TW444499B - Binocular mechanical head monitoring system - Google Patents

Binocular mechanical head monitoring system Download PDF

Info

Publication number
TW444499B
TW444499B TW87121973A TW87121973A TW444499B TW 444499 B TW444499 B TW 444499B TW 87121973 A TW87121973 A TW 87121973A TW 87121973 A TW87121973 A TW 87121973A TW 444499 B TW444499 B TW 444499B
Authority
TW
Taiwan
Prior art keywords
binocular
manipulator
target
image processing
monitoring system
Prior art date
Application number
TW87121973A
Other languages
Chinese (zh)
Inventor
Ching-Yuan Tsai
Guo-Jiun Li
Original Assignee
Tsai Ching Yuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsai Ching Yuan filed Critical Tsai Ching Yuan
Priority to TW87121973A priority Critical patent/TW444499B/en
Application granted granted Critical
Publication of TW444499B publication Critical patent/TW444499B/en

Links

Landscapes

  • Image Analysis (AREA)

Abstract

The present invention relates to a binocular mechanical head monitoring system consisting of a binocular mechanical head, a visual tracking controller, and a video processing system, The binocular mechanical head has a base. The first transmission axle on the top of the base drives the rotation stand above it. The second transmission axle is pivotally connected the top of the rotation stand and the head. By cooperating with the visual tracking controller and the video process system, two CCD cameras driven by the third transmission axle and the fourth transmission axle on two sides of the head drive can be used to monitor a moving object. Thus, a system with 3D visual monitoring effect is provided.

Description

經濟部+央搮率局真工消费合作社印^ 444499 五、發明説明(/ ) 本發明關於一種雙眼機械頭監控系統’尤指一種利用 具四自&度的雙眼機械頭,配合二部CCD攝影機可獲得 極佳之立體視覺,以形成一極佳之監控系統。 儘管自動化的技術已非常進步,但大多數的機械式傳 輸機構只能在固定的工作環境下執行固定的任務,為了讓 機械式傳輸機構的工作更有彈性,並具智慧,最直接之方 式是模仿人類利用眼睛辨識和追蹤目標物的能力’並進而 與機械式傳輸機構配合完成任務;唯對一個三維空間的目 標物而言,單一攝影機只能得到目標物投影在影像平面的 二維影像資訊,若要得到目標物的空間資訊則必須經由立 體視覺的兩個影像資訊推算得之,如同人類具有兩個眼晴 可以感覺出物體的遠近般,因此本發明者思及,若能建立 一種具立艘監控效果之系統’應可提高監控之效率。 故為能提供一較佳之監控系統’本發明者乃設計出本 發明「雙眼機械頭監控系統」,希藉由雙眼機械頭之監控 ’如同人類之視覺行為,而獲得極佳之監控。 本發明設計之主要目的在於提供一種「雙眼機械頭監 控系統」,該監控系統由雙眼機械頭、視覺追蹤控制器及 影像處理系統所組成’雙眼機械頭具有一底座,底座頂端 以第一傳動轴帶動上端之旋轉座,旋轉座頂端以第二傳動 軸樞接頭部,而於頭部兩侧各以第三傳動軸及第四傳動軸 帶動二部CCD攝影機,再配合視覺追蹤控制器及影像處 理系統,可對移動中之目標物進行監控,提供一具立體視 覺監控效果之系統。 (請先閲讀背面之注意^項再填寫本頁jPrinted by the Ministry of Economic Affairs and the Central Government Bureau of Real Industrial Consumer Cooperatives ^ 444499 V. Description of the Invention (/) The present invention relates to a binocular manipulator monitoring system, especially a binocular manipulator with four auto & degrees. The CCD camera can obtain excellent stereo vision to form an excellent monitoring system. Although the technology of automation has been very advanced, most mechanical transmission mechanisms can only perform fixed tasks in a fixed working environment. In order to make the mechanical transmission mechanism work more flexible and intelligent, the most direct way is It imitates human's ability to recognize and track the target with the eyes' and then cooperates with the mechanical transmission mechanism to complete the task; only for a three-dimensional target, a single camera can only obtain the two-dimensional image information of the target projected on the image plane In order to obtain the spatial information of the target object, it must be calculated through the two image information of stereo vision, just as human beings have two clear eyes and can sense the distance of the object. Therefore, the inventor thought that if a The system of monitoring the effect of the erection of ships should improve the efficiency of monitoring. Therefore, in order to provide a better monitoring system, the inventor has designed the "binocular manipulator monitoring system" of the present invention, and hopes to obtain excellent monitoring by monitoring the binocular manipulator like human visual behavior. The main purpose of the design of the present invention is to provide a "binocular manipulator monitoring system", which is composed of a binocular manipulator, a vision tracking controller, and an image processing system. The binocular manipulator has a base, and the top of the base is provided with a first A transmission shaft drives the upper rotation seat, the top of the rotation seat is pivoted by the second transmission shaft, and two CCD cameras are driven by the third transmission shaft and the fourth transmission shaft on both sides of the head. And image processing system, which can monitor the moving target and provide a system with stereoscopic monitoring effect. (Please read the note on the back ^ before filling in this page j

Af B7 五、發明説明(上) 為使貴審查委員能更進一步了解本發明監控系統之 結構及應用方式,特配合圖式加以說明: (一)圖式部份: 第一圖係本發明雙眼機械頭之立趙外觀示意圖。 第一圓係本發明雙眼機械頭之前視示意圓β 第二囷係本發明雙眼機械頭之側視示意圖。 第四圖係本發明雙眼機械頭之俯視示意圖。 第五圈係本發明雙眼機械頭各轴蝸輪蝸桿之減速比示 意表 經濟部中央橾率局負工消費合作社印製 第六圓係本發明脈波指令控制方塊示意圓。 第七圓係本發明脈波輸出示意圖。 第-八®係本發明影像處理單元網路架構示意圖。 第九围係本發明影像處理流程圖。 第十圓係本發明系統控制架構示意圖。 第十一圖係本發明雙眼機械頭關節角度之定義圖。 第十二囷係本發明應用SO ΙΜ網路架構示意圖。 第十三圖係本發明應用S 0 I Μ網路學習架構示意圖 〇 第十四圖係本發明與機械手臂整合之系統控制架$# 意囷。 第十五圖係本發明雙眼機械頭各軸最快速度及各&@ 出角度與脈波輸入之關係表》 第十六圓係本發明第一轴饗應示意圖。 第十七圖係本發明第二軸饗應示意圖。 t ( CNS ) ('210 X 297^*' (靖先聞讀背面之注意事項再填寫本頁} > »1T:- A44499 經濟部中央標準局β;工消费合作社印 A? ·, B7 五、發明説明(j) 第十八圖係本發明第三轴響應示意圖。 第十九圖係本發明第四軸響應示意圖。 第二十圖係本發明雙眼機械頭於SO I Μ網路學習過 程中各軸轉動範圍表。 第二十一圖係本發明I 1誤差示意圖。 第二十二圖係本發明I 2誤差示意圖。 第二十三圖係本發明I 3誤差示意圖。 第二十四圖係本發明系統硬體架構示意圖。 第二十五囷係本發明對於移動目標物在左眼影像平面 之位置變化圏。 第二十六圓係本發明對於移動目標物在右眼影像平面 之位置變化圖。 第二十七圓係本發明對於移動目標物在左眼影像平面 u方向之位置變化圖。 第二十八囷係本發明對於移動目標物在左眼影像平面 ν方向之位置變化圖》 第二十九圖係本發明對於移動目標物在右眼影像平面 u方向之位置變化圖。 第三十圈係本發明對於移動目標物在右眼影像平面ν 方向之位置變化囷》 第三十一圖係本發明與機械手臂整合之系統硬體架構 不意圏。 第三十二围係移動目標物與機械手臂端接器在左眼影 像座標之變化圖。 / {請先閎讀背面之注意事項再填寫本 .丁 . -—I— I— 5 經濟部争央揉率局負工消费合作社印輦 A7 B7 五、發明説明(p) 第二十三圖係移動目標物與機械手臂端接器在右眼影 像座標之變化圖。 (一)圊號部份* (10)底座 (11)第一傳動轴 (12)旋轉座 (13)第二傳動軸 C14)頭部 (15)第三傳動軸 (1 6 )第四傳動軸 (1 7 )攝影機 (18)攝影機 本發明之雙眼機械頭監控系統係由雙眼機械頭、視覺 追蹤控制器及影像處理系統所組成,其中雙眼機械頭之結 構’即如第一圖所示,其具有一底座(1 〇),底座(1 0 )頂端以第一傳動轴(1 1 )帶動上端之旋轉座(1 2 ),旋轉座(1 2 )頂端以第二傳動軸(1 3·)樞接頭部 (14),而於頭部(14)兩側各以第三傳動轴(15 )及第四傳動軸(1 6)帶動二部CCD攝影機(χ 7) (18),請配合參看第二圖、第三圈及第四圖所示,其 中底座(1 0 )上設置之第一傳動轴(1 1 )可作大範圍 的轉動’轉動範圍在一百八十度左右’如同人的頸子可做 水平轉動’而第二傳動柏(1 3 )與水平面平行可做局部 的轉動’轉動範圍可在一百度左右’如同人的頭部可做俯 仰的運動’另第三傳動轴(1 5)及第四傳動軸(1 可獨立轉動約一百八十度,使攝影機如同模仿眼球般可以 做朝左朝右的運動。 而第一傳動軸(1 1 )、第二傳動軸(1 3 )、第三 6 本紙法尺度遴用中國家標♦ ( CNS > A4洗格(210X297公* > (請先閲讀背面之注意Ϋ項再填寫本頁) f 經濟部中央樣率扃貞工消费合作社印袈 A7 B7 五、發明説明(f) —^ 傳動轴(1 5)及第四傳動軸(16)均是由馬達、減迷 機及驅動器所帶動,主要是提供整個機構作伺服控制用, 其中馬達和減速器裝置於機構本體,而搭配每個馬達的驅 動益則置於控制箱中,驅動雙眼機械頭的四個馬達輸出轴 之減速機均為堝輪蜗桿組(w〇rm gear b〇x)的設計裝置, 其優點主要有: 1 .蝸輪蝸桿組屬於減速機構的一種,可提供機構在 位置輸出上較高的解析度以期達到較精準的伺服 控制。 2 · 一般減速機構最常遇到的問題就是背隙(backlash) 現象’常會因此造成控制上的問題,而蜗輪蝸桿 組的背隙現象遠小於一般的減速機構β 3,馬達在加裝蝸輪蝸桿組後,可提高扭矩輸出。 4 .由於蝸輪蝸桿組有不可反向驅動的特性,可增加 系統的剛性。 對於每一轴之蝸輪蝸桿組配以減速比(gear rati〇)的 選擇’依不同的考量,減速比如第五圖所示,其中第一傳 動軸與第二傳動轴為低轉速高扭矩輸出之考慮,因為整個 機構以第一、二傳動軸的出力需最大,尤以第二傳動轴尚 須考慮重力因素,所以減速比為最大。而第三、四傳動轴 雖然只需個別軀動二部CCD攝影機,但若加上蝸輪蜗桿組 的裝置後,因為可以增加輸出轴的扭力,所以可選用較小 的駆動馬達’除此外也增加了 CCD做轉動(vergence)的解 析度。 _ _7 本紙張从適用t國明家揉準(CNS )八峨#· ( ΖΙΟΧ297公釐) ~ ------ !. _ ¥ i A------J·. (請先閲讀背面之注意事項再填寫本頁) ^ : Λ 4 9 9 Α7 ---Β7 五、發明説明(么) ' 在控制介面方面,雙眼機械頭所使用的控制介面主要 包括數位輸入/輸出卡、中斷卡'解碼卡,如下: 1.數位輸入/輸出卡,雙眼機械頭所採用的數位輸 入/輸出卡最多可做16組的數位輸入及16組的 數位輸出。其中數位輸出部分是用來做脈波產生 器’所產生之脈波將送至馬達驅動器,作為雙眼 機械頭各關節的命令輸入。數位輸入功能則用來 作為光遮斷器遮斷與否之檢測依據β 2 .中斷卡,主要是利用其intei 8254晶片做控制程 式的中斷控制’此卡中斷頻率最快可達10MHz。 3 .解碼卡’用來讀取編碼器資訊,作為雙眼機械頭 各關節的角度回授,其可提供每一關節24位元解 析度的計數。 經濟部中央標準局員工消费合作杜印装 {請先聞讀背面之注意事項再填寫本頁) 對於雙眼機械頭各轴馬達的輸入命令訊號,配合選取 驅動器的位置控制模式,可以脈波輸入命令進行,其主要 考量乃是雙眼機械頭在執行主動式視覺追蹤時,希望能夠 具有步進馬違快速定位的特性,而配合驅動器所提供之位 置控制模式,不但能符合快速定位的要求,還具備了一般 步進馬連所不及的解析度。控制原理如第六圈所示,控制 器產生正轉(CW)、逆轉(CCW)的脈波指令至驅動器,驅動 器内部的偏差記數器會根據此脈波數再與馬達編碼器 (encoder)回授的脈波數相減,此一差量輸出經過D/A轉 換為類比訊號後做為馬達的致動命令’可以防止脫步現象 〇Af B7 V. Explanation of the Invention (above) In order for your review committee to better understand the structure and application mode of the monitoring system of the present invention, it is explained in conjunction with the drawings: (1) Schematic part: The first diagram is a pair of the invention Schematic diagram of the appearance of the eye robot head. The first circle is a schematic front view of the binocular manipulator of the present invention, and the second circle is a schematic side view of the binocular manipulator of the present invention. The fourth figure is a schematic top view of the binocular mechanical head of the present invention. The fifth circle is the speed reduction ratio of the worm and worm of each axis of the double-headed mechanical head of the present invention. The sixth circle is the circle indicated by the pulse command control block of the present invention. The seventh circle is a schematic diagram of the pulse wave output of the present invention. The eighth-eighth is a schematic diagram of the network structure of the image processing unit of the present invention. The ninth aspect is an image processing flowchart of the present invention. The tenth circle is a schematic diagram of the system control architecture of the present invention. The eleventh figure is a definition diagram of the joint angle of the binocular mechanical head of the present invention. The twelfth series is a schematic diagram of the SO IM network architecture applied by the present invention. The thirteenth figure is a schematic diagram of the S 0 I M network learning architecture of the present invention. The fourteenth figure is a system control frame $ # intention of the present invention integrated with a robot arm. The fifteenth figure is a table showing the relationship between the maximum speed of each axis of the binocular mechanical head of the present invention and the relationship between the & @ out angle and the pulse wave input. The sixteenth circle is a schematic diagram of the first axis of the present invention. The seventeenth figure is a schematic diagram of the second shaft of the present invention. t (CNS) ('210 X 297 ^ *' (Jing Xian first read the notes on the back and then fill out this page) > »1T:-A44499 Central Standards Bureau of the Ministry of Economics β; Industrial and consumer cooperatives printed A? ·, B7 5 Explanation of the invention (j) Figure 18 is a schematic diagram of the response of the third axis of the present invention. Figure 19 is a schematic diagram of the response of the fourth axis of the present invention. Figure 20 is a binocular mechanical head of the present invention learning on the SO I M network Table of the range of rotation of each axis in the process. Figure 21 is a schematic diagram of the error I 1 of the present invention. Figure 22 is a schematic diagram of the error I 2 of the present invention. Figure 23 is a schematic diagram of the I 3 error of the present invention. Twenty The fourth figure is a schematic diagram of the hardware architecture of the system of the present invention. The twenty-fifth (the present invention is a change in the position of the moving target in the left-eye image plane of the present invention). The twenty-sixth circle is the present invention for the moving target in the right-eye image plane. The position change diagram of the 27th circle is the position change diagram of the moving object in the u-direction of the left-eye image plane of the present invention. The 28th circle is the position of the moving target object in the v-direction of the left-eye image plane of the present invention. Change diagram "The twenty-ninth diagram is for the invention The position change diagram of the moving target in the u direction of the right eye image plane. The thirtieth circle is the position change of the moving target object in the ν direction of the right eye image plane. The thirty-first diagram is the integration of the invention with a robotic arm. The hardware structure of the system is unintentional. The thirty-second circumference is the change in the left eye image coordinate of the moving target and the robot arm terminator. / {Please read the precautions on the back before filling in this. Ding.- I— I— 5 Seal A7 B7, Consumer Work Cooperative of the Central Government Bureau of the Ministry of Economic Affairs, V. 5. Description of the Invention (p) Figure 23 shows the changes in the coordinates of the right eye image of the moving target and the robot arm terminator. (1) Part No. * (10) Base (11) First drive shaft (12) Rotary seat (13) Second drive shaft C14) Head (15) Third drive shaft (1 6) Fourth drive Axis (17) camera (18) camera The binocular manipulator monitoring system of the present invention is composed of a binocular manipulator, a vision tracking controller, and an image processing system. The structure of the binocular manipulator is as shown in the first figure. As shown, it has a base (10), the top of the base (1 0) starts with the first The transmission shaft (1 1) drives the upper rotation seat (1 2), and the top of the rotation seat (1 2) is pivoted by the second transmission shaft (1 3 ·) to the joint portion (14), and each side of the head (14) Drive the two CCD cameras (χ 7) (18) with the third drive shaft (15) and the fourth drive shaft (16). Please refer to the second, third, and fourth pictures. The base ( 1 0) The first transmission shaft (1 1) provided on it can be rotated in a wide range, 'the rotation range is about 180 degrees', as a human neck can be rotated horizontally, and the second transmission cymbal (1 3) Partial rotation parallel to the horizontal plane can be done 'the range of rotation can be about one Baidu' as the head of a person can do pitching movement 'and the third transmission shaft (1 5) and the fourth transmission shaft (1 can be independently rotated about one hundred Eighty degrees, so that the camera can move left and right as if imitating the eyeball. The first transmission shaft (1 1), the second transmission shaft (1 3), and the third 6 paper method are selected from Chinese national standards. (CNS > A4 wash grid (210X297) * > (Please read the back (Please note this item and fill in this page) f. Central sample rate of the Ministry of Economic Affairs, India Industrial Cooperatives Cooperative Seal A7 B7 V. Description of the invention (f) — ^ The drive shaft (1 5) and the fourth drive shaft (16) are all motors Driven by fans and actuators, it mainly provides the entire mechanism for servo control. The motor and reducer are installed on the body of the mechanism, and the driving benefits of each motor are placed in the control box to drive the binocular mechanical head. The reducers of the four motor output shafts are all design devices of wok gear worms (wom gear b〇x). The main advantages are as follows: 1. The worm gear is a type of reduction mechanism, which can provide the mechanism output in position. The higher resolution is expected to achieve more accurate servo control. 2 · The most common problem encountered by general deceleration mechanisms is the backlash phenomenon, which often causes control problems, and the backlash phenomenon of the worm gear group is far away. Less than ordinary reduction mechanism β 3, MA It can increase the torque output after installing the worm gear group. 4. Because the worm gear group has the feature of non-reversible driving, it can increase the rigidity of the system. For each axis, the worm gear group is equipped with a reduction ratio (gear rati〇 The choice of ') depends on different considerations, as shown in the fifth figure, where the first drive shaft and the second drive shaft are considered for low speed and high torque output, because the entire mechanism requires the maximum output of the first and second drive shafts. In particular, the second transmission shaft must also consider the gravity factor, so the reduction ratio is the largest. Although the third and fourth transmission shafts only need to physically move the two CCD cameras, if the worm gear unit is added, because Can increase the torque of the output shaft, so you can use a smaller moving motor 'in addition to increase the resolution of the CCD for vergence. _ _7 This paper is applicable from the national Mingjia Kuangquan (CNS) 八 E # · (ⅩΙχ × 297mm) ~ ------!. _ ¥ i A ------ J ·. (Please read the notes on the back before filling in this page) ^: Λ 4 9 9 Α7 --- Β7 5. Description of the invention (What) In the control interface, binocular machinery The control interface used by the head mainly includes digital input / output cards, interrupt cards and decoding cards, as follows: 1. Digital input / output cards, digital input / output cards used by binocular mechanical heads can do up to 16 sets of digital input And 16 sets of digital output. The digital output part is used to do the pulse wave generated by the pulse wave generator 'will be sent to the motor driver, as the command input of the joints of the binocular mechanical head. The digital input function is used as light The detection of the interruption of the interrupter is based on β 2. The interrupt card is mainly using its intei 8254 chip for interrupt control of the control program. The interrupt frequency of this card can reach 10MHz at the fastest. 3. Decoding card ’is used to read the encoder information as the angle feedback of the joints of the binocular mechanical head, which can provide a 24-bit resolution count of each joint. Consumption cooperation between employees of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling out this page) For the input command signal of the motor of each axis of the binocular mechanical head, in conjunction with the selection of the position control mode of the driver, pulse input The command is carried out. The main consideration is that when the binocular mechanical head performs active visual tracking, it hopes to have the characteristics of rapid positioning of stepping horses. In conjunction with the position control mode provided by the driver, it can not only meet the requirements of rapid positioning. It also has a resolution that ordinary stepping horses can't match. The control principle is shown in the sixth circle. The controller generates forward (CW) and reverse (CCW) pulse wave instructions to the driver. The deviation register inside the driver will then communicate with the motor encoder based on this pulse wave number. The number of feedback pulses is subtracted. This differential output is converted to an analog signal by D / A as an actuation command of the motor. This can prevent out-of-step phenomenon.

S 本紙浪尺度適用中Η 81家橾率(CNS ) A4规格(210 X 297公— Λ44499 Α7 Β7 五 經濟部中央輮準局Λ工消费合作杜印裂 、發明説明) (請先聞讀背面之注意事項再填寫本頁) 至於脈波輸出部分,可利用C語言編寫程式,配合中 斷卡的晶片做t斷,經由數位輸出功能來達到脈波指令輸 出。如第七圖所示,脈波寬度將影響馬達轉動的速度,脈 波寬度越窄’表不產生脈波的頻率越1¾,馬達轉速會越快 ,如果脈波的寬度固定不變,馬達的轉速將固定β 調變脈波寬度的方式是先給定每次馬達到達預期定位 的一個固定時間Γ,若經過控制法則得到馬達所需要的脈 波數為W,則脈波宽度為Δί = i。S The scale of this paper is applicable to the standard of 81 units in China (CNS) A4 specifications (210 X 297 males — Λ44499 Α7 Β7) Five Central Government Standards Bureau of the Ministry of Economy Λ Industrial Consumption Cooperation Du Yincai, Invention Description) (Please read the back Please fill in this page again for the matters needing attention) As for the pulse wave output part, you can use C language to write a program, cooperate with the chip of the interrupt card to do t-break, and use the digital output function to achieve the pulse wave command output. As shown in the seventh figure, the width of the pulse wave will affect the speed of the motor. The narrower the width of the pulse wave, the more frequently the frequency of the pulse wave is not generated, and the faster the motor speed. If the width of the pulse wave is fixed, the The speed will be fixed. The way to modulate the pulse width is to first give a fixed time Γ every time the motor reaches the expected positioning. If the number of pulse waves required by the motor is obtained by the control law, the pulse width is Δί = i .

2N 雙眼機械頭為一具四個自由度的伺服機構,乃配合驅 動器及伺服控制器,達定位控制效果,可供攝影機做pan 、tilt、vergence 等運動。 在影像處理方面’視覺系統的主要目的就是獲得目標 物的影像資訊’而影像資訊的獲得就如同人類一般,必須 透過雙眼來感測環境,再將視覺神經所受的刺激傳至大腦 ,然後根據經驗法則的判斷獲得所需的影像資訊,以採取 相對應的措施,而CCD攝影機和影像處理單元就好比人類 的雙眼及大腦負责處理視覺感知的部分。 雙眼機械頭的影像處理系統,是由二部CCD及影像處 理單元所構成,其中影像處理單元可為二部或多部,可自 行視需要規劃,目標物經由二部CCD所拍攝後,以NTSC 視頻訊號輸出,然後藉訊號線分別傳送給影像處理單元, 轉換成數位全彩訊號存入VRAM中’以供程式做數位影像 處理。 影像處理系統中若使用二部影像處理單元,其中與 9 本紙張尺度適用中HB家橾率< ) Α4规格(2丨0Χ297公釐) 經濟部中央橾準局貝工消費合作社印¾. 444499 A7 ---— — B7 五、發明説明(^) ~ ~~~~ 〜- PC相連接者稱為主(Master)影像處理單元,另一則稱為 僕(Slave)影像處理單元,連接的影像處理單元網路2第 八圖所示,主影像處理單元與僕影像處理單元分別連接雙 眼機械頭左右兩眼的攝影機,至於兩部影像處理單元的同 步問題,於處理影像資訊前,都先由主影像處理單元送— 訊號至僕影像處理單元後再開始動作,可達到同時擷取目 標物影像之目的。 至於影像處理步驟,從CCD攝影機擷取空間目標物的 影像到獲得所需要的影像平面上之座標,必須經過許多影 像處理的程序,透過parallel C程式語言的編寫,可使 影像處理的步驟在影像處理單元中完成,為了獲得空間目 標物的影像資訊,影像處理步驟大致可以分成視訊轉換、 目標物辨識、去除雜訊以及找特徵點四部份: 1·視訊轉換:目標物經由攝影機拍攝後,影像處理 單元影像處理單元會將其傳來的影像類比訊號轉 換成RGB三原色的數位訊號,也就是所謂的全彩 模式(true color) »對每一像素(pixel)均以三個 位元组儲存一個像素值’而每一個原色佔8位元 〇The 2N binocular manipulator is a four-degree-of-freedom servo mechanism. It is used in conjunction with actuators and servo controllers to achieve positioning control effects. It can be used by the camera to perform pan, tilt, and vergence motions. In image processing, the main purpose of the visual system is to obtain the image information of the target object. The image information is obtained just like humans, and the environment must be sensed through both eyes, and then the stimulation of the visual nerves is transmitted to the brain, and then Obtain the required image information according to the rule of thumb to take corresponding measures, and the CCD camera and image processing unit are like the parts of human eyes and brain responsible for processing visual perception. The image processing system of the binocular manipulator is composed of two CCDs and an image processing unit. The image processing unit can be two or more, which can be planned as required. After the target is captured by the two CCDs, The NTSC video signal is output and then sent to the image processing unit through the signal line, converted into a digital full-color signal and stored in VRAM 'for the program to do digital image processing. If two image processing units are used in the image processing system, the HB furniture ratio <) Α4 size (2 丨 0 × 297 mm) applicable to 9 paper sizes is printed by the Central Laboratories Bureau of the Ministry of Economic Affairs. A7 ------B7 V. Description of the invention (^) ~ ~~~~ ~-The PC connected is called the Master image processing unit, and the other is called the Slave image processing unit. As shown in the eighth figure of the processing unit network 2, the main image processing unit and the slave image processing unit are respectively connected to the cameras of the left and right eyes of the double-headed mechanical head. As for the synchronization of the two image processing units, before processing the image information, The signal is sent from the main image processing unit to the slave image processing unit and then starts the operation, which can achieve the purpose of capturing the target image at the same time. As for the image processing steps, from the capture of the image of the spatial target by the CCD camera to obtaining the coordinates on the required image plane, many image processing procedures must be passed. The parallel C programming language can be used to make the image processing steps in the image. In the processing unit, in order to obtain the image information of the space target, the image processing steps can be roughly divided into four parts: video conversion, target identification, noise removal and finding feature points: 1. Video conversion: After the target is shot by the camera, Image processing unit The image processing unit converts the image analog signals it sends into digital signals of the three primary colors of RGB, which is the so-called true color mode. »Each pixel is stored in three bytes. One pixel value 'and each primary color occupies 8 bits.

2.目標物辨識:在辨識多目標物的方法上,傳統都 是利用幾何圖形經由類神經辨識或是配合其他辨 識法則,但往往需耗費龐大的運算時間,並不適 合應用在主動式視覺追蹤,可嘗試以目標物顏色 的不同來做為區分的依據,對於紅色目標物,其R 10 本纸張尺度適用中國國家標率(CNS > A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂2. Target identification: In the method of identifying multiple targets, the traditional method is to use geometric figures through neural-like identification or cooperate with other identification rules. However, it often takes a large amount of computing time and is not suitable for active visual tracking. You can try to distinguish by the color of the target. For red targets, the R 10 paper size applies to the Chinese national standard (CNS > A4 size (210X297 mm)) (Please read the note on the back first) (Please fill in this page again)

經濟部中央橾率扃工消费合作社印«L 444^99 A7 __B7 五、發明説明(^ ) 值將比G值和B值都還高,所以在掃瞄影像時, 對每一像素,先比較其R、G、B值的大小,取其 中最大者,若是背景則將其像素值設為零,因為R 、G、B值各佔8位元’所以如此一來,不但可以 很快的辨識出不同顏色的目標物,而每個像素值 也都只有8位元的大小》 3 ·去除雜訊(noise):對於任何視覺系統,影像資訊 的雜訊干擾是不可避免的,而影像資訊所伴隨的 雜訊往往會嚴重影響系統的性能》因為雜訊表現 在影像上是零星散佈的白點,據此特徵,可以小 視窗(window)的方式對整張影像作掃瞄,當掃瞄 到的點其像素值小於一門檻值(threshold)時,此 點視為背景,並令其像素值為零;反之,則此點 有可能是目標物也有可能是雜訊,判斷的方法是 對此點的鄰域做檢視,若鄰域中沒有其他超過門 檀值的點,或是有但很少,即判定此點為雜訊, 並令其像素值為零’如此可以有效消除影像雜訊 的問題。 4 ·找特徵點:在辨識出目標物並去除雜訊後,為了 得到目標物在影像平面上的位置,可選用目標物 的形心當作特徵點。方法是將目標物每一點像素 的影像座標值相加,再除以目標物的像素個數總 ^LT。 對於左右兩眼所擷取之影像資訊分別在兩部影像處理 11 本紙浪尺度適用中«國家橾準(CNS) A4現格(210x297公釐) (請先閎讀背面之注意事項再填寫本頁)Printed by the Central Ministry of Economics and Consumers ’Cooperatives« L 444 ^ 99 A7 __B7 V. Description of the invention (^) The value will be higher than both the G value and the B value, so when scanning the image, for each pixel, first compare The size of the R, G, and B values is taken as the largest one. If it is the background, the pixel value is set to zero. Because the R, G, and B values each occupy 8 bits, this way, not only can it be quickly identified. Targets of different colors, and each pixel value is only 8-bit size "3 · Remove noise (noise): For any visual system, noise interference of image information is inevitable, and image information Accompanying noise often severely affects the performance of the system. "Because noise is scattered in the image as white spots, according to this feature, the entire image can be scanned in a small window. When the pixel value of a point is less than a threshold, the point is regarded as the background and the pixel value is made zero; otherwise, this point may be the target or noise. The method of judgment is to this The neighborhood of the point for inspection, if there is no other super in the neighborhood Tan door point value, or has but few, i.e. noise it is determined at this point, and allowed the pixel value of zero 'thus can effectively eliminate the problem of image noise. 4 · Finding feature points: After identifying the target and removing the noise, in order to obtain the position of the target on the image plane, the centroid of the target can be used as the feature point. The method is to add the image coordinate values of each pixel of the target, and then divide by the total number of pixels of the target ^ LT. For the image information captured by the left and right eyes, the two images are processed in the two papers respectively. «National Standards (CNS) A4 is now available (210x297 mm). (Please read the precautions on the back before filling this page. )

V 訂 鯉濟部中_失搮準局員工消费合作社印装 4 444 9 9 Α7 Β7 五、發明説明(/〇) ~~ 單元中執行上述之步驟’其每一部影像處理單元影像處理 之流程均如第九圖所示’最後再將兩部影像處理單元所求 得目標物在影像平面之形心座標傳至PC。 為了使雙眼機械頭達到監控的目的,本發明提出—個 控制架構’如第十圖所示,整個&控制架構包括螓眼_ & % 子系統、影像處理子系統、視覺追縱控制器及預測写。其 中視覺追蹤控制器部分則是採用SOIM(SeH-〇rganizing Invertible Map)類神經網路架構,其優點在於經由類神 經的學習’可免去繁瑣的校正工作,而目的在學習一種空 間表示式/(spatial representation),此表示式為一個 三維向量,可唯一表示目標物在工作空間中的位置,並將 不會因為攝影機姿態的改變而改變,而SO IM網路乃以目 標物的影像座標與伺服機構的關節角為輸入,,為輸出; 另基於即時控制的考量,預測器乃採用灰色預測的方式, 對目標物的轨跡進行預測》 在視覺追蹤控制器部份,雙眼機械頭各關節角之定義 如第十一圓所示’丨、&分別代表左、右兩個關節的角位 移’稱為vergence angle ; ^為第一轴關節的角位移,稱 為pan angle ’此關節可設定固定不動;&代表第二軸關 節的角位移’稱為tilt angle。名、&和&三個關節角可 透過電腦獨立控制,對空間中的目標物做追蹤,當兩個攝 影機光軸的交點落在目標物的表面上時,則目標物被視為 鎖定(fixated) ’其影像貧同時落在兩個影像平面的中心 〇 12 本纸張尺度適用中國國家標準(> A4规格(2|〇X297公鼇) II : W 1訂^------ (請先《讀背面之注意事項再填寫本頁) 經濟部中央橾準局WC工消费合作杜印製 444499 A7 _____B7 --~—------ 五、發明説明(^/ ) - 在執行主動式視覺追蹤時,為了鎖定目標物,攝影機 會隨目標物移動而改變其機構的狀態,根據攝影機的關節 角可由空間幾何上的關係推導出目標物在空間中的位置, 但這需要對雙眼機械頭子系統做精確的校正 (calibration),但不論是外部的機構參數或是内邙的影 像參數’皆不容易做到精準的校正。以下即針對s〇im類 神經網路作說明,並說明其可逆性: (―)S0IM網路架構最主要的精神就是學習一種映射 關係,此映射之輸入為目標物在左右兩眼的影像座標與雙 眼機械頭各轴的關節角,輸出為一個空間表示式此空間 表示式可以唯一描述三維空間目標物的位置。s〇im為一 個三層的網路架構,如第十二圓所示。 第一層: 為輸入層(input layer) ’包含兩種不同形式的輸入: (1 )影像座標輸入:f 分別代 表空間目標物投影在左、右兩個攝影機影像平面 上的座標,而且W,、V,、、&皆已被正規化 (normalized)於 0 到 1 之間。 (2 )角度向量輸入:殳一〜心“對應雙眼機械頭各 袖瞬間的角度’且正規化於〇到1之間,其中分 、&為三、四轴關節角度,%為第二軸關節角度 〇 第二層: 影像座標輸入部分首先經由第二層的模糊適應性共振 13 本纸張尺度逋用中國國家揉準(CNS}A4规格(210X297公釐) 1^ ; V 1 J^ 1請先閱讀背面之注意事項存填寫本育) 444499 經濟部中央揉率局W:工消费合作杜印衷 A7 B7 五、發明説明(/>) 理 eW 網路(fUZZy adaptive resonance theory network)做 分類的處理,模糊適應性共振理論網路屬於非監督式學習 (unsupervised learning),與傳統ART1網路最大的差別 在於ART1只能接受二進位(binary)的輸入,而fuzzy art 則可以接受二進位(binary)與連續性(analog)的輸入,本 發明的輸入型態為0到1之間的任意值。 模糊適應性共振理論網路具有以下兩個最大的特色: (1) 穩定性:當新的事物輸入時,舊的事物可適當 地保留》 (2) 可塑性:當新的事物輸入時,應迅速地學習。 然而穩定性與可塑性是有些衝突的,適應性共振理論網路 採用警戒值測試(vigilance test)來解決此一矛盾,其基 本原理為: (1) 如果新的事物的特性與某一個舊的事物的特性 夠相似(即通過警戒值測試),則只修改系統中該 舊事物的部分記憶,使其能同時滿足新舊事物的 特性’使舊的事物可適當地保留,如此可滿足穩 定性的要求。 (2) 如果新的事物的特性與所有的舊的事物的特性 均不夠相似(即通不過警戒值測試),則系統為此 新事物建立全新的記憶,以迅速地學習此新事物 ,如此可滿足可塑性的要求。 由第十二圖,模糊適應性共振理論網路可分為6、6 兩部份’並由權重所連接,關於其學習法則,可以左眼為 14 本紙逍用中國國家標率(CNS > ( 210X297公羡) — ---— (請先閱讀背面之注意事項再填寫本頁)V Order in the Ministry of Economic Affairs and Economics_Printed by the Consumers 'Cooperatives of the Lost Prospective Bureau 4 444 9 9 Α7 Β7 V. Description of the Invention (/ 〇) ~~ Perform the above steps in the unit' Each image processing unit image processing process As shown in the ninth figure, 'the centroid coordinates of the target in the image plane obtained by the two image processing units are finally transmitted to the PC. In order for the binocular mechanical head to achieve the purpose of monitoring, the present invention proposes a control architecture 'as shown in the tenth figure, the entire & control architecture includes the 螓 eye_ &% subsystem, image processing subsystem, visual tracking control And predictive write. Among them, the visual tracking controller part adopts a SOIM (SeH-〇rganizing Invertible Map) neural network architecture. The advantage is that learning through neural-like can avoid tedious correction work, and the purpose is to learn a spatial expression / (spatial representation), this expression is a three-dimensional vector, which can uniquely represent the position of the target in the working space, and will not change due to the change of the camera attitude. The SO IM network uses the image coordinates of the target and The joint angle of the servo mechanism is input and output. In addition, based on the consideration of real-time control, the predictor uses the gray prediction method to predict the trajectory of the target. In the visual tracking controller part, the binocular mechanical head The definition of the joint angle is shown in the eleventh circle. '丨, & respectively represent the angular displacement of the left and right joints' is called the vergence angle; ^ is the angular displacement of the first axis joint, which is called pan angle' this joint Can be fixed; & represents the angular displacement of the second axis joint is called the tilt angle. The three joint angles of name, & and & can be independently controlled by the computer to track the target in space. When the intersection of the optical axes of the two cameras falls on the surface of the target, the target is considered to be locked (Fixated) 'Its image falls on the center of two image planes at the same time. 〇12 This paper size applies the Chinese national standard (> A4 specifications (2 | 297X297)) II: W 1 order ^ ----- -(Please read the “Notes on the back page before filling out this page”) WC Industry Consumer Cooperation Du Printed by the Central Bureau of Standards, Ministry of Economic Affairs 444499 A7 _____B7-~ ——------ V. Description of Invention (^ /)- When performing active visual tracking, in order to lock the target, the camera changes the state of its mechanism as the target moves, and the position of the target in space can be derived from the spatial geometric relationship according to the joint angle of the camera, but this requires Accurate calibration of the binocular manipulator system, but neither external mechanism parameters nor internal image parameters can be easily calibrated accurately. The following is a description of the soim neural network. And explain its reversibility: ( ―) The main spirit of the S0IM network architecture is to learn a mapping relationship. The input of this mapping is the image coordinates of the target in the left and right eyes and the joint angle of each axis of the binocular manipulator. The output is a spatial expression. This spatial expression The formula can uniquely describe the position of the object in three-dimensional space. Soim is a three-layer network architecture, as shown in the twelfth circle. The first layer is the input layer (input layer), which contains two different forms of input : (1) Image coordinates input: f represents the coordinates of the spatial target projected on the left and right camera image planes respectively, and W ,, V ,, & have been normalized to 0 to 1 (2) Angle vector input: 殳 一 ~ 心 'corresponding to the instantaneous angle of each sleeve of the binocular mechanical head' and normalized between 0 and 1, where min, & are the three- and four-axis joint angles,% Is the joint angle of the second axis. The second layer: The image coordinate input part first passes the fuzzy adaptive resonance of the second layer. 13 This paper size is based on the Chinese national standard (CNS) A4 (210X297 mm) 1 ^; V 1 J ^ 1 Please read the back Note: Please fill in this education.) 444499 Central Bureau of Economic Affairs, Ministry of Economic Affairs, W: Industrial and consumer cooperation, Du Yinzhong A7, B7 V. Description of invention (/ >) fUZZy adaptive resonance theory network for classification processing The adaptive resonance theory network belongs to unsupervised learning. The biggest difference from the traditional ART1 network is that ART1 can only accept binary input, while fuzzy art can accept binary and continuous input. The input of analog, the input type of the present invention is any value between 0 and 1. The fuzzy adaptive resonance theory network has the following two biggest characteristics: (1) stability: when new things are input, old things can be properly retained "(2) plasticity: when new things are input, they should be quickly To learn. However, there is some conflict between stability and plasticity. The adaptive resonance theory network uses a vigilance test to solve this contradiction. The basic principle is: (1) If the characteristics of a new thing and an old thing Have similar characteristics (that is, pass the guard value test), then only modify a part of the memory of the old thing in the system, so that it can meet the characteristics of the old and new things at the same time 'make the old things can be properly retained, so that the stability of the Claim. (2) If the characteristics of the new thing are not sufficiently similar to the characteristics of all the old things (that is, the guard value test cannot be passed), the system establishes a brand-new memory for this new thing to quickly learn the new thing. Meet the requirements of plasticity. From the twelfth figure, the fuzzy adaptive resonance theory network can be divided into six and six parts and connected by weights. With regard to its learning rules, the left eye can be used for 14 papers using the Chinese national standard (CNS > (210X297 public envy) — --- — (Please read the notes on the back before filling in this page)

-1T t-i. 444^99 A7 B7 五、發明説明(/多) 例(右眼和左眼相同),列舉如下 12 4 所有權重(W)的初始值皆設為L 〇。 將輸入向量(Α,ν,)增為四維向量,卜,目 的在防止分類的擴張問題(categ〇ry proliferation problem)。 根據K層的四維輸入向量,對尽層的每個節點 (node)求其四配值f。 \^AWf\ ' "«ψτΤ其中 α為一個趨近零的常數β Λ表示 fuzzy AND ’(xA>〇,.Smin(u)。 2M 1 j ·!定義為|x| =’ M為X的個數。 J>*1 選取匹配值最大的節點若出現匹配值相同的節 點,則選取·/小的節點》 .檢驗知點·/是否滿足警戒值測試(vigilance criterion)如下: (A 式.) 經濟部中央橾隼局Λ工消费合作社印*--1T t-i. 444 ^ 99 A7 B7 V. Explanation of the invention (/ multiple) Examples (the right eye and the left eye are the same), the following are listed 12 4 The initial value of the weight (W) is set to L 〇. The input vector (Α, ν,) is increased to a four-dimensional vector, and the purpose is to prevent the classification expansion problem (category proliferation problem). According to the four-dimensional input vector of the K layer, each node (node) of the full layer is found to have its four matching values f. \ ^ AWf \ '" «ψτΤ where α is a constant approaching zero β Λ represents fuzzy AND' (xA > 〇, .Smin (u). 2M 1 j ·! Is defined as | x | = 'M is X J > * 1 Select the node with the largest matching value. If there is a node with the same matching value, then select the small node.// Check the knowing point // whether the vigilance criterion is met as follows: (Formula A .) Seal of the Central Government Bureau of the Ministry of Economy

PLj X1 ΆίΓ; XL ^PL (B式) 其中 pt為警戒參數(vigilance parameter) β 〆代表輸入與巧層第•/個分類節點的相似度。 6 ·如果第·/個節點通過警戒值測試,則修改權重值 15 本紙浪尺度逋用中国II家標率(CNS ) Α4規格(210 X 297公釐) (請先閲讀背面之注意Ϋ項再填寫本頁)PLj X1 ΆίΓ; XL ^ PL (Form B) where pt is a vigilance parameter β 〆 represents the similarity between the input and the clever layer's • / th classification node. 6 · If the / node passes the alert value test, then modify the weight value of 15 paper waves scale using the China II family standard rate (CNS) Α4 specifications (210 X 297 mm) (Please read the note on the back first (Fill in this page)

! 444499 Λ7 五 、發明説明 C ’學習法則為W=|xW| (以) 7 .,如果第《/個節點不通過警戒值測試,則捨去節點j ,重新回到步驟3。如果6層沒有任何節點可通過 警戒值測武,則產生一個新的節點,並回到步驟5 而對新節點和f層連接的權重之起始值皆設為 1.0。 “ 因此每組輸入向量P和y皆對應到模糊適應性共振理論 網路所產生的分類中。 第三層: 為輸出層,產生空間表示式(spatial representation) / = [/p/2,/3] / = 1,2,3其中 (D式) {請先閲讀背面之注意事項再填寫本頁) ,11 經濟部肀央揉準局負工消费合作社印製 尺、/為左、右兩眼的影像輸入在經過模糊適應性 共振理論網路後,所對應的分類節點β <、4為 巧分類層與輸出層的連接權重,初始值設為〇到1 之間的隨機值》 在每一次的學習循環中,每組輸入向量皆可對應一組 輸出/’如(D式),而第三層最主要的工作就是學習空間 表示式J,其特色在於學習的過程是自我組織(seH_ organized)方式。對空間中一個固定的目標物’ /t和八'為 兩個連續由(D式)求出的空間表示式,對於空間中相同位 置所算出的/*和//應該相同,但因為<、4的初始值是〇 本紙張尺度適用中家檬率(CNS) Α4现格(2丨0)<297公簸 A7 B7 五444499 Λ7 V. Description of the invention The learning rule of C ′ is W = | xW | (to) 7. If the node / fails the guard value test, the node j is dropped and the process returns to step 3. If there are no nodes in layer 6 that can pass the guard value test, a new node is generated, and the process returns to step 5 to set the initial values of the weights of the new node and the f-layer connection to 1.0. "Therefore each set of input vectors P and y corresponds to the classification generated by the fuzzy adaptive resonance theory network. The third layer: for the output layer, a spatial representation is generated / = [/ p / 2, / 3] / = 1,2,3 of which (D type) (Please read the precautions on the back before filling out this page), 11 The ruler of the Central Government Bureau of the Ministry of Economic Affairs prints the ruler, / for both left and right After the eye image input passes the fuzzy adaptive resonance theory network, the corresponding classification nodes β <, 4 are the connection weights of the clever classification layer and the output layer, and the initial value is set to a random value between 0 and 1. In each learning cycle, each set of input vectors can correspond to a set of outputs / such as (D type), and the most important work of the third layer is the learning space expression J, which is characterized by the process of learning is self-organized ( seH_ organized) method. For a fixed target in space, '/ t and eight' are two consecutive space expressions obtained by (D formula), and / * and // calculated for the same position in space should be the same , But because the initial value of < 4 is 0 Lemon rate (CNS) Α4 now grid (2 Shu 0) < 297 A7 B7 five well toss

經濟部中央揉準局員工消费合作杜印A 、發明説明(/51 到1之間的隨機值,所以4和//不會相同,必須修改4與 β,其學習法則為: (請先閎讀背面之注意事項再填寫本頁) ^ = r(i,-ii )pj (E 式) 其中 參數γ代表學習速率(learning rate)。 此學習之所以為自我組織方式,是因為(/—<’)是由網路在 學1過程中自我產生(sel f-generated)。 SOIM網路應用在雙眼機械頭的學習架構如第十三圖 ’在離線學習(〇f f-1 ine learning)過程中,針對工作空 間中的一個固定目標物,令雙眼機械頭各轴隨機轉動至一 個位置,然後以CCD掏取此目標物之影像,儲存雙眼機械 頭的各關節角度及經影像處理後的影像座標,不斷重覆上 述動作到所期望的學習次數,再將儲存的資料輸入至 S0IM網路,每筆輸入皆可對應一組輪出^,根據(E式)的 學習法則(learning rule)來調變權重值4與4,此固定 目標物的空間表示式(/)最後將會收斂至一微小區間,並 且記錄下學習後的權重與/),完成S0IM的學習。 (一)S0IM 網路的可逆性(invertible property), 可由(F式)表示,對於空間中的任何一點,在兩個攝影 機可以拍攝到的範圍内,皆可以經由S0IM網路得到一組 空間表示式/。S0IM網路的可逆性乃是指可以計算出影像 词服機構的輸出角,使空間目標物成像在影像平面中任何 所指定的位置上,因此假如我們決定了目標物的影像座標 总’則影像伺服機構相對應的角度輸出便可由(F式) 17 本紙張ΛΛϋ财__家料(CNS)从胁(21()><297公# > 經濟部中央榇準局β:工消费合作社印製 Λ7 B7______ 五、發明説明(&) 求得。 《 (Μ) 其中 /'、f代表對應所設定之影像座標Α在模糊適應 性共振理論網路(fuzzy adaptive resonance theory network)的輸出節點。 另預測器之目的在於預測移動中物體之軌跡,以彌補 控制器運算上及機構運動上時間落後的問題。由於目標物 的運動軌跡為不規則,難以建立其運動模型,故可利用灰 色理論來對目標物的運動軌跡進行預測。 對工程系統而言,觀察其行為,發現系統内部與外在 環境都有相當明確的輸入、輸出關係時,可用所謂的映射 函數來表示這種關係’此類系統的内外關係信息完全明端 ’稱為白色系統;相對的’若完全不明確稱為黑色系統。 如果系統其内部與外在環境的關係信息屬於部分明確,部 分不明確,則稱之為灰色系統。 一般在處理工程問題的步驟上,都是先對系統建模, 然後再根據系統的動態特性來研究整個系統的行為,輔以 適當的控制理論來提升系統的性能。這種先根據系統内各 狀態變量間的關係,建立起數學模型,再開始對系統進行 分析和控制的過程’稱為,,順過程”;反之,如果先知道系 統動態特性數據與資料之後,再建立其系統模型,這種過 程則稱為”逆過程”。 對於模型建立的過程中,輸入、輸出資料的取得若含 18 本-紙》LAA遑用中•國家揉準(CNS )从狀(ϋ297公釐--------- —^--------^------^ir-T-----Λ'-Γ (請先閲讀背面之注意事項再填寫本頁) 44449^ 經濟部t央搮準局員工消費合作社印装 A7 B7 五、發明説明(/7) 有某些不確定的因素存在時,則稱原系統的建模為灰色的 逆過程’而由這種逆過程所建立的模型就稱為灰色模型 (Grey Model) ’簡稱GM。灰色模型所表達的是系統内部的 連續行為’所以灰色系統理論所建立的是微分方程模型, 而非一般系統辨識(system identification)所建立的差分 方程模型。 廣義而言,對《階;z變量的灰色模型(Gray M〇del)記 為,不同的《與Λ的GM模型有著不同的意義與用 途,常見的灰色模型有: 1 · GM(«,1)模型(預測模型) «—般小於3 ’也就是系統灰色模型在三階以下, «愈大表示系統的内涵愈多,但是因為計算量的繁 大’造成即算時間上的損失,反而往往不適合做 動態即時預測。《 = 1的GM(1,1)模型,計算簡單,但 不能反映擾動的過程’所以也具有渡波的效果。 2 · C?M(1,A)模型(狀態模型) GM(l,/i)模型可以反映出其他(A-ι)個變量對某一個 變量的一階導數的影饗,但這需要&個時間序列, 並且事先必須儘可能做客親的分析,以破定哪些 因素的時間序列應該計入這個變量中。 3 · <?Μ(0,Α)模型(靜態模型) « = 〇’表示不考慮時間因素,所以是靜態模型 (static model) 〇 本發明於實驗階段即採用GM(1,1)模型,在(^^,丨)模 本紙浪尺度適用中國a家輮率(CNS ) A4規格(210X297公釐) (请先聞讀背面之注意事項再填寫本頁)Du Yin A, Consumer Cooperation of the Central Bureau of the Ministry of Economic Affairs, Consumer Instruction (Random value between / 51 and 1, so 4 and // will not be the same, and 4 and β must be modified. Its learning rule is: (Please first 闳Read the notes on the back and fill out this page) ^ = r (i, -ii) pj (E formula) where the parameter γ represents the learning rate. The reason why this learning is self-organizing is because (/ — < ') Is self-generated (sel f-generated) by the network in the process of learning 1. The learning architecture of the SOIM network application in the binocular mechanical head is shown in Figure 13' in offline learning (〇f f-1 ine learning In the process, aiming at a fixed target in the working space, the axes of the binocular manipulator are randomly rotated to a position, and then the image of this target is taken by the CCD, and the joint angles and the images of the binocular manipulator are stored. After processing the image coordinates, iteratively repeats the above actions to the desired learning times, and then inputs the stored data to the S0IM network. Each input can correspond to a set of rotations ^, according to the (E formula) learning rule ( learning rule) to adjust the weight values 4 and 4, this is fixed The spatial expression (/) of the target object will eventually converge to a small interval, and the weight and /) after learning will be recorded to complete the learning of S0IM. (1) The invertible property of the S0IM network can be represented by (F-type). For any point in space, within the range that can be captured by two cameras, a set of spatial representations can be obtained through the S0IM network. formula/. The reversibility of the S0IM network means that the output angle of the image server can be calculated so that the spatial target is imaged at any specified position in the image plane. Therefore, if we determine the total image coordinates of the target, then the image The corresponding angle output of the servo mechanism can be obtained by (F-type) 17 papers ΛΛϋ 财 __Household material (CNS) from the threat (21 () > < 297 公 # > Central Bureau of Standards, Ministry of Economic Affairs β: Industrial Consumption Printed by the cooperative Λ7 B7______ 5. Obtained from the & Description of the invention. ((M) where / 'and f represent the output of the corresponding image coordinates A in the fuzzy adaptive resonance theory network. The purpose of the predictor is to predict the trajectory of the moving object to compensate for the time lag in the operation of the controller and the movement of the mechanism. Because the trajectory of the target is irregular, it is difficult to establish its motion model, so gray can be used. Theory to predict the trajectory of the target. For an engineering system, observe its behavior and find that the internal and external environment of the system have fairly clear input and output relations. When the system is connected, the so-called mapping function can be used to represent this relationship. 'The internal and external relationship information of this type of system is completely clear.' It is called a white system. The opposite is called a black system if it is not clear at all. The relationship information is partly clear and partly ambiguous, so it is called a gray system. Generally, in the process of engineering problems, the system is modeled first, and then the behavior of the entire system is studied based on the dynamic characteristics of the system. Promote the performance of the system with appropriate control theory. This process of establishing a mathematical model based on the relationship between various state variables in the system, and then starting to analyze and control the system is called "the forward process"; otherwise, If you first know the system's dynamic characteristics data and data, and then build its system model, this process is called the "reverse process". For the process of model establishment, the input and output data acquisition includes 18 books-paper "LAA 遑" Using China • National Rubbing Standard (CNS) from the state (ϋ297 mm --------- — ^ -------- ^ ------ ^ ir-T ----- Λ'-Γ (Please read the note on the back first Please fill in this page again for details) 44449 ^ Printed by the Ministry of Economic Affairs of the Central Bureau of Associate Bureau, Consumer Cooperatives, A7 B7 V. Description of Invention (/ 7) When there are certain uncertain factors, the original system is modeled as gray "Inverse process" and the model created by this inverse process is called the Grey Model (referred to as GM. The gray model expresses the continuous behavior inside the system.) So the gray system theory establishes a differential equation model, It is not a difference equation model established by general system identification. In a broad sense, for the "order; gray model of the z-variable (Gray Model), it is said that different" have different meanings from Λ's GM model Common uses of gray models are: 1 · GM («, 1) model (prediction model)«-generally less than 3 ', that is, the gray model of the system is below the third order, «The larger the greater the meaning of the system, but because The huge amount of calculations causes a loss in calculation time, but it is often not suitable for dynamic real-time prediction. The GM (1,1) model with "= 1 is simple to calculate, but it cannot reflect the process of disturbance ', so it also has the effect of crossing waves. 2 · C? M (1, A) model (state model) GM (l, / i) model can reflect the influence of other (A-ι) variables on the first derivative of a variable, but this requires & amp Time series, and must do as much analysis as possible in advance to determine which factors the time series should be included in this variable. 3 <? M (0, Α) model (static model) «= 〇 'means that the time factor is not considered, so it is a static model 〇 The present invention uses the GM (1,1) model in the experimental stage, The (^^, 丨) template paper wave scale is applicable to China's a family rate (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page)

V 訂- 444 4 9 9 Α7 Β7 (/f: 五、發明説明 型中(《 k 1) ’ GM(U)模型的好處是運算時間最短,符合即 時控制的要求,因為是一階預測,所以不能反映出高頻擾 若如 (請先閱讀背面之注意事項再填寫本頁) —個明顯的位置或執跡上 有擾動現象,也不需要去做太詳細的預測,只要將其明顯 的位置(nominal location)預測出來。 在進行灰色建模之前,必須先對灰色理論中一些基本 定義做說明’對於一組原始的序列如(G式)表示, 网,=:;: ㈣ 首先定義(G式)的一次累加序列之運算如(η式): ^ = (Η 式) 為了方便起見並將(G式)的一次累加序列記為(I式) ㈨价(I式) 接著亦定義义:^的次累減序列為如(j式)式: ί = 1,2,.,.,ΛΓ {au\Xil\i)} · = (J 式) «/ = 1,2”.·,《 其中 ⑺, 經濟部中央揉準局Λ工消费合作社印製 α⑴«,,) = α(0)(〇-α(0>(尤1)"·-1), W,0 = αϋ·Κ,/) - ,ι· -1) 基本上,(?Λ/(1,1)的一般型式為一階單變數微分方程可以I 示如下: 20 本紙浪尺度逍用中國國家楳率(CNS)八4规格(210X297公釐> 五、 發明説明( 办⑴ {f dt axt0 = u u、 A7 B7 u x ⑴(〇 = 〇 ⑴(0)-:Ka,+-a a (K式) α式) 為了以電腦實現灰色建模,在方便數值計算(numerical calculation)的考量下,故將代表GM(1,1)的一階微分方程 改為增量的型式,由(K式)可得: Δχ(1)(ί)+αχ(1)(ί)= u (Μ 式) cr0)(jc0>(/),/t) +三(χ(1)(/5γ) + λγ⑴(丨_1)) = « ( Ν 式) 2 )(女)+ αζ()(灸)=w (◦式) (請先閱讀背面之注意事項再填寫本頁) > 其中 z(!)(^) = ^(x{,)(A:) + x(,)(/t-l)) 如此就可以得到離散饗應如下所示: χ(ι)(众 +1) = 〇(0> (1)—+ - a a ——訂 Μ濟部中央橾準局貝工消費合作杜印製 (p式) (Q式) 對於GA/(1,1)中的參數α、w,其辨識方法一般則是採用最 小平方法(least square method),其矩陣算式如(R式): ά = (ΒτΒ)~'ΒτΥκ (r 式) 其中 21 本紙張尺度適用中國國家揉率(CNS ) Α4规格(2l〇x297公釐) .«£濟部中央橾率ΛΛ工消t合作社印*- A7 _____B7 五、發明説明θ ) aά - , u 「-ζπ)(2)Γ R -^υ(3) 1 iS = > -zw(n) \ Γχ(0)(2)Ί r ^<〇>(3) YN = 針對以上的推導’舉一例如下,說明如何根據給定的一組 數據來建立模型: 序號⑺ 1 2 3 4 xco>(0 9 0 8 4 7 1 6 0 依據(R式),通過灰色建模過程後可得 [a, μ] = [0.1678,106.1556] 將α及μ值代入(Ρ式)可得GA/(1,1)的離散響應如下 X ⑴(A: +1) = (90 — 032.6317)/ 胃 + 632.6317 得結果為 序號⑺ 2 3 4 原 始 χί1)(〇 174 245 305 估 計 χω(〇 173.824 244. 699 304.626 由數據χ(1)(〇與ί(ι)(ί_)比較結果可知,的精確度已經 相當不錯。 ’ 22 (請先閱讀背面之注意事項再填寫本瓦)V order-444 4 9 9 Α7 Β7 (/ f: V. In the invention description type ("k 1) 'GM (U) model has the advantage of the shortest operation time and meets the requirements of real-time control, because it is a first-order prediction, so If it does not reflect high-frequency interference (please read the precautions on the back before filling this page) — there is a disturbance at an obvious location or track, and you do n’t need to make a detailed forecast, just the obvious location (Nominal location) prediction. Before performing gray modeling, you must first explain some basic definitions in gray theory. 'For a set of original sequences such as (G formula), net, =:;: 定义 First define (G The operation of an accumulation sequence of (formula) is like (η formula): ^ = (Η) For the sake of convenience, let's write the one accumulation sequence of (G) as (I) The price (I) Then define the meaning The sub-decrement sequence of ^ is as follows: (j-form): ί = 1,2,.,., ΛΓ {au \ Xil \ i)} · = (J-form) «/ = 1, 2". · ,, "Among them, printed by the Central Government Bureau of the Ministry of Economic Affairs, Λ Industrial Consumer Cooperative, α⑴« ,,) = α (0) (〇-α (0 > (Especial 1) " · -1), W, 0 = αϋ · Κ, /)-, ι · -1) Basically, the general form of (? Λ / (1,1) is a first-order single-variable differential equation. I can be shown as follows:楳 Ratio (CNS) 8 4 specifications (210X297 mm >) V. Description of the invention (⑴ {f dt axt0 = uu, A7 B7 ux = (〇 = 〇⑴ (0)-: Ka, +-aa (K formula ) Α) In order to realize gray modeling with a computer, considering the convenience of numerical calculation, the first-order differential equation representing GM (1,1) was changed to an incremental type. Available: Δχ (1) (ί) + αχ (1) (ί) = u (M formula) cr0) (jc0 > (/), / t) + three (χ (1) (/ 5γ) + λγ⑴ (丨 _1)) = «(Ν formula) 2) (female) + αζ () (moxibustion) = w (◦ formula) (Please read the precautions on the back before filling this page) > where z (!) ( ^) = ^ (x {,) (A :) + x (,) (/ tl)) So we can get discrete 飨 should look like this: χ (ι) (众 +1) = 〇 (0 > (1 ) — +-Aa —— Order the printing and production of Papier consumer cooperation of the Central Bureau of Standards of the Ministry of Economic Affairs (P-type) (Q-type) For the parameters α and w in GA / (1,1), the identification method is generally Least square (Least square method), the matrix formula is as follows (R formula): ά = (ΒτΒ) ~ 'ΒτΥκ (r formula) Among which 21 paper sizes are applicable to China National Kneading Rate (CNS) Α4 specification (2l0x297 mm). «£ The Central Ministry of Economic Affairs ΛΛ 工 消 t Cooperative Seal *-A7 _____B7 V. Invention Description θ) aά-, u「 -ζπ) (2) Γ R-^ υ (3) 1 iS = > -zw ( n) \ Γχ (0) (2) Ί r ^ < 〇 > (3) YN = For the above derivation 'For example, the following shows how to build a model based on a given set of data: No. ⑺ 1 2 3 4 xco > (0 9 0 8 4 7 1 6 0 According to (R formula), after the gray modeling process, [a, μ] = [0.1678,106.1556] can be obtained by substituting the values of α and μ into (P formula) The discrete response of GA / (1,1) is as follows: X ⑴ (A: +1) = (90 — 032.6317) / stomach + 632.6317 The result is the sequence number ⑺ 2 3 4 original χί1) (〇174 245 305 Estimate χω (〇173.824 244. 699 304.626 From the comparison of the data χ (1) (〇 and ί (ι) (ί_), we can see that the accuracy is quite good. ’22 (Please read the notes on the back before filling in this tile)

V 訂 本紙狀家科(CNS ) ( 2丨〇)<297公漦) 444499 A7 B7 五 M濟部中央橾率局属工消费合作社印製 、發明説明(~y) 請 先 閲 婧 背 面 i 事 項 t . 寫 w 本_ 頁 故由雙眼機械頭、影像處理系統與視覺追蹤控制器之 配合,即可藉具四自由度之雙眼機械頭負責執行主動式視 覺追蹤任務,藉由主動式視覺回授,而獲得極佳之立體視 覺感知,因此,可將此一雙眼機械頭監控系統應用於各種 機械式之傳輸機構處,若是以此雙眼機械頭監控系統與機 械手臂配合,即形成主動式視覺機器人系統,主動式視覺 機器人主要是利用雙眼機械頭監控系統去追蹤一個移動中 的目標物,同時並將其影像資訊回授,使機械手臂能夠進 行抓取任務’其控制架構如第十四圖所示^ 訂 第十四圖所示之系統控制架構可分為上下兩部份,上 半部為機械手臂抓取控制,下半部則為雙眼機械頭監控系 統之追蹤控制β機械手臂是經由視覺影像回授來執行抓取 任務,而雙眼機械頭則專司對空間目標物的視覺追蹤。在 整個控制架構中包含有機械手臂子系統、雙眼機械頭子系 統、影像處理子系統和視覺追蹤控制器及預測器。 在機械手臂控制部分,視覺回授過程中同時抓取機械 手臂與目標物的影像資訊,以求得個別的空間表示式,並 取其誤差(Δ7)作為回授訊號,所不同的是目標物有經過 灰色預測而機器手臂沒有,也就是說誤差(就是現在 機械手臂空間表示式(jr)與預測下一刻目標物空間表示式 (/,)的誤差。而機器手臂控制的輸入命令則為—期望誤差 (A/d),與回授訊號相減後(μ - μ)再經由機器手臂控制 器驅動機械手臂抓取目標物β 為證明本發明本身及其應用確可實施,特針對雙眼機 23 CNS ) aW( 2.0X297^* ) Λ44499 經濟部中央橾率局貝工消費合作社印装 A7 B7 五、發明説明(» 械頭監控系統與主動式視覺機器人系統進行操作實驗,首 先進行雙眼機械頭定位控制實驗,測試雙眼機械頭的性能 ’再作SOIM網路學習實驗,由雙眼機械頭對空間中一固 定點學習其空間表示式’並存下學習後網路中所有的權重 值’而後進行主動式視覺追蹤實驗,最後將雙眼機械頭與 機械手臂整合進行主動式視覺機器人系統抓取實驗。 1 ·雙眼機械頭定位控制性能測試 雙眼機械頭之控制原理乃是由PC輸出脈波至各軸驅 動器以驅動馬達至定位’本實驗將分別對雙眼機械頭各關 節角做角度的定位控制’並以時域響應觀察其性能。本實 驗由PCL-818卡做中斷程式來控制脈波輸出的頻率,脈波 輸出最快可達5 0 KHz ’而各轴最快轉速以及各軸輸出角 度與脈波輸入的關係如第十五圖所示。 將以最高頻率的脈波輸出作為雙眼機械頭各轴馬達的 輸入’對各轴馬達做20·的定位控制,取樣時間(samp ]_ i ng time)為5xl(T5 sec ’其時域響應分別如第十六圖、第十七 圖、十八圖及第十九圖所示。 2 · S0IM網路學習實驗 S0IM網路學習的方法,是將一個黑色背景的板子置 於雙眼機械頭的前方,板上一個固定的白色小區塊當作雙 眼機械頭的目標物,目標物被攝影機擷取的影像經過影像 處理後可得^其:形心在影像平面的座標,影像平面的大小 設為 400χ400(^_、^)2。S0IM 網路訓練資料(training data) 的產生,是讓.機械頭的二、三、四轴在限制範圍内做 24 財CNS > ( 210X297公漦 J : {請先閲讀背面之注意事項再填寫本頁)V-Book Paper Family (CNS) (2 丨 〇) < 297 gong) 444499 A7 B7 5M Printed by the Ministry of Economic Affairs of the Central Government Bureau of Industrial and Consumer Cooperatives, Description of Invention (~ y) Please read the back of Jing Matter t. Write w This _ page. With the cooperation of binocular manipulator, image processing system and vision tracking controller, a four-degree-of-freedom binocular manipulator can be used to perform active visual tracking tasks. Vision feedback, and obtain excellent stereoscopic vision perception. Therefore, this binocular manipulator monitoring system can be applied to various mechanical transmission mechanisms. If the binocular manipulator monitoring system is coordinated with a robotic arm, that is, Form an active vision robot system. The active vision robot mainly uses a binocular manipulator monitoring system to track a moving target, and at the same time, feedbacks its image information to enable the robot arm to perform grasping tasks. Its control architecture As shown in Figure 14 ^ Order the system control architecture shown in Figure 14 can be divided into two parts, the upper part is the grab control of the robot arm, and the lower part is the binocular robot head monitor The tracking control β robotic arm of the control system performs grasping tasks through visual image feedback, while the binocular robotic head is dedicated to visual tracking of space targets. The entire control architecture includes a robot arm subsystem, a binocular robot head subsystem, an image processing subsystem, and a vision tracking controller and predictor. In the control part of the robotic arm, the image information of the robotic arm and the target is simultaneously captured during the visual feedback process to obtain an individual spatial expression, and the error (Δ7) is used as the feedback signal. The difference is the target There is a gray prediction but the robot arm does not, that is, the error (that is, the error between the current robot arm space expression (jr) and the target object space expression (/,) at the next moment. The input command for the robot arm control is- The expected error (A / d) is subtracted from the feedback signal (μ-μ), and then the robotic arm is driven by the robotic arm controller to capture the target β. To prove that the present invention and its application can be implemented, it is specifically targeted to both eyes Machine 23 CNS) aW (2.0X297 ^ *) Λ44499 Printed by Aberdeen Consumer Cooperative, A7 B7, Central Bureau of Economic Affairs, Ministry of Economic Affairs 5. Description of the invention (»Mechanical head monitoring system and active vision robot system for operation experiments, first with both eyes Manipulator positioning control experiment to test the performance of the binocular manipulator. 'Another SOIM network learning experiment, the binocular manipulator learns its spatial expression at a fixed point in space' After learning all the weight values in the network, then perform active visual tracking experiments, and finally integrate the binocular manipulator with the robotic arm to perform an active vision robot system grab experiment. 1 · Binocular manipulator positioning control performance test both eyes The control principle of the manipulator is to output the pulse wave from the PC to the drive of each axis to drive the motor to the position. 'This experiment will perform angle positioning control of each joint angle of the binocular manipulator' and observe its performance in time domain response. In the experiment, the PCL-818 card is used as an interrupt program to control the frequency of pulse wave output. The pulse wave output can reach 50 KHz at the fastest. The pulse wave output with the highest frequency is used as the input of the motor of each axis of the binocular mechanical head to perform positioning control of 20 · for each axis motor, and the sampling time (samp) _ing time is 5xl (T5 sec ' The time domain response is shown in Figure 16, Figure 17, Figure 18, and Figure 19. 2 · S0IM network learning experiment The method of S0IM network learning is to place a black background board in the double Eye machine In front of the robot head, a fixed white small block on the board is used as the target of the binocular robot head. The image of the target object captured by the camera can be obtained after image processing ^ its: the coordinates of the centroid on the image plane, the image plane The size of the set is 400x400 (^ _, ^) 2. The S0IM network training data is generated by making the two, three, and four axes of the robot head within a limited range of 24 CNS > (210X297 public漦 J : {Please read the notes on the back before filling this page)

*1T 經濟部中央橾率扃負工消費合作社印製 4 TU 4 9 9 A7 ----—__B7 五、發明说明(¾^) ~--- 8000次的隨機轉動(第一站良田卞、^ ^軸為固疋),其各軸轉動範圍如 第二十圖所示,並且記錄下备一士 g罈卜母-人目標物的影像座標及雙 眼機械頭的關節角度’作為遍網路學習的訓練資料。 至於議網路的參數設定,警戒參數(vigilance* 1T Printed by the Central Government of the Ministry of Economic Affairs and Consumer Cooperatives 4 TU 4 9 9 A7 ----——__ B7 V. Description of the invention (¾ ^) ~ --- 8000 random rotations ^ ^ The axis is solid.) The rotation range of each axis is shown in the twentieth chart, and the image coordinates of the target and the target angle of the binocular manipulator are recorded. Road learning training materials. As for the parameter setting of the network, the alert parameter (vigilance

Param6ter) ^=^ = 0.88,學習速率 Uearrnng rate) 广0.39’參數㈣侧。學習過程中,固定目標物空間表 示式的變化量對學習次數的關係分別如第二十一圖、第二 十二圖及第二十三圏所示。根據結果顯示,空間表示式7 的三個分量均收斂至〇1左右。 3.主動式視覺追蹤實驗 主動式視覺追蹤實驗是將SOIM網路作為視覺追蹤控 制器,以雙眼機械頭追蹤空間中一個未經軌跡規劃的移動 目標物’如第二十四圓所示,即為其硬體架構示意圖,如 果雙眼機械頭能夠成功地追蹤此一目標物,則目標物會成 像在左右兩個影像平面的一個固定區域内,而影像處理的 取樣時間為0·26秒。實驗中設定目標物在左右兩個影 像平面上的期望座標皆為(2〇〇,2〇〇),並規劃雙眼機械頭每 次到達定位所需的時間為〇_ 5秒,依此調變脈波輸出頻率 ’作為雙眼機械頭的控制訊號《目標物以大約每秒5公分 的移動速率在雙眼機械頭可看見的範圍内移動,在雙眼機 械頭進行主動式視覺追蹤的同時記錄下在左右兩個影像平 面的座標’由第二十五圈及第二十六圖可發現,雙眼機械 頭可使移動目標物在左右眼的成像位置維持在影像平面的 中間》除此外,第二十七圖至第三十圖分別列出移動目標 25 (請先聞讀背面之注意事項再填寫本頁) 訂‘ 本紙張AAii用 tBB料率(CNS ) ( 210X297公釐) 83.5 5,000 0.88 444499 A7 B7 經 濟 央 揉 準 局 貝 X. 消 费 合 作 社 印 % : 五、 物在像平面W、V方向上隨時間的變化情形,可看出雙眼 機械頭在主動式視覺追蹤上有不錯的時域響應。 4·雙眼機械頭監控系統導引機械手臂抓取實驗 整個主動式視覺機器人系統之硬體架構圖如第三-- 圖所示’其中雙眼機械頭負責影像資訊的獲得以及主動式 視覺追縱任務,其影像處理部分乃由影像處理單元完成, 機械手臂則執行抓取動作,電腦主要工作乃是負責將雙眼 機械頭子系統與機械手臂子系統做溝通,包括驅動雙眼機 械頭之脈波指令的產生、SOIM網路的實現及灰色預測之 運算》 視覺導引機械手臂抓取實驗是利用雙眼機械頭所獲得 的影像資訊作回授,導引機械手臂到目標物所在位置。機 械手臂子系統控制器包括傳統PID控制器以及計算力矩 法結合類神經網路控制器’由傳算器網路作平行處理,其 取樣時間為3. Oms,影像處理子系統部份由影像處理單元 網路架構負贵所有影像上的處理、計算工作,其取樣時間 為0.26秒’目標物的移動速率約為2 cm/sec,並設定機 械臂端接器與目標物空間座標表示式的期望值為 。 雙眼機械頭對移動目標物進行主動式視覺追縱,但要 求機械臂端接器必須保持在視覺可見範圍内,實驗中目標 物與機械臂端接器在雙眼機械頭左右兩眼的影像座標變化 情形分別如第三十二囷及第三十三圊之位置變化圖所示。 故由上述實驗可得知’本發明雙眼機械頭監控系統應 用於機械式傳輸機構上’可獲得極佳之監控效果,尤其在 (請先Μ請背面之注意事項再填寫本頁)Param6ter) ^ = ^ = 0.88, learning rate Uearrnng rate) Wide 0.39 ’parameters. During the learning process, the relationship between the change in the expression of the fixed object space expression and the number of times of learning is shown in Figure 21, Figure 22, and Figure 23, respectively. According to the results, all three components of the spatial expression 7 converge to about 0. 3. Active visual tracking experiment The active visual tracking experiment uses the SOIM network as a visual tracking controller and uses a binocular manipulator to track a moving target in the space without trajectory planning, as shown in the twenty-fourth circle. It is a schematic diagram of its hardware architecture. If the binocular robot head can successfully track this target, the target will be imaged in a fixed area of the left and right image planes, and the sampling time for image processing is 0.26 seconds . In the experiment, the desired coordinates of the target object on the left and right image planes are set to (200, 200), and the time required for the binocular manipulator to reach the positioning position is set to 0-5 seconds. The variable pulse wave output frequency is used as the control signal of the binocular manipulator. The target moves at a movement rate of about 5 cm per second within the range that the binocular manipulator can see. While the binocular manipulator performs active visual tracking, Recording the coordinates of the two left and right image planes. From the 25th circle and the 26th figure, it can be found that the binocular mechanical head can maintain the imaging position of the moving target in the middle of the image plane in the left and right eyes. , Figures 27 to 30 list the moving targets 25 (please read the notes on the back before filling this page) Order 'tBB material rate (CNS) for this paper AAii (210X297 mm) 83.5 5,000 0.88 444499 A7 B7 Economic Central Bureau X. Consumption Cooperative Association Printing%: V. The change of objects in the image plane W and V direction with time, it can be seen that the binocular mechanical head has a good time in active visual tracking. Domain response4. The binocular manipulator monitoring system guides the robotic arm to grasp the experiment. The hardware architecture diagram of the entire active vision robot system is shown in Figure 3-as shown in the picture. 'The binocular manipulator is responsible for obtaining image information and active vision tracking. For vertical tasks, the image processing part is completed by the image processing unit, and the robotic arm performs the grabbing action. The main task of the computer is to communicate the binocular robotic head subsystem with the robotic arm subsystem, including driving the pulses of the binocular robotic head. The generation of wave instructions, the realization of the SOIM network and the operation of gray prediction. The visual guidance robotic arm capture experiment uses the image information obtained by the binocular manipulator as a feedback to guide the manipulator to the target location. The robotic arm subsystem controller includes a traditional PID controller and a method of calculating torque combined with a neural network controller. The parallel processing is performed by a calculator network, and its sampling time is 3.0 ms. The image processing subsystem part is processed by the image. The unit network architecture is responsible for all processing and calculations on the image. The sampling time is 0.26 seconds. The target object moves at a rate of about 2 cm / sec, and the expected value of the space coordinate expression of the robot arm terminator and the target object is set. for. The binocular manipulator performs active visual tracking of moving targets, but the robot arm terminator must be kept in the visible range. In the experiment, the target and the robot arm terminator are on the left and right eyes of the binocular manipulator. The changes of the coordinates are shown in the position change diagrams of the thirty-second and thirty-third centuries, respectively. Therefore, from the above experiments, it can be known that ‘the binocular manipulator monitoring system of the present invention is applied to a mechanical transmission mechanism’ and can obtain excellent monitoring results, especially in the case of (please note the precautions on the back before completing this page)

V 26 A7 B7 五、發明説明 具四自由度的雙眼機械頭,配合二個(:CD攝影機,如同 二個眼球般能夠獲得立艘視覺’其中機構上第三轴與第四 軸可架設C C D攝影機’做類似眼球可以朝左朝右/的運動 ’而第一軸與第二轴則是提供類似脖子的功能,因此配合 影像處理系統,即可獲得極佳之監控效果。 綜上所述,本發明特殊設計之雙眼機械頭監控系統可 提供一監控效果極佳之系統,而能與自動化系統相輔相乘 ,因此本發明之設計,甚具產業上利用性,應符合發明專 利要件,乃依法提出申請。 (請先閱讀背面之注意事項再填寫本頁} r 鲤濟部中央標率局貝工消费合作杜印«. 本紙張尺度遘用中國國家螵準< CNS ) A4规格(210X297公釐V 26 A7 B7 V. Description of the invention A four-degree-of-freedom double-eye mechanical head, combined with two (: CD cameras, can obtain erection vision as two eyeballs', where the CCD can be set on the third and fourth axes of the mechanism The camera 'does a movement similar to that of an eyeball that can be turned to the left / right', while the first axis and the second axis provide neck-like functions, so with the image processing system, you can obtain excellent monitoring results. In summary, The specially designed binocular manipulator monitoring system of the present invention can provide a system with excellent monitoring effect, which can complement and multiply the automation system. Therefore, the design of the present invention is very industrially applicable and should meet the requirements of the invention patent. The application was submitted in accordance with the law. (Please read the precautions on the back before filling out this page} r Printed by the Central Laboratories of the Ministry of Carriage and Labor Cooperatives Du Yin «. This paper size is in accordance with China National Standards < CNS) A4 Specification ( 210X297 mm

Claims (1)

444499 A8 Ββ C8 D8 ---—1 W 3辦日修正補充 申請專利範圍 第八七一二一九七三號r雙眼機械頭監控系統』 申請專利範圍修正本 1.一種雙眼機械頭監控系統,該監控系統由雙眼機 械頭 '視覺追蹤控制器及影像處理系統組成,雙眼機械頭 具有一底座,底座頂端以第一傳動軸帶動上端之旋轉座’ 旋轉座頂端以第二傳動轴枢接頭部,而於頭部兩側各以第 二傳動轴及第四傳動軸帶動二攝影機,配合影像處理系統 對於目標物的運動軌跡進行預測,並利用s〇IM類神經網 路為架構之視覺追縱控制器對移動中之目標物進行監控, 提供一具立體視覺監控效果之系統: 前述之SOIM為三層的網路架構,其為學習一種映射 關係’此映射之輸入為目標物在左右兩.眼的影像座標與雙 眼機械頭各軸的關節角,輸出為一個空間表示式,此空間 表示式可以唯一描述目標物在工作空間中的位置; 前述之影像處理系統可由二部CCD及影像處理單元 所構成; 前述之目標物運動軌跡得以屬一階微分方程預測模型 之灰色模型進行預測。 2 ♦如申請專利範圍第1項所述雙眼機械頭監控系統 ,其中各傳動轴得以馬達、減速機及驅動器帶動。 3·如申請專利範面第2項所述雙眼機械頭監控系統 ,其中減速機可為蝸桿蝸輪組之設計。 4 _如申請專利範圍第1項所述雙眼機械頭監控系統 ,其令雙眼機械頭得透過控制介面以脈波輸入的方式進行 (請先閲讀背面之注意事項再填寫本頁} - 訂 經.^部智"'財4^員工消脅合作社印製 良紙張尺度適用中國國家揉準(〇阳>八4規格(2丨0父297公癀) Α8 Β8 C8 D8 利範圍5 ·如申請專利範圍第4項所述雙眼機械頭監控系統 其中控制介面得為數位輸入/輸出卡、中斷卡、解碼卡 (請先閱讀背面之注意事項再填寫本頁) 經濟部皙慧財是局員工消費合作社印製 本紙張尺度適用中11國家揉奉(CNS ) A4#L格(2I0X297公釐)444499 A8 Ββ C8 D8 ---— 1 W 3 days to amend and supplement the patent application scope No. 8112 197r binocular manipulator monitoring system ”Application for patent scope amendment 1. A binocular manipulator monitoring The monitoring system is composed of a binocular manipulator's vision tracking controller and an image processing system. The binocular manipulator has a base, and the top of the base drives the upper rotation base with a first drive shaft. The top of the rotation base uses a second drive shaft. Pivot joint, and drive the two cameras with a second drive shaft and a fourth drive shaft on both sides of the head, cooperate with the image processing system to predict the motion trajectory of the target, and use a som neural network as the framework. The visual tracking controller monitors the moving target and provides a system with three-dimensional visual monitoring effect: The aforementioned SOIM is a three-layer network architecture, which is used to learn a mapping relationship. The input of this mapping is the target's Left and right. The image coordinates of the eye and the joint angle of each axis of the binocular manipulator are output as a spatial expression. This spatial expression can uniquely describe the target in the working space. In position; of the image processing system may be two CCD and an image processing unit configured; the motion trajectory of the object belongs to the gray differential equation model of a predictive model to predict the order. 2 ♦ The binocular mechanical head monitoring system described in item 1 of the scope of patent application, in which each drive shaft is driven by a motor, reducer and driver. 3. The binocular mechanical head monitoring system as described in item 2 of the patent application, where the reducer can be designed for worm and worm gear sets. 4 _As the binocular manipulator monitoring system described in item 1 of the scope of patent application, it enables the binocular manipulator to perform pulse wave input through the control interface (please read the precautions on the back before filling this page}-Order The Ministry of Commerce " 'Cai 4 ^ Employees Co-operative Cooperative Co., Ltd. Printed Good Paper Standards Applicable to Chinese National Standards (Oyang) 8 Specifications (2 丨 0 Fathers 297 Public 癀) Α8 Β8 C8 D8 Scope 5 · According to the binocular manipulator monitoring system described in item 4 of the scope of patent application, the control interface must be a digital input / output card, an interrupt card, and a decoding card (please read the precautions on the back before filling out this page). Printed on the paper by the Bureau ’s Consumer Cooperatives. Applicable to 11 countries in China (CNS) A4 # L grid (2I0X297 mm)
TW87121973A 1998-12-31 1998-12-31 Binocular mechanical head monitoring system TW444499B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87121973A TW444499B (en) 1998-12-31 1998-12-31 Binocular mechanical head monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87121973A TW444499B (en) 1998-12-31 1998-12-31 Binocular mechanical head monitoring system

Publications (1)

Publication Number Publication Date
TW444499B true TW444499B (en) 2001-07-01

Family

ID=21632533

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87121973A TW444499B (en) 1998-12-31 1998-12-31 Binocular mechanical head monitoring system

Country Status (1)

Country Link
TW (1) TW444499B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638249B (en) * 2017-02-09 2018-10-11 日商三菱電機股份有限公司 Position control device and position control method
TWI640851B (en) * 2017-02-09 2018-11-11 日商三菱電機股份有限公司 Position control device and position control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638249B (en) * 2017-02-09 2018-10-11 日商三菱電機股份有限公司 Position control device and position control method
TWI640851B (en) * 2017-02-09 2018-11-11 日商三菱電機股份有限公司 Position control device and position control method

Similar Documents

Publication Publication Date Title
JP7399912B2 (en) A machine learning method and apparatus for predicting the movement of an object in a robot's environment based on images capturing the object and based on parameters regarding future robot movement in the environment.
CN110480634B (en) Arm guide motion control method for mechanical arm motion control
JP5835926B2 (en) Information processing apparatus, information processing apparatus control method, and program
CN108284436B (en) Remote mechanical double-arm system with simulation learning mechanism and method
JP2022542241A (en) Systems and methods for augmenting visual output from robotic devices
Kudoh et al. Painting robot with multi-fingered hands and stereo vision
US20210331311A1 (en) Image generation device, robot training system, image generation method, and non-transitory computer readable storage medium
CN110385694A (en) Action teaching device, robot system and the robot controller of robot
Ohya et al. Real-time reproduction of 3D human images in virtual space teleconferencing
JPH0830327A (en) Active environment recognition system
Cabido-Lopes et al. Visual transformations in gesture imitation: What you see is what you do
Gao et al. K-vil: Keypoints-based visual imitation learning
TW444499B (en) Binocular mechanical head monitoring system
JP7008136B2 (en) Machine learning device and robot system equipped with it
Gäbert et al. Generation of human-like arm motions using sampling-based motion planning
JP7263987B2 (en) Control device, control method, and control program
CN114585487A (en) Mitigating reality gaps by training simulations to real models using vision-based robot task models
Yang et al. Cross-context visual imitation learning from demonstrations
Lovi et al. Predictive display for mobile manipulators in unknown environments using online vision-based monocular modeling and localization
Maeda et al. View-based teaching/playback for industrial manipulators
Hara et al. Uncertainty-aware haptic shared control with humanoid robots for flexible object manipulation
JP2022189901A (en) Learning method, learning device, program, and recording medium
WO2022200082A1 (en) Multi-dimensional object pose regression
Muthugala et al. Design of an interactive robotic head with human-like movements
Sigalas et al. Visual estimation of attentive cues in HRI: the case of torso and head pose

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees