TW452607B - Production of a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal - Google Patents

Production of a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal Download PDF

Info

Publication number
TW452607B
TW452607B TW88104776A TW88104776A TW452607B TW 452607 B TW452607 B TW 452607B TW 88104776 A TW88104776 A TW 88104776A TW 88104776 A TW88104776 A TW 88104776A TW 452607 B TW452607 B TW 452607B
Authority
TW
Taiwan
Prior art keywords
tungsten
metal
double
chemical vapor
layer
Prior art date
Application number
TW88104776A
Other languages
Chinese (zh)
Inventor
Guo-Ming Jang
Yi-Jung Deng
Da-Shiun Ye
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW88104776A priority Critical patent/TW452607B/en
Application granted granted Critical
Publication of TW452607B publication Critical patent/TW452607B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided a process for producing a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal by depositing a bilayer-stacked tungsten metal in a same chamber in the manner of not breaking the vacuum therein. Firstly, a layer of amorphous-like tungsten is deposited to increase thermal stability and to prevent diffusion of fluorine atom. Next, a nitridizing treatment is performed thereon to promote further the barrier property and thermal stability of the amorphous-like tungsten. Finally, conventional selective chemical vapor deposited tungsten having low is deposited on the amorphous-like tungsten. Through the deposition of bilayer tungsten according to the process of the invention, thermal stability of conventional selective chemical vapor deposited tungsten can be increased greatly. For the manufacture of a extremely large integrated circuit, stacked tungsten not only can prevent fluorine atom from diffusing downwardly in the course of deposition, but also can increase thermal stability, and furthermore, the resistance thereof is much lower that of tungsten disilicide. Accordingly, the process of the invention is indeed a technique having high potential.

Description

4 5 2 6 0 7 經濟部中央標隼局貝工消費合作杜印製 A7 B7 PA870462.TWP - 3/13 五、發明説明() 【技術領域】 本發明係關於一種化學氣相沉積雙層堆疊鎢金屬於耐 火金屬之製法,特別是關於一種利用氮化非晶鎢與一般鎢 金屬層之組合,來提昇連接金屬層之可靠度及穩定度,並 5降低氟元素污染問題之一種化學氣相沉積雙層堆疊鎢金屬 於耐火金屬之製法。 【先前技術】 以目前之技術水平看來,積體電路製造的後段製程 中,金屬連接線是希望傳輸速度愈快愈好,而且在後續製 ίο程的各種製程步驟,特別是經熱處理後,並不會造成特性 的改變,但目前的趨勢,為尋找及研究低電阻及高熱穩定 性之金屬矽化物,及因應超大型積體電路的需求,此金屬 矽化物必需以化學氣相沉積的方式做成—元件,但是一般 金屬化學氣相沉積的方式均含有氟,其氟原子若侵入元件 15中,則會造成元件特性的傷害。 且根據最新的研究報告指出,未來隨著元件的尺寸越 來越小,連接線電阻也隨著導線寬度的縮小而增加,因此 尋找低電阻係數的導電材料是目前的驅勢;而耐火性金屬 矽化物用來作為金氧半場效電晶體或金氧半電容的閘極電 2〇極已被研究多年’目前較常研究的方向為鈦與鈷的金屬矽 化物,而純金屬一直未被採用的原因是因為熱穩定性的問 題’此外在化學氣相沉積耐火性金屬時氟原子的向内擴 散,以及複晶向外擴散,均是研究的方向。 而目前低電阻係數的耐火性金屬材料在研究及量產方 本紙乐尺度適用中國國家標準(CNS > A4規格(21〇χ297~^7 : ------^------^ L-- {請先聞讀背面之注意事項再填寫本頁) 607 2 經濟部中央標準局員工消費合作社印製 A7 B7 PA870462.TWP-4/13 五、發明説明) 面最大的考量即在於熱穩定性的問題,因目前電阻係數最 低的耐火性金屬矽化物是二矽化鈦,但是其熱穩定性不 足,且後續製程有多道加熱步驟,因此最近大多的研究朝 向鈷的矽化物,可是鈷在矽化的過程也會有矽消耗過多的 5 問題,造成凝聚成塊的問題。 由此可見,上述習知物品仍有諸多缺失,實非一良善 之設計者,而亟待加以改良。 本案發明人鑑於上述習知化學氣相沉積之製法所衍生 的各項缺點,乃亟思加以改良創新,並經多年苦心孤詣潛 10 心研究後,終於成功研發完成本件一種化學氣相沉積雙層 堆疊鎢金屬於耐火金屬之製法。 【發明目的】 本發明之目的即在於提供一種化學氣相沉積雙層堆疊 鎢金屬於耐火金屬之製法,其係使用純耐火性金屬取代耐 15 火金屬矽化物,以獲得更低的電阻,因傳統的單層矽化物 其電阻系數高達70 // Ω -cm,而堆疊鎢的電阻系數為10 # Ω -cm,相當接近純金屬。 本發明之次一目的係在於提供一種化學氣相沉積雙層 堆疊鎢金屬於耐火金屬之製法,由於所採用之似非晶鎢幾 20 乎無粒狀結構,因此,在化學氣相沉積時並不會造成氟原 子經由粒狀結構界面擴散進入下層物質中,而造成對元件 特性的傷害。 本發明之另一目的係在於提供一種化學氣相沉積雙層 堆疊鎢金屬於耐火金屬之製法,因似非晶鎢沉積後可以不 -4- (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準,(CNS ) A4規格(2!〇X29?公釐) A7 PA870462.TWP-5/13 B7 五、發明説明(々) 破真空之方式給予氮化處理’以增加其熱穩定性及可靠 度。 (請先閲讀背面之注意事項再填寫本頁) 本發明之又一目的係在於提供一種化學氣相沉積雙層 堆疊嫣金屬於耐火金屬之製法,其似非晶鎢是一種在氣相 5結核的沉積,因此沉積時並不會造成表面矽基板的消耗’ 而參雜在複晶矽中的填、硼…等原子則會被限制,不會往 外擴散。 【技術内容】 具有上述優點之本件一種化學氣相沉積雙層堆疊鎢金 10屬於耐火金屬之製法,係以不破真空之方式沉積雙層鎢金 屬,其先沉積一層近似非晶鎢以提高其熱穩定性與阻擋氟 原子的擴散,再加氮化之處理,使近似非晶鎢的阻擋與熱 穩定特性提升,然後再使用一般低阻抗的選擇性化學氣相 Ά積鎮沉積於近似非晶鶴上,使其形成不會對傳輸電阻造 15成影響之雙層堆疊鎮之金氧半電容或金氧半場效電晶體結 構者。 ^ 【圖式簡單說明】 經濟部中央標準局貝工消費合作社印製 睛參閱以下有關本發明一較佳實施例之詳細說明及其 附圖,將可進一步瞭解本發明之技術内容及其目的功效; 20有關該實施例之附圖為: 圖一為本發明一種化學氣相沉積雙層堆疊鎢金屬於耐 火金屬之製法步騾程序圖; 圖二A、B為本發明之雙層堆疊鎢與c〇ntr〇丨sample之金 氧半電容的橫切面結構圖; 本紙浪尺度適用中國國家標準(CNS ) Μ规格(:;〇χ297公费 Λ 452607 PAfi70462 TWP ^ fi/1^ ΙΓ 五、發明説明(ψ) 圖三A、B為一般化學氣相沉積鎢與似非晶鎢之結構 圖;. 圖四為一般化學氣相沉積鎢與本發明之雙層堆疊鎢及 雙層堆疊鎢經過氮化處理的X光繞射圖; 5 圖五為本發明以二次離子質譜儀分析似非晶鎢經氮化 處理後之原子縱深分析圖; 圖六為本發明之似非晶鎢經氮化處理後,以X光激發 頻譜儀分析表面鍵結之狀態圖; 圖七為比較一般化學氣相沉積鶴'雙層堆疊鶴與雙層 10 堆疊鎢經過氮化處理後的崩潰電荷分佈圖; 圖八為熱處理過後,比較一般化學氣相沉積鎢、雙層 堆疊鎢與雙層堆疊鎢經過氮化處理後之崩潰電場分佈圖。 圖九為比較一般化學氣相沉積鎢、雙層堆疊鎢與雙層 堆疊鎢經過氮化處理後的崩潰電場分佈圖; 15 圖十為熱處理過後,比較一般化學氣相沉積鎢、雙層 堆疊鎢與雙層堆疊鎢經過氮化處理後的崩潰電場分佈 圖十一為一般化學氣相沉積鎢之二次離子質譜儀縱深 分析圖。 經濟部中央標準局員工消費合作社印製 圖十二為本發明之雙層堆疊鎢的二次離子質譜儀縱深 20 分析圖。 圖十三為本發明之雙層堆疊鎢經過氮化處理後的二次 離子質譜儀縱深分析圖。 【主要部分代表符號】 本紙浪尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 452607 五、發明説明(^) B7 PA870462.TWP - 7/13 1成長二氧化梦氧化 層 3成長二氧化矽氧化 層 5成長似非晶鎢 7成長一般鎮 2黃光成相I定出工 作區 4成長複晶梦 6經氮化處理後 8形成雙層堆疊鎢 請參閱圖一所示,係本發明所提供之一種化學氣相沉 積雙層堆疊鎮金屬於耐火金屬之製法步驟程序圖,其係先 於基板上成長一氧化珍氧化層1 ’成長厚度為500nm,以作 5 為隔絕之用,再以黃光成相I定出工作區2,然後,再成長 二氧化碎氧化層3,其成長厚度為l〇nm,以做為閘極之介 電層,及成長複晶矽4,厚度為250nm,做為應力緩衝層, 再成長似非晶鎢5,厚度50nm,並經氮化處理後6,使其近 似非晶鎢的阻擋與熱穩定度提升,然後再成長一般鎢7, 10其厚度200nm,而藉由上述之步驟以形成雙層堆疊鎢8。 請參閱圖二A、B所示,係本發明之雙層堆疊鎢與 control sample之金氧半電容的橫切面結構圖’本發明係採 用純金屬鎢做為其電極,如圖二A所示’並於下層墊一層 近似非晶鎢,以做為擴散之障礙層’不但可增加熱穩定 15性,並能阻止氟原子對内部擴散,而且不會對傳輸電阻造 成影響,再加上以不破真空之方式’直接化學氣相沉積雙 層堆疊鎢;而一般之金屬化學氣相沉積之方式,如圖二:B 所示,因係為單一金屬層,故其氟原子會侵入元件,造成 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2I0X21?7公兑) ,,-— J n H-»· I - - '? 士^-! ' _ _ _ (讀先閱讀背面之注意事項再填寫本頁) 經濟部中央標嗥局負工消費合作社印製 經濟部中央標準局員工消費合作社印製 6 0 7 _____PA870462.TWP - 8/13 五、發明説明(&) 元件特性之傷害。 請參閱圖三〜圖十三所示,係本發明所提供之一種化 學氣相沉積雙層堆疊鎢金屬於耐火金屬之製法,其係利用 似非晶鎢耐火性金屬之無粒狀結構界面特性,用以提高其 5 熱穩定性,因為一般的耐火性金屬經由掃瞄式電子顯微鏡 觀察,如圖三A所示,其照片是呈現柱狀結構,且該柱狀 結構之粒狀結構界面是由金屬表面直接到下層基板上,因 此不要的雜質會經由顆粒界面快速擴散到下層基板中;而 圖三B所示,則係為顯示本發明中所採用之似非晶鎢的顆 10 粒較小,且並無柱狀結構,而沉積似非晶鎢的製程條件如 下: 1. 沉積溫度:250t>350°C ; 2. 腔體壓力:80〜120mTorr ; 3.SiH4流量:大約 10〜25sccm ; 15 4.WF6流量:大約10sccm(SiH4與WF6流量比為1倍)。 而圖四令所示之曲線A,係為一般化學氣相沉積鎢之 X光繞射圖,而曲線B及曲線C,則分別表示雙層堆疊鎢及 雙層堆疊鎢經過氮化處理之X光繞射圖,其相互對照比較 下,更可清楚看出雙層堆疊鎢的確比一般之化學氣相沉積 20 鎢有更高之穩定性及可靠度。 且該雙層堆疊鎢由X光繞射分析出此條件之沉積鎢是 一種非晶向的金屬,而當似非晶鎢沉積後,再給予五分鐘 的氮化處理,其中氮化處理之溫度及壓力均不變,氮氣流 量為80~120sccm,而經氮化處理後,則會造成氮原子進入 本紙張尺度適用中國國家榇準(CNS〉A4規格(210X297公釐) -----------扣衣------ΪΤ------i (請先閲讀背面之注意事項再珀:本頁) 452607 經濟部中央標準局員工消費合作社印製 Λ' ρ^ρ7(ΊΑ6? TWP- 9/13 五、發明説明(9 ) 似非晶鎢表面50nm的厚度中,如圖五所示,最後再沉積一 般鎢。 由圖四t之C曲線看出氡化處理後並不改變原有之晶 向,經由X光激發頻譜儀分析’看到N1S鍵結能在3997eV 5處形成一峰值,如圖六所示;若氮原子與鎢鏈結在397eV 時,亦會形成一峰值,因氮原子與鎢形成鍵結會造成氮的 鍵結能被鎢影響,所以本發明中,氮原子是以填充方式斷 絕擴散路徑,氮原子並不會與鎢鍵結,而是以填入細缝的 方式存在鎢金屬中β 10 此外,在經由崩潰電荷挪試後發現,不論是有無經過 氮化處理的雙層鎢’其特性均遠優於單一層之一般鶴,如 圖七所示;而圖八則是進-步展示該金氧半電容經過五分 鐘7賊之熱處理後的崩溃電荷测試,其結果同樣顯示, 不論是有無經過氮化處_制鎢,其雜均遠優於單一 15層之-躺,當然經過氮化處理的雙料,其特性較佳, 毫不遜於以複晶矽做為閘極電極的試片,同時其電阻也遠 低於複晶矽閘元件。 而再由崩潰電場測試後發現,不論是有無經過氮化處 理的雙層鶴,其特性均遠優於單—層之一般鶴,如圖九所 20示;其圖十則進-步展示金氧半電容經過五分鐘赃之 熱處理的崩潰電場測試後,其結果同樣顯示,不論是有無 經過氮化處理的雙層鋒’其特性與崩潰電荷測試相同;甚 至於經氮化處理之雙層堆疊鎢試Η X片的朋潰電場略優於 control sample,這是由於少量氟κ;认+丄 项千的存在對閘極介電層 -9- 本紙柒尺度適用中國國家標準(CNS ) A4規格(210X297^^ -——— _______ — -^---------裴------訂------線 (請先閲讀背面之注意事項再填寫本頁} A7 PAQ7Q402.TWP ^ 10/ί3 452607 B7 五、發明説明(2 ) 有硬化的效果,且經氮化處理後的雙層堆疊鎢試片,可將 氟的量控制在標準之内,因此產生硬化效果。 而圖十一係為一般化學氣相沉積鎢在二次離子質譜儀 中之縱深分析圖,其可以明顯見到氟原子在單層一般鎢未 5 經過熱處理的試片中,已經鑽入到矽基板内部,甚至於掺 雜的磷原子也往矽基板内部擴散,這是由於過量的氟原子 造成界面損壞的緣故。而雙層鎢金屬可以有效阻止氟原子 擴散,且經過五分鐘700°C之熱處理後,在閘極介電層中 的氟原子遠低於一般鎮,如圖十二所示,而且各界面仍清 10 析可辨。 由圖十三中可明瞭經過氮化處理後之雙層鎢金屬,其 經過五分鐘700°c之熱處理後,在閘極介電層中的氟原子 含量與未經氮化處理過的試片一樣已經低於偵測濃度,雖 然SIMS圖無法比較出未經過處理與經氮化處理過的雙層 15 鎢金屬阻擋效果,但是在崩潰電荷測試已經證明經氮化處 理過的雙層鎢金屬阻擋效果較佳。 【特點及功效】 本發明所提供之一種化學氣相沉積雙層堆疊鎢金屬於 耐火金屬之製法,與其他習用技術相互比較時,更具有下 20 列之優點: 1. 本發明中是使用純封火性金屬取代耐火金屬矽化 物,以獲得更低的電阻。 2. 由於似非晶鎢幾乎是無粒狀結構.,因此,在化學氣 相沉積時,並不會造成氟原子經由粒狀結構介面擴散進入 -10- 本紙条尺度適用中國國家標準(CNS ) A4規格(210X297公釐} -- --------1 --'1 --1 ------- I _ _ I t—, _ . u m n n t請先聞讀背面之注意事項再1 .本頁) 經濟部中央標隼局員工消費合作社印裝 δ 經濟部中央標率局員工消費合作社印製 4 26 0 Λ* Β" PA870462.TWP- 11/13 五、發明説明 下層物質中。 3. 似非晶鎢沉積後可以不破真空之方式給予氮化處 理,使其熱穩定性將更加優異。 4. 似非晶鎢是一種在氣相結核的沉積,故,沉積時並 5 不會造成表面矽基板的消耗,因此摻雜在複晶矽中磷、 硼...等原子會被限制,不會往外擴散。 上列詳細說明係針對本發明之一可行實施例之具體說 明,惟該實施例並非用以限制本發明之專利範圍,凡未脫 離本發明技藝精神所為之等效實施或變更,均應包含於本 10案之專利範圍中。 綜上所述,本案不但在技術思想上確屬創新,並能較 習用物品增進上述多項功效,應已充分符合新穎性及進步 性之法定發明專利要件,爰依法提出申請,懇請貴局核 准本件發明專利申請案,以勵發明,至感德便。 11 本紙乐尺度適用中國國家標準(CNS ) Α4规格UIOX 297公釐) i---------裝------訂------J. (請先閱讀背面之注意事項再也寫本頁)4 5 2 6 0 7 Printed A7 B7 by the Ministry of Economic Affairs of the Central Bureau of Standards and Consumer Products, PA7462.TWP-3/13 V. Description of the Invention (Technical Field) The present invention relates to a double layer stack of chemical vapor deposition Method for manufacturing tungsten metal in refractory metal, in particular, a chemical vapor phase using a combination of nitrided amorphous tungsten and a general tungsten metal layer to improve the reliability and stability of the connection metal layer, and to reduce the problem of fluorine element pollution Method for depositing double-layer stacked tungsten metal on refractory metal. [Previous technology] According to the current technology level, in the later stage of integrated circuit manufacturing, the metal connection line is expected to be faster and better, and in various subsequent steps of the manufacturing process, especially after heat treatment, Does not cause changes in characteristics, but the current trend is to find and study low-resistance and high thermal stability metal silicides, and to meet the needs of very large integrated circuits, this metal silicide must be chemical vapor deposition It is made into an element, but the general metal chemical vapor deposition method contains fluorine, and if its fluorine atom penetrates into the element 15, it will cause damage to the element characteristics. And according to the latest research report, in the future, as the size of components becomes smaller and smaller, the resistance of the connection line will increase with the reduction of the width of the wire. Therefore, the search for conductive materials with low resistivity is the current driving force; and refractory metals The silicide is used as the gate electrode of the metal-oxide half-field-effect transistor or metal-oxide half-capacitor. The 20-pole has been studied for many years. At present, the more commonly studied direction is the metal silicide of titanium and cobalt, but pure metals have not been used. The reason is because of the problem of thermal stability. In addition, the inward diffusion of fluorine atoms and the outward diffusion of multiple crystals during chemical vapor deposition of refractory metals are the research directions. At present, the low-resistance refractory metal materials are applicable to Chinese national standards (CNS > A4 specifications (21〇 × 297 ~ ^ 7: ------ ^ ------) in research and mass production. ^ L-- (Please read the precautions on the back before filling out this page) 607 2 Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 PA870462.TWP-4 / 13 V. Description of the invention) The biggest consideration lies in The problem of thermal stability, because the refractory metal silicide with the lowest resistivity at present is titanium disilicide, but its thermal stability is insufficient, and the subsequent process has multiple heating steps. Therefore, most of the recent researches have been directed to cobalt silicide, but In the process of cobalt silicification, there will be 5 problems of excessive silicon consumption, causing the problem of agglomeration and agglomeration. It can be seen that there are still many shortcomings in the above-mentioned conventional articles. They are not a good designer, and need to be improved. In view of the various shortcomings derived from the above-mentioned conventional chemical vapor deposition method, the inventor of this case has been eager to improve and innovate. After years of painstaking research, he has successfully developed a chemical vapor deposition double-layer stack. Method for producing tungsten metal in refractory metal. [Objective of the Invention] The purpose of the present invention is to provide a chemical vapor deposition double-layer stacked tungsten metal in refractory metal manufacturing method, which uses pure refractory metal instead of 15 refractory metal silicide to obtain lower resistance, because The traditional single-layer silicide has a resistivity of up to 70 // Ω -cm, while the resistivity of stacked tungsten is 10 # Ω -cm, which is quite close to pure metal. A second object of the present invention is to provide a method for chemical vapor deposition of a double-layer stacked tungsten metal in a refractory metal. Since the amorphous-like tungsten used has almost no granular structure, it is not used in chemical vapor deposition. Will cause the fluorine atoms to diffuse into the underlying material through the granular structure interface, causing damage to the characteristics of the element. Another object of the present invention is to provide a method for chemical vapor deposition of double-layer stacked tungsten metal in refractory metal, because after the deposition of amorphous tungsten, it may not be -4- (please read the precautions on the back before filling this page). Paper size applies Chinese national standard, (CNS) A4 specification (2.0 × 29? Mm) A7 PA870462.TWP-5 / 13 B7 V. Description of invention (々) Nitriding treatment is given in a vacuum-breaking manner to increase its heat Stability and reliability. (Please read the notes on the back before filling this page.) Another object of the present invention is to provide a method for chemical vapor deposition of double-layer stacked metal in refractory metal. Deposition, so the surface silicon substrate will not be consumed during the deposition ', and the atoms, such as filler, boron, etc. mixed in the polycrystalline silicon will be restricted and will not diffuse outward. [Technical content] The chemical vapor deposition double-layer stacked tungsten gold 10 with the above advantages belongs to the method of refractory metal deposition. The double-layer tungsten metal is deposited in a vacuum-free manner. It first deposits a layer of approximately amorphous tungsten to increase its heat. Stability and blocking of the diffusion of fluorine atoms, plus nitriding treatment, improve the blocking and thermal stability characteristics of approximately amorphous tungsten, and then use a general low-resistance selective chemical vapor deposition product to deposit on the approximately amorphous crane In order to form a metal-oxygen half-capacitance or metal-oxygen half field-effect transistor structure of a double-layer stacked town that will not affect the transmission resistance by 15%. ^ [Schematic description] Printed by the Central Laboratories of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, please refer to the following detailed description of a preferred embodiment of the present invention and the accompanying drawings, for further understanding of the technical content of the present invention and its effects 20 The drawings related to this embodiment are: FIG. 1 is a procedure diagram of a method for manufacturing a chemical vapor deposition double-layer stacked tungsten metal in a refractory metal according to the present invention; FIG. 2A and B are double-layer stacked tungsten and c〇ntr〇 丨 sample cross-section structure diagram of metal-oxygen semicapacitor; this paper wave scale is applicable to China National Standard (CNS) M specifications (:; 〇297297 public expense Λ 452607 PAfi70462 TWP ^ fi / 1 ^ ΙΓ 5. Description of the invention ( ψ) Figure 3 A and B are the structural diagrams of general chemical vapor deposition tungsten and amorphous amorphous tungsten; Figure 4 is the general chemical vapor deposition tungsten and the double-layer stacked tungsten and double-layer stacked tungsten of the present invention after nitriding treatment X-ray diffraction diagram; 5 FIG. 5 is the atomic depth analysis diagram of the nitrogen-like treatment of the amorphous amorphous tungsten by the secondary ion mass spectrometer according to the present invention; Optically Excited Spectrum Analyzer Analysis of the state of surface bonding; Figure 7 is a comparison of the breakdown charge distribution of the general chemical vapor deposition crane 'double-stacked crane and double-layer 10 stacked tungsten after nitriding; Figure 8 is a comparison of general chemical gas after heat treatment The breakdown electric field distribution of phase-deposited tungsten, double-layer stacked tungsten and double-layer stacked tungsten after nitriding treatment. Figure 9 compares the general chemical vapor-deposited tungsten, double-layer stacked tungsten and double-layer stacked tungsten after nitriding treatment. Collapse electric field distribution map; 15 Figure 10 shows the breakdown of electric field distribution of general chemical vapor deposition tungsten, double stacked tungsten and double stacked tungsten after nitriding after heat treatment. Depth analysis chart of secondary ion mass spectrometer. Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. Figure 12 is the analysis chart of depth 20 of the double stack tungsten of the present invention. Figure 13 is the double stack of the present invention. Depth analysis diagram of secondary ion mass spectrometer after tungsten has been nitrided. [Representative symbols of main parts] The paper scale is applicable to China National Standard (CNS) A4 specification (210X 29 7mm) 452607 V. Description of the invention (^) B7 PA870462.TWP-7/13 1 growth of dream dioxide oxide layer 3 growth of silicon dioxide oxide layer 5 growth of amorphous tungsten 7 growth of ordinary town 2 yellow light phase I work Zone 4 grows a polycrystalline dream 6 after nitriding treatment 8 to form a double-layer stacked tungsten. Please refer to FIG. 1, which is a flow chart of a method for manufacturing a chemical vapor-deposited double-layer stacked town metal in a refractory metal provided by the present invention. It firstly grows a monoxide oxide layer 1 'on the substrate with a thickness of 500 nm, and uses it as an isolation for 5. Then, the working area 2 is defined by the yellow light phase I, and then a fragmented oxide layer 3 is grown. The growth thickness is 10 nm for the dielectric layer of the gate, and the growth of the polycrystalline silicon 4 with a thickness of 250 nm is used as a stress buffer layer, and then it grows like amorphous tungsten 5 with a thickness of 50 nm. 6, to increase the barrier and thermal stability of approximately amorphous tungsten, and then grow general tungsten 7, 10 with a thickness of 200 nm, and through the above steps to form a double-layer stacked tungsten 8. Please refer to FIG. 2A and B, which are cross-sectional structural diagrams of the double-layer stacked tungsten of the present invention and the metal-oxygen half capacitor of the control sample. The present invention uses pure metal tungsten as its electrode, as shown in FIG. 2A 'And a layer of approximately amorphous tungsten is placed on the lower layer as a barrier to diffusion.' Not only can increase the thermal stability, and can prevent the fluorine atoms from diffusing internally, and it will not affect the transmission resistance. The vacuum method 'direct chemical vapor deposition of two-layer stacked tungsten; and the general metal chemical vapor deposition method, as shown in Figure II: B, because it is a single metal layer, its fluorine atoms will invade the element, causing cost The paper size applies the Chinese National Standard (CNS) Λ4 specification (2I0X21? 7), --- J n H- »· I--'? 士 ^-!' (Read the precautions on the back before reading (Fill in this page) Printed by the Central Standards Bureau of the Ministry of Economic Affairs, printed by the Consumer Cooperatives of the Ministry of Economic Affairs, printed by the Central Consumers Bureau of the Ministry of Economic Affairs, printed by the Consumers' Cooperatives of the Ministry of Economic Affairs 6 0 7 _____ PA870462.TWP-8/13 V. Instruction of the invention (&) Damage to component characteristics Please refer to FIG. 3 to FIG. 13, which is a method for manufacturing a chemical vapor deposition double-layer stacked tungsten metal in a refractory metal provided by the present invention, which utilizes the non-granular structure-like interface characteristics of an amorphous tungsten refractory metal. It is used to improve its 5 thermal stability, because the general refractory metal is observed by a scanning electron microscope, as shown in Figure 3A, the photo shows a columnar structure, and the granular structure interface of the columnar structure is The metal surface is directly on the lower substrate, so unnecessary impurities will quickly diffuse into the lower substrate through the particle interface; and as shown in FIG. 3B, the 10 particles like amorphous tungsten used in the present invention are smaller. And there is no columnar structure, and the process conditions for depositing amorphous tungsten are as follows: 1. Deposition temperature: 250t > 350 ° C; 2. Cavity pressure: 80 ~ 120mTorr; 3. SiH4 flow rate: about 10 ~ 25sccm; 15 4 .WF6 flow: about 10sccm (SiH4 and WF6 flow ratio is 1 times). The curve A shown in Fig. 4 is an X-ray diffraction pattern of general chemical vapor deposition tungsten, and the curves B and C respectively represent X of the double-layer stacked tungsten and the double-layer stacked tungsten after nitriding treatment. The light diffraction pattern, compared with each other, clearly shows that the double-layer stacked tungsten is indeed more stable and reliable than the general chemical vapor deposition of 20 tungsten. And the X-ray diffraction analysis of the double-layer stacked tungsten reveals that the deposited tungsten is an amorphous metal. When amorphous tungsten is deposited, it is subjected to a nitriding treatment for five minutes. The pressure is unchanged, and the nitrogen flow rate is 80 ~ 120sccm. After nitriding, nitrogen atoms will enter this paper. Applicable to Chinese national standards (CNS> A4 specification (210X297 mm)) ------- ---- button clothes -------- Τ ------ i (please read the precautions on the back before you take this page: 452607) Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Λ 'ρ ^ ρ7 (ΊΑ6? TWP- 9/13 V. Description of the invention (9) In the thickness of 50nm on the surface of amorphous tungsten, as shown in Fig. 5, general tungsten is finally deposited. From the C curve in FIG. Without changing the original crystal orientation, analysis by X-ray excitation spectrum analyzer 'sees that the N1S bond can form a peak at 3997eV 5 as shown in Figure 6; if the nitrogen atom and tungsten bond are formed at 397eV, it will also form At a peak, the bonding energy of nitrogen is affected by tungsten due to the bonding between nitrogen atom and tungsten, so in the present invention, the nitrogen atom is filled with The diffusion path is cut off. The nitrogen atom does not bond with tungsten, but exists in the tungsten metal β 10 in a way that fills the fine gap. In addition, after the breakdown charge test, it is found that whether or not Layer Tungsten's properties are far better than those of a single layer of ordinary cranes, as shown in Figure 7; and Figure 8 is a step-by-step demonstration of the breakdown charge test of the metal-oxygen half-capacitor after five minutes of heat treatment. The results also show that no matter whether it has been nitrided or made of tungsten, its impurities are far better than that of a single 15-layer lay. Of course, the double-nitrided material has better characteristics and is not inferior to that of polycrystalline silicon. At the same time, the resistance of the test electrode of the gate electrode is much lower than that of the polycrystalline silicon gate device. After the breakdown electric field test, it is found that the characteristics of the double-layer crane with or without nitriding are much better than the single-layer. The general crane is shown in Figure 9 and Figure 20; Figure 10 further shows the breakdown of the metal-oxygen semi-capacitor after a five-minute heat treatment breakdown electric field test. The results also show that whether the double-layer Feng's characteristics and crash charge test The same; even the nitrided double-layer stacked tungsten test rhenium X-chip has a slightly better rupture electric field than the control sample, which is due to the small amount of fluorine κ; The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 ^^ -——- _______ —-^ --------- Pei -------- Order ------ line (please Read the precautions on the back before filling in this page} A7 PAQ7Q402.TWP ^ 10 / ί3 452607 B7 V. Description of the invention (2) Double-layer stacked tungsten test piece with hardening effect and nitridation treatment, can be fluorine The amount is controlled within the standard, thus producing a hardening effect. Figure 11 shows the depth analysis of general chemical vapor deposition tungsten in a secondary ion mass spectrometer. It can be clearly seen that fluorine atoms have been drilled into silicon in a single layer of general tungsten that has not been heat treated. Inside the substrate, even the doped phosphorus atoms diffuse into the silicon substrate, which is due to the interface damage caused by excessive fluorine atoms. The double-layer tungsten metal can effectively prevent the diffusion of fluorine atoms. After five minutes of heat treatment at 700 ° C, the fluorine atoms in the gate dielectric layer are much lower than ordinary towns, as shown in Figure 12, and the interfaces are still Qing 10 can be discerned. Figure 13 shows the double-layered tungsten metal after nitriding. After five minutes of 700 ° C heat treatment, the fluorine atom content in the gate dielectric layer and the non-nitrided test piece It is already lower than the detection concentration. Although the SIMS chart cannot compare the effect of the untreated and nitrided double-layer 15 tungsten metal barrier, the breakdown charge test has proven that the double-layered tungsten metal barrier has been nitrided. The effect is better. [Features and effects] The chemical vapor deposition double-layer stacked tungsten metal and refractory metal manufacturing method provided by the present invention has the following 20 advantages when compared with other conventional technologies: 1. The present invention uses pure Fire-resistant metal replaces refractory metal silicide for lower resistance. 2. As the amorphous amorphous tungsten has almost no granular structure. Therefore, during chemical vapor deposition, fluorine atoms will not be diffused into the interface through the granular structure. -10- The size of this note applies to Chinese National Standard (CNS) A4 Specifications (210X297 mm)--------- 1-'1 --1 ------- I _ _ I t—, _. Umnnt Please read the precautions on the back first 1. This page) is printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. Δ Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economics. 3. Nitrogen treatment can be performed without breaking the vacuum after the deposition of amorphous tungsten, making its thermal stability more excellent. 4. Amorphous tungsten is a kind of deposition in gas phase nodules. Therefore, it will not cause the consumption of the surface silicon substrate during the deposition. Therefore, the atoms such as phosphorus, boron, etc. doped in the polycrystalline silicon will be restricted. Will spread outward. The above detailed description is a specific description of a feasible embodiment of the present invention, but this embodiment is not intended to limit the patent scope of the present invention. Any equivalent implementation or change that does not depart from the technical spirit of the present invention should be included in The scope of patent in this 10 case. To sum up, this case is not only technically innovative, but also enhances the above-mentioned multiple effects over conventional items. It should have fully met the requirements for novel and progressive statutory invention patents, and applied in accordance with the law. We ask your office to approve this. Application for invention patents, to encourage inventions, to the sense of virtue. 11 This paper scale is applicable to the Chinese National Standard (CNS) Α4 specification UIOX 297 mm) i ------------------------------------- J. (Please read the (Notes never write this page again)

Claims (1)

公告本 90. 2* Α8 Β8 C8 D8 PA870462 AMD - 12/13 經濟部智慧財產局員工消費合作社印製 氣相沉積雙層堆疊鎢金屬於耐火金屬之製法, 其製程步驟包括: a-成長二氡化矽氧化層’其成長厚度為500nm,以做為 隔絕用: b-貫光成相I定出工作區; C.成長二氧化矽氧化層’其成長厚度為i〇nrn,以做為 閘極介電層; d_成長複晶矽’成長厚度為250nm,做為應力緩衝 層; e. 成長似非晶鎢,厚度為50nm ; f. 氮化處理; g·成長一般鎮,厚度為200nm: 藉由上述之步驟,使其沉積後,形成一可增加熱穩定 性、並能阻止氟原子對内部擴散,而且不會對傳輸電阻 造成影響之雙層堆疊鎢之金氧半電容或金氧半場效電晶 體結構者。 2 如申μ專利範圍第1項所述之一種化學氣相沉積雙層堆 疊鎢金屬於耐火金屬之製法,其中該步驟e至步驟g是以 雙層堆疊鎢,作為金氧半場效電晶體或金氧半電容&之閘 極電極或傳輸線。 3,如申請專利範圍第丨項所述之一種化學氣相沉積雙層 堆疊鎢金屬於耐火金屬之製法,其中該步驟e至步驟I 之製程中,係將該鎢金屬加上氣化處理,以增加阻插效 果,同時均以不破真空的方式沉積雙層堆疊鎢。田> 4.如申請專利範圍第!項所述之一種化學氣相沉積雙層 __ - 12- 本紙法尺度適用t國國家料·(.冗〉( η。〆297公楚)~~ -------- II-------1¾------訂-------線, (請先K讀背面之注意事項存填寫本黃) 1X5 經濟部智慧財產局員工消費合作社印製 4 ?60 7 2. -¾ AS 38 CS D8 PA370462.AMD ^ 13M3 六、申請專利範圍 土丨t ^ at S3, - 4±- a 堆疊鎢金屬於耐火金屬之製法,其中步私^儿積1以非33 鎢之條件如下: 沉積溫度:250°C〜350°C 腔體壓力:80~120mTorr SiHt7llt:l〇〜25sccm WF6流量:l〇sccm ° 5ι如申請專利範圍第1項所述之一種化學氣相沉積雙層堆 疊鎢金屬於耐火金屬之製法,其中該步驟€之氮化處 理,其溫度麼力均不變,氮氣流f為〜i2〇sccm。 13 - 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫-ίνκ )Bulletin 90. 2 * Α8 Β8 C8 D8 PA870462 AMD-12/13 Manufacturing method for printing vapor-deposited double-layer stacked tungsten metal on refractory metal by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, the process steps include: a-growth The silicon oxide layer has a growth thickness of 500 nm for isolation purposes: b-Tongguang phase I defines the working area; C. The silicon oxide layer has a growth thickness of 100 nm as a gate Extreme dielectric layer; d_growth polycrystalline silicon 'growth thickness is 250nm, as a stress buffer layer; e. Grows like amorphous tungsten, thickness is 50nm; f. Nitriding treatment; g · growth general town, thickness is 200nm: Through the above steps, a double-layer stacked tungsten-oxygen half-capacitance or metal-oxygen half-field of tungsten can be formed after deposition, which can increase the thermal stability and prevent the fluorine atoms from diffusing to the inside without affecting the transmission resistance. Effect transistor structure. 2 A method for manufacturing a chemical vapor deposition double-layer stacked tungsten metal in a refractory metal as described in item 1 of the patent application scope, wherein the steps e to g are double-layer stacked tungsten as a gold-oxygen half field effect transistor or Gate electrode or transmission line of metal-oxygen half capacitor &. 3. A method for manufacturing a chemical vapor deposition double-layer stacked tungsten metal in a refractory metal as described in item 丨 of the scope of the patent application, wherein in the process from step e to step I, the tungsten metal is added with gasification treatment, In order to increase the blocking resistance effect, at the same time, the double-layer stacked tungsten is deposited in a way that does not break the vacuum. Tian > 4. If the scope of patent application is the first! One of the chemical vapor deposition double-layers mentioned in item __-12- The scale of this paper method is applicable to national materials of the country · (. Redundant> (η.〆297 公 楚) ~~ -------- II-- ----- 1¾ ------ Order ------- line, (please read the notes on the back and fill in this book first) 1X5 Printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 4? 60 7 2. -¾ AS 38 CS D8 PA370462.AMD ^ 13M3 VI. Patent application scope 丨 t ^ at S3,-4 ±-a Manufacturing method of stacking tungsten metal on refractory metal, in which the product is 1 to 33 The conditions for tungsten are as follows: Deposition temperature: 250 ° C ~ 350 ° C Cavity pressure: 80 ~ 120mTorr SiHt7llt: 10 ~ 25sccm WF6 flow rate: 10sccm ° 5ι A chemical vapor phase as described in item 1 of the scope of patent application A method for depositing a double-layer stacked tungsten metal in a refractory metal, in which the nitriding treatment in this step has no change in temperature and force, and the nitrogen flow f is ~ i2sccm. 13-This paper size applies to the Chinese National Standard (CNS) A4 size (210X297 mm) (Please read the precautions on the back before filling out -ίνκ)
TW88104776A 1999-03-26 1999-03-26 Production of a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal TW452607B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88104776A TW452607B (en) 1999-03-26 1999-03-26 Production of a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88104776A TW452607B (en) 1999-03-26 1999-03-26 Production of a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal

Publications (1)

Publication Number Publication Date
TW452607B true TW452607B (en) 2001-09-01

Family

ID=21640089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88104776A TW452607B (en) 1999-03-26 1999-03-26 Production of a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal

Country Status (1)

Country Link
TW (1) TW452607B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777215B2 (en) 2007-07-20 2010-08-17 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US8067762B2 (en) 2006-11-16 2011-11-29 Macronix International Co., Ltd. Resistance random access memory structure for enhanced retention
TWI579921B (en) * 2009-09-09 2017-04-21 諾菲勒斯系統公司 Method for improving adhesion of low resistivity tungsten/tungsten nitride layers
US9653353B2 (en) 2009-08-04 2017-05-16 Novellus Systems, Inc. Tungsten feature fill
US9754824B2 (en) 2015-05-27 2017-09-05 Lam Research Corporation Tungsten films having low fluorine content
US9953984B2 (en) 2015-02-11 2018-04-24 Lam Research Corporation Tungsten for wordline applications
US9978605B2 (en) 2015-05-27 2018-05-22 Lam Research Corporation Method of forming low resistivity fluorine free tungsten film without nucleation
US11348795B2 (en) 2017-08-14 2022-05-31 Lam Research Corporation Metal fill process for three-dimensional vertical NAND wordline
US11549175B2 (en) 2018-05-03 2023-01-10 Lam Research Corporation Method of depositing tungsten and other metals in 3D NAND structures
US11972952B2 (en) 2018-12-14 2024-04-30 Lam Research Corporation Atomic layer deposition on 3D NAND structures

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067762B2 (en) 2006-11-16 2011-11-29 Macronix International Co., Ltd. Resistance random access memory structure for enhanced retention
US8587983B2 (en) 2006-11-16 2013-11-19 Macronix International Co., Ltd. Resistance random access memory structure for enhanced retention
US9076964B2 (en) 2006-11-16 2015-07-07 Macronix International Co., Ltd. Methods for forming resistance random access memory structure
US7777215B2 (en) 2007-07-20 2010-08-17 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US7943920B2 (en) 2007-07-20 2011-05-17 Macronix International Co., Ltd. Resistive memory structure with buffer layer
US9653353B2 (en) 2009-08-04 2017-05-16 Novellus Systems, Inc. Tungsten feature fill
US10103058B2 (en) 2009-08-04 2018-10-16 Novellus Systems, Inc. Tungsten feature fill
TWI579921B (en) * 2009-09-09 2017-04-21 諾菲勒斯系統公司 Method for improving adhesion of low resistivity tungsten/tungsten nitride layers
US9953984B2 (en) 2015-02-11 2018-04-24 Lam Research Corporation Tungsten for wordline applications
US10529722B2 (en) 2015-02-11 2020-01-07 Lam Research Corporation Tungsten for wordline applications
US9978605B2 (en) 2015-05-27 2018-05-22 Lam Research Corporation Method of forming low resistivity fluorine free tungsten film without nucleation
US9754824B2 (en) 2015-05-27 2017-09-05 Lam Research Corporation Tungsten films having low fluorine content
US10546751B2 (en) 2015-05-27 2020-01-28 Lam Research Corporation Forming low resistivity fluorine free tungsten film without nucleation
US11348795B2 (en) 2017-08-14 2022-05-31 Lam Research Corporation Metal fill process for three-dimensional vertical NAND wordline
US11549175B2 (en) 2018-05-03 2023-01-10 Lam Research Corporation Method of depositing tungsten and other metals in 3D NAND structures
US11972952B2 (en) 2018-12-14 2024-04-30 Lam Research Corporation Atomic layer deposition on 3D NAND structures

Similar Documents

Publication Publication Date Title
US4959745A (en) Capacitor and method for producing the same
Meng et al. Aligned Growth of Millimeter‐Size Hexagonal Boron Nitride Single‐Crystal Domains on Epitaxial Nickel Thin Film
TW452607B (en) Production of a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal
TW434708B (en) Method for forming gate electrodes of semiconductor device
US20050176247A1 (en) Retarding agglomeration of Ni monosilicide using Ni alloys
JP5903504B2 (en) Method for forming conformal metal silicide films
TW402747B (en) Method and apparatus for minimizing dopant outdiffusion in gate structures
Do et al. Formation of low-resistivity nickel silicide with high temperature stability from atomic-layer-deposited nickel thin film
Sriraman et al. Hydrogen-induced crystallization of amorphous silicon thin films. I. Simulation and analysis of film postgrowth treatment with H2 plasmas
Choi et al. Atomic layer deposition of TiO2 films on Ru buffered TiN electrode for capacitor applications
TW409404B (en) Fabrication method of semiconductor device with HSG configuration
US6124639A (en) Flat interface for a metal-silicon contact barrier film
US20050006722A1 (en) Process for forming a thin film of TiSiN, in particular for phase change memory devices
Hao et al. Highly Enhanced Polarization Switching Speed in HfO2‐based Ferroelectric Thin Films via a Composition Gradient Strategy
TW396646B (en) Manufacturing method of semiconductor devices
TW392342B (en) Integrated circuit fabrication method and structure
Kei et al. Modulation of wall thickness of Al‐doped ZnO nanotubes by nanolamination of atomic layer deposition for oxygen sensing
US6194295B1 (en) Production of a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal
Kim et al. Characteristics of ALD tungsten nitride using B2H6, WF6, and NH3 and application to contact barrier layer for DRAM
Pezzi et al. Oxygen transport and reaction mechanisms in rhenium gate contacts on hafnium oxide films on Si
TW469498B (en) Manufacturing method for semiconductor device
JPS638548A (en) Gas sensor and its manufacture
TW550707B (en) Tantalum carbide nitride diffusion barrier for copper metallization process
JPH02151060A (en) Semiconductor device and manufacture thereof
TW399324B (en) The semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees