: (1) Perform GPS processing and receive GPS measurements, including position, speed, and time from the global positioning system processor 40. They are sent to the navigation processing board 80. (2) Receive the inertial measurements from the inertial measurement module 20, including the angular velocity and specific force of the body, convert them into digital quantities of the body's acceleration and rotation through the IMU interface and the processing board 60, and convert them through the common bus 55 To the navigation processing board 80 and the control board 53. (3) receiving an altitude measurement from an altitude measuring device 30,

第72頁 536637Page 536637

接口和處理板將它轉變為數字形式的海平面高度,通馬 用總線55送到導航處理板80和控制板53。 過公 (4 )通過公用總線5 5從磁測量儀3 1接收地球磁場。 量’從導航板8 0接收俯仰和橫滾角,由找北儀接口和H 板9 0用地球磁場向量測量、俯仰和橫滾計算磁航向角々理 過么用總線將磁航向角送到導航處理板8〇。 、 (5) 從速度傳感器31接收與相對地面和水的載體坐 標系速度成比例的原始信號測量,由速度傳感器接口和處 理板9 1轉換原始信號測量到相對地面和水的載體坐標系速 度’並將相對地面和水的載體坐標系速度由公用總線W送 到導航處理板8 0。 (6) 用INS處理器進行INS處理。 (7 )在卡爾曼濾波器8 3中混合I N S處理器8 1輸出和 G P S測量。 (8 )反饋卡爾曼濾波器8 3輸出到I N S處理器8 1 ,以修 正I NS導航解。 (9 )通過公用總線5 5把導航數據:平台速度,位 置’高度,航向和時間從INS處理器81 輸出給控制板5 3。 為了獲得對飛行控制有用的真實空速和氣壓高度測 量’通用導航和控制盒進一步包括空氣數據傳感器33。如 第一十八圖所示,空氣數據傳感器33進一步包括一個提供 靜態壓力和壓力測量的靜態壓力傳感器,和提供動態壓力 和自由空氣流溫度測量的動態壓力傳感器和探測器3 3 0 2。The interface and the processing board transform it into sea level height in digital form, and the bus 55 is used to send the navigation processing board 80 and the control board 53. The male (4) receives the earth's magnetic field from the magnetic measuring device 31 through the common bus 55. Receive the pitch and roll angles from the navigation board 80, and calculate the magnetic heading angle from the northbound interface and the H-board 90 using the magnetic field vector measurement, pitch and roll. Have you ever used the bus to send the magnetic heading angle to the navigation? Treatment plate 80. (5) Receive the original signal measurement proportional to the speed of the carrier coordinate system relative to the ground and water from the speed sensor 31, and convert the original signal measurement to the speed of the carrier coordinate system relative to the ground and water by the speed sensor interface and the processing board 9 1 The speed of the carrier coordinate system relative to the ground and water is sent from the common bus W to the navigation processing board 80. (6) INS processing is performed by the INS processor. (7) Mix the output of the I N S processor 81 and the G PS measurement in the Kalman filter 83. (8) The feedback Kalman filter 8 3 is output to the I NS processor 8 1 to correct the I NS navigation solution. (9) The navigation data: platform speed, position 'altitude, heading and time are output from the INS processor 81 to the control board 53 through the common bus 55. To obtain real airspeed and barometric altitude measurements useful for flight control, the universal navigation and control box further includes an air data sensor 33. As shown in Fig. 18, the air data sensor 33 further includes a static pressure sensor for providing static pressure and pressure measurement, and a dynamic pressure sensor and detector for providing dynamic pressure and free air flow temperature measurement.

第73頁 536637 五、發明說明(70) 空氣數據接口和處理板93採用空氣數據方程計算相對控制 板53的氣壓高度和真實空速測量。 在本發明的飛機應用中,飛機能避免與地面和水面碰 撞疋很重要的。因此’通用導航和控制盒14進一步包括地 形數據庫34。地形數據庫能提供用戶當前位置周圍地形的 高度。如果可能與地形相撞,提供的用戶當前位置周圍地 形的高度由地形數據庫接口和處理板9 3通過公用總線5 5進 一步與來自導航處理板80的用戶高度比較。如果可能與地 形相撞,地形數據庫接口和處理板9 3將地形相撞警告信息 送到控制板5 3。控制板5 3將地形相撞警告信息顯示在面板 16上’如第十二圖所示,地形數據庫722可以由接收來自 地形數據庫接口和處理板9 3的地形數據所代替。 立s在本發明的運載體應用中,飛機能避免與周圍物體碰 撞是很重要的。因此,通用導航和控制盒14進一步包括一 個目標檢測系統3 5。 目標檢測系統3 5用來獲得鄰近物體的位置。目標檢測 系統提供目標在周圍發現的通知。目標檢測系統3 5沒有必 要辨別目標的詳細特徵,雖然它有時能做到。有一個目標 在附近是一個簡單的警告,提起進一步的注意。 =標檢測受目標特徵的影響,目標特徵是區別目標與 周,裱境與背景的充分條件。例如,目標檢測系統3 5能警 口疋一架飛機’它可能是波音747或空中客車320。 、目“檢測系統接口與處理板9 4得到目標的運動和距 離。當這兩個參數已知,用合適的邏輯公式來解決避碰問Page 73 536637 V. Description of the invention (70) The air data interface and processing board 93 uses the air data equation to calculate the barometric altitude and true airspeed measurement of the relative control board 53. In the aircraft application of the present invention, it is important that the aircraft avoid collisions with the ground and water. The 'universal navigation and control box 14 therefore further includes a topographic database 34. The terrain database can provide the height of the terrain around the user's current location. If it is possible to collide with the terrain, the height of the terrain around the user's current location provided by the terrain database interface and the processing board 9 3 is further compared with the height of the user from the navigation processing board 80 via the common bus 55. If there is a possibility of collision with the terrain, the terrain database interface and processing board 9 3 sends a terrain collision warning message to the control board 53. The control board 53 displays the terrain collision warning information on the panel 16 'As shown in the twelfth figure, the terrain database 722 may be replaced by receiving terrain data from the terrain database interface and the processing board 93. In the carrier application of the present invention, it is important that the aircraft avoid collisions with surrounding objects. Therefore, the universal navigation and control box 14 further includes a target detection system 35. The target detection system 35 is used to obtain the positions of nearby objects. The target detection system provides notification of targets found around. The target detection system 35 does not necessarily discern the detailed characteristics of the target, although it can sometimes do so. Having a goal nearby is a simple warning to bring further attention. The target detection is affected by the characteristics of the target. The target characteristic is a sufficient condition to distinguish the target from the week, the frame and the background. For example, the target detection system 35 can alert a plane ', which may be a Boeing 747 or an Airbus 320. The detection system interface and the processing board 9 4 obtain the target's movement and distance. When these two parameters are known, use appropriate logical formulas to solve the collision avoidance problem.

第74頁 536637 五、發明說明(71) 題。 如第二十九圖所不,目標檢測系統3 5可以是圖像3 5 0 1 或傳感器3502。傳感器3502包括雷達、激光、激光雷達、 聲納、紅外和視頻,它能覆蓋周圍視野的全部或部分。 圖像3501可以是被動或主動圖像,包括LDRI (激光動態距 離傳感器)圖像。 如第二十九圖所示,目標檢測系統3 5進一步可能是來 自友方運載體的位置,以避免與友方運載體相撞。 本發明的目標檢測系統接口與處理板9 4主要具有以下特 點: (1 )目標檢測系統接口與處理板9 4在一定的時間歷 元確定與可能接近目標的目標狀態。 (2 )目標檢測系統接口與處理板9 4接收來自目標檢 測系統3 5的接近目標的位置信息。位置信息包括當前時間 歷元和位置、速度向量。 (3 )目標檢測系統接口與處理板9 4計算和確定接近 目標範圍(ΑΟΖ) 〇ΑΑΖ定義為接近目標的可達空域。 (4 )目標檢測系統接口與處理板9 4接收來自導航處 理板8 0的主位置信息。位置信息包括當前時間歷元和位 置、速度向量。 (5 )目標檢測系統接口與處理板9 4基於當前位置信 息計算和確定下一個歷元可能到達的區域。 採用一定的邏輯計算兩個區域的交叉,採用應當的準 則確定本身的警告狀態。Page 74 536637 V. Description of Invention (71). As shown in the twenty-ninth figure, the target detection system 3 5 may be an image 3 5 0 1 or a sensor 3502. The sensor 3502 includes radar, laser, lidar, sonar, infrared and video, and it can cover all or part of the surrounding field of view. Image 3501 can be passive or active, including LDRI (Laser Dynamic Distance Sensor) images. As shown in Figure 29, the target detection system 35 may further come from the position of the friendly carrier to avoid collision with the friendly carrier. The object detection system interface and processing board 94 of the present invention mainly has the following characteristics: (1) The object detection system interface and the processing board 94 determines a target state that may approach the target within a certain time period. (2) The interface between the target detection system and the processing board 94 receives the position information of the approaching target from the target detection system 35. The position information includes the current time epoch, position, and velocity vector. (3) The interface of the target detection system and the processing board 9 4 calculates and determines the approach target range (ΑΟZ) 〇ΑΑZ is defined as the reachable airspace close to the target. (4) The interface of the target detection system and the processing board 94 receives the main position information from the navigation processing board 80. The position information includes the current time epoch and position, and the velocity vector. (5) The interface and processing board of the target detection system 94 calculates and determines the area that the next epoch may reach based on the current position information. A certain logic is used to calculate the intersection of the two areas, and the proper warning status should be determined by the applicable rules.

第75頁 536637 五、發明說明(72) 警告狀態通過控制板53輸出到顯示面板1 6。 基於下列要求設計數據鏈3 5 0 3 : 集團註冊:任何接近空域的運載體必須註冊到避碰通 訊系統獲得通訊資源。 集團删除:任何離開空域的運載體必須從通訊系統中 刪除以釋放通訊資源。 路由數據交換:在這種數據邏輯下,空域中的每個運 載體都平等地享有其它運載體的信息。 這種信息包括:運載體的實時動態狀態和它的機動參 數。 根據國際標準組織定義(I S 0 ),任何通訊網絡分成7 層。I SO為數據網絡設備多用戶設備内部操作開發了開放 系統内部連接(0 S I )協議。 目標檢測系統接口 3 5的前向數據鏈的優選方案設計為 三層系統。最底層為物理網絡結構。中間層提供訪問最底 層和最高層的基本管理設施。在最高通訊層採用應用邏 輯。 底下兩層與特定網絡結構有關。應用層設計包括6個 子模塊:輸入包管理,輸出包管理,包處理邏輯,包匯集 邏輯和在線載體註冊表。 輸入包管理 這個模塊用來接收來自底層數據包。它緩存、分析和 分類輸入數據包。 包處理邏輯Page 75 536637 V. Description of the invention (72) The warning status is output to the display panel 16 through the control board 53. The data link is designed based on the following requirements: Group registration: Any carrier close to the airspace must be registered in the collision avoidance communication system to obtain communication resources. Group removal: Any carrier leaving the airspace must be removed from the communication system to release communication resources. Routing data exchange: Under this data logic, each carrier in the airspace equally enjoys information from other carriers. This information includes the real-time dynamic state of the carrier and its maneuvering parameters. According to the International Standards Organization definition (I S 0), any communication network is divided into 7 layers. I SO developed an open system internal connection (0 S I) protocol for the internal operation of data network equipment multi-user equipment. The preferred scheme of the forward data link of the target detection system interface 35 is designed as a three-tier system. The lowest level is the physical network structure. The middle tier provides access to basic management facilities at the lowest and highest levels. Application logic is used at the highest communication level. The bottom two layers are related to a specific network structure. The application layer design includes 6 sub-modules: input package management, output package management, package processing logic, package collection logic and online carrier registry. Input packet management This module is used to receive data packets from the bottom layer. It caches, analyzes, and classifies incoming packets. Packet processing logic

第76頁 536637 五、發明說明(73) 這個模塊解析包數據,使它可以被上層應用使用。 在線運載體註冊表 這個模塊管理集團成員註冊表。在空域的通訊域内的 每個運載體都保持在註冊表中。這個表用來跟蹤集團所有 成員的通訊狀態。這個表對通訊系統管理是很重要的。 輸出包管理 這個模塊管理傳送缓存,輸出包優先級管理。這個模 塊為底層準備數據包。 包匯集邏輯 這個模塊為通訊系統廣播從上層轉成有關數據包。Page 76 536637 V. Description of Invention (73) This module parses the packet data so that it can be used by upper-layer applications. Online Carrier Registry This module manages the group member registry. Each carrier in the airspace communication domain is maintained in the registry. This table is used to track the communication status of all members of the group. This table is important for communication system management. Output packet management This module manages the transmission buffer and the priority management of the output packets. This module prepares data packets for the bottom layer. Packet Assembly Logic This module converts the broadcast from the upper layer into the relevant data packets for the communication system.

在一些應用中,例如,手持導航器,用戶必須與其它 用戶交換用戶位置信息。因此,通用導航和控制盒1 4進一 步包括一個無線通訊設備36。 在一些應用中,例如,手持導航器,用戶必須通過 訪問帶有用戶信息的地形數據庫顯示位置和周圍信息。因 此,通用導航和控制盒1 4進一步包括顯示設備3 7。In some applications, such as a handheld navigator, the user must exchange user location information with other users. Therefore, the universal navigation and control box 14 further includes a wireless communication device 36. In some applications, such as a handheld navigator, the user must display location and surrounding information by accessing a terrain database with user information. Therefore, the universal navigation and control box 14 further includes a display device 37.

第77頁 536637 圖式簡單說明 圖示說明 第一圖:係一方塊圖用來說明一通用導航與控制盒。 依照本發明,該盒裝有一個飛行管理系統,一飛行控制系 統,一個自動相關監視系統,一個駕駛艙顯示系統,一個 加強型地面鄰近告警系統,一個氣像雷達,和一個衛星 通信系統。 第二圖:係依照本發明的通用導航與控制盒方塊圖。 第三圖:係方塊圖,依照本發明用來說明通用導航與 控制盒之結構。 第四圖:係一方塊圖,依照本發明用來說明通用導航 與控制盒内部導航和傳感器數據之流動,以及控制板與其 它航空電子系統間數據之流動。 第五圖-A :係一方塊圖,依照本發明第一優選實現方 案用來說明全球定位系統處理器與來自導航處理板的外部 輔助信息。 第五圖-B :硬體係一方塊圖,依照本發明第二優選實 現方案用來說明全球定位系統處理器與來自導航處理板的 外部輔助信息。 第五圖-C :係一方塊圖,依照本發明第三優選實現方 案用來說明全球定位系統處理器無外部輔助信息。 第六圖-A :係一方塊圖,依照本發明第一優選實現方 案用來說明全球定位系統信號處理器與來自導航處理板的 _ 外部輔助信息。 第六圖-B :係一方塊圖,依照本發明第二優選實現方 -Page 77 536637 Brief description of the diagrams Illustrations Diagram 1: A block diagram is used to illustrate a universal navigation and control box. According to the present invention, the box is equipped with a flight management system, a flight control system, an automatic correlation monitoring system, a cockpit display system, an enhanced ground proximity warning system, an aerial imaging radar, and a satellite communication system. FIG. 2 is a block diagram of a universal navigation and control box according to the present invention. FIG. 3 is a block diagram illustrating the structure of a universal navigation and control box according to the present invention. Figure 4: A block diagram illustrating the flow of navigation and sensor data within the universal navigation and control box and the flow of data between the control board and other avionics systems in accordance with the present invention. Fifth Figure-A: is a block diagram illustrating the GPS processor and external auxiliary information from the navigation processing board according to the first preferred implementation of the present invention. Fifth Figure-B: A block diagram of the hard system, according to the second preferred implementation scheme of the present invention, is used to explain the GPS processor and external auxiliary information from the navigation processing board. Fifth Figure-C: is a block diagram illustrating that the GPS processor has no external auxiliary information according to the third preferred implementation of the present invention. Figure 6-A: A block diagram illustrating the GPS signal processor and the _ external assistance information from the navigation processing board according to the first preferred implementation of the present invention. Figure 6-B: A block diagram according to the second preferred implementation of the present invention-

第78頁 536637 圖式簡單說明 案用來說明全球定位系統信號處理器與來自導航處理板的 外部輔助信息。 第六圖-c :係一方塊圖,依照本發明第三優選實現方 案用來說明全球定位系統信號處理器與來自導航處理板的 外部輔助信息。 第七圖:係依照本發明之模擬信號接口方塊圖。 第八圖:係依照本發明之串行信號接口方塊圖。 第九圖:係依照本發明之脈衝信號接口方塊圖。 第十圖:係依照本發明之並行數字信號接口方塊圖。 第十一圖:係一方塊圖,依照本發明用來說明氣壓測 量器件之高度接口及處理板。 第十二圖:係一方塊圖,依照本發明用來說明雷達高 度計之接口及處理板。 第十三圖:係依照上述本發明第一優選實現方案之導 航處理板之組合導航處理方塊圖,包括全球定位系統,慣 性傳感器,和高度測量器件。 第十四圖:係依照上述本發明第二優選實現方案之導 航處理板之組合導航處理方塊圖,包括全球定位系統,慣 性傳感器,和雷達高度計,用來說明一數據融合模塊。 第十五圖:係依照上述本發明第三優選實現方案之導 航處理板之組合導航處理方塊圖,包括全球定位系統,慣 性傳感器,和雷達高度計,用來說明一數據融合模塊。 第十六圖:係依照上述本發明兩種優選實現方案之導 航處理板之慣性導航處理方塊圖。Page 78 536637 Brief description of the scheme is used to describe the GPS signal processor and external auxiliary information from the navigation processing board. Figure 6-c: It is a block diagram illustrating the GPS signal processor and external auxiliary information from the navigation processing board according to the third preferred implementation of the present invention. FIG. 7 is a block diagram of an analog signal interface according to the present invention. FIG. 8 is a block diagram of a serial signal interface according to the present invention. Fig. 9 is a block diagram of a pulse signal interface according to the present invention. Fig. 10 is a block diagram of a parallel digital signal interface according to the present invention. Fig. 11 is a block diagram illustrating the height interface and processing board of the air pressure measuring device according to the present invention. Figure 12: A block diagram illustrating the interface and processing board of a radar altimeter according to the present invention. Figure 13: A block diagram of the integrated navigation processing of the navigation processing board according to the first preferred implementation of the present invention, including a global positioning system, an inertial sensor, and an altitude measuring device. Fourteenth figure: A block diagram of integrated navigation processing of a navigation processing board according to the second preferred implementation of the present invention, including a global positioning system, an inertial sensor, and a radar altimeter, to illustrate a data fusion module. Fig. 15 is a block diagram of integrated navigation processing of a navigation processing board according to the third preferred implementation of the present invention, which includes a global positioning system, an inertial sensor, and a radar altimeter to illustrate a data fusion module. Fig. 16 is a block diagram of an inertial navigation processing of a navigation processing board according to the above two preferred implementation schemes of the present invention.

第79頁 536637 圖式簡單說明 第十七圖:係依照上述本發明兩種優選實現方案之導 航處理板之卡爾曼遽波器實現方塊圖。 第十八圖:係依照上述本發明第一優選實現方案之有 慣性辅助之導航處理板之全球定位系統衛星信號載波相位 模糊解方塊圖。 第十九圖:係依照本發明的沒有其它的可選設備的通 用導航與控制盒方塊圖。 第二十圖:係依照本發明的帶有其它的可選設備的通 用導航與控制盒方塊圖。Page 536637 Brief Description of Drawings Figure 17: A block diagram of a Kalman waver implementation of a navigation processing board according to the two preferred implementation schemes of the present invention. Figure 18: A block diagram of a fuzzy phase solution of a GPS signal carrier phase of an inertial assistance navigation processing board according to the first preferred implementation of the present invention. Fig. 19 is a block diagram of a general navigation and control box without other optional equipment according to the present invention. Figure 20: A block diagram of a general navigation and control box with other optional equipment according to the present invention.

第二十一圖:係一方塊圖,依照本發明用來說明帶有 其它的可選設備的通用導航與控制盒之結構。 第二十二圖:係一方塊圖,說明可選的速度傳感器。 第二十三圖:係依照上述本發明第一優選實現方案之 導航處理板之組合導航處理方塊圖,包括全球定位系統, 慣性傳感器,和其它可選設備。 第二十四圖:係依照上述本發明第二優選實現方案 之導航處理板之組合導航處理方塊圖,包括全球定位系 統,慣性傳感器,和其它可選設備,用來說明一數據融合 模塊。Figure 21: A block diagram illustrating the structure of a universal navigation and control box with other optional equipment in accordance with the present invention. Figure 22: A block diagram illustrating the optional speed sensor. Figure 23: A block diagram of the integrated navigation processing of the navigation processing board according to the first preferred implementation of the present invention, including a global positioning system, an inertial sensor, and other optional equipment. Figure 24: A block diagram of the integrated navigation processing of the navigation processing board according to the second preferred implementation of the present invention, including a global positioning system, an inertial sensor, and other optional equipment to illustrate a data fusion module.

第二十五圖:係依照上述本發明第三優選實現方案 之導航處理板之組合導航處理方塊圖,包括全球定位系 統,慣性傳感器,和其它可選設備,用來說明一數據融合 模塊。 第二十六圖:係依照本發明的應用於手持設備的通Figure 25: A block diagram of the integrated navigation processing of the navigation processing board according to the third preferred implementation of the present invention, including a global positioning system, an inertial sensor, and other optional equipment to illustrate a data fusion module. Twenty-sixth figure: The communication applied to a handheld device according to the present invention

第80頁 536637 圖式簡單說明 用導航與控制盒方塊圖。 第二十七圖··係依照本發明的應用於手持設備的帶 有其它的可選設備的通用導航與控制 盒方塊圖。 第二十八圖:係空速傳感器、空速傳感器接口和處 理板方塊圖。 第二十九圖:係一方塊圖,說明可選的目標檢測系 統。Page 80 536637 Simple illustration of the diagram Block diagram with navigation and control box. Figure 27 is a block diagram of a universal navigation and control box with other optional equipment applied to a handheld device according to the present invention. Figure 28: Block diagram of airspeed sensor, airspeed sensor interface and processing board. Figure 29: A block diagram illustrating an optional target detection system.

第81頁Page 81

Claims (1)

536637 六、申請專利範圍 1、 一種定位和數據整合方法包括以下步驟: (a )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器的偽距,載波相位,多普勒頻移,和時間, 它們被送到中央導航與控制處理器之導航處理板; (b )接收來自慣性測量組件之慣性測量,包括機體 角速率及比力,通過IMU接口和處理板把它們轉換為機體 加速度和轉動之數字量,並通過公用總線把它們送到導航 處理板和控制板; (c )用慣性導航系統I NS處理器進行I NS處理; (d )在卡爾曼濾波器中混合INS處理器輸出和GPS測 量; (e )反饋卡爾曼濾波器輸出到I NS處理器,以修正 INS導航解; (f )從I N S處理器把速度和加速度數據注入全球定位 系統處理器之信號處理器,用於辅助全球定位系統衛星信 號碼及載波相位跟蹤; (i )把全球定位系統處理器之信號處理器輸出,I N S 處理器輸出,卡爾曼濾波器輸出,注入載波整相位模糊解 模塊,以確定全球定位系統衛星信號載波相位整模糊數; (j )從載波整相位模糊解模塊輸出載波相位整糊數 給卡爾曼濾波器,以進一步改善定位精度; (k )通過公用總線把導航數據:平台速度,位置, 高度,航向和時間從I N S處理器輸出給控制板者。 2、 一種定位和數據整合方法包括以下步驟:536637 VI. Application for Patent Scope 1. A positioning and data integration method includes the following steps: (a) GPS processing and receiving GPS measurements, including pseudorange, carrier phase, Doppler frequency shift from the Global Positioning System processor, and At time, they are sent to the navigation processing board of the central navigation and control processor; (b) receiving inertial measurements from the inertial measurement component, including the body angular rate and specific force, and converting them into the body acceleration and Rotate the digital quantities and send them to the navigation processing board and control board through the common bus; (c) I NS processing using the inertial navigation system I NS processor; (d) mixing the output of the INS processor in the Kalman filter And GPS measurements; (e) feedback Kalman filter output to the I NS processor to modify the INS navigation solution; (f) inject speed and acceleration data from the INS processor into the GPS processor's signal processor for Assist GPS satellite signal code and carrier phase tracking; (i) output the GPS signal processor, INS processing The output, the Kalman filter output, is injected into the carrier phase ambiguity resolution module to determine the GPS phase carrier phase ambiguity number; (j) The carrier phase phase ambiguity module is output to the Kalman filter To further improve the positioning accuracy; (k) output the navigation data: platform speed, position, altitude, heading, and time from the INS processor to the controller via a common bus. 2. A positioning and data integration method includes the following steps: 第82頁 536637 六、申請專利範圍 (a )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器的偽距,多普勒頻移,和時間;它們被送到 導航處理板; (b )接收來自慣性測量組件之慣性測量,包括機體 角速率及比力,通過IMU接口和處理板把它們轉換為機體 加速度和轉動之數字量,並通過公用總線把它們送到導航 處理板和控制板; (c)用INS處理器進行INS處理; (d )在卡爾曼濾波器中混合INS處理器輸出和GPS測 量; (e )反饋卡爾曼濾波器輸出到I N S處理器,以修正 INS導航解; (g )通過公用總線把導航數據:平台速度,位置, 高度,航向和時間從I N S處理器輸出給控制板; (h )從I N S處理器把速度和加速度數據注入全球定位 系統處理器之信號處理器,用於輔助全球定位系統衛星信 號碼跟縱者。 3、一種定位和數據整合方法包括以下步驟: (a )進行GPS處理和接收GPS測量,包括來自全球定 位系統處理器的位置,速度,和時間;它們被送到導航處 理板; (b )接收來自慣性測量組件之慣性測量,包括機體 角速率及比力,通過IMU接口和處理板把它們轉換為機體 加速度和轉動之數字量,並通過公用總線把它們送到導航Page 82 536637 VI. Patent application scope (a) GPS processing and receiving GPS measurements, including pseudorange, Doppler shift, and time from the GPS processor; they are sent to the navigation processing board; (b ) Receive inertial measurements from inertial measurement components, including body angular rate and specific force, convert them into digital quantities of body acceleration and rotation through the IMU interface and processing board, and send them to the navigation processing board and control board through the common bus (C) INS processing by INS processor; (d) mixing INS processor output and GPS measurement in Kalman filter; (e) feedback Kalman filter output to INS processor to modify INS navigation solution; (g) Output navigation data: platform speed, position, altitude, heading, and time from the INS processor to the control board via the common bus; (h) Inject speed and acceleration data from the INS processor to the GPS processor signal processing Device for assisting GPS satellite signal code followers. 3. A positioning and data integration method includes the following steps: (a) GPS processing and receiving GPS measurements, including position, speed, and time from the global positioning system processor; they are sent to the navigation processing board; (b) receiving Inertial measurements from inertial measurement components, including body angular rate and specific force, are converted into digital quantities of body acceleration and rotation through the IMU interface and processing board, and sent to the navigation through the common bus 第83頁 536637 六、申請專利範圍 處理板和控制板; (c)用INS處理器進行INS處理; (d )在卡爾曼濾波器中混合INS處理器輸出和GPS測 量; ,(e )反饋卡爾曼濾波器輸出到I NS處理器,以修正 INS導航解; σ (f )通過公用總線把導航數據··平台速度,位置, 高度’航向和時間從丨NS處理器輸出給控制板者。 4、一種導航和控制盒包括: 一慣性測量組件(I M U )用於提供慣性測量,包括載體 轉動角速率和比力; 玉球疋位系統(G P S )處理器用於提供^ p s測量,包括 偽距,載波相位和多普勒頻率; 一中〜導航和控制處理器用於處理該GPS測量,該慣 性測量’和該運載體高度測量來導出導航解,該中心導航 和控制處理器與該GPS處理器相連,與該IMU相連,與一數 據總線相連;該中心導航和控制處理器包括一丨MlJ接口和 預處理板,一導航處理板,一共享内存卡用於存儲數據, 一總線裁決器用於監視和管理一公用總線和一數撼細 一控制板用於用於控制數據流; … 其中該導航處理板與該GPS處理器和一數據總線相 連,該數據總線用於接收該G P S測量; 該IMU接口和預處理板與該IMU相連,用於接收來自 該011的慣性測量’並將該慣性測量轉換為載體加速度和Page 83 536637 VI. Patent application processing board and control board; (c) INS processing with INS processor; (d) Mixing INS processor output and GPS measurement in Kalman filter; (e) Feedback Karl The Mann filter is output to the I NS processor to modify the INS navigation solution; σ (f) outputs the navigation data, platform speed, position, and altitude 'heading and time from the NS processor to the controller via the common bus. 4. A navigation and control box includes: an inertial measurement unit (IMU) for providing inertial measurement, including carrier rotation angular rate and specific force; a jade ball positioning system (GPS) processor for providing ^ ps measurement, including pseudorange Carrier phase and Doppler frequency; a Chinese navigation and control processor is used to process the GPS measurement, the inertial measurement 'and the carrier height measurement to derive the navigation solution, the central navigation and control processor and the GPS processor Connected, connected to the IMU, and connected to a data bus; the central navigation and control processor includes a MlJ interface and pre-processing board, a navigation processing board, a shared memory card for storing data, and a bus arbiter for monitoring And manages a common bus and a control panel for controlling the data flow; ... wherein the navigation processing board is connected to the GPS processor and a data bus, the data bus is used to receive the GPS measurement; the IMU An interface and a pre-processing board are connected to the IMU for receiving the inertial measurement from the 011 'and converting the inertial measurement into a carrier acceleration and 第84頁 536637 六、申請專利範圍 旋轉角速率的數字量,並將該載體的加速度和旋轉角速率 送給該導航處理板和該控制處理板; 該總線接口連在該控制板和該數據總線之間者。 1·ϋ 第85頁Page 84 536637 VI. The digital quantity of the patent application scope rotation angular rate, and the acceleration and rotation angular rate of the carrier are sent to the navigation processing board and the control processing board; the bus interface is connected to the control board and the data bus Between those. 1ϋ 85 page 85
TW91101204A 2001-11-20 2002-01-23 Improved positioning and data integrating method and system thereof TW536637B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/006,447 US6516272B2 (en) 2000-12-23 2001-11-20 Positioning and data integrating method and system thereof

Publications (1)

Publication Number Publication Date
TW536637B true TW536637B (en) 2003-06-11

Family

ID=29268405

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91101204A TW536637B (en) 2001-11-20 2002-01-23 Improved positioning and data integrating method and system thereof

Country Status (1)

Country Link
TW (1) TW536637B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931773A (en) * 2017-05-17 2018-12-04 通用汽车环球科技运作有限责任公司 Automobile-used sextuple point cloud system
CN117007328A (en) * 2023-06-16 2023-11-07 中国汽车工程研究院股份有限公司 Dynamic displacement calculation optimization method for vehicle collision test
CN117007328B (en) * 2023-06-16 2024-05-31 中国汽车工程研究院股份有限公司 Dynamic displacement calculation optimization method for vehicle collision test

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931773A (en) * 2017-05-17 2018-12-04 通用汽车环球科技运作有限责任公司 Automobile-used sextuple point cloud system
CN117007328A (en) * 2023-06-16 2023-11-07 中国汽车工程研究院股份有限公司 Dynamic displacement calculation optimization method for vehicle collision test
CN117007328B (en) * 2023-06-16 2024-05-31 中国汽车工程研究院股份有限公司 Dynamic displacement calculation optimization method for vehicle collision test

Similar Documents

Publication Publication Date Title
TW591241B (en) Improved positioning and data integrating method and system thereof
TW554174B (en) Vehicle positioning and data integrating method and system thereof
TW518422B (en) Positioning and proximity warning method and system thereof for vehicle
US6516272B2 (en) Positioning and data integrating method and system thereof
TW531657B (en) Enhanced integrated positioning method and system thereof for vehicle
US9488480B2 (en) Method and apparatus for improved navigation of a moving platform
US20110238308A1 (en) Pedal navigation using leo signals and body-mounted sensors
US8082099B2 (en) Aircraft navigation using the global positioning system and an attitude and heading reference system
US20090024325A1 (en) AINS enhanced survey instrument
Lee et al. Adaptive GPS/INS integration for relative navigation
US6831599B2 (en) Remote velocity sensor slaved to an integrated GPS/INS
JP2009525491A (en) Method for combining local positioning system, local RTK system, and regional, broadband, or global carrier phase positioning system
CA2733032C (en) Method and apparatus for improved navigation of a moving platform
US20100106416A1 (en) Aircraft navigation using the global positioning system, inertial reference system, and distance measurements
CN109983361A (en) Opportunity signal aided inertial navigation
US8547276B2 (en) Positioning system and method
Georgy Advanced nonlinear techniques for low cost land vehicle navigation
Elsheikh et al. Multisensor precise positioning for automated and connected vehicles
TW536637B (en) Improved positioning and data integrating method and system thereof
Kennedy et al. GPS/INS Integration in Real-time and Post-processing with NovAtel’s SPAN System
CA3156087A1 (en) 3d lidar aided global navigation satellite system and the method for non-line-of-sight detection and correction
Ding Optimal integration of GPS with inertial sensors: Modelling and implementation
WO2002046699A1 (en) Vehicle positioning and data integrating method and system thereof
Krasil’shchikov et al. High accuracy positioning of phase center of multifunction airborne radar antenna
Gupta Vehicle localization using low-accuracy GPS, IMU and map-aided vision

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees