TW202403536A - Modulation of display resolution using macro-pixels in display device - Google Patents

Modulation of display resolution using macro-pixels in display device Download PDF

Info

Publication number
TW202403536A
TW202403536A TW112111370A TW112111370A TW202403536A TW 202403536 A TW202403536 A TW 202403536A TW 112111370 A TW112111370 A TW 112111370A TW 112111370 A TW112111370 A TW 112111370A TW 202403536 A TW202403536 A TW 202403536A
Authority
TW
Taiwan
Prior art keywords
display
data
pixels
columns
image data
Prior art date
Application number
TW112111370A
Other languages
Chinese (zh)
Inventor
永曼 李
王簡簡
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/125,727 external-priority patent/US20230306909A1/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202403536A publication Critical patent/TW202403536A/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0213Addressing of scan or signal lines controlling the sequence of the scanning lines with respect to the patterns to be displayed, e.g. to save power
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0686Adjustment of display parameters with two or more screen areas displaying information with different brightness or colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/02Handling of images in compressed format, e.g. JPEG, MPEG
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • G09G2340/0421Horizontal resolution change
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2350/00Solving problems of bandwidth in display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/12Frame memory handling
    • G09G2360/122Tiling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/04Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/39Control of the bit-mapped memory
    • G09G5/391Resolution modifying circuits, e.g. variable screen formats

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Embodiments relate to a foveated display, in which a display device receives image data to be displayed that comprises a plurality of display regions associated with different image resolutions, and metadata that is indicative of locations of the plurality of display regions associated with different image resolutions. A display driver integrated circuit (DDIC) of the display device comprises an expander circuit configured to determine locations of one or more macropixels to be displayed by the display area based on the received metadata, wherein each macropixel corresponds to a grouping of native pixels of the display area onto which image data is loaded to concurrently.

Description

使用顯示裝置中的宏像素來調變顯示解析度Using macropixels in a display device to modulate display resolution

本發明係關於一種顯示裝置,且特別係關於可具有可組態解析度之發光二極體(light emitting diode;LED)或有機發光二極體(OLED)相關顯示器。 相關申請案之交互參考 The present invention relates to a display device, and in particular to a light emitting diode (LED) or organic light emitting diode (OLED) related display with configurable resolution. Cross-references to related applications

本申請案主張於2022年3月25日申請之美國臨時專利申請案第63/323,966號、2022年5月6日申請之美國臨時專利申請案第63/339,286號及2023年3月24日申請之美國非臨時專利申請案第18/125,727號的優先權及權益,該等申請案特此以全文引用之方式併入。This application claims U.S. Provisional Patent Application No. 63/323,966 filed on March 25, 2022, U.S. Provisional Patent Application No. 63/339,286 filed on May 6, 2022, and U.S. Provisional Patent Application No. 63/339,286 filed on March 24, 2023 18/125,727, which application is hereby incorporated by reference in its entirety.

顯示裝置常常作為頭戴式顯示器(head-mounted display;HMD)或近眼顯示器(near-eye display;NED)用於虛擬實境(virtual reality;VR)或擴增實境(augmented-reality;AR)系統中。為顯示高解析度影像,增加顯示裝置中之像素的數目及以較高圖框率操作顯示裝置係有益的。然而,當以較高圖框率操作之顯示裝置中的像素之數目增加時,則分配用於準備資料及將資料寫入至像素的時間減少。此外,利用數目增加之像素可造成較高充電頻率,從而增加功率消耗。Display devices are often used in virtual reality (VR) or augmented reality (AR) as a head-mounted display (HMD) or a near-eye display (NED). in the system. To display high-resolution images, it is beneficial to increase the number of pixels in a display device and operate the display device at a higher frame rate. However, as the number of pixels in a display device operating at a higher frame rate increases, the time allocated to preparing and writing data to the pixels decreases. In addition, utilizing an increased number of pixels can result in higher charging frequency, thereby increasing power consumption.

在一些態樣中,本文中所描述之該等技術係關於一種方法,該方法包括:接收待由顯示裝置顯示之影像資料,其中該影像資料包括與不同影像解析度相關聯之複數個顯示區;基於所接收之影像資料產生後設資料,其中該後設資料指示與不同影像解析度相關聯之複數個顯示區之位置;將影像資料連同所產生之後設資料一起傳輸至顯示裝置;在顯示裝置的顯示驅動器積體電路(display driver integrated circuit;DDIC)處,其中顯示裝置包括顯示區域,該顯示區域包括以複數個列及行配置的複數個像素:接收具有後設資料的經傳輸影像資料;基於後設資料判定待由顯示區域顯示之一或多個宏像素的位置,其中各宏像素對應於顯示區域之原生像素的分組,影像資料被同時載入至該顯示區域上;對控制信號進行組態以用於基於經判定之宏像素位置以經判定時序將顯示區域之列及行分組;藉由根據經判定時序提供控制信號來顯示影像資料。In some aspects, the techniques described herein relate to a method that includes receiving image data to be displayed by a display device, wherein the image data includes a plurality of display areas associated with different image resolutions. ; Generate metadata based on the received image data, wherein the metadata indicates the positions of a plurality of display areas associated with different image resolutions; transmit the image data together with the generated metadata to the display device; during display At a display driver integrated circuit (DDIC) of a device, wherein the display device includes a display area including a plurality of pixels arranged in a plurality of columns and rows: transmitted image data with metadata is received ; Determine the position of one or more macro pixels to be displayed by the display area based on the metadata, where each macro pixel corresponds to a grouping of native pixels in the display area, and the image data is simultaneously loaded onto the display area; to the control signal Configured for grouping columns and rows of the display area in determined timing based on determined macropixel positions; displaying image data by providing control signals in accordance with the determined timing.

在一些態樣中,本文中所描述之技術係關於顯示裝置,包括:顯示驅動器積體電路(DDIC),其包括:接收器,其經組態以接收待由顯示裝置顯示的影像資料,其中影像資料包括與不同影像解析度相關聯的複數個顯示區,及指示與不同影像解析度相關聯之複數個顯示區之位置的後設資料;擴展器電路,其經組態以:基於後設資料判定待由顯示區域顯示之一或多個宏像素的位置,其中各宏像素對應於顯示區域之原生像素的分組,影像資料被同時載入至該顯示區域上;及對控制信號進行組態以用於基於經判定之宏像素位置以經判定時序將顯示區域之列及行分組;以及源極驅動器電路;顯示區域,其包括以複數個列及行配置之複數個像素,各列包括經組態以將閘極啟用信號提供至列之像素的各別閘極線,且各行包括經組態以將影像資料提供至行之像素的各別資料線,解多工器,其連接至來自源極驅動電路的信號線,且經組態以根據控制信號將各別資料線的資料線集合中之資料線選擇性地耦接至信號線以對資料線充電;其中基於經判定之宏像素位置,將控制信號提供至解多工器以將資料線集合中之複數個資料線同時耦接至信號線週期,以在一或多個時間週期期間同時對複數個資料線充電。In some aspects, the technology described herein relates to a display device, including a display driver integrated circuit (DDIC) that includes a receiver configured to receive image data to be displayed by the display device, wherein The image data includes a plurality of display areas associated with different image resolutions, and metadata indicating the positions of the plurality of display areas associated with different image resolutions; the expander circuit is configured to: based on the metadata Data determines the position of one or more macropixels to be displayed by the display area, where each macropixel corresponds to a grouping of native pixels of the display area onto which image data is simultaneously loaded; and configuring the control signal for grouping columns and rows of a display area in determined timing based on determined macropixel positions; and a source driver circuit; a display area including a plurality of pixels arranged in a plurality of columns and rows, each column including a plurality of pixels arranged in a plurality of columns and rows; A demultiplexer is configured to provide a gate enable signal to a respective gate line of the pixels of the row, and each row includes a respective data line configured to provide image data to the pixels of the row. A signal line of the source driver circuit, and configured to selectively couple data lines in a data line set of respective data lines to the signal line according to the control signal to charge the data line; wherein based on the determined macro pixel In a position, a control signal is provided to the demultiplexer to simultaneously couple a plurality of data lines in the data line set to the signal line period to simultaneously charge the plurality of data lines during one or more time periods.

現將詳細參考具體實例,其實例說明於隨附圖式中。在以下詳細描述中,闡述眾多特定細節以便提供對各種所描述具體實例之透徹理解。然而,可在無此等特定細節之情況下實踐所描述具體實例。在其他情況下,尚未詳細描述熟知方法、程序、組件、電路及網路,以免不必要地混淆具體實例之態樣。Reference will now be made in detail to specific examples, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described embodiments. However, the specific examples described may be practiced without such specific details. In other instances, well-known methods, procedures, components, circuits and networks have not been described in detail so as not to unnecessarily obscure the appearance of the specific examples.

本發明之具體實例可包括人工實境系統或結合人工實境系統而實施。人工實境係在呈現給使用者之前已以某一方式調整之實境形式,其可包括例如虛擬實境(VR)、擴增實境(AR)、混合實境(mixed reality;MR)、混雜實境或其某一組合及/或衍生物。人工實境內容可包括完全產生之內容或與所捕獲之(例如,真實世界)內容組合之所產生內容。人工實境內容可包括視訊、音訊、觸覺反饋或其某一組合,且其中之任一者可在單個通道中或在多個通道中(諸如,對檢視者產生三維效應之立體視訊)呈現。此外,在一些具體實例中,人工實境亦可與用以例如在人工實境中產生內容及/或以其他方式用於人工實境中(例如,在人工實境中執行活動)之應用程式、產品、配件、服務或其某一組合相關聯。提供人工實境內容之人工實境系統可實施於各種平台上,包括連接至主機電腦系統之頭戴式顯示器(HMD)、獨立式HMD、行動裝置或計算系統或能夠將人工實境內容提供至一或多個檢視者之任何其他硬體平台。Specific examples of the invention may include or be implemented in conjunction with artificial reality systems. Artificial reality is a form of reality that has been adjusted in a certain way before being presented to the user. It can include, for example, virtual reality (VR), augmented reality (AR), mixed reality (MR), Mixed reality or a combination and/or derivative thereof. Artificial reality content may include fully generated content or generated content combined with captured (eg, real-world) content. Artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of these may be presented in a single channel or in multiple channels (such as stereoscopic video that produces a three-dimensional effect on the viewer). Additionally, in some embodiments, artificial reality may also be associated with applications that are used, for example, to generate content in the artificial reality and/or to otherwise be used in the artificial reality (e.g., to perform activities in the artificial reality). , products, accessories, services, or a combination thereof. Artificial reality systems that provide artificial reality content can be implemented on a variety of platforms, including head-mounted displays (HMDs) connected to host computer systems, stand-alone HMDs, mobile devices or computing systems or capable of providing artificial reality content to Any other hardware platform for one or more viewers.

圖1A及圖1B為根據一些具體實例的包括近眼顯示器(NED) 110之頭戴式顯示器(HMD) 100之圖式。NED 110可向使用者呈現媒體。可由NED 110呈現之媒體之實例包括一或多個影像、視訊、音訊或其某一組合。在一些具體實例中,可經由外部裝置(例如,揚聲器及/或頭戴式耳機)呈現音訊,該外部裝置自HMD 100、控制台(圖中未示)或此兩者接收音訊資訊且基於音訊資訊將音訊資料呈現給使用者。HMD 100通常經組態以作為虛擬實境(VR) HMD操作。然而,在一些具體實例中,HMD 100可經修改以亦作為擴增實境(AR) HMD、混合實境(MR) HMD或其某一組合操作。舉例而言,在一些具體實例中,HMD 100可用電腦產生之元素(例如,靜態影像、視訊、聲音等)擴增實體真實世界環境之視圖。1A and 1B are diagrams of a head mounted display (HMD) 100 including a near-eye display (NED) 110 according to some embodiments. NED 110 can present media to users. Examples of media that may be presented by NED 110 include one or more images, video, audio, or some combination thereof. In some embodiments, audio may be presented via an external device (eg, speakers and/or headphones) that receives audio information from HMD 100, a console (not shown), or both and based on the audio Information presents audio data to the user. HMD 100 is typically configured to operate as a virtual reality (VR) HMD. However, in some embodiments, HMD 100 may be modified to also operate as an augmented reality (AR) HMD, a mixed reality (MR) HMD, or some combination thereof. For example, in some embodiments, the HMD 100 may augment a view of a physical real-world environment with computer-generated elements (eg, still images, videos, sounds, etc.).

圖1A或圖1B中所展示之HMD 100可包括框架105及顯示器110。框架105可包括一起向使用者顯示媒體之一或多個光學元件。亦即,顯示器110可經組態以供使用者檢視由HMD 100呈現之內容。如下文結合圖2所論述,顯示器110可包括用以產生影像光以將光學媒體呈現給使用者之眼球的至少一個源總成。源總成可包括例如源、光學系統或其某一組合。The HMD 100 shown in Figure 1A or Figure 1B may include a frame 105 and a display 110. Frame 105 may include one or more optical elements that together display media to the user. That is, display 110 may be configured for a user to view content presented by HMD 100. As discussed below in connection with Figure 2, display 110 may include at least one source assembly for generating image light to present optical media to the user's eyeballs. The source assembly may include, for example, a source, an optical system, or some combination thereof.

圖1A及圖1B僅為虛擬實境系統之實例,且本文中描述之顯示系統可併入至其他此類系統中。Figures 1A and 1B are only examples of virtual reality systems, and the display systems described herein may be incorporated into other such systems.

圖2為根據本發明之一些具體實例之在圖1A或圖1B中所繪示的HMD 100之橫截面200。橫截面200可包括至少一個顯示總成210及出射光瞳230。出射光瞳230為在使用者佩戴HMD 100時眼球220可定位之位置。在一些具體實例中,框架105可表示眼鏡之框架。出於繪示之目的,圖2展示與單個眼球220及單個顯示總成210相關聯之橫截面200,但在未展示之替代性具體實例中,與圖2中所展示之顯示總成210分離或整合之另一顯示總成可將影像光提供至使用者之另一眼球。Figure 2 is a cross-section 200 of the HMD 100 illustrated in Figure 1A or Figure 1B according to some embodiments of the present invention. Cross-section 200 may include at least one display assembly 210 and exit pupil 230. The exit pupil 230 is the position where the eyeball 220 can be positioned when the user wears the HMD 100 . In some embodiments, the frame 105 may represent the frame of eyeglasses. For purposes of illustration, FIG. 2 shows a cross-section 200 associated with a single eyeball 220 and a single display assembly 210 , but in an alternative embodiment not shown, separate from the display assembly 210 shown in FIG. 2 Or another integrated display assembly can provide image light to the other eyeball of the user.

顯示總成210可經由出射光瞳230將影像光引導至眼球220。顯示總成210可由一或多種材料(例如,塑膠、玻璃等)構成,該一或多種材料具有有效地減小HMD 100之重量且拓寬其視場的一或多個折射率。The display assembly 210 may guide image light to the eyeball 220 via the exit pupil 230 . Display assembly 210 may be constructed of one or more materials (eg, plastic, glass, etc.) that have one or more refractive indices that effectively reduce the weight of HMD 100 and broaden its field of view.

在替代性組態中,HMD 100可包括顯示總成210與眼球220之間的一或多個光學元件(圖中未示)。作為各種實例,該等光學元件可用以校正自顯示總成210發射之影像光中的像差、放大自顯示總成210發射之影像光、對自顯示總成210發射之影像光執行某一其他光學調整,或其組合。範例性光學元件可包括光圈、菲涅耳(Fresnel)透鏡、凸透鏡、凹透鏡、濾光片或可影響影像光之任何其他合適光學元件。In alternative configurations, HMD 100 may include one or more optical elements (not shown) between display assembly 210 and eyeball 220 . As various examples, the optical elements may be used to correct aberrations in the image light emitted from the display assembly 210 , amplify the image light emitted from the display assembly 210 , perform some other function on the image light emitted from the display assembly 210 Optical adjustment, or a combination thereof. Exemplary optical elements may include apertures, Fresnel lenses, convex lenses, concave lenses, filters, or any other suitable optical element that affects image light.

在一些具體實例中,顯示總成210可包括用以產生影像光以將媒體呈現給使用者之眼球的源總成。源總成可包括例如光源、光學系統或其某一組合。根據各種具體實例,源總成可包括發光二極體(LED),諸如微型LED、有機發光二極體(organic light-emitting diode;OLED)或其他類型之LED。在一些具體實例中,源總成可對應於其他類型之顯示器,在該等顯示器中,像素以列及行配置,且連接至各別閘極線及資料線,諸如液晶顯示器(LCD)。In some embodiments, display assembly 210 may include a source assembly for generating image light to present media to the user's eyeballs. The source assembly may include, for example, a light source, an optical system, or some combination thereof. According to various embodiments, the source assembly may include light-emitting diodes (LEDs), such as micro-LEDs, organic light-emitting diodes (OLEDs), or other types of LEDs. In some embodiments, the source assembly may correspond to other types of displays in which pixels are arranged in columns and rows and connected to respective gate and data lines, such as a liquid crystal display (LCD).

圖3繪示根據一些具體實例之波導顯示器300之透視圖。波導顯示器300可為HMD 100之組件(例如,顯示總成210)。在替代性具體實例中,波導顯示器300可構成將顯示影像光引導至特定位置之某一其他HMD或其他系統之部分。Figure 3 illustrates a perspective view of a waveguide display 300 according to some embodiments. Waveguide display 300 may be a component of HMD 100 (eg, display assembly 210). In alternative embodiments, waveguide display 300 may form part of some other HMD or other system that directs display image light to specific locations.

波導顯示器300可包括源總成310、輸出波導320及控制器330,以及其他組件。出於說明的目的,圖3展示與單個眼球220相關聯之波導顯示器300,但在一些具體實例中,與波導顯示器300分離(或部分分離)之另一波導顯示器可將影像光提供至使用者之另一眼球。舉例而言,在部分分離系統中,一或多個組件可在用於各眼球之波導顯示器之間共用。Waveguide display 300 may include source assembly 310, output waveguide 320, and controller 330, among other components. For purposes of illustration, FIG. 3 shows waveguide display 300 associated with a single eyeball 220 , but in some embodiments, another waveguide display separate (or partially separate) from waveguide display 300 may provide image light to the user. the other eyeball. For example, in a partially separate system, one or more components may be shared between waveguide displays for each eyeball.

源總成310產生影像光。源總成310可包括源340、光調節總成(例如,解耦元件360)及掃描鏡面總成370。源總成310可產生影像光345且將其輸出至輸出波導320之耦合元件350。Source assembly 310 generates image light. Source assembly 310 may include source 340, light conditioning assembly (eg, decoupling element 360), and scanning mirror assembly 370. Source assembly 310 may generate image light 345 and output it to coupling element 350 of output waveguide 320 .

源340可包括產生至少相干或部分相干影像光345之光源。源340可根據自控制器330接收之一或多個照明參數而發射光。源340可包括一或多個源元件,包括但不限於發光二極體,諸如微型OLED,如下文參看圖4至圖7B詳細描述。雖然以下描述主要將源340描述為包含OLED及/或微型OLED,但應理解,在其他具體實例中,源340可包含其他類型之源元件,諸如微型LED或LCD。Source 340 may include a light source that produces at least coherent or partially coherent image light 345. Source 340 may emit light based on receiving one or more lighting parameters from controller 330 . Source 340 may include one or more source elements, including but not limited to light emitting diodes, such as micro-OLEDs, as described in detail below with reference to Figures 4-7B. Although the following description primarily describes source 340 as including OLEDs and/or micro-OLEDs, it should be understood that in other embodiments, source 340 may include other types of source elements, such as micro-LEDs or LCDs.

輸出波導320可經組態為將影像光輸出至使用者之眼球220的光學波導。輸出波導320經由一或多個耦合元件350接收影像光345,且將所接收之輸入影像光345導引至一或多個解耦元件360。在一些具體實例中,耦合元件350將來自源總成310之影像光345耦合至輸出波導320中。耦合元件350可為或包括繞射光柵、全像光柵、將影像光345耦合至輸出波導320中之某一其他元件,或其某一組合。舉例而言,在耦合元件350為繞射光柵之具體實例中,繞射光柵之間距可經選擇以使得發生全內反射,且影像光345朝向解耦元件360在內部傳播。舉例而言,繞射光柵之間距可在大約300 nm至大約600 nm之範圍內。The output waveguide 320 may be configured as an optical waveguide that outputs image light to the user's eyeball 220 . The output waveguide 320 receives the image light 345 via one or more coupling elements 350 and guides the received input image light 345 to one or more decoupling elements 360 . In some embodiments, coupling element 350 couples image light 345 from source assembly 310 into output waveguide 320 . Coupling element 350 may be or include a diffraction grating, a hologram grating, some other element that couples image light 345 to output waveguide 320, or some combination thereof. For example, in the embodiment where coupling element 350 is a diffraction grating, the spacing between the diffraction gratings can be selected such that total internal reflection occurs and image light 345 propagates internally toward decoupling element 360 . For example, the spacing between diffraction gratings may range from approximately 300 nm to approximately 600 nm.

解耦元件360將全內反射影像光自輸出波導320解耦。解耦元件360可為或包括繞射光柵、全像光柵、將影像光解耦出輸出波導320之某一其他元件,或其某一組合。舉例而言,在解耦元件360為繞射光柵之具體實例中,繞射光柵之間距可經選擇以使入射影像光射出輸出波導320。可藉由改變進入耦合元件350之影像光345的位向及位置來控制自輸出波導320射出之影像光的位向及位置。Decoupling element 360 decouples the total internally reflected image light from output waveguide 320 . Decoupling element 360 may be or include a diffraction grating, a hologram grating, some other element that decouples image light out of output waveguide 320, or some combination thereof. For example, in the embodiment in which decoupling element 360 is a diffraction grating, the spacing between the diffraction gratings may be selected so that incident image light exits output waveguide 320 . The orientation and position of the image light emitted from the output waveguide 320 can be controlled by changing the orientation and position of the image light 345 entering the coupling element 350.

輸出波導320可由促進影像光345之全內反射的一或多種材料構成。輸出波導320可由例如矽、玻璃或聚合物或其某一組合構成。輸出波導320可具有相對較小外觀尺寸,諸如供用於頭戴式顯示器中。舉例而言,輸出波導320可沿著x維度為大約30 mm寬、沿著y維度為50 mm長,且沿著z維度為0.5 mm至1 mm厚。在一些具體實例中,輸出波導320可為平面(2D)光學波導。Output waveguide 320 may be constructed of one or more materials that promote total internal reflection of image light 345 . Output waveguide 320 may be constructed of, for example, silicon, glass, or polymer, or some combination thereof. The output waveguide 320 may have a relatively small appearance, such as for use in a head mounted display. For example, output waveguide 320 may be approximately 30 mm wide along the x dimension, 50 mm long along the y dimension, and 0.5 mm to 1 mm thick along the z dimension. In some specific examples, output waveguide 320 may be a planar (2D) optical waveguide.

控制器330可用以控制源總成310之掃描操作。在某些具體實例中,控制器330可至少基於一或多個顯示指令而判定用於源總成310之掃描指令。顯示指令可包括用以呈現一或多個影像之指令。在一些具體實例中,顯示指令可包括影像檔案(例如,位元映像)。可自例如虛擬實境系統之控制台(圖中未示)接收顯示指令。掃描指令可包括由源總成310使用以產生影像光345之指令。掃描指令可包括例如影像光源之類型(例如,單色、多色)、掃描速率、掃描鏡面總成370之位向及/或一或多個照明參數等。控制器330可包括此處未展示以免混淆本發明之其他態樣的硬體、軟體及/或韌體之組合。The controller 330 may be used to control the scanning operation of the source assembly 310 . In some embodiments, controller 330 may determine scan instructions for source assembly 310 based at least on one or more display instructions. Display instructions may include instructions to render one or more images. In some examples, the display instructions may include image files (eg, bitmaps). Display commands can be received from, for example, a console (not shown in the figure) of the virtual reality system. The scan instructions may include instructions for use by source assembly 310 to generate image light 345 . The scan command may include, for example, the type of image light source (eg, single color, multicolor), scan rate, orientation of the scan mirror assembly 370 and/or one or more lighting parameters. Controller 330 may include a combination of hardware, software, and/or firmware not shown here to avoid obscuring other aspects of the invention.

根據一些具體實例,源340可包括發光二極體(LED),諸如有機發光二極體(OLED)。有機發光二極體(OLED)係具有發射電致發光層之發光二極體(LED),該發射電致發光層可包括回應於電流而發射光的有機化合物之薄膜。有機層典型地位於一對導電電極之間。電極中之一者或兩者可為透明的。According to some specific examples, source 340 may include a light emitting diode (LED), such as an organic light emitting diode (OLED). An organic light-emitting diode (OLED) is a light-emitting diode (LED) having an electroluminescent layer that may include a thin film of an organic compound that emits light in response to an electric current. The organic layer is typically located between a pair of conductive electrodes. One or both of the electrodes may be transparent.

如將瞭解,OLED顯示器可藉由被動矩陣(PMOLED)或主動矩陣(AMOLED)控制方案而驅動。在PMOLED方案中,顯示器中之各列(及線)可依序受控制,而AMOLED控制典型地使用薄膜電晶體背板來直接存取並接通或斷開各個別像素,此允許更高解析度及更大顯示區域。As will be understood, OLED displays can be driven by passive matrix (PMOLED) or active matrix (AMOLED) control schemes. In a PMOLED approach, each column (and line) in the display can be controlled sequentially, while AMOLED control typically uses a thin film transistor backplane to directly access and turn on or off individual pixels, which allows for higher resolution degree and larger display area.

在其他具體實例中,OLED顯示器體現為不包括任何波導之顯示面板的部分。OLED顯示器可為螢幕,其可直接由使用者之眼球檢視而非使光穿過波導。In other embodiments, the OLED display is embodied as part of a display panel that does not include any waveguides. OLED displays can be screens that are viewed directly by the user's eyeballs rather than passing light through waveguides.

圖4描繪根據一些具體實例之簡化OLED結構。如分解視圖中所展示,OLED 400自底部至頂部可包括基板410、陽極420、電洞注入層430、電洞傳輸層440、發光層450、阻擋層460、電子傳輸層470以及陰極480。在一些具體實例中,基板(或背板) 410可包括單晶或多晶矽或其他合適之半導體(例如,鍺)。Figure 4 depicts a simplified OLED structure according to some specific examples. As shown in the exploded view, the OLED 400 may include a substrate 410, an anode 420, a hole injection layer 430, a hole transport layer 440, a light emitting layer 450, a blocking layer 460, an electron transport layer 470, and a cathode 480 from bottom to top. In some embodiments, substrate (or backplane) 410 may include monocrystalline or polycrystalline silicon or other suitable semiconductors (eg, germanium).

陽極420及陰極480可包括任何合適之導電材料,諸如透明導電氧化物(TCO,例如氧化銦錫(ITO)、氧化鋅(ZnO)及其類似物)。陽極420及陰極480經組態以在裝置操作期間分別將電洞及電子注入至發光層450內之一或多個有機層中。Anode 420 and cathode 480 may include any suitable conductive material, such as a transparent conductive oxide (TCO, such as indium tin oxide (ITO), zinc oxide (ZnO), and the like). Anode 420 and cathode 480 are configured to inject holes and electrons, respectively, into one or more organic layers within light emitting layer 450 during device operation.

安置於陽極420上方之電洞注入層430自陽極420接收電洞且經組態以將電洞更深地注入至裝置中,同時鄰近的電洞傳輸層440可支援將電洞傳輸至發光層450。發光層450將電能轉換為光。發光層450可包括一或多個有機分子或發光螢光染料或摻雜劑,其可分散於所屬技術領域中具有通常知識者已知之合適基質中。Hole injection layer 430 disposed above anode 420 receives holes from anode 420 and is configured to inject holes deeper into the device, while adjacent hole transport layer 440 can support hole transport to light-emitting layer 450 . The light emitting layer 450 converts electrical energy into light. The light-emitting layer 450 may include one or more organic molecules or luminescent fluorescent dyes or dopants, which may be dispersed in a suitable matrix known to those of ordinary skill in the art.

阻擋層460可藉由將電子(電荷載流子)限制於發光層450而改良裝置功能。電子傳輸層470可支援將電子自陰極480傳輸至發光層450。Barrier layer 460 can improve device functionality by confining electrons (charge carriers) to light emitting layer 450 . The electron transport layer 470 can support the transport of electrons from the cathode 480 to the light emitting layer 450.

在一些具體實例中,紅光、綠光及藍光之產生(以顯現全色影像)可包括在顯示器之各像素中形成紅色、綠色及藍色OLED子像素。替代地,OLED 400可經調適以在各像素中產生白光。白光可穿濾波色器以產生紅色、綠色及藍色子像素。In some embodiments, the generation of red, green, and blue light (to display a full-color image) may include forming red, green, and blue OLED sub-pixels in each pixel of the display. Alternatively, OLED 400 may be adapted to produce white light in each pixel. White light can pass through color filters to produce red, green and blue sub-pixels.

任何合適之沈積製程可用於形成OLED 400。舉例而言,構成OLED之層中之一或多者可使用物理氣相沈積(physical vapor deposition;PVD)、化學氣相沈積(chemical vapor deposition;CVD)、蒸發、噴塗、旋塗、原子層沈積(atomic layer deposition;ALD)及其類似者來製造。在其他態樣中,OLED 400可使用熱蒸發器、濺鍍系統、列印、衝壓等來製造。Any suitable deposition process can be used to form OLED 400. For example, one or more of the layers that make up an OLED may be formed using physical vapor deposition (PVD), chemical vapor deposition (CVD), evaporation, spray coating, spin coating, or atomic layer deposition (atomic layer deposition; ALD) and the like. In other aspects, OLED 400 can be manufactured using thermal evaporators, sputtering systems, printing, stamping, etc.

根據一些具體實例,OLED 400可為微型OLED。根據各種實例之「微型OLED」可指具有小型主動發光區域之特定類型的OLED(例如,在一些具體實例中小於2,000 µm2、在其他具體實例中小於20 µm2或小於10 µm2)。在一些具體實例中,微型OLED之發光表面可具有小於大約2 µm之直徑。此微型OLED亦可具有準直光輸出,其可增加自小的主動發光區域發射之光的亮度位準。According to some specific examples, OLED 400 may be a micro-OLED. According to various examples, "micro-OLED" may refer to a specific type of OLED with a small active light-emitting area (e.g., less than 2,000 µm in some examples, less than 20 µm or less than 10 µm in other examples). In some embodiments, the light-emitting surface of a micro-OLED may have a diameter of less than approximately 2 µm. Such micro-OLEDs can also have collimated light output, which can increase the brightness level of light emitted from small active light-emitting areas.

圖5為根據一些具體實例之包括顯示驅動器積體電路(DDIC)510之OLED顯示裝置架構的示意圖。根據一些具體實例,OLED顯示裝置500(例如,微型OLED晶片)可包括具有安置於單晶(例如,矽)背板520上方之主動矩陣532(諸如,OLED 400)的主動顯示區域530。組合顯示器/背板架構(亦即,顯示元件540)可直接地或間接地接合(例如,在介面A處或周圍)至DDIC 510。如圖5中所繪示,DDIC 510可包括可使用習知CMOS處理來形成的驅動電晶體512之陣列。一或多個顯示驅動器積體電路可形成於單晶(例如,矽)基板上方。5 is a schematic diagram of an OLED display device architecture including a display driver integrated circuit (DDIC) 510 according to some embodiments. According to some specific examples, an OLED display device 500 (eg, a micro-OLED die) may include an active display area 530 having an active matrix 532 (such as OLED 400 ) disposed over a monocrystalline (eg, silicon) backplane 520 . The combined display/backplane architecture (ie, display element 540 ) may be coupled directly or indirectly (eg, at or around interface A) to DDIC 510 . As shown in Figure 5, DDIC 510 may include an array of drive transistors 512 that may be formed using conventional CMOS processes. One or more display driver integrated circuits may be formed over a single crystal (eg, silicon) substrate.

在一些具體實例中,主動顯示區域530可具有大於大約1.3吋之至少一個區域尺寸(亦即,長度或寬度),例如,大約1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.25、2.5、2.75或3吋,包括前述值中之任一者之間的範圍,但涵蓋較大區域顯示器。In some embodiments, active display area 530 may have at least one area dimension (ie, length or width) greater than approximately 1.3 inches, for example, approximately 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.25, 2.5 , 2.75 or 3 inches, including the range between any of the preceding values, but covering larger area displays.

背板520可包括具有矽穿孔525之單晶或多晶矽層523以用於電連接DDIC 510與主動顯示區域530。在一些具體實例中,主動顯示區域530可進一步包括安置於主動矩陣532之上部發射表面533上方的透明囊封層534、彩色濾光片536及防護玻璃罩538。The backplane 520 may include a monocrystalline or polycrystalline silicon layer 523 with silicon through holes 525 for electrically connecting the DDIC 510 and the active display area 530 . In some embodiments, active display area 530 may further include a transparent encapsulation layer 534, a color filter 536, and a protective glass cover 538 disposed over upper emitting surface 533 of active matrix 532.

根據各種具體實例,主動顯示區域530及底層背板520可與DDIC 510分開製造且稍後接合至該DDIC,此可簡化OLED主動區域之形成,包括主動矩陣532、彩色濾光片536等之形成。According to various embodiments, the active display area 530 and the underlying backplane 520 can be manufactured separately from the DDIC 510 and later bonded to the DDIC, which can simplify the formation of the OLED active area, including the formation of the active matrix 532, color filters 536, etc. .

DDIC 510可直接接合至背板之與主動矩陣532相對的背面。在其他具體實例中,晶片撓曲(chip-on-flex;COF)封裝技術可用以視情況經由資料選擇器(亦即,多工器)陣列(圖中未示)將顯示元件540與DDIC 510整合以形成OLED顯示裝置500。如本文中所使用,在一些實例中,術語「多工器」或「資料選擇器」係指經調適以組合複數個類比或數位輸入信號或自複數個類比或數位輸入信號當中選擇的裝置,該等類比或數位輸入信號經傳輸至單個輸出。多工器可用以增加可在一定量的空間、時間及頻寬內傳達之資料量。DDIC 510 may be directly bonded to the backside of the backplane opposite active matrix 532 . In other embodiments, chip-on-flex (COF) packaging technology may be used to optionally connect the display element 540 to the DDIC 510 via a data selector (ie, multiplexer) array (not shown). Integrated to form OLED display device 500. As used herein, in some instances, the term "multiplexer" or "data selector" refers to a device adapted to combine or select from a plurality of analog or digital input signals, These analog or digital input signals are routed to a single output. Multiplexers can be used to increase the amount of data that can be transmitted within a given amount of space, time, and bandwidth.

如本文中所使用,在一些實例中,「晶片撓曲」(COF)可指諸如OLED晶片之微晶片或晶粒直接安裝於諸如直接驅動器電路之可撓性電路上且電連接至該可撓性電路的總成技術。在COF總成中,微晶片可避免用於個別IC封裝之一些傳統總成步驟。此可簡化設計及製造之總體製程,同時改良效能及良率。As used herein, in some examples, "wafer flexure" (COF) may refer to a microchip or die, such as an OLED wafer, being mounted directly on and electrically connected to a flexible circuit, such as a direct driver circuit. The assembly technology of sexual circuit. In COF assembly, microchips can avoid some traditional assembly steps used in individual IC packages. This simplifies the overall design and manufacturing process while improving performance and yield.

根據某些具體實例,COF之總成可包括將晶粒附接至可撓性基板,將晶片電連接至撓曲電路,以及例如使用環氧樹脂來囊封晶片及導線以提供環境保護。在一些具體實例中,用以將晶片接合至撓曲基板之黏著劑(圖中未示)可為導熱或隔熱的。在一些具體實例中,超音波或熱超音波導線接合技術可用以將晶片電連接至撓曲基板。According to some embodiments, the assembly of the COF may include attaching the die to the flexible substrate, electrically connecting the die to the flex circuit, and encapsulating the die and wires using, for example, epoxy resin to provide environmental protection. In some embodiments, the adhesive (not shown) used to bond the wafer to the flexible substrate may be thermally conductive or insulating. In some embodiments, ultrasonic or thermal ultrasonic wire bonding techniques may be used to electrically connect the wafer to the flexural substrate.

圖6為根據一些具體實例之顯示裝置600的示意圖。顯示裝置600可為OLED顯示裝置,且包括DDIC 510及顯示元件540,以及其他組件。顯示元件540可為包括背板520、主動顯示區域530、接合墊640及用於控制主動顯示區域530之控制電路的積體電路。控制電路可包括閘極驅動器635。DDIC 510可包括時序控制器610、資料處理電路615、輸入/輸出(I/O)介面625、行動產業處理器介面(mobile industry processor interface;MIPI)接收器630、源極驅動器電路645及信號線624。在其他具體實例中,DDIC 510之一或多個組件可安置於顯示元件540中。 FIG. 6 is a schematic diagram of a display device 600 according to some specific examples. The display device 600 may be an OLED display device and includes a DDIC 510 and a display element 540, as well as other components. The display device 540 may be an integrated circuit including a backplane 520 , an active display area 530 , bonding pads 640 and a control circuit for controlling the active display area 530 . The control circuit may include gate driver 635 . The DDIC 510 may include a timing controller 610, a data processing circuit 615, an input/output (I/O) interface 625, a mobile industry processor interface (MIPI) receiver 630, a source driver circuit 645, and signal lines. 624. In other embodiments, one or more components of DDIC 510 may be disposed in display element 540 .

時序控制器610可經組態以產生用於閘極驅動器635、源極驅動器電路645以及顯示元件540中之其他組件的時序控制信號。時序控制信號可包括一或多個時脈信號、豎直同步信號、水平同步信號及起動脈衝。然而,根據本發明之具體實例的自時序控制器610提供之時序控制信號不限於此。Timing controller 610 may be configured to generate timing control signals for gate driver 635 , source driver circuit 645 , and other components in display element 540 . The timing control signal may include one or more clock signals, vertical synchronization signals, horizontal synchronization signals and start pulses. However, the timing control signal provided from the timing controller 610 according to specific examples of the present invention is not limited thereto.

資料處理電路615可經組態以自MIPI接收器630接收影像資料DATA,且轉換影像資料DATA之資料格式以產生輸入至源極驅動器電路645以用於在主動顯示區域530中顯示影像的資料信號。The data processing circuit 615 may be configured to receive the image data DATA from the MIPI receiver 630 and convert the data format of the image data DATA to generate a data signal that is input to the source driver circuit 645 for displaying the image in the active display area 530 .

I/O介面625係自其他源極接收控制信號且將操作信號發送至時序控制器610的電路。控制信號可包括用以重設顯示元件540之重設信號RST以及用於數位資料傳送之根據串列周邊介面(serial peripheral interface;SPI)或積體電路間(inter-integrated circuit;I2C)協定的信號。基於所接收之控制信號,I/O介面625可處理來自系統單晶片(system on a chip;SoC)、中央處理單元(central processing unit;CPU)或其他系統控制晶片之命令。The I/O interface 625 is a circuit that receives control signals from other sources and sends operating signals to the timing controller 610 . The control signals may include a reset signal RST for resetting the display element 540 and a signal for digital data transmission based on a serial peripheral interface (SPI) or inter-integrated circuit (I2C) protocol. signal. Based on the received control signals, the I/O interface 625 may process commands from a system on a chip (SoC), a central processing unit (CPU), or other system control chips.

MIPI接收器630可為MIPI顯示串列介面(display serial interface;DSI),其可包括用於將視訊資料遞送至主動顯示區域530中之像素的基於封包之高速介面。MIPI接收器630可接收影像資料DATA及時脈信號CLK,且將時序控制信號提供至時序控制器610並將影像資料DATA提供至資料處理電路615。MIPI receiver 630 may be a MIPI display serial interface (DSI), which may include a high-speed packet-based interface for delivering video data to pixels in active display area 530 . The MIPI receiver 630 can receive the image data DATA and the clock signal CLK, and provide the timing control signal to the timing controller 610 and the image data DATA to the data processing circuit 615.

主動顯示區域530可包括配置成列及行之複數個像素,其中各像素包括複數個子像素(例如,紅色子像素、綠色子像素、藍色子像素)。各子像素可連接至閘極線GL及資料線DL,且經驅動以在所連接之閘極線GL將閘極接通信號提供至子像素時根據經由所連接之資料線DL接收的資料信號來發射光。The active display area 530 may include a plurality of pixels arranged in columns and rows, where each pixel includes a plurality of sub-pixels (eg, red sub-pixels, green sub-pixels, blue sub-pixels). Each subpixel may be connected to a gate line GL and a data line DL, and driven to act upon a data signal received via the connected data line DL when the connected gate line GL provides a gate-on signal to the subpixel. to emit light.

背板520可包括用於電連接主動顯示區域530中之像素、閘極驅動器635、源極驅動器電路645及接合墊640的導電跡線。接合墊640係背板520上之導電區,該等導電區電耦接至DDIC 510之信號線624以自時序控制器610接收時序控制信號及自源極驅動器電路645接收資料信號。接合墊640連接至閘極驅動器635以及背板520中之其他電路元件。在圖6中所繪示之具體實例中,DDIC 510產生資料信號及時序控制信號且將該等信號傳輸至顯示元件540之接合墊640。然而,在其他具體實例中,時序控制器610、源極驅動器電路645及/或資料處理電路615可在顯示元件540而非DDIC 510中。當時序控制器610及/或資料處理電路615處於顯示元件540上時,可存在較少接合墊640,此係因為資料信號及時序控制信號可在無接合墊640之情況下直接傳輸至對應組件。Backplane 520 may include conductive traces for electrically connecting pixels in active display area 530, gate driver 635, source driver circuitry 645, and bonding pads 640. The bonding pads 640 are conductive areas on the backplane 520 that are electrically coupled to the signal lines 624 of the DDIC 510 to receive timing control signals from the timing controller 610 and data signals from the source driver circuit 645 . Bond pad 640 connects to gate driver 635 and other circuit components in backplane 520 . In the specific example shown in FIG. 6 , DDIC 510 generates data signals and timing control signals and transmits these signals to bonding pads 640 of display element 540 . However, in other embodiments, the timing controller 610, the source driver circuit 645, and/or the data processing circuit 615 may be in the display device 540 instead of the DDIC 510. When the timing controller 610 and/or the data processing circuit 615 are on the display device 540, there may be fewer bonding pads 640 because the data signals and timing control signals can be transmitted directly to the corresponding components without the bonding pads 640. .

閘極驅動器635可連接至複數個閘極線GL且在適當的時間將閘極接通信號提供至複數個閘極線GL。閘極驅動器635包括複數個級,其中各級連接至將閘極接通信號輸出至一列像素的閘極線GL。The gate driver 635 may be connected to the plurality of gate lines GL and provide gate-on signals to the plurality of gate lines GL at appropriate times. The gate driver 635 includes a plurality of stages, wherein each stage is connected to a gate line GL that outputs a gate-on signal to a column of pixels.

源極驅動器電路645可自資料處理電路615接收資料信號且經由資料線DL將資料信號提供至主動顯示區域530。源極驅動器電路645可包括複數個源極驅動器,各源極驅動器經由資料線DL連接至一行像素。The source driver circuit 645 may receive the data signal from the data processing circuit 615 and provide the data signal to the active display area 530 via the data line DL. The source driver circuit 645 may include a plurality of source drivers, each source driver being connected to a row of pixels via a data line DL.

圖7A繪示根據一些具體實例之顯示裝置的範例性像素配置。像素配置包括像素712A至712N(下文中亦統稱為「像素712」)之行、像素722A至722N(下文中亦統稱為「像素722」)之行、像素行732A至732N(下文中亦統稱為「像素732」)之行及像素742A至742N(下文中亦統稱為「像素742」)之行,等等。儘管圖7A中未繪示,但像素之額外行可配置在所展示像素行的右側及/或左側。像素中之各者(例如,像素712B)連接至對應資料線(例如,DL1)及閘極線(例如,GLB)。在一些具體實例中,像素712、722、732及742中之各者對應於OLED像素。在其他具體實例中,各像素712、722、732及742另一類型之像素,諸如微型LED像素、LCD像素及/或其類似者。Figure 7A illustrates an exemplary pixel configuration of a display device according to some embodiments. The pixel configuration includes a row of pixels 712A through 712N (hereinafter also collectively referred to as "pixels 712"), a row of pixels 722A through 722N (hereinafter also collectively referred to as "pixels 722"), a row of pixels 732A through 732N (hereinafter also collectively referred to as "pixels 722") rows of "pixels 732") and rows of pixels 742A through 742N (hereinafter also collectively referred to as "pixels 742"), and so on. Although not shown in Figure 7A, additional rows of pixels may be disposed to the right and/or left of the rows of pixels shown. Each of the pixels (eg, pixel 712B) is connected to a corresponding data line (eg, DL1) and gate line (eg, GLB). In some specific examples, each of pixels 712, 722, 732, and 742 correspond to OLED pixels. In other embodiments, each pixel 712, 722, 732, and 742 is another type of pixel, such as a micro-LED pixel, an LCD pixel, and/or the like.

資料線(例如,DL1至DL4)經由信號線748連接至解多工器716以接收經多工之像素資料,該解多工器連接至源極驅動器電路645。儘管圖7A中僅繪示單個解多工器716,但連接至不同信號線及其他像素行之其他解多工器可配置於解多工器716之右側及/或左側以程式化額外像素行。舉例而言,在一些具體實例中,顯示元件包含複數個解多工器,各解多工器經由各別信號線連接至源極驅動器電路645且經由各別資料線集合連接至各別像素行集合。Data lines (eg, DL1 to DL4) are connected via signal lines 748 to a demultiplexer 716, which is connected to source driver circuit 645, to receive the multiplexed pixel data. Although only a single demultiplexer 716 is shown in Figure 7A, other demultiplexers connected to different signal lines and other pixel rows may be configured to the right and/or left of demultiplexer 716 to program additional pixel rows. . For example, in some embodiments, the display element includes a plurality of demultiplexers, each demultiplexer connected to the source driver circuit 645 via a respective signal line and connected to a respective pixel row via a respective set of data lines. gather.

用於程式化像素行之像素資料V DATA係由多工器(圖中未示)進行時間多工,且接著由解多工器716解多工,使得較少信號線(例如,線748)可用於源極驅動器電路645與像素陣列之間。因為各解多工器接收像素資料V DATA以用於並行地程式化其各別像素集合行之像素,所以程式化顯示單元之特定列 n之所有像素所需的時間量(被稱作列週期T ROW)可由程式化對應於特定解多工器之列 n之像素的時間量來定義。儘管使用多工器及解多工器對較多資料線之像素資料進行多工係有益的,但與用於補償像素中之驅動電晶體之臨限電壓的參考電壓相關聯的穩定時間可限制多工/解多工的程度。 The pixel data V DATA used to program the rows of pixels is time multiplexed by a multiplexer (not shown) and then demultiplexed by demultiplexer 716, resulting in fewer signal lines (e.g., line 748) Can be used between the source driver circuit 645 and the pixel array. Because each demultiplexer receives pixel data V DATA for use in parallel programming of the pixels of its respective pixel set row, the amount of time required to program all pixels of a particular column n of the display unit (called the column period T ROW ) may be defined by the amount of time to program the pixels corresponding to column n of a particular demultiplexer. Although it is beneficial to use multiplexers and demultiplexers to multiplex pixel data for more data lines, the settling time associated with the reference voltage used to compensate for the threshold voltage of the drive transistors in the pixel can limit Degree of multitasking/demultitasking.

在一些具體實例中,像素712、722、732及742中之各者對應於與特定色彩通道相關聯之子像素。舉例而言,在如上文所論述之一些具體實例中,顯示器之各像素含有對應於紅色、綠色及藍色通道之三個子像素。在一些具體實例中,連接至共同解多工器716之像素712、722、732及742對應於不同色彩通道之子像素。舉例而言,像素712、722及732可分別對應於給定像素行的紅色、綠色及藍色子像素,而像素742對應於另一像素行之紅色子像素。在其他具體實例中,連接至共同解多工器716之像素712、722、732及742對應於同一色彩通道之子像素。舉例而言,像素712、722、732及742可對應於顯示器之不同像素行的紅色子像素。In some specific examples, each of pixels 712, 722, 732, and 742 corresponds to a sub-pixel associated with a particular color channel. For example, in some embodiments as discussed above, each pixel of the display contains three sub-pixels corresponding to the red, green, and blue channels. In some embodiments, pixels 712, 722, 732, and 742 connected to common demultiplexer 716 correspond to sub-pixels of different color channels. For example, pixels 712, 722, and 732 may correspond to red, green, and blue subpixels, respectively, of a given row of pixels, while pixel 742 corresponds to a red subpixel of another row of pixels. In other embodiments, pixels 712, 722, 732, and 742 connected to common demultiplexer 716 correspond to sub-pixels of the same color channel. For example, pixels 712, 722, 732, and 742 may correspond to red sub-pixels of different pixel rows of the display.

閘極線GLA至GLN將閘極接通信號自閘極驅動器635提供至像素。在圖7A之實例中,各像素列連接閘極線GLA至GLN中之一者以接收閘極接通信號。閘極接通信號藉由控制各像素之資料選擇開關(SEL) (例如,如圖7B中所展示)而指示像素列何時應連接至資料線以接收用於程式化像素之像素資料,其中SEL開關在閘極接通信號處於作用中時接通但在閘極接通信號處於非作用中時斷開。Gate lines GLA through GLN provide gate-on signals from gate driver 635 to the pixels. In the example of FIG. 7A , each pixel column is connected to one of the gate lines GLA to GLN to receive the gate-on signal. The gate-on signal indicates when the pixel column should be connected to the data line to receive pixel data for programming the pixel by controlling the data select switch (SEL) of each pixel (e.g., as shown in Figure 7B), where SEL The switch is on when the gate-on signal is active but off when the gate-on signal is inactive.

顯示元件540進一步包括來自閘極驅動器635之時序信號線(圖中未示)以提供其他時序信號。舉例而言,顯示元件540可包括攜載用於操作像素中之各種開關之時序信號的水平線,如下文參看圖7B所描述。The display device 540 further includes timing signal lines (not shown) from the gate driver 635 to provide other timing signals. For example, display element 540 may include horizontal lines carrying timing signals for operating various switches in the pixels, as described below with reference to Figure 7B.

圖7B為根據一些具體實例之像素的電路圖。像素700可為顯示元件540中之任何像素,包括但不限於像素712、722、732或724。雖然圖7B將像素700繪示為OLED像素,但應理解,在其他具體實例中,顯示元件540之像素可實施為其他類型之像素(例如,LED像素、LCD像素等)。像素700可包括開關SEL、驅動電晶體M D、OLED、開關REST、開關SW、電容器Cst1及電容器Cst2以及其他組件。OLED連接於低電壓源ELVSS與驅動電晶體M D之汲極之間。當接通開關SW且斷開開關REST時,驅動電晶體M D在其汲極中產生電流,該電流隨著由儲存電容器Cst1儲存之電壓增加而增加。隨後將電流提供至OLED以驅動OLED。OLED接著產生強度對應於由驅動電晶體M D提供之電流量的光。 Figure 7B is a circuit diagram of a pixel according to some specific examples. Pixel 700 may be any pixel in display element 540, including but not limited to pixels 712, 722, 732, or 724. Although FIG. 7B illustrates pixels 700 as OLED pixels, it should be understood that in other embodiments, the pixels of display element 540 may be implemented as other types of pixels (eg, LED pixels, LCD pixels, etc.). The pixel 700 may include a switch SEL, a driving transistor MD , an OLED, a switch REST, a switch SW, capacitors Cst1 and Cst2, and other components. The OLED is connected between the low voltage source ELVSS and the drain of the driving transistor MD . When the switch SW is turned on and the switch REST is turned off, the driving transistor MD generates a current in its drain, which current increases as the voltage stored by the storage capacitor Cst1 increases. Current is then provided to the OLED to drive the OLED. The OLED then generates light with an intensity corresponding to the amount of current provided by the drive transistor MD .

開關SEL控制驅動電晶體M D之閘極端子與資料線DL之間的連接。當閘極線GL提供閘極接通信號(例如,變低)時,開關SEL接通,從而將驅動電晶體M D的閘極連接至資料線DL,且基於資料線DL處之像素資料的電壓與高電壓位準(ELVDD)之間的電壓差來對儲存電容器Cst1充電。當閘極接通信號在閘極線GL中斷開時,斷開開關SEL,從而將驅動電晶體M D之閘極與資料線DL斷開連接。 The switch SEL controls the connection between the gate terminal of the drive transistor MD and the data line DL. When the gate line GL provides a gate-on signal (e.g., goes low), the switch SEL is turned on, thereby connecting the gate of the drive transistor MD to the data line DL, and based on the pixel data at the data line DL The storage capacitor Cst1 is charged by the voltage difference between the ELVDD voltage and the high voltage level (ELVDD). When the gate-on signal is disconnected in the gate line GL, the switch SEL is turned off, thereby disconnecting the gate of the driving transistor MD from the data line DL.

開關REST使得來自驅動電晶體M D之電流能夠或不能夠在OLED中流動。當接通開關REST時,來自驅動電晶體M D之電流經由開關REST流動至接地(AGND),該接地具有比低電壓位準ELVSS低之電位。相反地,當開關REST斷開時,來自驅動電晶體M D之電流在OLED中流動。 The switch REST enables or not current from the drive transistor MD to flow in the OLED. When the switch REST is turned on, the current from the driving transistor MD flows through the switch REST to the ground (AGND), which has a lower potential than the low voltage level ELVSS. On the contrary, when the switch REST is turned off, the current from the driving transistor MD flows in the OLED.

接通或斷開開關SW以將高電壓源ELVDD耦接至驅動電晶體M D之源極。當開關SW斷開時,電容器Cst2儲存高電壓源ELVDD與驅動電晶體M D之源極之間的電壓差。 The switch SW is turned on or off to couple the high voltage source ELVDD to the source of the driving transistor MD . When the switch SW is turned off, the capacitor Cst2 stores the voltage difference between the high voltage source ELVDD and the source of the driving transistor MD .

在一些具體實例中,驅動電晶體M D、選擇開關(SEL)、重設開關(RES)以及發射開關(SW)各自實施為P通道金屬氧化物半導體(P-channel metal-oxide-semiconductor;PMOS)電晶體,其中選擇開關(SEL)、重設開關(RES)以及發射開關(SW)的閘極信號受經由顯示器之閘極驅動器電路系統提供的時序信號控制。在其他具體實例中,此等組件中之一或多者可使用其他類型之開關(例如,NMOS電晶體)來實施。 In some specific examples, the driving transistor MD , the selection switch (SEL), the reset switch (RES) and the emission switch (SW) are each implemented as a P-channel metal-oxide-semiconductor; PMOS ) transistor, in which the gate signals of the select switch (SEL), reset switch (RES) and emission switch (SW) are controlled by the timing signal provided by the gate driver circuit system of the display. In other embodiments, one or more of these components may be implemented using other types of switches (eg, NMOS transistors).

在一些具體實例中,資料依序寫入至顯示裝置之顯示面板(例如,顯示元件540)的各像素列。舉例而言,在一些具體實例中,閘極驅動器635包括沿著對應於顯示面板之列的一系列移位暫存器行進的脈衝或移位閘極信號(在本文中亦被稱作「啟用脈衝」)。啟用脈衝可充當沿著連接一像素列之閘極線提供的閘極接通信號,且顯示面板之各列在時間週期T Row(亦被稱作閘極接通週期或列週期)期間經程式化,在此期間將啟用脈衝提供至該列之閘極線GL。顯示器之圖框速率係基於用於程式化顯示面板之各列的列週期T Row。此外,如上文所論述,基於一或多個解多工器對各列之像素分組,其中列週期T Row可基於用以程式化對應於特定解多工器的列之像素的時間量。 In some specific examples, data is sequentially written to each pixel row of a display panel (eg, display element 540) of the display device. For example, in some embodiments, gate driver 635 includes a pulse or shift gate signal (also referred to herein as an "enable" signal) that travels along a series of shift registers corresponding to columns of display panels. pulse"). The enable pulse acts as a gate-on signal provided along a gate line connecting a row of pixels, and each column of the display panel is programmed during a time period T Row (also known as a gate-on period or column period) ation, during which an enable pulse is provided to the gate line GL of the column. The frame rate of the display is based on the column period T Row used for each column of the stylized display panel. Additionally, as discussed above, the pixels of each column are grouped based on one or more demultiplexers, where the column period T Row may be based on the amount of time used to program the pixels of the column corresponding to a particular demultiplexer.

在一些具體實例中,顯示裝置經組態以對多個列及/或多個行之像素的程式化分組,其中相同資料值經同時提供至多個列及/或多個行之各像素,從而產生由多個原生像素組成的「虛擬像素」(亦被稱作「宏像素」)。舉例而言,顯示裝置可對 m行乘 n列內的原生像素分組(其中 mn為整數,且 mn中之至少一者大於1),其中 m行及 n列的各像素經同時驅動以產生 m× n宏像素。如本文中所使用,行可指在平行於顯示器之資料線的方向上配置的像素,而列可指在平行於顯示器之閘極線的方向上配置的像素,即使某些圖可能出於繪示之目的而繪示在水平方向上延伸的資料線及在豎直方向上延伸的閘極線亦如此。 In some embodiments, the display device is configured for stylized grouping of pixels in multiple columns and/or rows, wherein the same data value is provided to each pixel in multiple columns and/or rows simultaneously, such that Generates "virtual pixels" (also called "macropixels") composed of multiple native pixels. For example, the display device may group native pixels in m rows by n columns (where m and n are integers, and at least one of m or n is greater than 1), where each pixel in m rows and n columns is simultaneously Driven to produce m × n macropixels. As used herein, rows may refer to pixels arranged in a direction parallel to the data lines of the display, and columns may refer to pixels arranged in a direction parallel to the gate lines of the display, although some figures may be drawn from The same applies to data lines extending in the horizontal direction and gate lines extending in the vertical direction for illustration purposes.

在一些具體實例中,執行將原生像素分組為宏像素以降低顯示面板之整體有效解析度。舉例而言,藉由將2×2個原生像素集合分組為宏像素,顯示器之有效解析度降低4倍。在其他具體實例中,將像素分組為宏像素係作為實施注視點顯示器(foveated Display)之部分執行,其中顯示面板之不同區經組態為以不同解析度顯示影像資料。舉例而言,在一些具體實例中,顯示裝置經組態以基於各區內之宏像素的大小而以原生解析度在第一顯示區內顯示影像資料,且以較低解析度在一或多個額外顯示區內顯示影像資料。在一些具體實例中,顯示器內之各顯示區的位置為固定的(被稱作固定注視點渲染,或FFR)。在一些具體實例中,注視點顯示面板之顯示區的位置基於使用者之凝視方向(被稱作凝視追蹤之注視點渲染或GFR)經動態地組態,例如,其中圍繞使用者之凝視方向(例如,以對應於使用者凝視之顯示器的位置為中心)的顯示區經組態為以原生解析度顯示影像資料,而顯示器之其他區經組態為以較低解析度顯示影像資料。In some embodiments, grouping native pixels into macropixels is performed to reduce the overall effective resolution of the display panel. For example, by grouping a 2×2 set of native pixels into macropixels, the effective resolution of the display is reduced by a factor of 4. In other embodiments, grouping pixels into macropixels is performed as part of implementing a foveated display, where different regions of the display panel are configured to display image data at different resolutions. For example, in some embodiments, the display device is configured to display image data in a first display area at native resolution and in one or more display areas at a lower resolution based on the size of macropixels in each area. Display image data in an additional display area. In some embodiments, the position of each display area within the display is fixed (called fixed foveated rendering, or FFR). In some embodiments, the position of the display area of the foveated display panel is dynamically configured based on the user's gaze direction (referred to as gaze-tracked foveation rendering or GFR), for example, where surrounding the user's gaze direction ( For example, a display area (centered on the display corresponding to the position at which the user is looking) is configured to display image data at native resolution, while other areas of the display are configured to display image data at a lower resolution.

圖8繪示根據一些具體實例的展示注視點顯示器之實施方案的高階圖。在一些具體實例中,顯示裝置接收待顯示於顯示面板上的輸入影像資料802,其中輸入影像資料802包含第一解析度(例如,顯示裝置之原生解析度)之第一影像資料804及第二較低解析度之第二影像資料806。在不使用宏像素分組之具體實例中,放大影像資料(例如,藉由將第二影像資料806之各像素映射至顯示器之複數個原生像素)以產生所顯示影像資料808,其完全以顯示裝置之原生解析度顯示。另一方面,在使用宏像素分組之具體實例中,顯示影像資料810在第一區812中係使用顯示裝置之原生像素顯示且在第二區814中係使用宏像素顯示,該宏像素包含使用相同資料同時程式化的原生像素之群組。在一些具體實例中,顯示器之不同區可與不同宏像素分組大小相關聯。舉例而言,顯示影像資料810可進一步包括第三區816,該第三區包含相較於第二區814之宏像素具有不同大小的宏像素。8 illustrates a high-level diagram illustrating an implementation of a foveation display, according to some specific examples. In some specific examples, the display device receives input image data 802 to be displayed on the display panel, where the input image data 802 includes first image data 804 of a first resolution (eg, a native resolution of the display device) and a second Lower resolution second image data 806. In embodiments that do not use macropixel grouping, the image data is amplified (eg, by mapping each pixel of the second image data 806 to a plurality of native pixels of the display) to produce the displayed image data 808 , which is entirely based on the display device. native resolution display. On the other hand, in a specific example using macropixel grouping, the displayed image data 810 is displayed using the native pixels of the display device in the first area 812 and is displayed using macropixels in the second area 814, the macropixels include using A group of native pixels that are simultaneously stylized with the same data. In some embodiments, different regions of the display may be associated with different macropixel grouping sizes. For example, the display image data 810 may further include a third region 816 that includes macropixels of a different size than the macropixels of the second region 814 .

在一些具體實例中,藉由將原生像素分組為宏像素,可減少顯示裝置之功率消耗。在其他具體實例中,宏像素分組用以減少增加顯示器之再新率。在一些具體實例中,使用宏像素允許使用具有比可在給定再新率下以其他方式達成之解析度更大的原生解析度的顯示器。舉例而言,在一些具體實例中,由於各列需要之所需充電時間最短,具有高於某一原生解析度(例如,5k+原生解析度)之顯示器將不能夠以所要再新率(例如,90 Hz)來實施。然而,藉由實施將顯示器之原生像素分組為宏像素的注視點顯示器,顯示器的有效解析度得以降低,從而允許使用具有更高原生解析度的顯示器,同時仍維持所要再新率。In some embodiments, by grouping native pixels into macropixels, the power consumption of the display device can be reduced. In other embodiments, macropixel grouping is used to reduce the refresh rate of the display. In some embodiments, the use of macropixels allows the use of a display with a native resolution that is greater than otherwise achievable at a given refresh rate. For example, in some embodiments, displays with higher than a certain native resolution (e.g., 5k+native resolution) will not be able to perform at a desired refresh rate (e.g., 90 Hz) to implement. However, by implementing a foveated display that groups the display's native pixels into macropixels, the effective resolution of the display is reduced, allowing the use of displays with higher native resolutions while still maintaining the desired refresh rate.

圖9繪示根據一些具體實例的展示注視點顯示器架構的圖式。在一些具體實例中,注視點影像資料902最初在圖形處理單元(GPU) 910處產生,且在傳輸至OLED顯示器之前在顯示處理單元(DPU) 920處經處理,該OLED顯示器包含DDIC 930及顯示元件940(其可對應於圖6中所繪示之DDIC 510及顯示元件540)。在一些具體實例中,GPU 910及DPU 920為同一系統單晶片(SoC)之部分。在一些具體實例中,SoC可包括多個GPU及/或多個DPU。在一些具體實例中,GPU 910及DPU 920位於與OLED顯示器分離的處理器或控制台上。9 illustrates a diagram illustrating a foveated display architecture according to some specific examples. In some embodiments, foveated image data 902 is initially generated at graphics processing unit (GPU) 910 and processed at display processing unit (DPU) 920 before being transmitted to an OLED display that includes DDIC 930 and display Component 940 (which may correspond to DDIC 510 and display component 540 illustrated in Figure 6). In some embodiments, GPU 910 and DPU 920 are part of the same system on a chip (SoC). In some specific examples, the SoC may include multiple GPUs and/or multiple DPUs. In some embodiments, GPU 910 and DPU 920 are located on a separate processor or console from the OLED display.

在一些具體實例中,GPU 910及DPU 920對所接收之注視點影像資料902執行一或多個影像處理功能。舉例而言,在初始注視點影像資料902包含多層的情況下,GPU 910及DPU 920可對組合影像資料之層(例如,組合為單層)的影像資料902執行複合功能912。在一些具體實例中,DPU 920對影像資料執行彩色像差補償(color aberration compensation;CAC) 914,其可用以補償由用於VR或AR顯示器中之放大透鏡引起的色像差。在一些具體實例中,可對GPU 910或DPU 920執行此等功能。 In some specific examples, the GPU 910 and the DPU 920 perform one or more image processing functions on the received gaze point image data 902 . For example, in the case where the initial gaze point image data 902 includes multiple layers, the GPU 910 and the DPU 920 may perform the composite function 912 on the image data 902 that combines the layers of image data (eg, combines into a single layer). In some specific examples, the DPU 920 performs color aberration compensation (CAC) 914 on the image data, which can be used to compensate for chromatic aberration caused by magnifying lenses used in VR or AR displays. In some specific examples, such functions may be performed on GPU 910 or DPU 920.

後設資料產生模組916產生與注視點影像資料902相關聯的後設資料904。在一些具體實例中,後設資料產生模組916自CPU或GPU收集描述注視點影像資料902的後設資料。在一些具體實例中,所產生之後設資料指定顯示器之兩個或兩個以上顯示區的位置、各顯示區的有效解析度及/或宏像素大小,或其某一組合。在其他具體實例中,在顯示器經組態以實施GFR之情況下,後設資料可指示凝視位置,於是DDIC基於所接收凝視位置(例如,以凝視位置為中心的具有原生解析度之中心顯示區、中心區外部具有較低有效解析度之一或多個周邊顯示區等)判定不同顯示區之位置。在一些具體實例中,影像資料902可具有原生解析度,且後設資料904由DDIC使用以降低取樣影像資料902之部分以產生注視點影像資料。在一些具體實例中,後設資料產生模組916以與顯示串流壓縮演算法(諸如,顯示串流壓縮(DSC)或VESA顯示壓縮M(VDC-M))相容之格式產生後設資料,以便促進後設資料自GPU 910/DPU 920傳輸至DDIC 930。而圖9展示在執行不同影像處理功能之間(例如,在執行複合功能912及CAC 914之間)產生注視點影像資料902之後設資料的後設資料產生模組916,但應理解,在其他具體實例中,後設資料產生模組916可在執行影像處理功能之前或在執行不同影像處理功能之後產生注視點影像資料902的後設資料。在一些具體實例中,後設資料產生模組916可位於GPU 910上,而在其他具體實例中,後設資料產生模組916可位於DPU 920上。 The metadata generation module 916 generates metadata 904 associated with the gaze point image data 902 . In some embodiments, the metadata generation module 916 collects metadata describing the foveated image data 902 from the CPU or GPU. In some embodiments, the generated posterior data specify the location of two or more display areas of the display, the effective resolution and/or macropixel size of each display area, or some combination thereof. In other embodiments, where the display is configured to implement GFR, the metadata may indicate the gaze position, and the DDIC is then based on the received gaze position (e.g., a central display area with native resolution centered at the gaze position , one or more peripheral display areas with lower effective resolution outside the central area, etc.) to determine the positions of different display areas. In some embodiments, image data 902 may have native resolution, and metadata 904 is used by the DDIC to downsample portions of image data 902 to generate foveated image data. In some embodiments, metadata generation module 916 generates metadata in a format compatible with a display stream compression algorithm, such as Display Stream Compression (DSC) or VESA Display Compression M (VDC-M). , in order to facilitate the transfer of metadata from GPU 910/DPU 920 to DDIC 930. Figure 9 shows the metadata generation module 916 that generates post-set data of the fixation point image data 902 between execution of different image processing functions (for example, between execution of composite function 912 and CAC 914), but it should be understood that in other In a specific example, the metadata generation module 916 can generate metadata of the gaze point image data 902 before executing the image processing function or after executing different image processing functions. In some embodiments, the metadata generation module 916 may be located on the GPU 910 , while in other embodiments, the metadata generation module 916 may be located on the DPU 920 .

傳輸器918將注視點影像資料902及所產生之後設資料904編碼為待傳輸至DDIC 930的封包906之串流。在一些具體實例中,傳輸器918包含編碼器,該編碼器使用壓縮演算法,例如,DSC、VDC-M等來編碼封包。在一些具體實例中,傳輸器918將影像資料902及後設資料904之部分編碼為共同封包。在其他具體實例中,傳輸器918將影像資料902及後設資料904編碼為獨立封包。在雙傳輸通道可用之具體實例中,影像資料及後設資料可經由單獨通道傳輸。在僅一個通道可用之其他具體實例中,影像資料及後設資料之封包可經多工,或後設資料可作為影像資料之封包的部分嵌入。 The transmitter 918 encodes the foveated image data 902 and the generated posterior setting data 904 into a stream of packets 906 to be transmitted to the DDIC 930 . In some embodiments, the transmitter 918 includes an encoder that encodes packets using a compression algorithm such as DSC, VDC-M, etc. In some embodiments, transmitter 918 encodes portions of image data 902 and metadata 904 into a common packet. In other embodiments, the transmitter 918 encodes the image data 902 and the metadata 904 into independent packets. In specific instances where dual transmission channels are available, image data and metadata can be transmitted via separate channels. In other embodiments where only one channel is available, packets of image data and metadata may be multiplexed, or metadata may be embedded as part of packets of image data.

DDIC 930經由接收器932接收包含注視點影像資料902及後設資料904的封包906,該接收器解碼所接收之封包以擷取注視點影像資料902及後設資料904。在一些具體實例中,接收器932可對應於圖6中所繪示之MIPI接收器630。在一些具體實例中,DDIC 930對所接收之注視點影像資料902執行一或多個影像處理功能934,諸如數位至類比會話(digital to analog conversation;DAC)及濾波,諸如低通(low-pass;LP)、帶通(band-pass;BP)或高通(high-pass;HP)濾波。影像處理功能934亦可包括時序控制電路(timing control circuit;TCON)。在一些具體實例中,TCON產生用於組態顯示器之像素的控制信號(例如,解多工器控制信號、列啟用脈衝等)之時序(下文更詳細地描述)。 DDIC 930 receives a packet 906 containing foveated image data 902 and metadata 904 via a receiver 932, which decodes the received packet to retrieve foveated image data 902 and metadata 904. In some embodiments, receiver 932 may correspond to MIPI receiver 630 illustrated in FIG. 6 . In some embodiments, the DDIC 930 performs one or more image processing functions 934 on the received foveation image data 902, such as digital to analog conversation (DAC) and filtering, such as low-pass. ; LP), band-pass (band-pass; BP) or high-pass (high-pass; HP) filtering. The image processing function 934 may also include a timing control circuit (TCON). In some embodiments, TCON generates the timing of control signals (eg, demultiplexer control signals, column enable pulses, etc.) used to configure pixels of the display (described in more detail below).

DDIC 930包括擴展器電路(或「擴展器」) 936,其經組態以基於所接收之後設資料904合成由顯示元件940顯示的宏像素之位置,以顯示注視點影像資料902。舉例而言,擴展器936使用後設資料904以判定顯示元件940之列及行的分組,以建立同時載入有共同影像值的跨越 m× n個像素之宏像素。在一些具體實例中,擴展器936設定經分組解多工參數以用於將 m個行之集合分組,以及控制碼以用於執行用以對 n個列之集合分組的經分組閘極掃描來建立 m× n個宏像素。在一些具體實例中,後設資料904可直接指示待由擴展器936分組之列及行的數目。在其他具體實例中,在後設資料904並不直接指示列及行之分組(諸如在後設資料904指示GFR顯示器中之顯示器之中心的情況下)的情況下,擴展器可基於後設資料904判定顯示器的哪些列及行待分組。在一些具體實例中,擴展器936實施為圖6中所繪示的資料處理電路615之部分。 DDIC 930 includes expander circuitry (or "expander") 936 configured to synthesize the positions of macropixels displayed by display element 940 based on received metadata 904 to display foveated image data 902 . For example, expander 936 uses metadata 904 to determine groupings of columns and rows of display elements 940 to create macropixels spanning m × n pixels that simultaneously load common image values. In some embodiments, expander 936 sets the grouped demultiplexing parameters for grouping the set of m rows, and the control code for performing a grouped gate scan to group the set of n columns. Create m × n macropixels. In some embodiments, metadata 904 may directly indicate the number of columns and rows to be grouped by expander 936 . In other embodiments, where metadata 904 does not directly indicate the grouping of columns and rows (such as where metadata 904 indicates the center of the display in a GFR display), the expander may be based on the metadata. 904 determines which columns and rows of the display are to be grouped. In some embodiments, expander 936 is implemented as part of data processing circuit 615 illustrated in FIG. 6 .

在一些具體實例中,藉由在將注視點影像資料傳輸至DDIC 930之後擴展該注視點影像資料,可減少需要傳輸的影像資料之量。舉例而言,因為注視點影像資料將使用宏像素來顯示,其中宏像素內的每一像素同時載入有相同影像資料,所以注視點影像資料902不需要指示顯示器之各原生像素的像素值。實情為,注視點影像資料902可僅需要含有影像之待顯示的各宏像素之像素資料值,從而造成需要針對各影像傳輸的較低數目之像素值。In some embodiments, by expanding the foveated image data after transmitting it to the DDIC 930, the amount of image data that needs to be transmitted can be reduced. For example, because the foveated image data will be displayed using macropixels, where each pixel within a macropixel is simultaneously loaded with the same image data, the foveated image data 902 does not need to indicate the pixel value of each native pixel of the display. Instead, foveated image data 902 may only need to contain pixel data values for each macropixel of the image to be displayed, resulting in a lower number of pixel values that need to be transmitted for each image.

如上文所論述, m× n個宏像素可對應於顯示器之 m行及 n列的分組,使得 m行及 n列之相交處的所有像素用相同影像資料同時經程式化,如同其為單個像素。在一些具體實例中,使用經分組解多工(grouped demultiplexing;GDX)分組顯示器之 m行,此在下文更詳細地論述。使用經分組閘極掃描(grouped gate scanning;GGS)將顯示器之 n列分組,多個列之閘極線經分組在一起,使得來自顯示器之資料線的資料同時經寫入至經分組列中之各者的像素,從而使得經分組列中之各者接收相同影像資料。藉由在顯示器之不同部分處將列及行之不同集合分組,可產生具有不同有效解析度(例如,不同大小之宏像素)的不同顯示區。 As discussed above, m × n macropixels may correspond to a grouping of m rows and n columns of a display such that all pixels at the intersection of m rows and n columns are simultaneously programmed with the same image data as if they were a single pixel . In some specific examples, m rows of a display are grouped using grouped demultiplexing (GDX), discussed in more detail below. Grouped gate scanning (GGS) is used to group the n columns of the display. The gate lines of multiple columns are grouped together, so that the data from the data lines of the display are written to the grouped columns at the same time. Each pixel in the grouped column receives the same image data. By grouping different sets of columns and rows at different parts of the display, different display areas with different effective resolutions (eg, different sizes of macropixels) can be produced.

圖10繪示根據一些具體實例的展示擴展待顯示於具有不同大小之宏像素的注視點顯示器上的影像資料之實例的圖式。如圖10中所示,影像資料1002(其可對應於由GPU接收之圖9中所繪示的影像資料902)可呈壓縮格式。舉例而言,針對待顯示之各宏像素,影像資料1002可指定對應於待應用於宏像素之所有像素之影像資料的單個像素值,從而降低影像資料1002之像素總數目且降低待在GPU/DPU與DDIC之間傳輸的資料之量。基於指示待顯示之宏像素分組的所接收之後設資料,影像資料1002在DDIC處(例如,藉由擴展器936)經擴展以產生影像資料1004。舉例而言,如圖10中所展示,影像資料1004包括複數個顯示區,各顯示區具有由列及行之不同分組產生的不同有效解析度以產生不同大小的宏像素。在一些具體實例中,當查看顯示器時,可基於使用者之眼球的預期視場選擇顯示區之大小及位置。舉例而言,在一些具體實例中,顯示器之中心顯示區可經選擇以對應於大約20度之使用者在水平及豎直方向上的視場。10 is a diagram illustrating an example of extending image data to be displayed on a foveated display with macropixels of different sizes, according to some embodiments. As shown in Figure 10, image data 1002 (which may correspond to image data 902 illustrated in Figure 9 received by the GPU) may be in a compressed format. For example, for each macropixel to be displayed, image data 1002 may specify a single pixel value that corresponds to the image data for all pixels of the macropixel, thereby reducing the total number of pixels in image data 1002 and reducing the time spent on the GPU/ The amount of data transferred between the DPU and DDIC. Based on the received metadata indicating the macropixel grouping to be displayed, image data 1002 is expanded at the DDIC (eg, by expander 936) to produce image data 1004. For example, as shown in Figure 10, image data 1004 includes a plurality of display areas, each display area having a different effective resolution resulting from different groupings of columns and rows to produce macropixels of different sizes. In some embodiments, the size and location of the display area may be selected based on the expected field of view of the user's eyeballs when viewing the display. For example, in some embodiments, the center display area of the display may be selected to correspond to approximately 20 degrees of the user's field of view in both horizontal and vertical directions.

分組在一起的列之數目及行之數目可獨立地經組態於顯示器之不同區中,以產生不同大小的宏像素。舉例而言,在中心區1006中,不執行列或行之分組,使得該區之有效解析度與原生解析度相同。然而,在區1008中,注視點顯示器將兩列之集合分組在一起,而行保持未經分組,從而在此等區中產生1×2個宏像素,產生為原生解析度之一半的有效解析度。類似地,在區1010中,注視點顯示器將兩行之集合及兩列之集合分組,從而產生2×2個宏像素,在該等區中產生為原生解析度之1/4的有效解析度。此向外延伸至區1012,對應於最遠離中心區1006之拐角區,其中四列之集合及四行之集合經分組在一起,從而產生1/16有效解析度。在一些具體實例中,擴展器基於所接收之後設資料基於影像資料內之各區的位置對列及行的分組進行組態。舉例而言,在跨越整個列應用行分組之一些具體實例中,對於具有混合解析度(例如,1×1像素及2×1像素)的列,可基於更高解析度實施行分組,使得在單獨時間週期內而非同時提供列之各較低解析度像素(包含跨越多個行之複數個原生像素)的影像資料。由於經由信號線提供至資料線的資料在單獨時間週期內為恆定的,因此相對於程式化列之更高解析度像素可實現一些功率節省。The number of columns and rows grouped together can be independently configured in different areas of the display to produce macropixels of different sizes. For example, in center region 1006, no grouping of columns or rows is performed, so that the effective resolution of this region is the same as the native resolution. However, in region 1008, the foveated display groups the set of two columns together while leaving the rows ungrouped, resulting in 1×2 macropixels in these regions, resulting in an effective resolution of half the native resolution. Spend. Similarly, in region 1010, the foveated display groups a set of two rows and a set of two columns, resulting in 2×2 macropixels, resulting in an effective resolution of 1/4 of the native resolution in these regions . This extends outward to area 1012, corresponding to the corner area furthest from the central area 1006, where the set of four columns and the set of four rows are grouped together, resulting in an effective resolution of 1/16. In some embodiments, the expander configures groupings of columns and rows based on the location of regions within the image data based on the received metadata. For example, in some embodiments where row grouping is applied across an entire column, for columns with mixed resolutions (e.g., 1×1 pixel and 2×1 pixel), row grouping may be implemented based on the higher resolution such that in Image data for each column of lower-resolution pixels (including multiple native pixels spanning multiple rows) are provided over separate time periods rather than simultaneously. Because the data provided to the data lines via the signal lines is constant over a single period of time, some power savings can be achieved relative to stylized rows of higher resolution pixels.

如上文所論述,在一些具體實例中,顯示器之資料線連接至複數個解多工器(例如,圖7A中所繪示之解多工器716),其以時間多工方式將資料自DDIC之信號線(例如,信號線748/624)提供至資料線。圖11A及圖11B繪示根據一些具體實例的展示解多工器可耦接至顯示器之資料線的不同組態之圖式。在圖11A中所展示之第一實例中,各解多工器1102(解多工器1102A至1102I)將DDIC之各別信號線連接至顯示器之四個資料線,其中各資料線對應用於特定像素行之色彩通道。在圖11A中所示之具體實例中,各解多工器連接至對應於不同色彩通道的資料線。舉例而言,第一解多工器1102A連接至像素之第一行的紅色、綠色及藍色資料線以及像素之第二子集的紅色資料線,而第二解多工器1102B連接至像素之第二行的綠色及藍色資料線以及像素之第三行的紅色及綠色資料線。解多工器1102使用控制信號DMX1至DMXn(例如,DMX1至DMX4)來控制,該等控制信號依序經啟動以使得解多工器1102中之各者將其各別信號線之資料提供至對應資料線。As discussed above, in some embodiments, the data lines of the display are connected to a plurality of demultiplexers (e.g., demultiplexer 716 shown in Figure 7A), which time-multiplex the data from the DDIC The signal line (for example, signal line 748/624) is provided to the data line. 11A and 11B illustrate diagrams illustrating different configurations in which a demultiplexer may be coupled to data lines of a display, according to some specific examples. In the first example shown in FIG. 11A , each demultiplexer 1102 (demultiplexers 1102A to 1102I) connects a respective signal line of the DDIC to four data lines of the display, where each data line corresponds to The color channel of a specific pixel row. In the specific example shown in Figure 11A, each demultiplexer is connected to a data line corresponding to a different color channel. For example, first demultiplexer 1102A is connected to the red, green, and blue data lines of a first row of pixels and the red data lines of a second subset of pixels, and second demultiplexer 1102B is connected to The green and blue data lines of the second row and the red and green data lines of the third row of pixels. Demultiplexer 1102 is controlled using control signals DMX1 through DMXn (eg, DMX1 through DMX4), which are sequentially enabled to cause each of demultiplexer 1102 to provide data from its respective signal line to Corresponding data line.

根據一些具體實例,使用經分組解多工(GDX)對顯示器之行分組包含組態解多工器,該等解多工器將來自DDIC之信號線的資料提供至顯示器之資料線以同時將相同資料提供至多個像素。在一些具體實例中,為了促進相同資料被提供至不同像素(例如,待分組在一起以形成宏像素的不同行之像素)的能力,解多工器並非連接至對應於不同色彩通道的資料線,而是經組態以連接至不同像素的相同色彩通道,以使得各解多工器能夠針對特定色彩通道同時為複數個像素提供影像資料。圖11B繪示根據一些具體實例的可藉以執行GDX的解多工器之範例性配置。如圖11B中所示,解多工器1104A至1104F中之各者各自經組態以接收對應於單個色彩通道(紅色、綠色或藍色)之影像資料,且基於所接收之控制信號DMX1至DMX6將影像資料提供至對應於六個不同像素行的至多六個不同資料線。因為各解多工器僅與單個色彩頻道相關聯,所以各像素經由各別資料線連接至三個不同解多工器(例如,經組態以將紅色頻道影像資料提供至像素之第一多工器、經組態以將藍色頻道影像資料提供至像素之第二多工器以及經組態以將綠色頻道影像資料提供至像素之第三解多工器),且可基於控制信號DMX1至DMX6之單個控制信號的啟動而經程式化。舉例而言,當啟動控制信號DMX1時,經由解多工器1104A、1104B及1104C將第一像素1106A的資料線載入有R、G及B色彩通道資料。在一些具體實例中,解多工器1104中之各者係使用在控制線DMX1至DMXn(例如,DMX1至DMX6)下方延伸之長金屬段1108來實施,各者經由各別接點1110連接至控制線。在一些具體實例中,在複數個控制線下方延伸的金屬段1108實現簡易的佈局修改,此係因為各段可基於接點1110的置放連接至控制線中之任一者。According to some specific examples, grouping rows of a display using grouped demultiplexing (GDX) involves configuring demultiplexers that provide data from the signal lines of the DDIC to the data lines of the display to simultaneously The same data is provided to multiple pixels. In some embodiments, to facilitate the ability for the same data to be provided to different pixels (e.g., different rows of pixels to be grouped together to form a macropixel), the demultiplexer is not connected to data lines corresponding to different color channels. , but are configured to connect to the same color channel of different pixels, so that each demultiplexer can provide image data to multiple pixels simultaneously for a specific color channel. 11B illustrates an exemplary configuration of a demultiplexer by which GDX may be executed, according to some embodiments. As shown in FIG. 11B , each of demultiplexers 1104A through 1104F is each configured to receive image data corresponding to a single color channel (red, green, or blue), and based on the received control signals DMX1 through DMX6 provides image data to up to six different data lines corresponding to six different rows of pixels. Because each demultiplexer is associated with only a single color channel, each pixel is connected via a separate data line to three different demultiplexers (for example, one configured to provide red channel image data to the first multiplexer of the pixel). processor, a second multiplexer configured to provide blue channel image data to the pixels, and a third demultiplexer configured to provide green channel image data to the pixels), and may be based on the control signal DMX1 Programmed to the activation of a single control signal to DMX6. For example, when the control signal DMX1 is activated, the data line of the first pixel 1106A is loaded with R, G, and B color channel data via the demultiplexers 1104A, 1104B, and 1104C. In some embodiments, each of the demultiplexers 1104 is implemented using a long metal segment 1108 extending under the control lines DMX1 through DMXn (eg, DMX1 through DMX6 ), each connected via a respective contact 1110 to control line. In some embodiments, metal segments 1108 extending beneath a plurality of control lines enable easy layout modifications because each segment can be connected to any one of the control lines based on the placement of contacts 1110 .

藉由組態解多工器以將特定色彩通道之任何資料僅提供至其已連接資料線,連接至解多工器之各信號線僅提供彼特定色彩通道之影像資料。此可用來降低驅動顯示面板所需的功率之量,此係因為相較於不同色彩頻道的影像資料值之變化,尤其在顯示具有大面積之平坦紋理的影像內容時,鄰近像素之相同色彩頻道的影像資料值之變化典型地較小。舉例而言,在一些具體實例中,顯示器之功率消耗係基於用以驅動資料線的電流之量,該電流之量為源極驅動器及資料線之切換頻率以及在源極驅動器及資料線處之各轉換之電壓差的函數。當各信號線提供對應於顯示器之鄰近像素之特定色彩通道的資料時,切換頻率及電壓差減少,從而降低功率消耗。By configuring the demultiplexer to provide any data for a specific color channel only to its connected data lines, each signal line connected to the demultiplexer provides only image data for that specific color channel. This can be used to reduce the amount of power required to drive the display panel due to changes in image data values for different color channels compared to adjacent pixels of the same color channel, especially when displaying image content with large areas of flat texture. Changes in image data values are typically small. For example, in some embodiments, the power consumption of a display is based on the amount of current used to drive the data lines, the amount of current being the switching frequency of the source driver and data lines and the switching frequency at the source driver and data lines. A function of the voltage difference for each transition. When each signal line provides data corresponding to a specific color channel of adjacent pixels of the display, the switching frequency and voltage difference are reduced, thereby reducing power consumption.

圖12A及圖12B繪示根據一些具體實例的展示如何控制顯示器之解多工器以執行GDX的圖式。圖12A繪示解多工器1202,其中為易於說明,連接至解多工器1202之資料線展示為在水平方向上延伸,且顯示器之閘極線展示為在豎直方向上延伸,即使沿著同一資料線的像素仍被稱作行,且沿著同一閘極線的像素被稱作列。解多工器1202經組態以基於控制信號DMX1至DMX6之時序將藍色通道資料提供至複數個資料線1204(例如,六個資料線),該等資料線連接至複數個像素行(例如,六個像素行)之藍色子像素。在給定時間週期期間上面載入有資料的行之特定像素係基於在該時間週期期間顯示器之在作用中的閘極線1206。在一些具體實例中,在不同列週期T row期間,可使用解多工器控制信號之不同時序,以允許不同列含有不同像素分組。舉例而言,圖12A繪示以下實例:其中對於由解多工器1202控制的六個資料線,對第一列上之像素並未執行像素分組,對第二列上之像素執行二之分組,對第三列上之像素執行3之分組,且對第四列上之像素執行六之分組。 12A and 12B illustrate diagrams illustrating how to control the demultiplexer of a display to perform GDX according to some specific examples. Figure 12A illustrates demultiplexer 1202, where for ease of illustration, the data lines connected to demultiplexer 1202 are shown extending in the horizontal direction, and the gate lines of the display are shown extending in the vertical direction, even though along Pixels along the same data line are still called rows, and pixels along the same gate line are called columns. Demultiplexer 1202 is configured to provide blue channel data to a plurality of data lines 1204 (eg, six data lines) that are connected to a plurality of pixel rows (eg, , six pixel rows) of blue sub-pixels. The specific pixels on which rows have data loaded during a given time period are based on the active gate lines 1206 of the display during that time period. In some embodiments, different timings of the demultiplexer control signals may be used during different column periods T row to allow different columns to contain different pixel groups. For example, FIG. 12A illustrates an example in which, for six data lines controlled by demultiplexer 1202, pixel grouping is not performed on the pixels in the first column, and two groupings are performed on the pixels in the second column. , perform grouping of 3 on the pixels in the third column, and perform grouping of six on the pixels in the fourth column.

圖12B繪示展示根據一些具體實例之在執行GDX時用於對圖12A中所繪示之像素之不同組合分組的控制信號時序之時序圖。如圖12B中所展示,遍及複數個列週期T row中之各者,資料係由解多工器1202基於控制信號DMX1至DMX6而載入至資料線1204上,該等控制信號係基於在列週期期間啟動哪一閘極線1206(例如,對應於第一列、第二列、第三列及第四列的SEL1、SEL2、SEL3或SEL4)而寫入至一或多個列之像素。在第一列週期期間(在此期間不執行像素分組),依序提供解多工器之控制信號DMX1至DMX6,從而允許解多工器1202經由信號線提供待載入至各資料線上的不同影像資料(例如,資料值B1至B6)。各控制信號在時間週期T內經啟動,該時間週期對應於足以對資料線充電之時間量。如上文所論述,因為顯示器之解多工器將資料並行地載入至其各別資料線集合上,所以列週期T ROW可基於由特定解多工器使用以將資料載入至其資料線上的載入時間(例如,基於6T)。 12B illustrates a timing diagram illustrating control signal timing for grouping different combinations of pixels illustrated in FIG. 12A when performing GDX, according to some embodiments. As shown in FIG. 12B , throughout each of a plurality of column periods T row , data is loaded onto data lines 1204 by demultiplexer 1202 based on control signals DMX1 through DMX6 based on the rows in the column. Which gate line 1206 (eg, SEL1, SEL2, SEL3, or SEL4 corresponding to the first, second, third, and fourth columns) is activated during a cycle to write to one or more columns of pixels. During the first column period (during which pixel grouping is not performed), the control signals DMX1 to DMX6 of the demultiplexer are provided sequentially, thereby allowing the demultiplexer 1202 to provide different data to be loaded onto each data line via the signal line. Image data (for example, data values B1 to B6). Each control signal is activated within a time period T, which corresponds to an amount of time sufficient to charge the data lines. As discussed above, because the display's demultiplexer loads data onto its respective set of data lines in parallel, the column period T ROW can be based on the use by a particular demultiplexer to load data onto its data lines. load time (e.g. based on 6T).

藉由控制控制信號DMX1至DMX6之時序,鄰近行之像素可經分組且與相同影像資料同時提供。舉例而言,為了將鄰近行上之像素對分組,同時提供多個控制信號,且解多工器1202將相同影像資料同時提供至多個資料線。舉例而言,如圖12B中所展示,在第二列週期T ROW期間,控制信號DMX1至DMX6成對地啟動(例如,DMX1與DMX2,DMX3與DMX4,且DMX5與DMX6),使得解多工器1202一次將信號線耦接至一對資料線1204(例如,以將資料值B1提供至對應於DMX1及DMX2之資料線,將資料值B3提供至對應於DMX3及DMX4之資料線,且將資料值B5提供至對應於DMX5及DMX6之資料線),使得來自信號線之資料被同時提供至資料線兩者。此外,由於將信號線耦接至多個資料線一次可增加將資料載入至資料線上所需的充電時間,因此相較於一次僅提供單個控制信號而在較長時間週期(例如,約2T)提供控制信號之各對。然而,因為轉換數目由於成對地提供之控制信號而減少,因此總體列週期T ROW不增加。 By controlling the timing of control signals DMX1 to DMX6, pixels in adjacent rows can be grouped and provided simultaneously with the same image data. For example, to group pairs of pixels on adjacent rows, multiple control signals are provided simultaneously, and the demultiplexer 1202 provides the same image data to multiple data lines simultaneously. For example, as shown in Figure 12B, during the second column period T ROW , the control signals DMX1 to DMX6 are activated in pairs (eg, DMX1 and DMX2, DMX3 and DMX4, and DMX5 and DMX6), such that demultiplexing Device 1202 couples the signal line to a pair of data lines 1204 at a time (for example, to provide data value B1 to the data line corresponding to DMX1 and DMX2, to provide data value B3 to the data line corresponding to DMX3 and DMX4, and to The data value B5 is provided to the data lines corresponding to DMX5 and DMX6), so that the data from the signal line is provided to both data lines simultaneously. In addition, since coupling a signal line to multiple data lines at once can increase the charging time required to load data onto the data lines, over a longer period of time (e.g., approximately 2T) than providing only a single control signal at a time Provides each pair of control signals. However, since the number of transitions is reduced due to the control signals provided in pairs, the overall column period TROW does not increase.

如圖12B中所示,在第三列週期期間,控制信號DMX1至DMX6在三個集合中啟動,各集合係在約3T之時間週期內提供,使得解多工器1202一次將信號線耦接至三個資料線1204以產生3行宏像素(例如,第一宏像素提供之資料值B1,其包含對應於DMX1、DMX2及DMX3的資料線上之像素,以及第二宏像素提供之資料值B4,其包含對應於DMX4、DMX5及DMX6的資料線上之像素)。此外,在第四列週期期間,控制信號DMX1至DMX6全部一起啟動(例如,在約6T之時間週期內)以產生跨越六個行的宏像素。舉例而言,如圖12A中所展示,當啟動所有控制信號DMX1至DMX6時,解多工器1202將相同信號線值(例如,B1)同時提供至其所有六個已連接資料線1204,當接收到列之閘極選擇信號(例如,SEL4)時將該等資料線載入至顯示器之特定列的像素上。As shown in Figure 12B, during the third column period, the control signals DMX1 to DMX6 are activated in three sets, each set being provided for a time period of approximately 3T, allowing the demultiplexer 1202 to couple the signal lines at a time to three data lines 1204 to generate 3 rows of macropixels (e.g., the first macropixel provides data value B1, which includes pixels on the data lines corresponding to DMX1, DMX2, and DMX3, and the second macropixel provides data value B4, It contains pixels on the data lines corresponding to DMX4, DMX5 and DMX6). Additionally, during the fourth column period, control signals DMX1 through DMX6 are all activated together (eg, within a time period of approximately 6T) to generate macropixels spanning six rows. For example, as shown in Figure 12A, when all control signals DMX1 through DMX6 are enabled, demultiplexer 1202 provides the same signal line value (eg, B1) to all six of its connected data lines 1204 simultaneously. These data lines are loaded onto pixels in a specific column of the display when a column gate select signal (eg, SEL4) is received.

對於諸如圖12A及圖12B中所繪示之具體實例,其中各解多工器連接至六個資料線,2行、3行及6行宏像素可藉由將解多工器控制信號以2、3或6之群組進行分組來建構,此係因為2、3及6被6整除。圖12C及圖12D繪示根據一些具體實例的展示如何控制顯示器之解多工器以產生4像素宏像素的圖式。如圖12C中所展示,由於4不被6整除,當產生多個4行宏像素時,宏像素中之一些可跨越對應於不同多工器的資料線。舉例而言,圖12C繪示用於將藍色通道資料提供至六個資料線之第一集合的第一解多工器1212A,以及作為用於將藍色通道資料提供至六個資料線之第二集合的第二解多工器1212B。控制信號DMX1至DMX6在所有解多工器(包括第一解多工器1212A與第二解多工器1212B)之間共用,該等解多工器可用於以與上文關於圖12A及圖12B所論述相同的方式將資料提供至其各別資料線之集合上的像素,作為個別像素(無分組)、2行宏像素、3行宏像素及6行宏像素(圖12C中未示)。此外,因為控制信號DMX1至DMX6由解多工器共用,所以使用2x時序來實施4行宏像素,在此期間各解多工器將資料自其各別信號線提供至一對資料線。在一些具體實例中,可執行此操作而非將四個資料線分組,此係因為各解多工器待分組之資料線可為不同的,從而產生潛在衝突。For specific examples such as those shown in Figures 12A and 12B, where each demultiplexer is connected to six data lines, rows 2, 3, and 6 macropixels can be configured by applying the demultiplexer control signal to 2, Groups of 3 or 6 are constructed in groups because 2, 3, and 6 are divisible by 6. 12C and 12D illustrate diagrams illustrating how to control a demultiplexer of a display to generate 4-pixel macropixels according to some specific examples. As shown in Figure 12C, since 4 is not divisible by 6, when multiple 4-row macropixels are generated, some of the macropixels may span data lines corresponding to different multiplexers. For example, FIG. 12C illustrates a first demultiplexer 1212A for providing blue channel data to a first set of six data lines, and as a first demultiplexer 1212A for providing blue channel data to the six data lines. Second set of second demultiplexers 1212B. Control signals DMX1 to DMX6 are shared between all demultiplexers, including the first demultiplexer 1212A and the second demultiplexer 1212B, which may be used in the same manner as described above with respect to FIGS. 12A and 1212B. Data is provided to pixels on their respective sets of data lines in the same manner as discussed in 12B, as individual pixels (no grouping), 2-row macropixels, 3-row macropixels, and 6-row macropixels (not shown in FIG. 12C). Additionally, because control signals DMX1 to DMX6 are shared by the demultiplexers, 2x timing is used to implement 4 rows of macropixels, during which each demultiplexer provides data from its respective signal line to a pair of data lines. In some embodiments, this operation may be performed instead of grouping four data lines because the data lines to be grouped by each demultiplexer may be different, creating potential conflicts.

儘管圖11A至圖12D展示解多工器各自連接至六個資料線,但應理解,在其他具體實例中,各解多工器可經組態有不同數目個分支。在一些具體實例中,每個解多工器之分支的數目係基於足以對顯示器之資料線充電的時間週期T及所要列週期T ROW(其可基於顯示器之所要再新率)而選擇。 Although FIGS. 11A-12D show demultiplexers each connected to six data lines, it should be understood that in other embodiments, each demultiplexer may be configured with a different number of branches. In some embodiments, the number of branches per demultiplexer is selected based on a time period T sufficient to charge the display's data lines and a desired column period T ROW (which may be based on a desired refresh rate of the display).

如上文所論述, m× n個宏像素(對應於顯示器之m行及n列的分組)可藉由使用GDX對 m行像素分組且使用GGS對 n列像素分組而產生。在一些具體實例中,顯示器之各像素列的閘極線可經組態以在列處接收到啟用脈衝時穿過啟用脈衝,該啟用脈衝在顯示器之列之間依序移位,或在該列處接收到啟用脈衝時「跳過」啟用脈衝但替代地,在啟用脈衝亦由鄰近列穿過時穿過啟用脈衝,因此將該列與鄰近列分組,使得兩個列同時自資料線寫入資料至其各別像素上。 As discussed above, m × n macropixels (corresponding to the grouping of m rows and n columns of the display) can be generated by grouping m row pixels using GDX and grouping n column pixels using GGS. In some embodiments, the gate lines of each pixel column of the display may be configured to pass through an enable pulse when an enable pulse is received at the column, the enable pulse is sequentially shifted between the columns of the display, or at the The enable pulse is "skipped" when an enable pulse is received at a column but instead passes through the enable pulse when it is also passed through by an adjacent column, thus grouping the column with an adjacent column such that both columns write from the data lines simultaneously data to their respective pixels.

圖13繪示根據一些具體實例的展示GDX及GGS之組合如何可用以產生各種大小之宏像素的圖式。圖13繪示解多工器1302,其經組態以基於控制信號DMX1至DMX6將綠色通道資料提供至六個資料線1304之集合。控制信號經依序啟動以將資料個別地(無分組)載入至各資料線上,或經分組以產生多行宏像素(例如,2行宏像素或3行宏像素),類似於如上文關於圖12A及圖12B所論述。圖13亦繪示展示由解多工器1302接收且提供至閘極線1306的控制信號之時序圖,該等閘極線用以建構不同大小的宏像素。Figure 13 is a diagram illustrating how combinations of GDX and GGS can be used to generate macropixels of various sizes, according to some specific examples. Figure 13 illustrates a demultiplexer 1302 configured to provide green channel data to a set of six data lines 1304 based on control signals DMX1 through DMX6. Control signals are activated sequentially to load data onto each data line individually (without grouping) or grouped to produce multiple rows of macropixels (eg, 2 rows of macropixels or 3 rows of macropixels), similar to that described above with respect to Figures 12A and As discussed in Figure 12B. FIG. 13 also illustrates a timing diagram showing control signals received by demultiplexer 1302 and provided to gate lines 1306 used to construct macropixels of different sizes.

顯示器之閘極線1306可經分組以產生多列宏像素。舉例而言,圖13繪示第一列之閘極選擇線不與任何其他列分組,且在該列處接收啟用脈衝時提供啟用信號(SEL1)。另一方面,第二列之閘極電路系統經組態以耦接至第三列之閘極電路系統,使得在第二列處接收到啟用脈衝時並不穿過啟用脈衝而在第三列處接收到啟用脈衝時穿過啟用脈衝。因此,當在第二列處接收到啟用脈衝時,將其「跳過」且使其並不穿過第二列之閘極線(圖13中作為「SEL2跳過」所示)。實情為,當在第三列處接收到啟用脈衝時,其穿過至第三列及第二列兩者的閘極線(SEL2&SEL3),允許彼時載入資料線上的資料被寫入兩列之像素,從而產生跨越兩列的宏像素。圖13進一步展示使用類似原理耦接在一起的第四、第五及第六列之閘極選擇線,使得當在群組之最後一列(例如,第六列)處接收到移位閘極選擇信號時,將所有三列寫入以便產生3列宏像素。The gate lines 1306 of the display may be grouped to create columns of macropixels. For example, Figure 13 shows that the gate select lines of the first column are not grouped with any other columns and provide an enable signal (SEL1) when an enable pulse is received at that column. On the other hand, the gate circuitry of the second column is configured to be coupled to the gate circuitry of the third column such that when the enable pulse is received at the second column, the enable pulse does not pass through the gate circuitry of the third column. Crosses the enable pulse when the enable pulse is received at . Therefore, when the enable pulse is received at the second column, it is "skipped" and does not cross the gate line of the second column (shown as "SEL2 Skip" in Figure 13). The reality is that when the enable pulse is received at the third column, it passes through the gate lines (SEL2&SEL3) of both the third column and the second column, allowing the data on the load data line at that time to be written to both columns. pixels, resulting in macropixels spanning two columns. Figure 13 further shows the gate select lines of the fourth, fifth and sixth columns coupled together using similar principles such that when a shifted gate select is received at the last column of the group (e.g., the sixth column) signal, all three columns are written to produce 3 columns of macropixels.

如圖13中所示,藉由組合GDX及GGS,可形成各種大小之宏像素。舉例而言,當控制信號經組態以使得解多工器1302在兩個列之閘極線分組在一起的列週期期間將來自信號線之影像資料同時提供至資料線對時,形成2×2個宏像素。類似地,當解多工器1302一次將信號線資料提供至三個資料線之集合且將三個列之集合的閘極線分組在一起時,形成3×3個宏像素。應理解,其他大小之宏像素(例如,2×3個宏像素、3×2個宏像素等)可使用類似技術形成。As shown in Figure 13, by combining GDX and GGS, macro pixels of various sizes can be formed. For example, when the control signals are configured so that the demultiplexer 1302 simultaneously provides image data from the signal lines to the data line pairs during the column period in which the gate lines of the two columns are grouped together, forming a 2× 2 macro pixels. Similarly, when demultiplexer 1302 provides signal line data to a set of three data lines at a time and groups the gate lines of a set of three columns together, 3×3 macropixels are formed. It should be understood that other sizes of macropixels (eg, 2x3 macropixels, 3x2 macropixels, etc.) may be formed using similar techniques.

在多個列之閘極選擇線經分組的一些具體實例中,解多工器1302可用以在多個列週期內將信號線資料載入至資料線上。舉例而言,如圖13中所繪示,因為在第二列週期期間跳過SEL2,但替代地在第三列週期期間結合SEL3提供,所以在兩個列週期而非一個週期內將待寫入至此等兩個列之像素的資料線資料載入。在一些具體實例中,此可允許列週期持續時間之動態變化以改良顯示再新率及/或經減小之源極驅動器偏壓電流以改良功率消耗,其兩者將在下文中更詳細地論述。In some embodiments where the gate select lines of multiple columns are grouped, demultiplexer 1302 may be used to load signal line data onto the data lines over multiple column periods. For example, as illustrated in Figure 13, because SEL2 is skipped during the second column period, but is instead provided in conjunction with SEL3 during the third column period, the write to be made will occur in two column periods instead of one. The data line data for the pixels in these two columns is loaded. In some embodiments, this may allow for dynamic changes in column period duration to improve display refresh rate and/or reduced source driver bias current to improve power consumption, both of which are discussed in more detail below .

圖14繪示根據一些具體實例的展示信號線、解多工器及資料線集合之電特性的高階圖。源極驅動器1402提供用於驅動信號線1404及經由解多工器1406連接至信號線1404的資料線1408中之任一者(例如,資料線1408-1至1408-m)的源極偏壓電流。對顯示器之各資料線1408充電所需之時間量係基於時間常數τ,該時間常數取決於與源極驅動器(諸如,源極驅動器(SD)等效電阻R S、SD輸出靜電放電(ESD)電阻R E及SD輸出墊電容C P)相關聯之阻抗以及與解多工器及資料線(諸如,解多工器等效電阻R X、資料線電阻R D及資料線電容C D)相關聯之阻抗。在一些具體實例中,τ可計算為 。然而,在解多工器並行地選擇多個資料線之情況下,時間常數τ之值不會線性地縮放。舉例而言,在並行地選擇 m個資料線的情況下,τ可計算為 。換言之, 。因為充電時間並不隨被一次充電的資料線之數目而縮放,所以使用解多工器來將一起被充電的多個資料線分組可用以減少線時間(增加顯示器之再新率,或允許顯示器含有額外像素列而不減少再新率),或減少顯示器之功率消耗(例如,藉由在對多個資料線充電時降低所使用的源極偏壓電流)。 14 illustrates a high-level diagram showing electrical characteristics of a set of signal lines, demultiplexers, and data lines, according to some specific examples. Source driver 1402 provides source bias voltage for driving signal line 1404 and any of data lines 1408 connected to signal line 1404 via demultiplexer 1406 (eg, data lines 1408-1 through 1408-m) current. The amount of time required to charge each data line 1408 of the display is based on a time constant τ that depends on the relationship between the source driver (such as the source driver (SD) equivalent resistance R S , the SD output electrostatic discharge (ESD) The impedance associated with the resistor R The resistance of the connection. In some specific examples, τ can be calculated as . However, in the case where the demultiplexer selects multiple data lines in parallel, the value of the time constant τ does not scale linearly. For example, in the case of selecting m data lines in parallel, τ can be calculated as . In other words, . Because charging time does not scale with the number of data lines being charged at once, using a demultiplexer to group multiple data lines that are being charged together can be used to reduce line times (increase the refresh rate of the display, or allow the display to include additional pixel columns without reducing refresh rate), or reduce the display's power consumption (for example, by reducing the source bias current used when charging multiple data lines).

圖15A繪示根據一些具體實例的當執行GDX時可如何減少線時間之一實例。圖15A繪示展示三個列週期(類似於圖12B中所繪示的前三個列週期)內的控制信號及資料線電壓之第一時序圖1502。如圖15A中所展示,對應於在將不執行經分組解多工或經分組閘極掃描時的列週期T row展示為「1H」。在第一列週期期間,不執行經分組解多工,且依序提供各控制信號DMX1至DMX6,該等控制信號各者持續時間週期T,該時間週期足以基於時間常數 對對應資料線中之各者充電(例如,T≈5τ 1)。然而,在第二列週期及第三列週期期間,經分組解多工用以將兩個及三個控制信號之集合分別分組,以一次將信號線資料集提供至兩個及三個資料線之集合。如圖15A中所展示,在兩個或三個資料線之各集合分別被分派時間2T或3T之情況下,資料線之各集合能夠在經分派時間週期結束之前完全充電,從而造成外來平坦週期1504,在此期間充電已完成。 Figure 15A illustrates an example of how line time may be reduced when executing GDX, according to some specific examples. Figure 15A illustrates a first timing diagram 1502 showing control signals and data line voltages over three column periods (similar to the first three column periods shown in Figure 12B). As shown in FIG. 15A , the column period T row corresponding to when grouped demultiplexing or grouped gate scanning will not be performed is shown as "1H". During the first column period, packet demultiplexing is not performed and control signals DMX1 to DMX6 are sequentially provided, each of which lasts for a time period T, which time period is sufficient based on the time constant Charge each of the corresponding data lines (eg, T≈5τ 1 ). However, during the second column period and the third column period, group demultiplexing is used to group the two and three sets of control signals respectively to provide the signal line data sets to two and three data lines at a time collection. As shown in Figure 15A, where each set of two or three data lines is assigned a time of 2T or 3T, respectively, each set of data lines can be fully charged before the end of the assigned time period, resulting in an alien flat period 1504, during which charging is completed.

圖15A進一步繪示根據一些具體實例的展示在三個列週期內之控制信號及資料線電壓之第二時序圖1510,其中該等列週期之長度基於經執行之經分組解多工的級別而可變。在圖15A之圖式中,列週期(在此期間執行經分組解多工)之長度減少了量Tm,其中m對應於數個經分組資料線(使得兩個/三個經分組資料線之各集合經分配小於2T/3T以充電),以允許資料線完全充電,同時減少或消除平坦週期1504(在此期間不發生充電)。舉例而言,在一些具體實例中,T2 ≈ 6×5τ 1- 3 ×5τ 2且T3 ≈ 6×5τ 1- 2 ×5τ 3。在一些具體實例中,DDIC基於對列之像素執行的GDX之位準(例如,使用圖6中所繪示之時序控制器610)針對不同列動態地調整顯示器之列週期的持續時間(例如,藉由組態啟用脈衝之時序)。 15A further illustrates a second timing diagram 1510 showing control signal and data line voltages over three column periods, where the length of the column periods is based on the level of packet demultiplexing performed, according to some embodiments. Variable. In the diagram of Figure 15A, the length of the column period (during which packetized demultiplexing is performed) is reduced by an amount Tm, where m corresponds to a number of packetized data lines (such that two/three packetized data lines Each set is allocated less than 2T/3T to charge) to allow the data lines to be fully charged while reducing or eliminating flat periods 1504 (during which no charging occurs). For example, in some specific examples, T2 ≈ 6×5τ 1 - 3 ×5τ 2 and T3 ≈ 6×5τ 1 - 2 ×5τ 3 . In some embodiments, the DDIC dynamically adjusts the duration of the column period of the display for different columns (e.g., using timing controller 610 illustrated in FIG. 6 ) based on the level of GDX performed on the pixels of the column Enable pulse timing by configuring).

圖15B繪示根據一些具體實例的當執行GDX及GGS時可如何減少線時間之一實例。如上文所論述,GGS涉及多個列之閘極線的分組,使得來自顯示器之資料線的資料同時寫入至經分組列中之各者的像素,使得經分組列中之各者接收相同影像資料。圖15B繪示第一時序圖1512,其中在第一列週期期間,不執行經分組解多工,且依序提供各控制信號DMX1至DMX6,該等控制信號各者持續時間週期T,該時間週期足以對對應資料線中之各者充電(例如,T≈5τ 1)。然而,在第二列週期及第三列週期期間,經分組解多工用以對兩個控制信號之集合分組以一次將信號線資料提供至兩個資料線之集合,且經分組閘極掃描用以將兩列分組在一起,使得啟用脈衝在第二列週期期間被跳過1514,且在第三列週期期間連同啟用脈衝1516一起提供(類似於如圖13中所繪示)。兩個資料線及兩個列之此分組產生一列2×2個宏像素。如圖15B中所展示,因為資料線可在一個列週期1H內完全充電,所以其無需在與經分組列相關聯之額外列週期(例如,第三列週期)期間經進一步充電。因而,DDIC可動態地調整列週期的持續時間,使得在1H週期內接收到經分組列的啟用信號。舉例而言,用於使用GGS對n列分組的總時間可自n×1H減少至1H,從而造成(n-1) 1H的時間節省。因此,當GDX及GGS組合使用時,時間節省可表達為Tm + (n-1)∙1H (例如,T2 + 1H,當n及m均為2時)。 Figure 15B illustrates an example of how line time can be reduced when executing GDX and GGS according to some specific examples. As discussed above, GGS involves the grouping of the gate lines of multiple columns so that data from the display's data lines are simultaneously written to the pixels of each of the grouped columns, such that each of the grouped columns receives the same image material. 15B illustrates a first timing diagram 1512, in which during the first column period, packet demultiplexing is not performed, and control signals DMX1 to DMX6 are provided sequentially, each of which lasts for a time period T. The time period is sufficient to charge each of the corresponding data lines (eg, T≈5τ 1 ). However, during the second column period and the third column period, group demultiplexing is used to group the two sets of control signals to provide signal line data to the two sets of data lines at once, and the grouped gate scan to group the two columns together such that the enable pulse is skipped 1514 during the second column period and provided along with the enable pulse 1516 during the third column period (similar to that depicted in Figure 13). This grouping of two data lines and two columns produces a column of 2×2 macropixels. As shown in Figure 15B, because the data line can be fully charged in one column period 1H, it does not need to be further charged during the additional column periods associated with the grouped columns (eg, the third column period). Thus, the DDIC can dynamically adjust the duration of the column period so that the enable signal for the grouped columns is received within the 1H period. For example, the total time for grouping n columns using GGS can be reduced from n×1H to 1H, resulting in a time saving of (n-1) 1H. Therefore, when GDX and GGS are used in combination, the time savings can be expressed as Tm + (n-1)∙1H (for example, T2 + 1H, when n and m are both 2).

某些列之經減少列週期增加顯示器之總體再新率。在一些具體實例中,由於個別地對各解多工器之資料線充電所需的最小時間量,含有經分組像素之列的經減少列週期(經由GDX、GGS或兩者)可造成顯示器針對給定供應電壓具有比在不執行像素分組之情況下(例如,若顯示器將使用原生解析度完全顯示影像資料)另外可能的再新率更高的再新率。替代地,在已知將執行至少一定量之經分組解多工以產生宏像素的注視點顯示器中,可用較大數目個列來建構顯示器,同時維持至少最小再新率,該最小再新率高於在不執行像素分組之情況下另外可能的再新率。舉例而言,在顯示器含有使用使用經分組解多工所產生之宏像素顯示的第一區以及具有原生解析度(例如,無經分組解多工)之第二區域的具體實例中,減少用以顯示含有使用經分組解多工分組之像素的列的時間可允許將額外充電時間分派至顯示器上之具有原生解析度的區域。此可允許顯示器之顯示區域包括較大數目個列,且使各列經分派足夠的充電時間,而不增加顯示器之總體再新率。Reducing the column period for certain columns increases the overall refresh rate of the display. In some embodiments, due to the minimum amount of time required to charge the data lines of each demultiplexer individually, reduced column periods (via GDX, GGS, or both) for columns containing grouped pixels can cause the display to target A given supply voltage has a higher refresh rate than would otherwise be possible without performing pixel grouping (for example, if the monitor were to fully display image data using native resolution). Alternatively, in foveated displays, which are known to perform at least a certain amount of grouped demultiplexing to produce macropixels, the display can be constructed with a larger number of columns while maintaining at least a minimum refresh rate that A higher refresh rate than would otherwise be possible without performing pixel grouping. For example, in embodiments where the display includes a first region displayed using macropixels produced using grouped demultiplexing and a second region having native resolution (e.g., without grouped demultiplexing), the reduction in The time taken to display columns containing pixels grouped using group demultiplexing may allow additional charging time to be allocated to areas on the display with native resolution. This allows the display area of the display to include a larger number of columns and allow sufficient charging time to be allocated to each column without increasing the overall refresh rate of the display.

在一些具體實例中,DDIC在使用後設資料以合成待由顯示器顯示的宏像素之位置時,基於待顯示於列上的宏像素之大小判定分派給顯示器之各列的列週期持續時間。舉例而言,在一些具體實例中,使用經分組解多工之資料線的分組愈大,愈可減少上面待寫入影像資料的列之列週期。此外,可基於使用分組閘極掃描之經分組的所顯示列之數目而進一步減少列週期。在一些具體實例中,DDIC藉由組態解多工器控制信號(例如,DMX1至DMX6)的時序及控制啟用脈衝在顯示器之列之間的移位的時脈速率來組態列週期的持續時間。In some embodiments, the DDIC determines the column period duration assigned to each column of the display based on the size of the macropixels to be displayed on the column when using metadata to synthesize the locations of macropixels to be displayed by the display. For example, in some embodiments, using a larger group of grouped demultiplexed data lines can reduce the column cycle of the above column to be written with image data. Additionally, the column period may be further reduced based on the number of grouped displayed columns using grouped gate scanning. In some embodiments, the DDIC configures the duration of a column period by configuring the timing of demultiplexer control signals (e.g., DMX1 through DMX6) and controlling the clock rate that enables the shifting of pulses between columns of the display. time.

在一些具體實例中,經分組解多工可用以減少顯示器之功率消耗(例如,藉由降低在對多個資料線充電時所使用的源極偏壓電流)。圖16A繪示根據一些具體實例的展示不同列週期之時序圖,在該等列週期期間執行不同級別之經分組解多工。圖16A中所展示之控制信號類似於圖12B之彼等控制信號,其中在第一列週期期間未執行解多工,且在第二、第三及第四列週期期間執行不同級別之經分組解多工以分別產生2行、3行及6行宏像素。儘管同時對多個資料線充電的所增加負載降低充電轉換速率,從而造成較長充電時間,但如上文所論述,該增加並非為線性的。在一些具體實例中,資料線待充分充電所需的時間為大約五個時間常數(例如,5τ n,其中n對應於經並行充電之大量資料線)。舉例而言,如圖16A之資料線電壓位準曲線1602中所示,單個資料線各自能夠在T≈5τ 1下完全充電。另一方面,兩個、三個及六個資料線之分組能夠在分別低於2T、3T及6T時間的5τ 2、5τ 3、及5τ 6下充分充電,從而產生平坦週期1604,在此期間已完成充電。在一些具體實例中,代替減少列週期,例如,如關於圖15所描述,平坦週期1604可藉由減少用以對資料線充電之源極驅動器偏壓電流而減少,從而減少資料線之充電轉換速率(如藉由經修改之電壓充電曲線1606所展示),以使得資料線充分充電所需之時間與已分派時間週期(例如,2T、3T或6T)更緊密地對準。此外,藉由在對某些列之資料線充電時降低偏壓電流而降低顯示器的功率消耗位準。 In some embodiments, packet demultiplexing can be used to reduce power consumption of a display (eg, by reducing the source bias current used when charging multiple data lines). 16A illustrates a timing diagram illustrating different column cycles during which different levels of packet demultiplexing are performed, according to some specific examples. The control signals shown in Figure 16A are similar to those of Figure 12B, with no demultiplexing performed during the first column period, and different levels of grouping performed during the second, third and fourth column periods. Demultiplex to produce 2, 3 and 6 rows of macro pixels respectively. Although the increased load of charging multiple data lines simultaneously reduces the charge slew rate, resulting in longer charging times, as discussed above, this increase is not linear. In some embodiments, the time required for a data line to be fully charged is approximately five time constants (eg, 5τ n , where n corresponds to a large number of data lines being charged in parallel). For example, as shown in data line voltage level curve 1602 of Figure 16A, individual data lines can each be fully charged at T≈5τ 1 . On the other hand, groups of two, three, and six data lines can be fully charged at 5τ 2 , 5τ 3 , and 5τ 6 below the 2T, 3T, and 6T times respectively, resulting in a flat period 1604 during which Charging completed. In some embodiments, instead of reducing the column period, for example, as described with respect to FIG. 15 , the flat period 1604 can be reduced by reducing the source driver bias current used to charge the data line, thereby reducing the charge transfer of the data line. rate (as shown by the modified voltage charge curve 1606) so that the time required for the data line to fully charge is more closely aligned with the allocated time period (eg, 2T, 3T, or 6T). Additionally, the power consumption level of the display is reduced by reducing the bias current when charging certain rows of data lines.

在一些具體實例中,偏壓電流降低亦可與經分組閘極掃描(GGS)結合使用以實現功率消耗節省。圖16B繪示根據一些具體實例的展示不同列週期的時序圖,在該等列週期期間使用GGS對不同列集合進行分組。舉例而言,圖16B繪示:對應於第一列的第一列週期,其中資料本身被寫入至第一列;以及對應於第二列的第二列週期,其中不提供閘極啟用信號(SEL2跳過),此係由於第二列與第三列經分組,其中兩個列當前在第三列週期期間被寫入(SEL2&SEL3)。因此,類似於如上文關於圖13所論述,可在兩個列週期(第二列週期及第三列週期)內載入待寫入至此等兩個列之像素的資料線資料。在資料線在多個列週期(諸如圖16B中所繪示之週期)內充電的具體實例中,充電可在多個步驟中發生。舉例而言,對應於DMX1之資料線可在第一時間週期T 1612期間被充電至第一位準,且在第二時間週期T 1614期間被充電至完全充電的剩餘量。因為與不執行列分組時相比,資料線能夠在更長時間週期內充電,所以提供至信號線的源極偏壓電流可減少,從而減少功率消耗,同時允許對資料線的完全充電。在一些具體實例中,DDIC在使用後設資料以合成待由顯示器顯示的宏像素之位置時,基於待顯示於列上的宏像素之大小(基於GDX及GGS兩者)而判定待在不同列週期期間提供的源極驅動器偏壓電流。In some embodiments, bias current reduction may also be used in conjunction with grouped gate scanning (GGS) to achieve power consumption savings. 16B illustrates a timing diagram showing different column periods during which GGS is used to group different sets of columns, according to some specific examples. For example, Figure 16B shows: a first column period corresponding to the first column, in which the data itself is written to the first column; and a second column period corresponding to the second column, in which the gate enable signal is not provided (SEL2 skipped) This is because the second and third columns are grouped, two of which are currently being written to during the third column cycle (SEL2&SEL3). Therefore, data line data to be written to the pixels of these two columns may be loaded in two column periods (the second column period and the third column period), similar to what was discussed above with respect to FIG. 13 . In specific examples where the data lines are charged over multiple column periods (such as the period illustrated in Figure 16B), charging can occur in multiple steps. For example, the data line corresponding to DMX1 may be charged to a first level during a first time period T 1612 and to a full charge remainder during a second time period T 1614 . Because the data lines are able to charge over longer periods of time than when column grouping is not performed, the source bias current provided to the signal lines can be reduced, thereby reducing power consumption while allowing full charging of the data lines. In some specific examples, the DDIC determines whether to be in different columns based on the size of the macropixels to be displayed on the column (based on both GDX and GGS) when using metadata to synthesize the positions of macropixels to be displayed by the display. Source driver bias current provided during cycle.

雖然圖15A至圖15B以及圖16A至圖16B單獨地論述了當前縮減列週期或減少源極偏壓,但應理解,在其他具體實例中,可執行此等之組合。舉例而言,圖16B中所繪示之具體實例,可縮短跳過列選擇的列週期,同時仍為允許源極偏壓電流減少的資料線提供一些額外充電時間。Although FIGS. 15A-15B and 16A-16B respectively discuss currently reducing the column period or reducing the source bias, it should be understood that in other embodiments, a combination of these may be performed. For example, the embodiment shown in Figure 16B can shorten the column period for skipping a column select, while still providing some additional charging time for the data lines allowing the source bias current to be reduced.

圖17為繪示根據一些具體實例之組態顯示器以顯示注視點影像資料的方法之流程圖。在一些具體實例中,方法可由處理器(包含GPU及/或DPU)及顯示裝置之DDIC執行。GPU及DPU可對應於圖9中所繪示之GPU 910及DPU 920,且DDIC可對應於圖6中所繪示之DDIC 510及/或圖9中所繪示之DDIC 930。17 is a flowchart illustrating a method of configuring a display to display foveated image data according to some embodiments. In some specific examples, the method may be executed by a processor (including a GPU and/or a DPU) and a DDIC of the display device. The GPU and DPU may correspond to the GPU 910 and DPU 920 shown in FIG. 9, and the DDIC may correspond to the DDIC 510 shown in FIG. 6 and/or the DDIC 930 shown in FIG. 9.

GPU/DPU以注視點方式接收(1710)待顯示於顯示器上的影像資料。在一些具體實例中,影像資料包含注視點影像資料,該注視點影像資料含有與具有不同解析度之不同顯示區相關聯的影像資料。舉例而言,在一些具體實例中,影像資料至少包括第一解析度(例如,原生解析度)之第一區內之影像資料及處於第二較低解析度之第二區內之影像資料。The GPU/DPU receives (1710) image data to be displayed on the display in a gaze point manner. In some embodiments, the image data includes foveated image data that includes image data associated with different display areas having different resolutions. For example, in some specific examples, the image data includes at least image data in a first region of a first resolution (eg, native resolution) and image data in a second region of a second, lower resolution.

GPU/DPU基於指示與不同解析度相關聯的不同顯示區之位置的所接收之影像資料而產生(1720)後設資料。在一些具體實例中,後設資料指定顯示器之兩個或兩個以上顯示區的位置、各顯示區的有效解析度及/或宏像素大小,或其某一組合。在其他具體實例中,後設資料可指示顯示器上之凝視位置。The GPU/DPU generates (1720) metadata based on the received image data indicating the location of different display areas associated with different resolutions. In some embodiments, the metadata specifies the location of two or more display areas of the display, the effective resolution and/or macropixel size of each display area, or some combination thereof. In other embodiments, the metadata may indicate the gaze location on the display.

GPU/DPU將所接收之影像資料及所產生之後設資料傳輸(1730)至DDIC。在一些具體實例中,GPU/DPU使用諸如DSC或VDC-M之一或多個顯示串流壓縮演算法來壓縮影像資料及後設資料以產生一或多個封包之串流,且將封包傳輸至DDIC。The GPU/DPU transmits (1730) the received image data and the generated subsequent device data to the DDIC. In some specific examples, the GPU/DPU uses one or more display stream compression algorithms such as DSC or VDC-M to compress the image data and metadata to generate a stream of one or more packets, and transmit the packets to DDIC.

DDIC自GPU/DPU接收(1740)影像資料及所產生之後設資料。在一些具體實例中,DDIC以經編碼封包之串流形式接收影像資料及後設資料,於是DDIC對封包進行解碼以提取影像資料及後設資料。The DDIC receives (1740) image data and generated post-processing data from the GPU/DPU. In some specific examples, the DDIC receives the image data and metadata in the form of a stream of encoded packets, and the DDIC decodes the packets to extract the image data and metadata.

DDIC基於所接收之後設資料而合成(1750)待由顯示器顯示的宏像素之位置。在一些具體實例中,DDIC之擴展器模組使用後設資料來判定顯示器之哪些列及行待使用經分組解多工及經分組閘極選擇來分組,以在顯示器上之特定位置處建立同時載入有共同影像值的跨越 m× n個像素之宏像素。在一些具體實例中,後設資料可直接指示待由擴展器模組分組之列及行的數目。在其他具體實例中,在後設資料並不直接指示列及行之分組的情況下,擴展器模組推斷顯示器之哪些列及行應基於後設資料進行分組。 The DDIC synthesizes (1750) the locations of macropixels to be displayed by the display based on the received downstream data. In some embodiments, DDIC's expander module uses metadata to determine which columns and rows of the display are to be grouped using grouped demultiplexing and grouped gate selection to create simultaneous operations at specific locations on the display. Load macropixels spanning m × n pixels with common image values. In some embodiments, the metadata may directly indicate the number of columns and rows to be grouped by the expander module. In other embodiments, where the metadata does not directly indicate the grouping of columns and rows, the expander module infers which columns and rows of the display should be grouped based on the metadata.

DDIC組態(1760)控制信號以用於基於經合成之宏像素位置而執行顯示器之列及行的分組。在一些具體實例中,DDIC之擴展器模組設定用於對 m行之集合分組的經分組解多工參數,及用於執行對 n列之集合分組的經分組閘極掃描的控制參數,以及提供此等參數的時序,以建立 m× n個宏像素。在一些具體實例中,DDIC可進一步基於宏像素位置而對列週期持續時間及/或源極驅動器偏壓電流進行組態,例如以在將資料寫入執行經分組解多工及/或經分組閘極掃描之情況下的列之像素時增加再新率及/或減少顯示器之功率消耗。 The DDIC configures (1760) control signals for performing grouping of columns and rows of the display based on the synthesized macropixel locations. In some embodiments, the expander module of the DDIC sets grouped demultiplexing parameters for set grouping of m rows and control parameters for performing grouped gate scans of set grouping of n columns, and Provides the timing of these parameters to create m × n macropixels. In some embodiments, the DDIC may further configure column period duration and/or source driver bias current based on macropixel location, such as to perform grouped demultiplexing and/or grouped demultiplexing while writing data. Gate scanning of rows of pixels increases the refresh rate and/or reduces the display's power consumption.

DDIC藉由根據經判定時序將控制信號提供至顯示器而操作(1770)顯示器。在一些具體實例中,提供至解多工器的解多工器控制信號允許各解多工器將信號線資料同時提供至多個資料線,從而將多個鄰近資料線上的像素進行分組。此外,提供至顯示器之列的閘極控制電路的控制參數用以將鄰近列的閘極線選擇性地分組在一起,使得在同一列週期期間(例如,當在群組之最後一列處接收到啟用脈衝時)將閘極選擇信號提供至群組的所有閘極線。將不同行之像素及不同列之像素選擇性分組的組合用以建立跨越多個行及列的宏像素。The DDIC operates 1770 the display by providing control signals to the display according to determined timing. In some embodiments, demultiplexer control signals provided to the demultiplexer allow each demultiplexer to provide signal line data to multiple data lines simultaneously, thereby grouping pixels on multiple adjacent data lines. Additionally, control parameters provided to the gate control circuitry of columns of the display are used to selectively group gate lines of adjacent columns together such that during the same column period (e.g., when a signal is received at the last column of the group When pulses are enabled) the gate select signal is supplied to all gate lines of the group. A combination of selective grouping of pixels in different rows and pixels in different columns is used to create macropixels that span multiple rows and columns.

圖18為根據一些具體實例的繪示組態顯示器以執行經分組解多工以對顯示裝置之鄰近行之像素進行分組的方法之流程圖。在一些具體實例中,方法可由顯示裝置的DDIC來執行,該顯示裝置具有經由複數個解多工器連接至顯示器之資料線的信號線。解多工器中之各者耦接至經組態以提供特定色彩通道之影像資料的信號線,及對應於複數個像素行中之各者之特定色彩通道的複數個資料線。在一些具體實例中,各解多工器耦接至對應於六個不同像素行的六個資料線。18 is a flowchart illustrating a method of configuring a display to perform grouped demultiplexing to group pixels of adjacent rows of a display device, according to some embodiments. In some embodiments, the method may be performed by a DDIC of a display device having signal lines connected to data lines of the display via a plurality of demultiplexers. Each of the demultiplexers is coupled to a signal line configured to provide image data for a particular color channel, and a plurality of data lines corresponding to the particular color channel for each of the plurality of rows of pixels. In some embodiments, each demultiplexer is coupled to six data lines corresponding to six different rows of pixels.

DDIC接收(1810)指示像素行之分組的資料以用於在顯示器之像素上顯示影像資料。在一些具體實例中,資料對應於與所接收之注視點影像資料相關聯的後設資料。在一些具體實例中,該資料係基於所接收之後設資料而判定。在一些具體實例中,資料指示對應於不同列週期的行之不同分組。舉例而言,顯示器可經組態以在列週期之第一集合內將鄰近行之像素分組為第一集合(例如,雙行群組),且在列週期之第二集合內將其分組為第二集合(例如,三行群組)。The DDIC receives (1810) data indicating the grouping of rows of pixels for displaying image data on the pixels of the display. In some embodiments, the data corresponds to metadata associated with the received fixation image data. In some embodiments, the information is determined based on received metadata. In some embodiments, the information indicates different groupings of rows corresponding to different column periods. For example, the display may be configured to group pixels of adjacent rows into a first set (eg, two-row groups) within a first set of column periods, and to group them into a second set within a column period. Second set (e.g., three-row group).

DDIC基於如由所接收資料指示的行之分組而設定(1820)解多工器控制信號。在一些具體實例中,DDIC基於在各列週期期間如何對行分組而對複數個列週期中之各者的控制信號進行組態,此係基於顯示器之哪些列待含有鄰近行之經分組像素。舉例而言,在無分組之列週期期間,控制信號經設定以使得解多工器將信號線資料依序提供至各資料線。另一方面,在待執行分組之列週期期間,控制信號經設定以使得解多工器將信號線資料同時提供至多個資料線(例如,同時兩個、三個或六個資料線之集合)。The DDIC sets (1820) the demultiplexer control signal based on the grouping of rows as indicated by the received data. In some embodiments, the DDIC configures the control signals for each of a plurality of column periods based on how the rows are grouped during each column period, based on which columns of the display are to contain adjacent rows of grouped pixels. For example, during unpacketed column periods, the control signals are set to cause the demultiplexer to provide signal line data to each data line sequentially. On the other hand, during the column period of the packet to be executed, the control signal is set to cause the demultiplexer to provide signal line data to multiple data lines simultaneously (for example, a set of two, three, or six data lines simultaneously) .

DDIC基於待在列週期期間執行之解多工器分組的級別而視情況對一或多個列週期之持續時間進行組態(1830)。在一些具體實例中,DDIC經組態以基於用於基於解多工器分組級別而同時對多個資料線充電的時間常數來減少列週期的持續時間。由於充電之時間常數並未以線性方式縮放,因此此允許經分組之資料線完全充電,同時減少外來時間,在該外來時間期間資料線經完全充電。此可用來增加顯示器之再新率,但減少經分派以寫入至某些列之像素的持續時間。此外,在一些具體實例中,DDIC可基於是否使用經分組閘極選擇將列與其他列分組而進一步減少列週期的持續時間。The DDIC optionally configures the duration of one or more column cycles based on the level of demultiplexer packets to be executed during the column cycle (1830). In some specific examples, the DDIC is configured to reduce the duration of a column cycle based on a time constant for charging multiple data lines simultaneously based on a demultiplexer packet level. Since the time constant of charging does not scale in a linear manner, this allows the grouped data lines to be fully charged while reducing the extraneous time during which the data lines are fully charged. This can be used to increase the refresh rate of the display, but reduce the duration of pixels assigned to writing to certain columns. Additionally, in some embodiments, the DDIC may further reduce the duration of a column period based on whether a column is grouped with other columns using grouped gate selection.

DDIC基於待在列週期期間執行之解多工器分組的級別而視情況對待在一或多個列週期期間待提供至信號線的源極偏壓電流進行組態(1840)。在一些具體實例中,DDIC經組態以基於用於基於解多工器分組級別而同時對多個資料線充電的時間常數來減少待在列週期期間提供至信號線的源極偏壓電流。由於充電之時間常數並未以線性方式縮放,因此此允許經分組之資料線在列週期內完全充電,同時減少顯示器之總功率消耗。此外,在一些具體實例中,DDIC可基於是否使用經分組閘極選擇將列與其他列分組而進一步減少源極偏壓電流。The DDIC optionally configures the source bias current to be provided to the signal line during one or more column periods based on the level of demultiplexer grouping to be performed during the column period (1840). In some specific examples, the DDIC is configured to reduce the source bias current to be provided to the signal lines during the column period based on the time constant for charging multiple data lines simultaneously based on the demultiplexer grouping level. Since the charging time constant does not scale linearly, this allows the grouped data lines to be fully charged within a column cycle while reducing the overall power consumption of the display. Additionally, in some embodiments, the DDIC can further reduce source bias current based on whether a column is grouped with other columns using grouped gate selection.

DDIC藉由在各列週期期間將解多工器控制信號提供至顯示器之解多工器來操作(1850)顯示器。當啟用脈衝根據經組態之列週期持續時間在顯示器之列之間移位時,解多工器控制信號對將資料寫入列之像素(及與當前列分組的任何其他列)時鄰近行之經分組的像素進行組態。藉由以此方式對像素分組來形成跨越多行之宏像素,且該宏像素用於在注視點顯示器中渲染具有較低解析度之區域。與經分組列組合,可形成 m× n個宏像素,從而允許對不同顯示區之有效解析度的精細控制。 The DDIC operates (1850) the display by providing demultiplexer control signals to the display's demultiplexer during each column period. When the enable pulses are shifted between columns of the display according to the configured column period duration, the demultiplexer control signal writes data to the pixels of the column (and any other columns grouped with the current column) in adjacent rows. Grouped pixels are configured. By grouping pixels in this way, macropixels are formed that span multiple rows and are used to render areas with lower resolution in the foveated display. Combined with grouped columns, m × n macropixels can be formed, allowing fine control of the effective resolution of different display areas.

用於本說明書中之語言主要出於可讀性及指導性之目的而加以選擇,且其可能尚未經選擇以劃定或限定本發明主題。因此,意欲本發明之範疇不受此詳細描述限制,而實際上由關於基於此處之應用發佈的任何申請專利範圍限制。因此,具體實例之揭示意欲說明而非限制以下申請專利範圍中所闡述的本發明之範疇。The language used in this specification has been selected principally for readability and instructional purposes, and it may not have been selected to delineate or define the subject matter of the invention. Therefore, it is intended that the scope of the invention be limited not by this detailed description, but rather by the scope of any claims issued based on application herein. Accordingly, the disclosure of specific examples is intended to illustrate, but not to limit, the scope of the invention as set forth in the following claims.

100:頭戴式顯示器(HMD) 105:框架 110:近眼顯示器(NED) 200:橫截面 210:顯示總成 220:眼球 230:出射光瞳 300:波導顯示器 310:源總成 320:輸出波導 330:控制器 340:源 345:影像光 350:耦合元件 360:解耦元件 370:掃描鏡面總成 400:有機發光二極體(OLED) 410:基板 420:陽極 430:電洞注入層 440:電洞傳輸層 450:發光層 460:阻擋層 470:電子傳輸層 480:陰極 500:OLED顯示裝置 510:顯示驅動器積體電路(DDIC) 512:驅動電晶體 520:單晶背板 523:單晶或多晶矽層 525:矽穿孔 530:主動顯示區域 532:主動矩陣 533:上部發射表面 534:透明囊封層 536:彩色濾光片 538:防護玻璃罩 540:顯示元件 600:顯示裝置 610:時序控制器 615:資料處理電路 624:信號線 625:輸入/輸出(I/O)介面 630:行動產業處理器介面(MIPI)接收器 635:閘極驅動器 640:接合墊 645:源極驅動器電路 700:像素 712:像素 712A:像素行 712B:像素行 712N:像素行 716:解多工器 722:像素 722A:像素行 722B:像素行 722N:像素行 732:像素 732A:像素行 732B:像素行 732N:像素行 742:像素 742A:像素行 742B:像素行 742N:像素行 748:信號線 802:輸入影像資料 804:第一影像資料 806:第二影像資料 808:所顯示影像資料 810:顯示影像資料 812:第一區 814:第二區 816:第三區 902:注視點影像資料 904:後設資料 906:封包 910:圖形處理單元(GPU) 912:複合功能 914:彩色像差補償(CAC) 916:後設資料產生模組 918:傳輸器 920:顯示處理單元(DPU) 930:DDIC 932:接收器 934:影像處理功能 936:擴展器電路/擴展器 940:顯示元件 1002:影像資料 1004:影像資料 1006:中心區 1008:區 1010:區 1012:區 1102:解多工器 1102A:第一解多工器 1102B:第二解多工器 1102C:解多工器 1102D:解多工器 1102E:解多工器 1102F:解多工器 1102G:解多工器 1102H:解多工器 1102I:解多工器 1104:解多工器 1104A:解多工器 1104B:解多工器 1104C:解多工器 1104D:解多工器 1104E:解多工器 1104F:解多工器 1106A:第一像素 1108:金屬段 1110:接點 1202:解多工器 1204:資料線 1206:閘極線 1212A:第一解多工器 1212B:第二解多工器 1302:解多工器 1304:資料線 1306:閘極線 1402:源極驅動器 1404:信號線 1406:解多工器 1408:資料線 1408-1:資料線 1408-2:資料線 1408-m:資料線 1502:第一時序圖 1504:外來平坦週期 1510:第二時序圖 1512:第一時序圖 1514:跳過 1516:啟用脈衝 1602:資料線電壓位準曲線 1604:平坦週期 1606:經修改之電壓充電曲線 1612:第一時間週期T 1614:第二時間週期T 1710:接收步驟 1720:產生步驟 1730:傳輸步驟 1740:接收步驟 1750:合成步驟 1760:組態步驟 1770:操作步驟 1810:接收步驟 1820:設定步驟 1830:組態步驟 1840:組態步驟 1850:操作步驟 A:介面 AGND:接地 B1:資料值/信號線值 B2:資料值 B3:資料值 B4:資料值 B5:資料值 B6:資料值 C D:資料線電容 CLK:時脈信號 C P:SD輸出墊電容 Cst1:電容器 Cst2:電容器 DATA:影像資料 DL:資料線 DL1:資料線 DL2:資料線 DL3:資料線 DL4:資料線 DMX1:解多工器控制信號/控制線 DMX2:解多工器控制信號/控制線 DMX3:解多工器控制信號/控制線 DMX4:解多工器控制信號/控制線 DMX5:解多工器控制信號/控制線 DMX6:解多工器控制信號/控制線 DMXn:控制信號 ELVDD:高電壓位準/高電壓源 ELVSS:低電壓位準/低電壓源 GL:閘極線 GLA:閘極線 GLB:閘極線 GLN:閘極線 M D:驅動電晶體 OLED:有機發光二極體 R D:資料線電阻 R E:SD輸出靜電放電(ESD)電阻 REST:開關 R S:源極驅動器(SD)等效電阻 R X:解多工器等效電阻 RST:重設信號 SEL:資料選擇開關 SEL1:啟用信號 SEL2:閘極線 SEL3:閘極線 SEL4:閘極選擇信號/閘極線 SW:發射開關 T:時間週期 T ROW:列週期 V DATA:像素資料 100: Head Mounted Display (HMD) 105: Frame 110: Near Eye Display (NED) 200: Cross Section 210: Display Assembly 220: Eyeball 230: Exit Pupil 300: Waveguide Display 310: Source Assembly 320: Output Waveguide 330 :Controller 340: Source 345: Image light 350: Coupling element 360: Decoupling element 370: Scanning mirror assembly 400: Organic light emitting diode (OLED) 410: Substrate 420: Anode 430: Hole injection layer 440: Electron Hole transmission layer 450: Light-emitting layer 460: Barrier layer 470: Electron transmission layer 480: Cathode 500: OLED display device 510: Display driver integrated circuit (DDIC) 512: Driving transistor 520: Single crystal backplane 523: Single crystal or Polycrystalline silicon layer 525: silicon perforation 530: active display area 532: active matrix 533: upper emitting surface 534: transparent encapsulation layer 536: color filter 538: protective glass cover 540: display element 600: display device 610: timing controller 615: Data processing circuit 624: Signal line 625: Input/output (I/O) interface 630: Mobile Industry Processor Interface (MIPI) receiver 635: Gate driver 640: Bonding pad 645: Source driver circuit 700: Pixel 712: pixel 712A: pixel row 712B: pixel row 712N: pixel row 716: demultiplexer 722: pixel 722A: pixel row 722B: pixel row 722N: pixel row 732: pixel 732A: pixel row 732B: pixel row 732N: pixel Row 742: Pixel 742A: Pixel row 742B: Pixel row 742N: Pixel row 748: Signal line 802: Input image data 804: First image data 806: Second image data 808: Displayed image data 810: Displayed image data 812: First area 814: Second area 816: Third area 902: Focal point image data 904: Metadata 906: Packet 910: Graphics processing unit (GPU) 912: Composite function 914: Color aberration compensation (CAC) 916: Post-equipment data generation module 918: transmitter 920: display processing unit (DPU) 930: DDIC 932: receiver 934: image processing function 936: expander circuit/expander 940: display component 1002: image data 1004: image data 1006: Center area 1008: Area 1010: Area 1012: Area 1102: Demultiplexer 1102A: First Demultiplexer 1102B: Second Demultiplexer 1102C: Demultiplexer 1102D: Demultiplexer 1102E: Demultiplexer Multiplexer 1102F: Demultiplexer 1102G: Demultiplexer 1102H: Demultiplexer 1102I: Demultiplexer 1104: Demultiplexer 1104A: Demultiplexer 1104B: Demultiplexer 1104C: Demultiplexer 1104D: Demultiplexer 1104E: Demultiplexer 1104F: Demultiplexer 1106A: First pixel 1108: Metal segment 1110: Contact 1202: Demultiplexer 1204: Data line 1206: Gate line 1212A: No. First demultiplexer 1212B: Second demultiplexer 1302: Demultiplexer 1304: Data line 1306: Gate line 1402: Source driver 1404: Signal line 1406: Demultiplexer 1408: Data line 1408-1 :Data line 1408-2: Data line 1408-m: Data line 1502: First timing diagram 1504: Exogenous flat period 1510: Second timing diagram 1512: First timing diagram 1514: Skip 1516: Enable pulse 1602: Data line voltage level curve 1604: flat period 1606: modified voltage charging curve 1612: first time period T 1614: second time period T 1710: receiving step 1720: generating step 1730: transmitting step 1740: receiving step 1750: Synthesis step 1760: Configuration step 1770: Operation step 1810: Reception step 1820: Setting step 1830: Configuration step 1840: Configuration step 1850: Operation step A: Interface AGND: Ground B1: Data value/signal line value B2: Data Value B3: data value B4: data value B5: data value B6: data value C D : data line capacitance CLK: clock signal C P : SD output pad capacitance Cst1: capacitor Cst2: capacitor DATA: image data DL: data line DL1 :Data line DL2: Data line DL3: Data line DL4: Data line DMX1: Demultiplexer control signal/control line DMX2: Demultiplexer control signal/control line DMX3: Demultiplexer control signal/control line DMX4: Demultiplexer control signal/control line DMX5: Demultiplexer control signal/control line DMX6: Demultiplexer control signal/control line DMXn: Control signal ELVDD: High voltage level/High voltage source ELVSS: Low voltage level Quasi/low voltage source GL: Gate line GLA: Gate line GLB: Gate line GLN: Gate line M D : Driving transistor OLED: Organic light emitting diode R D : Data line resistance R E : SD output electrostatic Discharge (ESD) resistance REST: switch R S : source driver (SD) equivalent resistance R X : demultiplexer equivalent resistance RST: reset signal SEL: data selection switch SEL1: enable signal SEL2: gate line SEL3 :Gate line SEL4: Gate selection signal/gate line SW: Emission switch T: Time period T ROW : Column period V DATA : Pixel data

[圖1A]及[圖1B]為根據一些具體實例的包括近眼顯示器(NED)之頭戴式顯示器(HMD)之圖式。[FIG. 1A] and [FIG. 1B] are diagrams of a head-mounted display (HMD) including a near-eye display (NED) according to some specific examples.

[圖2]為根據一些具體實例之如圖1A或1B中所繪示的HMD之橫截面視圖。[FIG. 2] is a cross-sectional view of the HMD as illustrated in FIG. 1A or 1B, according to some specific examples.

[圖3]繪示根據一些具體實例之波導顯示器之透視圖。[Fig. 3] illustrates a perspective view of a waveguide display according to some specific examples.

[圖4]描繪根據一些具體實例之簡化有機發光二極體(organic light emitting diode;OLED)結構。[Figure 4] depicts a simplified organic light emitting diode (OLED) structure according to some specific examples.

[圖5]為根據一些具體實例的包括顯示驅動器積體電路(DDIC)的OLED顯示裝置架構之示意圖。[Fig. 5] is a schematic diagram of an OLED display device architecture including a display driver integrated circuit (DDIC) according to some specific examples.

[圖6]為根據一些具體實例之OLED顯示裝置之示意圖。[Fig. 6] is a schematic diagram of an OLED display device according to some specific examples.

[圖7A]繪示根據一些具體實例之顯示裝置的範例性像素配置。[FIG. 7A] illustrates an exemplary pixel configuration of a display device according to some embodiments.

[圖7B]為根據一些具體實例之顯示裝置之像素的電路圖。[FIG. 7B] is a circuit diagram of a pixel of a display device according to some specific examples.

[圖8]繪示根據一些具體實例的展示注視點顯示器之實施方案的高階圖。[FIG. 8] illustrates a high-level diagram illustrating an implementation of a foveation display according to some specific examples.

[圖9]繪示根據一些具體實例的展示注視點顯示器架構的圖式。[FIG. 9] illustrates a diagram illustrating a foveated display architecture according to some specific examples.

[圖10]繪示根據一些具體實例的展示擴展待顯示於具有不同大小之宏像素的注視點顯示器上的影像資料之實例的圖式。[FIG. 10] A diagram illustrating an example of extending image data to be displayed on a foveated display with macropixels of different sizes, according to some specific examples.

[圖11A]及[圖11B]繪示根據一些具體實例的展示解多工器可耦接至顯示器之資料線的不同組態之圖式。[FIG. 11A] and [FIG. 11B] illustrate diagrams showing different configurations in which a demultiplexer may be coupled to data lines of a display according to some specific examples.

[圖12A]及[圖12B]繪示根據一些具體實例的展示如何控制顯示器之解多工器以執行GDX的圖式。[FIG. 12A] and [FIG. 12B] illustrate diagrams showing how to control the demultiplexer of a display to execute GDX according to some specific examples.

[圖12C]及[圖12D]繪示根據一些具體實例的展示如何控制顯示器之解多工器以產生4像素宏像素的圖式。[FIG. 12C] and [FIG. 12D] illustrate diagrams showing how to control the demultiplexer of a display to generate 4-pixel macropixels according to some specific examples.

[圖13]繪示根據一些具體實例的展示GDX及GGS之組合如何可用以產生各種大小之宏像素的圖式。[Figure 13] illustrates a diagram showing how combinations of GDX and GGS can be used to generate macropixels of various sizes according to some specific examples.

[圖14]繪示根據一些具體實例的展示信號線、解多工器及資料線集合之電特性的高階圖。[FIG. 14] illustrates a high-level diagram showing the electrical characteristics of a set of signal lines, demultiplexers, and data lines according to some specific examples.

[圖15A]繪示根據一些具體實例的當執行GDX時可如何減少線時間之一實例。[Figure 15A] illustrates an example of how line time can be reduced when executing GDX according to some specific examples.

[圖15B]繪示根據一些具體實例的當執行GDX及GGS時可如何減少線時間之一實例。[Figure 15B] illustrates an example of how line time can be reduced when executing GDX and GGS according to some specific examples.

[圖16A]繪示根據一些具體實例的展示不同列週期的時序圖,在該等列週期期間執行不同級別之經分組解多工。[FIG. 16A] illustrates a timing diagram showing different column cycles during which different levels of packetized demultiplexing are performed according to some specific examples.

[圖16B]繪示根據一些具體實例的展示不同列週期的時序圖,在該等列週期期間使用GGS對不同列集合進行分組。[FIG. 16B] illustrates a timing diagram showing different column periods during which GGS is used to group different sets of columns, according to some specific examples.

[圖17]為繪示根據一些具體實例之組態顯示器以顯示注視點影像資料的方法之流程圖。[FIG. 17] is a flowchart illustrating a method of configuring a display to display foveated image data according to some specific examples.

[圖18]為根據一些具體實例的繪示組態顯示器以執行經分組解多工以對顯示裝置之鄰近行之像素進行分組的方法之流程圖。18 is a flowchart of a method of configuring a display to perform grouped demultiplexing to group pixels of adjacent rows of a display device according to an illustration of some specific examples.

諸圖僅出於繪示之目的描繪本發明之具體實例。The drawings depict specific examples of the invention for purposes of illustration only.

902:注視點影像資料 902:Focus image data

904:後設資料 904: Metadata

906:封包 906: Packet

910:圖形處理單元(GPU) 910: Graphics Processing Unit (GPU)

912:複合功能 912:Composite function

914:彩色像差補償(CAC) 914: Color aberration compensation (CAC)

916:後設資料產生模組 916: Metadata generation module

918:傳輸器 918:Transmitter

920:顯示處理單元(DPU) 920: Display Processing Unit (DPU)

930:DDIC 930:DDIC

932:接收器 932:Receiver

934:影像處理功能 934:Image processing function

936:擴展器電路/擴展器 936:Expander circuit/expander

940:顯示元件 940:Display component

Claims (21)

一種方法,其包含: 接收待由一顯示裝置顯示之影像資料,其中該影像資料包含與不同影像解析度相關聯之複數個顯示區; 基於所接收之該影像資料產生後設資料,其中該後設資料指示與不同影像解析度相關聯之該複數個顯示區之位置; 將該影像資料連同所產生之該後設資料一起傳輸至該顯示裝置; 其中該顯示裝置包含一顯示區域,該顯示區域包含以複數個列及複數個行配置的複數個像素,該方法進一步包含,在該顯示裝置之一顯示驅動器積體電路(DDIC)處: 接收所傳輸的具有該後設資料的該影像資料; 基於該後設資料判定待由該顯示區域顯示之一或多個宏像素的位置,其中各宏像素對應於該顯示區域之原生像素的一分組,該影像資料被同時載入至該顯示區域上; 對控制信號進行組態以用於基於經判定之該一或多個宏像素的位置以一經判定時序將該顯示區域之列及行分組; 藉由根據該經判定時序提供該等控制信號來顯示該影像資料。 A method that contains: receiving image data to be displayed by a display device, wherein the image data includes a plurality of display areas associated with different image resolutions; Generate metadata based on the received image data, wherein the metadata indicates the positions of the plurality of display areas associated with different image resolutions; transmit the image data together with the generated metadata to the display device; The display device includes a display area, and the display area includes a plurality of pixels configured in a plurality of columns and a plurality of rows. The method further includes, at a display driver integrated circuit (DDIC) of the display device: receive the transmitted image data with the metadata; The position of one or more macropixels to be displayed by the display area is determined based on the metadata, where each macropixel corresponds to a group of native pixels of the display area, and the image data is simultaneously loaded onto the display area. ; Configuring control signals for grouping columns and rows of the display area in a determined timing based on the determined positions of the one or more macropixels; The image data is displayed by providing the control signals according to the determined timing. 如請求項1之方法,其中該後設資料指示該顯示裝置上對應於一使用者之一凝視方向的一位置,且該方法進一步包含在該顯示裝置之該DDIC處基於該凝視方向而判定該複數個顯示區之位置。The method of claim 1, wherein the metadata indicates a location on the display device corresponding to a gaze direction of a user, and the method further includes determining, at the DDIC of the display device, the gaze direction. The location of multiple display areas. 如請求項1之方法,其中該後設資料指示該複數個顯示區及與各顯示區相關聯之各別影像解析度。The method of claim 1, wherein the metadata indicates the plurality of display areas and respective image resolutions associated with each display area. 如請求項1之方法,其進一步包含: 格式化該後設資料以與一壓縮演算法相容;且 其中將該影像資料連同所產生之該後設資料傳輸至該顯示裝置包含根據該壓縮演算法編碼該影像資料及所產生之該後設資料。 For example, the method of request item 1 further includes: Format the metadata to be compatible with a compression algorithm; and Transmitting the image data together with the generated metadata to the display device includes encoding the image data and the generated metadata according to the compression algorithm. 如請求項4之方法,其中該壓縮演算法為顯示串流壓縮(DSC)或VESA顯示壓縮M(VDC-M)。The method of claim 4, wherein the compression algorithm is Display Stream Compression (DSC) or VESA Display Compression M (VDC-M). 如請求項1之方法,其中: 該複數個列中之各列包含經組態以將一閘極啟用信號提供至該列之像素的一各別閘極線; 該複數個行中之各行包含經組態以將該影像資料提供至該行之像素的一各別資料線,且 其中該顯示裝置包含一解多工器,該解多工器連接到來自一源極驅動電路的一信號線,且經組態以根據該等控制信號將該等各別資料線的一資料線集合中之資料線選擇性地耦接至該信號線以對該等資料線充電。 Such as the method of request item 1, where: Each column of the plurality of columns includes a respective gate line configured to provide a gate enable signal to the pixels of the column; Each row of the plurality of rows includes a respective data line configured to provide the image data to the pixels of the row, and wherein the display device includes a demultiplexer connected to a signal line from a source driver circuit and configured to demultiplex a data line of the respective data lines in accordance with the control signals The data lines in the set are selectively coupled to the signal lines to charge the data lines. 如請求項6之方法,其中該資料線集合中的該等資料線對應於該複數個行中之鄰近行之像素的一共同色彩通道。The method of claim 6, wherein the data lines in the set of data lines correspond to a common color channel of adjacent rows of pixels in the plurality of rows. 如請求項6之方法,其中對該等控制信號進行組態以用於將該顯示區域之列及行分組包含: 基於經判定之該一或多個宏像素的位置,對提供至該解多工器的該等控制信號進行組態以將該資料線集合中之複數個資料線同時耦接至該信號線,以在一或多個時間週期期間同時對該複數個資料線充電。 Such as the method of claim 6, wherein the control signals are configured to group the columns and rows of the display area to include: configuring the control signals provided to the demultiplexer to simultaneously couple a plurality of data lines in the set of data lines to the signal line based on the determined position of the one or more macropixels, to charge the plurality of data lines simultaneously during one or more time periods. 如請求項6之方法,其中該經判定時序係基於一時序,在該時序處,一啟用脈衝由一閘極掃描線依序提供至該顯示區域之該複數個列的閘極掃描驅動器電路。The method of claim 6, wherein the determined timing is based on a timing at which an enable pulse is sequentially provided from a gate scan line to the gate scan driver circuits of the plurality of columns of the display area. 如請求項9之方法,其中對該等控制信號進行組態以用於將該顯示區域之列及行分組包含: 對提供至該複數個列之該等閘極掃描驅動器電路的該等控制信號進行組態以基於經判定之該一或多個宏像素的位置選擇性地對該複數個列中之列分組。 Such as the method of claim 9, wherein the control signals are configured to group the columns and rows of the display area to include: The control signals provided to the gate scan driver circuits of the plurality of columns are configured to selectively group columns of the plurality of columns based on the determined position of the one or more macropixels. 如請求項9之方法,其進一步包含: 基於該顯示區域之列及行的該分組對該啟用脈衝之該時序進行組態。 For example, the method of request item 9 further includes: The timing of the enable pulses is configured based on the grouping of columns and rows of the display area. 如請求項11之方法,其中該啟用脈衝之經組態的該時序定義該顯示裝置之一再新率,且其中在該顯示區域之含有對應於列及行之分組的宏像素之區中的該啟用脈衝之該時序經組態以增加該顯示裝置之該再新率,該再新率超過在該顯示區域僅顯示原生解析度影像資料之情況下的可能的再新率。The method of claim 11, wherein the configured timing of the enable pulses defines a refresh rate of the display device, and wherein the regions of the display area containing macropixels corresponding to groupings of columns and rows The timing of enable pulses is configured to increase the refresh rate of the display device beyond what would be possible if only native resolution image data were displayed in the display area. 如請求項1之方法,其進一步包含: 基於該顯示區域之列及行的該分組對該顯示裝置之一源極驅動器功率位準進行組態。 For example, the method of request item 1 further includes: A source driver power level of the display device is configured based on the grouping of columns and rows of the display area. 一種顯示裝置,其包含: 一顯示區域,其包含以複數個列及複數個行配置的複數個像素,該複數個列中之各列包含經組態以將一閘極啟用信號提供至該列之像素的一各別閘極線,且該複數個行中之各行包含經組態以將影像資料提供至該行之像素的一各別資料線; 一顯示驅動器積體電路(DDIC),其包含: 一接收器,其經組態以接收待由該顯示裝置顯示的該影像資料,其中該影像資料包含與不同影像解析度相關聯的複數個顯示區,及指示與不同影像解析度相關聯之該複數個顯示區之位置的後設資料; 一擴展器電路,其經組態以: 基於該後設資料判定待在該顯示區域處顯示之一或多個宏像素的位置,其中各宏像素對應於該顯示區域之原生像素的一分組,該影像資料被同時載入至該顯示區域上;及 對控制信號進行組態以用於基於經判定之該一或多個宏像素的位置以一經判定時序將該顯示區域之列及行分組;及 一源極驅動器電路; 一解多工器,其連接至來自一源極驅動電路的一信號線,且經組態以根據該等控制信號將該等各別資料線的一資料線集合中之資料線選擇性地耦接至該信號線以對該等資料線充電; 其中基於經判定之該一或多個宏像素的位置,將該等控制信號提供至該解多工器以將該資料線集合中之複數個資料線同時耦接至該信號線,以在一或多個時間週期期間同時對該複數個資料線充電。 A display device comprising: A display area including a plurality of pixels arranged in a plurality of columns and a plurality of rows, each column of the plurality of columns including a respective gate configured to provide a gate enable signal to the pixels of the column. epipolar lines, and each row of the plurality of rows includes a respective data line configured to provide image data to the pixels of that row; A display driver integrated circuit (DDIC) containing: A receiver configured to receive the image data to be displayed by the display device, wherein the image data includes a plurality of display areas associated with different image resolutions, and an indication of the image data associated with the different image resolutions. Metadata for the positions of multiple display areas; An expander circuit configured to: The position of one or more macropixels to be displayed at the display area is determined based on the metadata, where each macropixel corresponds to a grouping of native pixels in the display area, and the image data is simultaneously loaded into the display area. on; and Configuring control signals for grouping columns and rows of the display area in a determined timing based on the determined positions of the one or more macropixels; and a source driver circuit; A demultiplexer connected to a signal line from a source driver circuit and configured to selectively couple data lines in a set of respective data lines based on the control signals. Connect to the signal line to charge the data lines; Wherein based on the determined position of the one or more macro pixels, the control signals are provided to the demultiplexer to simultaneously couple a plurality of data lines in the data line set to the signal line, so as to Or charge the plurality of data lines simultaneously during multiple time periods. 如請求項14之顯示裝置,其中該後設資料指示該顯示裝置上對應於一使用者之一凝視方向的一位置,且其中該擴展器電路經進一步組態以基於該凝視方向而判定該複數個顯示區之位置。The display device of claim 14, wherein the metadata indicates a location on the display device corresponding to a gaze direction of a user, and wherein the expander circuit is further configured to determine the plurality of numbers based on the gaze direction. The position of the display area. 如請求項14之顯示裝置,其中該後設資料指示該複數個顯示區及與各顯示區相關聯之各別影像解析度。The display device of claim 14, wherein the metadata indicates the plurality of display areas and respective image resolutions associated with each display area. 如請求項14之顯示裝置,其中該影像資料及該後設資料係作為根據包含顯示串流壓縮(DSC)或VESA顯示壓縮M(VDC-M)中之至少一者的一壓縮演算法所編碼的封包而接收。The display device of claim 14, wherein the image data and the metadata are encoded according to a compression algorithm including at least one of Display Stream Compression (DSC) or VESA Display Compression M (VDC-M) packet is received. 如請求項14之顯示裝置,其中該資料線集合中的該等資料線對應於該複數個行中之鄰近行之像素的一共同色彩通道。The display device of claim 14, wherein the data lines in the data line set correspond to a common color channel of pixels in adjacent rows in the plurality of rows. 如請求項14之顯示裝置,其中該經判定時序係基於一時序,在該時序處,一啟用脈衝由一閘極掃描線依序提供至閘極掃描驅動器電路,該等閘極掃描驅動器電路連接至該顯示區域之該複數個列的該等各別閘極線。The display device of claim 14, wherein the determined timing is based on a timing at which an enable pulse is sequentially provided from a gate scan line to a gate scan driver circuit, and the gate scan driver circuits are connected The respective gate lines to the plurality of columns of the display area. 如請求項14之顯示裝置,其中該DDIC進一步包含經組態以基於該顯示區域之列及行的該分組而設定啟用脈衝之時序的一時序控制器。The display device of claim 14, wherein the DDIC further includes a timing controller configured to set the timing of enable pulses based on the grouping of columns and rows of the display area. 如請求項14之顯示裝置,其中該DDIC經組態以基於該顯示區域之列及行的該分組而修改該顯示裝置的一源極驅動器功率位準。The display device of claim 14, wherein the DDIC is configured to modify a source driver power level of the display device based on the grouping of columns and rows of the display area.
TW112111370A 2022-03-25 2023-03-25 Modulation of display resolution using macro-pixels in display device TW202403536A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202263323966P 2022-03-25 2022-03-25
US63/323,966 2022-03-25
US202263339286P 2022-05-06 2022-05-06
US63/339,286 2022-05-06
US18/125,727 2023-03-24
US18/125,727 US20230306909A1 (en) 2022-03-25 2023-03-24 Modulation of display resolution using macro-pixels in display device

Publications (1)

Publication Number Publication Date
TW202403536A true TW202403536A (en) 2024-01-16

Family

ID=86054122

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112111370A TW202403536A (en) 2022-03-25 2023-03-25 Modulation of display resolution using macro-pixels in display device

Country Status (2)

Country Link
TW (1) TW202403536A (en)
WO (1) WO2023183643A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018140287A1 (en) * 2017-01-25 2018-08-02 Apple Inc. Electronic device with foveated display system
DE102017129795A1 (en) * 2017-06-30 2019-01-03 Lg Display Co., Ltd. DISPLAY DEVICE AND GATE-DRIVER CONTROL CIRCUIT THEREOF, CONTROL METHOD AND VIRTUAL-REALITY DEVICE
US10720124B2 (en) * 2018-01-15 2020-07-21 Microsoft Technology Licensing, Llc Variable pixel rate display interfaces

Also Published As

Publication number Publication date
WO2023183643A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US9829710B1 (en) Display with stacked emission and control logic layers
CN108288452B (en) Display device and driving method thereof
KR102488538B1 (en) Foveally-rendered display
JP6141590B2 (en) Electro-optical device and electronic apparatus
JP6064313B2 (en) Electro-optical device, driving method of electro-optical device, and electronic apparatus
CN107004392B (en) The distributed driving of display panel
US11355043B1 (en) Dynamically driving multiple portions of display device with different duty cycles
KR20180082692A (en) Display device and driving method thereof
KR20180122525A (en) Display device and method of driving the display device
JP5887973B2 (en) Electro-optical device, driving method of electro-optical device, and electronic apparatus
Vogel et al. OLED-on-silicon microdisplays: technology, devices, applications
TW202238557A (en) Gate driving with progressive scanning and interlaced scanning in different portions of display device
TW202318388A (en) Display device with reduced scanning time by using separate reference voltage line
TW202226584A (en) Micro oled display device with sample and hold circuits to reduce bonding pads
TW202403536A (en) Modulation of display resolution using macro-pixels in display device
US20230306909A1 (en) Modulation of display resolution using macro-pixels in display device
WO2023183645A1 (en) Grouped demultiplexing for foveated-resolution display
US20230317017A1 (en) Grouped display gate scanning in foveated resolution displays
CN117677926A (en) Dynamic supply voltage compensation for different segments of a display area
US20230317006A1 (en) High speed pixel circuit for organic light emitting diode (oled) display
US20230317012A1 (en) Self-compensation of driving transistor threshold voltage using body effect
WO2023192661A1 (en) Grouped display gate scanning in foveated resolution displays
CN108735159B (en) Display device and driving method thereof
US20230317000A1 (en) Subpixels with reduced dimensions by using shared switching transistors
WO2023192660A1 (en) High speed pixel circuit for organic light emitting diode (oled) display