TW202335384A - Simulation modeling method for an organic laser device, program for performing the simulation modeling method, and method for manufacturing an organic laser device - Google Patents

Simulation modeling method for an organic laser device, program for performing the simulation modeling method, and method for manufacturing an organic laser device Download PDF

Info

Publication number
TW202335384A
TW202335384A TW112103527A TW112103527A TW202335384A TW 202335384 A TW202335384 A TW 202335384A TW 112103527 A TW112103527 A TW 112103527A TW 112103527 A TW112103527 A TW 112103527A TW 202335384 A TW202335384 A TW 202335384A
Authority
TW
Taiwan
Prior art keywords
laser
organic
dfb
bsbcz
emission
Prior art date
Application number
TW112103527A
Other languages
Chinese (zh)
Inventor
安達千波矢
桑格蘭吉 東 阿杜拉 桑達納雅卡
松島敏則
吉田巧
珍 查理斯 利比伊爾
法蒂瑪 班傑科
合志憲一
藤原隆
Original Assignee
國立大學法人九州大學
日商考拉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立大學法人九州大學, 日商考拉科技股份有限公司 filed Critical 國立大學法人九州大學
Publication of TW202335384A publication Critical patent/TW202335384A/en

Links

Landscapes

  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Disclosed are a current excitation type organic semiconductor laser containing a pair of electrodes, an organic laser active layer and an optical resonator structure between the pair of electrodes and a laser having an organic layer on a distributed feedback grating structure. The lasers include a continuous-wave laser, a quasi-continuous-wave laser and an electrically driven semiconductor laser diode.

Description

有機雷射裝置之模擬模型化方法、用於執行模擬模型化方法之程式及有機雷射裝置之製造方法Simulation modeling method of organic laser device, program for executing simulation modeling method, and method of manufacturing organic laser device

本發明係關於連續波有機薄膜分散式回饋雷射及電驅動有機半導體雷射二極體。The invention relates to continuous wave organic thin film dispersed feedback laser and electrically driven organic semiconductor laser diodes.

本申請揭示以下發明: 1. 一種電流激勵型有機半導體雷射,其含有兩個電極,有機光學增益層及光學共振器結構。在說明書中,電流激勵型有機半導體雷射可稱作電流注入有機半導體雷射或電驅動有機半導體雷射。 2. 如條目1之雷射,其中該有機光學增益層由至少一個電荷輸送層及至少一個由經刺激發射引起之光放大層組成。 3. 如條目1或2之雷射,其中兩個電極中之至少一者為透明的。 4. 如條目1至3中任一條目之雷射,其中光學共振器結構由分散式回饋(DFB)結構組成。 5. 如條目1至4中任一條目之雷射,其中光學共振器結構為一維共振器結構。 6. 如條目5之雷射,其中光學共振器結構由藉由一階布拉格散射區域包圍之二階布拉格散射區域組成。 7. 如條目1至4中任一條目之雷射,其中光學共振器結構為二維共振器結構。 8. 如條目7之雷射,其中光學共振器結構為圓形共振器結構。 9. 如條目1至3、7及8中任一條目之雷射,其中光學共振器結構由分散式布拉格反射器(DBR)結構組成。 10. 如條目1至9中任一條目之雷射,其含有至少一個電洞輸送或注入區域及至少一個電子輸送或注入區域。電洞輸送區域可存在於有機光學增益層中或可為形成於有機光學增益層上之層。該層可不含有機增益介質且可僅由摻雜劑構成。存在於有機光學增益層中之區域可含有摻雜劑及有機增益介質。有機光學增益層中之電洞輸送區域可藉由在有機光學增益層中摻雜摻雜劑而形成。可藉由自有機光學增益層之一個表面摻雜摻雜劑來進行摻雜。電子輸送區域可存在於有機光學增益層中或可為形成於有機光學增益層上之層。該層可不含有機增益介質且可僅由摻雜劑構成。存在於有機光學增益層中之區域可含有摻雜劑及有機增益介質。有機光學增益層中之電子輸送區域可藉由在有機光學增益層中摻雜摻雜劑而形成。可藉由自有機光學增益層之一個表面摻雜摻雜劑進行摻雜。 11. 如條目10之雷射,其中電洞輸送或注入區域含有受體。 12. 如條目10之雷射,其中電洞輸送或注入區域摻雜有受體。 13. 如條目10至12中任一條目之雷射,其中受體為金屬氧化物。該金屬氧化物可為MoO 3。 14. 如條目10至13中任一條目之雷射,其進一步含有在電洞輸送或注入區域與陽極之間的接受層。陽極為兩個電極中之一者。 15. 如條目10至14中任一條目之雷射,其中電子輸送或注入區域含有供體。該供體可為鹼金屬,諸如Cs。 16. 如條目15之雷射,其中電子輸送或注入區域摻雜有供體。 17. 如條目10至16中任一條目之雷射,其進一步含有在電子輸送或注入區域與陰極之間的供體層。該陰極為兩個電極中之一者。 18. 如條目1至17中任一條目之雷射,其不具有除有機光學增益層以外的有機層。 19. 如條目1至18中任一條目之雷射,其中光學共振器結構為外部光學共振器結構。 20. 如條目1至18中任一條目之雷射,其中光學共振器結構位於兩個電極之間。 21. 如條目1至20中任一條目之雷射,其進一步含有在兩個電極之間的電流限制結構。 22. 如條目1至21中任一條目之雷射,其中光學共振器結構為低語高響廊型光學共振器結構。 23. 如條目1至22中任一條目之雷射,其中激子由電流激勵產生且與光學共振器結構之光學共振模式重疊。 24. 如條目1至23中任一條目之雷射,其在雷射波長下未展示實質性激子互毀。由激子互毀造成的損失較佳地低於10%,更佳地低於5%,進一步更佳地低於1%,再進一步更佳地低於0.1%,再進一步更佳地低於0.01%,最佳為0%。 25. 如條目24之雷射,其未展示實質性單重態-單重態及三重態-三重態互毀。 26. 如條目1至25中任一條目之雷射,其在雷射波長下未展示實質性極化子吸收損失。有機半導體雷射之極化子吸收光譜與發射光譜之間不存在實質性重疊。由極化子吸收造成的損失較佳地低於10%,更佳地低於5%,進一步更佳地低於1%,再進一步更佳地低於0.1%,再進一步更佳地低於0.01%,最佳為0%。 27. 如條目1至26中任一條目之雷射,其中有機光學增益層中之電子遷移率與電洞遷移率之比率在1/10至10/1之範圍內。該比率較佳為1/5至5/1,更佳為1/3至3/1,再更佳為1/2至2/1。 28. 一種在DFB光柵結構上具有有機層之雷射,其中該有機層含有有機增益介質。 29. 如條目28之雷射,其中DFB光柵結構為其中二階布拉格散射區域由一階散射區域包圍的混合階DFB光柵結構。 30. 如條目28之雷射,其中DFB光柵結構為其中形成二階布拉格散射區域及一階散射區域的混合階DFB光柵結構。 31. 如條目28之雷射,其中二階布拉格散射區域及一階散射區域交替形成。 32. 如條目28至31中任一條目之雷射,其中DFB光柵結構具有圓形結構。 33. 如條目28至32中任一條目之雷射,其中在激勵態吸收與雷射發射之間不存在實質性光譜重疊。 34. 如條目28至33中任一條目之雷射,其中經刺激發射截面 σ em比三重態激勵態截面 σ TT大100倍或超過100倍,較佳地大400倍或超過400倍,更佳地大700倍或超過700倍。 35. 如條目28至34中任一條目之雷射,其中有機層含有主體材料及至少一種摻雜劑。 36. 如條目28至35中任一條目之雷射,其中該有機層經藍寶石直接地或間接地覆蓋。 37. 如條目28至36中任一條目之雷射,其中有機層經氟聚合物直接地或間接地覆蓋。 38. 如條目37之雷射,其中氟聚合物之厚度低於3 μm。 39. 如條目38之雷射,其中經氟聚合物覆蓋之有機層進一步經藍寶石覆蓋。 40. 如條目29至39中任一條目之雷射,其為連續波雷射。 41. 如條目29至39中任一條目之雷射,其為準連續波雷射。 42. 如條目1至41中任一條目之雷射,其中有機層含有具有至少一個茋單元之有機化合物。 43. 如條目1至41中任一條目之雷射,其中有機層含有4,4'-雙[( N -咔唑)苯乙烯基]聯苯(BSBCz)。 44. 如條目43之雷射,其中有機層含有4,4'-雙[( N -咔唑)苯乙烯基]聯苯(BSBCz)及4,4'-雙( N -咔唑基)-1,1'-聯苯(CBP)。 45. 如條目1至41中任一條目之雷射,其中有機層含有具有至少一個茀單元之化合物。具有茀單元之化合物可為具有至少兩種茀結構(諸如七茀、八茀及雙茀心樹枝體)的化合物。 46. 如條目1至45中任一條目之雷射,其中有機層之厚度為80至350 nm,較佳為100至300 nm,更佳為150至250 nm。 47. 如條目1至46中任一條目之雷射,其中光柵結構之深度低於75 nm,較佳為20至70 nm。 48. 如條目1至47中任一條目之雷射,其中光柵結構由SiO 2製成。 49. 如條目1至48中任一條目之雷射,其不含三重態淬滅劑。 This application discloses the following inventions: 1. A current-excited organic semiconductor laser, which contains two electrodes, an organic optical gain layer and an optical resonator structure. In the specification, the current-excited organic semiconductor laser may be called a current-injected organic semiconductor laser or an electrically driven organic semiconductor laser. 2. The laser of item 1, wherein the organic optical gain layer is composed of at least one charge transport layer and at least one light amplification layer caused by stimulated emission. 3. For the laser of Item 1 or 2, at least one of the two electrodes is transparent. 4. The laser of any one of items 1 to 3, wherein the optical resonator structure consists of a distributed feedback (DFB) structure. 5. The laser of any one of items 1 to 4, wherein the optical resonator structure is a one-dimensional resonator structure. 6. The laser of item 5, wherein the optical resonator structure consists of a second-order Bragg scattering region surrounded by a first-order Bragg scattering region. 7. The laser of any one of items 1 to 4, wherein the optical resonator structure is a two-dimensional resonator structure. 8. As for the laser of item 7, the optical resonator structure is a circular resonator structure. 9. The laser of any one of items 1 to 3, 7 and 8, wherein the optical resonator structure consists of a distributed Bragg reflector (DBR) structure. 10. A laser such as any one of items 1 to 9, which contains at least one hole transport or injection region and at least one electron transport or injection region. The hole transport region may be present in the organic optical gain layer or may be a layer formed on the organic optical gain layer. This layer may contain no organic gain medium and may consist solely of dopants. The regions present in the organic optical gain layer may contain dopants and organic gain media. The hole transport region in the organic optical gain layer can be formed by doping the organic optical gain layer with a dopant. Doping can be performed by doping a dopant from one surface of the organic optical gain layer. The electron transport region may be present in the organic optical gain layer or may be a layer formed on the organic optical gain layer. This layer may contain no organic gain medium and may consist solely of dopants. The regions present in the organic optical gain layer may contain dopants and organic gain media. The electron transport region in the organic optical gain layer can be formed by doping the organic optical gain layer with a dopant. Doping can be performed by doping a dopant from one surface of the organic optical gain layer. 11. For the laser of item 10, the hole transport or injection region contains receptors. 12. As in the laser of item 10, the hole transport or injection region is doped with acceptors. 13. The laser of any one of items 10 to 12, wherein the receptor is a metal oxide. The metal oxide may be MoO 3 . 14. The laser according to any one of items 10 to 13, further comprising a receiving layer between the hole transport or injection region and the anode. The anode is one of the two electrodes. 15. A laser as in any one of items 10 to 14, wherein the electron transport or injection region contains a donor. The donor can be an alkali metal such as Cs. 16. As in the laser of item 15, the electron transport or injection region is doped with a donor. 17. The laser of any one of items 10 to 16, further comprising a donor layer between the electron transport or injection region and the cathode. The cathode is one of two electrodes. 18. A laser as in any one of items 1 to 17, which does not have an organic layer other than an organic optical gain layer. 19. The laser of any one of items 1 to 18, wherein the optical resonator structure is an external optical resonator structure. 20. The laser of any one of items 1 to 18, wherein the optical resonator structure is located between two electrodes. 21. The laser of any one of items 1 to 20, further comprising a current limiting structure between two electrodes. 22. The laser of any one of items 1 to 21, wherein the optical resonator structure is a whispering high-resonance gallery optical resonator structure. 23. A laser as in any one of items 1 to 22, wherein excitons are generated by current excitation and overlap with the optical resonance mode of the optical resonator structure. 24. For example, the laser of any one of items 1 to 23 does not exhibit substantial exciton mutual destruction at the laser wavelength. The loss caused by exciton mutual destruction is preferably less than 10%, more preferably less than 5%, further preferably less than 1%, further preferably less than 0.1%, still further preferably less than 0.01%, optimal is 0%. 25. For example, the laser of item 24 does not exhibit substantial singlet-singlet state and triplet-triplet mutual destruction. 26. A laser such as any one of items 1 to 25 that exhibits no substantial polaron absorption loss at the laser wavelength. There is no substantial overlap between the polaron absorption spectrum and emission spectrum of organic semiconductor lasers. The loss due to polaron absorption is preferably less than 10%, more preferably less than 5%, further preferably less than 1%, still further preferably less than 0.1%, still further preferably less than 0.01%, optimal is 0%. 27. The laser of any one of items 1 to 26, wherein the ratio of electron mobility to hole mobility in the organic optical gain layer is in the range of 1/10 to 10/1. The ratio is preferably 1/5 to 5/1, more preferably 1/3 to 3/1, and still more preferably 1/2 to 2/1. 28. A laser with an organic layer on a DFB grating structure, wherein the organic layer contains an organic gain medium. 29. As for the laser of item 28, the DFB grating structure is a mixed-order DFB grating structure in which the second-order Bragg scattering area is surrounded by the first-order scattering area. 30. As for the laser of item 28, the DFB grating structure is a mixed-order DFB grating structure in which a second-order Bragg scattering region and a first-order scattering region are formed. 31. For example, in the laser of item 28, the second-order Bragg scattering region and the first-order scattering region are alternately formed. 32. The laser of any one of items 28 to 31, wherein the DFB grating structure has a circular structure. 33. A laser as in any one of items 28 to 32, wherein there is no substantial spectral overlap between excited state absorption and laser emission. 34. For example, the laser of any one of items 28 to 33, wherein the stimulated emission cross section σ em is 100 times or more than the triplet excitation state cross section σ TT , preferably 400 times or more than 400 times, and more The good land is 700 times or more than 700 times larger. 35. The laser of any one of items 28 to 34, wherein the organic layer contains a host material and at least one dopant. 36. A laser as in any one of items 28 to 35, wherein the organic layer is directly or indirectly covered with sapphire. 37. The laser of any one of items 28 to 36, wherein the organic layer is directly or indirectly covered with a fluoropolymer. 38. For the laser of item 37, the thickness of the fluoropolymer is less than 3 μm. 39. The laser of item 38, wherein the organic layer covered with fluoropolymer is further covered with sapphire. 40. If the laser is in any of items 29 to 39, it is a continuous wave laser. 41. If the laser is in any of items 29 to 39, it is a quasi-continuous wave laser. 42. The laser of any one of items 1 to 41, wherein the organic layer contains an organic compound having at least one stilbene unit. 43. The laser according to any one of items 1 to 41, wherein the organic layer contains 4,4'-bis[( N - carbazole)styryl]biphenyl (BSBCz). 44. Such as the laser of item 43, in which the organic layer contains 4,4'-bis[( N - carbazole)styryl]biphenyl (BSBCz) and 4,4'-bis( N - carbazolyl)- 1,1'-Biphenyl (CBP). 45. The laser of any one of items 1 to 41, wherein the organic layer contains a compound having at least one fluorine unit. The compound having a fluorine unit may be a compound having at least two fluorine structures, such as seven fluorine, eight fluorine, and two fluorine centrum dendrons. 46. For example, the laser of any one of items 1 to 45, wherein the thickness of the organic layer is 80 to 350 nm, preferably 100 to 300 nm, more preferably 150 to 250 nm. 47. The laser of any one of items 1 to 46, wherein the depth of the grating structure is less than 75 nm, preferably 20 to 70 nm. 48. The laser of any one of items 1 to 47, wherein the grating structure is made of SiO2 . 49. For example, the laser of any one of items 1 to 48 does not contain a triplet quencher.

[ 1 ] 連續波有機薄膜分散式回饋雷射自發現有機固態雷射以來, [ 1 6 ]已作出巨大努力而致力於研發有機材料中之連續波(cw)雷射,該等有機材料包括小分子、寡聚物及聚合物。 [ 7 10 ]然而,在光學cw激勵或脈衝激勵下以極高重複率(準cw激勵)操作有機固態雷射極具挑戰性。當有機薄膜在此等條件下經光學泵浦時,通常發生長壽命三重態激子及電荷載流子之積聚, [ 11 14 ]導致藉由三重態激子形成之經增加之吸收損失及藉由三重態激子之單重態激子淬滅(即單重態-三重態互毀)。 [ 11 16 ]此等吸收損失及發射淬滅為必須解決以達成cw及準cw操作之重大問題,係因為其引起雷射臨限值大大增加且在最壞情況下完全停止雷射。 [ 17 19 ]為遏制吸收損失及發射淬滅,提出在有機薄膜中併入三重態淬滅劑,諸如氧、 [ 15 , 16 ]環辛四烯、 [ 20 ]或蒽衍生物 [ 19 ]。然而,如由Schols等人建議, [ 20 ]三重態淬滅劑之需求為低三重態能量、短三重態壽命及單重態與三重態之能量之間的巨大差異,使得難以發現滿足此等條件而不阻礙雷射之合適的三重態淬滅劑。Rabe等人論證在無三重態淬滅劑之情況下在含有12% (BN-PFO)之6,6'-(2,2'-辛氧基-1,1'-聯萘)聯萘間隔基團之聚(9,9-二辛基茀)衍生物中於5 MHz之重複率下之準cw操作。 [ 9 ]由於BN-PFO中之發射與三重態吸收之間的較少光譜重疊,可獲得此高重複率。 [ 10 ]因此,在激勵態吸收與發射之間具有較少光譜重疊之有機雷射染料之研發對實現具有低臨限值之cw及準cw雷射至關重要。 在小組中,吾人已連續研究許多有機材料之光學及經放大自發發射(ASE)特性,其目的在於實現電泵浦有機雷射二極體。 [ 21 27 ]其中,4,4'-雙[( N -咔唑)苯乙烯基]聯苯(BSBCz)為最具前景的候選物之一,係因為摻合有6 wt% BSBCz之主體材料4,4'-雙( N-咔唑基)-1,1'-聯苯(CBP)之真空沈積薄膜(其化學結構展示於圖1a中)具有出色的光學及ASE特性,諸如接近100%之高光致發光量子產率(Φ PL)及約1.0 ns之短PL壽命(τ PL),產生約10 9s 1之巨大的輻射衰變常數(k r)及約0.3 μJ cm 2之低ASE臨限能量。 [23,26]在此文中,吾人報導基於此BSBCz:CBP摻合薄膜之分散式回饋(DFB)裝置中之準cw表面發射雷射。在此雷射裝置中,吾人獲得曾針對基於有機薄膜系統之準cw雷射所報導之最高重複率(高達8 MHz)及最低臨限值(約0.25 μJ cm 2)。三重態淬滅劑之併入在吾人之摻合薄膜中並非係必需的,係因為其高Φ PL及在BSBCz之發射與三重態吸收之間無顯著光譜重疊。 [ 24 ]在DFB結構中,當滿足以下布拉格條件(Bragg condition)時,發生雷射振盪: Bragg= 2 n eff Λ,其中 m為繞射階、 λ Bragg為布拉格波長、 n eff為增益介質之有效折射率且 Λ為光柵之週期。 [ 28 , 29 ]當考慮二階模式( m= 2)時,使用針對BSBCZ報導之 n effλ Bragg將光柵週期計算為 Λ= 280 nm。 [ 21 , 22 ]具有 Λ =280 nm之光柵提供在垂直於如圖1b中所展示的基板平面之方向上之表面發射雷射。儘管二階光柵與一階光柵相比通常產生較高雷射臨限值,但使用二階光柵之表面發射雷射適用於製造具有展示相同表面發射的有機發光二極體結構的電泵浦有機雷射二極體。 [ 30 , 31 ]使用電子束微影及反應性離子蝕刻,將此等光柵直接雕刻至5×5 mm 2面積之二氧化矽表面上(圖1c)。圖1d及圖1e展示在此研究中所製造之代表性光柵之SEM影像。吾人自SEM影像獲得 Λ= 280±2 nm及 d= 70±5 nm之光柵深度,其完美地符合吾人之規範。藉由真空沈積在光柵上製備具有200 nm之厚度的6 wt% BSBCz:CBP摻合薄膜或BSBCz純薄膜以製造雷射裝置。 首先,吾人檢查到吾人之DFB系統在來自氮氣雷射之20 Hz之0.8 ns寬脈衝激勵下之表面發射雷射特性。具有337 nm之波長的此激勵光主要由摻合薄膜中之CBP吸收。然而,在CBP發射與BSBCz吸收之間的較大光譜重疊保證兩個分子之間的高效Förster型能量傳遞(圖1f)。 [ 26 ]因此,即使在高激勵下,吾人未觀測到來自CBP之任何發射。圖2a及圖2b顯示以不同激勵強度自雷射裝置((a) BSBCz:CBP薄膜及(b)純BSBCz薄膜)量測之發射光譜。相對於某些激勵光強度,兩種裝置展示具有極窄波峰之雷射發射。吾人確認不存在來自同一基板上無光柵的區域之表面發射雷射。由於經刺激發射, [ 32 35 ]在吾人之雷射裝置中,發現τ PL及半高全寬(FWHM)在E th內之高激勵能量下顯著減小(圖2a及圖2b),指示吾人之光柵極適用於提取來自波導薄膜之作為表面發射的光。吾人在以低激勵強度量測之發射光譜中觀測到摻合薄膜在約478 nm處之布拉格突降及純薄膜在474 nm處之布拉格突降(圖2a及圖2b之插圖)。布拉格突降係因由光柵抑制波導光之傳播造成的,且可經設想為用於波導模式之光子阻帶。 [ 36 ]在布拉格突降之短波長邊緣處發生雷射(對於摻合薄膜為477 nm且對於純薄膜為473 nm)。布拉格突降位置中之差異很可能係因用於摻合薄膜及純薄膜之不同折射率造成的。隨著激勵強度增加,發射強度線性地增加,且接著隨著FWHM針對摻合薄膜減小至< 0.30 nm且針對純薄膜減小至< 0.40 nm而開始放大以供雷射 (參見圖2c及圖2d)。自擬合至發射強度的兩條直線之交叉點量測之雷射臨限能量( E th)對於摻合薄膜為 E th= 0.22 μJ cm 2且對於純薄膜為 E th= 0.66 μJ cm 2,其對應於275 W cm 2及825 W cm 2之功率密度。由於吾人之光柵之極佳的品質,在無光柵的情況下,此等值低於其375 W cm 2及1625 W cm 2之ASE臨限功率密度。 [ 23 , 26 ]所獲得的 E th值為曾在所有準cw有機薄膜雷射中報導之最低值。由於經遏制之濃度淬滅,摻合薄膜中低於純薄膜中之 E th係歸因於摻合薄膜(98%)比純薄膜(76%)高的Φ PL[ 36 ]大體而言, E th及雷射增益與Φ PL成反比例。 [ 37 , 38 ]使用來自Ti-藍寶石雷射的具有365 nm之波長及10 ps之寬度的光學脈衝以準cw模式操作吾人之裝置。圖3展示雷射振盪之條框攝影機影像及BSBCz:CBP摻合薄膜中之雷射強度在雷射波長下之對應的時間變化。激勵光強度固定在約0.44 μJ cm 2,其比 E th高約兩倍。在0.01 MHz之重複率下,在100 μs間隔處觀測到雷射振盪。在較高重複率下減小雷射振盪之間的時間間隔。鄰近的雷射振盪在500 μs之寬泛時間標度內在8 MHz處連續出現(圖3a及圖3b);然而,甚至在8 MHz處,在2 μs之短時間標度內仍可識別到在125 ns間隔處之個別雷射振盪(圖3c)。吾人確認類似準cw操作對於BSBCz純薄膜而言係可能的。 具有摻合薄膜及純薄膜的兩種雷射裝置之發射強度幾乎保持恆定高達8 MHz,如圖3中所展示。此最大重複率為曾報導最高的重複率,且歸因於由三重態激子形成引起之小吸收損失及發射淬滅。BSBCz之 Φ PL極高,從而經由系統間穿越將三重態激子之產生減至最小,特別對於摻合薄膜。此外,發射與三重態吸收之間的光譜重疊為可忽略的,從而減小單重態激子與三重態激子之間的衝突可能性。當以80 MHz (吾人之設備可能具有的最高頻率)操作雷射裝置時,發射強度迅速減小,且很可能由於迅速的材料降解而不可能估計明確的雷射臨限值。此外,在80 MHz處所觀測之發射波峰之FWHM為在較低頻率處之發射波峰之彼等FWHM的約兩倍。在此階段,吾人不確定其是否在雷射。 圖4a顯示針對摻合薄膜及純薄膜之雷射臨限值隨重複率變化之曲線圖。引起關注地,由於可忽略的吸收損失及發射淬滅,雷射臨限值幾乎與摻合薄膜之重複率無關。然而,就純薄膜而言,隨重複率增加觀測到逐漸增加之臨限值。吾人不知曉臨限值逐漸增加之確切原因,且因此需要進一步研究以闡明此觀測。 吾人研究當在8 MHz下連續操作裝置時雷射振盪之操作穩定性(圖4b)。發射強度隨時間逐漸減小。變化為不可逆的,表明材料之光降解。直至發射強度降低至初始之90%為止的壽命對於摻合薄膜為900 s,其長於純薄膜之480 s。由於較高的臨限值,需要較強的激勵光以在相較於摻合薄膜之純薄膜中達成雷射。因此,可預期光降解在純薄膜中更快。臨限值之降低對於光降解之遏制而言至關重要。 總而言之,製造及評估將作為增益介質之BSBCz:CBP摻合薄膜與二階光柵組合之DFB雷射裝置。吾人自準cw操作下之裝置獲得優良的表面發射雷射,其中發射強度及雷射臨限值與重複率無關。對於吾人之雷射裝置,最大重複率為8 MHz,其為曾報導之最高的重複率,且雷射臨限值為約0.25 μJ cm 2,其為曾報導之最低雷射臨限值。由於三重態激子之可忽略積聚及在發射與三重態吸收之間的較小光譜重疊,通常用於製造有機薄膜雷射之三重態淬滅劑在吾人之裝置中並非係必需的。因此,吾人認為,就光學特性而言,BSBCz為用於首次實現電泵浦有機雷射二極體之最具前景的候選。然而,諸如電荷載流子移動力、電荷載流子俘獲截面等之電學特性亦為極其重要的,且將需要進一步研究及增強以用於電泵浦有機雷射之實現。 實驗部分使用中性清潔劑、純水、丙酮及異丙醇藉由超音波處理,接著藉由UV臭氧處理,來清潔覆蓋有1 μm厚度的熱生長二氧化矽層之矽基板。藉由在4000 rpm下旋塗15 s,用六甲基二矽氮烷(HMDS)處理二氧化矽表面。自ZEP520A-7溶液(ZEON Co.)將具有約70 nm之厚度的抗蝕劑層旋以4000 rpm塗於基板上持續30 s,且在180℃下烘烤240 s。使用具有0.1 nC cm 2之經最佳化劑量的JBX-5500SC系統(JEOL)進行電子束微影以將光柵圖案繪製於抗蝕劑層上。在電子束照射之後,在室溫下將圖案於顯影劑溶液(ZED-N50,ZEON Co.)中顯影。將經圖案化之抗蝕劑層用作蝕刻遮罩,同時使用EIS-200ERT蝕刻系統(ELIONIX)用CHF 3電漿蝕刻基板。為自基板完全移除抗蝕劑層,使用FA-1EA蝕刻系統(SAMCO)用O 2電漿蝕刻基板。利用掃描電子顯微法(SU8000,Hitachi)觀測到形成於二氧化矽表面上之光柵。為完成雷射裝置,藉由在4.0×10 4Pa之壓力下之熱蒸發以0.1 nm s 1至0.2 nm s 1之總蒸發速率在光柵上製備200 nm厚的6 wt% BSBCz:CBP摻合薄膜及BSBCz純薄膜。 對於雷射操作,經由透鏡及狹縫將來自氮氣雷射(USHO,KEN-2020)之脈衝式激勵光集中於裝置之6×10 3cm 2面積上。激勵波長為337 nm,脈衝寬度為0.8 ns,且重複率為20 Hz。激勵光相對於裝置平面之法線成約20°入射於裝置上。利用連接至多通道光譜儀(PMA-50,Hamamatsu Photonics)之光纖收集垂直於裝置表面之經發射光,該光纖經置放為與該裝置相距3 cm。使用一組中性密度濾光器來控制激勵強度。對於準cw操作,使用模式鎖定頻率加倍之Ti-藍寶石雷射(Millennia Prime,Spectra physics)來生成具有365 nm之激勵波長、10 ps之脈衝寬度及範圍為0.01 MHz至8 MHz之重複率的激勵光。經由透鏡及狹縫將激勵光集中於裝置之1.9×10 4cm 2之面積上,且使用與數位攝影機(C9300,Hamamatsu Photonics)連接之具有15 ps之時間解析度的條框眼(streak scope) (C10627,Hamamatsu Photonics)收集所發射的光。如前所描述,針對此量測使用相同的照射及偵測角度。藉由使用光束測繪器(WimCamD-LCM,DataRay)來仔細地檢查激勵面積之大小。所有量測係在氮氣氛圍中進行,以防止由濕氣及氧氣引起之任何降解。 製備含有BSBCz以0.15 mM溶於CH 2Cl 2中之溶液,且在使用之前用氬氣鼓泡。將具有來自Nd:YAG雷射(Quanta-Ray GCR-130, Spectra-Physics)之355 nm之波長及5 ns之FWHM之第三諧波雷射光用作泵浦光,且將來自Xe燈之脈衝式白光用作用於使用條框攝影機(C7700,Hamamatsu Photonics)對溶液進行三重態吸收量測之探測光。 參考文獻1. F. Hide, B. J. Schwartz, M. A. Díaz-García, A. J. Heeger, Chem. Phys. Lett. 1996, 256, 424. 2. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. Andersson, Q. Pei, A. J. Heeger, Science 1996, 273, 1833. 3. N. Tessler, G. J. Denton, R. H. Friend, Nature 1996, 382, 695. 4. M. D. McGehee, A. J. Heeger, Adv. Mater. 2000, 12, 1655. 5. N. Tessler, Adv. Mater. 1999, 11, 363. 6. I. D. W. Samuel, G. A. Turnbull, Chem. Rev. 2007, 107, 1272. 7. R. Bornemann, U. Lemmer, E. Thiel, Opt. Lett. 2006, 31, 1669. 8. R. Bornemann, E. Thiel, P. H. Bolívar, Opt. Express. 2011, 19, 26383. 9. T. Rabe, K. Gerlach, T. Riedl, H.-H. Johannes, W. Kowalsky, J. Niederhofer, W. Gries, J. Wang, T. Weimann, P. Hinze, F. Galbrecht, U. Scherf, Appl. Phys. Lett. 2006, 89, 081115. 10. M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, W. Kowalsky, Org. Electron. 2011, 12, 1346. 11. N. C. Giebink, S. R. Forrest, Phys. Rev. B 2009, 79, 073302. 12. M. A. Baldo, R. J. Holmes, S. R. Forrest, Phys. Rev. B 2002, 66, 035321. 13. M. Lehnhardt, T. Riedl, T. Weimann, W. Kowalsky, Phys. Rev. B 2010, 81, 165206. 14. M. A. Stevens, C. Silva, D. M. Russell, R. H. Friend, Phys. Rev. B 2001, 63, 165213. 15. M. Inoue, T. Matsushima, H. Nakanotani, C. Adachi, Chem. Phys. Lett. 2015, 624, 43. 16. L. Zhao, M. Inoue, K. Yoshida, A. S. D. Sandanayaka, J.-H. Kim, J.-C. Ribierre, C. Adachi, IEEE Quantum Electronics 2016, 22, 1, 1300209. 17. P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Dev. 1967, 11, 130. 18. O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 1970, 17, 245. 19. Y. Zhang, S. R. Forrest, Phys. Rev. B 2011, 84, 241301. 20. S. Schols, A. Kadashchuk, P. Heremans, A. Helfer, U. Scherf, Chem. Phys. Chem. 2009, 10, 1071. 21. D. Yokoyama, M. Moriwake, C. Adachi, J. Appl. Phys. 2008, 103, 123104. 22. H. Yamamoto, T. Oyamada, H. Sasabe, C. Adachi, Appl. Phys. Lett. 2004, 84, 1401. 23. M. Inoue, K. Goushi, K. Endo, H. Nomura, C. Adachi, J. Lumin. 2013, 143, 754. 24. H. Nakanotani, C. Adachi, S. Watanabe, R. Katoh, Appl. Phys. Lett. 2007, 90, 231109. 25. D. Yokoyama, H. Nakanotani, Y. Setoguchi, M. Moriwake, D. Ohnishi, M. Yahiro, C. Adachi, Jpn. J. Appl. Phys. 2007, 46, 826. 26. T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, C. Adachi, Appl. Phys. Lett. 2005, 86,071110. 27. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, C. Adachi, Adv. Funct. Mater. 2007, 17, 2328. 28. I. D. W. Samuel, G. A. Turnbull, Chem. Rev. 2007, 107, 1272. 29. S. Chenais, S. Forget, Polym. Int. 2012, 61, 390. 30. A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, W. L .Barnes, Appl. Phys. Lett. 2005, 86, 161102. 31. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, Appl. Phys. Lett. 2000, 77, 2310. 32. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, S. Noda, Opt. Express. 2007, 15, 17206. 33. M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, K. Leo Appl. Phys. Lett. 2005, 87, 181108. 34. P. A. Morton, V. Mizrahi, S. G. Kosinski, L. F. Mollenauer, T. Tanbuu-Ek, R. A. Logan, D. L. Coblentz, A. M. Sergent, K. W. Wecht, Electron. Lett. 1992, 28, 561. 35. P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, K. W. Wecht, Appl. Phys. Lett. 1994, 64, 2634. 36. G. A. Turnbull, P. Andrew, M. J. Jory,W. L. Barnes, I. D.W. Samuel, Phys. Rev. B 2001, 64, 125122. 37. B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, O. Shapira, Proc. Natl. Acad. Sci. USA 2013, 110, 13711. 38. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, H. S. Barcena, P. L. Burn, I. D. W. Samuel, Appl. Phys. Lett. 2007, 91, 081108. [ 2 ] 使用氧作為三重態淬滅劑來改良有機半導體雷射中之準連續波雷射屬性吾人論證基於含有摻雜有發藍光之七茀衍生物之液體9-(2-乙基己基)咔唑主體之摻合物的無溶劑液體有機半導體分散式回饋雷射中之準連續波雷射。用氧或氮將液體增益介質鼓泡,以研究諸如分子氧之三重態淬滅劑對有機半導體雷射之準連續波雷射屬性之作用。經氧化之雷射裝置展現2 μJ cm - 2之低臨限值,其低於在氮化裝置中所量測之臨限值且與在0.01 MHz與4 MHz之間的範圍中之重複率無關。 自在1996年論證了第一個經光學泵浦之有機固態半導體雷射以來, 1 , 2有機雷射已成為深入研究之主題,主要係歸因於有機半導電材料之若干有吸引力的特徵,諸如,其寬廣的吸收及發射光譜,及其高光學增益係數。 3 , 4在過去二十年期間,有機固態雷射之效能已得到極大地改良,且目前湧現了包括用於光譜分析及蒸氣化學感測器之整合光源之研發的應用。 5儘管脈衝式無機發光二極體現在可用以光學泵浦有機固態雷射, 6但仍需要進一步突破以論證在連續波(cw)狀態中操作之經光學泵浦之有機半導體雷射且最終實現經光學泵浦之有機雷射二極體。 已明確,經由系統間穿越產生長壽命三重態激子可導致在cw光學泵浦狀態中阻止雷射之高光子及單重態損失。 7 - 12為解決此關鍵問題,已提出將三重態淬滅劑併入至有機半導體增益介質中。Zhang等人在摻雜4-(二氰基亞甲基)-2-甲基-6-久咯雷啶基-9-烯基-4H-哌喃(DCM2)之參(8-hydrixyquinoiline)鋁(Alq 3)中使用蒽衍生物作為三重態淬滅劑且可將其分散式回饋(DFB)有機裝置之雷射持續時間延長至接近100 μs。 8同時,一些其他研究論證了可藉由使用氧或環辛四烯(COT)作為三重態淬滅劑來減少經光學泵浦之有機半導體雷射中之三重態損失。 9 - 11儘管使用三重態淬滅劑來研發真實cw有機固態雷射技術為極具前景的,但應提及,已提出其他方法來達到此目標。最近,在基於摻雜有4,4'-雙[(N-咔唑)苯乙烯基]聯苯(BSBCz)之4,4'-雙(N-咔唑基)-1,1'-聯苯(CBP)主體之有機DFB雷射中論證了具有高達8 MHz之重複率之準cw雷射。 13此成就藉由BSBCz之雷射發射與三重態吸收光譜之間的可忽略重疊以及接近100%之材料之光致發光量子產率來解釋,該光致發光量子產率導致在光學泵浦下三重態之產生極其疲軟。用以實現大功率cw有機固態染料雷射之另一方式係基於裝置在其操作期間之極快旋轉,但此等裝置之長時間功率輸出穩定性對於實際應用似乎很有限。 14在此研究中,吾人報導關於使用無溶劑液體有機半導體材料作為雷射增益介質製造在準cw狀態中操作之有機半導體DFB雷射。 15 - 23此雷射材料由摻雜有七茀衍生物之9-(2-乙基己基)咔唑(EHCz)主體 17組成。 24此等分子之化學結構展示於圖5a中。藉由摻合物在脈衝式光學泵浦下85%之光致發光量子產率(PLQY)及其0.4 μJ cm - 2之低放大自發發射(ASE)臨限值來推動此摻合物之選擇。 22在該情形下,吾人在此處檢查氧化在EHCz:七茀摻合物之準cw DFB雷射屬性之影響。結果提供明確證據表明,使用諸如分子氧之三重態淬滅劑對於未來實現經光學泵浦之cw有機半導體雷射為極具前景的。 按照此前公開於文獻 25中之方法合成七茀衍生物,同時購買液體咔唑、EHCz (Sigma-Aldrich)且不經進一步純化即使用。EHCz,其在室溫下為液體且展示遠低於0℃之玻璃態化溫度, 17將其與七茀於氯仿溶液中混合。接著藉由氧或氮將EHCz:七茀(90:10 wt.%)摻合溶液鼓泡約20分鐘。藉由使用具有0.7 mm之內徑的針且以約0.02 MPa之壓力將氣體併入至溶液中。接著在完全蒸發溶劑之後,將摻合物用作雷射裝置中之增益介質。液體DFB雷射之裝置結構示意性地表示於圖5b中。為製造此等裝置,按照此前報導之方法合成紫外線(UV)可固化聚胺基甲酸丙烯酸酯(PUA)混合物。 26藉由用PUA混合物複製矽之光柵主模易於在聚對苯二甲酸伸乙酯(PET)基板上製造波紋聚合性DFB圖案。 27用於所期望的雷射波長λ之光柵週期 Λ必須滿足布拉格條件 Λ=mλ/(2n eff),其中m為階數目且n eff為經引導模式之有效折射率。為達成低臨限值雷射操作,選擇對應於m = 1之一階回饋,其產生自裝置之邊緣之雷射發射。值得注意的係,PUA薄膜及EHCz摻合物之折射率分別為約1.54及1.7,意味0.16之相對折射率差。 22如圖5c中所展示,在PUA層上經圖案化之波紋結構由具有140 nm之週期及100 nm之高度的1D光柵組成。基於布拉格公式及發藍光之七茀衍生物之發射光譜,針對具有約450 nm之發射波長的一階DFB雷射操作選擇此光柵週期。接著用熔融矽石基板覆蓋波紋PUA層,且使用具有1 μm之直徑的矽石微粒固定PUA複本與覆蓋物之間的間隙距離。接著經由毛細作用用液體增益介質填充空的間隙空間。為研究其準cw雷射屬性,使用在365 nm處遞送光學脈衝的具有10 ps之脈衝寬度的Ti-藍寶石雷射系統(Millennia Prime,Spectra Physics)來光學經氮化及氧化之EHCz:七茀DFB雷射。光激勵之重複率在0.01 MHz至4 MHz之範圍內變化。集中至裝置上之雷射泵浦光束之斑點面積為1.9×10 - 4cm 2。使用與Hamamatsu數位攝影機(C9300)連接之Hamamatsu條框眼(C10627)自裝置之邊緣偵測到發射。 七茀衍生物先前用於具有高達5.3%之外部量子效率的經溶液處理之螢光有機發光二極體(OLED)中。 28由於4,4'-雙(N-咔唑基)-1,1'-聯苯(CBP)主體中之七茀發射體之水平定向,可達成此類良好的電致發光效能。在另一研究中,亦將七茀分子摻合至EHCz主體中以便論證在可見光譜之藍色區域中操作之無溶劑液體有機二階DFB雷射。 22為此目的,使用脈衝式氮雷射(λ = 337 nm,脈衝持續時間為800 ps及重複率為8 Hz)來光學泵浦裝置且在垂直於表面之方向上偵測雷射輸出發射。在此,吾人使用相同液體複合材料來製造邊緣發射一階DFB雷射。如圖5d及圖5e中所顯示,自經氮化及氧化之液體DFB雷射之邊緣偵測到之藍色雷射發射分別具有450 nm及449 nm之峰值波長。兩個裝置之雷射波長之間的極小差異大概歸因於有機液體層之厚度的微小變化。 29圖6a及圖6b顯示用於兩種經氮化及氧化之無溶劑液體有機DFB雷射在若干重複率下的雷射發射之條框攝影機影像。對於此等量測,激勵強度保持恆定為2.5 μJ cm - 2之值。當在100 μs時間標度窗中可清晰地觀測到自DFB雷射發射之雷射脈衝時,脈衝之間的時間間隔隨著重複率增加而逐漸減小。對於1 MHz及4 MHz之最高重複率,圖6c及圖6d中之DFB雷射輸出發射似乎在此時間範圍內連續地發射,提供證據表明兩種經氮化及氧化之裝置在準cw狀態中恰當地操作。然而,值得注意的係,始終發現準cw狀態中之經氧化之裝置之輸出強度(尤其在4 MHz下)顯著高於經氮化之裝置之輸出強度。 30在經氮化及氧化之無溶劑液體有機DFB雷射中之不同重複率下,分別相對於激勵強度來標繪雷射輸出強度及發射光譜之半高全寬(FWHM) (圖7及圖8)。 30發現兩種樣本中之發射峰之FWHM在高激勵密度下降低至1.8 nm,其歸因於藉由經刺激發射之放大。此線寬高於0.7 nm之光譜儀之解析度。觀察展示輸出強度相對於激勵強度之曲線,斜度效率之突變與雷射臨限值直接相關。 29 , 31 - 34使用此等資料,接著根據兩種裝置中之重複率來判定雷射臨限值。圖9a中之結果論證雷射臨限值較低且幾乎與具有2 μJ cm - 2之值的經氧化樣本中之重複率無關。引起關注地,發現經氮化樣本中之雷射臨限值隨光學皮秒脈衝激勵之重複率自0.01 MHz增加至4 MHz而逐漸地自2.8 μJ cm - 2增加至4.4 μJ cm - 2。 在氯仿溶液中之七茀分子之三重態-三重態吸收光譜與增益材料之代表性雷射光譜之間觀測到不可忽略的重疊(圖10)。 30實際上,先前的工作報導七茀中之經刺激發射截面比在ASE/雷射波長下之三重態吸收截面大七倍。 10值得注意的係,歸因於充當三重態淬滅劑之分子氧的存在,三重態-三重態吸收在經氧化溶液中完全消失。為提供額外證據表明分子氧可在基於七茀之雷射增益介質中高效淬滅三重態,吾人接著檢查在經氧或氮鼓泡之液體摻合材料中由單重態-三重態激子互毀(STA)對單重態激子之淬滅。為此目的,將經氮化及氧化之增益材料包夾於兩個平坦熔融矽石基板之間。藉由325 nm光脈衝(具有自50 μs至800 μs變化之脈衝持續時間)以0.5 kW cm - 2之激勵密度照射樣本,且吾人監測光致發光強度之時間演變。 8 - 10經氮化樣本中之瞬態曲線展示,在光學泵浦開始之後,在300 μs之後在達到其穩態之前發射強度顯著地減小幾乎60% (圖11)。 30此等資料論證單重態激子由經氮化之液體材料中之STA淬滅。 8 - 10相比之下,經氧化之液體增益介質不展示此類淬滅,且另外,在800 μs之高強度cw照射下不呈現任何降解跡象。此與前述研究 10中報導之結果一致且提供明確證據表明,實際上可使用分子氧來淬滅三重態而不影響基於七茀之材料中之單重態。藉由經氧化樣本中之STA遏制單重態淬滅亦與DFB雷射發射之強度似乎在經氧化之裝置中強於在經氮化裝置中之事實一致。 出於此等考慮,經氮化之DFB雷射裝置中之最高臨限值及此臨限值之重複率相關性可歸因於增益介質中之長壽命三重態激子之生成及積聚,其導致與三重態吸收及單重態-三重態激子互毀相關聯之額外的損失。應著重指出,液體摻合物展示85%之高PLQY及低ASE/雷射臨限值。另外,系統間穿越產率在寡聚茀及聚茀衍生物中通常較小(約3%)。 35在該情形下,極合理的係,在光學泵浦下經由系統間穿越產生的三重態之濃度在經氮化之基於七茀之增益材料中保持足夠低,以針對至多4 MHz之重複率觀測準cw狀態中之雷射。重要地,可藉由充當三重態淬滅劑之分子氧之存在來直接解釋經氧化之DFB裝置中之雷射臨限值變得較低且與重複率無關之事實。 亦藉由監測高於1 MHz之重複率下之兩種經氮化及氧化之DFB雷射之雷射臨限值的來自液體層之邊緣之輸出強度之時間演變來評估準cw雷射發射之光穩定性。藉由量測與自輸出強度之初始值的10%之減少相關聯之持續時間來估計特徵光穩定性時間常數。如圖9b中所展示,經氮化及氧化之裝置之時間常數經發現分別為4分鐘及5分鐘。在輸出雷射強度中隨時間之此減小大概歸因於七茀分子之漂白。當然可藉由使用用於達成真實準cw無溶劑液體有機半導體雷射技術之微流電路來解決此光降解問題。 22引起關注地,儘管在三重態激子之淬滅後形成高度化學反應性氧單重態,但氧之存在並不導致液體裝置之較快光降解。 36其得到展示來自經氧化樣本之光致發光強度在以0.5 kW cm - 2之高激勵密度的cw光學泵浦下在800 μs之後保持幾乎恆定之結果的良好支援。 30總而言之,吾人論證使用氧作為三重態淬滅劑對於研發連續波有機半導體雷射技術為有前景的途徑。用於吾人之一階有機DFB雷射中之增益介質係基於摻雜有藍色螢光七茀衍生物之無溶劑液體咔唑主體。藉由鼓泡摻合有分子氧之此液體分子半導體,減小準cw狀態中之DFB雷射臨限值且發現其與重複率幾乎無關。即使對於高達4 MHz之重複率,經氧化之DFB裝置實際上展示2 μJ cm - 2之雷射臨限值。準cw雷射效能之此改良係歸因於藉由分子氧選擇性淬滅增益介質中之三重態。 參考文獻1. F. Hide, M.A. Diaz-Garcia, B.J. Schwartz, M. Andersson, Q. Pei, A.J. Heeger, Science 273, 1833 (1996). 2. N. Tessler, G.J. Denton, R.H. Friend, Nature 382, 695 (1996). 3. I.D.W. Samuel, G. Turnbull, Chem. Rev. 107, 1272 (2007). 4. S. Chénais, S. Forget, Polym. Int. 61, 390 (2012). 5. A. Rose, Z.G. Zhu, C.F. Madigan, T.M. Swager, V. Bulovic, Nature 434, 876 (2005). 6. Y. Yang, G. Turnbull, I.D.W. Samuel, Appl. Phys. Lett. 92, 163306 (2008). 7. O.G. Peterson, S.A. Tuccio, B.B. Snavely, Appl. Phys. Lett. 17, 245 (1970). 8. Y. Zhang, S.R. Forrest, Phys. Rev. B 84, 241301 (2011). 9. M. Inoue, T. Matsushima, H. Nakanotani, C. Adachi, Chem. Phys. Lett. 624, 43 (2015). 10. L. Zhao, M. Inoue, K. Yoshida, A.S.D. Sandanayaka, J.H. Kim, J.C. Ribierre, C. Adachi, IEEE J. Select. Top. Quant. Electr. 22, 1300209 (2016). 11. S. Schols, A. Kadashchuk, P. Heremans, A. Helfer, U. Scherf, Chem. Phys. Chem. 10, 1071 (2009). 12. T. Rabe, K. Gerlach, T. Riedl, H.H. Johannes, W. Kowalsky, J. Niederhofer, W. Gries, J. Wang, T. Weimann, P. Hinze, F. Galbrecht, U. Scherf, Appl. Phys. Lett. 89, 081115 (2006). 13. A.S.D. Sandanayaka, K. Yoshida, M. Inoue, C. Qin, K. Goushi, J.C. Ribierre, T. Matsushima, C. Adachi, Adv. Opt. Mater. 2016, DOI: 10.1002/adom.201600006 14. R. Bornemann, E. Thiel, P.H. Bolivar, Opt. Expr., 19, 26382 (2011). 15. S.S. Babu, T. Nakanishi, Chem. Comm. 49, 9373 (2013). 16. B.A. Kamino, T.P. Bender, R.A. Klenker, J. Phys. Chem. Lett., 3, 1002 (2012). 17. J.C. Ribierre, T. Aoyama, T. Muto, Y. Imase, T. Wada, Org. Electron. 9, 396 (2008). 18. J.C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, T. Wada, J. App. Phys. 102, 033106 (2007). 19. J.C. Ribierre, T. Aoyama, T. Muto, P. André, Org. Electron. 12, 1800 (2011). 20. D. Xu, C. Adachi, Appl. Phys. Lett. 95, 053304 (2009). 21. E.Y. Choi, L. Mager, T.T. Cham, K.D. Dorkenoo, A. Fort, J.W. Wu, A. Barsella, J.C. Ribierre, Opt. Expr. 21, 11368 (2013). 22. J.H. Kim, M. Inoue, L. Zhao, T. Komino, S.M. Seo, J.C. Ribierre, C. Adachi, Appl. Phys. Lett. 106, 053302 (2015). 23. J.C. Ribierre, L. Zhao, M. Inoue, P.O. Schwartz, J.H. Kim, K. Yoshida, A.S.D. Sandanayaka, H. Nakanotani, L. Mager, S. Méry, C. Adachi, Chem. Comm. 52, 3103 (2016). 24. E.Y. Choi, L. Mazur, L. Mager, M. Gwon, D. Pitrat, J.C. Mulatier, C. Monnereau, A. Fort, A.J. Attias, K. Dorkenoo, J.E. Kwon, Y. Xiao, K. Matczyszyn, M. Samoc, D.W. Kim, A. Nakao, B. Heinrich, D. Hashizume, M. Uchiyama, S.Y. Park, F. Mathevet, T. Aoyama, C. Andraud, J.W. Wu, A. Barsella, J.C. Ribierre, J.C. Phys. Chem. Chem. Phys. 16, 16941 (2014). 25. R. Anemian, J.C. Mulatier, C. Andraud, O. Stephan, J.C. Vial, Chem. Comm. 1608 (2002). 26. S.J. Choi, P.J. Yoo, S.J. Baek, T.W. Kim, H,H, Lee, J. Am. Chem. Soc. 126, 7744 (2004). 27. J. H. Kim, M.J. Han, S. Seo, J. Polym. Sci. Part B 53, 453 (2015). 28. L. Zhao, T. Komino, M. Inoue, J.H. Kim, J.C. Ribierre, C. Adachi, Appl. Phys. Lett. 106, 063301 (2015). 29. J.C. Ribierre, G. Tsiminis, S. Richardson, G.A. Turnbull, I.D.W. Samuel, H.S. Barcena, P.L. Burn,  Appl. Phys. Lett. 91, 081108 (2007). 30. Material for a characterization of the triplet losses and the determination of the threshold in the quasi-cw regime 31. C. Kamutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B.S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J.C. deMello, D.D.C. Bradley, Appl. Phys. Lett. 89, 201108. (2006). 32. G. Tsiminis, J.C. Ribierre, A. Ruseckas, H.S. Barcena, G.J. Richards, G.A. Turnbull, P.L. Burn, I.D.W. Samuel, Adv. Mater. 20, 1940 (2008). 33. G. Tsiminis, Y. Wang, P.E. Shaw, A.L. Kanibolotsky, I.F. Perepichka, M.D. Dawson, P.J. Skabara, G.A. Turnbull, I.D.W. Samuel, Appl. Phys. Lett. 94, 243304 (2009). 34. A.E. Vasdekis, G. Tsiminis, J.C. Ribierre, L. O'Faolain, T.F. Krauss, G.A. Turnbull, I.D.W. Samuel, Opt. Expr. 14, 9211 (2006). 35. H.L. Chen, Y.F. Huang, C.P. Hsu, T.S. Lim, L.C. Kuo, M.K. Leung, T.C. Chao, K.T. Wong, S.A. Chen, W. Fann,  J. Phys. Chem. A, 111, 9424 (2007) 36. T. Gallavardin, C. Armagnat, O. Maury, P.L. Baldeck, M. Lindgren, C. Monnereau, C. Andraud, Chem. Comm. 48, 1689 (2012). [ 3 ] 有機半導體雷射之連續波操作 概述來自有機半導體薄膜的連續波雷射之論證對於光譜分析、資料通信及感測領域中之實際應用而言係高度合乎需要的,但仍係具挑戰性的目標。此處,吾人報導在80 MHz下以及在30 ms之連續波光激勵下以準連續波狀態操作之低臨限值表面發射有機分散式回饋雷射。使用與混合階分散式回饋光柵組合以達成低雷射臨限值之有機半導體薄膜來達成此出色的效能,該有機半導體薄膜具有高光學增益、高光致發光量子產率且在雷射波長處無三重態吸收損失。簡單的囊封技術極大降低雷射誘導之熱降解且遏制另外在劇烈的連續波光激勵下發生之增益介質之剝蝕。總之,此研究提供證據表明,經由增益介質及裝置架構之工程改造,真實連續波有機半導體雷射技術之發展為可能的。 引言歸因於有機半導體材料發射、調變及偵測光之能力,通常認為有機半導體材料非常適用於光子學應用( 1)。特定而言,由於其在低成本製造、易加工性、化學通用性、機械可撓性及跨越整個可見範圍之波長可調諧性方面出色的特徵,已在過去二十年內進行相當多的研究工作以在經光學泵浦之固態雷射源中使用該等有機半導體材料( 2- 6)。自從經光學泵浦之有機半導體雷射(OSL)之第一次展示( 2),歸因於高增益有機半導體材料及裝置設計兩者中之重大進展,其效能已經極大改良( 7 - 15)。由於低臨限值分散式回饋(DFB) OSL中之最新發展,論證藉由電驅動奈秒脈衝式無機發光二極體之直接光學泵浦,提供朝向新的緊湊且低成本可見雷射技術之途徑( 12 , 13)。目前湧現出基於此等OSL之應用,其包括光譜工具、資料通信裝置、醫療診斷設備及化學感測器之研發( 16 , 20)。儘管如此,OSL仍由脈衝式光激勵(具有通常在100 fs至10 ns之範圍內變化的脈衝寬度)光學泵浦且在10 Hz至10 kHz之範圍的重複率(f)下驅動。在此情形下,仍需要進一步突破來論證在連續波(CW)狀態中操作之經光學泵浦之OSL且最終實現電泵浦之有機雷射二極體( 21 , 22)。 已證明在CW狀態中操作OSL具有挑戰性( 23 , 24)。有機增益介質在劇烈的長脈衝光學泵浦下之熱降解表現出長期雷射操作之嚴重問題( 25)。需要克服之另一重要問題係關於由經由系統間穿越生成之長壽命三重態激子造成之損失( 26 - 29)。當在長脈衝狀態中光學泵浦有機薄膜時,通常發生三重態激子之積聚,導致歸因於三重態吸收(TA)之在雷射波長下增加的吸收及歸因於單重態-三重態激子互毀(STA)之單重態激子的淬滅。為克服此等障礙,已提出在有機薄膜中併入三重態淬滅劑,諸如氧( 30 31),環辛四烯( 32)及蒽衍生物( 33)。大量減少三重態損失之另一方式係基於使用展示高光致發光量子產率(PLQY)且在三重態激勵態之吸收帶與單重態激勵態之發射帶之間無光譜重疊之發射體( 34 - 36)。抑制OSL之三重態損失之兩種方法已成功用於改良準CW (qCW)狀態中之裝置效能( 31 , 35)。同時,在含有蒽衍生物作為三重態淬滅劑之OSL中可達成接近100 μs之CW雷射持續時間( 33)。在本文中,吾人提出致能準CW (qCW)雷射(在80 MHz之極高重複率下)及具有出色的及前所未有的效能之CW表面發射雷射之經改良之DFB OSL架構。此等結果表示有機光子學領域中之主要發展且打開朝向研發可靠及有成本效益的有機系CW固態雷射技術之新的前景。 結果在本研究中,所製造之表面發射OSL使用圖12中之4,4'-雙[( N -咔唑)苯乙烯基]聯苯(BSBCz)作為發射體( 34)。由於經由系統間穿越之三重態之產生極其疲軟及在此材料中之雷射波長下可忽略的三重態吸收,將三重態淬滅劑併入BSBCz薄膜並非係必需的( 35)。在此研究中製造的有機半導體DFB雷射之製造方法及結構分別示意性地表示於圖12及圖13A中。為達成具有在垂直於基板平面之方向上的雷射發射之低雷射臨限值,吾人設計具有由引起強回饋的一階散射區域包圍之二階布拉格散射區域之混合階DFB光柵架構,從而提供雷射輻射之高效垂直提取( 8)。在DFB結構中,當滿足以下布拉格條件時,發生雷射振盪: Bragg=2 n eff Λ( 5),其中 m為繞射階、 λ Bragg為布拉格波長、 n eff為增益介質之有效折射率且 Λ為光柵之週期。使用所報導的用於BSBCz之 n eff值及 λ Bragg值( 37 - 39),混合階( m=1,2) DFB雷射裝置之光柵週期經計算分別為140 nm及280 nm。使用電子束微影及反應性離子蝕刻,將此等光柵直接雕刻至5×5 mm 2面積之二氧化矽表面上。應注意,考慮圖16至圖17及表S1至表S3中所報導之光學模擬及實驗資料(參見章節A,補充材料)以選擇用於共振器設計之參數。 如藉由圖13B至圖13C中之掃描電子顯微法(SEM)影像所展示,此工作中製造的DFB光柵具有140±5 nm及280±5 nm之光柵週期及約65±5 nm之光柵深度,其符合吾人之規範。各一階及二階DFB光柵之長度分別為約15.12 µm及10.08 µm。藉由真空沈積在光柵之頂部上製備具有200 nm之厚度的BSBCz純薄膜及BSBCz:CBP(6:94 wt.%及20:80 wt.%)摻合薄膜。如圖13D至圖13E中所展示,有機層之表面形態呈現具有20 nm至30 nm之表面調變深度的光柵結構。為極大改良在qCW狀態及長脈衝狀態中操作之DFB雷射之效率及穩定性,接著將裝置囊封於經氮填充之手套箱中(40)。為此目的,將0.05 ml之CYTOP (具有約1.35之折射率的化學穩固、光學透明的氟聚合物)直接旋塗於有機層之頂部,且接著藉由透明的藍寶石蓋來覆蓋聚合物薄膜以密封有機雷射裝置,選擇該藍寶石蓋係因為其在BSBCz雷射波長下有良好的熱導率(在300 K下,TC約25 W m - 1K - 1)及良好的透明度。CYTOP薄膜通常具有約2 µm之厚度且發現其不影響BSBCz薄膜之光物理屬性(圖18)。 在20 Hz之重複率及337 nm之波長下使用遞送800 ps脈衝之氮氣雷射之脈衝式光學泵浦下,首次檢查到使用BSBCz純薄膜或BSBCz:CBP (6:94 wt.%)摻合薄膜作為增益介質之經囊封之混合階DFB裝置之雷射特性(參見章節B及圖19,補充材料)。在CBP摻合薄膜之情況下,激勵光主要由CBP主體吸收,但CBP發射與BSBCz吸收之間的較大光譜重疊保證自主體分子至客體分子之高效Förster型能量傳遞( 39)。藉由在337 nm光激勵下之CBP發射之缺失來確認此情況。基於展示於圖19中之結果,發現純薄膜裝置及摻合薄膜裝置在800 ps脈衝狀態中分別展現0.22 µJ cm 2及0.09 µJ cm 2之低雷射臨限值。在兩種情況下,此等值低於此前針對BSBCz:CBP摻合物中之經放大自發發射(ASE) (0.30 μJ cm 2)(39)及二階DFB雷射(0.22 μJ cm 2) (35)所報導的臨限值,( 3539)支援混合階光柵用於高效能有機固態雷射之可能性( 8)。重要地,發現此脈衝式光學泵浦狀態中之裝置囊封不改變混合階DFB雷射之臨限值及雷射波長。 有機半導體 DFB 雷射中之準 CW 雷射在qCW狀態中針對光學泵浦使用來自Ti-藍寶石雷射之具有365 nm之波長及10 ps之寬度的光學脈衝研究具有不同共振器結構之各種BSBCz及BSBCz:CBP (6:94 wt.%) DFB裝置之雷射屬性。圖14A至圖14C展示在代表性囊封摻合物混合階DFB裝置中高於臨限值的雷射振盪之條框攝影機影像及在不同重複率下之發射強度中之對應的變化。激勵光強度固定在約0.5 µJ cm 2。當將光激勵之重複率自10 kHz增加至80 MHz時,雷射振盪之間的時間間隔自100 µs逐漸減小至12.5 ns。對於最高重複率(>1 MHz),DFB雷射輸出發射在500 µs窗中看起來係連續的,指示即使在80 MHz之最高重複率下,裝置在qCW狀態中恰當地工作。在此等高重複率下操作DFB裝置之可能性顯然與較小TA損失及來源於BSBCz:CBP摻合物中之可忽略的三重態激子形成之STA淬滅相關( 35)。 用基於BSBCz純薄膜或摻合薄膜之非囊封混合階器裝置及二階DFB裝置進行類似實驗。對於各裝置,根據激勵強度量測在若干重複率下獲得的雷射輸出強度以判定雷射臨限值,且對於在10 kHz及80 MHz之重複率下之代表性囊封摻合物混合階DFB裝置之結果顯示於圖20中。不同裝置中之雷射臨限值之重複率相關性概括於圖14D中。基本上由於接近100%之PLQY及此增益介質中之濃度淬滅之遏制(如與BSBCz純薄膜中之76%之PLQY相比較),6 wt.%摻合DFB雷射中之雷射臨限值( E th)始終較低( 36)。結果亦展示用混合階DFB共振器結構獲得最低臨限值。值得注意的是,當重複率自10 kHz增加至8 MHz時,用於所有裝置之雷射臨限值僅極略微地增加。由於BSBCz系統中缺失顯著三重態積聚( 35),吾人將重複率之臨限值之較小增加歸因於高強度qCW照射下裝置之輕微降解(參見圖21)。引起關注地,經囊封之摻合物混合階DFB雷射展現最低臨限值(自10 kHz下0.06 µJ cm 2至80 MHz下0.25 µJ cm 2變化)且為在80 MHz下恰當地操作之唯一裝置。當在80 MHz下光學泵浦其他裝置時,發射強度極迅速地減小且在有機薄膜之快速降解之前用條框攝影機所偵測之發射光譜的FWHM值通常較大,約7 nm至8 nm (圖22)。此情況指示DFB裝置之囊封對於顯著地減少降解為必需的,且有機薄膜之雷射剝蝕大概發生在高強度80 MHz光激勵下。此歸因於囊封的裝置降解之減少大概為造成圖14D中所觀測之雷射臨限值之降低的原因。 在8 MHz之qCW光學泵浦下研究不同摻合DFB裝置之操作穩定性。亦在80 MHz之重複率下使用經囊封之混合階DFB雷射進行類似實驗。針對各裝置,使用大於雷射臨限值1.5倍之泵浦強度監測不同DFB雷射輸出強度之時間演變20分鐘(圖23)。此等結果展示,當雷射臨限值經由光柵結構及囊封之選擇而減小時操作穩定性經改良。需要較高泵浦強度以達成具有較高臨限值之裝置中之雷射,其導致較快雷射誘導的熱降解。更重要地,儘管在80 MHz之qCW光學泵浦下,未經囊封之DFB裝置中無一者良好操作,在20分鐘之後來自經囊封之有機雷射之發射輸出強度減小至僅其初始值之96%。此出色的操作穩定性強調囊封對在qCW狀態中操作之有機半導體DFB雷射之效能所起的關鍵作用。 有機半導體 DFB 雷射中之真實 CW 雷射使用可變條帶長度方法研究200 nm厚之BSBCz:CBP (20:80wt.%)薄膜之經放大自發發射(ASE)屬性,以獲得對長脈衝光照射下的光學增益及損失係數的瞭解。如圖24中所展示(參見補充材料中之表S4及章節C),在405 nm下利用50 μs長脈衝光學泵浦之薄膜展現針對1.5 kW cm 2之泵浦強度的40 cm 1之高淨增益係數及3 cm 1之損失係數。此清楚地支援吾人之想法:BSBCz為在長脈衝光激勵下操作之有機半導體雷射之出色的候選。接著使用在405 nm處發射之無機雷射二極體來研究CW模式中之DFB裝置之雷射特性。由於CBP之吸收在此激勵波長下為可忽略的( 30),將摻合物中之 BSBCz之濃度增加至20 wt.%以改良雷射二極體泵浦發射之收穫。此20 wt.%摻合物之PLQY經量測為約86%。圖15A展示在經囊封之20 wt.%摻合物混合階DFB雷射發射之100個脈衝內整合之條框攝影機,該雷射發射係針對分別為800 µs及30 ms之CW激勵脈衝寬度在200 W cm 2及2.0 kW cm 2之泵浦強度下量測。圖25中之對應的發射光譜與圖15B中之圖片提供額外證據表明,經囊封之DFB雷射在長脈衝狀態中恰當地操作,具有可明顯延長至超過30 ms之雷射持續時間。圖26中之其他資料提供在30 ms長的脈衝光激勵下雷射之另外的證據。如圖27中所展示,當將連續30 ms長的激勵脈衝之數目自10增加至500時,DFB雷射發射輸出強度減小,其大概歸因於增益介質在此劇烈照射下之熱降解。儘管高熱導率矽與藍寶石之間的裝置之囊封將OSL之效能及穩定性明顯地改良至前所未有的位準,但此情況表明,對於實際CW有機雷射技術之研發,將仍需要在未來改良熱耗散。圖27亦展示藉由TA或STA對單重態激子之淬滅並未發生於BSBCz中(參見章節D,補充材料)。結果確認BSBCz之發射與BSBCz之三重態吸收之間的可忽略的重疊及即使在劇烈CW光激勵下增益介質中不存在有害三重態損失( 35)。為鑑認CW雷射之要求,檢查低於臨限值及高於臨限值之發射光束之發散以及其偏振。圖28至圖29所顯示的結果確認在長脈衝光照射下的BSBCz DFB裝置中出現恰當的雷射操作。 根據具有不同結構之裝置中之激勵強度及0.1 µs至1000 µs範圍內之各種長脈衝持續時間來量測有機DFB雷射輸出強度及發射光譜。自代表性經囊封之摻合物混合階裝置所獲得的資料之實例顯示於圖30中。再次使用雷射輸出強度之斜度效率中之突變來判定雷射臨限值。圖15C概述在不同裝置中量測之雷射臨限值之脈衝持續時間相關性。類似於在qCW狀態中所觀測之趨勢,將BSBCz摻合至CBP主體中,使用混合階DFB共振器結構及囊封裝置導致雷射臨限值之大幅降低。當基於BSBCz純薄膜之經囊封之混合階DFB裝置可在長脈衝狀態中恰當地操作長於100 µs之持續時間時,經囊封之摻合物混合階有機DFB雷射展示最低雷射臨限值(在5 W cm 2至75 W cm 2範圍中)且為可有效產生雷射長於800 µs之持續時間的唯一裝置。為提供藉由選擇高TC藍寶石作為囊封蓋對長脈衝狀態中之有機半導體雷射之效能所起的關鍵作用之額外證據,吾人比較在用藍寶石蓋或玻璃蓋囊封之混合階摻合DFB裝置中所獲得之雷射臨限值之激勵持續時間相關性。圖31清晰地論證使用由藍寶石製成的高TC蓋導致較低臨限值及經改良之操作穩定性。 長脈衝狀態中之經囊封或未經囊封之混合階DFB雷射之操作穩定性的特徵在於監測此等裝置中高於隨具有200 W cm 2之泵浦強度的100 µs激勵脈衝之數目變化的雷射臨限值之雷射發射輸出強度。如圖15D中所展示,在所有裝置中,發射強度隨著時間逐漸減小,且此等減小為不可逆的,指示有機增益介質之雷射誘導之熱降解。值得注意的係,藉由囊封極大地改良操作穩定性且對於經囊封之摻合裝置明顯為最佳的。在後一種情況下,在500個脈衝之後,雷射輸出強度僅減小3%。圖32展示未經囊封之摻合物混合階DFB雷射在藉由具有1 ms之寬度及200 W cm 2之激勵強度的100個入射脈衝照射之前及之後的雷射顯微鏡影像。儘管在經囊封之裝置中未觀測到任何經雷射誘導之熱降解之跡象,但在具有約125 nm之剝蝕深度的未經囊封之裝置中發生雷射剝蝕。藉由所提出的囊封技術極大降低雷射剝蝕之可能性對於將來研發CW有機半導體雷射技術而言顯然為關鍵的。為得出如何在實際CW操作方面限制現有裝置的結論,進行裝置中熱耗散之熱模擬且在圖38至圖42中報導(參見表S4及章節E,補充材料)。此等結果展示泵浦脈衝寬度之影響及囊封對於裝置之熱屬性的作用。特定而言,儘管在此研究中已認為囊封係重要要素,但模擬表明,在進一步研究中CYTOP應由具有較好熱導率的另一材料替換。 論述在約40年前已無機CW固態雷射之首次論證(41),且發展已證實係極其成功的,尤其在電磁光譜之近紅外及紫外/藍色區域中之波長下極其成功( 42 - 45)。儘管此等裝置通常需要具有高真空及溫度條件之尖端微型製造技術,但最近論證了亦可使用經溶液處理之無機量子井來達成CW雷射( 46)。另一方面,在qCW及長脈衝狀態中有機半導體雷射之效能迄今為止保持遠低於無機半導體之效能( 33 35)。 因此,吾人對於在80 MHz下在qCW狀態中操作及在30 ms之500個連續脈衝後仍在長脈衝狀態中工作之有機半導體雷射之論證表示向實際CW有機固態雷射技術之研發的重要進步。本研究強有力地支援以下事實:具有高PLQY、高光學增益且在雷射發射峰與TA帶之間無光譜重疊之有機雷射材料對於遏制三重態損失及當與混合階DFB光柵組合時達成低臨限值CW雷射為高度合乎需要的。結果亦展示,使用熱導率( 47)高於習知的玻璃及熔融矽石之彼此熱導率的矽囊封蓋及藍寶石囊封蓋明顯地改良有機DFB雷射之效率及穩定性,但在劇烈的CW光學泵浦下,有機增益介質之經雷射誘導之熱降解仍然為將在不遠的將來需要克服的最嚴重問題。因此,考慮到可能開發用於改良CW無機固體態雷射中之熱管理的前述方法,對於極大增強CW有機半導體雷射操作穩定性之進一步研究現應集中於具有低CW雷射臨限值及經增強的熱穩定性之有機半導體增益介質之研發以及集中於將高效熱耗散系統整合至裝置中( 48 49)。此外,除發現更好及更多高效增益材料以外,共振器幾何結構及雷射結構之進一步最佳化應導致雷射臨限值降低且仍應表示CW有機雷射技術之發展及電泵浦有機雷射二極體之實現之重要的將來的方向。 材料及方法 裝置製造使用鹼清潔劑、純水、丙酮及異丙醇藉由超音波處理,接著藉由UV臭氧處理,來清潔覆蓋有1 μm厚度的熱生長二氧化矽層之矽基板。藉由在4000 rpm下旋塗15 s,用六甲基二矽氮烷(HMDS)來處理二氧化矽表面且在120℃下退火120 s。具有約70 nm之厚度的抗蝕劑層係自ZEP520A-7溶液(ZEON Co.)以4000 rpm旋塗於基板上持續30 s而成,且在180℃下烘烤240 s。使用具有0.1 nC cm 2之經最佳化劑量的JBX-5500SC系統(JEOL)進行電子束微影以將光柵圖案繪製於抗蝕劑層上。在電子束照射之後,在室溫下將圖案於顯影劑溶液(ZED-N50,ZEON Co.)中顯影。將經圖案化之抗蝕劑層用作蝕刻遮罩,同時使用EIS-200ERT蝕刻系統(ELIONIX)用CHF 3電漿蝕刻基板。為自基板完全移除抗蝕劑層,使用FA-1EA蝕刻系統(SAMCO)用O 2電漿蝕刻基板。使用SEM (SU8000,Hitachi)觀測形成於二氧化矽表面上之光柵。為完成雷射裝置,藉由在2.0×10 4Pa之壓力下之熱蒸發以0.1 nm s 1至0.2 nm s 1之總蒸發速率在光柵上製備200 nm厚的6 wt%或20 wt% BSBCz:CBP摻合薄膜及BSBCz純薄膜。最後,以1000 rpm將0.05 ml之CYTOP (Asahi Glass有限公司,日本)直接旋塗至DFB雷射裝置上達30 s,用藍寶石蓋包夾以密封雷射裝置之頂部,且在真空中乾燥隔夜。 光譜量測為表徵脈衝式有機雷射,經由透鏡及狹縫將自氮氣雷射(USHO,KEN-2020)之脈衝式激勵光集中於裝置之6×10 3cm 2面積上。激勵波長為337 nm,脈衝寬度為0.8 ns,且重複率為20 Hz。激勵光相對於裝置平面之法線成約20°入射於裝置上。利用光纖收集垂直於裝置表面之經發射光,該光纖連接至多通道光譜儀(PMA-50,Hamamatsu Photonics)且置放為與該裝置相距3 cm。使用一組中性密度濾光器來控制激勵強度。對於qCW操作,使用模式鎖定頻率加倍之Ti-藍寶石雷射(Millennia Prime,Spectra physics)來生成具有365 nm之激勵波長、10 ps之脈衝寬度及範圍為0.01 MHz至80 MHz之重複率的激勵光。經由透鏡及狹縫將激勵光集中於裝置之1.9×10 4cm 2之面積上,且使用與數位攝影機(C9300,Hamamatsu Photonics)連接之具有15 ps之時間解析度的條框眼(C10627,Hamamatsu Photonics)收集所發射的光。對於真實CW操作,使用CW雷射二極體(NICHIYA,NDV7375E,最大功率為1400 mW)生成具有405 nm之激勵波長的激勵光。在此等量測中,使用以脈衝產生器(WF 1974,NF Co.)觸發之聲光調變器(AOM,Gooch&Housego)來遞送脈衝。經由透鏡及狹縫將激勵光集中於裝置之4.5×10 5cm 2之面積上,且使用與數位攝影機(C9300,Hamamatsu Photonics)連接之具有100 ps之時間解析度的條框眼(C7700,Hamamatsu Photonics)收集所發射的光。使用光電倍增管(PMT) (C9525-02,Hamamatsu Photonics)來記錄發射強度。在多通道示波器(Agilent Technologies, MSO6104A)上監測PMT回應及驅動方波信號兩者。如前所描述,針對此量測使用相同的照射及偵測角度。藉由使用光束測繪器(WimCamD-LCM,DataRay)來仔細地檢查激勵面積之大小。所有量測係在氮氣氛圍中進行,以防止由濕氣及氧氣引起之任何降解。製備含有BSBCz溶於CH 2Cl 2中之溶液,在使用之前用氬氣鼓泡。將具有來自Nd:YAG雷射(Quanta-Ray GCR-130, Spectra-Physics)之355 nm之波長及5 ns之FWHM之第三諧波雷射光用作泵浦光,且將來自Xe燈之脈衝式白光用作用於使用條框攝影機(C7700,Hamamatsu Photonics)對溶液進行三重態吸收量測之探測光。 參考文獻1. J. Clark, G. Lanzani, Organic photonics for communications. Nature Photon. 4, 438-446 (2010). 2. D. Moses, High quantum efficiency luminescence from a conducting polymer in solution: A novel polymer laser dye. Appl. Phys. Lett. 60, 3215-3216 (1992). 3. N. Tessler, G. J. Denton, R. H. Friend, Lasing from conjugated-polymer microcavities. Nature 382, 695-697 (1996). 4. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. Andersson, Q. Pei, A. J. Heeger, Semiconducting polymers: a new class of solid-state laser materials. Science 273, 1833-1836 (1996). 5. I. D. W. Samuel, G. A. Turnbull, Organic semiconductor lasers. Chem. Rev. 107, 1272-1295 (2007). 6. S. Chénais, S. Forget, Recent advances in solid-state organic lasers. Polym. Int. 61, 390-406 (2012). 7. M. D. Mcgehee, A. J. Heeger, Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 12, 1655-1668 (2000). 8. C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gartner, U. Lemmer, Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90131104 (2007). 9. G. Heliotis, R. Xia, D. D. C. Bradley, G. A Turnbull, I. D. W. Samuel, P. Andrew, W. L. Barnes, Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium. J. Appl. Phys. 96, 6959-6965 (2004). 10. A. E. Vasdekis, G. Tsiminis, J. C. Ribierre, L. O'Faolain, T. Krauss, G. A. Turnbull, I. D. W. Samuel, Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend. Opt. Expr. 14, 9211-9216 (2006). 11. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, I. D. W. Samuel, H. S. Barcena, P. L. Burn, Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007). 12. Y. Yang, G. A. Turnbull, I. D. W. Samuel, Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode. Appl. Phys. Lett. 92, 163306 (2008). 13. G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, G. A. Turnbull, Nanoimprinted organic semiconductor lasers pumped by a light-emitting diode. Adv. Mater. 25, 2826-2830 (2013). 14. E. R. Martins, Y. Wang, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, I. D. W. Samuel, Low-threshold nanoimprinted lasers using substructured gratings for control of distributed feedback. Adv. Opt. Mater. 1, 563-566 (2013). 15. J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Tunrbull, I. D. W. Samuel, N. Laurand, E. Gu, M. D. Dawson, Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers. Laser & Photon. Laser & Photon. Rev. 7, 1065-1078 (2013). 16. C. Grivas, M. Pollnau, Organic solid-state integrated amplifiers and lasers. Laser & Photon. Rev. 6, 419-462 (2012). 17. C. Vannahme, S. Klinkhammer, U. Lemmer, T. Mappes, Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Opt. Expr. 19, 8179-8186 (2011). 18. W. Zheng, L. He, Label-free, real-time multiplexed DNA detection using fluorescent conjugated polymers. J. Am. Chem. Soc. 131, 3432-3433 (2009). 19. Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, I. D. W. Samuel, LED pumped polymer laser sensor for explosives. Laser & Photon. Rev. 7, L71-L76 (2013). 20. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876-879 (2005). 21. I. D. W. Samuel, E. B. Namdas, G. A. Turnbull, How to recognize lasing. Nature Photon. 3, 546-549 (2009). 22. S. Z. Bisri, T. Takenobu, Y. Iwasa, The pursuit of electrically-driven organic semiconductor lasers. J. Mater. Chem. C 2, 2827-2836 (2014). 23. E. Bornemann, E. Thiel, P. Haring Bolivar, High-power solid-state cw dye laser. Opt. Expr. 19, 26382-26393 (2011). 24. E. Bornemann, U. Lemmer, E. Thiel, Continuous-wave solid-state dye laser. Opt. Lett. 31, 1669-1671 (2006). 25. Z. Zhao, O. Mhibik, T. Leang, S. Forget, S. Chenais, Thermal effects in thin-film organic solid-state lasers. Opt. Expr. 22, 30092-30107 (2014). 26. N. C. Giebink, S. R. Forrest, Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 79, 073302 (2009). 27. M. A. Baldo, R. J. Holmes, S. R. Forrest, Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002). 28. M. Lehnhardt, T. Riedl, T. Weimann, W. Kowalsky, Impact of triplet absorption and triplet-singlet annihilation on the dynamics of optically pumped organic solid-state lasers. Phys. Rev. B 81, 165206 (2010). 29. M. A. Stevens, C. Silva, D. M. Russell, R. H. Friend, Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). Phys. Rev. B 63, 165213 (2001). 30. L. Zhao, M. Inoue, K. Yoshida, A. S. D. Sandanayaka, J. H. Kim, J. C. Ribierre, C. Adachi, Singlet-triplet exciton annihilation nearly suppressed in organic semiconductor laser materials using oxygen as a triplet quencher. IEEE J. Sel. Top. Quant. Electron. 22, 1300209 (2016). 31. A. S. D. Sandanayaka, L. Zhao, D. Pitrat, J. C. Mulatier, T. Matsushima, C. Andraud, J. H. Kim, J. C. Ribierre, C. Adachi, Improvement of the quasi-continuous-wave lasing properties in organic semiconductor lasers using oxygen as triplet quencher. Appl. Phys. Lett. 108, 223301 (2016). 32. S. Schols, A. Kadashchuk, P. Heremans, A. Helfer, U. Scherf, Triplet excitation scavenging in films of conjugated polymers. Chem. Phys. Chem. 10, 1071-1076 (2009). 33. Y. F. Zhang, S. R. Forrest, Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84, 241301 (2011). 34. T. Rabe, K. Gerlach, T. Riedl, H. H. Johannes, W. Kowalsky, J. Niederhofer, W. Gries, J. Wang, T. Weimann, P. Hinze, F. Galbrecht, U. Scherf, Quasi-continuous-wave operation of an organic thin-film distributed feedback laser. Appl. Phys. Lett. 89, 081115 (2006). 35. A. S. D. Sandanayaka, K. Yoshida, M. Inoue, K. Goushi, J. C. Ribierre, T. Matsushima, C. Adachi, Quasi-continuous-wave organic thin film distributed feedback laser. Adv. Opt. Mater. 4, 834-839 (2016). 36. H. Nakanotani, C. Adachi, S. Watanabe, R. Katoh, Spectrally narrow emission from organic films under continuous-wave excitation. Appl. Phys. Lett. 90, 231109 (2007). 37. D. Yokoyama, M. Moriwake, C. Adachi, Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. J. Appl. Phys. 103, 123104 (2008). 38. H. Yamamoto, T. Oyamada, H. Sasabe, C. Adachi, Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401 (2004). 39. T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, C. Adachi, 100% fluorescence efficiency of 4,4'-bis[( N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Appl. Phys. Lett. 86, 071110 (2005). 40. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, I. D. W. Samuel, Improved operational lifetime of semiconducting polymer lasers by encapsulation. Appl. Phys. Lett. 91, 261104 (2007). 41. Z. I. Alzerov, V. M. Andreed, D. Z. Garbuzov, Y. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, V. G. Trofim, Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Sov. Phys. Semicond. 4, 1573-1575 (1971). 42. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301-305 (2002). 43. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. A. Paniccia, A continuous-wave Raman silicon laser. Nature 433, 725-728 (2005). 44. T. Someya, Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science 285, 1905-1906 (1999). 45. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, E. L. Hu, Room temperature continuous-wave lasing in GaN/InGaN microdisks. Nature Photon. 1, 61-64 (2007). 46. J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, I. Moreels, Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nature Nanotech. 9, 891-895 (2014). 47. S. H. Choi, T. I. Lee, H. K. Baik, H. H. Roh, O. Kwon, D. H. Suh, The effect of electrode heat sink in organic-electronic devices. Appl. Phys. Lett. 93, 183301 (2008). 48. Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, M. Razeghi, Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power. Appl. Phys. Lett. 92, 101105 (2008). 49. V. Spagnolo, A. Lops, G. Scamarcio, M. S. Vitiello, C. Di Franco, Improved thermal management of mid-IR quantum cascade lasers. J. Appl. Phys. 103, 043103 (2008). [ 4 ] 補充材料 章節 A . 光學模擬 1. 引言最近,由於有機半導體雷射(OSL)之諸如在可見範圍之波長可調諧性、低成本、可撓性及大面積製造之有利屬性,其吸引了許多注意[1]。此等屬性使得其成為包括感測、顯示應用、資料儲存及靜電印刷之許多應用的良好候選。然而,迄今僅實現光學泵浦有機雷射。許多努力已集中於藉由增強增益介質屬性[2],[3]及最佳化共振腔[4]、[5]、[6]來減小光學泵浦有機雷射之能量臨限值。鑒於達成電泵浦有機雷射,其目前尚未實現,為進一步降低能量臨限值需要更多最佳化。 關於共振腔,存在與有機增益介質相容的若干類型,包括分散式回饋(DFB)共振器[7]、[8],分散式布拉格共振器(DBR)[9],微環[10],微盤[11]及微球腔[12]。共振器之作用為除由增益介質提供之光學放大外還提供正光學回饋。 用於目前先進技術有機雷射之雷射架構係基於DFB共振器[5]、[4]、[13]。此等共振器不使用習知腔鏡,而替代地使用負責用於布拉格繞射的週期性奈米結構。DFB共振器為緊密型且可易於整合於平面有機薄膜中。此外,其可提供較高程度之光譜選擇。 此工作中研究之雷射之結構由沈積於2階DFB光柵上之有機薄膜組成。在此類光柵中,由增益介質產生的光沿高折射率有機膜波導且接著由週期性結構化散射。由於前向傳播波與後向傳播波之間的耦合產生光學回饋[14]。此耦合為滿足以下布拉格條件之特定波長之最大值: (1) 其中 m為繞射角, λ Bragg 為腔中之共振波長, n eff 為均一波導之有效折射率,且Λ為光柵週期。在二階光柵( m=2)的情況下,一階繞射光自薄膜之表面垂直提取,而共平面回饋由2階繞射提供。根據耦合模式理論,不允許滿足布拉格條件(1)之波長在薄膜[15]中傳播。此係由於折射率之週期性調變,其導致集中於布拉格波長上之光子阻帶的出現。從而,在 λ Bragg 下,觀測到發射中之突降且雷射振盪出現於位於阻帶邊緣上之一對波長上。在二階光柵中,雷射振盪僅處於阻帶(處於最高波長下)之一個邊緣處。在此波長下,由於較低輻射損失,臨限值較低[16]。 共振腔經由兩個參數對雷射效能產生影響:限制因數 Γ及品質因數 Q。雷射臨限值處之激子密度與 ΓQ兩者成反比[17]。因此,DFB共振腔之幾何結構之最佳化對減小損失至關重要,該損失可藉由 ΓQ定量。 此工作之目標在於研究有機薄膜厚度對雷射效能(包括能量臨限值及雷射波長)的影響。首先,雷射之設計為固定的。為了推斷獲得ASE波長下之雷射所需之光柵週期,藉由計算波導結構之有效折射率來完成此步驟。有機薄膜之厚度自100 nm變為300 nm之,且計算在各厚度下的有效折射率。其次,為了獲得對雷射臨限能量隨著厚度之變化的物理性瞭解,執行光學模擬。根據薄膜厚度計算共振腔之品質因數及限制因數且與有機雷射裝置之實驗能量臨限值進行比較。 2 . 裝置結構及模擬細節構成此工作中研究之二階DFB有機雷射之光柵耦合波導之幾何結構描繪於圖33中。波導結構由增益介質(6%wt BSBCz:CBP)組成,該增益介質由藉由較低折射率的SiO 2光柵及空氣包圍之高折射率層構成。增益介質由真空沈積於2階DFB光柵上之6wt% BSBCz:CBP摻合物薄膜組成。藉由電子束微影將光柵製作於SiO 2基板上。在別處描述DFB雷射之製造[4]。 用於模擬之輸入參數為層之厚度及折射率。認為空氣( n a =1)及SiO 2基板( n s =1.46)係半無限層。認為6wt% BSBCz:CBP摻合物之折射率 n f 等於[18]中所報導之CBP之折射率( n f 約1.8)。有機薄膜之厚度自100 nm變為300 nm。雷射之結構經設計使得雷射在BSB-Cz之經放大自發發射(ASE)波長(約477 nm)下振盪[19]、[20]。 模擬軟體 使用自製python 3.5軟體指令碼執行有效折射率計算及法諾擬合 使用Comsol 5.2a軟體之RF模組中之有限元方法自共振腔模式之本徵值之計算提取品質因數及限制因數。 3. 結果及論述 3.1 波導特性化 ( 有效折射率計算 )為了使用布拉格條件(方程式1)計算光柵週期,需要均一波導(無光柵)之有效折射率 n eff 。在此模型中,忽略光柵,因此波導厚度為有機薄膜之厚度。藉由根據有機薄膜厚度在波長477 nm下求解傳播波方程式[21]計算有效折射率 n eff 的值。 在此計算中,吾人認為不對稱波導不具有光柵(圖34(a))。在不對稱3層厚塊波導之情況下,各區域中之電場由以下給出: 其中: 其中 k 0 為真空傳播常數模式 ,且 β為引導模式之傳播常數 。自應用以下邊界條件之後獲得的超越方程式計算波導模式之有效折射率: 用於TE模式         (6) 用於TM模式        (7) 圖34(b)呈現自方程式6及方程式7導出的波導色散曲線,其展示在雷射波長477 nm下有效折射率隨有機薄膜厚度之變化。根據此等曲線,吾人可推斷在給定厚度下之傳播模式的數目及特定傳播模式之截止厚度。在此工作中,厚度經選擇以自100 nm變為300 nm。對於低於280 nm之厚度,僅允許基諧模TE 0振盪。厚度增加至高於280 nm導致高階(TE 1,TE 2)存在。 一旦計算出有效折射率,吾人可在不同薄膜厚度下使用布拉格條件(方程式1) 推斷光柵週期在λ ASE=477 nm時之值。對於200 nm薄膜厚度, n eff =1.7。滿足布拉格條件(方程式1)之光柵週期Λ之值為280 nm。在下文中,吾人將光柵週期固定在280 nm且將光柵深度固定在70 nm厚度。有機薄膜之厚度僅自100 nm變為300 nm。 3.2 DFB 共振腔最佳化藉由共振腔之光子壽命及限制因數描述共振腔。光子壽命τ表示光子在腔中花費的時間(該腔中的光子損失的速率)。光子可藉由逃出腔或藉由經材料吸收而損失。此光子壽命τ如下與腔之品質因數Q有關: 其中ω 0為共振角頻率。 以兩種不同方法計算光學腔之Q因數。 (1) 本徵模式計算在第一方法中,使用Comsol軟體之RF模組中之有限元方法自共振腔模式之本徵值之計算提取品質因數。計算域限於光柵之一個週期單位單元。弗羅奎(Floquet)週期邊界條件應用於橫向邊界,且散射邊界條件用於頂部域及底部域[22],[23]。固有頻率求解器用於尋找共振腔之傳播本徵模式。根據本徵值之實數部分及虛數部分,導出Q因數: 其中 α為阻尼衰變 。此外,使用以下表達式計算本徵模式之限制因數: 其中 E norm 為本徵模式之歸一化電場強度分佈。 (2) 反射光譜之法諾擬合用於提取品質因數之第二方法由使用以用於正入射TE偏振平面波(其電場平行於光柵)之Comsol軟體實施之散射矩陣計算反射光譜構成[ref]。隨後,藉由將模擬反射光譜中存在之共振線寬與以下法諾共振方程式擬合獲得Q因數(方程式8) [24]: 其中 ω 0 為中心頻率,τ為共振之壽命, rt為具有與光柵相同的厚度及有效折射率 n eff,g 之均一厚塊之振幅反射及透射係數。在二元光柵之情況下,可使用以下有效介質理論描述有效折射率[25]: 其中 ff經定義為光柵寬度 w與週期Λ之比。 圖35展示根據波長及薄膜厚度而計算的反射光譜及使用方程式11之對應的擬合法諾共振曲線。對於具有100、150、200、250及300 nm之薄膜厚度之腔,分別觀測到在448、462、472、478及483 nm之波長處的反射波峰。在此等波長處,由於藉由光柵及漏光波導模式繞射的波之間的相位匹配而發生共振[26]、[27]。因此,多個反射在波導中發生且入射光之波長由波導光柵之共振選擇。 如由章節3.1中所呈現之計算及由先前報導之工作所確認[28], d f 之增加使得模態 n eff 增加(圖34(b)),其引起雷射波長之調諧。如吾人於圖36(a)中可見, d f 之增加引起雷射發射之光譜紅移。實驗雷射波長與自法諾模型及章節3.1中指示「模型 d f + h g 」之模型的經計算雷射波長的比較呈現於圖36(b)中,其中 h g 係指光柵之深度。兩種模型提供大致相同的結果,接近實驗值,但在較小 d f (<200 nm)下實驗波長與計算波長之間的間隙仍然顯著(Δλ>10 nm)。據報導,當比率 h g / d f 超出0.3時[28],在 d f 約200 nm及低於200 nm的情況下指數耦合為支配機制。當指數耦合比增益耦合更具支配性時,雷射不會在如上文所提及之 λ Bragg 附近出現。因此,實驗雷射波長與經計算雷射波長之間的偏差可藉由針對低於200 nm之 d f 之指數耦合之支配性來解釋。 圖37(a)展示經計算之 Q因數及 Γ值。用於計算 Q因數之兩種方法均得出相同結果。可見, Γ隨著 d f 增加,展示良好光學限制。此係歸因於基諧模TE 0n eff 之增加。然而,共振腔之 Q因數在200 nm之 d f 值下變得最高。不同 d f 之經量測能量臨限值 E th 呈現於圖37(a)中。吾人可觀測到 Q因數與 E th 成反比。此外,當 d f 自100 nm增加至200 nm時, E th 減小。此係歸因於 Q因數及 Γ兩者之增加。在200 nm之 d f 值下, E th 展示最小值,且接著隨 d f 增加。較大 d f 之較高 E th 係歸因於共振腔之較低 Q因數。 最後,將自計算及法諾擬合提取之峰值反射之半高全寬(FWHM)與實驗雷射發射之FWHM進行比較[圖37(b)]。實驗FWHM值及經計算FWHM值兩者展示與針對等於200 nm之 d f 獲得的最小值相同的趨勢。 3.3 利用囊封之 DFB 雷射最佳化在此章節中,使用CYTOP計算經囊封DFB雷射之 ΓQ因數。用於光學模擬之輸入參數為有機薄膜厚度及層之折射率。認為CYTOP ( n CYTOP=1.35)及SiO 2基板( n SiO2=1.46)係半無限層。認為6wt% BSBCz:CBP薄膜之折射率n f等於所報導之CBP之折射率( n f =1.85) ( 1)。BSBCz:CBP薄膜之厚度 d 0 自100 nm變為300 nm。由於頂部表面結構化,在厚度( h g - h g ( 頂部 ))/2=30 nm之薄層上添加具有深度 h g ( 頂部 )=5 nm之薄光柵。 3.3.1 薄膜厚度變化首先,吾人在藉由計算 ΓQ因數來使光柵深度 h g保持恆定( h g=65 nm)的同時研究薄膜厚度 d 0 之變化之效應。表S1展示計算結果。 S1 .薄膜厚度、共振波長、品質因數及限制因數。 d 0 (nm) λ 0(nm) Q因數 Γ 100 465 717 0.34 200 481 5050 0.78 300 494 6674 0.88 當厚度增加時, ΓQ因數增加,但由於共振波長 λ 0自增益材料之ASE波長的移位,200 nm之 d 0 保持用於裝置操作之最佳厚度。 3.3.2 光柵深度變化其次,吾人在藉由計算 ΓQ因數使 d 0 保持恆定( d=200 nm)的同時研究 h g變化之效應。下表S2展示計算結果。 S2 .光柵深度、共振波長、品質因數及限制因數。 h g(nm) λ 0(nm) Q因數 Γ 30 481 8026 0.79 65 481 5050 0.78 80 483 1915 0.74 藉由減小光柵深度, Q因數增加而 Γ仍然幾乎相同。然而,淺光柵之製造具有挑戰性,因為深度之較小變化將極大地影響光柵之光學回應。雖然在將來工作中必定可改良此態樣,但在此研究中選擇65 nm深度似乎為最適當的。 3.3.3 經囊封及未經囊封裝置之間的比較使用相同幾何結構完成計算在經囊封的情況下,頂部層為具有1.35之折射率之CYTOP。在未經囊封的情況下,CYTOP由空氣替換( n=1)。在此情況下, Q因數及 Γ增加且共振波長略微藍移,如表S3中所展示。 S3 .經囊封裝置與未經囊封裝置之間的共振波長、品質因數及限制因數的比較。    λ 0(nm) Q因數 Γ 經囊封 481.2 5050 0.78 未經囊封 479 6455 0.82 然而,基於實驗結果,經囊封之裝置展示出比未經囊封之裝置更好的效能(FWHM)。此可歸因於當吾人囊封裝置時頂部表面之變化或歸因於免於濕氣影響的保護。 3.3.4 2 階光柵區域之尺寸之影響使用2階區域之不同尺寸以實驗方式判定BSBCz:CBP (6:94wt.%)摻合物混合階DFB雷射之雷射臨限值。結果顯示於圖17中。可見,用於此研究之DFB架構(其對應於等於36之週期之數目)並未完全最佳化,表明藉由僅在共振器結構上播放而使裝置效能之進一步改良應為可能的。 參考文獻1. C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” vol. 18, no. 12, pp. 12980-12991, 2010. 2. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, and C. Adachi, “Extremely low-threshold amplified spontaneous emission of 9,9-disubstituted-spirobifluorene derivatives and electroluminescence from field-effect transistor structure,” Adv. Funct. Mater., vol. 17, no. 14, pp. 2328-2335, 2007. 3. G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” pp. 3-5, 2009. 4. A. S. D. Sandanayaka, K. Yoshida, M. Inoue, C. Qin, K. Goushi, J.-C. Ribierre, T. Matsushima, and C. Adachi, “Quasi-Continuous-Wave Organic Thin-Film Distributed Feedback Laser,” Adv. Opt. Mater., vol. 4, no. 6, pp. 834-839, Jun. 2016. 5. E. R. Martins, Y. Wang, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-Threshold Nanoimprinted Lasers Using Substructured Gratings for Control of Distributed Feedback,” Adv. Opt. Mater., vol. 1, no. 8, pp. 563-566, 2013. 6. V. Qaradaghi, V. Ahmadi, and G. Abaeiani, “Design of organic vertical-cavity surface-emitting laser for electrical pumping,” IEEE Electron Device Lett., vol. 33, no. 11, pp. 1616-1618, 2012. 7. M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett., vol. 72, no. 13, pp. 1536-1538, 1998. 8. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett., vol. 83, no. 11, pp. 2118-2120, 2003. 9. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend.,” Opt. Express, vol. 14, no. 20, pp. 9211-9216, 2006. 10. R. Osterbacka, M. Wohlgenannt, M. Shkunov, D. Chinn, and Z. V. Vardeny, “Excitons, polarons, and laser action in poly(p-phenylene vinylene) films,” J. Chem. Phys., vol. 118, no. 19, pp. 8905-8916, 2003. 11. C. X. Sheng, R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Studies of pi-conjugated polymer coupled microlasers,” Synth. Met., vol. 135-136, no. April, pp. 147-149, 2003. 12. M. Berggren, A. Dodabalapur, Z. N. Bao, and R. E. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater., vol. 9, no. 12, pp. 968-971, 1997. 13. G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater., vol. 25, no. 20, pp. 2826-2830, 2013. 14. I. D. W. Samuel and G. a Turnbull, “Organic semiconductor lasers.,” Chem. Rev., vol. 107, no. 4, pp. 1272-1295, 2007. 15. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys., vol. 43, no. 5, pp. 2327-2335, 1972. 16. R. F. Kazarinov and C. H. Henry, “Second-Order Distributed Feedback Lasers with Mode Selection Provided by First-Order Radiation Losses,” IEEE J. Quantum Electron., vol. 21, no. 2, pp. 144-150, 1985. 17. S. Schols, Device Architecture and Materials for Organic Light-Emitting Devices. Springer, 2011. 18. D. Yokoyama, A. Sakaguchi, M. Suzuki, and C. Adachi, “Horizontal orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films,” Org. Electron., vol. 10, no. 1, pp. 127-137, 2009. 19. J. Chang, Y. Huang, P. Chen, R. Kao, X. Lai, C. Chen, and C. Lee, “Reduced threshold of optically pumped amplified spontaneous emission and narrow line- width electroluminescence at cutoff wavelength from bilayer organic waveguide devices,” vol. 23, no. 11, pp. 67-74, 2015. 20. M. Inoue, T. Matsushima, and C. Adachi, “Low amplified spontaneous emission threshold and suppression of electroluminescence efficiency roll-off in layers doped with ter(9,9’-spirobifluorene),” Appl. Phys. Lett., vol. 108, no. 13, 2016. 21. A. K. Sheridan, G. A. Turnbull, A. N. Safonov, and I. D. W. Samuel, “Tuneability of amplified spontaneous emission through control of the waveguide-mode structure in conjugated polymer films,” vol. 62, no. 18, pp. 929-932, 2000. 22. J.-H. Hu, Y.-Q. Huang, X.-M. Ren, X.-F. Duan, Y.-H. Li, Q. Wang, X. Zhang, and J. Wang, “Modeling of Fano Resonance in High-Contrast Resonant Grating Structures,” Chinese Phys. Lett., vol. 31, no. 6, p. 64205, Jun. 2014. 23. T. Zhai, X. Zhang, and Z. Pang, “Polymer laser based on active waveguide grating structures.,” Opt. Express, vol. 19, no. 7, pp. 6487-6492, 2011. 24. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in nanoscale structures,” vol. 82, no. September, pp. 2257-2298, 2010. 25. M. Foldyna, R. Ossikovski, A. De Martino, B. Drevillon, E. Polytechnique, and P. Cedex, “Effective medium approximation of anisotropic lamellar nanogratings based on Fourier factorization,” vol. 14, no. 8, pp. 3055-3067, 2006. 26. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters.,” Appl. Opt., vol. 32, no. 14, pp. 2606-2613, 1993. 27. T. Khaleque and R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J. Nanophotonics, vol. 8, no. 1, p. 83995, 2014. 28. V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A.  Juarros, D. Otaduy, S. Merino and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. Vol.112,no.4, pp. 43104, 2012. 章節 B . 混合階 DFB 裝置之雷射屬性在20 Hz之重複率下及337 nm之波長下遞送800 ps脈衝之氮雷射之脈衝式光學泵浦下,檢查到使用BSBCz純薄膜或BSBCz:CBP (6:94 wt.%)摻合薄膜作為增益介質之經囊封之混合階DFB裝置之雷射屬性。在CBP摻合薄膜之情況下,激勵光主要由CBP主體吸收。然而,CBP發射與BSBCz吸收之間的較大光譜重疊保證自主體分子至客體分子之高效的Förster型能量傳遞( 2- 6)。藉由在337 nm光激勵下之CBP發射之缺失來確認此情況。圖19A至圖19E顯示在低於及高於臨限值之不同激勵強度下垂直於BSBCz薄膜及BSBCz:CBP (6:94 wt.%)薄膜之表面所收集的發射光譜。在低激勵強度下,對於純薄膜及摻合薄膜分別在480 nm及483 nm處觀測到對應於DFB光柵( 2)之光阻帶的布拉格突降。布拉格突降位置中之微小變化大概歸因於摻合薄膜及純薄膜之略微不同的折射率( 2- 6)。隨著泵浦強度增加高於臨界臨限值,在純裝置及摻合裝置兩者中出現窄發射峰,指示雷射之開始。亦可看出,雷射峰之強度增加比光致發光背景快,提供與經刺激發射相關聯之非線性之證據。發現雷射波長對於摻合薄膜為484 nm且對於純薄膜為481 nm。圖19C至圖19D展示兩種DFB裝置之隨泵浦強度變化的輸出發射強度及半高全寬(FWHM)。發現FWHM在高激勵強度下變得低於0.2 nm。由輸出強度中之突變來判定DFB雷射之雷射臨限值。發現基於純薄膜及摻合薄膜之裝置分別展現0.22 μJ cm 2及0.09 μJ cm 2之雷射臨限值。在兩種情況下,此等值低於此前針對BSBCz:CBP摻合物中之經放大自發發射(ASE)及二階DFB雷射所報導的臨限值( 2- 6),支援混合階光柵用於高效能有機固態雷射之可能性。 章節 C . 光學增益根據此等實驗ASE資料,可判定淨增益及損失係數且其值列於表S4中。 S4 .脈衝寬度、激勵功率、淨增益及損失係數。 脈衝寬度(μs) 功率(k W cm -2) 淨增益(cm -1) 損失係數(cm -1)    0.5 8.1    0.1 1.0 11.3 1.5    1.5 19.8       0.5 13.9    10.0 1.0 17.0 2.2    1.5 32.6       0.5 25.1    50.0 1.0 30.8 3.4    1.5 40.1    此等ASE結果提供明確證據表明,在CW狀態下在基於BSBCz之薄膜中可達成較大淨光學增益。因此,此明確地支援吾人之陳述:BSBCz為CW雷射及準CW雷射之最好候選之一。 章節 D . 瞬態吸收圖27A中之結果指示PL強度在幾個μs照射之後保持恆定。此暗示裝置中不存在藉由STA對單重態激子之淬滅。圖27C亦展示雷射與三重態吸收光譜之間不存在顯著光譜重疊。彼等結果提供明確的證據表明,用於此研究之增益介質中不存在有害的三重態損失。 根據此等資料,吾人亦估算如先前所報導之經刺激發射截面 σ em及三重態激勵態截面 σ TT( 3 9)。480 nm下之 σ em為2.2×10 16cm 2,其明顯大於為3.0×10 19cm 2σ TT,指示三重態吸收對長脈衝狀態幾乎無影響。 吾人分別估算溶液中之三重態壽命( τ TT)、三重態吸收截面( σ TT)及系統間穿越產率( ϕ ISC), τ TT=5.7×10 3s -1σ TT=3.89×10 -17cm 2(在630 nm下,圖27D)且 ϕ ISC=0.04。藉由瞬態吸收與作為參考之二苯甲酮相比較之激勵功率相依性(圖27E)來估算 ϕ ISC( 9)。然而,應著重指出,使用吾人之瞬態吸收量測系統,吾人在薄膜中不能觀測到任何三重態比重。舉例而言,由於 ϕ PL值接近100%,摻合薄膜中之系統間穿越係可忽略的。 總體而言,經量測高於 E th之發射光譜並不會大部分與三重態吸收光譜重疊,從而產生長脈衝狀態中之光放大之較大淨增益。因此,吾人確信BSBCz為CW雷射及準CW雷射之最好候選之一。 章節 E . 熱模擬為了探測裝置內之溫度分佈,使用COMSOL 5.2a執行瞬態2D熱傳遞模擬。圖38展示雷射裝置之幾何結構之示意圖。應注意,吾人忽略了此模擬中之光柵。 溫度分佈之控制局部差分方程式經表示為: 其中 ρ為材料密度, C p為比熱容, T為溫度, t為時間, k為熱導率且 Q為雷射熱源項。雷射泵浦光束具有高斯(Gaussian)形狀。由於雷射光束之圓形對稱性,在圓柱形座標中求解熱傳遞方程式。對於脈衝式高斯雷射光束,如下編寫熱源( 10): 其中 α為吸收係數, R為泵浦光束在裝置之底部小平面處之反射, P為到達增益區域之入射泵浦功率, rz為空間座標, r 0 為泵浦雷射光束之1/ e 2半徑, r=0為雷射光束之中心, z g為增益區域與頂部層之間的界面的z座標(參見圖38), H( t)為具有脈衝寬度τ p之矩形脈衝函數, η g為增益區域中所吸收的在在無雷射場( 11)之情況下轉換為熱量的泵浦功率之分率,其由下式給出: 其中 ϕ PL 為螢光量子產率( ϕ PL (BSBCz:CBP)=86%), λ 為泵浦雷射波長,且 λ 雷射 為經提取雷射波長。關於在徑向方向之邊界條件,在旋轉軸處使用對稱性邊界條件。在底部、頂部及邊緣表面處應用熱絕緣邊界條件(忽略空氣對流)。裝置之半徑經設定成2.5 mm。功率密度為2 kW/cm 2。表S5呈現用於自COMSOL資料庫獲取之模擬的熱物理參數及幾何參數。對於BSBCz:CBP層,吾人選擇用於有機材料的與Ref (11)中相同之熱參數。 S5 .材料之熱物理參數及幾何參數。 層名稱 k(W K -1m -1) C p(J kg -1K -1) ρ(kg m -3) 405 nm 處之 α(m -1) D(μm) 玻璃 1.4 730 2210 0 717 藍寶石 27 900 3900 0 759 CYTOP 0.12 861 2200 0 2 BSBCz:CBP 0.2 1400 1200 1.55 x 10 6 0.2 SiO 2 1.38 703 2203 0 100 Si 130 700 2329 8.00 x 10 6 333 在吸收泵浦雷射能量之後,BSBCz層充當熱源。藉由朝向頂部層及底部層傳導而傳遞所產生的熱。 1.1 脈衝寬度變化圖39及圖40分別展示在每次用10、30及40 ms之脈衝寬度τ p進行泵浦之後的最大溫度上升及在BSBCz/CYTOP層之界面處的溫度上升。 此等模擬結果論證,由長脈衝泵浦照射引起的溫度上升隨脈衝持續時間增加,但此效應針對長於30 ms之脈衝傾向於飽和。亦可自此等計算看出,並未預期溫度上升會隨著入射脈衝之數目顯著增加。 1.2 10 ms 脈衝寬度之情況下之囊封之影響圖41中之模擬結果提供對於用於吾人之裝置中以改良在長脈衝光照射下操作之裝置中之熱管理的囊封之重要性的明確證據。 1.3 CYTOP 厚度變化如圖42中所展示,由於CYTOP之低熱導率,增加CYTOP厚度導致增益區域中之溫度之增加。儘管發現藉由CYTOP囊封DFB雷射對於改良裝置在長脈衝光激勵下之效能至關重要,但CYTOP之不良熱傳導明顯為限制因素,且此態樣在將來研究中應經由選擇更恰當的囊封材料而解決,以便展現實際CW有機半導體技術。 參考文獻1. D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Horizontal orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films. Org. Electron. 10(1), 127-137 (2009). 2. A. S. D. Sandanayaka, K. Yoshida, M. Inoue, K. Goushi, J. C. Ribierre, T. Matsushima, C. Adachi, Quasi-continuous-wave organic thin film distributed feedback laser. Adv. Opt. Mater. 4, 834-839 (2016). 3. H. Nakanotani, C. Adachi, S. Watanabe, R. Katoh, Spectrally narrow emission from organic films under continuous-wave excitation. Appl. Phys. Lett. 90, 231109 (2007). 4. D. Yokoyama, M. Moriwake, C. Adachi, Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. J. Appl. Phys. 103, 123104 (2008). 5. H. Yamamoto, T. Oyamada, H. Sasabe, C. Adachi, Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401 (2004). 6. T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, C. Adachi, 100% fluorescence efficiency of 4,4'-bis[( N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Appl. Phys. Lett. 86, 071110 (2005). 7. M. D. Mcgehee, A. J. Heeger, Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 12, 1655-1668 (2000). 8. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, I. D. W. Samuel, H. S. Barcena, P. L. Burn, Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007). 9. S. Hirata, K Totani, T. Yamashita, C. Adachi, M. Vacha, Large reverse saturable absorption under weak continuous incoherent light. Nature Materials. 13, 938-946 (2014). 10. Z. Zhao, O. Mhibik, T. Leang, S. Forget, S. Chénais, Thermal effects in thin-film organic solid-state lasers. Opt. Express. 22, 30092-30107 (2014). 11. S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges, On thermal effects in solid-state lasers: The case of ytterbium doped materials, Prog. Quantum Electron. 30(4), 89-153 (2006). [ 5 ] 電驅動有機半導體雷射二極體 概述儘管在光學泵浦有機半導體雷射之效能及其應用方面有重大進步,但尚未實現電驅動有機雷射二極體。此處,吾人報導有機半導體雷射二極體之第一次論證。所報導之裝置將混合階分散式回饋SiO 2光柵併入至有機發光二極體結構中。可將高達3.30 kA cm 2之電流密度注入至裝置中,且觀測到藍色雷射高於約0.54 kA cm 2之臨限值。有機半導體雷射二極體之實現主要係歸因於對於在雷射波長下未展示三重態吸收損失之高增益有機半導體之選擇及在高電流密度下對電致發光效率滾降之遏制。此表示有機電子裝置領域之重大進步及朝向實現有機光電電路之完全整合之新穎的有成本效益的有機雷射二極體技術的第一步。 詳細描述由於高增益有機半導體材料之研發及高品質因數共振器結構之設計兩者中之重大進展,在過去二十年內極大地改良了光學泵浦有機半導體雷射(OSL)之屬性 1-5。作為雷射之增益介質之有機半導體之優點包括其高光致發光量子產率(PLQY)及較大經刺激發射截面、其化學可調諧性、其跨越可見區域之寬廣的發射光譜及其易於製造性。由於低臨限值分散式回饋(DFB) OSL中之最新進展,論證藉由電驅動奈秒脈衝式無機發光二極體之光學泵浦,提供朝向新的緊湊且低成本的可見雷射技術之途徑 6。此種類型之微型化有機雷射在晶片實驗室應用、化學感測及生物分析中尤其具有前景。然而,為達成有機光子電路與光電電路之完全整合,需要電驅動有機半導體雷射二極體(OSLD),其迄今為止仍係未實現的科學挑戰。阻止雷射直接電泵浦有機半導體裝置之問題主要係歸因於來自電觸點之光學損失及發生在高電流密度下之額外三重態及極化子損失 4,5,7-9。已提出解決此等問題之不同方法,該等方法涉及(例如)使用三重態淬滅劑 10 - 12以藉由單重態-三重態激子互毀遏制三重態吸收損失及單重態淬滅,以及減小裝置作用面積 13以在空間上分離激子形成與激子輻射衰變區域且將極化子淬滅製程減至最少。考慮到目前先進技術的光學泵浦有機半導體DFB雷射 5之效能,伴有裝置結構之最佳化之此等方法之謹慎的組合可導致來自有機薄膜之電驅動雷射發射。 先前研究建議,若與電泵浦相關聯之額外損失經完全遏制,則將需要高於幾個kA/cm 2之電流密度以達成自OSLD之雷射 14。在展示經放大自發發射(ASE)臨限值低於0.5 μJ/cm 2之不同有機半導體薄膜中, 5用以觀測電泵浦下之雷射發射之最具前景的分子中之一者為4,4'-雙[(N-咔唑)苯乙烯基]聯苯(BSBCz) (參見圖43中之化學結構) 15。基於BSBCz之薄膜之ASE臨限值經報導為在800 ps脈衝光激勵下低至0.30 μJ cm −2  16。同時,另一工作展示在利用5 μs之脈衝寬度之脈衝操作下,高達2.8 kA cm 2之電流密度可注入基於BSBCz之有機發光二極體(OLED)中 13。此等裝置展示高於2%的最大電致發光外部量子效率(EQE)值。此外,藉由將電流注入/輸送區域之一個尺寸縮小至50 nm而大體上減少在高電流密度下由於單重態-熱量及單重態-極化子互毀引起的效率滾降。最近,在經光學泵浦之基於BSBCz的有機DFB雷射中論證在80 MHz下之準連續波雷射及持續至少30 ms之真實連續波雷射 17。可達成此類前所未有的效能,係因為在4,4'-雙(N-咔唑基)-1,1'-聯苯(CBP)摻合物中,BSBCz之PLQY接近100%,且係因為在BSBCz薄膜之雷射波長下不存在顯著三重態吸收損失。此處,吾人藉由將反向OLED結構與整合於裝置之作用區域中之混合階DFB SiO 2光柵相組合來論證來自BSBCz薄膜之電驅動雷射發射,因此提供來自有機半導體之電驅動雷射發射之第一明確證據。 此研究中研發之OSLD之製造方法及架構示意性地展示於圖43至圖45中(參見材料及方法章節中之實驗程序之詳細描述)。首先將100 nm厚的介電SiO 2層濺鍍至預清潔之圖案化氧化銦錫(ITO)玻璃基板上。隨後吾人設計一階布拉格散射區域由二階布拉格散射區域包圍的混合階DFB光柵,該等區域分別產生強光學回饋及提供雷射發射之高效垂直提取 17,18。在DFB雷射中,眾所周知,在滿足布拉格條件 4,19(mλ Bragg= 2n effΛ)時發生雷射振盪,其中m為繞射階, λ Bragg為布拉格波長,n eff為增益介質之有效折射率,且Λ為光柵週期。使用所報導的用於BSBCz之n eff值及 λ Bragg20,21,混合階(m=1, 2) DFB雷射裝置之光柵週期經計算分別為140 nm及280 nm。使用電子束微影及反應性離子蝕刻將此等混合階DFB光柵雕刻在SiO 2層中之140×200 μm面積內(圖46A)。如藉由圖46B中之掃描電子顯微法(SEM)影像所展示,此工作中製造的DFB光柵具有140±5 nm及280±5 nm之週期及約65±5 nm之光柵深度,其完美地符合以上提供之吾人之規範。各1階及2階DFB光柵之長度分別為約10 µm及15.1 µm。隨後執行能量色散X射線光譜儀(EDX)分析,以確保在光柵製造期間ITO層並未損壞且確保在蝕刻區域中完全移除SiO 2層。圖46C及圖46D中所展示之EDX結果提供證據表明,自ITO至沈積於DFB光柵之頂部上的有機半導體層的電荷注入可發生於ITO觸點所定位之蝕刻區域中。另外,吾人提出亦可使用低成本之簡單奈米壓印微影製程製備DFB共振器(圖45)。如藉由圖47A中所顯示的示意性表示所展示,在此工作中製造的OSLD具有以下蒸氣沈積於DFB光柵之頂部上之簡單反向OLED結構:ITO (100 nm)/20wt.%Cs:BSBCz (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Ag (10 nm)/Al (90 nm)。在此類反向裝置結構中,在接近ITO觸點之區域中藉由Cs摻雜BSBCz薄膜改良至有機層中的電子注入,而MoO 3用作電洞注入層(圖48至圖49)。如圖50中所展示,所有層之表面形態呈現具有20 nm至30 nm之表面調變深度的光柵結構。儘管最有效之OLED大體上使用多層架構以使電荷平衡達到最佳 22,23,但電荷積聚可發生在高電流密度下之有機異質界面處,其可對裝置效能及穩定性不利 24。在此工作中所製造的OSLD僅含有BSBCz作為有機半導體且經特定設計以使有機異質界面的數目降至最低。應注意亦製造不具有SiO 2DFB光柵之裝置,且用作獲取關於光柵對電致發光屬性的影響的另外資訊的參考。此外,吾人渴望在SiO 2、ITO及聚合物中或作用層頂部製作具有不同一維DFB共振器結構的有機半導體雷射二極體(圖51A至圖51D)。如圖52中所展示,具有二維DFB共振器結構之有機半導體雷射二極體對較低臨限值之2D DFB雷射亦具有前景。 圖47B及圖53A至圖53D展示OSLD之光學顯微鏡影像,且圖47C展示不具有光柵之參考OLED之彼等光學顯微鏡影像,其兩者均在4.0 V之直流電(DC)操作下。電致發光自參考OLED之作用面積均勻發射。在OSLD之情況下,可自OSLD之2階DFB光柵區域看見更劇烈的發射,其經特定設計以促進垂直光提取。在具有或不具有DFB光柵之代表性裝置中量測的電流-電壓(J-V)及EQE-J曲線展示於圖47D至圖47E中。裝置在DC及脈衝(具有500 ns之電壓脈衝寬度及100 Hz之重複率)條件兩者下表徵。根據SEM及雷射顯微鏡影像估算OSLD之作用面積,其有必要計算注入至裝置中之電流密度。在DC及脈衝操作下之參考裝置在裝置崩潰之前分別展示70 A cm 2及850 A cm 2之最大電流密度(J max)。由於較小有效裝置區域 13,25之焦耳熱之減小,在DC及脈衝操作下OSLD明顯地分別呈現80 A cm 2及3220 A cm 2之較高J max。發現所有BSBCz裝置在較低電流密度下呈現高於2%之最大EQE值。然而,在DC操作之高於15 A cm 2之電流密度下觀測到OSLD及參考裝置中顯著的效率滾降,其可歸因於有機增益介質之熱降解。在脈衝操作下,參考裝置展示在高於410 A cm 2之電流密度下的效率滾降,其符合先前報導 13中之結果。更重要地,在脈衝操作下遏制OSLD中之效率滾降且甚至發現EQE大體上增加至高於800 A cm 2以達成3.3%之最大值。當電流密度增加至高於3200 A cm 2時,EQE快速減少推測歸因於有機半導體之熱降解。 如圖54中所展示,參考裝置之電致發光光譜類似於BSBCz純薄膜之穩態PL光譜且不隨電流密度之變化而變化。圖53E、圖55A、圖55C及圖56A展示在脈衝操作之不同電流密度下若干OSLD之電致發光光譜之演變。在垂直於基板平面之方向上自OSLD之ITO側量測此等光譜。可以明顯看出,當J變得高於800 A cm 2時在456.8 nm下產生強光譜線窄化效應。為進行進一步瞭解,輸出強度及半高全寬(FWHM)隨電流密度變化繪製於圖53F、圖55B、圖55D及圖56B中。而BSBCz純薄膜之穩態PL光譜之FWHM為約35 nm,其在最高電流密度下值減小至低於0.2 nm。同時,亦觀測到輸出強度之斜坡效率之突變,其與EQE-J曲線之狀態相符且可用於判定960 A cm 2之臨限值。類似於EQE-J曲線中所見,當J > 3.2 kA cm 2時,輸出強度隨J減小,歸因於熱降解導致裝置崩潰。在此狀態中,然而,值得注意的係OSLD之發射光譜保持極其陡。所觀測到的狀態明顯地表明光放大在高電流密度下產生且OSLD展示雷射發射高於雷射臨限值。 對已與過去的幾個有爭論的報導相關聯之第一有機半導體雷射二極體之探索,意味著在主張此研究中製造的OSLD之前應加以重視提供電驅動雷射發射 9。首先,幾個研究 20 , 26 , 27表明自有機發光裝置之波導模式之邊緣發射可導致極強的線窄化效應而不雷射放大。對比此等先前工作,在垂直於基板平面之方向上檢測到自吾人之OSLD之發射且展示明確的臨限值狀態。亦應著重指出,有機薄膜之ASE線寬通常在幾個nm範圍內,而有機DFB雷射之FWHM可遠低於1 nm 5。在FWHM低於0.2 nm的情況下,自吾人之OSLD之發射光譜不能僅歸因於ASE且對應於通常在光學泵浦有機DFB雷射中所獲得的要素。其次,先前報導藉由無意激勵ITO中之轉變表明極窄發射光譜。 28ITO之原子光譜線包括在410.3 nm、451.3 nm及468.5 nm下之彼等。 29圖55A中之OSLD之發射峰波長為456.8 nm,其不能歸因於自ITO之發射。亦應強調,OSLD之發射應為共振器模式之特性,且因此輸出應對雷射腔之任何修改極敏感。調諧光學泵浦有機DFB雷射中之發射波長的一種簡單方式為改變光柵週期 4 , 5 , 30 , 31。圖55C至圖55D顯示在不同電流密度下之發射光譜及針對分別具有300 nm(針對2階散射)之光柵週期及150 nm(針對1階散射)之光柵週期之OSLD輸出強度隨電流密度變化。此裝置展示在475.5 nm下FWHM低至0.16 nm及臨限值為1.07 kA cm 2之雷射峰(圖57)。 另外,吾人基於採用經改良共振器設計之BSBCz薄膜展示有機DFB雷射(圖58)。由於藉由二階光柵提取之雷射輻射表示損失通道,此等雷射通常展示相比於其一階對應物之較高臨限值。為研究提取與臨限值之間的平衡點,吾人製造出具有不同寬度及具有一階及二階區域之光柵。根據雷射輸入-輸出曲線推論之臨限值且根據圖59中之二階區域之寬度繪製。可以看出,振盪臨限值隨二階區域之大小線性增加。此可理解為就雷射臨限值而言其與波導損失成正比,其隨遞增週期線性變大。從而,混合階共振器之臨限值隨提取光之分率增加而增加,但即使對於強提取,臨限值保持較低。藉由變化光柵參數,因此有機固態雷射可經調適而具有最佳化屬性(低臨限值及高提取)。 圖56B顯示在不同電流密度下之發射光譜及針對分別具有300 nm(針對2階散射)之光柵週期及150 nm(針對1階散射)之光柵週期及4個一階週期及12個二階週期之OSLD輸出強度隨電流密度變化(圖60)。此裝置展示在500.5 nm下FWHM低至0.18 nm及臨限值為540 A cm 2之雷射峰。此明確提供證據表明,自吾人之OSLD之雷射發射很大程度上受DFB共振器結構影響,且此可用於調諧波長範圍內之雷射波長。自OSLD之雷射發射亦應遵循一些關於輸出光束偏光、輸出光束之形狀及時間相干 9之準則。如圖61中所展示,OSLD之輸出光束很大程度上沿光柵圖案線性偏光,提供電驅動裝置中真實一維DFB雷射動作之明確證據。 需要澄清之另一重要問題為看出電驅動OSLD之雷射臨限值如何與藉由光學泵浦獲得的雷射臨限值相比較。圖62展示在405 nm之激勵波長下藉由遞送500 ns脈衝之雷射二極體通過ITO側之OSLD光學泵浦之雷射特性。在481 nm處出現雷射發射,其與電驅動雷射波長相符合。在光學泵浦下量測之雷射臨限值為約450 W cm 2,其高於在不具有兩個電極之經光學泵浦基於BSBCz的DFB雷射中獲得的36 W cm 2之值。應注意用於OSLD之不同層之厚度在此工作已最佳化以將由於此等電極之存在的光學損失降至最低。假設在高電流密度下之BSBCz OSLD操作中無額外損失機制,在經光學泵浦裝置中量測的臨限值表明電驅動雷射發射應實現電流密度高於1125 A cm 2。用於光學及電學泵浦之類似臨限值表明已幾乎遏制在高電流密度 32下大體上發生在有機電致發光裝置中之額外損失(包括激子互毀、三重態及極化子吸收、由高電場之淬滅、焦耳熱)。此與在劇烈脈衝電激勵下未在OSLD中觀測到電致發光效率滾降之實情完全相符。為解釋此種結果,應記住BSBCz薄膜在雷射/ASE波長下不展示顯著三重態吸收,且其藉由單重態-三重態互毀呈現單重態之極弱淬滅。重要地,先前工作表明裝置作用面積還之減小可用於自激子輻射衰變分離激子形成且大體上降低極化子/熱淬滅製程。 吾人亦製造在一個晶片上具有九個DFB之裝置如圖63中所展示,且此種裝置提供雷射發射之有效輸出。對於低臨限值有機半導體雷射二極體,吾人亦成功地製造了圓形DFB共振器(圖64至圖65)。 總之,此研究論證電驅動有機半導體雷射二極體之第一實現,該電驅動有機半導體雷射二極體實施混合階分散式回饋SiO 2共振器至有機發光二極體結構之作用面積中。特定而言,裝置展示出臨限電流密度低至540 A cm 2之藍色雷射發射。關於發射線寬、偏光及臨限值之不同準則可用以區分雷射發射與已仔細檢驗及充分支援此係有機半導體中電驅動雷射之首次觀測的主張的其他現象。此報導開拓有機光子之新機會及視角,且應明顯地充當有機半導體雷射二極體技術之將來發展的強基礎,該有機半導體雷射二極體技術應用簡單、便宜及可調諧雷射源及其用於基於有機的光電平台之完全及直接整合的適合性的優點。 材料及方法 裝置製造及特性使用中性清潔劑、純水、丙酮及異丙醇藉由超音波處理接著藉由UV臭氧處理清潔經氧化銦錫(ITO)塗佈之玻璃基板(100 nm ITO,Atsugi Micro Co.)。在室溫下將100 nm厚SiO 2濺鍍於100 nm經ITO塗佈玻璃基板上以將DFB雕刻於ITO基板上。在濺鍍期間氬氣壓力為0.2 Pa。RF功率設定為100 W (圖43及圖44)。再次使用異丙醇藉由超音波處理接著藉由UV臭氧處理清潔基板。藉由在4000 rpm下旋塗15 s,用六甲基二矽氮烷(HMDS)來處理二氧化矽表面且在120℃下退火120 s。自ZEP520A-7溶液(ZEON Co.)將具有約70 nm之厚度的抗蝕劑層以4000 rpm旋塗於基板上持續30 s,且在180℃下烘烤240 s。使用具有0.1 nC cm 2之經最佳化劑量的JBX-5500SC系統(JEOL)進行電子束微影以將光柵圖案繪製於抗蝕劑層上。在電子束照射之後,在室溫下將圖案於顯影劑溶液(ZED-N50,ZEON Co.)中顯影。將經圖案化之抗蝕劑層用作蝕刻遮罩,同時使用EIS-200ERT蝕刻系統(ELIONIX)用CHF 3電漿蝕刻基板。為自基板完全移除抗蝕劑層,使用FA-1EA蝕刻系統(SAMCO)用O 2電漿蝕刻基板。蝕刻條件經最佳化以自DFB之間距調變完全移除SiO 2直至ITO接觸。使用SEM (SU8000,Hitachi)觀測形成於二氧化矽表面上之光柵(圖46B)。執行EDX (在6.0 kV下,SU8000,Hitachi)分析以確認自DFB之間距完全移除SiO 2(圖46C及圖46D)。 藉由習知超音波處理清潔DFB基板。隨後藉由在2.0 × 10 4Pa之壓力下之熱蒸發以0.1 nm s 1至0.2 nm s 1之總蒸發速率將有機層及金屬電極真空放置在具有SiO 2絕緣體之DFB基板上以製造具有氧化銦錫(ITO) (100 nm)/20 wt% Cs:BSBCz (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Ag (10 nm)/Al (90 nm)結構之i-OLED。留在ITO表面之SiO 2層充當絕緣體。因此,OLED之電流區域受限於BSBCz與ITO直接接觸之DFB區域。具有140 × 200 µm之作用面積的參考OLED亦使用相同電流區域製備。使用累計球系統(A10094,Hamamatsu Photonics)在室溫下量測OLED之電流密度-電壓-EQE (J-V-EQE)特性(DC)。使用脈衝產生器(NF,WF1945)、放大器(NF,HSA4101)及光電倍增管(PMT) (C9525-02,Hamamatsu Photonics)在脈衝驅動下量測 J- V- L特性。在多通道示波器(Agilent Technologies, MSO6104A)上監測PMT回應及驅動方波信號兩者。在具有變化峰值電流之裝置中施加具有500 ns之脈衝寬度、5 μs之脈衝週期及100 Hz之重複頻率的長方形脈衝。 光譜量測利用光纖收集垂直於裝置表面之經發射雷射光,該光纖連接至多通道光譜儀(PMA-50,Hamamatsu Photonics)且置放為與該裝置相距3 cm。對於CW操作,使用CW雷射二極體(NICHIYA,NDV7375E,最大功率為1400 mW)生成具有405 nm之激勵波長的激勵光。在此等量測中,使用以脈衝產生器(WF 1974,NF Co.)觸發之聲光調變器(AOM,Gooch&Housego)來遞送脈衝。經由透鏡及狹縫將激勵光集中於裝置之4.5×10 5cm 2之面積上,且使用與數位攝影機(C9300,Hamamatsu Photonics)連接之具有100 ps之時間解析度的條框眼(C7700,Hamamatsu Photonics)收集所發射的光。使用光電倍增管(PMT) (C9525-02,Hamamatsu Photonics)來記錄發射強度。在多通道示波器(Agilent Technologies, MSO6104A)上監測PMT回應及驅動方波信號兩者。如前所描述,針對此量測使用相同的照射及偵測角度。所有量測係在氮氣氛圍中進行,以防止由濕氣及氧氣引起之任何降解。 參考文獻1. Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695-697 (1996). 2. Kozlov, V. G., Bulović, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362-364 (1997). 3. Hide, F. et al.Semiconducting polymers: a new class of solid-state laser materials. Science 273, 1833 (1996). 4. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272-1295 (2007). 5. Kuehne, A. J. C. & Gather M. C. Organic lasers: recent development on materials, device geometries and fabrication techniques. Chem. Rev.in press. 6. Tsiminis, G. et al.Nanoimprinted organic semiconductor lasers pumped by a light-emitting diode. Adv. Mater. 25, 2826-2830 (2013). 7. Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002). 8. Bisri, S. Z., Takenobu, T. & Iwasa, Y. The pursuit of electrically-driven organic semiconductor lasers. J. Mater. Chem. C 2, 2827-2836 (2014). 9. Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nature Photon.3, 546-549 (2009). 10. Sandanayaka, A. S. D. et al.Improvement of the quasi-continuous-wave lasing properties in organic semiconductor lasers using oxygen as triplet quencher. Appl. Phys. Lett. 108, 223301 (2016). 11. Zhang, Y. F. & Forrest, S. R. Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84, 241301 (2011). 12. Schols, S. et al.Triplet excitation scavenging in films of conjugated polymers. Chem. Phys. Chem. 10, 1071-1076 (2009). 13. Hayashi, K. et al.Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015). 14. Gärtner, C. et al.The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 023107 (2007). 15. Sandanayaka, A. S. D. et al.Quasi-continuous-wave organic thin film distributed feedback laser. Adv. Opt. Mater. 4, 834-839 (2016). 16. Aimono, T. et al.100% fluorescence efficiency of 4,4'-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Appl. Phys. Lett. 86, 71110 (2005). 17. Sandanayaka, A. S. D. et al.Continuous-wave operation of organic semiconductor lasers. Submitted. 18. Karnutsch, C. et al.Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90131104 (2007). 19. Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390-406 (2012). 20. Yokoyama, D. et al.Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. J. Appl. Phys. 103, 123104 (2008). 21. Yamamoto, H. et al.Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401 (2004). 22. Kim, S. Y. et al.Organic light-emitting diodes with 30% external quantum efficiency based on horizontally oriented emitter. Adv. Funct. Mater. 23, 3896-3900 (2013). 23. Uoyama, H. et al.Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234-238 (2012). 24. Matsushima, T. & Adachi, C. Suppression of exciton annihilation at high current densities in organic light-emitting diode resulting from energy-level alignments of carrier transport layers. Appl. Phys. Lett. 92, 063306 (2008). 25. Kuwae, H. et al.Suppression of external quantum efficiency roll-off of nanopatterned organic light-emitting diodes at high current densities. J. Appl. Phys. 118, 155501 (2015). 26. Bisri, S. Z. et al.High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728-1735 (2009). 27. Tian, Y. et al.Spectrally narrowed edge emission from organic light-emitting diodes. Appl. Phys. Lett. 91, 143504 (2007). 28. El-Nadi, L. et al.Organic thin film materials producing novel blue laser. Chem. Phys. Lett. 286, 9-14 (1998). 29. Wang, X., Wolfe, B. & Andrews, L. Emission spectra of group 13 metal atoms and indium hybrids in solid H 2and D 2. J. Phys. Chem. A 108, 5169-5174 (2004). 30. Ribierre, J. C. et al.Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007). 31. Schneider, D. et al.Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85, 1886 (2004). 32. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801-6827 (2013). 分散式回饋電驅動有機雷射之電學模擬 1. 裝置模型及參數在此研究中,使用所謂的「第一代模型」描述有機發光二極體(OLED)中之電荷輸送。在此模型中,使用二維時間無關漂移擴散模型藉由自洽求解電子密度 n、電洞密度 p及靜電電位Ψ。泊松(Poisson)方程式將靜電電位Ψ與空間電荷密度相關聯,如下: 其中F為向量電場,q為基本電荷,ε r為材料之相對電容率且ε 0為真空電容率, 為電子(電洞)濃度, 為經填充電子(電洞)陷阱狀態之濃度。假設拋物線能態密度(DOS)及Maxwell-Boltzmann統計,電子及電洞濃度表示為: 其中 為最低未佔用分子軌域(LUMO)及最高佔用分子軌域(HOMO)中之載流子之能態密度, 為LUMO及HOMO之能量位準, 為電子及電洞之準費米位準(quasi Fermi level), 為Boltzmann常數且T為裝置溫度。 有機半導體中電荷載流子陷阱之存在係由於結構缺陷及/或雜質。經注入電荷需首先在建立電流之前填充此等陷阱。此狀態稱作陷阱限制電流(TLC)。 1,2指數或高斯分佈用於模型化有機半導體內之陷阱分佈。 3在此工作中,使用用於電洞陷阱狀態之高斯分佈: 4 , 5 其中 為陷阱之總密度, 為高於HOMO位準之能量陷阱深度,且 為分佈之寬度。藉由求高斯能態密度乘以Fermi-Dirac分佈之積分估算經捕獲電洞之密度。 藉由電場F中之漂移及由於電荷密度梯度之擴散控制電荷輸送。漂移-擴散近似法中電子及電洞之穩態連續方程式由下式給出: 其中 為電子(電洞)遷移率, 為電子(電洞)擴散常數,且 R為重組速率。電荷載流子遷移率推測為場相關且具有Pool-Frenkel形式: 6,7 其中 為零場遷移率,且 為電子(電洞)之特性場。在此模型中不考慮高能混亂,因此吾人假設愛因斯坦關係式(Einstein's relation)之有效性以根據電荷遷移率計算擴散常數。藉由Langevin模型 8給出重組速率 R當電子與電洞重組時,其形成激子。所產生之激子可在輻射式或非輻射式衰變之前隨特性擴散常數 D s 遷移。單重態激子之連續方程式由下式給出: 其中 S為激子密度。第一時期為根據電子電洞重組之單重態激子產生速率,其為1/4,第二時期表示激子擴散,第三時期表示隨輻射衰變常數 及非輻射衰變常數 之激子衰變,且最後一個時期表示藉由具有場相關解離速率 之電場之激子的解離,其由Onsager-Braun模型給出: 9,10 其中 為激子半徑, 為激子結合能, 為一階Bessel函數,且 為場相關參數。在此模型內,電場淬滅(EFQ)之衝擊取決於激子結合能 2. 模擬結果及與實驗之比較 2.1. 單極及雙極參考裝置在進行雙極裝置模擬之前,考慮純電洞及純電子裝置以便測試電學模型、模擬參數及電荷載流子遷移率。純電子裝置由包夾在Cs (10nm)/Al與20 wt% Cs:BSBCz (10nm)/ITO電極之間的190 nm BSBCz層構成。藉由將10 nm MoO 3層插入BSBCz (200 nm)與ITO及Al兩者之間獲得純電洞裝置。雙極OLED裝置包含以下結構:ITO/20 wt% Cs:BSBCz (10 nm)/BSBCz (190 nm)/MoO 3(10 nm)/Al。陰極(ITO/20 wt% Cs:BSBCz)之功函數取值為2.6 eV,且陽極(MoO 3/Al)中之一功函數為5.7 eV。此等裝置結構之能量位準圖式展示於圖48中。 使用所報導之BSBCz之電荷載流子遷移率(由飛行時間量測) [11]。圖49a展示用於BSBCz之電子及電洞之經量測經報導之遷移率及與Pool-Frenkel場相關模型對應的擬合。在下表中展示經擬合遷移率參數之值以及電模擬所需之輸入參數之其他值。BSBCz之電洞及電子遷移率為差不多相同數量級,指示BSBCz可輸送兩者類型之電荷載流子。 表. 電模擬參數 參數 BSBCz Cs:BSBCz 單位 ε r 4 4 - E HOMO 5.8 5.8 eV E LUMO 3.1 2.6 eV N HOMO 2 × 10 -19 2 × 10 -19 cm -3 N LUMO 2 ×10 -19 2 × 10 -19 cm -3 N tP 2.8 × 10 -17 - cm -3 E tp 0.375 - eV σ tp 0.017 - eV μ n0 6.55 × 10 -5 6.55 × 10 -5 cm 2V -1s -1 μ p0 1.9 × 10 -4 1.9 × 10 -4 cm 2V -1s -1 F n0 175561 175561 V/cm F p0 283024 283024 V/cm k r 10 +9 10 +9 s -1 k nr 0.11 × 10 +9 0.11 × 10 +9 s -1 φ PL 0.9 0.4 - L s 18 × 10 -9 18 × 10 -9 m 單極及雙極裝置之實驗及模擬 J ( V )曲線展示於圖49b中。在直流電(DC)驅動下所量測之實驗 J低於 18V,且在脈衝驅動下高於 18V。純電洞裝置電流很大程度上受 V 20 V處之陷阱限制。藉由模擬之實驗資料之最佳化獲得的 之值在上表中給出。結果展示單極裝置之實驗與模擬之間的良好吻合。對於雙極裝置,在較低電流密度下量測與模擬之間的小偏差係歸因於實驗漏電流之存在。模擬模型預測在高電壓下純電洞裝置及純電子裝置具有類似電流密度,展示良好的電子及電洞傳輸平衡。雙極裝置展示比單極電流密度高一個數量級的電流密度。 2.2. 雙極 DFB 裝置DFB光柵共振器之使用不但藉由為光放大 12 - 14提供正光學回饋影響有機雷射之光學性質,而且影響有機雷射之電學特性。計算奈米結構化陰極對DFB OLED之電學特性之影響且與參考OLED (不具有光柵)相比較。DFB OLED之結構與雙極OLED類似,差異在於奈米結構化陰極由沈積於ITO上之週期性光柵SiO 2-Cs:BSBCz組成。光柵週期為280 nm且光柵深度為60 nm,如圖66a中所表示。在此結構中,BSBCz之厚度為150 nm。為進行比較,製造具有相同厚度之參考OLED (ITO/20 wt% Cs:BSBCz (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Al)且不具有光柵。已保留用於雙極裝置之所有參數及條件,因為DFB及參考OLED不具有額外的擬合參數。 DFB光柵及參考OLED之實驗及模擬 J ( V )曲線展示於圖66b中。電模擬預測在DC( V 18 V)及脈衝式操作( V18 V) 兩種情況下 J ( V )曲線與實驗結果良好吻合。 除 J ( V )曲線預測之外,電模擬可以存取實體參數,該等實體參數難以在實驗上進行判定,諸如電荷載流子密度之空間分佈、電場及重組區域之位置。 首先,吾人考慮參考OLED。圖67a至圖67b展示在10V及70V下參考OLED之電荷載流子分佈及電場剖面。自由電子自ITO/CS:BSBCz陰極注入至BSBCZ中 (在 x = 0 μm時),且自由電洞自Al/MoO 3陽極注入( x = 0 . 215 μm)。由於載流子重組,當其離開觸點時載流子密度減低。當 n = p時,電場增加且達到其中心的最大值。在10V下,藉由接近陰極及陽極之高電荷載流子密度篩選電場。在較高電壓(70 V)下,電子穿透得更深且陽極附近的電場仍然較高。 在DFB光柵OLED之情況下,在70 V下提取實體參數。圖68a至圖68b展示電荷載流子密度n及p之空間分佈。由於陰極之週期性奈米結構化電子未均一地注入,其空間分佈遵循週期性注入,如圖68b、圖68c中可清楚地看出。電洞自均一陽極注入且在塊體中相對均一地延伸(圖68a、圖68c)。當電洞到達陰極時,其對於參考OLED衰變(圖67(b))。然而,由於SiO 2光柵之存在,電洞在SiO 2/BSBCz之界面處積聚且展示高密度(圖68a)。 圖69a展示電場之週期性剖面,其在絕緣體中較高且在BSBCz層中稍微調變對於參考OLED (約3.5×10 6 V / cm)保持相同強度。圖69b中所展示之電流密度剖面在很大程度上經調變且展示在SiO 2/Cs:BSBCz界面附近之較高值。 為澄清SiO 2/Cs:BSBCz界面附近之高電流密度值之原因,重組速率剖面 R表示於圖70a中。如吾人可看出, R亦展示裝置內部之週期性變化。在由陰極/陽極定界的區域中,剖面與參考OLED之剖面相同,而其在由SiO 2/陽極定界的區域中減小(參見圖70c)。在Cs:BSBCz/SiO 2界面處, R展示由於電洞及電子積聚之最大值,如圖70d中所論證。 裝置內部之電場為約MV/cm 2,如圖69a中所表示。因此,由電場引起的激子解離不可忽略且在很大程度上影響裝置效能。有機半導體之單重態激子結合能在0.3 eV至1.6 eV 15 - 18之範圍內。在低電場下,主導的去活化製程為輻射衰變及非輻射衰變。在高電場下,激子解離之機率極大增加且取決於激子結合能。為了考慮電場誘導激子解離,由方程式10給出的場相關解離速率包括於單重態激子連續性方程式9中。圖71a展示參考裝置之經計算激子密度 S,包括具有不同激子結合能 E b ( 0 . 2 - 0 . 6 eV )之EFQ。當 E b 減低時,EFQ變成嚴重損失機制。使用具有高激子結合能之分子需要克服EFQ。使用PL淬滅產率實驗估算BSBCz之激子結合能且其下限為 0 . 6 eV。 圖71b展示針對參考裝置及DFB裝置之具有或不具有電場誘導激子解離之 S ( J )特性。在不具有EFQ的情況下,S隨 J增加且展示在 J = 3KA / cm 2 時就DFB裝置之9×10 17 cm - 3 而言相對於參考裝置之2×10 17 cm - 3 之高值。 S中之此種不同來自不同裝置架構,其導致裝置內部之不同 R分佈,如圖70a、70b中所展示。藉由考慮EFQ模型及BSBCz之 E b = 0 . 6 eV,兩種裝置之 S均增加,且直至 J = 0 . 5KA / cm 2 則接著由於激子之電場解離而減小。DFB裝置中之EFQ比參考裝置中之EFQ稍低,且可解釋相比於圖47E中所展示之參考裝置,DFB裝置之實驗性低EQE滾降。 為了獲得對DFB裝置中EQE增強之原因的進一步實體瞭解,具有或不具有EFQ之參考裝置內部之一維激子分佈展示於圖72a中。在DFB裝置之情況下,不具有及具有EFQ之二維激子分佈分別展示於圖72b、圖72c中。 裝置(圖74,底部)中之激子密度分佈(圖73,右下)與光模分佈之比較指示在第2光柵區域處其間存在較大重疊,有助於光放大。該顯著重疊必然有助於較低雷射臨限值。 在參考裝置中,在缺失EFQ之情況下, S均一地分散。在存在EFQ之情況下,由於高電場(其在塊體中達到3.5 MV / cm),塊體中之 S減少(參見圖79b)。接近Cs:BSBCz/ITO界面,電場較低,其避免激子之EFQ。在DFB裝置之情況下,激子自兩個重組位點(位點1及位點2)產生,如圖71a中所展示。接近SiO 2光柵之電荷之積聚建立具有高激子密度( S=6×10 17 cm - 3 )之重組區域,命名為位點1。位點2具有與參考裝置( S=1×10 17 cm - 3 )相同的 S。在不具有EFQ的情況下,最大值 S由位點1提供,且解釋在低電場下相比於參考裝置,DFB裝置中之高值(參見圖71b)。當考慮EFQ時,位點1中之激子由此位點中之高電場淬滅( F = 3 . 5MV / cm),且最大值 S由位點2提供,其中接近該界面之電場較低( F = 1 . 2MV cm)且在塊體區域中相對於參考裝置逐漸增加。從而,接近該界面之一些激子可存活,若其未經另一機制(吾人未包括於此模擬中)淬滅。 參考文獻1. G. Malliaras, J. Salem, P. Brock, and C. Scott, “Electrical characteristics and efficiency of single-layer organic light-emitting diodes,” Phys. Rev. B, vol. 58, no. 20, pp. R13411-R13414, 1998. 2. J. Staudigel, M. Stößel, F. Steuber, and J. Simmerer, “A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes,” J. Appl. Phys., vol. 86, no. 7, p. 3895, 1999. 3. V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys., vol. 94, no. 2, pp. 1283-1285, 2003. 4. V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non. Cryst. Solids, vol. 338-340, no. 1 SPEC. ISS., pp. 603-606, 2004. 5. H. T. Nicolai, M. M. Mandoc, and P. W. M. Blom, “Electron traps in semiconducting polymers: Exponential versus Gaussian trap distribution,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 83, no. 19, pp. 1-5, 2011. 6. G. A. N. Connell, D. L. Camphausen, and W. Paul, “Theory of Poole-Frenkel conduction in low-mobility semiconductors,” Philos. Mag., vol. 26, no. 3, pp. 541-551, 1972. 7. L. Pautmeier, R. Richert, and H. Bässler, “Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation,” Synth. Met., vol. 37, no. 1-3, pp. 271-281, 1990. 8. M. POPE and C. E. SWENBERG, Electronic Processes in Organic Crystals and Polymers. New York: Oxford Univ. Press, 1999. 9. L. Onsager, “Initial recombination of ions,” Phys. Rev., vol. 54, no. 8, pp. 554-557, 1938. 10. C. L. Braun, “Electric Field Assisted Dissociation of Charge Transfer States as a Mechanism of Photocarrier Production,” J. Chem. Phys., vol. 80, no. 9, pp. 4157-4161, 1984. 11. Y. Setoguchi and C. Adachi, “Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers,” J. Appl. Phys., vol. 108, no. 6, p. 64516, 2010. 12. R. F. Kazarinov and C. H. Henry, “Second-Order Distributed Feedback Lasers with Mode Selection Provided by First-Order Radiation Losses,” IEEE J. Quantum Electron., vol. 21, no. 2, pp. 144-150, 1985. 13. C. Karnutsch, C. Pflumm, G. Heliotis, J. C. DeMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett., vol. 90, no. 13, pp. 2005-2008, 2007. 14. A. S. D. Sandanayaka, K. Yoshida, M. Inoue, C. Qin, K. Goushi, J.-C. Ribierre, T. Matsushima, and C. Adachi, “Quasi-Continuous-Wave Organic Thin-Film Distributed Feedback Laser,” Adv. Opt. Mater., vol. 4, no. 6, pp. 834-839, 2016. 15. J. L. Bredas, J. Cornil, A. J. Heeger, and B. J. Briidas, “The exciton binding energy in luminescent conjugated polymers,” Adv. Mater., vol. 8, no. 5, p. 447--{&}, 1996. 16. C. Deibel, D. MacK, J. Gorenflot, A. Schöll, S. Krause, F. Reinert, D. Rauh, and V. Dyakonov, “Energetics of excited states in the conjugated polymer poly(3- hexylthiophene),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 8, pp. 1-5, 2010. 17. P. K. Nayak, “Exciton binding energy in small organic conjugated molecule,” Synth. Met., vol. 174, pp. 42-45, 2013. 18. S. Kraner, R. Scholz, F. Plasser, C. Koerner, and K. Leo, “Exciton size and binding energy limitations in one-dimensional organic materials,” J. Chem. Phys., vol. 143, no. 24, pp. 1-8, 2015. [ 6 ] 極低經放大自發發射臨限值及自旋塗八茀純薄膜之藍色電致發光在過去的二十年期間有機半導體雷射已成為深入研究之主題,導致關於雷射臨限值及操作性裝置之穩定性的重大發展。 1 - 3此等裝置目前考慮用於多種應用,包括光譜工具、資料通信裝置、醫療診斷學及化學傳感器。 1 - 5然而,目前尚無電驅動有機雷射二極體之論證且亦仍需進行突破以開發真實連續波光學泵浦有機半導體雷射技術。 1-3,6-8線已很好地認識到實現電泵浦有機雷射二極體之挑戰,且其涉及(i)由於極化子及長壽命三重態,在雷射波長下發生額外吸收損失,(ii)由於單重態-三重態、單重態-極化子及單重態-熱互毀,單重態激子之淬滅,及(iii)在高電流密度下之電致發光裝置操作中有機材料之穩定性。應注意,已提出降低三重態及極化子損失之方法,其包括使用三重態淬滅劑及減小有機發光二極體(OLED)之作用面積以在空間上分離激子形成與激子衰變區域。 9,10儘管此等問題需要充分克服且仍需進一步研究,但亦至關重要的係同時在有機半導體薄膜中大體上降低經放大自發發射(ASE)及雷射之臨限值。 3為此目的,需要新穎高雷射增益有機材料以及可併入至電泵浦有機發光裝置中之經改良共振器結構之發展。 輻射衰變速率( k R )直接與愛因斯坦B係數相關,如以下方程式所表示: ,其中ν 0 為光之頻率, h為Planck's常數,且 c為光之速度。ASE臨限值與B係數成反比,意味著較大k R通常較佳以達成低ASE臨限值。 11 , 12如最近審閱之關於有機雷射之文章中所概述, 3基於小分子的有機薄膜中所報導之最低ASE臨限值為110 nJ/cm 2,且使用9,9'-螺茀衍生物獲得。 13在約300至400 nJ/cm 2之薄膜中展示低ASE臨限值之兩種其他優良有機半導體雷射材料為4,4'-雙[( N -咔唑)苯乙烯基]聯苯(BSBCz)及七茀衍生物。 12,14儘管ASE臨限值通常取決於用於光學泵浦之光源之特性,但值得注意的係上文所提及之ASE臨限值藉由使用用於光激勵之類似氮雷射而判定。認為茀衍生物對於達成低ASE臨限值係極具前景的,且該等茀衍生物中之一部分展示高於1×10 9s - 1之輻射衰變速率。 13 - 19明顯地,先前工作已具體研究經己基側鏈官能化的三聯茀、五茀及七茀衍生物之光物理屬性。 18結果論證當增加寡聚茀分子之長度時,輻射衰變速率增加而ASE臨限值減小。在此情形下,驗證藉由增加寡聚物長度ASE/雷射屬性是否能再進行進一步改良至關重要。 此處,吾人就八茀衍生物進行報導,展示在具有87%之PLQY及約600 ps之螢光壽命之經旋塗純薄膜中無濃度淬滅。此分子之化學結構顯示於圖75a中。八茀純薄膜之大PLQY值及短PL壽命伴有約90 nJ/cm 2之ASE臨限值,到達有機非聚合增益介質中ASE效能之前所未有的位準。 3基於八茀純薄膜之有機分散式回饋(DFB)雷射及OLED之效能提供進一步證據證明,此茀衍生物對致力於有機半導體雷射裝置及其應用之進一步工作極具前景。 用於此工作中之實驗程序描述於補充材料中。 19旋塗於熔融矽石基板上之八茀純薄膜之吸收及穩態PL光譜展示於圖75b中。薄膜在波長之可見範圍內幾乎透明,且在紫外輻射區域中呈現具有375 nm之最大吸收峰波長的一個主要吸收帶。此吸收峰先前已歸因於茀單體之間的激子耦合。 18自長波長吸收邊緣之光能間隙經計算為約2.9 eV。插圖75b中所展示之PL光譜及圖像指示八茀純薄膜發藍色螢光。光譜展示具有兩個波峰的明確電子振動結構,其可指派給(0,0)及(0,1)轉變及在與(0,2)轉變相關聯之較長波長下之肩部。發現最大PL峰波長為約423 nm。在含有分散至4,4'-雙( N -咔唑基)-1,10-聯苯(CBP)主體中之10 wt.%及20 wt.%之八茀的旋塗摻合物中所量測的吸收及穩態PL光譜顯示於圖76中(參見補充材料)。在此工作中選定CBP主體,此係因為已知高效Förster型能量傳送自CBP發生至大部分寡聚茀衍生物。 14儘管摻合物之吸收光譜由CBP吸收控制,但可以看出其PL光譜並不與八茀純薄膜之光譜明顯不同。隨後在純薄膜及CBP摻合物中量測PLQY及PL壽命。10 wt.%及20 wt.%之摻合物分別展示88%及87%之PLQY值,其與純薄膜中發現的值接近。純薄膜及10wt.%及20wt.%之摻合物亦呈現類似的單指數螢光衰變,其分別具有609、570及611 ps之特性PL壽命(參見補充材料中之圖77)。此提供證據表明,八茀純薄膜並不展示任何PL濃度淬滅,不同於在類似三聯茀、五茀及七茀衍生物中所報導的。 18考慮到在八茀純薄膜中所量測之約1.7×10 9s - 1之較大輻射衰變速率,此寡聚茀衍生物可預期展示優良的ASE屬性。 11 , 12使用可變角橢圓偏振光譜法來量測八茀純薄膜之光學常數且展示於圖75c中(自橢圓偏振法資料計算光學常數,可見於補充材料中之圖78中)。純薄膜之較小光學各向異性指示八茀分子幾乎隨機取向,其與先前報導之七茀純薄膜中之橢圓偏振法結果相符。 20如圖79a中示意性地表示,八茀純薄膜之ASE屬性藉由在10 Hz之重複率下遞送800 ps脈衝之氮雷射在337 nm處光學泵浦樣本而表徵。激勵光束集中至尺寸為0.5 cm×0.08 cm之條帶中,且自有機薄膜之邊緣收集PL。圖79b展示在各種泵浦強度下自260 nm厚八茀純薄膜之邊緣量測的PL光譜。在高激勵密度下可明確看出光譜線窄化效應,伴有半高全寬(FWHM)降至5 nm,提供證據表明ASE產生於此樣本中。光放大發生在約450 nm處,歸因於在有機膜中經波導且藉由經經刺激發射放大的自發地發射的光子。 21隨後根據自薄膜之邊緣發射之輸出強度相對於激勵強度之曲線判定ASE臨限值。可見於圖79c中之斜坡效率之突變導致約90 nJ/cm 2之ASE臨限值。應注意,在具有在53 nm與540 nm之間的範圍內的不同薄膜厚度之八茀純薄膜中量測ASE屬性。圖79d及圖80中所展示之資料(參見補充資訊)指示260 nm之厚度的薄膜之ASE臨限值最低。已在聚(9,9-二辛基茀)薄膜中報導ASE臨限值之類似厚度相關性。 22此種狀態歸因於當增加厚度時模式限制之增加與泵浦模式重疊之減少之間的相互作用。明顯地,在260 nm厚八茀純薄膜中所量測之ASE臨限值低於曾在基於小分子的有機薄膜中所報導的最低值。 3此種良好的效能亦應意指八茀薄膜呈現極低的損失係數值。為此目的,根據八茀薄膜之邊緣與泵浦條帶之間的距離量測ASE強度。圖81中所展示之結果(參見補充資訊)導致對於260 nm厚八茀純薄膜之5.1 cm -1之損失係數。此種低值接近聚(9,9-二辛基茀)薄膜 23中所報導之低值,且提供八茀薄膜之優良光學波導屬性之證據。應著重指出,不同於大多數聚茀系統,由於茀酮之形成,八茀以及大多數基於茀的小分子 24 - 26在劇烈的光照射下並不展示其光物理屬性之任何顯著退化。此外,圖82中所顯示之結果(參見補充資訊)論證八茀純薄膜在環境氛圍及氮氛圍兩者中在高於ASE臨限值之高泵浦強度下呈現優良的光穩定性。此可涉及薄膜之高輻射衰變速率,其推測導致在高強度照射下材料之光致漂白之減少。比較在較短寡聚茀中所量測之ASE臨限值, 14,18結果表明增加寡聚物長度導致ASE效能之改良。然而,應注意在十茀薄膜進行之初步實驗展示比在八茀薄膜獲得之ASE臨限值更高的ASE臨限值,指示八茀衍生物在此系列寡聚物中當然為有機半導體雷射之最具前景的候選。 吾人隨後設計及製造一種由藉由一階散射區域包圍的二階布拉格散射區域組成的混合階DFB光柵結構。 17此種光柵架構經選擇以獲得低雷射臨限值連同在垂直於基板之方向上的雷射發射。在DFB雷射中,雷射發射在布拉格波長( λ Bragg)附近發生,定義為: Bragg= 2 n effΛ,其中 n eff為雷射增益介質之有效折射率, m為布拉格階且Λ為光柵週期。 1-3使用藉由橢圓偏振法判定之八茀純薄膜之折射率(圖75c)及在此研究中量測之ASE波長,對於 m=1,2,分別選擇光柵週期為260 nm及130 nm。圖83a及圖83b展示此類DFB SiO 2光柵之示意性表示及掃描電子顯微鏡(SEM)影像,使用電子束微影及反應性離子蝕刻技術製造此類光柵。應注意DFB光柵之深度為約70 nm。為完成雷射裝置,將260 nm厚的八茀純薄膜旋塗於DFB結構頂部上。圖83c展示在低於及高於雷射臨限值之若干激勵密度下垂直於基板平面所偵測的發射光譜。低於臨限值,可觀測到歸因於DFB光柵之光學阻帶之布拉格突降。高於雷射臨限值,在約452 nm之雷射波長處可清楚看出陡雷射發射峰。根據激勵強度之此DFB雷射之輸出發射強度及FWHM繪製於圖81d中。發現雷射發射峰之FWHM在高激勵密度下低於0.3 nm。同時,發現根據輸出強度曲線之斜率中之變化判定之雷射臨限值為約84 nJ/cm 2,其比先前所報導之ASE臨限值稍低。總體而言,此工作中量測之極低ASE及雷射臨限值連同在高光激勵強度下薄膜之優良的光穩定性論證此八茀衍生物為用於有機半導體雷射應用之極具前景的增益介質材料。 為充分評估用於有機雷射二極體之此八茀衍生物之潛能,使用標準OLED結構研究此化合物在純薄膜及CBP摻合物中之電致發光(EL)屬性亦至關重要。此研究中製造之OLED之示意性表示提供於圖82a中。該等裝置之架構如下:氧化銦錫(ITO) (100 nm)/聚(3,4-伸乙二氧基噻吩):聚(苯乙烯磺酸鹽) (PEDOT:PSS) (45 nm)/EML(約40 nm)/2,8-雙(二苯基磷醯基)二苯并[b,d]噻吩(PPT) (10 nm)/2,2',2''-(1,3,5-苯三基)-參(1-苯基-1-H-苯并咪唑) (TPBi) (55 nm)/LiF (1 nm)/Al (100 nm),其中發光層(EML)對應於八茀純薄膜抑或八茀:CBP摻合物。在此等裝置中,PEDOT:PSS起電洞注入層的作用,而PPT及TPBi分別用作電洞阻擋層及電子傳輸層。圖84a中之PEDOT:PSS、PPT及TPBi之最高佔用分子軌域(HOMO)及最低未佔用分子軌域(LUMO)能量值取自文獻。 20藉由光電子光譜分析在空氣中量測之八茀純薄膜之游離電位為5.9 eV(參見補充材料中之圖85)。使用自純薄膜之吸收光譜判定之2.9 eV之光學帶隙值,八茀之電子親和力可估算為約3 eV。如圖86a中所展示(參見補充資訊),在此等OLED中在10 mA / cm 2處量測之EL光譜與八茀純薄膜中及CBP摻合物中所量測之PL光譜類似,指示自此等裝置發射之藍色EL僅來自八茀發色團。裝置之電流密度-電壓-亮度( J- V- L )曲線顯示於圖86b中(參見補充資訊)。在1 cd/m 2處,基於純八茀薄膜之OLED、10 wt.% CBP摻合物及20 wt.% CBP摻合物分別呈現5.0 V、4.9 V及4.5 V之驅動電壓。在此等OLED中獲得之最高亮度值對於純薄膜為4580 cd/m 2(在12.6 V處),對於20 wt.%摻合物為8520 cd/m 2(在10.4 V處),且對於10 wt . %摻合物為8370 cd/m 2(在11.2 V處)。根據電流密度之裝置之外部量子效率(η ext)繪製於圖84b中。發現其最大值對於純薄膜為3.9%,對於20 wt.%摻合物為4.3%,且對於10 wt.%摻合物為4.4%。不能藉由三種薄膜之PLQY值解釋效率之不同,其PLQY值幾乎相同。實情為,致力於旋塗薄膜中寡聚茀分子之分子定向的當前研究論證表明,儘管八茀分子在純薄膜中隨機定向,但20 wt.%及10 wt.%八茀:CBP摻合物展示八茀分子之相對良好的水平定向。 26發射偶極之此等水平分子定向應導致光提取效率之改良,且因此可解釋基於CBP摻合物在OLED中量測之稍高的η ext值。 20 , 26在有機雷射二極體之情形下,在此等OLED中獲得之最大η ext值明顯具有前景。然而,應注入更高的電流密度至裝置中且在高於100 mA/cm 2之電流密度下出現效率滾降,此種效率滾降在另外工作中需經由在慎重地將此八茀衍生物考慮為電驅動有機雷射裝置之候選之前改良裝置架構進行遏制。 概言之,此研究論證非聚合有機薄膜中前所未有的90 nJ/cm 2之低ASE臨限值。使用在旋塗純薄膜中展示87%之PLQY及1.7 × 10 9s - 1之大輻射衰變速率之八茀衍生物實現此成就。此藍光發射材料接著用於低臨限值有機半導體DFB雷射中及具有外部量子效率高達4.4%且最大亮度值接近10,000 cd/m 2之螢光OLED中。總體而言,此研究提供證據表明此八茀衍生物為用於有機半導體雷射之優良的有機材料。 參見補充材料[URL將藉由AIP插入]關於用於此研究之實驗程序中之所有資訊,八茀薄膜中之CBP摻合物之吸收及螢光光譜、橢圓偏振法資料、額外ASE特性化結果,及HOMO及LUMO之判定。 參考文獻1. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007). 2. S. Chénais and S. Forget, Polym. Int. 61, 390 (2012). 3. A. J. C. Kuehne and M. C. Gather, Chem. Rev. in press, DOI: 10.1021/acs.chemrev.6b00172. 4. Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull and I. D. W. Samuel, Laser & Photon. Rev. 7, L71-L76 (2013). 5. A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager and V. Bulovic, Nature 434, 876 (2005). 6. I. D. W. Samuel, E. B. Namdas and G. A. Turnbull, Nature Photon. 3, 546 (2009). 7. S. Z. Bisri, T. Takenobu and Y. Iwasa, J. Mater. Chem. C 2, 2827 (2014). 8. A. S. D. Sandanayaka, T. Matsushima, K. Yoshida, M. Inoue, T. FμJihara, K. Goushi, J. C. Ribierre and C. Adachi, Adv. Opt. Mater. 4, 834 (2016). 9. A. S. D. Sandanayaka, L. Zhao, D. Pitrat, J. C. Mulatier, T. Matsushima, J. H. Kim, J. C. Ribierre and C. Adachi, Appl. Phys. Lett. 108, 223301 (2016). 10. K. Hayashi, H. Nakanotani, M. Inoue, K. Yoshida, O. Mikhnenko, T. Q. Nguyen and C. Adachi, Appl. Phys. Lett. 106, 093301 (2015). 11. F.-H. Kan and F. Gan, Laser Materials(World Scientific, Singapore, 1995). 12. T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe and C. Adachi, Appl. Phys. Lett. 86, 071110 (2005). 13. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita and C. Adachi, Adv. Funct. Mater. 17, 2328 (2007). 14. L. Zhao, M. Inoue, K. Yoshida, A. S. D. Sandanayaka, J. H. Kim, J. C. Ribierre and C. Adachi, IEEE J. Sel. Top. Quant. Electron. 22, 1300209 (2016). 15. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, I. D. W. Samuel, H. S. Barcena and P. L. Burn, Appl. Phys. Lett. 91, 081108 (2007). 16. T. W. Lee, O. O. Park, D. H. Choi, H. N. Cho and Y. C. Kim, Appl. Phys. Lett. 81, 424 (2002). 17. C. Karnutsch, C. Pflumm, G. Heliotis, J. C. DeMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gartner and U. Lemmer, Appl. Phys. Lett. 90, 131104 (2007). 18. E. Y. Choi, L. Mazur, L. Mager, M. Gwon, D. Pitrat, J. C. Mulatier, C. Monnereau, A. Fort, A. J. Attias, K. Dorkenoo, J. E. Kwon, Y. Xiao, K. Matczyszyn, M. Samoc, D.-W. Kim, A. Nakao, B. Heinrich, D. Hashizume, M. Uchiyama, S. Y. Park, F. Mathevet, T. Aoyama, C. Andraud, J. W. Wu, A. Barsella and J. C. Ribierre, Phys. Chem. Chem. Phys. 16, 16941 (2014). 19. J.-H. Kim, M. Inoue, L. Zhao, T. Komino, S. Seo, J. C. Ribierre and C. Adachi, Appl. Phys. Lett. 106, 053302 (2015). 20. L. Zhao, T. Komino, M. Inoue, J. H. Kim, J. C. Ribierre and C. Adachi, Appl. Phys. Lett. 106, 063301 (2015). 21. M. D. McGehee and A. J. Heeger, Adv. Mater. 12, 1655 (2000). 22. M. Anni, A. Perulli and G. Monti, J. Appl. Phys. 111, 093109 (2012). 23. G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 81, 415 (2002); J. C. Ribierre, A. Ruseckas, I. D. W. Samuel, H. S. Barcena and P. L. Burn, J. Chem. Phys. 128, 204703 (2008). 24. J.C. Ribierre, L. Zhao, M. Inoue, P.O. Schwartz, J.H. Kim, K. Yoshida, A.S.D. Sandayanaka, H. Nakanotani, L. Mager, S. Mery and C. Adachi, Chem. Comm. 52, 3103 (2016). 25. J. C. Ribierre, A. Ruseckas, O. Gaudin, I. D. W. Samuel, H. S. Barcena, S. V. Staton and P. L. Burn, Org. Electron. 10, 803 (2009). 26. L. Zhao, T. Komino, D. H. Kim, M. H. Sazzad, D. Pitrat, J. C. Mulatier, C. Andraud, J. C. Ribierre and C. Adachi, J. Mater. Chem. C 4, 11557 (2016). 實驗程序 光物理及 ASE 量測遵循先前文獻中所公開的方法合成該八茀衍生物。 1使用清潔劑、純水、丙酮及異丙醇藉由超音波處理接著藉由紫外輻射臭氧處理清潔熔融矽石基板。八茀純薄膜及CBP:八茀摻合薄膜藉由旋塗自經氮填充之手套箱中之氯仿溶液沈積於熔融矽石基板上。應注意,變化溶液之濃度及自旋速度以控制八茀純薄膜之厚度。分別使用UV-vis光譜光度計(Perkin-Elmer Lambda 950-PKA)及光譜螢光計(Jasco FP-6500)來量測吸收及穩態發射光譜。使用具有340 nm之激勵波長之氙氣燈及累計球(C11347-11 Quantaurus QY,Hamamatsu Photonics)來量測薄膜中之PLQY。使用條框攝影機及遞送具有10 ps之寬度及365 nm之波長之光學脈衝的Ti-藍寶石雷射系統(Millenia Prime,Spectra Physics)來量測PL衰變。 在45°至75°之不同角度處藉由75 nm厚的八茀純薄膜中之步驟5°進行可變角橢圓偏振光譜法(VASE) (J.A. Wollam,M-2000U)。接著使用分析軟體(J.A .Woollam,WVASE32)分析橢圓偏振法資料以判定薄膜之各向異性消光係數及折射率。 對於ASE屬性之特性化,藉由337 nm處發射之脈衝式氮雷射(KEN2020,Usho)光學泵浦樣本。此雷射在10 Hz之重複率下遞送具有800 ps之脈衝持續時間之脈衝。使用一組中性密度濾光器變化泵浦光束強度。泵浦光束集中至0.5 cm × 0.08 cm之條帶中。使用連接至電荷耦合裝置光譜儀(PMA-11,Hamamatsu Photonics)之光纖收集來自有機薄膜之邊緣的發射光譜。 有機 DFB 雷射之製造及特性化遵循如上之相同清潔程序清潔具有熱生長1 μm厚的SiO 2層的矽基板。隨後將六甲基二矽氮烷(HMDS)旋塗於SiO 2表面之頂部上且樣本在120℃下退火2分鐘。此後,自ZEP520A-7溶液(ZEON Co.)將70 nm厚的抗蝕劑層旋塗於基板上,且在180℃下退火4分鐘。接著,電子束微影使用JBX-5500SC系統(JEOL)用於將DFB光柵圖案化於抗蝕劑層上。電子束照射之後,圖案在顯影劑溶液(ZED-N50,ZEON Co.)中顯影。在以下步驟中,經圖案化抗蝕劑層起蝕刻遮罩的作用。使用EIS-200ERT蝕刻系統(ELIONIX)藉由CHF 3電漿蝕刻基板。最後,使用FA-1EA蝕刻系統(SAMCO)藉由O 2電漿-經蝕刻基板以完全移除抗蝕劑層。SEM (SU8000,Hitachi)用於檢查DFB光柵之品質。為完成有機雷射裝置,最後將260 nm厚的八茀純薄膜自氯仿溶液旋塗於DFB光柵之頂部上。 對於雷射操作,經由透鏡及狹縫將來自氮氣雷射(SRS,NL-100)之脈衝式激勵光集中於裝置之6 × 10 3cm 2之面積上。激勵波長為337 nm,脈衝寬度為3.5 ns,且重複率為20 Hz。激勵光相對於裝置平面之法線成約20°入射於裝置上。利用連接至多通道光譜儀(PMA-50,Hamamatsu Photonics)之光纖收集垂直於裝置表面之經發射光,該光纖經置放為與該裝置相距6 cm。使用一組中性密度濾光器來控制激勵強度。 OLED 之製造及特性化藉由在預清潔ITO玻璃基板上沈積有機層及陰極製造OLED。在此研究中製造之OLED之結構如下:ITO(100 nm)/PEDOT:PSS(45 nm)/EML(約40 nm)/PPT(10 nm)/TPBi(55 nm)/LiF(1 nm)/Al(100 nm),其中發光層(EML)對應於八茀純薄膜抑或八茀:CBP摻合物。PEDOT:PSS層旋塗於ITO上且在130℃下退火30分鐘。八茀純薄膜及摻合薄膜自氯仿溶液旋塗於手套箱環境中之PEDOT:PSS層之頂部上。EML層之厚度通常為約40 nm。接著,10 nm厚的PPT層及40 nm厚的TPBi層藉由熱蒸發而沈積。最後,由薄LiF層及100 nm厚的Al層製成之陰極藉由通過遮蔽罩之熱蒸發來製備。裝置之作用面積為4 mm 2。在特性化之前,裝置囊封於氮氛圍中以防止與氧氣及濕氣相關的任何降解效應。 在直流電驅動下,使用電源錶(Keithley 2400,Keithley Instruments Inc.)及絕對外部量子效率量測系統(C9920-12,Hamamatsu Photonics)來量測電流密度-電壓-亮度( J- V- L)特性。使用連接至光譜儀(PMA-12,Hamamatsu Photonics)之光纖來量測EL光譜。 參考文獻1. R. Anemian, J.C. Mulatier, C. Andraud, O. Stephan, J.C. Vial, Chem. Comm. 1608 (2002). [ 7 ] CW 放大自發發射 ( ASE ) 實驗經CW放大自發發射(ASE)實驗在雙茀心樹枝體及八茀旋塗純薄膜中進行。薄膜沈積至預清潔平面熔融矽石基板上且未經囊封。薄膜厚度為約250 nm。 為研究CW ASE之屬性,在355 nm處藉由CW雷射二極體光學泵浦薄膜。使用以脈衝產生器(WF 1974,NF Co.)觸發之聲光調變器(AOM,Gooch&Housego)來遞送具有不同寬度之脈衝。使用與數位攝影機(C9300,Hamamatsu Photonics)連接之具有100 ps之時間解析度的條框眼(C7700,Hamamatsu Photonics)自薄膜之邊緣收集所發射的光。使用光電倍增管(PMT) (C9525-02,Hamamatsu Photonics)來記錄發射強度。在多通道示波器(Agilent Technologies, MSO6104A)上監測PMT回應及驅動方波信號兩者。 在兩種材料中,各種泵浦強度下之條框攝影機影像及發射光譜展示高於臨限值之明確的線窄化效應,其係歸因於經刺激發射且可指派給ASE。根據比較針對不同脈波寬度之激勵強度曲線之輸出強度量測ASE臨限值。結果展示針對在100 μs至5 ms之範圍內變化的脈波寬度ASE臨限值幾乎保持不變。此外,可以注意到此等ASE臨限值與使用脈衝式氮雷射(800 ps之脈衝寬度及10 Hz之重複率)在此等材料中所量測之彼等臨限值相符。在八茀及雙茀心樹枝體兩者中達成CW雷射之可能性意指可忽略的三重態損失。此與兩種材料均呈現極高的光致發光量子產率(PLQY)(雙茀心樹枝體中92%之PLQY及八茀純薄膜中82%之PLQY)之實情相符。此外,在八茀及雙茀心樹枝體溶液中進行瞬態吸收量測以檢查三重態-三重態吸收光譜。可以看出,ASE與三重態吸收光譜之間不存在重疊,其提供明確證據表明三重態吸收並不對兩種材料中之CW雷射起任何有害的作用。 [ 8 ] 電流注入有機半導體雷射二極體 概述本雷射二極體主要基於無機半導體,但藉由獨特的製造路線有機物亦可為優良的增益介質。然而,儘管光學泵浦有機半導體雷射已取得進步,但目前尚未實現電驅動有機半導體雷射二極體。此處,吾人報導有機半導體雷射二極體之第一論證。裝置併入有機發光二極體結構中之混合階分散式回饋SiO 2光柵且發射藍色雷射。此等結果證明將電流直接注入有機薄膜之雷射可藉由選擇在雷射波長下未展示三重態及極化子吸收損失之高增益有機半導體及設計恰當的回饋結構以遏制高電流密度下之損失來實現。此表示朝向簡單的基於有機物的雷射二極體的第一步,其可涵蓋可見光譜及近紅外光譜,且為朝向將來有機光電積體電路之主要進步。 詳細描述由於高增益有機半導體材料之發展及高品質因數共振器結構 1 - 5之設計兩者之重大進步,在過去二十年內極大地改良了光學泵浦有機半導體雷射(OSL)之屬性。作為雷射之增益介質之有機半導體之優點包括其高光致發光(PL)量子產率、較大經刺激發射截面,及跨越可見區域之寬廣的發射光譜以及其化學可調諧性及易於處理。由於低臨限值分散式回饋(DFB) OSL之最新進步,論證了藉由電驅動奈秒脈衝式無機發光二極體之光學泵浦,提供一種朝向新型緊湊及低成本可見雷射技術 6之路線。此種類型之微型化有機雷射對於晶片實驗室應用極具前景。然而,最終目標為電驅動有機半導體雷射二極體(OSLD)。除使有機光子及光電電路能夠完全整合之外,OSLD之實現將打開高效能顯示、醫療感測及生物相容裝置之新穎的應用。 藉由有機半導體之直接電泵浦阻止雷射之實現之問題主要歸因於自電觸點之光學損失及發生在高電流密度 4,5,7-9下之三重態及極化子損失。已提出解決此等基本損失問題之方法,該等方法包括使用三重態淬滅劑 10 - 12藉由單重態-三重態激子互毀以遏制三重態吸收損失及單重態淬滅,以及減小裝置作用面積 13以在空間上分離激子形成與激子輻射衰變出現且將極化子淬滅製程降至最低。然而,即使有機發光二極體(OLED)及光學泵浦有機半導體DFB雷射 5中已取得進步,但仍未確鑿地論證電流注入OSLD。 先前研究建議若與電泵浦相關聯之額外損失經完全遏制 14,則需要高於幾個kA/cm 2之電流密度以達成自OSLD之雷射。實現OSLD之最具前景之分子中之一者為4,4'-雙[( N -咔唑)苯乙烯基]聯苯(BSBCz) (圖89a中之化學結構) 15,此係因為其光學特性及電學特性之優良的組合(諸如薄膜(在800 ps脈衝光激勵下為0.30 µJ cm 2) 16中之低經放大自發發射(ASE)臨限值)及耐受在5 µs脈衝操作下具有高於2% 13之最大電致發光(EL)外部量子效率( η EQE)之OLED中高達2.8 kA cm 2之電流密度注入的能力。此外,最近在經光學泵浦之基於BSBCz之DFB雷射 17中論證在80 MHz之重複率下及在30 ms之長脈衝光激勵下之雷射且由於在BSBCz薄膜之雷射波長下極小的三重態吸收損失該雷射係很可能的。此處,吾人無庸置疑地論證來自有機半導體薄膜之雷射之第一實例,該雷射基於在具有整合於裝置之作用面積中之混合階DFB SiO 2光柵之反向OLED結構中的BSBCz薄膜經由OSLD之發展及完整特性化藉由電直接激勵。 此研究中研發之OSLD之架構及製造示意性地展示於圖89a及圖90中(參見材料及方法之實驗程序之詳細描述)。氧化銦錫(ITO)玻璃基板上之SiO 2之濺鍍層藉由電子束微影及反應性離子蝕刻雕刻以建立具有30 × 90 µm之面積的混合DFB光柵(圖89b),且有機層及金屬陰極真空沈積於基板上以完成裝置。吾人設計具有一階及二階布拉格散射區域之混合階DFB光柵,其分別提供雷射發射之強光學回饋及高效垂直提取 17 , 18。基於布拉格條件 4 , 19 Bragg=2 n effΛ m ,分別針對一階及二階區域選擇140 nm及280 nm之光柵週期(Λ 1及Λ 2),其中 m為繞射階, λ Bragg為布拉格波長,其設定成對於BSBCz之所報導之最大增益波長(477 nm),且 n eff為增益介質之有效折射率,其經計算對於BSBCz 20 , 21為1.70。在經表徵之第一集合裝置中個別一階及二階DFB光柵區域之長度分別為1.12 µm及1.68 µm,下文被稱作OSLD。 圖89c及圖89d中之掃描電子顯微法(SEM)影像確認經製造DFB光柵具有140±5 nm及280±5 nm之週期,具有約65±5 nm之光柵深度。完全移除經蝕刻區域中之SiO 2層以曝露ITO對與有機層進行良好電接觸至關重要且藉由能量色散X射線光譜儀(EDX)分析驗證(圖90c、圖90d)。完整OSLD之截面SEM及EDX影像展示於圖89d及圖89e中。所有層之表面形態展示具有50 nm至60 nm之表面調變深度之光柵結構。儘管共振雷射模式與電極之相互作用預期降低回饋結構之品質因數,但金屬電極上之此種光柵結構亦應降低裝置結構 22 23內導引之模式之吸收損失。 此工作中製造之OSLD具有擁有能量位準之簡單反向OLED結構ITO (100 nm)/20 wt.% Cs:BSBCz (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Ag (10 nm)/Al (90 nm),如圖91a中所展示。在接近ITO觸點之區域中將BSBCz薄膜與Cs摻雜改良注入至有機層之電子,且MoO 3用作電洞注入層(圖92)。儘管最有效之OLED大體上使用多層架構以使電荷平衡 24,25達到最佳,但在高電流密度下電荷可在有機異質界面處積聚,其可對裝置效能及穩定性 26有害。在此工作中所製造的OSLD僅含有BSBCz作為有機半導體層且經特定設計以使有機異質界面的數目降至最低。亦製造不具有SiO 2DFB光柵之參考裝置(下文被稱作OLED)以研究光柵對EL屬性之影響。 圖91b展示在3.0 V之直流電(DC)操作下OSLD及參考OLED之光學顯微鏡影像。除先前所描述之DFB光柵之外,五個其他DFB光柵幾何形狀(表1)經最佳化且表徵於OSLD中。儘管EL自參考OLED之作用面積均勻發射,但可自OSLD中之二階DFB光柵區域看出更劇烈的發射,其經特定設計以促進垂直光提取(圖91b及圖93)。在環境溫度下在脈衝式條件(400 ns之電壓脈衝寬度及1 kHz之重複率)下OSLD及OLED中之電流密度-電壓( J- V)及 η EQE- J特性展示於圖91c及圖91d中,且在DC條件下獲得之特性顯示於圖94中。用於計算OSLD之電流密度之作用面積根據SEM及雷射顯微鏡影像估算。 在裝置崩潰之前參考OLED之最大電流密度自在DC操作下之6.6 A cm 2增加至在脈衝操作下之5.7 kA cm 2,此係因為藉由脈衝操作 13,27經減小之焦耳加。在DC操作下,裝置中之所有者在較低電流密度下呈現高於2%之最大 η EQE且在高於1 A cm 2之電流密度下呈現強效率滾降,其推測歸因於裝置之熱降解。另一方面,在脈衝操作(圖91c、圖91d)下OLED中之效率滾降在高於110 A cm 2之電流密度處開始,與先前報導 13相符。在脈衝操作下OSLD中之效率滾降經進一步遏制,且甚至發現 η EQE實質上增加至高於200 A cm 2以達成2.9%之最大值。在高於2.2 kA cm 2之電流密度下 η EQE快速減低很可能係由於裝置之熱降解。 儘管OLED之EL光譜類似於純BSBCz薄膜之穩態PL光譜(圖94c)且不隨電流密度之變化而變化,但來自OSLD之玻璃表面之EL光譜在脈衝操作下顯現隨遞增之電流密度之光譜線窄化(圖95a)。在478.0 nm處對於低於650 A cm 2之電流密度觀測到對應於DFB光柵之阻帶之布拉格突降(圖95b)。當電流密度增加至高於此值時,在480.3 nm處產生強光譜線窄化,表明雷射之開始。發現窄發射峰之強度比EL發射背景之強度增加得更快,其可歸因於與經刺激發射相關聯之非線性。 根據電流之OSLD之輸出強度及半高全寬(FWHM)繪製於圖95c中。儘管純BSBCz薄膜之穩態PL光譜之FWHM為約35 nm,但OSLD之FWHM在高電流密度減小至低於0.2 nm之值,其接近吾人之光譜儀(對於57 nm之波長範圍為0.17 nm)之光譜解析度限制。輸出強度之斜坡效率隨遞增之電流驟變且可用於判定600 A cm 2(8.1 mA)之臨限值。在高於4.0 kA cm 2之情況下,輸出強度隨遞增之電流減小,推測歸因於溫度之強增加導致裝置崩潰開始,但發射光譜保持極陡。此增加及後續減小與 η EQE- J曲線相符。藉由置放於OSLD前部與ITO玻璃基板(圖95d)相距3 cm之距離的功率計量測之最大輸出功率在3.3 kA cm 2處為0.50 mW。此等觀測到的EL屬性很大程度上表明光放大在高電流密度下產生且電驅動雷射在高於電流密度臨限值之情況下實現。 光束偏光及形狀經表徵以提供進一步證據表明此係雷射 9。OSLD之輸出光束很大程度上沿光柵圖案經線性偏光(圖96a),其預期雷射發射來自一維DFB。在不同電流密度下高於雷射臨限值處所量測之OSLD發射之空間剖面(圖96b)展示妥當定義的高斯光束(Gaussian beams)之存在。亦,若此係雷射應存在光斑圖案之外觀,提供空間相干性之初步證據。 在吾人可主張雷射之前,在過去被曲解為雷射之若干現象必須排除作為所觀測狀態 9之起因。在垂直於基板平面之方向上檢測到吾人之OSLD之發射,且展示明確的臨限值狀態,因此由不具有雷射放大之波導模式之邊緣發射引起的線窄化可不予考慮 20,28,29。ASE可以與雷射類似之方式出現,但吾人之OSLD (< 0.2 nm)中之FWHM比有機薄膜(幾個奈米)之典型的ASE線寬窄得多,且與經光學泵浦的有機DFB雷射(< 1 nm) 5之典型的FWHM相符。藉由無意激勵ITO中之轉變所獲得之極窄的發射光譜亦被誤認為來來自有機層 30之發射。然而,圖95a中之OSLD之發射峰波長為480.3 nm,且不能歸因於來自ITO之發射,其在410.3 nm、451.3 nm及468.5 nm處具有原子光譜線。 31若此真實地係來自DFB結構之雷射,則OSLD之發射應為共振器模式之特性,且輸出應對雷射腔之任何修改極敏感。因此,具有不同DFB幾何結構之OSLD (標記OSLD-1至OSLD-5 (表1)經製造及表徵(圖93)以確認發射波長可經可預測地調諧,其在經光學泵浦的有機DFB雷射 4,5,32,33中很常見。OSLD、OSLD-1、OSLD-2及OSLD-3之雷射峰幾乎相同(分別為480.3 nm、479.6 nm、480.5 nm及478.5 nm),其具有相同DFB光柵週期。此外,OSLD-1、OSLD-2及OSLD-3所有者具有較低最小FWHM (分別為0.20 nm、0.20 nm及0.21 nm)及明確的臨限值(分別為1.2 kA cm 2、0.8 kA cm 2及1.1 kA cm 2)。另一方面,具有不同DFB光柵週期之OSLD-4及OSLD-5在459.0 nm處顯現具有0.25 nm之FWHM及1.2 kA cm 2之臨限值(OSLD-4),及在501.7 nm處具有0.38 nm之FWHM及1.4 kA cm 2之臨限值(OSLD-5)之雷射峰。此等結果明確地論證雷射波長由DFB幾何結構控制。 為驗證電驅動OSLD之雷射臨限值與藉由光學泵浦所獲得的雷射臨限值相符,使用遞送3.0 ns脈衝之N 2雷射(337 nm之激勵波長)量測經由ITO側光學泵浦之OSLD (OLSD-6)之雷射特性(圖97)。在光學泵浦(481 nm)下OLSD-6之雷射峰與在電泵浦(480.3 nm)下OSLD之雷射峰相符。在光學泵浦下所量測之雷射臨限值為約430 W cm 2。儘管此值高於在不具有兩個電極 17之經光學泵浦的基於BSBCz之DFB雷射中所獲得之30 W cm 2之值,但本OSLD中之層之厚度經最佳化以將由電極之存在引起的光學損失降至最低。假設在高電流密度下OSLD-6中無額外的損失機構,在電泵浦下1.1 kA cm 2之雷射臨限值可根據在光學泵浦下之臨限值估算。此值與在電泵浦下在具有相同光柵週期(OSLD及OSLD-2)之較小裝置中所量測之臨限值(0.6至0.8 kA cm 2)合理地吻合。 此等結果表明在高電流密度 34下通常發生在OLED中之額外損失(包括激子互毀、三重態及極化子吸收、由高電場引起之淬滅,及焦耳加熱)在BSBCz OSLD中幾乎已經遏制。此與EL效率滾降並非在劇烈脈衝電激勵下之OSLD中觀測之實情充分相符。可基於BSBCz及裝置之屬性解釋損失之遏制。如先前所提及,BSBCz薄膜並不展示顯著的三重態損失 35,且裝置作用面積之減小導致焦耳熱輔助之激子淬滅 36之減少。此外,基於分別量測複合薄膜BSBCz:MoO 3及BSBCz:Cs針對BSBCz中之自由基陽離子及自由基陰離子兩者極化子吸收與發射光譜之間的重疊係可忽略的(圖98)。 執行裝置之電學及光學模擬以進一步確認電流注入雷射發生在OSLD中(圖99)。使用自單極裝置之實驗資料之擬合提取之載流子遷移率(圖99a,圖99b),具有或不具有光柵之裝置之模擬 J- V曲線與實驗特性極好地吻合(圖99a、圖99c、圖99d),指示與具有光柵之裝置之良好電接觸之足夠的蝕刻。重組速率剖面(圖99e,圖99f)展示裝置內部之週期性變化,此係因為電子自ITO電極經由絕緣SiO 2光柵之週期性注入。類似於該重組,激子密度(圖100a)遍佈有機層之厚度,但主要集中於其中SiO 2不妨礙陰極至陽極之路徑的區域中。OSLD及OLED (圖99g)之平均激子密度類似,指示接近SiO 2之激子之高積聚補償導致相對於參考裝置之類似激子密度的光柵(無注入區域)之間的低激子密度。 自二階光柵之光提取及ITO層中形成波導損失之光陷阱在OSLD中之經計算共振波長 λ 0= 483 nm處之光場之經刺激電場分佈 E( x, y)中明確可見(圖100b)。DFB共振器腔由40%之限制因數 Γ及255之品質因數表徵。根據激子密度分佈與光場分佈(細節參見材料及方法)之重疊計算隨電流密度變化之模態增益( g m) (其為雷射模式下光之放大之指示符),具有針對2.8 10 16cm 2之BSBCz 35之經刺激發射截面 σ 刺激且針對二階區域展示於圖100c中。高於500 A cm 2之高模態增益及遞增模態增益與雷射之觀測相符。在 J=500 A cm 2處激子密度與光模之間的強空間重疊之面積(圖100d)對應於其中激子密度及光場(圖100a,圖100b)兩者均較高之面積。因此,DFB結構亦有助於增強經由在光柵之谷值中及以上之高激子密度之定位與光模耦合。 總之,此研究證明經由恰當設計及共振器及有機半導體之選擇自電流驅動有機半導體之雷射可能遏制損失及增強耦合。該雷射論證此處已在多個裝置中再生且經充分表徵以排除可被誤認為係雷射之其他現象。該結果充分支援此係有機半導體中電泵浦雷射之第一觀測之主張。BSBCz中之低損失係啟用雷射不可或缺的,因此設計具有類似或經改良屬性之新型雷射分子之策略之發展係至關重要的下一步。此報導開拓有機光子之新機會,且充當有機半導體雷射二極體技術之將來發展的基礎,亦即簡單、便宜及可調諧且可使基於有機的光電平台能夠完全及直接整合。 材料及方法 裝置製造使用中性清潔劑、純水、丙酮及異丙醇藉由超音波處理接著藉由UV臭氧處理清潔經氧化銦錫(ITO)塗佈之玻璃基板(100 nm厚之ITO,Atsugi Micro Co.)。將100 nm厚之SiO 2層(其將變成DFB光柵)在100℃下濺鍍至ITO塗佈之玻璃基板上。在濺鍍期間氬氣壓力為0.66 Pa。RF功率設定為100 W。再次使用異丙醇藉由超音波處理接著藉由UV臭氧處理清潔基板。藉由在4,000 rpm下旋塗15 s,用六甲基二矽氮烷(HMDS)來處理SiO 2表面且在120℃下退火120 s。自ZEP520A-7溶液(ZEON Co.)將具有約70 nm之厚度的抗蝕劑層以4,000 rpm旋塗於基板上持續30 s,且在180℃下烘烤240 s。 使用具有0.1 nC cm 2之經最佳化劑量的JBX-5500SC系統(JEOL)進行電子束微影以將光柵圖案繪製於抗蝕劑層上。在電子束照射之後,在室溫下將圖案於顯影劑溶液(ZED-N50,ZEON Co.)中顯影。將經圖案化之抗蝕劑層用作蝕刻遮罩,同時使用EIS-200ERT蝕刻系統(ELIONIX)用CHF 3電漿蝕刻基板。為自基板完全移除抗蝕劑層,使用FA-1EA蝕刻系統(SAMCO)用O 2電漿蝕刻基板。蝕刻條件經最佳化以自DFB中之凹槽完全移除SiO 2直至ITO曝露。使用SEM (SU8000,Hitachi)觀測形成於SiO 2表面上之光柵(圖89c)。執行EDX (在6.0 kV下,SU8000,Hitachi)分析以確認自DFB之間距完全移除SiO 2(圖90c及圖90d)。使用冷場發射SEM (SU8200,Hitachi High-Technologies)、能量色散X射線光譜測定法(XFlash FladQuad5060,Bruker)及聚焦離子束系統(FB-2100,Hitachi High-Technologies)藉由Kobelco量測截面SEM及EDX (圖89d,圖89e)。 藉由習知超音波處理清潔DFB基板。隨後藉由在1.5 × 10 4Pa之壓力下之熱蒸發以0.1 nm s 1至0.2 nm s 1之總蒸發速率將有機層及金屬電極真空放置在基板上以製造具有氧化銦錫(ITO) (100 nm)/20 wt% BSBCz:Cs (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Ag (10 nm)/Al (90 nm)結構之OSLD。ITO表面上之SiO 2層充當除DFB光柵之外的絕緣體。因此,OLED之電流區域受限於BSBCz與ITO直接接觸之DFB區域。具有30 × 45 µm之作用面積的參考OLED亦使用相同電流區域製備。 裝置特性化使用玻璃蓋及UV固化環氧樹脂將所有裝置囊封於氮填充的手套箱中以防止由濕氣及氧氣引起之任何降解。使用累計球系統(A10094,Hamamatsu Photonics)在室溫下量測OSLD及OLED之電流密度-電壓- η EQE(J-V- η EQE)特性(DC)。對於脈衝量測,在環境溫度下使用脈衝產生器(NF,WF1945)將具有400 ns之脈衝寬度、1 µs之脈衝週期、1 kHz之重複頻率及變化峰電流之長方形脈衝施加至裝置。在脈衝驅動下藉由放大器(NF,HSA4101)及光電倍增管(PMT) (C9525-02,Hamamatsu Photonics)量測 J- V-亮度特性。在多通道示波器(Agilent Technologies, MSO6104A)上監測PMT回應及驅動方波信號兩者。藉由除以根據具有校正因數之PMT回應EL強度計算的光子之數目乘以根據電流計算的注入電子之數目來計算 η EQE。使用雷射功率計(OPHIR Optronics Solution公司,StarLite 7Z01565)量測輸出功率。 為量測光譜,利用光纖收集垂直於裝置表面之針對光學及電學泵浦OSLD之經發射雷射光,該光纖連接至多通道光譜儀(PMA-50,Hamamatsu Photonics)且置放為與該裝置相距3 cm。藉由使用CCD攝影機(beam profiler WimCamD-LCM,DataRay)來檢查OSLD之光束剖面。對於在光學泵浦下OSLD-6之特性,經由透鏡及狹縫將來自氮氣雷射(NL100,N 2laser,Stanford Research System)之脈衝式激勵光集中於裝置之6 × 10 3cm 2之面積中。激勵波長為337 nm、脈衝寬度為3 ns,且重複率為20 Hz。激勵光相對於裝置平面之法線成約20°入射於裝置上。使用一組中性密度濾光器來控制激勵強度。使用圖98中之光譜螢光計(FP-6500,JASCO)及圖94中之光譜儀(PMA-50)監測穩態PL光譜分析。 裝置模型化及參數使用Comsol Multiphysics 5.2a軟體執行共振DFB腔之光學模擬。使用有限元方法(FEM)在Comsol軟體之射頻模塊中求解各頻率之亥姆霍茲方程式(Helmholtz equation)。各層由其複折射率及厚度表示。計算域受由經一階光柵包圍之二階光柵組成的一個超級單元限制。弗羅奎週期邊界條件應用於橫向邊界,且散射邊界條件用於頂部域及底部域。僅考慮TE模式,因為由於TM模式比TE模式經歷更多的損失(由於金屬吸收)而被遏制。 使用與泊松方程式耦合之二維時間無關漂移擴散方程式及使用Silvaco之技術電腦輔助設計(TCAD)軟體針對電荷載流子之連續性方程式描述經由OSLD之電荷輸送。使用拋物線能態密度(DOS)及Maxwell-Boltzmann統計表示電子及電洞濃度。高斯分佈用於模型化有機半導體 37內之陷阱分佈。假設電荷載流子遷移率為場相關性且具有Pool-Frenkel形式 38 , 39。在此模型中不考慮高能混亂,因此吾人假設愛因斯坦關係式之有效性以根據電荷遷移率計算電荷載流子擴散常數。藉由Langevin模型 40給出重組速率 R。藉由考慮激子擴散、輻射及非輻射製程求解單重態激子之連續性方程式。 純電洞及純電子的實驗資料 , 其中 L為腔長度(僅二階光柵區域)且 d為作用薄膜厚度。 表1|不同OSLD幾何結構之參數 裝置 w(µm) l(µm) Λ 1(nm) Λ 2(nm) w 1(µm) w 2(µm) A(µm 2) OLED 30 45 - - - - 1,350 OSLD 30 90 140 280 1.68 1.12 1,350 OSLD-1 35 90 140 280 14.00 7.00 1,575 OSLD-2 90 30 140 280 1.68 1.12 1,350 OSLD-3 101 30 140 280 45.36 10.08 1,515 OSLD-4 30 90 134 268 1.608 1.072 1,350 OSLD-5 30 90 146 292 1.752 1.168 1,350 OSLD-6 560 800 140 280 1.68 1.12 224,000 圖90中所展示之不同光柵幾何結構之參數以及用於計算電流密度之總曝露ITO面積 A之值。 表2.光學模擬及電學模擬之參數。 參數 BSBCz BSBCz:Cs 單位 ε r 4 4 - E HOMO 5.8 5.8 eV E LUMO 3.1 3.1 eV N HOMO 2 × 10 −19 2 × 10 −19 cm −3 N LUMO 2 × 10 −19 2 × 10 −19 cm −3 N tp 2.8 × 10 −17 - cm −3 E tp 0.375 - eV σ tp 0.017 - eV µ n0 6.55 × 10 −5 6.55 × 10 −5 cm 2V −1s −1 µ p0 1.9 × 10 −4 1.9 × 10 −4 cm 2V −1s −1 F n0 175,561 175,561 V cm −1 F p0 283,024 283,024 V cm −1 k r 10 9 10 9 s −1 k nr 0.11 × 10 9 0.11 × 10 9 s −1 φ PL 0.76 0.4 - L S 18 18 nm ε r為材料之相對電容率。 E HOMOE LUMO分別為最高佔用分子軌域(HOMO)及最低未佔用分子軌域(LUMO)之能量位準。 N HOMON LUMO為HOMO位準及LUMO位準之能態密度。 N tp為陷阱之總密度, E tp為高於HOMO位準之陷阱之能量深度,且 σ tp為高斯分佈之寬度。 µ n0µ p0為零場遷移率。 F n0F p0分別為電子及電洞之特性電場。 k r為輻射衰變常數且 k nr為非輻射衰變常數。 φ PL為光致發光量子產率。 L S為激子擴散長度。 參考文獻1.Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695-697 (1996). 2. Kozlov, V. G., Bulović, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362-364 (1997). 3. Hide, F. et al.Semiconducting polymers: A new class of solid-state laser materials. Science 273, 1833 (1996). 4. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272-1295 (2007). 5. Kuehne, A. J. C. & Gather M. C. Organic lasers: Recent developments on materials, device geometries and fabrication techniques. Chem. Rev. 116, 12823-12864 (2016). 6. Tsiminis, G. et al.Nanoimprinted organic semiconductor lasers pumped by a light-emitting diode. Adv. Mater. 25, 2826-2830 (2013). 7. Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002). 8. Bisri, S. Z., Takenobu, T. & Iwasa, Y. The pursuit of electrically-driven organic semiconductor lasers. J. Mater. Chem. C 2, 2827-2836 (2014). 9. Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nature Photon.3, 546-549 (2009). 10. Sandanayaka, A. S. D. et al.Improvement of the quasi-continuous-wave lasing properties in organic semiconductor lasers using oxygen as triplet quencher. Appl. Phys. Lett. 108, 223301 (2016). 11. Zhang, Y. F. & Forrest, S. R. Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84, 241301 (2011). 12. Schols, S. et al.Triplet excitation scavenging in films of conjugated polymers. Chem. Phys. Chem. 10, 1071-1076 (2009). 13. Hayashi, K. et al.Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015). 14. Gärtner, C. et al.The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 023107 (2007). 15. Sandanayaka, A. S. D. et al.Quasi-continuous-wave organic thin film distributed feedback laser. Adv. Opt. Mater. 4, 834-839 (2016). 16.    Aimono, T. et al.100% fluorescence efficiency of 4,4'-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Appl. Phys. Lett. 86, 71110 (2005). 17.    Sandanayaka, A. S. D. et al.Toward continuous-wave operation of organic semiconductor lasers. Science Adv. 3, e1602570 (2017). 18. Karnutsch, C. et al.Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90, 131104 (2007). 19. Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390-406 (2012). 20. Yokoyama, D. et al.Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. J. Appl. Phys. 103, 123104 (2008). 21. Yamamoto, H. et al.Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401-1403 (2004). 22. Wallikewitz, B. H. et al.Lasing organic light-emitting diode. Adv. Mater. 22, 531−534 (2010). 23. Song, M. H. et al.Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes. Adv. Funct. Mater. 19, 2130−2136 (2009). 24. Kim, S. Y. et al.Organic light-emitting diodes with 30% external quantum efficiency based on horizontally oriented emitter. Adv. Funct. Mater. 23, 3896−3900 (2013). 25. Uoyama, H. et al.Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234−238 (2012). 26. Matsushima, T. & Adachi, C. Suppression of exciton annihilation at high current densities in organic light-emitting diode resulting from energy-level alignments of carrier transport layers. Appl. Phys. Lett. 92, 063306 (2008). 27. Kuwae, H. et al.Suppression of external quantum efficiency roll-off of nanopatterned organic light-emitting diodes at high current densities. J. Appl. Phys. 118, 155501 (2015). 28. Bisri, S. Z. et al.High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728-1735 (2009). 29. Tian, Y. et al.Spectrally narrowed edge emission from organic light-emitting diodes. Appl. Phys. Lett. 91, 143504 (2007). 30. El-Nadi, L. et al.Organic thin film materials producing novel blue laser. Chem. Phys. Lett. 286, 9-14 (1998). 31. Wang, X., Wolfe, B. & Andrews, L. Emission spectra of group 13 metal atoms and indium hybrids in solid H 2and D 2. J. Phys. Chem. A 108, 5169-5174 (2004). 32. Ribierre, J. C. et al.Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007). 33. Schneider, D. et al.Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85, 1886-1888 (2004). 34. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801-6827 (2013). 35. Nakanotani, H. et al. Spectrally narrow emission from organic films under continuous-wave excitation. Appl. Phys. Lett., 90, 231109 (2007). 36. Nakanotani, H., Sasabe, H. & Adachi, C. Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density. Appl. Phys. Lett., 86, 213506 (2005). 37. Nicolai, H. T., Mandoc, M. M. & Blom, P. W. M. Electron traps in semiconducting polymers: Exponential versus Gaussian trap distribution. Phys. Rev. B 83, 195204 (2011). 38. Connell, G. A. N., Camphausen, D. L. & Paul, W. Theory of Poole-Frenkel conduction in low-mobility semiconductors. Philos. Mag. 26, 541-551 (1972). 39. Pautmeier, L., Richert, R. & Bässler, H. Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation. Synth. Met. 37, 271-281 (1990). 40. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers. New York: Oxford Univ. Press, 1999. 41. Setoguchi, Y. & Adachi, C. Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers. J. Appl. Phys. 108, 064516 (2010). [ 1 ] Continuous wave organic thin film dispersion feedback laserSince the discovery of organic solid-state lasers, [ 1 6 ]Significant efforts have been devoted to the development of continuous wave (cw) lasers for organic materials, including small molecules, oligomers and polymers. [ 7 10 ]However, operating organic solid-state lasers at extremely high repetition rates (quasi-CW excitation) under optical CW excitation or pulse excitation is extremely challenging. When organic films are optically pumped under these conditions, accumulation of long-lived triplet excitons and charge carriers usually occurs. [ 11 14 ]Resulting in increased absorption losses by triplet exciton formation and singlet exciton quenching by triplet excitons (ie, singlet-triplet mutual destruction). [ 11 16 ]These absorption losses and emission quenching are significant issues that must be addressed to achieve CW and quasi-CW operation, as they cause the laser threshold to greatly increase and, in the worst case, completely stop the laser. [ 17 19 ]To curb absorption losses and emission quenching, it has been proposed to incorporate triplet quenchers, such as oxygen, into organic films. [ 15 , 16 ]Cycloctatetraene, [ 20 ]or anthracene derivatives [ 19 ]. However, as suggested by Schols et al. [ 20 ]The requirements for triplet quenchers are low triplet energy, short triplet lifetime, and the large difference between the energies of singlet and triplet states, making it difficult to find a suitable triplet quencher that satisfies these conditions without hindering the laser. agent. Rabe et al. demonstrated the use of 6,6'-(2,2'-octyloxy-1,1'-binaphthyl)binaphthyl spacers containing 12% (BN-PFO) without a triplet quencher. Quasi-cw operation at a repetition rate of 5 MHz in radical poly(9,9-dioctyl fluoride) derivatives. [ 9 ]This high repetition rate is achieved due to less spectral overlap between emission and triplet absorption in BN-PFO. [ 10 ]Therefore, the development of organic laser dyes with less spectral overlap between excited state absorption and emission is crucial to realizing cw and quasi-cw lasers with low thresholds. In the group, we have continuously studied the optical and amplified spontaneous emission (ASE) properties of many organic materials with the aim of realizing electrically pumped organic laser diodes. [ twenty one 27 ]Among them, 4,4'-double[( N -Carbazole) styryl]biphenyl (BSBCz) is one of the most promising candidates because it is blended with 6 wt% BSBCz as the host material 4,4'-bis( NVacuum-deposited thin films of -carbazolyl)-1,1'-biphenyl (CBP), whose chemical structure is shown in Figure 1a, have excellent optical and ASE properties, such as a high photoluminescence quantum yield close to 100% ( Φ PL) and a short PL lifetime (τ PL), yielding approximately 10 9s 1The huge radiative decay constant (k r) and about 0.3 μJ cm 2The low ASE threshold energy. [23,26]In this paper, we report quasi-cw surface-emitting laser in a distributed feedback (DFB) device based on this BSBCz:CBP blended film. In this laser device, we obtained the highest repetition rate (up to 8 MHz) and the lowest threshold (about 0.25 μJ cm) ever reported for a quasi-CW laser based on an organic thin film system. 2). The incorporation of triplet quenchers is not necessary in our blended films due to their high Φ PLAnd there is no significant spectral overlap between the emission and triplet absorption of BSBCz. [ twenty four ]In the DFB structure, laser oscillation occurs when the following Bragg condition is met: Bragg= 2 n eff Λ,in mis the diffraction order, λ Braggis the Bragg wavelength, n effis the effective refractive index of the gain medium and Λis the period of the grating. [ 28 , 29 ]When considering second-order modes ( m= 2), use the one reported for BSBCZ n effand λ BraggCalculate the grating period as Λ= 280 nm. [ twenty one , twenty two ]have Λ =The 280 nm grating provides surface emitting laser light in a direction perpendicular to the plane of the substrate as shown in Figure 1b. Although second-order gratings generally produce higher laser thresholds than first-order gratings, surface-emitting lasers using second-order gratings are suitable for fabricating electrically pumped organic lasers with organic light-emitting diode structures that exhibit the same surface emission. diode. [ 30 , 31 ]Using electron beam lithography and reactive ion etching, these gratings were engraved directly to 5 × 5 mm 2area on the silicon dioxide surface (Fig. 1c). Figures 1d and 1e show SEM images of representative gratings fabricated in this study. We obtained from SEM images Λ= 280±2 nm and d= 70±5 nm grating depth, which meets our specifications perfectly. A 6 wt% BSBCz:CBP blended film or a pure BSBCz film with a thickness of 200 nm was prepared on the grating by vacuum deposition to fabricate the laser device. First, we examined the surface-emitting laser characteristics of our DFB system under 0.8 ns wide pulse excitation at 20 Hz from a nitrogen laser. This excitation light with a wavelength of 337 nm is mainly absorbed by CBP in the blended film. However, the large spectral overlap between CBP emission and BSBCz absorption ensures efficient Förster-type energy transfer between the two molecules (Fig. 1f). [ 26 ]Therefore, we did not observe any emission from CBP even under high excitation. Figures 2a and 2b show the emission spectra measured from the laser device ((a) BSBCz:CBP film and (b) pure BSBCz film) with different excitation intensities. Both devices exhibit laser emission with extremely narrow peaks relative to certain excitation light intensities. We confirm that there is no surface emitted laser from the non-grating areas on the same substrate. As a result of stimulated emission, [ 32 35 ]In our laser device, we found τ PLand full width at half maximum (FWHM) in E thThe results are significantly reduced at high excitation energies (Fig. 2a and Fig. 2b), indicating that our optical grid is suitable for extracting light from waveguide films as surface emission. We observed a Bragg dip at about 478 nm for the blended film and a Bragg dip at 474 nm for the pure film in the emission spectra measured at low excitation intensity (inset of Figure 2a and Figure 2b). The Bragg dip is caused by the grating inhibiting the propagation of waveguide light and can be imagined as a photonic stopband for waveguide modes. [ 36 ]Lasing occurs at the short wavelength edge of the Bragg dip (477 nm for blended films and 473 nm for pure films). The difference in the position of the Bragg dip is most likely due to the different refractive indices used for the blended and pure films. As the excitation intensity increases, the emission intensity increases linearly and then begins to amplify for the laser as the FWHM decreases to <0.30 nm for the blended film and <0.40 nm for the pure film (see Figure 2c and Figure 2d). Laser threshold energy measured from the intersection of two straight lines fitted to emission intensity ( E th) for the blended film is E th= 0.22 μJcm 2And for pure films, it is E th= 0.66 μJcm 2, which corresponds to 275 W cm 2and 825 W cm 2The power density. Due to the excellent quality of our gratings, this value is lower than its 375 W cm without grating. 2and 1625 W cm 2The ASE critical power density. [ twenty three , 26 ]obtained E thThe value is the lowest value ever reported among all quasi-cw organic thin film lasers. Due to the suppressed concentration quenching, the concentration in the blended film is lower than that in the pure film. E thThis is attributed to the fact that the blended film (98%) has a higher Φ than the pure film (76%). PL. [ 36 ]Generally speaking, E thAnd laser gain and Φ PLInversely proportional. [ 37 , 38 ]Our device was operated in quasi-cw mode using optical pulses from a Ti-sapphire laser with a wavelength of 365 nm and a width of 10 ps. Figure 3 shows the frame camera image of laser oscillation and the corresponding time variation of the laser intensity in the BSBCz:CBP blended film at the laser wavelength. The excitation light intensity is fixed at approximately 0.44 μJ cm 2, its ratio E thAbout twice as high. At a repetition rate of 0.01 MHz, laser oscillations were observed at intervals of 100 μs. Reduce the time interval between laser oscillations at higher repetition rates. Neighboring laser oscillations occur continuously at 8 MHz over a broad time scale of 500 μs (Figures 3a and 3b); however, even at 8 MHz, 125 Individual laser oscillations at ns intervals (Figure 3c). We confirm that similar quasi-cw operations are possible for BSBCz pure films. The emission intensity of both laser devices with blended films and pure films remains almost constant up to 8 MHz, as shown in Figure 3. This maximum repetition rate is the highest ever reported and is attributed to small absorption losses and emission quenching caused by triplet exciton formation. BSBCz Φ PLExtremely high, thereby minimizing the generation of triplet excitons via intersystem crossing, especially for blended films. Furthermore, the spectral overlap between emission and triplet absorption is negligible, reducing the possibility of collisions between singlet and triplet excitons. When operating a laser device at 80 MHz (the highest frequency possible with our equipment), the emission intensity decreases rapidly, and it is probably impossible to estimate a clear laser threshold due to rapid material degradation. Furthermore, the FWHM of the emission peaks observed at 80 MHz is approximately twice that of the emission peaks at lower frequencies. At this stage, we're not sure if it's lasering. Figure 4a shows a graph of the laser threshold as a function of repetition rate for blended films and pure films. Of concern, the laser threshold is almost independent of the repetition rate of the blended film due to negligible absorption losses and emission quenching. However, for pure films, a gradually increasing threshold is observed with increasing repetition rate. We do not know the exact reason for the gradual increase in the threshold, and therefore further research is needed to elucidate this observation. We studied the operational stability of laser oscillation when operating the device continuously at 8 MHz (Figure 4b). The emission intensity gradually decreases with time. The change is irreversible, indicating photodegradation of the material. The lifetime until the emission intensity decreases to 90% of the initial value is 900 s for the blended film, which is longer than 480 s for the pure film. Due to the higher threshold, stronger excitation light is required to achieve lasing in pure films compared to blended films. Therefore, photodegradation can be expected to be faster in pure films. Lowering the threshold is critical to curbing photodegradation. In summary, a DFB laser device combining a BSBCz:CBP blended film and a second-order grating as a gain medium was fabricated and evaluated. We obtain excellent surface-emitted lasers from the device under self-calibrated CW operation, where the emission intensity and laser threshold are independent of the repetition rate. For our laser device, the maximum repetition rate is 8 MHz, which is the highest repetition rate ever reported, and the laser threshold is approximately 0.25 μJ cm 2, which is the lowest laser threshold ever reported. Due to the negligible accumulation of triplet excitons and the small spectral overlap between emission and triplet absorption, the triplet quenchers typically used to fabricate organic thin film lasers are not necessary in our device. We therefore consider BSBCz to be the most promising candidate for the first realization of electrically pumped organic laser diodes in terms of optical properties. However, electrical properties such as charge carrier mobility, charge carrier capture cross-section, etc. are also extremely important and will need to be further studied and enhanced for the realization of electrically pumped organic lasers. Experimental partNeutral detergent, pure water, acetone and isopropyl alcohol were used to clean the silicon substrate covered with a thermally grown silicon dioxide layer of 1 μm thickness by ultrasonic treatment, followed by UV ozone treatment. The silica surface was treated with hexamethyldisilazane (HMDS) by spin coating at 4000 rpm for 15 s. A resist layer with a thickness of approximately 70 nm was applied to the substrate from a ZEP520A-7 solution (ZEON Co.) by spinning at 4000 rpm for 30 s and baked at 180°C for 240 s. Use a 0.1 nC cm 2A JBX-5500SC system (JEOL) with optimized dosage was used for electron beam lithography to draw the grating pattern on the resist layer. After electron beam irradiation, the pattern was developed in a developer solution (ZED-N50, ZEON Co.) at room temperature. The patterned resist layer was used as an etch mask, while an EIS-200ERT etch system (ELIONIX) was used with CHF 3Plasma etching the substrate. To completely remove the resist layer from the substrate, use a FA-1EA etching system (SAMCO) with O 2Plasma etching the substrate. The grating formed on the silicon dioxide surface was observed using scanning electron microscopy (SU8000, Hitachi). To complete the laser device, by 4Thermal evaporation under a pressure of Pa is 0.1 nm s 1to 0.2 nm s 1The total evaporation rate was used to prepare 200 nm thick 6 wt% BSBCz:CBP blended films and BSBCz pure films on the grating. For laser operation, the pulsed excitation light from a nitrogen laser (USHO, KEN-2020) is concentrated on a 6×10 area of the device through a lens and a slit. 3cm 2area. The excitation wavelength is 337 nm, the pulse width is 0.8 ns, and the repetition rate is 20 Hz. The excitation light is incident on the device at an angle of approximately 20° relative to the normal line of the device plane. The emitted light perpendicular to the device surface was collected using an optical fiber connected to a multichannel spectrometer (PMA-50, Hamamatsu Photonics) placed 3 cm away from the device. Use a set of neutral density filters to control excitation intensity. For quasi-cw operation, a mode-locked frequency doubled Ti-sapphire laser (Millennia Prime, Spectra physics) was used to generate excitation with an excitation wavelength of 365 nm, a pulse width of 10 ps, and a repetition rate ranging from 0.01 MHz to 8 MHz. Light. The excitation light is concentrated on 1.9×10 of the device through lenses and slits. 4cm 2area, and the emitted light was collected using a streak scope (C10627, Hamamatsu Photonics) with a temporal resolution of 15 ps connected to a digital camera (C9300, Hamamatsu Photonics). As described previously, the same illumination and detection angles were used for this measurement. Carefully check the size of the excitation area by using a beam mapper (WimCamD-LCM, DataRay). All measurements were performed in a nitrogen atmosphere to prevent any degradation caused by moisture and oxygen. Preparation containing BSBCz at 0.15 mM dissolved in CH 2Cl 2solution and sparged with argon before use. The third harmonic laser light with a wavelength of 355 nm and a FWHM of 5 ns from an Nd:YAG laser (Quanta-Ray GCR-130, Spectra-Physics) was used as the pump light, and the pulse from the Xe lamp White light was used as the detection light for triplet absorption measurements of solutions using a strip camera (C7700, Hamamatsu Photonics). References1. F. Hide, B. J. Schwartz, M. A. Díaz-García, A. J. Heeger, Chem. Phys. Lett. 1996, 256, 424. 2. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. Andersson, Q. Pei, A. J. Heeger, Science 1996, 273, 1833. 3. N. Tessler, G. J. Denton, R. H. Friend, Nature 1996, 382, 695. 4. M. D. McGehee, A. J. Heeger, Adv. Mater. 2000, 12, 1655. 5. N. Tessler, Adv. Mater. 1999, 11, 363. 6. I. D. W. Samuel, G. A. Turnbull, Chem. Rev. 2007, 107, 1272. 7. R. Bornemann, U. Lemmer, E. Thiel, Opt. Lett. 2006, 31, 1669. 8. R. Bornemann, E. Thiel, P. H. Bolívar, Opt. Express. 2011, 19, 26383. 9. T. Rabe, K. Gerlach, T. Riedl, H.-H. Johannes, W. Kowalsky, J. Niederhofer, W. Gries, J. Wang, T. Weimann, P. Hinze, F. Galbrecht, U .Scherf, Appl. Phys. Lett. 2006, 89, 081115. 10. M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, W. Kowalsky, Org. Electron. 2011, 12, 1346. 11. N. C. Giebink, S. R. Forrest, Phys. Rev. B 2009, 79, 073302. 12. M. A. Baldo, R. J. Holmes, S. R. Forrest, Phys. Rev. B 2002, 66, 035321. 13. M. Lehnhardt, T. Riedl, T. Weimann, W. Kowalsky, Phys. Rev. B 2010, 81, 165206. 14. M. A. Stevens, C. Silva, D. M. Russell, R. H. Friend, Phys. Rev. B 2001, 63, 165213. 15. M. Inoue, T. Matsushima, H. Nakanotani, C. Adachi, Chem. Phys. Lett. 2015, 624, 43. 16. L. Zhao, M. Inoue, K. Yoshida, A. S. D. Sandanayaka, J.-H. Kim, J.-C. Ribierre, C. Adachi, IEEE Quantum Electronics 2016, twenty two, 1, 1300209. 17. P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Dev. 1967, 11, 130. 18. O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 1970, 17, 245. 19. Y. Zhang, S. R. Forrest, Phys. Rev. B 2011, 84, 241301. 20. S. Schols, A. Kadashchuk, P. Heremans, A. Helfer, U. Scherf, Chem. Phys. Chem. 2009, 10, 1071. 21. D. Yokoyama, M. Moriwake, C. Adachi, J. Appl. Phys. 2008, 103, 123104. 22. H. Yamamoto, T. Oyamada, H. Sasabe, C. Adachi, Appl. Phys. Lett. 2004, 84, 1401. 23. M. Inoue, K. Goushi, K. Endo, H. Nomura, C. Adachi, J. Lumin. 2013, 143, 754. 24. H. Nakanotani, C. Adachi, S. Watanabe, R. Katoh, Appl. Phys. Lett. 2007, 90, 231109. 25. D. Yokoyama, H. Nakanotani, Y. Setoguchi, M. Moriwake, D. Ohnishi, M. Yahiro, C. Adachi, Jpn. J. Appl. Phys. 2007, 46, 826. 26. T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, C. Adachi, Appl. Phys. Lett. 2005, 86,071110. 27. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, C. Adachi, Adv. Funct. Mater. 2007, 17, 2328. 28. I. D. W. Samuel, G. A. Turnbull, Chem. Rev. 2007, 107, 1272. 29. S. Chenais, S. Forget, Polym. Int. 2012, 61, 390. 30. A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, W. L.Barnes, Appl. Phys. Lett. 2005, 86, 161102. 31. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, Appl. Phys. Lett. 2000, 77, 2310. 32. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, S. Noda, Opt. Express. 2007, 15, 17206. 33. M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, K. Leo Appl. Phys. Lett. 2005, 87, 181108. 34. P. A. Morton, V. Mizrahi, S. G. Kosinski, L. F. Mollenauer, T. Tanbuu-Ek, R. A. Logan, D. L. Coblentz, A. M. Sergent, K. W. Wecht, Electron. Lett. 1992, 28, 561. 35. P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, K. W. Wecht, Appl. Phys. Lett. 1994, 64, 2634. 36. G. A. Turnbull, P. Andrew, M. J. Jory,W. L. Barnes, I. D.W. Samuel, Phys. Rev. B 2001, 64, 125122. 37. B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, O. Shapira, Proc. Natl. Acad. Sci. USA 2013, 110, 13711. 38. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, H. S. Barcena, P. L. Burn, I. D. W. Samuel, Appl. Phys. Lett. 2007, 91, 081108. [ 2 ] Using oxygen as a triplet quencher to improve quasi-continuous wave laser properties in organic semiconductor lasersWe demonstrate the quasi-continuous wave laser in a solvent-free liquid organic semiconductor dispersion feedback laser based on a blend of a liquid 9-(2-ethylhexyl)carbazole host doped with a blue-emitting heptamine derivative. . The liquid gain medium is bubbled with oxygen or nitrogen to study the effect of triplet quenchers such as molecular oxygen on the quasi-continuous wave laser properties of organic semiconductor lasers. The oxidized laser device exhibits 2 μJ cm - 2A low threshold value that is lower than the threshold value measured in the nitriding device and is independent of the repetition rate in the range between 0.01 MHz and 4 MHz. Since the first optically pumped organic solid-state semiconductor laser was demonstrated in 1996, 1 , 2Organic lasers have been the subject of intensive research mainly due to several attractive characteristics of organic semiconducting materials, such as their broad absorption and emission spectra, and their high optical gain coefficients. 3 , 4The performance of organic solid-state lasers has greatly improved over the past two decades, and applications are now emerging including the development of integrated light sources for spectral analysis and vapor chemical sensors. 5Although pulsed inorganic light-emitting diodes can now be used to optically pump organic solid-state lasers, 6However, further breakthroughs are still needed to demonstrate optically pumped organic semiconductor lasers operating in the continuous wave (cw) state and ultimately to realize optically pumped organic laser diodes. It has been established that the generation of long-lived triplet excitons via intersystem crossing can lead to high photon and singlet losses that prevent lasers in the cw optical pump regime. 7 - 12To address this critical issue, the incorporation of triplet quenchers into organic semiconductor gain media has been proposed. Zhang et al. (8-hydrixyquinoline) aluminum doped with 4-(dicyanomethylene)-2-methyl-6-juraleridinyl-9-enyl-4H-pyran (DCM2) (Alq 3) uses anthracene derivatives as triplet quenchers and can extend the laser duration of its distributed feedback (DFB) organic device to nearly 100 μs. 8Meanwhile, some other studies have demonstrated that triplet loss in optically pumped organic semiconductor lasers can be reduced by using oxygen or cyclooctatetraene (COT) as a triplet quencher. 9 - 11Although the use of triplet quenchers to develop true cw organic solid-state laser technology is highly promising, it should be mentioned that other methods have been proposed to achieve this goal. Recently, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl doped with 4,4'-bis[(N-carbazole)styryl]biphenyl (BSBCz) has been studied. A quasi-cw laser with a repetition rate of up to 8 MHz was demonstrated in the organic DFB laser of benzene (CBP) host. 13This achievement is explained by the negligible overlap between the laser emission and triplet absorption spectra of BSBCz and the photoluminescence quantum yield of the material close to 100%, which results in triplet under optical pumping. The state is extremely weak. Another approach to achieving high-power cw organic solid-state dye lasers is based on extremely fast rotation of the device during its operation, but the long-term power output stability of these devices appears to be limited for practical applications. 14In this study, we report on the use of solvent-free liquid organic semiconductor materials as laser gain media to fabricate organic semiconductor DFB lasers operating in a quasi-cw state. 15 - twenty threeThis laser material consists of a host of 9-(2-ethylhexyl)carbazole (EHCz) doped with hexafluoride derivatives. 17composition. twenty fourThe chemical structure of these molecules is shown in Figure 5a. Through the blend's photoluminescence quantum yield (PLQY) of 85% and its 0.4 μJ cm under pulsed optical pumping - 2The low amplified spontaneous emission (ASE) threshold drives the selection of this blend. twenty twoIn this case, we examine here the effect of oxidation on the quasi-cw DFB laser properties of EHCz:QiFu blends. The results provide clear evidence that the use of triplet quenchers such as molecular oxygen is very promising for the future realization of optically pumped cw organic semiconductor lasers. According to previously published in the literature 25Seven-year-old derivatives were synthesized using the method in , and liquid carbazole and EHCz (Sigma-Aldrich) were purchased and used without further purification. EHCz, which is liquid at room temperature and exhibits a glass transition temperature well below 0°C, 17Mix it with Qifu in chloroform solution. Then the EHCz:Qifu (90:10 wt.%) blended solution is bubbled with oxygen or nitrogen for about 20 minutes. The gas was incorporated into the solution by using a needle with an inner diameter of 0.7 mm and a pressure of approximately 0.02 MPa. After complete evaporation of the solvent, the blend is used as a gain medium in a laser device. The device structure of the liquid DFB laser is schematically shown in Figure 5b. To fabricate these devices, ultraviolet (UV) curable polyurethane acrylate (PUA) mixtures were synthesized according to previously reported methods. 26Corrugated polymeric DFB patterns are easily fabricated on polyethylene terephthalate (PET) substrates by replicating a silicon grating master with a PUA mixture. 27Grating period for desired laser wavelength λ ΛPrague conditions must be met Λ=mλ/(2n eff), where m is the number of orders and n effis the effective refractive index of the guided mode. To achieve low-threshold laser operation, a first-order feedback corresponding to m = 1 is chosen, which results from the laser emission at the edge of the device. It is worth noting that the refractive index of the PUA film and the EHCz blend are approximately 1.54 and 1.7 respectively, which means a relative refractive index difference of 0.16. twenty twoAs shown in Figure 5c, the patterned corrugated structure on the PUA layer consists of a 1D grating with a period of 140 nm and a height of 100 nm. This grating period was chosen for first-order DFB laser operation with an emission wavelength of about 450 nm based on Bragg's formula and the emission spectrum of the blue-emitting hexafluoride derivative. The corrugated PUA layer was then covered with a molten silica substrate, and silica particles with a diameter of 1 μm were used to fix the gap distance between the PUA replica and the covering. The empty interstitial space is then filled with liquid gain medium via capillary action. To study its quasi-cw laser properties, a Ti-sapphire laser system (Millennia Prime, Spectra Physics) delivering optical pulses at 365 nm with a pulse width of 10 ps was used to optically nitride and oxidize EHCz: Qifu DFB laser. The repetition rate of optical excitation varies in the range of 0.01 MHz to 4 MHz. The spot area of the laser pump beam concentrated on the device is 1.9×10 - 4cm 2. Emissions are detected from the edge of the device using a Hamamatsu frame eye (C10627) connected to a Hamamatsu digital camera (C9300). Qifu derivatives were previously used in solution-processed fluorescent organic light-emitting diodes (OLEDs) with external quantum efficiencies as high as 5.3%. 28Such good electroluminescent performance can be achieved due to the horizontal orientation of the seven emitters in the 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) host. In another study, heptafluorine molecules were also incorporated into the EHCz host to demonstrate solvent-free liquid organic second-order DFB lasers operating in the blue region of the visible spectrum. twenty twoFor this purpose, a pulsed nitrogen laser (λ = 337 nm, pulse duration 800 ps and repetition rate 8 Hz) was used to optically pump the device and detect the laser output emission in the direction normal to the surface. Here, we use the same liquid composite material to create an edge-emitting first-order DFB laser. As shown in Figure 5d and Figure 5e, the blue laser emission detected from the edge of the nitrided and oxidized liquid DFB laser has peak wavelengths of 450 nm and 449 nm respectively. The minimal difference between the laser wavelengths of the two devices is presumably due to small changes in the thickness of the organic liquid layer. 29Figures 6a and 6b show frame camera images of laser emission for two nitrided and oxidized solvent-free liquid organic DFB lasers at several repetition rates. For these measurements, the excitation intensity was held constant at 2.5 μJ cm - 2value. While the laser pulse emitted from the DFB laser can be clearly observed in the 100 μs time scale window, the time interval between pulses gradually decreases as the repetition rate increases. For the highest repetition rates of 1 MHz and 4 MHz, the DFB laser output emissions in Figures 6c and 6d appear to emit continuously during this time range, providing evidence that both nitrided and oxidized devices are in a quasi-cw state Operate appropriately. It is noteworthy, however, that the output intensity of oxidized devices in the quasi-cw state (especially at 4 MHz) is consistently found to be significantly higher than that of nitrided devices. 30The laser output intensity and the full width at half maximum (FWHM) of the emission spectrum were plotted against the excitation intensity at different repetition rates in nitrided and oxidized solvent-free liquid organic DFB lasers (Figures 7 and 8). 30The FWHM of the emission peak in both samples was found to decrease to 1.8 nm at high excitation densities, which was attributed to amplification by stimulated emission. This linewidth is higher than the resolution of a spectrometer of 0.7 nm. Looking at the curve showing output intensity versus excitation intensity, sudden changes in slope efficiency are directly related to the laser threshold. 29 , 31 - 34Using this data, the laser threshold is then determined based on the repetition rate in both devices. The results in Figure 9a demonstrate that the laser threshold is lower and almost the same as with 2 μJ cm - 2The values are independent of the repeatability in the oxidized sample. Of concern, it was found that the laser threshold in the nitrided sample gradually increased from 2.8 μJ cm as the repetition rate of optical picosecond pulse excitation increased from 0.01 MHz to 4 MHz. - 2increased to 4.4 μJ cm - 2. A non-negligible overlap was observed between the triplet-triplet absorption spectrum of the hexafluoride molecule in chloroform solution and the representative laser spectrum of the gain material (Figure 10). 30In fact, previous work reported that the stimulated emission cross section was seven times larger than the triplet absorption cross section at ASE/laser wavelengths. 10It is noteworthy that triplet-triplet absorption completely disappears in oxidized solutions due to the presence of molecular oxygen, which acts as triplet quencher. To provide additional evidence that molecular oxygen can efficiently quench triplet states in heptafluoride-based laser gain media, we next examined the mutual destruction of singlet-triplet excitons in liquid blended materials bubbled with oxygen or nitrogen. (STA) Quenching of singlet excitons. For this purpose, nitrided and oxidized gain material is sandwiched between two flat fused silica substrates. By 325 nm light pulses (with pulse duration varying from 50 μs to 800 μs) at 0.5 kW cm - 2The sample was irradiated with an excitation density of 100% and we monitored the temporal evolution of the photoluminescence intensity. 8 - 10The transient curve in the nitrided sample shows that after the onset of optical pumping, the emission intensity significantly decreases by almost 60% after 300 μs before reaching its steady state (Figure 11). 30These data demonstrate that singlet excitons are quenched by STA in nitrided liquid materials. 8 - 10In contrast, oxidized liquid gain media did not exhibit such quenching and, in addition, did not show any signs of degradation under high-intensity cw irradiation of 800 μs. This and the previous research 10The results reported in are consistent and provide clear evidence that molecular oxygen can in fact be used to quench the triplet state without affecting the singlet state in materials based on hexafluoride. Suppression of singlet quenching by STA in oxidized samples is also consistent with the fact that the intensity of DFB laser emission appears to be stronger in oxidized devices than in nitrided devices. For these reasons, the highest threshold in nitrided DFB laser devices and the repetition rate dependence of this threshold can be attributed to the generation and accumulation of long-lived triplet excitons in the gain medium, which Resulting in additional losses associated with triplet absorption and singlet-triplet exciton mutual destruction. It is important to note that the liquid blend exhibits a high PLQY of 85% and a low ASE/laser threshold. In addition, the inter-system crossing yield is usually small (about 3%) in oligomeric and polyfluorine derivatives. 35In this case, it is highly reasonable that the concentration of triplet states generated via intersystem crossing under optical pumping is kept low enough in the nitrided 7-F based gain material to be observed for repetition rates up to 4 MHz. Laser in accurate cw state. Importantly, the fact that the laser threshold in oxidized DFB devices becomes lower and independent of the repetition rate can be directly explained by the presence of molecular oxygen acting as a triplet quencher. The quasi-cw laser emission was also evaluated by monitoring the time evolution of the output intensity from the edge of the liquid layer for two nitrided and oxidized DFB lasers at repetition rates above 1 MHz. Photostability. The characteristic photostability time constant was estimated by measuring the duration associated with a 10% decrease in output intensity from its initial value. As shown in Figure 9b, the time constants for the nitrided and oxidized devices were found to be 4 minutes and 5 minutes respectively. This decrease in output laser intensity with time is probably attributed to the bleaching of the heptafluoride molecules. Of course, this photodegradation problem can be solved by using microfluidic circuits used to achieve true quasi-cw solvent-free liquid organic semiconductor laser technology. twenty twoOf concern, despite the formation of a highly chemically reactive oxygen singlet state upon quenching of triplet excitons, the presence of oxygen does not lead to faster photodegradation of liquid devices. 36It was shown that the photoluminescence intensity from the oxidized sample was at 0.5 kW cm - 2This is well supported by the nearly constant results after 800 μs under cw optical pumping with high excitation density. 30In conclusion, we demonstrate that the use of oxygen as a triplet quencher is a promising approach to the development of continuous wave organic semiconductor laser technology. The gain medium used in our first-order organic DFB laser is based on a solvent-free liquid carbazole host doped with a blue fluorescent heptafluoride derivative. By bubbling this liquid molecular semiconductor mixed with molecular oxygen, the DFB laser threshold in the quasi-cw state was reduced and found to be almost independent of the repetition rate. Even for repetition rates up to 4 MHz, the oxidized DFB device actually exhibits 2 μJ cm - 2The laser threshold value. This improvement in quasi-CW laser performance is attributed to selective quenching of triplet states in the gain medium by molecular oxygen. References1. F. Hide, M.A. Diaz-Garcia, B.J. Schwartz, M. Andersson, Q. Pei, A.J. Heeger, Science 273, 1833 (1996). 2. N. Tessler, G.J. Denton, R.H. Friend, Nature 382, 695 (1996). 3. I.D.W. Samuel, G. Turnbull, Chem. Rev. 107, 1272 (2007). 4. S. Chénais, S. Forget, Polym. Int. 61, 390 (2012). 5. A. Rose, Z.G. Zhu, C.F. Madigan, T.M. Swager, V. Bulovic, Nature 434, 876 (2005). 6. Y. Yang, G. Turnbull, I.D.W. Samuel, Appl. Phys. Lett. 92, 163306 (2008). 7. O.G. Peterson, S.A. Tuccio, B.B. Snavely, Appl. Phys. Lett. 17, 245 (1970). 8. Y. Zhang, S.R. Forrest, Phys. Rev. B 84, 241301 (2011). 9. M. Inoue, T. Matsushima, H. Nakanotani, C. Adachi, Chem. Phys. Lett. 624, 43 (2015). 10. L. Zhao, M. Inoue, K. Yoshida, A.S.D. Sandanayaka, J.H. Kim, J.C. Ribierre, C. Adachi, IEEE J. Select. Top. Quant. Electr. twenty two, 1300209 (2016). 11. S. Schols, A. Kadashchuk, P. Heremans, A. Helfer, U. Scherf, Chem. Phys. Chem. 10, 1071 (2009). 12. T. Rabe, K. Gerlach, T. Riedl, H.H. Johannes, W. Kowalsky, J. Niederhofer, W. Gries, J. Wang, T. Weimann, P. Hinze, F. Galbrecht, U. Scherf, Appl . Phys. Lett. 89, 081115 (2006). 13. A.S.D. Sandanayaka, K. Yoshida, M. Inoue, C. Qin, K. Goushi, J.C. Ribierre, T. Matsushima, C. Adachi, Adv. Opt. Mater. 2016, DOI: 10.1002/adom.201600006 14. R. Bornemann, E. Thiel, P.H. Bolivar, Opt. Expr., 19, 26382 (2011). 15. S.S. Babu, T. Nakanishi, Chem. Comm. 49, 9373 (2013). 16. B.A. Kamino, T.P. Bender, R.A. Klenker, J. Phys. Chem. Lett., 3, 1002 (2012). 17. J.C. Ribierre, T. Aoyama, T. Muto, Y. Imase, T. Wada, Org. Electron. 9, 396 (2008). 18. J.C. Ribierre, T. Aoyama, T. Kobayashi, T. Sassa, T. Muto, T. Wada, J. App. Phys. 102, 033106 (2007). 19. J.C. Ribierre, T. Aoyama, T. Muto, P. André, Org. Electron. 12, 1800 (2011). 20. D. Xu, C. Adachi, Appl. Phys. Lett. 95, 053304 (2009). 21. E.Y. Choi, L. Mager, T.T. Cham, K.D. Dorkenoo, A. Fort, J.W. Wu, A. Barsella, J.C. Ribierre, Opt. Expr. twenty one, 11368 (2013). 22. J.H. Kim, M. Inoue, L. Zhao, T. Komino, S.M. Seo, J.C. Ribierre, C. Adachi, Appl. Phys. Lett. 106, 053302 (2015). 23. J.C. Ribierre, L. Zhao, M. Inoue, P.O. Schwartz, J.H. Kim, K. Yoshida, A.S.D. Sandanayaka, H. Nakanotani, L. Mager, S. Méry, C. Adachi, Chem. Comm. 52, 3103 (2016). 24. E.Y. Choi, L. Mazur, L. Mager, M. Gwon, D. Pitrat, J.C. Mulatier, C. Monnereau, A. Fort, A.J. Attias, K. Dorkenoo, J.E. Kwon, Y. Xiao, K. Matczyszyn, M. Samoc, D.W. Kim, A. Nakao, B. Heinrich, D. Hashizume, M. Uchiyama, S.Y. Park, F. Mathevet, T. Aoyama, C. Andraud, J.W. Wu, A. Barsella, J.C. Ribierre, J.C. Phys . Chem. Chem. Phys. 16, 16941 (2014). 25. R. Anemian, J.C. Mulatier, C. Andraud, O. Stephan, J.C. Vial, Chem. Comm. 1608 (2002). 26. S.J. Choi, P.J. Yoo, S.J. Baek, T.W. Kim, H,H, Lee, J. Am. Chem. Soc. 126, 7744 (2004). 27. J. H. Kim, M.J. Han, S. Seo, J. Polym. Sci. Part B 53, 453 (2015). 28. L. Zhao, T. Komino, M. Inoue, J.H. Kim, J.C. Ribierre, C. Adachi, Appl. Phys. Lett. 106, 063301 (2015). 29. J.C. Ribierre, G. Tsiminis, S. Richardson, G.A. Turnbull, I.D.W. Samuel, H.S. Barcena, P.L. Burn, Appl. Phys. Lett. 91, 081108 (2007). 30. Material for a characterization of the triplet losses and the determination of the threshold in the quasi-cw regime 31. C. Kamutsch, C. Gyrtner, V. Haug, U. Lemmer, T. Farrell, B.S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J.C. deMello, D.D.C. Bradley , Appl. Phys. Lett. 89, 201108. (2006). 32. G. Tsiminis, J.C. Ribierre, A. Ruseckas, H.S. Barcena, G.J. Richards, G.A. Turnbull, P.L. Burn, I.D.W. Samuel, Adv. Mater. 20, 1940 (2008). 33. G. Tsiminis, Y. Wang, P.E. Shaw, A.L. Kanibolotsky, I.F. Perepichka, M.D. Dawson, P.J. Skabara, G.A. Turnbull, I.D.W. Samuel, Appl. Phys. Lett. 94, 243304 (2009). 34. A.E. Vasdekis, G. Tsiminis, J.C. Ribierre, L. O'Faolain, T.F. Krauss, G.A. Turnbull, I.D.W. Samuel, Opt. Expr. 14, 9211 (2006). 35. H.L. Chen, Y.F. Huang, C.P. Hsu, T.S. Lim, L.C. Kuo, M.K. Leung, T.C. Chao, K.T. Wong, S.A. Chen, W. Fann, J. Phys. Chem. A, 111, 9424 (2007) 36. T. Gallavardin, C. Armagnat, O. Maury, P.L. Baldeck, M. Lindgren, C. Monnereau, C. Andraud, Chem. Comm. 48, 1689 (2012). [ 3 ] Continuous wave operation of organic semiconductor lasers OverviewDemonstration of continuous wave lasers from organic semiconductor films is highly desirable, but remains a challenging goal, for practical applications in the fields of spectroscopic analysis, data communications, and sensing. Here, we report a low-threshold surface-emitting organic dispersion feedback laser operating in a quasi-continuous wave regime at 80 MHz and under 30 ms of continuous wave optical excitation. This outstanding performance is achieved using an organic semiconductor film that combines with a mixed-order dispersed feedback grating to achieve a low laser threshold. The organic semiconductor film has high optical gain, high photoluminescence quantum yield and is insensitive at laser wavelengths. Triplet absorption losses. The simple encapsulation technology greatly reduces laser-induced thermal degradation and inhibits the erosion of the gain medium that otherwise occurs under severe continuous wave optical excitation. In summary, this study provides evidence that the development of true continuous wave organic semiconductor laser technology is possible through engineering modifications of the gain medium and device architecture. introductionOrganic semiconductor materials are generally considered to be well suited for photonics applications due to their ability to emit, modulate, and detect light ( 1). In particular, considerable research has been conducted over the past two decades due to its excellent characteristics in terms of low-cost fabrication, ease of processing, chemical versatility, mechanical flexibility, and wavelength tunability across the entire visible range. Work to use such organic semiconductor materials in optically pumped solid-state laser sources ( 2- 6). Since the first demonstration of optically pumped organic semiconductor lasers (OSL) ( 2), whose performance has been greatly improved due to significant advances in both high-gain organic semiconductor materials and device design ( 7 - 15). Recent developments in low-threshold distributed feedback (DFB) OSL demonstrate direct optical pumping of inorganic light-emitting diodes via electrically driven nanosecond pulses, providing a path towards new compact and low-cost visible laser technologies. path( 12 , 13). Applications based on these OSLs are currently emerging, including the development of spectroscopic tools, data communication devices, medical diagnostic equipment, and chemical sensors ( 16 , 20). Nonetheless, OSLs are optically pumped by pulsed optical excitation (with pulse width typically varying in the range of 100 fs to 10 ns) and driven at repetition rates (f) in the range of 10 Hz to 10 kHz. Under this situation, further breakthroughs are still needed to demonstrate optically pumped OSLs operating in the continuous wave (CW) regime and ultimately realize electrically pumped organic laser diodes ( twenty one , twenty two). Operating OSL in CW regime has proven challenging ( twenty three , twenty four). Thermal degradation of organic gain media under severe long-pulse optical pumping presents a serious problem for long-term laser operation ( 25). Another important issue to overcome concerns losses due to long-lived triplet excitons generated via intersystem crossings ( 26 - 29). When organic films are optically pumped in the long pulse regime, an accumulation of triplet excitons often occurs, leading to increased absorption at the laser wavelength due to triplet absorption (TA) and due to singlet-triplet Quenching of singlet excitons by mutual exciton destruction (STA). To overcome these obstacles, it has been proposed to incorporate triplet quenchers, such as oxygen ( 30 , 31), cyclooctatetraene ( 32) and anthracene derivatives ( 33). Another way to significantly reduce triplet losses is based on the use of emitters that exhibit high photoluminescence quantum yield (PLQY) and no spectral overlap between the absorption band of the triplet excited state and the emission band of the singlet excited state ( 34 - 36). Two methods of suppressing triplet losses in OSL have been successfully used to improve device performance in quasi-CW (qCW) regime ( 31 , 35). At the same time, a CW laser duration of nearly 100 μs can be achieved in OSL containing anthracene derivatives as triplet quenchers ( 33). In this paper, we propose an improved DFB OSL architecture that enables quasi-CW (qCW) lasers (at extremely high repetition rates of 80 MHz) and CW surface-emitting lasers with outstanding and unprecedented performance. These results represent a major development in the field of organic photonics and open new prospects towards the development of reliable and cost-effective organic CW solid-state laser technology. resultIn this study, the surface-emitting OSL was fabricated using the 4,4'-bis[( N -Carbazole) styryl]biphenyl (BSBCz) as emitter ( 34). Incorporation of triplet quenchers into BSBCz films is not necessary due to the extremely weak generation of triplet states via intersystem crossing and negligible triplet absorption at laser wavelengths in this material ( 35). The manufacturing method and structure of the organic semiconductor DFB laser produced in this study are schematically shown in Figure 12 and Figure 13A respectively. To achieve a low laser threshold with laser emission in the direction perpendicular to the substrate plane, we design a hybrid-order DFB grating architecture with a second-order Bragg scattering region surrounded by a first-order scattering region that induces strong feedback, thereby providing Efficient vertical extraction of laser radiation ( 8). In the DFB structure, laser oscillation occurs when the following Bragg conditions are met: Bragg=2 n eff Λ( 5),in mis the diffraction order, λ Braggis the Bragg wavelength, n effis the effective refractive index of the gain medium and Λis the period of the grating. Use the ones reported for BSBCz n effvalue and λ Braggvalue( 37 - 39), mixed order ( m=1,2) The grating periods of the DFB laser device are calculated to be 140 nm and 280 nm respectively. Using electron beam lithography and reactive ion etching, these gratings were engraved directly to 5 × 5 mm 2area on the silicon dioxide surface. It should be noted that the optical simulations and experimental data reported in Figures 16 to 17 and Tables S1 to S3 (see Section A, Supplementary Material) are considered to select parameters for the resonator design. As shown by the scanning electron microscopy (SEM) images in Figures 13B to 13C, the DFB grating fabricated in this work has grating periods of 140±5 nm and 280±5 nm and a grating of approximately 65±5 nm. Depth, it meets our standards. The lengths of each first-order and second-order DFB grating are approximately 15.12 µm and 10.08 µm respectively. BSBCz pure films and BSBCz:CBP (6:94 wt.% and 20:80 wt.%) blended films with a thickness of 200 nm were prepared by vacuum deposition on top of the grating. As shown in Figures 13D to 13E, the surface morphology of the organic layer exhibits a grating structure with a surface modulation depth of 20 nm to 30 nm. To greatly improve the efficiency and stability of DFB lasers operating in qCW regime and long pulse regime, the device was then encapsulated in a nitrogen-filled glove box (40). For this purpose, 0.05 ml of CYTOP (a chemically stable, optically transparent fluoropolymer with a refractive index of approximately 1.35) was spin-coated directly on top of the organic layer, and the polymer film was then covered by a transparent sapphire cap. Sealed organic laser device, the sapphire cover was chosen because of its good thermal conductivity at the BSBCz laser wavelength (TC about 25 W m at 300 K - 1K - 1) and good transparency. CYTOP films typically have a thickness of about 2 µm and were found not to affect the photophysical properties of BSBCz films (Figure 18). The use of BSBCz pure films or BSBCz:CBP (6:94 wt.%) blends was first examined under pulsed optical pumping using a nitrogen laser delivering 800 ps pulses at a repetition rate of 20 Hz and a wavelength of 337 nm. Laser characteristics of encapsulated mixed-stage DFB devices with thin films as gain media (see Section B and Figure 19, Supplementary Material). In the case of CBP blended films, the excitation light is mainly absorbed by the CBP host, but the large spectral overlap between CBP emission and BSBCz absorption ensures efficient Förster-type energy transfer from host molecules to guest molecules ( 39). This was confirmed by the absence of CBP emission under 337 nm light excitation. Based on the results shown in Figure 19, it was found that the pure thin film device and the blended thin film device each exhibited 0.22 µJ cm in the 800 ps pulsed state. 2and 0.09 µJ cm 2The low laser threshold value. In both cases, these values are lower than previously reported for amplified spontaneous emission (ASE) in BSBCz:CBP blends (0.30 μJ cm 2)(39) and second-order DFB laser (0.22 μJ cm 2) (35) reported threshold value, ( 3539) supports the possibility of hybrid-level gratings being used in high-efficiency organic solid-state lasers ( 8). Importantly, it was found that device encapsulation in this pulsed optical pump regime does not change the threshold value and laser wavelength of the mixed-order DFB laser. organic semiconductor DFB Laser hits accurately CW laserVarious BSBCz and BSBCz:CBP (6:94 wt.%) with different resonator structures were studied in the qCW regime for optical pumping using optical pulses with a wavelength of 365 nm and a width of 10 ps from a Ti-sapphire laser. Laser properties of DFB device. Figures 14A-14C show frame camera images of laser oscillations above threshold in a representative encapsulated blend mixing stage DFB device and the corresponding changes in emission intensity at different repetition rates. The excitation light intensity is fixed at approximately 0.5 µJ cm 2. When the repetition rate of optical excitation is increased from 10 kHz to 80 MHz, the time interval between laser oscillations gradually decreases from 100 µs to 12.5 ns. For the highest repetition rates (>1 MHz), the DFB laser output emission appears continuous in the 500 µs window, indicating that the device is operating properly in the qCW state even at the highest repetition rate of 80 MHz. The possibility of operating a DFB device at these high repetition rates is clearly related to small TA losses and STA quenching originating from negligible triplet exciton formation in the BSBCz:CBP blend ( 35). Similar experiments were performed using non-encapsulated hybrid stage devices and second-stage DFB devices based on BSBCz pure films or blended films. For each device, the laser output intensity obtained at several repetition rates was measured based on the excitation intensity to determine the laser threshold, and for representative encapsulated blend mixing stages at repetition rates of 10 kHz and 80 MHz. The results of the DFB device are shown in Figure 20. The dependence of repetition rates on laser thresholds in different devices is summarized in Figure 14D. The laser threshold in 6 wt.% blended DFB lasers is essentially due to the close to 100% PLQY and the suppression of concentration quenching in this gain medium (e.g. compared to 76% PLQY in BSBCz pure films) value( E th) is always lower ( 36). The results also show that the lowest threshold is obtained with a mixed-order DFB resonator structure. It is worth noting that when the repetition rate is increased from 10 kHz to 8 MHz, the laser threshold for all devices increases only very slightly. Due to the lack of significant triplet accumulation in the BSBCz system ( 35), we attribute the small increase in the threshold repetition rate to slight degradation of the device under high-intensity qCW irradiation (see Figure 21). Of concern, the encapsulated blend mixed-order DFB laser exhibits the lowest threshold (from 0.06 µJ cm at 10 kHz 2to 0.25 µJ cm at 80 MHz 2changes) and is the only device that operates properly at 80 MHz. When other devices are optically pumped at 80 MHz, the emission intensity decreases very rapidly and the FWHM value of the emission spectrum detected with a strip camera before rapid degradation of the organic film is usually larger, about 7 nm to 8 nm. (Figure 22). This situation indicates that encapsulation of DFB devices is necessary to significantly reduce degradation and that laser ablation of organic films presumably occurs under high-intensity 80 MHz light excitation. This reduction in device degradation due to encapsulation is presumably responsible for the decrease in laser threshold observed in Figure 14D. The operational stability of different blended DFB devices was studied under 8 MHz qCW optical pumping. Similar experiments were also conducted using an encapsulated mixed-order DFB laser at a repetition rate of 80 MHz. For each device, the time evolution of different DFB laser output intensities was monitored for 20 minutes using a pump intensity greater than 1.5 times the laser threshold (Figure 23). These results demonstrate that operational stability is improved when the laser threshold is reduced through grating structure and encapsulation choices. Higher pump intensities are required to achieve lasers in devices with higher thresholds, which results in faster laser-induced thermal degradation. More importantly, although none of the unencapsulated DFB devices operated well under qCW optical pumping at 80 MHz, the emission output intensity from the encapsulated organic laser decreased to only that of 96% of the initial value. This excellent operational stability emphasizes the critical role that encapsulation plays in the performance of organic semiconductor DFB lasers operating in the qCW regime. organic semiconductor DFB Reality in the laser CW laserThe variable stripe length method was used to study the amplified spontaneous emission (ASE) properties of 200 nm thick BSBCz:CBP (20:80wt.%) films to gain an understanding of the optical gain and loss coefficients under long pulse light irradiation. As shown in Figure 24 (see Table S4 and Section C in the Supplementary Material), the film using 50 μs long pulse optical pumping at 405 nm exhibits 1.5 kW cm 2of pump intensity of 40 cm 1high net gain coefficient and 3 cm 1the loss coefficient. This clearly supports our idea that BSBCz is an excellent candidate for organic semiconductor lasers operating under long pulse light excitation. The laser characteristics of the DFB device in CW mode were then studied using an inorganic laser diode emitting at 405 nm. Since the absorption of CBP is negligible at this excitation wavelength ( 30), add the mixture to The concentration of BSBCz was increased to 20 wt.% to improve laser diode pump emission harvest. The PLQY of this 20 wt.% blend was measured to be approximately 86%. Figure 15A shows the frame camera integrated within 100 pulses of an encapsulated 20 wt.% blend hybrid stage DFB laser shot for CW excitation pulse widths of 800 µs and 30 ms respectively. at 200 W cm 2and 2.0 kW cm 2Measured at the pump intensity. The corresponding emission spectra in Figure 25 and the image in Figure 15B provide additional evidence that the encapsulated DFB laser operates properly in the long pulse regime, with laser durations that can be significantly extended to over 30 ms. Additional data in Figure 26 provide additional evidence of laser excitation with 30 ms long pulse light. As shown in Figure 27, when the number of consecutive 30 ms long excitation pulses is increased from 10 to 500, the DFB laser emission output intensity decreases, which is probably attributed to the thermal degradation of the gain medium under such severe irradiation. Although the encapsulation of the device between high thermal conductivity silicon and sapphire has significantly improved the performance and stability of OSL to unprecedented levels, this situation shows that the development of practical CW organic laser technology will still need to be completed in the future. Improved heat dissipation. Figure 27 also shows that quenching of singlet excitons by TA or STA does not occur in BSBCz (see Section D, Supplementary Material). The results confirm the negligible overlap between the emission of BSBCz and the triplet absorption of BSBCz and the absence of deleterious triplet losses in the gain medium even under severe CW light excitation ( 35). To identify the requirements for CW lasers, check the divergence of the emitted beam below and above the threshold and its polarization. The results shown in Figures 28 to 29 confirm that proper laser operation occurs in the BSBCz DFB device under long pulse light irradiation. The organic DFB laser output intensity and emission spectrum were measured based on the excitation intensity and various long pulse durations in the range of 0.1 µs to 1000 µs in devices with different structures. An example of data obtained from a representative encapsulated blend mixing stage device is shown in Figure 30. The sudden change in the slope efficiency of the laser output intensity is again used to determine the laser threshold. Figure 15C summarizes the pulse duration dependence of laser thresholds measured in different devices. Similar to the trend observed in the qCW regime, incorporating BSBCz into the CBP host, using a mixed-order DFB resonator structure and encapsulation device resulted in a substantial reduction in the laser threshold. Encapsulated blended mixed-stage organic DFB lasers exhibit the lowest laser threshold while encapsulated mixed-stage DFB devices based on BSBCz pure films can operate properly in long pulse regimes for durations longer than 100 µs value (at 5 W cm 2to 75 W cm 2range) and is the only device that can effectively generate laser radiation for a duration longer than 800 µs. To provide additional evidence of the critical role played by the choice of high TC sapphire as the encapsulation cap on the performance of organic semiconductor lasers in the long pulse regime, we compared the performance of mixed-level blended DFBs encapsulated with sapphire caps or glass caps. The dependence of the excitation duration on the laser threshold obtained in the device. Figure 31 clearly demonstrates that using a high TC cover made of sapphire results in lower thresholds and improved operational stability. The operational stability of encapsulated or unencapsulated mixed-stage DFB lasers in the long-pulse regime is characterized by monitoring in such devices greater than 200 W cm 2The laser emission output intensity of the laser threshold value changes with the number of 100 µs excitation pulses of the pump intensity. As shown in Figure 15D, in all devices, the emission intensity gradually decreased over time, and these decreases were irreversible, indicating laser-induced thermal degradation of the organic gain medium. It is noteworthy that operational stability is greatly improved by encapsulation and is clearly optimal for encapsulated blending devices. In the latter case, after 500 pulses, the laser output intensity decreased by only 3%. Figure 32 shows the performance of an unencapsulated hybrid hybrid-stage DFB laser with a width of 1 ms and 200 W cm 2Laser microscope images before and after 100 incident pulses of excitation intensity. Although no signs of laser-induced thermal degradation were observed in the encapsulated devices, laser ablation occurred in the unencapsulated devices with an ablation depth of approximately 125 nm. Significantly reducing the possibility of laser ablation through the proposed encapsulation technology is obviously key to the future development of CW organic semiconductor laser technology. To draw conclusions on how to limit existing devices in terms of practical CW operation, thermal simulations of heat dissipation in the device were performed and reported in Figures 38 to 42 (see Table S4 and Section E, Supplementary Material). These results demonstrate the effect of pump pulse width and the effect of encapsulation on the thermal properties of the device. Specifically, although encapsulation was considered an important element in this study, simulations suggest that CYTOP should be replaced by another material with better thermal conductivity in further studies. DiscussInorganic CW solid-state lasers were first demonstrated about 40 years ago (41) and their development has proven to be extremely successful, especially at wavelengths in the near-infrared and ultraviolet/blue regions of the electromagnetic spectrum ( 42 - 45). Although these devices typically require cutting-edge microfabrication techniques with high vacuum and temperature conditions, it has recently been demonstrated that solution-processed inorganic quantum wells can also be used to achieve CW laser ( 46). On the other hand, the performance of organic semiconductor lasers in qCW and long pulse conditions has so far remained much lower than that of inorganic semiconductors ( 33 , 35). Therefore, our demonstration of an organic semiconductor laser operating in the qCW state at 80 MHz and still operating in the long pulse state after 500 consecutive pulses of 30 ms represents an important step towards the development of practical CW organic solid-state laser technology. Progress. This study strongly supports the fact that organic laser materials with high PLQY, high optical gain, and no spectral overlap between the laser emission peak and the TA band are useful for containing triplet losses and achieving this when combined with mixed-order DFB gratings. Low threshold CW lasers are highly desirable. The results are also shown using thermal conductivity ( 47) The mutual thermal conductivity of silicon encapsulation and sapphire encapsulation, which is higher than that of conventional glass and molten silica, significantly improves the efficiency and stability of organic DFB lasers. However, under severe CW optical pumping, organic Laser-induced thermal degradation of gain media remains the most serious problem that will need to be overcome in the near future. Therefore, given the potential development of the aforementioned methods for improving thermal management in CW inorganic solid-state lasers, further research into greatly enhancing the operational stability of CW organic semiconductor lasers should now focus on having low CW laser thresholds and Research and development of organic semiconductor gain media with enhanced thermal stability and focus on integrating efficient heat dissipation systems into devices ( 48 , 49). Furthermore, in addition to the discovery of better and more efficient gain materials, further optimization of resonator geometries and laser structures should lead to lower laser thresholds and should still represent the development of CW organic laser technology and electrical pumping The realization of organic laser diodes is an important future direction. Materials and methods Device manufacturingThe silicon substrate covered with a thermally grown silicon dioxide layer of 1 μm thickness was cleaned by ultrasonic treatment using alkaline cleaner, pure water, acetone and isopropyl alcohol, followed by UV ozone treatment. The silica surface was treated with hexamethyldisilazane (HMDS) by spin coating at 4000 rpm for 15 s and annealed at 120 °C for 120 s. A resist layer with a thickness of approximately 70 nm was spin-coated on the substrate from a ZEP520A-7 solution (ZEON Co.) at 4000 rpm for 30 s and baked at 180°C for 240 s. Use a 0.1 nC cm 2A JBX-5500SC system (JEOL) with optimized dosage was used for electron beam lithography to draw the grating pattern on the resist layer. After electron beam irradiation, the pattern was developed in a developer solution (ZED-N50, ZEON Co.) at room temperature. The patterned resist layer was used as an etch mask, while an EIS-200ERT etch system (ELIONIX) was used with CHF 3Plasma etching the substrate. To completely remove the resist layer from the substrate, use a FA-1EA etching system (SAMCO) with O 2Plasma etching the substrate. The grating formed on the silicon dioxide surface was observed using SEM (SU8000, Hitachi). To complete the laser device, by 4Thermal evaporation under a pressure of Pa is 0.1 nm s 1to 0.2 nm s 1The total evaporation rate is used to prepare 200 nm thick 6 wt% or 20 wt% BSBCz:CBP blended films and BSBCz pure films on the grating. Finally, 0.05 ml of CYTOP (Asahi Glass Co., Ltd., Japan) was directly spin-coated onto the DFB laser device at 1000 rpm for 30 s, sandwiched with a sapphire cover to seal the top of the laser device, and dried in a vacuum overnight. Spectral measurementIn order to characterize the pulsed organic laser, the pulsed excitation light from the nitrogen laser (USHO, KEN-2020) was concentrated on 6×10 of the device through the lens and slit. 3cm 2area. The excitation wavelength is 337 nm, the pulse width is 0.8 ns, and the repetition rate is 20 Hz. The excitation light is incident on the device at an angle of approximately 20° relative to the normal line of the device plane. The emitted light perpendicular to the device surface was collected using an optical fiber connected to a multichannel spectrometer (PMA-50, Hamamatsu Photonics) and placed 3 cm away from the device. Use a set of neutral density filters to control excitation intensity. For qCW operation, a mode-locked frequency doubled Ti-sapphire laser (Millennia Prime, Spectra physics) was used to generate excitation light with an excitation wavelength of 365 nm, a pulse width of 10 ps, and a repetition rate ranging from 0.01 MHz to 80 MHz. . The excitation light is concentrated on 1.9×10 of the device through lenses and slits. 4cm 2area, and the emitted light was collected using a frame eye (C10627, Hamamatsu Photonics) with a time resolution of 15 ps connected to a digital camera (C9300, Hamamatsu Photonics). For real CW operation, a CW laser diode (NICHIYA, NDV7375E, maximum power 1400 mW) was used to generate excitation light with an excitation wavelength of 405 nm. In these measurements, an acousto-optic modulator (AOM, Gooch & Housego) triggered by a pulse generator (WF 1974, NF Co.) was used to deliver pulses. The excitation light is concentrated on 4.5×10 of the device through lenses and slits. 5cm 2area, and the emitted light was collected using a frame eye (C7700, Hamamatsu Photonics) with a time resolution of 100 ps connected to a digital camera (C9300, Hamamatsu Photonics). A photomultiplier tube (PMT) (C9525-02, Hamamatsu Photonics) was used to record the emission intensity. Both the PMT response and the driving square wave signal were monitored on a multi-channel oscilloscope (Agilent Technologies, MSO6104A). As described previously, the same illumination and detection angles were used for this measurement. Carefully check the size of the excitation area by using a beam mapper (WimCamD-LCM, DataRay). All measurements were performed in a nitrogen atmosphere to prevent any degradation caused by moisture and oxygen. Preparation containing BSBCz dissolved in CH 2Cl 2The solution was bubbled with argon before use. The third harmonic laser light with a wavelength of 355 nm and a FWHM of 5 ns from an Nd:YAG laser (Quanta-Ray GCR-130, Spectra-Physics) was used as the pump light, and the pulse from the Xe lamp White light was used as the detection light for triplet absorption measurements of solutions using a strip camera (C7700, Hamamatsu Photonics). References1. J. Clark, G. Lanzani, Organic photonics for communications. Nature Photon. 4, 438-446 (2010). 2. D. Moses, High quantum efficiency luminescence from a conducting polymer in solution: A novel polymer laser dye. Appl. Phys. Lett. 60, 3215-3216 (1992). 3. N. Tessler, G. J. Denton, R. H. Friend, Lasing from conjugated-polymer microcavities. Nature 382, 695-697 (1996). 4. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. Andersson, Q. Pei, A. J. Heeger, Semiconducting polymers: a new class of solid-state laser materials. Science 273, 1833-1836 (1996). 5. I. D. W. Samuel, G. A. Turnbull, Organic semiconductor lasers. Chem. Rev. 107, 1272-1295 (2007). 6. S. Chénais, S. Forget, recent advances in solid-state organic lasers. Polym. Int. 61, 390-406 (2012). 7. M. D. Mcgehee, A. J. Heeger, Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 12, 1655-1668 (2000). 8. C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gartner, U. Lemmer, Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90131104 (2007). 9. G. Heliotis, R. Xia, D. D. C. Bradley, G. A Turnbull, I. D. W. Samuel, P. Andrew, W. L. Barnes, Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium. J. Appl. Phys. 96, 6959-6965 (2004). 10. A. E. Vasdekis, G. Tsiminis, J. C. Ribierre, L. O'Faolain, T. Krauss, G. A. Turnbull, I. D. W. Samuel, Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend. Opt.Expr. 14, 9211-9216 (2006). 11. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, I. D. W. Samuel, H. S. Barcena, P. L. Burn, Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007). 12. Y. Yang, G. A. Turnbull, I. D. W. Samuel, Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode. Appl. Phys. Lett. 92, 163306 (2008). 13. G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, G. A. Turnbull, Nanoimprinted organic semiconductor lasers pumped by a light-emitting diode. Adv. Mater. 25, 2826-2830 (2013). 14. E. R. Martins, Y. Wang, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, I. D. W. Samuel, Low-threshold nanoimprinted lasers using substructured gratings for control of distributed feedback. Adv. Opt. Mater. 1, 563-566 (2013). 15. J. Herrnsdorf, Y. Wang, J. J. D. McKendry, Z. Gong, D. Massoubre, B. Guilhabert, G. Tsiminis, G. A. Tunrbull, I. D. W. Samuel, N. Laurand, E. Gu, M. D. Dawson, Micro-LED pumped polymer laser: A discussion of future pump sources for organic lasers. Laser & Photon. Laser & Photon. Rev. 7, 1065-1078 (2013). 16. C. Grivas, M. Pollnau, Organic solid-state integrated amplifiers and lasers. Laser & Photon. Rev. 6, 419-462 (2012). 17. C. Vannahme, S. Klinkhammer, U. Lemmer, T. Mappes, Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Opt.Expr. 19, 8179-8186 (2011). 18. W. Zheng, L. He, Label-free, real-time multiplexed DNA detection using fluorescent conjugated polymers. J. Am. Chem. Soc. 131, 3432-3433 (2009). 19. Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, I. D. W. Samuel, LED pumped polymer laser sensor for explosives. Laser & Photon. Rev. 7, L71-L76 (2013). 20. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876-879 (2005). 21. I. D. W. Samuel, E. B. Namdas, G. A. Turnbull, How to recognize lasing. Nature Photon. 3, 546-549 (2009). 22. S. Z. Bisri, T. Takenobu, Y. Iwasa, The pursuit of electrically-driven organic semiconductor lasers. J. Mater. Chem. C 2, 2827-2836 (2014). 23. E. Bornemann, E. Thiel, P. Haring Bolivar, High-power solid-state cw dye laser. Opt.Expr. 19, 26382-26393 (2011). 24. E. Bornemann, U. Lemmer, E. Thiel, Continuous-wave solid-state dye laser. Opt. Lett. 31, 1669-1671 (2006). 25. Z. Zhao, O. Mhibik, T. Leang, S. Forget, S. Chenais, Thermal effects in thin-film organic solid-state lasers. Opt.Expr. twenty two, 30092-30107 (2014). 26. N. C. Giebink, S. R. Forrest, Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 79, 073302 (2009). 27. M. A. Baldo, R. J. Holmes, S. R. Forrest, Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002). 28. M. Lehnhardt, T. Riedl, T. Weimann, W. Kowalsky, Impact of triplet absorption and triplet-singlet annihilation on the dynamics of optically pumped organic solid-state lasers. Phys. Rev. B 81, 165206 (2010). 29. M. A. Stevens, C. Silva, D. M. Russell, R. H. Friend, Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). Phys. Rev. B 63, 165213 (2001). 30. L. Zhao, M. Inoue, K. Yoshida, A. S. D. Sandanayaka, J. H. Kim, J. C. Ribierre, C. Adachi, Singlet-triplet exciton annihilation nearly suppressed in organic semiconductor laser materials using oxygen as a triplet quencher. IEEE J. Sel. Top. Quant. Electron. twenty two, 1300209 (2016). 31. A. S. D. Sandanayaka, L. Zhao, D. Pitrat, J. C. Mulatier, T. Matsushima, C. Andraud, J. H. Kim, J. C. Ribierre, C. Adachi, Improvement of the quasi-continuous-wave lasing properties in organic semiconductor lasers using oxygen as triplet quencher. Appl. Phys. Lett. 108, 223301 (2016). 32. S. Schols, A. Kadashchuk, P. Heremans, A. Helfer, U. Scherf, Triplet excitation scavenging in films of conjugated polymers. Chem. Phys. Chem. 10, 1071-1076 (2009). 33. Y. F. Zhang, S. R. Forrest, Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84, 241301 (2011). 34. T. Rabe, K. Gerlach, T. Riedl, H. H. Johannes, W. Kowalsky, J. Niederhofer, W. Gries, J. Wang, T. Weimann, P. Hinze, F. Galbrecht, U. Scherf, Quasi -continuous-wave operation of an organic thin-film distributed feedback laser. Appl. Phys. Lett. 89, 081115 (2006). 35. A. S. D. Sandanayaka, K. Yoshida, M. Inoue, K. Goushi, J. C. Ribierre, T. Matsushima, C. Adachi, Quasi-continuous-wave organic thin film distributed feedback laser. Adv. Opt. Mater. 4, 834-839 (2016). 36. H. Nakanotani, C. Adachi, S. Watanabe, R. Katoh, Spectrally narrow emission from organic films under continuous-wave excitation. Appl. Phys. Lett. 90, 231109 (2007). 37. D. Yokoyama, M. Moriwake, C. Adachi, Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. J. Appl. Phys. 103, 123104 (2008). 38. H. Yamamoto, T. Oyamada, H. Sasabe, C. Adachi, Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401 (2004). 39. T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, C. Adachi, 100% fluorescence efficiency of 4,4'-bis[( N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Appl. Phys. Lett. 86, 071110 (2005). 40. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, I. D. W. Samuel, Improved operational lifetime of semiconducting polymer lasers by encapsulation. Appl. Phys. Lett. 91, 261104 (2007). 41. Z. I. Alzerov, V. M. Andreed, D. Z. Garbuzov, Y. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, V. G. Trofim, Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Sov. Phys. Semicond. 4, 1573-1575 (1971). 42. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301-305 (2002). 43. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. A. Paniccia, A continuous-wave Raman silicon laser. Nature 433, 725-728 (2005). 44. T. Someya, Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science 285, 1905-1906 (1999). 45. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, E. L. Hu, Room temperature continuous-wave lasing in GaN/InGaN microdisks. Nature Photon. 1, 61-64 (2007). 46. J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, I. Moreels, Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nature Nanotech. 9, 891-895 (2014). 47. S. H. Choi, T. I. Lee, H. K. Baik, H. H. Roh, O. Kwon, D. H. Suh, The effect of electrode heat sink in organic-electronic devices. Appl. Phys. Lett. 93, 183301 (2008). 48. Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, M. Razeghi, Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power. Appl. Phys. Lett. 92, 101105 (2008). 49. V. Spagnolo, A. Lops, G. Scamarcio, M. S. Vitiello, C. Di Franco, Improved thermal management of mid-IR quantum cascade lasers. J. Appl. Phys. 103, 043103 (2008). [ 4 ] Supplementary material Chapter A . Optical simulation 1. introductionRecently, organic semiconductor lasers (OSLs) have attracted much attention due to their favorable properties such as wavelength tunability in the visible range, low cost, flexibility, and large-area manufacturing [1]. These properties make it a good candidate for many applications including sensing, display applications, data storage and electrostatic printing. However, only optically pumped organic lasers have been achieved so far. Much effort has been focused on reducing the energy threshold of optically pumped organic lasers by enhancing the properties of the gain medium [2], [3] and optimizing the resonant cavity [4], [5], [6]. Given that achieving electrically pumped organic lasers is not yet achievable, more optimization is needed to further lower the energy threshold. Regarding resonant cavities, there are several types compatible with organic gain media, including distributed feedback (DFB) resonators [7], [8], distributed Bragg resonators (DBR) [9], microrings [10], Microdisk [11] and microsphere cavity [12]. The function of the resonator is to provide positive optical feedback in addition to the optical amplification provided by the gain medium. The laser architecture used in current state-of-the-art organic lasers is based on DFB resonators [5], [4], [13]. These resonators do not use conventional cavity mirrors, but instead use periodic nanostructures responsible for Bragg diffraction. DFB resonators are compact and can be easily integrated into planar organic films. In addition, it provides a higher degree of spectral selection. The laser structure studied in this work consists of an organic thin film deposited on a 2-order DFB grating. In this type of grating, light generated by the gain medium is waveguided along a high refractive index organic film and then scattered by periodic structuring. Optical feedback occurs due to the coupling between forward propagating waves and backward propagating waves [14]. This coupling is the maximum at a specific wavelength that satisfies the following Bragg condition: (1) in mis the diffraction angle, λ Bragg is the resonance wavelength in the cavity, neff is the effective refractive index of the uniform waveguide, and Λ is the grating period. In the second-order grating ( m=2), the first-order diffracted light is extracted vertically from the surface of the film, and the coplanar feedback is provided by the second-order diffraction. According to the coupling mode theory, wavelengths that satisfy the Bragg condition (1) are not allowed to propagate in the film [15]. This is due to periodic modulation of the refractive index, which results in the appearance of a photon stop band concentrated at the Bragg wavelength. Therefore, in λ Bragg Below, a sudden drop in emission is observed and laser oscillation appears at a pair of wavelengths located on the edge of the stop band. In second-order gratings, the laser oscillations are only at one edge of the stop band (at the highest wavelength). At this wavelength, the threshold is lower due to lower radiation losses [16]. The resonant cavity affects laser performance through two parameters: limiting factor Γand quality factor Q. The exciton density at the laser threshold and Γand QThe two are inversely proportional [17]. Therefore, the optimization of the geometry of the DFB resonant cavity is crucial to reducing the loss, which can be achieved by Γand QQuantitative. The goal of this work is to study the effect of organic film thickness on laser performance (including energy threshold and laser wavelength). First, the laser is designed to be fixed. This step is accomplished by calculating the effective refractive index of the waveguide structure in order to deduce the grating period required to obtain laser light at the ASE wavelength. The thickness of the organic film was changed from 100 nm to 300 nm, and the effective refractive index at each thickness was calculated. Second, to gain a physical understanding of how the laser threshold energy changes with thickness, optical simulations are performed. The quality factor and limiting factor of the resonant cavity are calculated based on the film thickness and compared with the experimental energy threshold of the organic laser device. 2 . Device structure and simulation detailsThe geometry of the grating-coupled waveguide that constitutes the second-order DFB organic laser studied in this work is depicted in Figure 33. The waveguide structure consists of a gain medium (6%wt BSBCz:CBP), which is composed of SiO with a lower refractive index. 2It is composed of a grating and a high refractive index layer surrounded by air. The gain medium consists of a 6wt% BSBCz:CBP blend film deposited in vacuum on a 2nd order DFB grating. Gratings are fabricated on SiO by electron beam lithography 2on the substrate. The fabrication of DFB lasers is described elsewhere [4]. The input parameters used for the simulation are the layer thickness and refractive index. think air ( n a =1) and SiO 2substrate ( n s =1.46) is a semi-infinite layer. Consider the refractive index of 6wt% BSBCz:CBP blend f is equal to the refractive index of CBP reported in [18] ( f About 1.8). The thickness of the organic film changes from 100 nm to 300 nm. The structure of the laser is designed so that the laser oscillates at the amplified spontaneous emission (ASE) wavelength of BSB-Cz (approximately 477 nm) [19], [20]. Simulation software :Use self-made python 3.5 software instruction code to perform effective refractive index calculation and Fano fitting The finite element method in the RF module of Comsol 5.2a software is used to extract the quality factor and limiting factor from the calculation of the eigenvalues of the resonant cavity mode. 3. Results and discussion 3.1 Waveguide characterization ( Effective refractive index calculation )In order to calculate the grating period using the Bragg condition (Equation 1), the effective refractive index of the uniform waveguide (without grating) is required neff . In this model, the grating is ignored, so the waveguide thickness is the thickness of the organic film. The effective refractive index is calculated by solving the propagating wave equation [21] based on the thickness of the organic film at a wavelength of 477 nm. neff value. In this calculation, we consider the asymmetric waveguide to have no grating (Fig. 34(a)). In the case of an asymmetric 3-layer thick block waveguide, the electric field in each region is given by: in: in k 0 For the vacuum propagation constant mode ,and βis the propagation constant of the boot mode . The effective refractive index of the waveguide mode is calculated from the transcendental equation obtained after applying the following boundary conditions: for TE mode (6) for TM mode (7) Figure 34(b) presents the waveguide dispersion curve derived from Equations 6 and 7, which shows the effective refractive index as a function of organic film thickness at a laser wavelength of 477 nm. From these curves, one can infer the number of propagation modes at a given thickness and the cutoff thickness for a specific propagation mode. In this work, the thickness was chosen to change from 100 nm to 300 nm. For thicknesses below 280 nm, only the fundamental mode TE is allowed 0oscillation. Increasing thickness above 280 nm results in higher order (TE 1,TE 2)exist. Once the effective refractive index is calculated, one can deduce the grating period at λ using the Bragg condition (Eq. 1) at different film thicknesses. ASE= value at 477 nm. For a 200 nm film thickness, neff =1.7. The value of the grating period Λ that satisfies the Bragg condition (Equation 1) is 280 nm. In the following, we fix the grating period to 280 nm and the grating depth to 70 nm thickness. The thickness of the organic film only changes from 100 nm to 300 nm. 3.2 DFB Resonance cavity optimizationThe resonant cavity is described by its photon lifetime and limiting factor. Photon lifetime τ represents the time a photon spends in the cavity (the rate at which photons are lost in the cavity). Photons can be lost by escaping the cavity or by being absorbed by the material. This photon lifetime τ is related to the quality factor Q of the cavity as follows: where ω 0is the resonant angular frequency. The Q-factor of an optical cavity is calculated in two different ways. (1) Eigenmode calculationIn the first method, the finite element method in the RF module of the Comsol software is used to extract the quality factor from the calculation of the eigenvalues of the resonant cavity modes. The computational domain is limited to one period unit cell of the grating. Floquet periodic boundary conditions are applied to the lateral boundaries, and scattering boundary conditions are used in the top and bottom domains [22], [23]. The natural frequency solver is used to find the propagating eigenmodes of the resonant cavity. According to the real part and imaginary part of the eigenvalue, the Q factor is derived: in αfor damped decay . Additionally, the limiting factor of the eigenmode is calculated using the following expression: in E norm is the normalized electric field intensity distribution of the eigenmode. (2) Fano fitting of reflectance spectrumThe second method for extracting the figure of merit consists of calculating the reflection spectrum using a scattering matrix implemented in Comsol software for normally incident TE polarized plane waves (whose electric field is parallel to the grating) [ref]. Subsequently, the Q factor (Eq. 8) is obtained by fitting the resonance linewidth present in the simulated reflection spectrum with the following Fano resonance equation [24]: in ω 0 is the center frequency, τ is the resonance life, rand thas the same thickness and effective refractive index as the grating neff,g The amplitude reflection and transmission coefficients of a uniform thick block. In the case of binary gratings, the effective refractive index can be described using the following effective medium theory [25]: in ffis defined as the raster width wRatio to period Λ. Figure 35 shows the calculated reflection spectra as a function of wavelength and film thickness and the corresponding fitted Fano resonance curve using Equation 11. For cavities with film thicknesses of 100, 150, 200, 250 and 300 nm, reflection peaks at wavelengths of 448, 462, 472, 478 and 483 nm were observed, respectively. At these wavelengths, resonance occurs due to phase matching between waves diffracted by grating and leaky waveguide modes [26], [27]. Therefore, multiple reflections occur in the waveguide and the wavelength of the incident light is selected by the resonance of the waveguide grating. As confirmed by the calculations presented in Section 3.1 and by previously reported work [28], f The increase makes the modal neff increases (Fig. 34(b)), which causes tuning of the laser wavelength. As we can see in Figure 36(a), f The increase causes the spectral red shift of laser emission. The experimental laser wavelength is consistent with the Fano model and the model indicated in Chapter 3.1. f + h g A comparison of the calculated laser wavelengths for the model is presented in Figure 36(b), where h g Refers to the depth of the grating. Both models provide approximately the same results, close to experimental values, but at smaller f (<200 nm), the gap between the experimental wavelength and the calculated wavelength is still significant (Δλ>10 nm). It is reported that when the ratio h g / f When exceeding 0.3 [28], in f At about 200 nm and below, exponential coupling is the dominant mechanism. When exponential coupling is more dominant than gain coupling, the laser will not λ Bragg appear nearby. Therefore, the deviation between the experimental laser wavelength and the calculated laser wavelength can be determined by focusing on the wavelength below 200 nm. f Explained by the dominance of exponential coupling. Figure 37(a) shows the calculated Qfactors and Γvalue. used for calculation QBoth methods of factoring give the same result. It can be seen that ΓWith f increase, demonstrating good optical limits. This system is attributed to the fundamental harmonic mode TE 0Of neff increase. However, the resonance cavity Qfactor between 200 nm f value becomes the highest. different f The measured energy threshold value E th Presented in Figure 37(a). we can observe Qfactor and E th Inversely proportional. Furthermore, when f When increasing from 100 nm to 200 nm, E th decrease. This is attributed to Qfactors and ΓThe increase of both. Between 200 nm f value, E th show the minimum value, followed by f Increase. Larger f higher E th This is due to the lower resonant cavity Qfactor. Finally, the full width at half maximum (FWHM) of the peak reflection extracted from the calculation and Fano fitting was compared with the FWHM of the experimental laser emission [Figure 37(b)]. Both experimental FWHM values and calculated FWHM values are shown and are for a wavelength equal to 200 nm. f The minimum values obtained follow the same trend. 3.3 Use the encapsulation DFB Laser OptimizationIn this section, CYTOP is used to calculate the Γand Qfactor. The input parameters used for the optical simulation are the thickness of the organic film and the refractive index of the layer. Think CYTOP ( n CYTOP=1.35) and SiO 2substrate ( n SiO2=1.46) is a semi-infinite layer. Consider 6wt% BSBCz: refractive index n of CBP film fis equal to the reported refractive index of CBP ( f =1.85) ( 1). BSBCz: Thickness of CBP film d 0 From 100 nm to 300 nm. Due to the structured top surface, the thickness ( h g - h g ( top ))/2=30 nm thin layer with depth h g ( top )=5 nm thin grating. 3.3.1 Film thickness changesFirst, we calculate Γand Qfactor to make the raster depth h gremain constant ( h g=65 nm) while studying the film thickness d 0 the effect of change. Table S1 shows the calculation results. surface S1 .Film thickness, resonance wavelength, quality factor and limiting factor. d 0 (nm) λ 0 (nm) Q factor Γ 100 465 717 0.34 200 481 5050 0.78 300 494 6674 0.88 When the thickness increases, Γand Qfactor increases, but due to the resonant wavelength λ 0ASE wavelength shift of self-gaining materials, between 200 nm d 0 Maintain optimal thickness for device operation. 3.3.2 Raster depth changesSecondly, we are calculating Γand Qfactor makes d 0 remain constant ( d=200 nm) simultaneous study h gThe effect of change. Table S2 below shows the calculation results. surface S2 .Grating depth, resonance wavelength, quality factor and limiting factor. h g (nm) λ 0 (nm) Q factor Γ 30 481 8026 0.79 65 481 5050 0.78 80 483 1915 0.74 By reducing the grating depth, Qfactor increases ΓStill pretty much the same. However, the fabrication of shallow gratings is challenging because small changes in depth will greatly affect the optical response of the grating. Although this aspect will certainly be improved upon in future work, a depth of 65 nm seemed to be the most appropriate for this study. 3.3.3 Comparison between encapsulated and non-encapsulated devicesCalculations were performed using the same geometry. In the encapsulated case, the top layer was CYTOP with a refractive index of 1.35. Without encapsulation, CYTOP is replaced by air ( n=1). In this case, Qfactors and Γincreased and the resonance wavelength was slightly blue-shifted, as shown in Table S3. surface S3 .Comparison of resonance wavelength, quality factor, and limiting factor between encapsulated and non-encapsulated devices. λ 0 (nm) Q factor Γ encapsulated 481.2 5050 0.78 Unencapsulated 479 6455 0.82 However, based on experimental results, the encapsulated devices demonstrated better performance (FWHM) than the non-encapsulated devices. This could be attributed to changes in the top surface when we encapsulated the device or to protection from moisture. 3.3.4 2 Effect of size of step grating areaDifferent sizes of the 2nd-order region were used to experimentally determine the laser threshold for mixed-order DFB lasers of BSBCz:CBP (6:94wt.%) blends. The results are shown in Figure 17. It can be seen that the DFB architecture used for this study (which corresponds to a number of cycles equal to 36) is not fully optimized, indicating that further improvements in device performance should be possible by playing only on the resonator structure. References1. C. Ge, M. Lu, X. Jian, Y. Tan, and B. T. Cunningham, “Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping,” vol. 18, no. 12, pp. 12980 -12991, 2010. 2. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, and C. Adachi, “Extremely low-threshold amplified spontaneous emission of 9,9-disubstituted- spirobifluorene derivatives and electroluminescence from field-effect transistor structure," Adv. Funct. Mater., vol. 17, no. 14, pp. 2328-2335, 2007. 3. G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-threshold organic laser based on an oligofluorene truxene with low optical losses,” pp . 3-5, 2009. 4. A. S. D. Sandanayaka, K. Yoshida, M. Inoue, C. Qin, K. Goushi, J.-C. Ribierre, T. Matsushima, and C. Adachi, “Quasi-Continuous-Wave Organic Thin-Film Distributed Feedback Laser ," Adv. Opt. Mater., vol. 4, no. 6, pp. 834-839, Jun. 2016. 5. E. R. Martins, Y. Wang, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Low-Threshold Nanoimprinted Lasers Using Substructured Gratings for Control of Distributed Feedback,” Adv. Opt. Mater., vol. 1, no. 8, pp. 563-566, 2013. 6. V. Qaradaghi, V. Ahmadi, and G. Abaeiani, “Design of organic vertical-cavity surface-emitting laser for electrical pumping,” IEEE Electron Device Lett., vol. 33, no. 11, pp. 1616-1618, 2012. 7. M. D. McGehee, M. A. Díaz-García, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett., vol. 72, no. 13, pp. 1536-1538, 1998. 8. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett., vol. 83, no. 11, pp. 2118-2120, 2003. 9. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O' Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend .," Opt. Express, vol. 14, no. 20, pp. 9211-9216, 2006. 10. R. Osterbacka, M. Wohlgenannt, M. Shkunov, D. Chinn, and Z. V. Vardeny, “Excitons, polarons, and laser action in poly(p-phenylene vinylene) films,” J. Chem. Phys., vol. 118, no. 19, pp. 8905-8916, 2003. 11. C. X. Sheng, R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Studies of pi-conjugated polymer coupled microlasers,” Synth. Met., vol. 135-136, no. April, pp. 147-149, 2003. 12. M. Berggren, A. Dodabalapur, Z. N. Bao, and R. E. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater., vol. 9, no. 12, pp. 968-971, 1997. 13. G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater., vol. 25, no. 20, pp. 2826-2830, 2013. 14. I. D. W. Samuel and G. a Turnbull, “Organic semiconductor lasers.,” Chem. Rev., vol. 107, no. 4, pp. 1272-1295, 2007. 15. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys., vol. 43, no. 5, pp. 2327-2335, 1972. 16. R. F. Kazarinov and C. H. Henry, “Second-Order Distributed Feedback Lasers with Mode Selection Provided by First-Order Radiation Losses,” IEEE J. Quantum Electron., vol. 21, no. 2, pp. 144-150, 1985. 17. S. Schols, Device Architecture and Materials for Organic Light-Emitting Devices. Springer, 2011. 18. D. Yokoyama, A. Sakaguchi, M. Suzuki, and C. Adachi, “Horizontal orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films,” Org. Electron., vol. 10, no. 1, pp. 127-137, 2009. 19. J. Chang, Y. Huang, P. Chen, R. Kao, X. Lai, C. Chen, and C. Lee, “Reduced threshold of optically pumped amplified spontaneous emission and narrow line-width electroluminescence at cutoff wavelength from bilayer organic waveguide devices,” vol. 23, no. 11, pp. 67-74, 2015. 20. M. Inoue, T. Matsushima, and C. Adachi, “Low amplified spontaneous emission threshold and suppression of electroluminescence efficiency roll-off in layers doped with ter(9,9’-spirobifluorene),” Appl. Phys. Lett., vol. 108, no. 13, 2016. 21. A. K. Sheridan, G. A. Turnbull, A. N. Safonov, and I. D. W. Samuel, “Tuneability of amplified spontaneous emission through control of the waveguide-mode structure in conjugated polymer films,” vol. 62, no. 18, pp. 929-932, 2000 . 22. J.-H. Hu, Y.-Q. Huang, X.-M. Ren, X.-F. Duan, Y.-H. Li, Q. Wang, X. Zhang, and J. Wang, “Modeling of Fano Resonance in High-Contrast Resonant Grating Structures,” Chinese Phys. Lett., vol. 31, no. 6, p. 64205, Jun. 2014. 23. T. Zhai, X. Zhang, and Z. Pang, “Polymer laser based on active waveguide grating structures.,” Opt. Express, vol. 19, no. 7, pp. 6487-6492, 2011. 24. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in nanoscale structures,” vol. 82, no. September, pp. 2257-2298, 2010. 25. M. Foldyna, R. Ossikovski, A. De Martino, B. Drevillon, E. Polytechnique, and P. Cedex, “Effective medium approximation of anisotropic lamellar nanogratings based on Fourier factorization,” vol. 14, no. 8, pp. 3055-3067, 2006. 26. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters.,” Appl. Opt., vol. 32, no. 14, pp. 2606-2613, 1993. 27. T. Khaleque and R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J. Nanophotonics, vol. 8, no. 1, p. 83995, 2014. 28. V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino and M. A. Díaz-García, “Film thickness and grating Depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. Vol.112,no.4, pp. 43104, 2012. Chapter B . Mixed order DFB Laser properties of the deviceThe use of BSBCz pure films or BSBCz:CBP (6:94 wt.%) blended films was examined under pulsed optical pumping with a nitrogen laser delivering 800 ps pulses at a repetition rate of 20 Hz and a wavelength of 337 nm. Laser properties of encapsulated mixed-stage DFB devices as gain media. In the case of CBP blended films, the excitation light is mainly absorbed by the CBP host. However, the large spectral overlap between CBP emission and BSBCz absorption ensures efficient Förster-type energy transfer from host molecules to guest molecules ( 2- 6). This was confirmed by the absence of CBP emission under 337 nm light excitation. Figures 19A to 19E show emission spectra collected perpendicular to the surface of the BSBCz film and the BSBCz:CBP (6:94 wt.%) film at different excitation intensities below and above the threshold. Under low excitation intensity, corresponding to the DFB grating ( 2) of the photoresist band. The small change in the Bragg dip position is probably due to the slightly different refractive index of the blended and pure films ( 2- 6). As the pump intensity increases above the critical threshold, a narrow emission peak appears in both pure and blended devices, indicating the onset of lasing. It can also be seen that the intensity of the laser peak increases faster than the photoluminescence background, providing evidence of nonlinearity associated with stimulated emission. The laser wavelength was found to be 484 nm for the blended film and 481 nm for the pure film. Figures 19C to 19D show the output emission intensity and full width at half maximum (FWHM) of the two DFB devices as a function of pump intensity. The FWHM was found to become lower than 0.2 nm at high excitation intensity. The laser threshold value of DFB laser is determined by the sudden change in output intensity. It was found that devices based on pure films and blended films exhibit 0.22 μJ cm respectively. 2and 0.09 μJ cm 2The laser threshold value. In both cases, these values are below previously reported thresholds for amplified spontaneous emission (ASE) and second-order DFB lasers in BSBCz:CBP blends ( 2- 6), supporting the possibility of using mixed-order gratings for high-performance organic solid-state lasers. Chapter C . optical gainBased on these experimental ASE data, the net gain and loss coefficients can be determined and their values are listed in Table S4. surface S4 .Pulse width, excitation power, net gain and loss coefficient. Pulse width(μs) Power (kW cm -2 ) Net gain (cm -1 ) Loss coefficient (cm -1 ) 0.5 8.1 0.1 1.0 11.3 1.5 1.5 19.8 0.5 13.9 10.0 1.0 17.0 2.2 1.5 32.6 0.5 25.1 50.0 1.0 30.8 3.4 1.5 40.1 These ASE results provide clear evidence that large net optical gains can be achieved in BSBCz-based films in the CW regime. Therefore, this clearly supports our statement that BSBCz is one of the best candidates for CW lasers and quasi-CW lasers. Chapter D . transient absorptionThe results in Figure 27A indicate that the PL intensity remains constant after several μs of irradiation. This implies that there is no quenching of singlet excitons by STA in the device. Figure 27C also shows that there is no significant spectral overlap between laser and triplet absorption spectra. These results provide clear evidence that there is no deleterious triplet loss in the gain medium used in this study. Based on this information, we also estimate the stimulated emission cross-section as previously reported σ emand triplet excited state cross section σ TT( 3 , 9). Below 480 nm σ emis 2.2×10 16cm 2, which is significantly larger than 3.0×10 19cm 2Of σ TT, indicating that triplet absorption has little effect on the long pulse state. We separately estimate the triplet lifetime in solution ( τ TT), triplet absorption cross section ( σ TT) and inter-system crossover yield ( ϕ ISC), τ TT=5.7×10 3s -1, σ TT=3.89×10 -17cm 2(at 630 nm, Figure 27D) and ϕ ISC=0.04. Estimated by comparing the excitation power dependence of the transient absorption with benzophenone as a reference (Figure 27E) ϕ ISC( 9). However, it is important to note that using our transient absorption measurement system, we were unable to observe any triplet specific gravity in the film. For example, due to ϕ PLThe value is close to 100%, and the crossover between systems in the blended film is negligible. Overall, it has been measured to be higher than E thThe emission spectrum does not largely overlap with the triplet absorption spectrum, resulting in a larger net gain in light amplification in the long pulse state. Therefore, we are convinced that BSBCz is one of the best candidates for CW lasers and quasi-CW lasers. Chapter E . Thermal simulationIn order to detect the temperature distribution within the device, COMSOL 5.2a was used to perform a transient 2D heat transfer simulation. Figure 38 shows a schematic diagram of the geometric structure of the laser device. It should be noted that we ignored the grating in this simulation. The governing local difference equation of the temperature distribution is expressed as: in ρis the material density, C pis the specific heat capacity, Tis the temperature, tfor time, kis the thermal conductivity and Qis the laser heat source item. The laser pump beam has a Gaussian shape. Due to the circular symmetry of the laser beam, the heat transfer equation is solved in cylindrical coordinates. For a pulsed Gaussian laser beam, write the heat source as follows ( 10): in αis the absorption coefficient, Ris the reflection of the pump beam at the bottom facet of the device, Pis the incident pump power reaching the gain region, rand zis the spatial coordinate, r 0 is 1/ of the pump laser beam e 2radius, r=0 is the center of the laser beam, z gis the z-coordinate of the interface between the gain region and the top layer (see Figure 38), H( t) is the pulse width τ pThe rectangular pulse function, n gis absorbed in the gain area in the absence of laser field ( 11) is the fraction of pump power converted into heat, which is given by: in ϕ PL is the fluorescence quantum yield ( ϕ PL (BSBCz:CBP)=86%), λ Pump Pu is the wavelength of the pump laser, and λ laser is the extracted laser wavelength. Regarding the boundary conditions in the radial direction, a symmetry boundary condition is used at the axis of rotation. Apply thermal insulation boundary conditions (ignoring air convection) at the bottom, top, and edge surfaces. The radius of the device was set to 2.5 mm. Power density is 2 kW/cm 2. Table S5 presents the thermophysical parameters and geometric parameters used for the simulation obtained from the COMSOL database. For the BSBCz:CBP layer, we chose the same thermal parameters as in Ref (11) for the organic material. surface S5 .Thermophysical parameters and geometric parameters of materials. Layer name k (WK -1 m -1 ) C p (J kg -1 K -1 ) ρ (kg m -3 ) α at 405 nm (m -1 ) D (μm) Glass 1.4 730 2210 0 717 Sapphire 27 900 3900 0 759 CYTOP 0.12 861 2200 0 2 BSBCz:CBP 0.2 1400 1200 1.55 x 10 6 0.2 SiO 2 1.38 703 2203 0 100 Si 130 700 2329 8.00 x 10 6 333 After absorbing the pump laser energy, the BSBCz layer acts as a heat source. The heat generated is transferred by conduction towards the top and bottom layers. 1.1 Pulse width changesFigure 39 and Figure 40 show the pulse width τ of 10, 30 and 40 ms each time respectively. pMaximum temperature rise after pumping and temperature rise at the BSBCz/CYTOP layer interface. These simulation results demonstrate that the temperature rise caused by long-pulse pump irradiation increases with pulse duration, but this effect tends to saturate for pulses longer than 30 ms. It can also be seen from these calculations that the temperature rise is not expected to increase significantly with the number of incident pulses. 1.2 exist 10 ms Effect of encapsulation in the case of pulse widthThe simulation results in Figure 41 provide clear evidence of the importance of encapsulation used in our devices to improve thermal management in devices operating under long pulsed light irradiation. 1.3 CYTOP Thickness variationAs shown in Figure 42, due to the low thermal conductivity of CYTOP, increasing the thickness of CYTOP results in an increase in temperature in the gain region. Although encapsulation of DFB lasers by CYTOP was found to be crucial for improving device performance under long-pulse light excitation, the poor thermal conductivity of CYTOP is clearly a limiting factor, and this aspect should be explored in future research by selecting more appropriate encapsulation. sealing materials to demonstrate actual CW organic semiconductor technology. References1. D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Horizontal orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films. Org. Electron. 10(1), 127-137 (2009). 2. A. S. D. Sandanayaka, K. Yoshida, M. Inoue, K. Goushi, J. C. Ribierre, T. Matsushima, C. Adachi, Quasi-continuous-wave organic thin film distributed feedback laser. Adv. Opt. Mater. 4, 834-839 (2016). 3. H. Nakanotani, C. Adachi, S. Watanabe, R. Katoh, Spectrally narrow emission from organic films under continuous-wave excitation. Appl. Phys. Lett. 90, 231109 (2007). 4. D. Yokoyama, M. Moriwake, C. Adachi, Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. J. Appl. Phys. 103, 123104 (2008). 5. H. Yamamoto, T. Oyamada, H. Sasabe, C. Adachi, Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401 (2004). 6. T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, C. Adachi, 100% fluorescence efficiency of 4,4'-bis[( N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Appl. Phys. Lett. 86, 071110 (2005). 7. M. D. Mcgehee, A. J. Heeger, Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 12, 1655-1668 (2000). 8. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, I. D. W. Samuel, H. S. Barcena, P. L. Burn, Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007). 9. S. Hirata, K Totani, T. Yamashita, C. Adachi, M. Vacha, Large reverse saturable absorption under weak continuous incoherent light. Nature Materials. 13, 938-946 (2014). 10. Z. Zhao, O. Mhibik, T. Leang, S. Forget, S. Chénais, Thermal effects in thin-film organic solid-state lasers. Opt. Express. twenty two, 30092-30107 (2014). 11. S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges, On thermal effects in solid-state lasers: The case of ytterbium doped materials, Prog. Quantum Electron. 30(4), 89-153 (2006). [ 5 ] Electrically driven organic semiconductor laser diodes OverviewDespite significant advances in the performance and applications of optically pumped organic semiconductor lasers, electrically driven organic laser diodes have not yet been achieved. Here, we report the first demonstration of an organic semiconductor laser diode. The reported device regenerates mixed-stage dispersed SiO 2The grating is incorporated into the organic light-emitting diode structure. Can convert up to 3.30 kA cm 2A current density of 0.54 kA cm was injected into the device and the blue laser was observed to be higher than about 0.54 kA cm 2the critical value. The realization of organic semiconductor laser diodes is mainly due to the selection of high-gain organic semiconductors that do not exhibit triplet absorption losses at laser wavelengths and the suppression of electroluminescence efficiency roll-off at high current densities. This represents a significant advance in the field of organic electronic devices and the first step toward novel cost-effective organic laser diode technology that enables full integration of organic optoelectronic circuits. Detailed descriptionThe properties of optically pumped organic semiconductor lasers (OSLs) have been greatly improved over the past two decades due to significant advances in the development of high-gain organic semiconductor materials and the design of high-quality factor resonator structures. 1-5. The advantages of organic semiconductors as gain media for lasers include their high photoluminescence quantum yield (PLQY) and large stimulated emission cross section, their chemical tunability, their broad emission spectrum across the visible region, and their ease of fabrication. . Recent advances in low-threshold distributed feedback (DFB) OSL demonstrate that optical pumping of inorganic light-emitting diodes via electrically driven nanosecond pulses provides a path towards new compact and low-cost visible laser technologies. way 6. This type of miniaturized organic laser is particularly promising in chip lab applications, chemical sensing and biological analysis. However, to achieve complete integration of organic photonic circuits and optoelectronic circuits, electrically driven organic semiconductor laser diodes (OSLDs) are required, which remains an unrealized scientific challenge so far. Problems preventing direct electrical pumping of organic semiconductor devices by lasers are primarily due to optical losses from the electrical contacts and the additional triplet and polaron losses that occur at high current densities. 4,5,7-9. Different approaches to solving these problems have been proposed, involving, for example, the use of triplet quenchers 10 - 12To curb triplet absorption loss and singlet quenching through singlet-triplet exciton mutual destruction, and reduce the device's active area 13To spatially separate the exciton formation and exciton radiation decay regions and minimize the polaron quenching process. Considering the current advanced technology of optically pumped organic semiconductor DFB laser 5With high efficiency, careful combination of these methods together with optimization of the device structure can lead to electrically driven laser emission from organic thin films. Previous studies have suggested that if the additional losses associated with electrical pumping were to be fully contained, higher than a few kA/cm would be required 2current density to achieve the laser from OSLD 14. Demonstrating amplified spontaneous emission (ASE) threshold below 0.5 μJ/cm 2Among different organic semiconductor films, 5One of the most promising molecules for observing laser emission under electrical pumping is 4,4'-bis[(N-carbazole)styryl]biphenyl (BSBCz) (see Figure 43 chemical structure) 15. The ASE threshold of BSBCz-based films has been reported to be as low as 0.30 μJ cm under 800 ps pulsed light excitation. −2 16. Meanwhile, another work demonstrated up to 2.8 kA cm under pulse operation using a pulse width of 5 μs. 2The current density can be injected into BSBCz-based organic light-emitting diodes (OLEDs) 13. These devices exhibit maximum electroluminescence external quantum efficiency (EQE) values above 2%. In addition, efficiency roll-off due to singlet-thermal and singlet-polaron mutual destruction at high current densities is substantially reduced by reducing one dimension of the current injection/transport region to 50 nm. Recently, quasi-continuous wave laser at 80 MHz and true continuous wave laser lasting at least 30 ms were demonstrated in the optically pumped BSBCz-based organic DFB laser. 17. This unprecedented performance is achieved because the PLQY of BSBCz in the 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) blend is close to 100%, and because There is no significant triplet absorption loss at the laser wavelength of the BSBCz film. Here, we achieve this by combining an inverted OLED structure with a mixed-level DFB SiO integrated into the active area of the device. 2The gratings were combined to demonstrate electrically driven laser emission from BSBCz films, thus providing the first clear evidence of electrically driven laser emission from organic semiconductors. The fabrication method and architecture of the OSLD developed in this study are schematically shown in Figures 43 to 45 (see the detailed description of the experimental procedures in the Materials and Methods section). First, a 100 nm thick dielectric SiO 2layer was sputtered onto a pre-cleaned patterned indium tin oxide (ITO) glass substrate. We then designed a hybrid-order DFB grating in which the first-order Bragg scattering area is surrounded by the second-order Bragg scattering area. These areas generate strong optical feedback and provide efficient vertical extraction of laser emission respectively. 17,18. In DFB laser, it is well known that when the Bragg condition is satisfied 4,19(mλ Bragg= 2n effLaser oscillation occurs when Λ), where m is the diffraction order, λ Braggis the Bragg wavelength, n effis the effective refractive index of the gain medium, and Λ is the grating period. Use the ones reported for BSBCz effvalue and λ Braggvalue 20,21, the grating periods of the mixed-order (m=1, 2) DFB laser devices are calculated to be 140 nm and 280 nm respectively. Using electron beam lithography and reactive ion etching, these mixed-order DFB gratings are engraved on SiO 2Within the 140×200 μm area in the layer (Figure 46A). As shown by the scanning electron microscopy (SEM) image in Figure 46B, the DFB grating fabricated in this work has periods of 140±5 nm and 280±5 nm and a grating depth of approximately 65±5 nm, which is perfect The land complies with our specifications provided above. The lengths of each 1st-order and 2nd-order DFB grating are approximately 10 µm and 15.1 µm respectively. Energy dispersive X-ray spectroscopy (EDX) analysis is then performed to ensure that the ITO layer was not damaged during grating fabrication and that the SiO is completely removed in the etched areas 2layer. The EDX results shown in Figures 46C and 46D provide evidence that charge injection from ITO to the organic semiconductor layer deposited on top of the DFB grating can occur in the etched areas where the ITO contacts are located. In addition, we propose that DFB resonators can also be fabricated using a low-cost and simple nanoimprint lithography process (Figure 45). As demonstrated by the schematic representation shown in Figure 47A, the OSLD fabricated in this work has the following simple inverted OLED structure vapor deposited on top of a DFB grating: ITO (100 nm)/20wt.%Cs: BSBCz (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Ag (10 nm)/Al (90 nm). In this type of reverse device structure, electron injection into the organic layer is improved by Cs doping of the BSBCz film in the region close to the ITO contact, while MoO 3Used as hole injection layer (Figure 48 to Figure 49). As shown in Figure 50, the surface morphology of all layers exhibits a grating structure with a surface modulation depth of 20 nm to 30 nm. Although the most efficient OLEDs generally use multi-layer architectures to optimize charge balance 22,23, but charge accumulation can occur at organic heterointerfaces under high current densities, which can be detrimental to device performance and stability. twenty four. The OSLD fabricated in this work contains only BSBCz as the organic semiconductor and is specifically designed to minimize the number of organic heterointerfaces. It should be noted that also manufactured without SiO 2A device for DFB gratings and used as a reference to obtain additional information on the effect of gratings on electroluminescence properties. In addition, we are eager to find out more about SiO 2Organic semiconductor laser diodes with different one-dimensional DFB resonator structures are made in , ITO and polymers or on top of the active layer (Figure 51A to Figure 51D). As shown in Figure 52, organic semiconductor laser diodes with two-dimensional DFB resonator structures are also promising for lower threshold 2D DFB lasers. Figures 47B and 53A-53D show optical microscopy images of an OSLD, and Figure 47C shows those optical microscopy images of a reference OLED without a grating, both operating at a direct current (DC) of 4.0 V. Electroluminescence is emitted uniformly from the active area of the reference OLED. In the case of OSLD, more intense emission is seen from the 2nd order DFB grating area of OSLD, which is specifically designed to facilitate vertical light extraction. Current-voltage (J-V) and EQE-J curves measured in representative devices with and without DFB gratings are shown in Figures 47D-47E. The device was characterized under both DC and pulsed (with voltage pulse width of 500 ns and repetition rate of 100 Hz) conditions. To estimate the active area of OSLD based on SEM and laser microscope images, it is necessary to calculate the current density injected into the device. The reference device under DC and pulsed operation each demonstrated 70 A cm before device failure. 2and 850 A cm 2The maximum current density (J max). Due to the smaller effective installation area 13,25The Joule heat is reduced, and the OSLD clearly exhibits 80 A cm under DC and pulse operation respectively. 2and 3220 A cm 2The higher J max. All BSBCz devices were found to exhibit maximum EQE values higher than 2% at lower current densities. However, in DC operation above 15 A cm 2Significant efficiency roll-off was observed in the OSLD and reference devices at 100% current density, which can be attributed to thermal degradation of the organic gain medium. Under pulsed operation, the reference device demonstrates performance above 410 A cm 2The efficiency roll-off at current density is consistent with previous reports 13The result. More importantly, efficiency roll-off in OSLDs was curbed under pulsed operation and the EQE was even found to increase substantially to above 800 A cm 2to achieve a maximum value of 3.3%. When the current density increases above 3200 A cm 2At this time, the rapid decrease in EQE is presumably attributed to the thermal degradation of the organic semiconductor. As shown in Figure 54, the electroluminescence spectrum of the reference device is similar to the steady-state PL spectrum of the BSBCz pure film and does not change with changes in current density. Figure 53E, Figure 55A, Figure 55C and Figure 56A show the evolution of the electroluminescence spectra of several OSLDs under different current densities of pulse operation. These spectra were measured from the ITO side of the OSLD in a direction perpendicular to the plane of the substrate. It can be clearly seen that when J becomes higher than 800 A cm 2It produces a strong spectral line narrowing effect at 456.8 nm. For further understanding, the output intensity and full width at half maximum (FWHM) as a function of current density are plotted in Figure 53F, Figure 55B, Figure 55D, and Figure 56B. The FWHM of the steady-state PL spectrum of the pure BSBCz film is about 35 nm, which decreases to less than 0.2 nm at the highest current density. At the same time, a sudden change in the slope efficiency of the output intensity was also observed, which is consistent with the state of the EQE-J curve and can be used to determine 960 A cm 2the critical value. Similar to what is seen in the EQE-J curve, when J > 3.2 kA cm 2When , the output intensity decreases with J, which is attributed to thermal degradation leading to device collapse. In this regime, however, it is noteworthy that the emission spectrum of the OSLD remains extremely steep. The observed conditions clearly indicate that optical amplification occurs at high current densities and that the OSLD exhibits laser emission above the laser threshold. The search for the first organic semiconductor laser diode, which has been linked to several controversial reports in the past, means that attention should be paid before arguing that the OSLD fabricated in this research provides electrically driven laser emission. 9. First, a few studies 20 , 26 , 27It is shown that edge emission from the waveguide mode of organic light-emitting devices can lead to extremely strong line narrowing effects without laser amplification. In contrast to these previous works, emissions from our OSLD were detected in the direction perpendicular to the substrate plane and exhibited clear threshold conditions. It should also be emphasized that the ASE linewidth of organic films is usually in the range of several nm, while the FWHM of organic DFB lasers can be well below 1 nm. 5. At FWHM below 0.2 nm, the emission spectrum from our OSLD cannot be attributed solely to ASE and corresponds to elements commonly obtained in optically pumped organic DFB lasers. Second, previous reports demonstrated extremely narrow emission spectra by unintentionally stimulating transitions in ITO. 28The atomic spectral lines of ITO include those at 410.3 nm, 451.3 nm and 468.5 nm. 29The peak emission wavelength of the OSLD in Figure 55A is 456.8 nm, which cannot be attributed to emission from ITO. It should also be emphasized that the emission from an OSLD should be characteristic of the resonator mode, and therefore the output should be extremely sensitive to any modification of the laser cavity. A simple way to tune the emission wavelength in optically pumped organic DFB lasers is to change the grating period 4 , 5 , 30 , 31. Figures 55C to 55D show the emission spectra at different current densities and the OSLD output intensity as a function of current density for a grating period of 300 nm (for 2nd order scattering) and 150 nm (for 1st order scattering) respectively. This device demonstrates FWHM as low as 0.16 nm and a threshold of 1.07 kA cm at 475.5 nm 2The laser peak (Figure 57). In addition, we demonstrated organic DFB laser based on BSBCz thin film using modified resonator design (Figure 58). Since laser radiation extracted by second-order gratings represents loss channels, these lasers typically exhibit higher thresholds compared to their first-order counterparts. To study the trade-off between extraction and threshold, we fabricated gratings with different widths and with first- and second-order regions. The threshold value is deduced from the laser input-output curve and plotted against the width of the second-order region in Figure 59. It can be seen that the oscillation threshold increases linearly with the size of the second-order region. This can be understood as being proportional to the waveguide loss in terms of laser threshold, which increases linearly with increasing period. Thus, the threshold of a mixed-order resonator increases with the fraction of extracted light, but remains low even for strong extractions. By varying the grating parameters, organic solid-state lasers can therefore be tuned to have optimized properties (low threshold and high extraction). Figure 56B shows the emission spectra at different current densities and for grating periods with 300 nm (for 2nd order scattering) and 150 nm (for 1st order scattering) and 4 first-order periods and 12 second-order periods, respectively. OSLD output intensity changes with current density (Figure 60). This device demonstrates FWHM as low as 0.18 nm at 500.5 nm and a threshold of 540 A cm 2The laser peak. This provides clear evidence that the laser emission from our OSLD is significantly affected by the DFB resonator structure, and that this can be used to tune the laser wavelength within a range of wavelengths. Laser emission from OSLD should also follow certain parameters regarding output beam polarization, output beam shape and time coherence. 9of principles. As shown in Figure 61, the output beam of the OSLD is largely linearly polarized along the grating pattern, providing clear evidence of true one-dimensional DFB laser action in an electrically driven device. Another important issue that needs clarification is to see how the laser threshold of electrically driven OSLDs compares with that obtained by optical pumping. Figure 62 shows the laser characteristics of the OSLD optical pumping through the ITO side by delivering a 500 ns pulse to the laser diode at an excitation wavelength of 405 nm. Laser emission occurs at 481 nm, which is consistent with the wavelength of electrically driven lasers. The laser threshold measured under optical pumping is approximately 450 W cm 2, which is higher than the 36 W cm obtained in an optically pumped BSBCz-based DFB laser without two electrodes 2value. It should be noted that the thickness of the different layers used in the OSLD has been optimized in this work to minimize optical losses due to the presence of these electrodes. Assuming no additional loss mechanisms in BSBCz OSLD operation at high current densities, threshold values measured in optically pumped devices indicate that electrically driven laser emission should achieve current densities higher than 1125 A cm 2. Similar thresholds for optical and electrical pumping indicate that they are almost limited to high current densities 32The following are additional losses that generally occur in organic electroluminescent devices (including exciton mutual destruction, triplet and polaron absorption, quenching by high electric fields, Joule heating). This is completely consistent with the fact that no electroluminescence efficiency roll-off was observed in OSLD under severe pulse electrical excitation. To explain this result, it should be remembered that the BSBCz film does not exhibit significant triplet absorption at laser/ASE wavelengths, and it exhibits extremely weak quenching of the singlet state through singlet-triplet mutual destruction. Importantly, previous work has shown that device active area reduction can be used to separate exciton formation from radiative decay of excitons and generally reduce polariton/thermal quenching processes. We have also fabricated a device with nine DFBs on one chip as shown in Figure 63, and this device provides effective output of laser emissions. For low-threshold organic semiconductor laser diodes, we have also successfully fabricated circular DFB resonators (Figure 64 to Figure 65). In conclusion, this study demonstrates the first realization of an electrically driven organic semiconductor laser diode that implements mixed-order distributed feedback SiO 2resonator into the active area of the organic light emitting diode structure. Specifically, the device exhibits threshold current densities as low as 540 A cm 2blue laser emission. Different criteria regarding emission linewidth, polarization and threshold values can be used to distinguish laser emission from other phenomena that have been carefully examined and fully support the claim that this is the first observation of electrically driven lasers in organic semiconductors. This report opens up new opportunities and perspectives in organic photonics and should clearly serve as a strong foundation for the future development of organic semiconductor laser diode technology that is simple to apply, cheap and tunable laser sources and its suitability for complete and direct integration into organic-based optoelectronic platforms. Materials and methods Device manufacturing and characteristicsIndium tin oxide (ITO)-coated glass substrates (100 nm ITO, Atsugi Micro Co.) were cleaned by ultrasonic treatment followed by UV ozone treatment using neutral detergent, pure water, acetone, and isopropyl alcohol. 100 nm thick SiO at room temperature 2Sputter on 100 nm ITO-coated glass substrate to engrave DFB on the ITO substrate. The argon gas pressure during sputtering was 0.2 Pa. The RF power is set to 100 W (Figure 43 and Figure 44). The substrate was again cleaned by ultrasonic treatment followed by UV ozone treatment using isopropyl alcohol. The silica surface was treated with hexamethyldisilazane (HMDS) by spin coating at 4000 rpm for 15 s and annealed at 120 °C for 120 s. A resist layer with a thickness of approximately 70 nm was spin-coated on the substrate from ZEP520A-7 solution (ZEON Co.) at 4000 rpm for 30 s and baked at 180°C for 240 s. Use a 0.1 nC cm 2A JBX-5500SC system (JEOL) with optimized dosage was used for electron beam lithography to draw the grating pattern on the resist layer. After electron beam irradiation, the pattern was developed in a developer solution (ZED-N50, ZEON Co.) at room temperature. The patterned resist layer was used as an etch mask, while an EIS-200ERT etch system (ELIONIX) was used with CHF 3Plasma etching the substrate. To completely remove the resist layer from the substrate, use a FA-1EA etching system (SAMCO) with O 2Plasma etching the substrate. Etch conditions optimized to completely remove SiO from DFB pitch modulation 2Until ITO contact. The grating formed on the silicon dioxide surface was observed using SEM (SU8000, Hitachi) (Fig. 46B). Perform EDX (at 6.0 kV, SU8000, Hitachi) analysis to confirm complete removal of SiO from the DFB spacing 2(Figure 46C and Figure 46D). The DFB substrate is cleaned by conventional ultrasonic treatment. Subsequently by using the 2.0 × 10 4Thermal evaporation under a pressure of Pa is 0.1 nm s 1to 0.2 nm s 1The total evaporation rate of the organic layer and metal electrode is placed in a vacuum with SiO 2Fabricated with indium tin oxide (ITO) (100 nm)/20 wt% Cs on insulator DFB substrate: BSBCz (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Ag (10 nm)/Al (90 nm) structure i-OLED. SiO remaining on the ITO surface 2The layer acts as an insulator. Therefore, the current area of OLED is limited to the DFB area where BSBCz is in direct contact with ITO. A reference OLED with an active area of 140 × 200 µm was also prepared using the same current region. The current density-voltage-EQE (J-V-EQE) characteristics (DC) of OLED were measured at room temperature using a integrating sphere system (A10094, Hamamatsu Photonics). Measurement under pulse driving using pulse generator (NF, WF1945), amplifier (NF, HSA4101) and photomultiplier tube (PMT) (C9525-02, Hamamatsu Photonics) J- V- Lcharacteristic. Both the PMT response and the driving square wave signal were monitored on a multi-channel oscilloscope (Agilent Technologies, MSO6104A). A rectangular pulse with a pulse width of 500 ns, a pulse period of 5 μs, and a repetition rate of 100 Hz was applied in a device with varying peak current. Spectral measurementThe emitted laser light perpendicular to the device surface was collected using an optical fiber connected to a multichannel spectrometer (PMA-50, Hamamatsu Photonics) and placed 3 cm away from the device. For CW operation, a CW laser diode (NICHIYA, NDV7375E, maximum power 1400 mW) was used to generate excitation light with an excitation wavelength of 405 nm. In these measurements, an acousto-optic modulator (AOM, Gooch & Housego) triggered by a pulse generator (WF 1974, NF Co.) was used to deliver pulses. The excitation light is concentrated on 4.5×10 of the device through lenses and slits. 5cm 2area, and the emitted light was collected using a frame eye (C7700, Hamamatsu Photonics) with a time resolution of 100 ps connected to a digital camera (C9300, Hamamatsu Photonics). A photomultiplier tube (PMT) (C9525-02, Hamamatsu Photonics) was used to record the emission intensity. Both the PMT response and the driving square wave signal were monitored on a multi-channel oscilloscope (Agilent Technologies, MSO6104A). As described previously, the same illumination and detection angles were used for this measurement. All measurements were performed in a nitrogen atmosphere to prevent any degradation caused by moisture and oxygen. References1. Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695-697 (1996). 2. Kozlov, V. G., Bulović, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362-364 (1997). 3. Hide, F. et al.Semiconducting polymers: a new class of solid-state laser materials. Science 273, 1833 (1996). 4. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272-1295 (2007). 5. Kuehne, A. J. C. & Gather M. C. Organic lasers: recent development on materials, device geometries and fabrication techniques. Chem. Rev.in press. 6. Tsiminis, G. et al.Nanoimprinted organic semiconductor lasers pumped by a light-emitting diode. Adv. Mater. 25, 2826-2830 (2013). 7. Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002). 8. Bisri, S. Z., Takenobu, T. & Iwasa, Y. The pursuit of electrically-driven organic semiconductor lasers. J. Mater. Chem. C 2, 2827-2836 (2014). 9. Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nature Photon.3, 546-549 (2009). 10. Sandanayaka, A. S. D. et al.Improvement of the quasi-continuous-wave lasing properties in organic semiconductor lasers using oxygen as triplet quencher. Appl. Phys. Lett. 108, 223301 (2016). 11. Zhang, Y. F. & Forrest, S. R. Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84, 241301 (2011). 12. Schols, S. et al.Triplet excitation scavenging in films of conjugated polymers. Chem. Phys. Chem. 10, 1071-1076 (2009). 13. Hayashi, K. et al.Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015). 14. Gärtner, C. et al.The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 023107 (2007). 15. Sandanayaka, A. S. D. et al.Quasi-continuous-wave organic thin film distributed feedback laser. Adv. Opt. Mater. 4, 834-839 (2016). 16. Aimono, T. et al.100% fluorescence efficiency of 4,4'-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Appl. Phys. Lett. 86, 71110 (2005). 17. Sandanayaka, A. S. D. et al.Continuous-wave operation of organic semiconductor lasers. Submitted. 18. Karnutsch, C. et al.Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90131104 (2007). 19. Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390-406 (2012). 20. Yokoyama, D. et al.Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. J. Appl. Phys. 103, 123104 (2008). 21. Yamamoto, H. et al.Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401 (2004). 22. Kim, S. Y. et al.Organic light-emitting diodes with 30% external quantum efficiency based on horizontally oriented emitter. Adv. Funct. Mater. twenty three, 3896-3900 (2013). 23. Uoyama, H. et al.Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234-238 (2012). 24. Matsushima, T. & Adachi, C. Suppression of exciton annihilation at high current densities in organic light-emitting diode resulting from energy-level alignments of carrier transport layers. Appl. Phys. Lett. 92, 063306 (2008). 25. Kuwae, H. et al.Suppression of external quantum efficiency roll-off of nanopatterned organic light-emitting diodes at high current densities. J. Appl. Phys. 118, 155501 (2015). 26. Bisri, S. Z. et al.High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728-1735 (2009). 27. Tian, Y. et al.Spectrally narrowed edge emission from organic light-emitting diodes. Appl. Phys. Lett. 91, 143504 (2007). 28. El-Nadi, L. et al.Organic thin film materials producing novel blue laser. Chem. Phys. Lett. 286, 9-14 (1998). 29. Wang, X., Wolfe, B. & Andrews, L. Emission spectra of group 13 metal atoms and indium hybrids in solid H 2and D 2. J. Phys. Chem. A 108, 5169-5174 (2004). 30. Ribierre, J. C. et al.Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007). 31. Schneider, D. et al.Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85, 1886 (2004). 32. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801-6827 (2013). Electrical simulation of distributed feedback electrically driven organic laser 1. Device model and parametersIn this study, a so-called "first-generation model" was used to describe charge transport in organic light-emitting diodes (OLEDs). In this model, the electron density is solved self-consistently using a two-dimensional time-independent drift-diffusion model n, hole density pand electrostatic potential Ψ. The Poisson equation relates the electrostatic potential Ψ to the space charge density as follows: where F is the vector electric field, q is the basic charge, ε ris the relative permittivity of the material and ε 0is the vacuum permittivity, is the electron (hole) concentration, is the concentration of filled electron (hole) trap states. Assuming parabolic density of states (DOS) and Maxwell-Boltzmann statistics, the electron and hole concentrations are expressed as: in and is the energy state density of carriers in the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), and is the energy level of LUMO and HOMO, and is the quasi Fermi level of electrons and holes, is Boltzmann's constant and T is the device temperature. Charge carrier traps in organic semiconductors exist due to structural defects and/or impurities. The injected charge needs to first fill these traps before current can be established. This state is called trap limited current (TLC). 1,2Exponential or Gaussian distributions are used to model trap distribution within organic semiconductors. 3In this work, the Gaussian distribution for hole trap states is used: 4 , 5 in is the total density of traps, is the energy trap depth above the HOMO level, and is the width of the distribution. The density of trapped holes is estimated by taking the integral of the Gaussian energy state density times the Fermi-Dirac distribution. Charge transport is controlled by drift in the electric field F and diffusion due to charge density gradients. The steady-state continuity equations for electrons and holes in the drift-diffusion approximation method are given by: in is the electron (hole) mobility, is the electron (hole) diffusion constant, and Ris the recombination rate. The charge carrier mobility is inferred to be field dependent and has the Pool-Frenkel form: 6,7 in is zero field mobility, and It is the characteristic field of electrons (holes). High-energy chaos is not considered in this model, so we assume the validity of Einstein's relation to calculate the diffusion constant from charge mobility. By Langevin model 8gives the recombination rate R: When electrons recombine with holes, they form excitons. The resulting excitons can decay radiatively or nonradiatively with a characteristic diffusion constant D s migration. The continuity equation for singlet excitons is given by: in Sis the exciton density. The first period is the singlet exciton production rate based on electron hole recombination, which is 1/4, the second period represents exciton diffusion, and the third period represents the decay constant with radiation. and nonradiative decay constant of exciton decay, and the last period is represented by having a field-dependent dissociation rate The dissociation of excitons in the electric field is given by the Onsager-Braun model: 9,10 in is the exciton radius, is the exciton binding energy, is a first-order Bessel function, and are field-related parameters. In this model, the impact of electric field quenching (EFQ) depends on the exciton binding energy . 2. Simulation results and comparison with experiments 2.1. Unipolar and bipolar reference devicesBefore performing bipolar device simulations, pure hole and pure electron devices were considered to test the electrical model, simulation parameters, and charge carrier mobility. The purely electronic device consists of a 190 nm BSBCz layer sandwiched between Cs (10nm)/Al and 20 wt% Cs:BSBCz (10nm)/ITO electrodes. By converting 10 nm MoO 3The layer is inserted between BSBCz (200 nm) and ITO and Al to obtain a pure hole device. The bipolar OLED device contains the following structure: ITO/20 wt% Cs: BSBCz (10 nm)/BSBCz (190 nm)/MoO 3(10 nm)/Al. The work function of the cathode (ITO/20 wt% Cs: BSBCz) is 2.6 eV, and the anode (MoO 3/Al) one of the work functions is 5.7 eV. A diagram of energy levels for these device structures is shown in Figure 48. Use the reported charge carrier mobility (measured by time of flight) for BSBCz [11]. Figure 49a shows the measured reported mobilities of electrons and holes for BSBCz and the corresponding fits to the Pool-Frenkel field correlation model. The values of the fitted mobility parameters and other values of the input parameters required for the electrical simulation are shown in the table below. The hole and electron mobilities of BSBCz are approximately the same order of magnitude, indicating that BSBCz can transport both types of charge carriers. Table. Electrical simulation parameters parameters BSBCz Cs:BSBCz unit ε r 4 4 - E HOMO 5.8 5.8 eV ELUMO 3.1 2.6 eV N HOMO 10-19 10-19 cm -3 NLUMO 10-19 10-19 cm -3 nnJC 2.8× 10-17 - cm -3 E t 0.375 - eV σtp _ 0.017 - eV μn0 _ 6.55× 10-5 6.55× 10-5 cm 2 V -1 s -1 μ p0 1.9× 10-4 1.9× 10-4 cm 2 V -1 s -1 f 175561 175561 V/cm F p0 283024 283024 V/cm k r 10 +9 10 +9 s -1 n 0.11 × 10 +9 0.11 × 10 +9 s -1 φPL _ 0.9 0.4 - L s 18× 10-9 18× 10-9 m Experiments and simulations of unipolar and bipolar devices J ( V )The curve is shown in Figure 49b. Experiments measured under direct current (DC) drive Jlower than 18V, and under pulse driving is higher than 18V. The current in a pure hole device is largely affected by V 20 VAt the trap limit. Obtained through optimization of simulated experimental data , and The values are given in the table above. The results demonstrate good agreement between experiments and simulations of monopolar devices. For bipolar devices, the small deviation between measurements and simulations at lower current densities is attributed to the presence of experimental leakage currents. The simulation model predicts that pure hole devices and pure electron devices will have similar current densities at high voltages, demonstrating good electron and hole transport balance. Bipolar devices exhibit current densities that are an order of magnitude higher than unipolar current densities. 2.2. bipolar DFB deviceThe use of DFB grating resonator not only amplifies light 12 - 14Providing positive optical feedback affects the optical properties of organic lasers and also affects the electrical properties of organic lasers. The effect of nanostructured cathodes on the electrical properties of DFB OLEDs was calculated and compared with a reference OLED (without grating). The structure of DFB OLED is similar to that of bipolar OLED. The difference is that the nanostructured cathode is composed of periodic grating SiO deposited on ITO. 2-Cs: BSBCz composition. The grating period is 280 nm and the grating depth is 60 nm, as represented in Figure 66a. In this structure, the thickness of BSBCz is 150 nm. For comparison, reference OLEDs with the same thickness (ITO/20 wt% Cs: BSBCz (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Al) and does not have a grating. All parameters and conditions for the bipolar device have been retained since the DFB and reference OLED have no additional fitting parameters. Experiments and simulations of DFB grating and reference OLED J ( V )The curve is shown in Figure 66b. Electrical simulation predicts that at DC ( V 18 V) and pulse operation ( V18V) in two cases J ( V )The curve is in good agreement with the experimental results. remove J ( V )In addition to curve predictions, electrical simulations can access physical parameters that are difficult to determine experimentally, such as the spatial distribution of charge carrier densities, electric fields, and the location of recombination regions. First, we consider referring to OLED. Figures 67a to 67b show the charge carrier distribution and electric field profile of the reference OLED at 10V and 70V. Free electrons are injected from the cathode of ITO/CS:BSBCz into BSBCZ (at x = 0 μmtime), and the free holes come from Al/MoO 3Anode injection ( x = 0 . 215 μm). Due to carrier recombination, the carrier density decreases as it leaves the contact. when n = p, the electric field increases and reaches a maximum value at its center. At 10V, the electric field is screened by high charge carrier density close to the cathode and anode. At higher voltages (70 V), the electrons penetrate deeper and the electric field near the anode remains higher. In the case of DFB grating OLED, at 70 VExtract entity parameters below. Figures 68a-68b show the spatial distribution of charge carrier densities n and p. Since the periodic nanostructured electrons of the cathode are not injected uniformly, their spatial distribution follows the periodic injection, as can be clearly seen in Figure 68b and Figure 68c. The holes are injected from the uniform anode and extend relatively uniformly in the bulk (Figure 68a, Figure 68c). When the hole reaches the cathode, it decays for the reference OLED (Fig. 67(b)). However, since SiO 2The existence of gratings and holes in SiO 2The /BSBCz interface accumulates and exhibits high density (Fig. 68a). Figure 69a shows the periodic profile of the electric field, which is higher in the insulator and slightly modulated in the BSBCz layer for the reference OLED (approximately 3.5×10 6 V / cm) remains at the same intensity. The current density profile shown in Figure 69b is modulated to a large extent and is shown in SiO 2/Cs: The higher value near the BSBCz interface. To clarify SiO 2/Cs: Reason for the high current density value near the BSBCz interface, recombination rate profile RThis is shown in Figure 70a. As we can see, RIt also shows the cyclic changes within the device. In the region bounded by the cathode/anode, the cross-section is the same as that of the reference OLED, which in the region bounded by SiO 2/ decreases in the region bounded by the anode (see Figure 70c). In Cs: BSBCz/SiO 2at the interface, RShowing the maximum value due to hole and electron accumulation, as demonstrated in Figure 70d. The electric field inside the device is approximately MV/cm 2, as shown in Figure 69a. Therefore, the exciton dissociation caused by the electric field cannot be ignored and affects the device performance to a great extent. The singlet exciton binding energy of organic semiconductors ranges from 0.3 eV to 1.6 eV 15 - 18within the range. Under low electric fields, the dominant deactivation processes are radiative decay and non-radiative decay. Under high electric fields, the probability of exciton dissociation is greatly increased and depends on the exciton binding energy. To account for electric field-induced exciton dissociation, the field-dependent dissociation rate given by Equation 10 is included in the singlet exciton continuity Equation 9. Figure 71a shows the calculated exciton density of the reference device S, including those with different exciton binding energies E b ( 0 . 2 - 0 . 6 eV )EFQ. when E b When reduced, EFQ becomes a serious loss mechanism. Using molecules with high exciton binding energies requires overcoming the EFQ. The exciton binding energy of BSBCz is estimated using PL quenching yield experiment and its lower limit is 0 . 6 eV. Figure 71b shows the results for the reference device and the DFB device with and without electric field-induced exciton dissociation. S ( J )characteristic. Without EFQ, S follows Jadded and displayed in J = 3KA / cm 2 DFB device 9×10 17 cm - 3 relative to a reference device of 2×10 17 cm - 3 high value. SThis difference comes from different device architectures, which lead to differences within the device Rdistribution, as shown in Figures 70a, 70b. By considering the EFQ model and BSBCz E b = 0 . 6 eV, one of the two devices Sboth increase, and until J = 0 . 5KA / cm 2 Then it decreases due to the electric field dissociation of excitons. The EFQ in the DFB device is slightly lower than that in the reference device and may explain the experimentally lower EQE roll-off of the DFB device compared to the reference device shown in Figure 47E. To gain further physical understanding of the cause of the EQE enhancement in DFB devices, the one-dimensional exciton distribution inside a reference device with and without EFQ is shown in Figure 72a. In the case of the DFB device, the two-dimensional exciton distributions without and with EFQ are shown in Figure 72b and Figure 72c respectively. Comparison of the exciton density distribution (Fig. 73, bottom right) and the optical mode distribution in the device (Fig. 74, bottom) indicates that there is a large overlap at the 2nd grating region, contributing to light amplification. This significant overlap certainly contributes to the lower laser threshold. In the reference device, in the absence of EFQ, SDisperse evenly. In the presence of EFQ, due to the high electric field (which reaches 3.5 in the bulk MV / cm), among the blocks Sdecrease (see Figure 79b). Close to the Cs: BSBCz/ITO interface, the electric field is lower, which avoids the EFQ of excitons. In the case of the DFB device, excitons are generated from two recombination sites (site 1 and site 2), as shown in Figure 71a. Close to SiO 2The accumulation of charge in the grating creates a high exciton density ( S=6×10 17 cm - 3 ), the recombination region is named site 1. Site 2 has the same characteristics as the reference device ( S=1×10 17 cm - 3 )identical S. Without EFQ, the maximum Sis provided by site 1 and explains the high value in the DFB device compared to the reference device at low electric fields (see Figure 71b). When considering EFQ, the excitons in site 1 are quenched by the high electric field in this site ( F = 3 . 5MV / cm), and the maximum value SProvided by site 2, where the electric field close to the interface is lower ( F = 1 . 2MV cm) and gradually increases relative to the reference device in the bulk region. Thus, some excitons close to the interface may survive if they are not quenched by another mechanism (which we did not include in this simulation). References1. G. Malliaras, J. Salem, P. Brock, and C. Scott, “Electrical characteristics and efficiency of single-layer organic light-emitting diodes,” Phys. Rev. B, vol. 58, no. 20, pp. R13411-R13414, 1998. 2. J. Staudigel, M. Stößel, F. Steuber, and J. Simmerer, “A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes,” J. Appl. Phys., vol. 86, no. 7, p. 3895, 1999. 3. V. Kumar, S. C. Jain, A. K. Kapoor, J. Poortmans, and R. Mertens, “Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics,” J. Appl. Phys., vol. 94, no. 2, pp. 1283-1285, 2003. 4. V. I. Arkhipov, P. Heremans, E. V. Emelianova, G. J. Adriaenssens, and H. Bässler, “Charge carrier mobility in doped disordered organic semiconductors,” J. Non. Cryst. Solids, vol. 338-340, no. 1 SPEC. ISS., pp. 603-606, 2004. 5. H. T. Nicolai, M. M. Mandoc, and P. W. M. Blom, “Electron traps in semiconducting polymers: Exponential versus Gaussian trap distribution,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 83, no. 19, pp. 1-5, 2011. 6. G. A. N. Connell, D. L. Camphausen, and W. Paul, “Theory of Poole-Frenkel conduction in low-mobility semiconductors,” Philos. Mag., vol. 26, no. 3, pp. 541-551, 1972. 7. L. Pautmeier, R. Richert, and H. Bässler, “Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation,” Synth. Met., vol. 37, no. 1-3, pp. 271-281, 1990. 8. M. POPE and C. E. SWENBERG, Electronic Processes in Organic Crystals and Polymers. New York: Oxford Univ. Press, 1999. 9. L. Onsager, “Initial recombination of ions,” Phys. Rev., vol. 54, no. 8, pp. 554-557, 1938. 10. C. L. Braun, “Electric Field Assisted Dissociation of Charge Transfer States as a Mechanism of Photocarrier Production,” J. Chem. Phys., vol. 80, no. 9, pp. 4157-4161, 1984. 11. Y. Setoguchi and C. Adachi, “Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers,” J. Appl. Phys., vol. 108, no. 6, p. 64516, 2010. 12. R. F. Kazarinov and C. H. Henry, “Second-Order Distributed Feedback Lasers with Mode Selection Provided by First-Order Radiation Losses,” IEEE J. Quantum Electron., vol. 21, no. 2, pp. 144-150, 1985. 13. C. Karnutsch, C. Pflumm, G. Heliotis, J. C. DeMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gärtner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed -order distributed feedback resonator design,” Appl. Phys. Lett., vol. 90, no. 13, pp. 2005-2008, 2007. 14. A. S. D. Sandanayaka, K. Yoshida, M. Inoue, C. Qin, K. Goushi, J.-C. Ribierre, T. Matsushima, and C. Adachi, “Quasi-Continuous-Wave Organic Thin-Film Distributed Feedback Laser ," Adv. Opt. Mater., vol. 4, no. 6, pp. 834-839, 2016. 15. J. L. Bredas, J. Cornil, A. J. Heeger, and B. J. Briidas, “The exciton binding energy in luminescent conjugated polymers,” Adv. Mater., vol. 8, no. 5, p. 447--{&}, 1996. 16. C. Deibel, D. MacK, J. Gorenflot, A. Schöll, S. Krause, F. Reinert, D. Rauh, and V. Dyakonov, “Energetics of excited states in the conjugated polymer poly(3- hexylthiophene) ," Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 8, pp. 1-5, 2010. 17. P. K. Nayak, “Exciton binding energy in small organic conjugated molecule,” Synth. Met., vol. 174, pp. 42-45, 2013. 18. S. Kraner, R. Scholz, F. Plasser, C. Koerner, and K. Leo, “Exciton size and binding energy limitations in one-dimensional organic materials,” J. Chem. Phys., vol. 143, no. 24, pp. 1-8, 2015. [ 6 ] Extremely low amplified spontaneous emission threshold and blue electroluminescence of spin-coated pure filmsOrganic semiconductor lasers have been the subject of intensive research during the past two decades, leading to significant developments regarding laser thresholds and operational device stability. 1 - 3These devices are currently being considered for use in a variety of applications, including spectroscopic tools, data communications devices, medical diagnostics, and chemical sensors. 1 - 5However, there is currently no demonstration of electrically driven organic laser diodes and breakthroughs are still needed to develop real continuous wave optically pumped organic semiconductor laser technology. 1-3,6-8The challenges of realizing electrically pumped organic laser diodes are well recognized and involve (i) additional absorption losses at the laser wavelength due to polarons and long-lived triplet states, (ii) due to Singlet-triplet, singlet-polaron and singlet-thermal mutual destruction, quenching of singlet excitons, and (iii) stability of organic materials in electroluminescent device operation at high current densities. It should be noted that methods have been proposed to reduce triplet and polaron losses, including the use of triplet quenchers and reducing the active area of organic light-emitting diodes (OLEDs) to spatially separate exciton formation and exciton decay. area. 9,10Although these problems need to be fully overcome and further research is still needed, it is also critical to substantially lower the threshold for amplified spontaneous emission (ASE) and laser in organic semiconductor films. 3To this end, there is a need for the development of novel high laser gain organic materials and improved resonator structures that can be incorporated into electrically pumped organic light-emitting devices. Radiative decay rate ( k ) is directly related to the Einstein B coefficient, as expressed by the following equation: , where ν 0 is the frequency of light, his Planck's constant, and cis the speed of light. The ASE threshold is inversely proportional to the B coefficient, which means larger k RIt is usually better to achieve a low ASE threshold. 11 , 12As outlined in a recently reviewed article on organic lasers, 3The lowest reported ASE threshold for organic thin films based on small molecules is 110 nJ/cm 2, and obtained using 9,9'-snail derivatives. 13At approximately 300 to 400 nJ/cm 2Two other excellent organic semiconductor laser materials that exhibit low ASE threshold values in thin films are 4,4'-bis[( N -Carbazole) styryl] biphenyl (BSBCz) and heptafluoride derivatives. 12,14Although the ASE threshold usually depends on the characteristics of the light source used for optical pumping, it is worth noting that the ASE threshold mentioned above was determined by using a similar nitrogen laser for optical excitation. It is considered that futon derivatives are very promising for achieving low ASE thresholds, and some of these futon derivatives exhibit higher than 1×10 9s - 1The rate of radiative decay. 13 - 19Significantly, previous work has specifically investigated the photophysical properties of triphenyl, penta, and heptafluoride derivatives functionalized with hexyl side chains. 18The results demonstrate that when increasing the length of oligomeric fluorine molecules, the radiative decay rate increases and the ASE threshold decreases. In this case, it is important to verify whether the ASE/laser properties can be further improved by increasing the oligomer length. Here, we report on Bafu derivatives, demonstrating no concentration quenching in spin-coated neat films with a PLQY of 87% and a fluorescence lifetime of approximately 600 ps. The chemical structure of this molecule is shown in Figure 75a. The large PLQY value and short PL lifetime of Bafu pure film are associated with about 90 nJ/cm 2The ASE threshold reaches an unprecedented level of ASE performance in organic non-polymer gain media. 3The performance of organic dispersive feedback (DFB) lasers and OLEDs based on pure Bafu thin films provides further evidence that this Fu derivative is very promising for further work devoted to organic semiconductor laser devices and their applications. The experimental procedures used in this work are described in the supplementary material. 19The absorption and steady-state PL spectra of a pure film spin-coated on a molten silica substrate are shown in Figure 75b. The film is almost transparent in the visible range of wavelengths and exhibits a major absorption band with a maximum absorption peak wavelength of 375 nm in the ultraviolet radiation region. This absorption peak has previously been attributed to exciton coupling between fluorine monomers. 18The optical energy gap from the long wavelength absorption edge is calculated to be approximately 2.9 eV. The PL spectrum and image shown in inset 75b indicate that the Bafu pure film fluoresces blue. The spectrum shows a clear vibronic structure with two peaks that can be assigned to the (0,0) and (0,1) transitions and a shoulder at the longer wavelength associated with the (0,2) transition. The maximum PL peak wavelength was found to be approximately 423 nm. containing dispersed to 4,4'-bis( N -The measured absorption and steady-state PL spectra of spin-coated blends of 10 wt.% and 20 wt.% of CBP in carbazolyl-1,10-biphenyl (CBP) host are shown in Figure 76 in (see Supplementary Materials). The CBP host was chosen in this work because efficient Förster-type energy transfer is known to occur from CBP to most oligomeric fluorine derivatives. 14Although the absorption spectrum of the blend is controlled by CBP absorption, it can be seen that its PL spectrum is not significantly different from that of the pure film. PLQY and PL lifetime were then measured in neat films and CBP blends. The 10 wt.% and 20 wt.% blends exhibited PLQY values of 88% and 87%, respectively, which are close to those found in neat films. The pure film and the 10 wt.% and 20 wt.% blends also exhibit similar single-exponential fluorescence decays, with characteristic PL lifetimes of 609, 570, and 611 ps, respectively (see Figure 77 in the supplemental material). This provides evidence that Bafu pure films do not exhibit any PL concentration quenching, unlike what has been reported for similar triple, Wu, and Qifu derivatives. 18Considering that in eight pure films, approximately 1.7 × 10 9s - 1With a relatively large radiative decay rate, this oligomeric fluoride derivative can be expected to exhibit excellent ASE properties. 11 , 12Variable-angle ellipsometry was used to measure the optical constants of the eight pure films and are shown in Figure 75c (the optical constants were calculated from ellipsometry data and can be found in Figure 78 in the supplementary material). The small optical anisotropy of the pure film indicates an almost random orientation of the octagonal molecules, which is consistent with the ellipsometry results reported previously in the octagonal pure film. 20As schematically represented in Figure 79a, the ASE properties of eight pure films were characterized by optically pumping the sample at 337 nm with a nitrogen laser delivering 800 ps pulses at a repetition rate of 10 Hz. The excitation beam is concentrated into a strip with a size of 0.5 cm × 0.08 cm, and PL is collected from the edge of the organic film. Figure 79b shows the PL spectra measured from the edge of a 260 nm thick eight-foot pure film at various pump intensities. The spectral line narrowing effect is clearly visible at high excitation densities, with the full width at half maximum (FWHM) falling to 5 nm, providing evidence that ASE occurs in this sample. Light amplification occurs at approximately 450 nm due to spontaneously emitted photons that are waveguided in the organic film and amplified by stimulated emission. twenty oneThe ASE threshold is then determined based on the curve of the output intensity emitted from the edge of the film versus the excitation intensity. The abrupt change in ramp efficiency seen in Figure 79c results in approximately 90 nJ/cm 2The ASE threshold value. It should be noted that the ASE properties were measured in eight pure films with different film thicknesses ranging between 53 nm and 540 nm. The data presented in Figure 79d and Figure 80 (see Supplementary Information) indicate that films with a thickness of 260 nm have the lowest ASE threshold. Similar thickness dependence of the ASE threshold has been reported in poly(9,9-dioctylfluoride) films. twenty twoThis state is attributed to the interaction between the increase in mode confinement and the decrease in pump mode overlap when increasing thickness. Remarkably, the ASE threshold measured in a 260 nm thick 8-nm pure film is lower than the lowest value ever reported for an organic film based on small molecules. 3This good performance should also mean that the Bafu film exhibits extremely low loss coefficient values. For this purpose, the ASE intensity was measured based on the distance between the edge of the film and the pump strip. The results shown in Figure 81 (see Supplementary Information) lead to a 5.1 cm -1the loss coefficient. This low value is close to poly(9,9-dioctyl fluoride) film twenty threeare low values reported in and provide evidence of the excellent optical waveguide properties of the films. It should be emphasized that, unlike most polyfluoroquinone systems, polyfluoroquinone, as well as most small molecules based on fluoroquinone, are twenty four - 26It does not exhibit any significant degradation of its photophysical properties under severe light irradiation. Furthermore, the results shown in Figure 82 (see Supplementary Information) demonstrate that the 8-pure film exhibits excellent photostability at high pump intensities above the ASE threshold in both ambient and nitrogen atmospheres. This may involve a high radiative decay rate of the film, which presumably leads to a reduction in photobleaching of the material under high intensity irradiation. Comparing the ASE threshold values measured in shorter oligofluorocarbons, 14,18The results indicate that increasing oligomer length results in improved ASE performance. However, it should be noted that preliminary experiments performed on Shifu films demonstrated higher ASE thresholds than those obtained on Bafu films, indicating that Bafu derivatives are certainly organic semiconductor lasers in this series of oligomers. the most promising candidate. We then designed and fabricated a hybrid-order DFB grating structure consisting of a second-order Bragg scattering region surrounded by a first-order scattering region. 17This grating architecture is chosen to obtain a low laser threshold along with laser emission in a direction normal to the substrate. In DFB laser, the laser emits at Bragg wavelength ( λ Bragg) occurs near, defined as: Bragg= 2 n effΛ, where n effis the effective refractive index of the laser gain medium, mis the Bragg order and Λ is the grating period. 1-3Using the refractive index of eight pure films determined by ellipsometry (Figure 75c) and the ASE wavelength measured in this study, for m=1, 2, select the grating period as 260 nm and 130 nm respectively. Figure 83a and Figure 83b show this type of DFB SiO 2Schematic representation and scanning electron microscope (SEM) image of a grating fabricated using electron beam lithography and reactive ion etching techniques. It should be noted that the depth of the DFB grating is approximately 70 nm. To complete the laser device, a 260-nm-thick 8-millimeter pure film was spin-coated on top of the DFB structure. Figure 83c shows the emission spectra detected normal to the substrate plane at several excitation densities below and above the laser threshold. Below the threshold, a Bragg dip due to the optical stopband of the DFB grating is observed. Above the laser threshold, a steep laser emission peak is clearly visible at the laser wavelength of approximately 452 nm. The output emission intensity and FWHM of this DFB laser as a function of excitation intensity are plotted in Figure 81d. The FWHM of the laser emission peak was found to be lower than 0.3 nm at high excitation density. At the same time, it was found that the laser threshold value determined based on the change in the slope of the output intensity curve is approximately 84 nJ/cm 2, which is slightly lower than the previously reported ASE threshold. Overall, the extremely low ASE and laser threshold values measured in this work together with the excellent photostability of the films under high optical excitation intensities demonstrate that these eight derivatives are very promising for laser applications in organic semiconductors. gain medium material. To fully evaluate the potential of this octagonal derivative for use in organic laser diodes, it is also critical to study the electroluminescence (EL) properties of this compound in pure films and CBP blends using standard OLED structures. A schematic representation of the OLED fabricated in this study is provided in Figure 82a. The architecture of these devices is as follows: Indium Tin Oxide (ITO) (100 nm)/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) (PEDOT: PSS) (45 nm)/ EML (approximately 40 nm)/2,8-bis(diphenylphosphonyl)dibenzo[b,d]thiophene (PPT) (10 nm)/2,2',2''-(1,3 ,5-Phenyltriyl)-Phenyl(1-phenyl-1-H-benzimidazole) (TPBi) (55 nm)/LiF (1 nm)/Al (100 nm), where the emissive layer (EML) corresponds In Bafu pure film or Bafu: CBP blend. In these devices, PEDOT:PSS functions as the hole injection layer, while PPT and TPBi serve as the hole blocking layer and electron transport layer respectively. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values of PEDOT:PSS, PPT and TPBi in Figure 84a are taken from the literature. 20The ionization potential of the pure film measured by photoelectron spectroscopy in air was 5.9 eV (see Figure 85 in the supplemental material). Using the optical band gap value of 2.9 eV determined from the absorption spectrum of the pure film, the electron affinity of Bafu can be estimated to be approximately 3 eV. As shown in Figure 86a (see Supplementary Information), in these OLEDs at 10 mA/cm 2The EL spectra measured here are similar to the PL spectra measured in the Bafu pure film and in the CBP blend, indicating that the blue EL emitted from these devices comes only from the Bafu chromophore. Device current density-voltage-brightness ( J- V- L )The curve is shown in Figure 86b (see Supplementary Information). at 1 cd/m 2Here, OLEDs based on pure Bafu film, 10 wt.% CBP blend, and 20 wt.% CBP blend exhibit driving voltages of 5.0 V, 4.9 V, and 4.5 V respectively. The highest brightness value obtained in these OLEDs is 4580 cd/m for pure film 2(at 12.6 V), 8520 cd/m for 20 wt.% blend 2(at 10.4 V) and 8370 cd/m for 10 wt. % blend 2(at 11.2 V). External quantum efficiency of the device in terms of current density (η ext) is plotted in Figure 84b. Its maximum value was found to be 3.9% for the neat film, 4.3% for the 20 wt.% blend, and 4.4% for the 10 wt.% blend. The difference in efficiency cannot be explained by the PLQY values of the three films, which are almost the same. In fact, current research devoted to the molecular orientation of oligomeric fluorine molecules in spin-coated films demonstrates that although octanoic acid molecules are randomly oriented in neat films, 20 wt.% and 10 wt.% octanoic acid:CBP blends Demonstrates relatively good horizontal orientation of the eight molecules. 26These horizontal molecular orientations of the emitting dipole should lead to improvements in light extraction efficiency and thus explain the slightly higher η measured in OLEDs based on CBP blends. extvalue. 20 , 26In the case of organic laser diodes, the maximum η obtained in these OLEDs extThe value is clearly promising. However, higher current densities should be injected into the device and above 100 mA/cm 2Efficiency roll-off occurs at such current densities, and this efficiency roll-off needs to be contained in additional work through improved device architecture before these eight derivatives can be carefully considered as candidates for electrically driven organic laser devices. In summary, this study demonstrates an unprecedented 90 nJ/cm in non-polymeric organic films 2The low ASE threshold value. Used in spin-coated neat films demonstrating 87% PLQY and 1.7 × 10 9s - 1Eight derivatives with large radiative decay rates achieve this achievement. This blue-emitting material is then used in low-threshold organic semiconductor DFB lasers and has an external quantum efficiency as high as 4.4% and a maximum brightness value close to 10,000 cd/m 2in fluorescent OLEDs. Overall, this study provides evidence that this octagonal derivative is an excellent organic material for use in organic semiconductor lasers. See Supplementary Material [URL will be inserted by AIP] for all information on the experimental procedures used in this study, absorption and fluorescence spectra of CBP blends in Bafu films, ellipsometry data, and additional ASE characterization results , and the determination of HOMO and LUMO. References1. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007). 2. S. Chénais and S. Forget, Polym. Int. 61, 390 (2012). 3. A. J. C. Kuehne and M. C. Gather, Chem. Rev. in press, DOI: 10.1021/acs.chemrev.6b00172. 4. Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull and I. D. W. Samuel, Laser & Photon. Rev. 7, L71-L76 (2013). 5. A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager and V. Bulovic, Nature 434, 876 (2005). 6. I. D. W. Samuel, E. B. Namdas and G. A. Turnbull, Nature Photon. 3, 546 (2009). 7. S. Z. Bisri, T. Takenobu and Y. Iwasa, J. Mater. Chem. C 2, 2827 (2014). 8. A. S. D. Sandanayaka, T. Matsushima, K. Yoshida, M. Inoue, T. FμJihara, K. Goushi, J. C. Ribierre and C. Adachi, Adv. Opt. Mater. 4, 834 (2016). 9. A. S. D. Sandanayaka, L. Zhao, D. Pitrat, J. C. Mulatier, T. Matsushima, J. H. Kim, J. C. Ribierre and C. Adachi, Appl. Phys. Lett. 108, 223301 (2016). 10. K. Hayashi, H. Nakanotani, M. Inoue, K. Yoshida, O. Mikhnenko, T. Q. Nguyen and C. Adachi, Appl. Phys. Lett. 106, 093301 (2015). 11. F.-H. Kan and F. Gan, Laser Materials(World Scientific, Singapore, 1995). 12. T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe and C. Adachi, Appl. Phys. Lett. 86, 071110 (2005). 13. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita and C. Adachi, Adv. Funct. Mater. 17, 2328 (2007). 14. L. Zhao, M. Inoue, K. Yoshida, A. S. D. Sandanayaka, J. H. Kim, J. C. Ribierre and C. Adachi, IEEE J. Sel. Top. Quant. Electron. 22, 1300209 (2016). 15. J. C. Ribierre, G. Tsiminis, S. Richardson, G. A. Turnbull, I. D. W. Samuel, H. S. Barcena and P. L. Burn, Appl. Phys. Lett. 91, 081108 (2007). 16. T. W. Lee, O. O. Park, D. H. Choi, H. N. Cho and Y. C. Kim, Appl. Phys. Lett. 81, 424 (2002). 17. C. Karnutsch, C. Pflumm, G. Heliotis, J. C. DeMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gartner and U. Lemmer, Appl. Phys. Lett. 90, 131104 ( 2007). 18. E. Y. Choi, L. Mazur, L. Mager, M. Gwon, D. Pitrat, J. C. Mulatier, C. Monnereau, A. Fort, A. J. Attias, K. Dorkenoo, J. E. Kwon, Y. Xiao, K. Matczyszyn, M. Samoc, D.-W. Kim, A. Nakao, B. Heinrich, D. Hashizume, M. Uchiyama, S. Y. Park, F. Mathevet, T. Aoyama, C. Andraud, J. W. Wu, A. Barsella and J. C. Ribierre, Phys. Chem. Chem. Phys. 16, 16941 (2014). 19. J.-H. Kim, M. Inoue, L. Zhao, T. Komino, S. Seo, J. C. Ribierre and C. Adachi, Appl. Phys. Lett. 106, 053302 (2015). 20. L. Zhao, T. Komino, M. Inoue, J. H. Kim, J. C. Ribierre and C. Adachi, Appl. Phys. Lett. 106, 063301 (2015). 21. M. D. McGehee and A. J. Heeger, Adv. Mater. 12, 1655 (2000). 22. M. Anni, A. Peruli and G. Monti, J. Appl. Phys. 111, 093109 (2012). 23. G. Heliotis, D. D. C. Bradley, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 81, 415 (2002); J. C. Ribierre, A. Ruseckas, I. D. W. Samuel, H. S. Barcena and P. L. Burn, J. Chem. Phys . 128, 204703 (2008). 24. J.C. Ribierre, L. Zhao, M. Inoue, P.O. Schwartz, J.H. Kim, K. Yoshida, A.S.D. Sandayanaka, H. Nakanotani, L. Mager, S. Mery and C. Adachi, Chem. Comm. 52, 3103 ( 2016). 25. J. C. Ribierre, A. Ruseckas, O. Gaudin, I. D. W. Samuel, H. S. Barcena, S. V. Staton and P. L. Burn, Org. Electron. 10, 803 (2009). 26. L. Zhao, T. Komino, D. H. Kim, M. H. Sazzad, D. Pitrat, J. C. Mulatier, C. Andraud, J. C. Ribierre and C. Adachi, J. Mater. Chem. C 4, 11557 (2016). Experimental procedures Photophysics and ASE MeasureThe octagonal derivative was synthesized following methods previously disclosed in the literature. 1The fused silica substrate was cleaned by ultrasonic treatment using detergent, pure water, acetone and isopropyl alcohol followed by ozone treatment by ultraviolet radiation. Bafu pure film and CBP: Bafu blended film was deposited on a molten silica substrate by spin coating from a chloroform solution in a nitrogen-filled glove box. It should be noted that the concentration of the solution and the spin speed are changed to control the thickness of the pure film. UV-vis spectrophotometer (Perkin-Elmer Lambda 950-PKA) and spectrofluorometer (Jasco FP-6500) were used to measure the absorption and steady-state emission spectra respectively. The PLQY in the film was measured using a xenon lamp with an excitation wavelength of 340 nm and an integrating sphere (C11347-11 Quantaurus QY, Hamamatsu Photonics). PL decay was measured using a frame camera and a Ti-sapphire laser system (Millenia Prime, Spectra Physics) delivering optical pulses with a width of 10 ps and a wavelength of 365 nm. Variable-angle ellipsometry (VASE) (J.A. Wollam, M-2000U) was performed at various angles from 45° to 75° by steps 5° in 75 nm thick eight-foot pure films. Analysis software (J.A. Woollam, WVASE32) was then used to analyze the ellipsometry data to determine the anisotropic extinction coefficient and refractive index of the film. For the characterization of ASE properties, the sample was optically pumped with a pulsed nitrogen laser (KEN2020, Usho) emitting at 337 nm. This laser delivers pulses with a pulse duration of 800 ps at a repetition rate of 10 Hz. Vary the pump beam intensity using a set of neutral density filters. The pump beam is concentrated into a 0.5 cm × 0.08 cm strip. Emission spectra from the edge of the organic film were collected using an optical fiber connected to a charge-coupled device spectrometer (PMA-11, Hamamatsu Photonics). organic DFB Laser manufacturing and characterizationFollow the same cleaning procedure as above to clean thermally grown 1 μm thick SiO 2layer of silicon substrate. Hexamethyldisilazane (HMDS) was then spin-coated on SiO 2On top of the surface the sample was annealed at 120°C for 2 minutes. Thereafter, a 70 nm thick resist layer was spin-coated on the substrate from ZEP520A-7 solution (ZEON Co.) and annealed at 180°C for 4 minutes. Next, electron beam lithography using a JBX-5500SC system (JEOL) was used to pattern the DFB grating on the resist layer. After electron beam irradiation, the pattern was developed in a developer solution (ZED-N50, ZEON Co.). In the following steps, the patterned resist layer acts as an etch mask. Using EIS-200ERT etching system (ELIONIX) by CHF 3Plasma etching the substrate. Finally, FA-1EA etching system (SAMCO) was used by O 2Plasma - Etches the substrate to completely remove the resist layer. SEM (SU8000, Hitachi) is used to check the quality of DFB gratings. To complete the organic laser device, a 260 nm thick eight-foot pure film was finally spin-coated from the chloroform solution on the top of the DFB grating. For laser operation, pulsed excitation light from a nitrogen laser (SRS, NL-100) is concentrated on a 6 × 10 area of the device through lenses and slits. 3cm 2on the area. The excitation wavelength is 337 nm, the pulse width is 3.5 ns, and the repetition rate is 20 Hz. The excitation light is incident on the device at an angle of approximately 20° relative to the normal line of the device plane. The emitted light perpendicular to the device surface was collected using an optical fiber connected to a multichannel spectrometer (PMA-50, Hamamatsu Photonics) placed 6 cm away from the device. Use a set of neutral density filters to control excitation intensity. OLED Manufacturing and characterizationOLEDs are fabricated by depositing organic layers and cathodes on pre-cleaned ITO glass substrates. The structure of the OLED fabricated in this study is as follows: ITO (100 nm)/PEDOT: PSS (45 nm)/EML (about 40 nm)/PPT (10 nm)/TPBi (55 nm)/LiF (1 nm)/ Al (100 nm), where the emissive layer (EML) corresponds to either a pure film or a CBP:CBP blend. PEDOT:PSS layer was spin-coated on ITO and annealed at 130°C for 30 minutes. Eight pure and blended films were spin-coated from a chloroform solution on top of a PEDOT:PSS layer in a glovebox environment. The thickness of the EML layer is typically about 40 nm. Next, a 10 nm thick PPT layer and a 40 nm thick TPBi layer were deposited by thermal evaporation. Finally, the cathode made of a thin LiF layer and a 100 nm thick Al layer was prepared by thermal evaporation through a mask. The active area of the device is 4 mm 2. Prior to characterization, the device was encapsulated in a nitrogen atmosphere to prevent any degradative effects associated with oxygen and moisture. Under DC driving, use a power meter (Keithley 2400, Keithley Instruments Inc.) and an absolute external quantum efficiency measurement system (C9920-12, Hamamatsu Photonics) to measure current density-voltage-brightness ( J- V- L)characteristic. The EL spectrum was measured using an optical fiber connected to a spectrometer (PMA-12, Hamamatsu Photonics). References1. R. Anemian, J.C. Mulatier, C. Andraud, O. Stephan, J.C. Vial, Chem. Comm. 1608 (2002). [ 7 ] by CW amplified spontaneous emission ( ASE ) experimentCW amplified spontaneous emission (ASE) experiments were performed on double-core dendrites and eight-core spin-coated pure films. Thin films were deposited onto pre-cleaned flat fused silica substrates without encapsulation. The film thickness is approximately 250 nm. To study the properties of CW ASE, the film was optically pumped by a CW laser diode at 355 nm. An acousto-optic modulator (AOM, Gooch & Housego) triggered by a pulse generator (WF 1974, NF Co.) was used to deliver pulses with different widths. Emitted light was collected from the edge of the film using a frame eye (C7700, Hamamatsu Photonics) with a time resolution of 100 ps connected to a digital camera (C9300, Hamamatsu Photonics). A photomultiplier tube (PMT) (C9525-02, Hamamatsu Photonics) was used to record the emission intensity. Both the PMT response and the driving square wave signal were monitored on a multi-channel oscilloscope (Agilent Technologies, MSO6104A). In both materials, frame camera images and emission spectra at various pump strengths show clear line-narrowing effects above a threshold that are attributed to stimulated emission and can be assigned to the ASE. The ASE threshold is measured by comparing the output intensity of the excitation intensity curves for different pulse widths. The results show that the ASE threshold remains almost constant for varying pulse widths in the range of 100 μs to 5 ms. Furthermore, it can be noted that these ASE thresholds are consistent with those measured in these materials using a pulsed nitrogen laser (pulse width of 800 ps and repetition rate of 10 Hz). The possibility of achieving CW lasers in both eight-core and two-core dendrites implies negligible triplet loss. This is consistent with the fact that both materials exhibit extremely high photoluminescence quantum yields (PLQY) (92% PLQY in double-core dendrites and 82% PLQY in eight-fold pure films). In addition, transient absorption measurements were performed in Bafu and Shuangfuxin dendron solutions to examine the triplet-triplet absorption spectra. It can be seen that there is no overlap between the ASE and triplet absorption spectra, which provides clear evidence that triplet absorption does not play any harmful role in CW lasers in the two materials. [ 8 ] Current injection into organic semiconductor laser diodes OverviewThis laser diode is mainly based on inorganic semiconductors, but through a unique manufacturing route, organic matter can also be an excellent gain medium. However, despite advances in optically pumped organic semiconductor lasers, electrically driven organic semiconductor laser diodes have not yet been achieved. Here, we report the first demonstration of organic semiconductor laser diodes. Device incorporating mixed-order dispersed feedback SiO into organic light-emitting diode structure 2grating and emits blue laser. These results prove that lasers that directly inject current into organic films can contain high current densities by selecting high-gain organic semiconductors that do not exhibit triplet and polaron absorption losses at the laser wavelength and designing appropriate feedback structures. losses to achieve. This represents a first step toward simple organic-based laser diodes that can cover the visible and near-infrared spectrum, and represents a major advance toward future organic optoelectronic integrated circuits. Detailed descriptionDue to the development of high-gain organic semiconductor materials and high-quality factor resonator structures 1 - 5Significant advances in both design and design have greatly improved the properties of optically pumped organic semiconductor lasers (OSLs) over the past two decades. The advantages of organic semiconductors as gain media for lasers include their high photoluminescence (PL) quantum yield, large stimulated emission cross section, and broad emission spectrum across the visible region, as well as their chemical tunability and ease of processing. Recent advances in low-threshold distributed feedback (DFB) OSL demonstrate optical pumping of inorganic light-emitting diodes by electrically driving nanosecond pulses, providing a path towards new compact and low-cost visible laser technologies. 6route. This type of miniaturized organic laser is very promising for wafer laboratory applications. However, the ultimate goal is electrically driven organic semiconductor laser diodes (OSLDs). In addition to enabling the full integration of organic photonic and optoelectronic circuits, the implementation of OSLD will open novel applications in high-performance displays, medical sensing, and biocompatible devices. Problems with the realization of laser blocking by direct electrical pumping of organic semiconductors are mainly due to optical losses from the electrical contacts and occur at high current densities 4,5,7-9Triplet and polaron losses below. Solutions to these fundamental loss problems have been proposed, including the use of triplet quenchers 10 - 12The singlet-triplet exciton mutual destruction is used to curb triplet absorption loss and singlet quenching, and reduce the device's active area. 13It spatially separates exciton formation and exciton radiative decay and minimizes the polaron quenching process. However, even organic light-emitting diodes (OLEDs) and optically pumped organic semiconductor DFB lasers 5Progress has been made, but current injection into OSLDs has not yet been conclusively demonstrated. Previous research suggested that if the additional losses associated with electrical pumping were completely contained 14, then it needs to be higher than several kA/cm 2current density to achieve the laser from OSLD. One of the most promising molecules for realizing OSLD is 4,4'-bi[( N -Carbazole)styryl]biphenyl (BSBCz) (chemical structure in Figure 89a) 15, because of its excellent combination of optical and electrical properties (such as thin films (0.30 µJ cm under 800 ps pulsed light excitation) 2) 16Low to medium amplified spontaneous emission (ASE) threshold) and tolerance greater than 2% at 5 µs pulse operation 13The maximum electroluminescence (EL) external quantum efficiency ( n EQE) up to 2.8 kA cm in OLED 2The ability of current density injection. In addition, recent optically pumped BSBCz-based DFB lasers 17It is demonstrated that the laser is possible under the repetition rate of 80 MHz and the long pulse light excitation of 30 ms and due to the extremely small triplet absorption loss at the laser wavelength of the BSBCz film. Here we demonstrate without a doubt the first example of laser from an organic semiconductor thin film based on mixed-order DFB SiO with an active area integrated into the device 2The BSBCz film in the grating-inverted OLED structure was developed and completely characterized by electrical direct excitation through OSLD. The architecture and fabrication of the OSLD developed in this study are schematically shown in Figures 89a and 90 (see Materials and Methods for a detailed description of the experimental procedures). SiO on indium tin oxide (ITO) glass substrate 2The sputtered layer was engraved by electron beam lithography and reactive ion etching to create a hybrid DFB grating with an area of 30 × 90 µm (Figure 89b), and the organic layer and metal cathode were vacuum deposited on the substrate to complete the device. We design a hybrid-order DFB grating with first-order and second-order Bragg scattering regions, which provide strong optical feedback and efficient vertical extraction of laser emission respectively. 17 , 18. Based on Bragg conditions 4 , 19, Bragg=2 n effΛ m , select the grating periods (Λ) of 140 nm and 280 nm for the first-order and second-order regions respectively. 1and Λ 2),in mis the diffraction order, λ Braggis the Bragg wavelength, set to the reported maximum gain wavelength (477 nm) for BSBCz, and n effis the effective refractive index of the gain medium, which is calculated for BSBCz 20 , twenty oneis 1.70. The lengths of individual first-order and second-order DFB grating regions in the characterized first set of devices, hereafter referred to as OSLDs, are 1.12 µm and 1.68 µm, respectively. Scanning electron microscopy (SEM) images in Figures 89c and 89d confirm that the fabricated DFB grating has periods of 140±5 nm and 280±5 nm, with a grating depth of approximately 65±5 nm. Complete removal of SiO in etched areas 2Exposing the ITO layer is critical to making good electrical contact with the organic layer and was verified by energy dispersive X-ray spectroscopy (EDX) analysis (Figure 90c, Figure 90d). Cross-sectional SEM and EDX images of the complete OSLD are shown in Figure 89d and Figure 89e. The surface morphology of all layers exhibits a grating structure with a surface modulation depth of 50 nm to 60 nm. Although the interaction between the resonant laser mode and the electrode is expected to reduce the quality factor of the feedback structure, such a grating structure on the metal electrode should also reduce the device structure. twenty two , twenty threeThe pattern of inner guidance absorbs losses. The OSLD fabricated in this work has a simple reverse OLED structure ITO (100 nm)/20 wt.% Cs with energy levels: BSBCz (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Ag (10 nm)/Al (90 nm), as shown in Figure 91a. Doping the BSBCz film with Cs in the area close to the ITO contact improves the electrons injected into the organic layer, and MoO 3Used as hole injection layer (Figure 92). Although the most efficient OLEDs generally use multi-layer architectures to balance charge 24,25to achieve optimal performance, but at high current densities charges can accumulate at the organic heterointerface, which can affect device performance and stability. 26harmful. The OSLD fabricated in this work contains only BSBCz as the organic semiconductor layer and is specifically designed to minimize the number of organic heterointerfaces. Also manufactured without SiO 2A reference device of DFB grating (hereinafter referred to as OLED) was used to study the effect of grating on EL properties. Figure 91b shows optical microscopy images of OSLD and reference OLED operating at 3.0 V direct current (DC). In addition to the previously described DFB gratings, five other DFB grating geometries (Table 1) were optimized and characterized in OSLD. Although the EL emits uniformly from the active area of the reference OLED, more intense emission can be seen from the second-order DFB grating region in the OSLD, which is specifically designed to facilitate vertical light extraction (Figure 91b and Figure 93). Current density-voltage ( J- V)and n EQE- JThe characteristics are shown in Figures 91c and 91d, and the characteristics obtained under DC conditions are shown in Figure 94. The active area used to calculate the current density of OSLD is estimated based on SEM and laser microscope images. Reference OLED's maximum current density before device failure is 6.6 A cm under DC operation 2Increases to 5.7 kA cm under pulsed operation 2, this is because by pulse operation 13,27Joule plus after reduction. Under DC operation, the device exhibits greater than 2% maximum power at lower current densities. n EQEand above 1 A cm 2A strong efficiency roll-off appears at high current densities, which is presumably attributed to thermal degradation of the device. On the other hand, the efficiency roll-off in OLEDs under pulsed operation (Figure 91c, Figure 91d) is above 110 A cm 2starting at the current density, which is consistent with previous reports 13consistent. Efficiency roll-off in OSLDs under pulsed operation was further curbed, and even found n EQEsubstantially increases above 200 A cm 2to achieve a maximum value of 2.9%. above 2.2 kA cm 2under the current density n EQEThe rapid decrease is most likely due to thermal degradation of the device. Although the EL spectrum of OLED is similar to the steady-state PL spectrum of pure BSBCz film (Figure 94c) and does not change with changes in current density, the EL spectrum from the glass surface of OSLD shows a spectrum with increasing current density under pulse operation. Line narrowing (Fig. 95a). at 478.0 nm for below 650 A cm 2A Bragg dip in the current density corresponding to the stop band of the DFB grating was observed (Fig. 95b). When the current density increases above this value, a strong spectral line narrowing occurs at 480.3 nm, indicating the onset of laser emission. The intensity of the narrow emission peak was found to increase faster than the intensity of the EL emission background, which can be attributed to the nonlinearity associated with stimulated emission. The output intensity and full width at half maximum (FWHM) of the OSLD as a function of current are plotted in Figure 95c. Although the FWHM of the steady-state PL spectrum of the pure BSBCz film is about 35 nm, the FWHM of the OSLD decreases to values below 0.2 nm at high current densities, which is close to our spectrometer (0.17 nm for the 57 nm wavelength range) Spectral resolution limitations. The ramp efficiency of the output intensity changes suddenly with increasing current and can be used to determine 600 A cm 2(8.1 mA) threshold value. Above 4.0 kA cm 2In this case, the output intensity decreases with increasing current, presumably due to the onset of device collapse due to the strong increase in temperature, but the emission spectrum remains extremely steep. This increase and subsequent decrease are related to n EQE- JThe curves match. The maximum output power measured by a power meter placed at a distance of 3 cm between the front of the OSLD and the ITO glass substrate (Figure 95d) is 3.3 kA cm 2is 0.50 mW. These observed EL properties largely indicate that optical amplification occurs at high current densities and that electrically driven lasers are achieved above the current density threshold. The beam polarization and shape were characterized to provide further evidence that this is a laser 9. The output beam of the OSLD is largely linearly polarized along the grating pattern (Figure 96a), with the expected laser emission coming from a one-dimensional DFB. The spatial profile of the OSLD emission measured above the laser threshold at different current densities (Figure 96b) demonstrates the presence of well-defined Gaussian beams. Also, if this were a laser there should be the appearance of a spot pattern, providing preliminary evidence of spatial coherence. Before we can claim lasers, several phenomena that have been misinterpreted as lasers in the past must be excluded as observed states 9the cause. The emission of our OSLD is detected in the direction perpendicular to the substrate plane and exhibits a clear threshold state, so the line narrowing caused by the edge emission of the waveguide mode without laser amplification can not be considered 20,28,29. ASE can occur in a similar manner to lasers, but the FWHM in our OSLDs (<0.2 nm) is much narrower than the typical ASE linewidths of organic films (a few nanometers) and is similar to that of optically pumped organic DFB lasers. Radiation (< 1 nm) 5consistent with typical FWHM. The extremely narrow emission spectrum obtained by unintentionally stimulating transformations in ITO has also been mistakenly attributed to the organic layer. 30of launch. However, the emission peak wavelength of the OSLD in Figure 95a is 480.3 nm and cannot be attributed to emission from ITO, which has atomic spectral lines at 410.3 nm, 451.3 nm and 468.5 nm. 31If this is truly a laser from a DFB structure, the emission from the OSLD should be characteristic of the resonator mode, and the output should be extremely sensitive to any modification of the laser cavity. Therefore, OSLDs with different DFB geometries (labeled OSLD-1 to OSLD-5 (Table 1)) were fabricated and characterized (Figure 93) to confirm that the emission wavelength can be predictably tuned, which is consistent with optically pumped organic DFBs. laser 4,5,32,33Very common in . The laser peaks of OSLD, OSLD-1, OSLD-2 and OSLD-3 are almost the same (480.3 nm, 479.6 nm, 480.5 nm and 478.5 nm respectively), which have the same DFB grating period. Additionally, OSLD-1, OSLD-2, and OSLD-3 owners have lower minimum FWHMs (0.20 nm, 0.20 nm, and 0.21 nm, respectively) and clear thresholds (1.2 kA cm, respectively) 2,0.8 kA cm 2and 1.1 kA cm 2). On the other hand, OSLD-4 and OSLD-5 with different DFB grating periods exhibit a FWHM of 0.25 nm and 1.2 kA cm at 459.0 nm. 2threshold (OSLD-4), with a FWHM of 0.38 nm and 1.4 kA cm at 501.7 nm 2The laser peak of the threshold value (OSLD-5). These results clearly demonstrate that the laser wavelength is controlled by the DFB geometry. To verify that the laser threshold of electrically driven OSLDs matches that obtained by optical pumping, N delivering a 3.0 ns pulse was used 2Laser (excitation wavelength of 337 nm) measured the laser characteristics of the OSLD (OLSD-6) optically pumped through the ITO side (Figure 97). The laser peak of OLSD-6 under optical pumping (481 nm) is consistent with the laser peak of OSLD under electrical pumping (480.3 nm). The measured laser threshold under optical pumping is approximately 430 W cm 2. Although this value is higher than without two electrodes 1730 W cm obtained in optically pumped BSBCz-based DFB laser 2value, but the thickness of the layers in this OSLD is optimized to minimize optical losses caused by the presence of electrodes. Assuming no additional loss mechanisms in OSLD-6 at high current densities, 1.1 kA cm under electrical pumping 2The laser threshold can be estimated based on the threshold under optical pumping. This value is consistent with the threshold value (0.6 to 0.8 kA cm) measured in smaller devices with the same grating period (OSLD and OSLD-2) under electrical pumping 2) reasonably consistent. These results indicate that at high current densities 34Additional losses that normally occur in OLEDs (including exciton mutual destruction, triplet and polaron absorption, quenching due to high electric fields, and Joule heating) have been almost suppressed in BSBCz OSLD. This is fully consistent with the fact that the EL efficiency roll-off is not observed in OSLD under severe pulse electrical excitation. Loss containment can be explained based on the properties of the BSBCz and the device. As mentioned previously, BSBCz films do not exhibit significant triplet loss 35, and the reduction of the active area of the device leads to Joule heat-assisted exciton quenching 36decrease. In addition, based on the respective measurements of composite films BSBCz:MoO 3And BSBCz: The overlap between the polaron absorption and emission spectra of Cs for both radical cations and radical anions in BSBCz is negligible (Figure 98). Electrical and optical simulations of the device were performed to further confirm that current injection laser occurs in the OSLD (Figure 99). Simulations of devices with and without gratings using carrier mobilities extracted from fitting of experimental data for monopole devices (Fig. 99a, Fig. 99b) J- VThe curves are in excellent agreement with the experimental characteristics (Figure 99a, Figure 99c, Figure 99d), indicating sufficient etching for good electrical contact with devices with gratings. The recombination rate profiles (Figure 99e, Figure 99f) show periodic changes within the device as electrons pass from the ITO electrode through the insulating SiO 2Periodic injection of grating. Similar to this reorganization, the exciton density (Fig. 100a) is distributed throughout the thickness of the organic layer, but is mainly concentrated in SiO 2In an area that does not obstruct the path from cathode to anode. The average exciton density of OSLD and OLED (Figure 99g) is similar, indicating that it is close to SiO 2The high accumulation compensation of excitons results in a low exciton density between gratings (non-injection regions) with similar exciton densities relative to the reference device. Calculated resonant wavelengths of light traps in OSLD for light extraction from the second-order grating and waveguide losses in the ITO layer λ 0= Stimulated electric field distribution of light field at 483 nm E( x, y) is clearly visible (Fig. 100b). The DFB resonator cavity is limited by a 40% ΓAnd the quality factor representation of 255. The modal gain ( g m) (which is an indicator of light amplification in laser mode), has a value for 2.8 10 16cm 2BSBCz 35stimulated emission cross section σ Stimulateand is shown in Figure 100c for the second-order region. Above 500 A cm 2The high modal gain and increasing modal gain are consistent with laser observations. exist J=500 A cm 2The area where there is strong spatial overlap between the exciton density and the optical mode (Fig. 100d) corresponds to the area where both the exciton density and the optical field (Fig. 100a, Fig. 100b) are high. Therefore, the DFB structure also helps enhance localization and optical mode coupling via high exciton densities in and above the valleys of the grating. In summary, this study demonstrates that through appropriate design and selection of resonators and organic semiconductors, lasers driven from current-driven organic semiconductors may contain losses and enhance coupling. The laser demonstration here has been reproduced in multiple devices and fully characterized to rule out other phenomena that could be mistaken for lasers. This result fully supports the claim that this is the first observation of electrically pumped laser in organic semiconductors. Low losses in BSBCz are essential to enable lasers, so the development of strategies to design new laser molecules with similar or improved properties is a critical next step. This report opens up new opportunities in organic photonics and serves as a basis for the future development of organic semiconductor laser diode technology that is simple, cheap, and tunable and enables complete and direct integration into organic-based optoelectronic platforms. Materials and methods Device manufacturingClean indium tin oxide (ITO)-coated glass substrate (100 nm thick ITO, Atsugi Micro Co.) using neutral detergent, pure water, acetone and isopropyl alcohol by ultrasonic treatment followed by UV ozone treatment. . SiO 100 nm thick 2The layer (which will become the DFB grating) is sputtered onto an ITO coated glass substrate at 100°C. The argon gas pressure during sputtering was 0.66 Pa. RF power was set to 100 W. The substrate was again cleaned by ultrasonic treatment followed by UV ozone treatment using isopropyl alcohol. SiO was treated with hexamethyldisilazane (HMDS) by spin coating at 4,000 rpm for 15 s. 2surface and annealed at 120°C for 120 s. A resist layer with a thickness of approximately 70 nm was spin-coated on the substrate from ZEP520A-7 solution (ZEON Co.) at 4,000 rpm for 30 s and baked at 180°C for 240 s. Use a 0.1 nC cm 2A JBX-5500SC system (JEOL) with optimized dosage was used for electron beam lithography to draw the grating pattern on the resist layer. After electron beam irradiation, the pattern was developed in a developer solution (ZED-N50, ZEON Co.) at room temperature. The patterned resist layer was used as an etch mask, while an EIS-200ERT etch system (ELIONIX) was used with CHF 3Plasma etching the substrate. To completely remove the resist layer from the substrate, use a FA-1EA etching system (SAMCO) with O 2Plasma etching the substrate. Etch conditions optimized to completely remove SiO from grooves in DFB 2Until ITO is exposed. Using SEM (SU8000, Hitachi) to observe the formation of SiO 2Grating on the surface (Fig. 89c). Perform EDX (at 6.0 kV, SU8000, Hitachi) analysis to confirm complete removal of SiO from the DFB spacing 2(Figure 90c and Figure 90d). Cross-section SEM and EDX were measured by Kobelco using cold field emission SEM (SU8200, Hitachi High-Technologies), energy dispersive X-ray spectrometry (XFlash FladQuad5060, Bruker) and focused ion beam system (FB-2100, Hitachi High-Technologies). (Fig. 89d, Fig. 89e). The DFB substrate is cleaned by conventional ultrasonic treatment. Then by using the 1.5 × 10 4Thermal evaporation under a pressure of Pa is 0.1 nm s 1to 0.2 nm s 1The total evaporation rate of the organic layer and metal electrode is placed on the substrate in vacuum to produce a structure with indium tin oxide (ITO) (100 nm)/20 wt% BSBCz: Cs (60 nm)/BSBCz (150 nm)/MoO 3(10 nm)/Ag (10 nm)/Al (90 nm) structure OSLD. SiO on ITO surface 2layer acts as an insulator in addition to the DFB grating. Therefore, the current area of OLED is limited to the DFB area where BSBCz is in direct contact with ITO. A reference OLED with an active area of 30 × 45 µm was also prepared using the same current area. Device characterizationAll devices were encapsulated in a nitrogen-filled glove box using glass covers and UV-cured epoxy to prevent any degradation caused by moisture and oxygen. The current density-voltage- of OSLD and OLED was measured at room temperature using a integrating sphere system (A10094, Hamamatsu Photonics). n EQE(J-V- n EQE) characteristics (DC). For pulse measurements, a rectangular pulse with a pulse width of 400 ns, a pulse period of 1 µs, a repetition frequency of 1 kHz and varying peak current was applied to the device using a pulse generator (NF, WF1945) at ambient temperature. Measured by amplifier (NF, HSA4101) and photomultiplier tube (PMT) (C9525-02, Hamamatsu Photonics) under pulse driving J- V-Brightness characteristics. Both the PMT response and the driving square wave signal were monitored on a multi-channel oscilloscope (Agilent Technologies, MSO6104A). Calculated by dividing the number of photons calculated from the PMT response EL intensity with a correction factor multiplied by the number of injected electrons calculated from the current n EQE. The output power was measured using a laser power meter (OPHIR Optronics Solution Company, StarLite 7Z01565). To measure the spectrum, the emitted laser light for the optically and electrically pumped OSLD perpendicular to the device surface was collected using an optical fiber connected to a multichannel spectrometer (PMA-50, Hamamatsu Photonics) and placed 3 cm away from the device. . The beam profile of the OSLD is checked by using a CCD camera (beam profiler WimCamD-LCM, DataRay). For the characteristics of OSLD-6 under optical pumping, the nitrogen laser (NL100, N 2laser, Stanford Research System), the pulsed excitation light is concentrated on 6 × 10 of the device 3cm 2in the area. The excitation wavelength is 337 nm, the pulse width is 3 ns, and the repetition rate is 20 Hz. The excitation light is incident on the device at an angle of approximately 20° relative to the normal line of the device plane. Use a set of neutral density filters to control excitation intensity. Steady-state PL spectral analysis was monitored using the spectrofluorometer (FP-6500, JASCO) in Figure 98 and the spectrometer (PMA-50) in Figure 94. Device modeling and parametersThe optical simulation of the resonant DFB cavity was performed using Comsol Multiphysics 5.2a software. Use the finite element method (FEM) to solve the Helmholtz equation for each frequency in the RF module of Comsol software. Each layer is represented by its birefringence and thickness. The computational domain is limited by a supercell consisting of a second-order grating surrounded by a first-order grating. Froquat periodic boundary conditions are applied to the lateral boundaries, and scattering boundary conditions are used to the top and bottom domains. Only the TE mode is considered as it is suppressed since the TM mode experiences more losses (due to metal absorption) than the TE mode. Charge transport through OSLD is described using a two-dimensional time-independent drift diffusion equation coupled to Poisson's equation and a continuity equation for charge carriers using Silvaco's Technical Computer Aided Design (TCAD) software. Use parabolic density of states (DOS) and Maxwell-Boltzmann statistics to represent electron and hole concentrations. Gaussian distribution for modeling organic semiconductors 37The distribution of traps within. Assume that the charge carrier mobility is field dependent and has the Pool-Frenkel form 38 , 39. High-energy chaos is not considered in this model, so we assume the validity of Einstein's relation to calculate the charge carrier diffusion constant from charge mobility. By Langevin model 40gives the recombination rate R. Solve the continuity equation for singlet excitons by considering exciton diffusion, radiative and non-radiative processes. Experimental data on pure holes and pure electrons , in Lis the cavity length (second-order grating area only) and dis the thickness of the film. Table 1 | Parameters of different OSLD geometric structures device w (µm) l (µm) Λ 1 (nm) Λ 2 (nm) w 1 (µm) w 2 (µm) A (µm 2 ) OLED 30 45 - - - - 1,350 OSLD 30 90 140 280 1.68 1.12 1,350 OSLD-1 35 90 140 280 14.00 7.00 1,575 OSLD-2 90 30 140 280 1.68 1.12 1,350 OSLD-3 101 30 140 280 45.36 10.08 1,515 OSLD-4 30 90 134 268 1.608 1.072 1,350 OSLD-5 30 90 146 292 1.752 1.168 1,350 OSLD-6 560 800 140 280 1.68 1.12 224,000 Parameters for different grating geometries and the total exposed ITO area used to calculate current density are shown in Figure 90 Avalue. Table 2. Parameters of optical simulation and electrical simulation. parameters BSBCz BSBCz:Cs unit ε r 4 4 - E HOMO 5.8 5.8 eV ELUMO _ 3.1 3.1 eV N HOMO 2 × 10 −19 2 × 10 −19 cm −3 NLUMO _ 2 × 10 −19 2 × 10 −19 cm −3 nnJC _ 2.8 × 10 −17 - cm −3 E t 0.375 - eV σtp _ 0.017 - eV n0 _ 6.55 × 10 −5 6.55 × 10 −5 cm 2 V −1 s −1 µ p0 1.9 × 10 −4 1.9 × 10 −4 cm 2 V −1 s −1 f _ 175,561 175,561 V cm −1 F p0 283,024 283,024 V cm −1 k r 10 9 10 9 s −1 n _ 0.11 × 10 9 0.11 × 10 9 s −1 φPL _ 0.76 0.4 - L S 18 18 nm ε ris the relative permittivity of the material. E HOMOand E LUMOThey are the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) respectively. N HOMOand N LUMOis the energy state density of HOMO level and LUMO level. N tpis the total density of traps, E tpis the energy depth of the trap above the HOMO level, and σ tpis the width of the Gaussian distribution. µ n0and µ p0is zero field mobility. F n0and F p0are the characteristic electric fields of electrons and holes respectively. k ris the radiative decay constant and k nris the nonradiative decay constant. φ PLis the photoluminescence quantum yield. L Sis the exciton diffusion length. References1.Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695-697 (1996). 2. Kozlov, V. G., Bulović, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362-364 (1997). 3. Hide, F. et al.Semiconducting polymers: A new class of solid-state laser materials. Science 273, 1833 (1996). 4. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272-1295 (2007). 5. Kuehne, A. J. C. & Gather M. C. Organic lasers: Recent developments on materials, device geometries and fabrication techniques. Chem. Rev. 116, 12823-12864 (2016). 6. Tsiminis, G. et al.Nanoimprinted organic semiconductor lasers pumped by a light-emitting diode. Adv. Mater. 25, 2826-2830 (2013). 7. Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002). 8. Bisri, S. Z., Takenobu, T. & Iwasa, Y. The pursuit of electrically-driven organic semiconductor lasers. J. Mater. Chem. C 2, 2827-2836 (2014). 9. Samuel, I. D. W., Namdas, E. B. & Turnbull, G. A. How to recognize lasing. Nature Photon.3, 546-549 (2009). 10. Sandanayaka, A. S. D. et al.Improvement of the quasi-continuous-wave lasing properties in organic semiconductor lasers using oxygen as triplet quencher. Appl. Phys. Lett. 108, 223301 (2016). 11. Zhang, Y. F. & Forrest, S. R. Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84, 241301 (2011). 12. Schols, S. et al.Triplet excitation scavenging in films of conjugated polymers. Chem. Phys. Chem. 10, 1071-1076 (2009). 13. Hayashi, K. et al.Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015). 14. Gärtner, C. et al.The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 023107 (2007). 15. Sandanayaka, A. S. D. et al.Quasi-continuous-wave organic thin film distributed feedback laser. Adv. Opt. Mater. 4, 834-839 (2016). 16. Aimono, T. et al.100% fluorescence efficiency of 4,4'-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Appl. Phys. Lett. 86, 71110 (2005). 17. Sandanayaka, A. S. D. et al.Toward continuous-wave operation of organic semiconductor lasers. Science Adv. 3, e1602570 (2017). 18. Karnutsch, C. et al.Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90, 131104 (2007). 19. Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390-406 (2012). 20. Yokoyama, D. et al.Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films. J. Appl. Phys. 103, 123104 (2008). 21. Yamamoto, H. et al.Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84, 1401-1403 (2004). 22. Waliwitz, B. H. et al.Lasing organic light-emitting diode. Adv. Mater. twenty two, 531−534 (2010). 23. Song, M. H. et al.Optically-pumped lasing in hybrid organic-inorganic light-emitting diodes. Adv. Funct. Mater. 19, 2130−2136 (2009). 24. Kim, S. Y. et al.Organic light-emitting diodes with 30% external quantum efficiency based on horizontally oriented emitter. Adv. Funct. Mater. twenty three, 3896−3900 (2013). 25. Uoyama, H. et al.Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234−238 (2012). 26. Matsushima, T. & Adachi, C. Suppression of exciton annihilation at high current densities in organic light-emitting diode resulting from energy-level alignments of carrier transport layers. Appl. Phys. Lett. 92, 063306 (2008). 27. Kuwae, H. et al.Suppression of external quantum efficiency roll-off of nanopatterned organic light-emitting diodes at high current densities. J. Appl. Phys. 118, 155501 (2015). 28. Bisri, S. Z. et al.High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728-1735 (2009). 29. Tian, Y. et al.Spectrally narrowed edge emission from organic light-emitting diodes. Appl. Phys. Lett. 91, 143504 (2007). 30. El-Nadi, L. et al.Organic thin film materials producing novel blue laser. Chem. Phys. Lett. 286, 9-14 (1998). 31. Wang, X., Wolfe, B. & Andrews, L. Emission spectra of group 13 metal atoms and indium hybrids in solid H 2and D 2. J. Phys. Chem. A 108, 5169-5174 (2004). 32. Ribierre, J. C. et al.Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91, 081108 (2007). 33. Schneider, D. et al.Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85, 1886-1888 (2004). 34. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801-6827 (2013). 35. Nakanotani, H. et al. Spectrally narrow emission from organic films under continuous-wave excitation. Appl. Phys. Lett., 90, 231109 (2007). 36. Nakanotani, H., Sasabe, H. & Adachi, C. Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density. Appl. Phys. Lett., 86, 213506 (2005). 37. Nicolai, H. T., Mandoc, M. M. & Blom, P. W. M. Electron traps in semiconducting polymers: Exponential versus Gaussian trap distribution. Phys. Rev. B 83, 195204 (2011). 38. Connell, G. A. N., Camphausen, D. L. & Paul, W. Theory of Poole-Frenkel conduction in low-mobility semiconductors. Philos. Mag. 26, 541-551 (1972). 39. Pautmeier, L., Richert, R. & Bässler, H. Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation. Synth. Met. 37, 271-281 (1990). 40. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers. New York: Oxford Univ. Press, 1999. 41. Setoguchi, Y. & Adachi, C. Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers. J. Appl. Phys. 108, 064516 (2010).

1 .(a) BSBCz及CBP之化學結構,(b)嵌入於二階DFB結構中之BSBCz:CBP薄膜之示意圖,(c)用於藉由電子束微影及乾式蝕刻製造DFB共振器結構之方法的示意性表示,即DFB結構在(d) 4500×放大率及(e) 120000×放大率下之SEM影像,及(f) BSBCz及CBP純薄膜之吸收及光致發光光譜。將DFB結構直接雕刻至二氧化矽表面上。當二階模式( m=2)用於布拉格方程式(Bragg equation) ( = 2 n eff Λ)時,在垂直於如(b)中所示之薄膜平面之方向上發射繞射光束。CBP發射與BSBCz吸收之大部分重疊實現自CBP至BSBCz之高效Förster型能量傳遞。在BSBCz:CBP摻合薄膜中,CBP分子主要藉由337 nm光激勵。接著,由於高效能量傳遞,發射來自BSBCz,而自CBP未觀測到發射。 2. 當使用20 Hz下之0.8 ns寬脈衝激勵時,隨著(a,c) BSBCz:CBP摻合薄膜及嵌入至DFB結構中之(b,d) BSBCz純薄膜之激勵強度變化的發射強度及FWHM之發射光譜及曲線圖激勵。(a,b)中之插圖展示經量測接近雷射臨限值之發射光譜。 3.(a)為雷射振盪之條框攝影機影像且(b,c)為雷射強度在BSBCz:CBP摻合薄膜中之時間變化。重複率自0.01 MHz變為8 MHz。激勵光強度固定在約0.44 μJ cm −2,其比 E th= 0.25 μJ cm −2高1.8倍。(a,b)之時間標度為500 μs且(c)之時間標度為2 μs。 4. (a):雷射臨限值隨重複率變化之曲線圖及(b):在基於BSBCz:CBP摻合薄膜及BSBCz純薄膜之有機DFB雷射中之雷射振盪之操作穩定性。為量測穩定性,在8 MHz下連續準cw操作雷射裝置。激勵光強度比雷射臨限值高1.5倍。 5.(a):液體咔唑(ECHz)主體及七茀衍生物之化學結構。(b):使用一階1D光柵圖案製備之液體DFB雷射之示意性表示。(c):具有140 nm之週期及100 nm之高度的PUA圖案之影像SEM。比例尺表示200 nm。(d):在1 MHz之重複率下經量測高於臨限值之經氮化及氧化之液體DFB雷射的發射光譜。(e):在準cw狀態中操作之經氧化之藍色液體DFB雷射之像片。 6. (a,b)為雷射發射之條框攝影機影像及(c,d)為經氮化及經氧化EHCz:七茀DFB雷射中之雷射強度之時間變化。重複率自0.01 MHz增加至4 MHz。激勵光強度經保持為在2.5 μJ cm -2下恆定。 7 .經氮化EHCz:七茀DFB雷射中輸出發射強度及半高全寬隨不同重複率下之激勵強度變化。 8. 經氧化EHCz:七茀DFB雷射中輸出發射強度及半高全寬隨不同重複率下之激勵強度變化。 9 .(a)隨重複率變化之經氮化及氧化之液體DFB有機半導體雷射之雷射臨限值。(b)在1 MHz之重複率下在準cw狀態中操作之經氧化及氮化之液體有機半導體DFB雷射之光穩定性。激勵光強度為2.5 μJ cm - 2 10. (a)經氧化及氮化氯仿溶液中七茀之三重態-三重態吸收光譜。歸因於藉由分子氧淬滅三重態,三重態-三重態吸收消失在經氧化溶液中。亦顯示經氧化DFB裝置中所量測之代表性雷射光譜。(b)具有遠高於1 ms之時間常數之三重態-三重態吸收比重之瞬態衰變。 11. 經氮化及氧化EHCz:七茀摻合物中針對自50至800 μs變化之4種不同的脈衝持續時間在0.5 kW cm -2下所量測的光致發光強度之動力學。對於此實驗,增益介質包夾在兩種相同扁平熔融矽石基板之間。隨後藉由來自在325 nm下發射之cw HeCd雷射的雷射脈衝對樣本進行光學泵浦。光點面積為2.0 × 10 - 5cm 2。在垂直於基板平面之方向上照射樣本且在45°角下使用光電倍增管量測PL強度。此等結果明確地論證:充氧引起對由於藉由分子氧淬滅三重態而引起的STA損失的遏制。 12. 有機半導體DFB雷射之製造方法。其為用以製造有機DFB雷射之方法之示意性表示。不同連續步驟涉及藉由電子束微影製造DFB共振器結構、熱蒸發有機半導體薄膜及旋塗CYTOP聚合物薄膜,隨後用高熱導率(TC)藍寶石蓋密封裝置。 13. 混合階DFB共振器之結構。( A)用於此研究中之混合階DFB光柵結構之示意性表示。在沈積200 nm厚之BSBCz:CBP摻合薄膜之後,具有( B) 2500×放大率及( C) 100000×放大率之SEM影像,及( D)裝置之SEM影像及(E)裝置之截面SEM影像。 14. 準CW狀態中之有機DFB雷射之雷射屬性。條框攝影機影像,其展示自代表性BSBCz:CBP囊封混合階DFB裝置在0.01 MHz至80 MHz之重複率下在( A) 500 µs或( B) 200 ns之週期內的雷射振盪 (僅80 MHz)。激勵強度固定在約0.5 µJ cm 2,其高於雷射臨限值( E th)。( C)在經囊封之BSBCz:CBP混合階DFB雷射中之各種重複率(f)下之雷射輸出強度之時間演變。( D)若干類型之DFB裝置中隨重複率變化之雷射臨限值。線為視線之引導。 15. 長脈衝狀態中之有機DFB雷射之雷射屬性。( A)條框攝影機影像,其展示使用BSBCz:CBP (20:80 wt.%)薄膜作為增益介質在來自經囊封之混合階DFB裝置之100個脈衝內整合且藉由30 ms及2.0 kW cm -2(頂部)或800 µs及200 W cm - 2(底部)之脈衝來光學泵浦之雷射發射。( B)在長脈衝狀態(30 ms激勵)中操作之DFB裝置之像片。( C)各種DFB裝置中隨激勵持續時間變化之雷射臨限值( E th)。虛線為視線之引導。( D)來自有機DFB雷射之雷射輸出強度隨入射脈衝(100 µs,200 W cm 2)之數目變化而變化。 16. 用於光學模擬之幾何結構之示意圖。 17.針對不同尺寸之二階光柵之基於BSBCz:CBP (6:94 wt.%) 200 nm厚之薄膜的混合階DFB雷射之雷射臨限值。藉由在20 Hz之重複率及337 nm之波長下遞送800 ps脈衝之氮雷射來對裝置進行光學泵浦。 18 .(A)吸收光譜,(B)穩態光致發光光譜及(C)經CYTOP薄膜囊封或不經CYTOP薄膜囊封之BSBCz:CBP (6:94 wt.%)薄膜之瞬態光致發光衰變。 19 .基於(A) BSBCz:CBP (6:94 wt.%)及(B) BSBCz純薄膜之代表性有機混合階DFB雷射在低於及高於雷射臨限值之各種泵浦強度下之發射光譜。插圖展示接近雷射臨限值之發射光譜。發射輸出強度及FWHM隨(C)摻合薄膜及(D)純薄膜DFB雷射中之泵浦強度而變化。在此等實驗中,藉由旋塗之CYTOP薄膜及藍寶石蓋來覆蓋有機薄膜。光學泵浦源為在20 Hz之重複率及337 nm之波長下發射0.8 ns寬的脈衝激勵之氮雷射。在垂直於基板平面之方向上收集來自雷射裝置之發射。 20 .在代表性囊封摻合物混合階DFB雷射中在(A) 0.01 MHz及(B) 80 MHz之重複率下隨泵浦強度變化的發射輸出強度及FWHM。 21 .在正向(重複率遞增)及反向(重複率遞減)上量測之隨重複率變化的雷射臨限值。雷射臨限值之不可逆變化歸因於增益介質在強光激勵下之降解。 22 .(A)條框攝影機影像及(B)對應的發射光譜,其展示來自未經囊封之2階DFB裝置、未經囊封之混合階DFB裝置及經囊封之混合階DFB裝置在80 MHz之重複率及0.5 μJ cm 2之泵浦強度下的發射。 23 .(A)來自基於BSBCz:CBP (6:94 wt.%)摻合薄膜的自不同有機DFB雷射之雷射輸出振盪之操作穩定性。為量測穩定性,在8 MHz或80 MHz下連續準CW操作雷射裝置20分鐘。對於各裝置,激勵光強度為其雷射臨限值之1.5倍。(B)在80 MHz下在準CW狀態中操作之經囊封之摻合DFB雷射之像片。 24 .(A)在200 nm厚之BSBCz:CBP (20:80wt.%)薄膜中,集中於472 nm之ASE之輸出強度隨泵浦能量及條帶長度的變化。使用參考文獻( 7 , 8)中所報導之方程式將虛線與資料擬合。根據該等擬合判定波導之淨增益。(B)自波導薄膜之邊緣發射之ASE強度對比泵浦條帶與摻合薄膜之邊緣之間的距離。使用在405 nm下發射的具有不同脈波寬度(0.1、10及50 μs)之無機雷射二極體研究薄膜之ASE特性。 25 .在200 W cm 2及2.0 kW cm 2之泵浦強度下分別針對800 µs及30 ms之長脈衝持續時間量測之經囊封之20 wt.%摻合物混合階DFB雷射之發射光譜。 26.條框攝影機影像,其展示在具有2.0 kW cm -2之泵浦功率之30 ms長的光激勵期間自經囊封之混合階DFB裝置之100個脈衝內整合之雷射發射。增益介質為BSBCz:CBP (20:80 wt.%)。激勵波長為405 nm。為在30 ms期間使用吾人之條框攝影機系統觀測雷射,工作循環百分比變成2%以觀察在1 ms圖框中之30 ms脈衝(0.02 × 30 ms = 0.6 ms)。 27 .(A)雷射輸出強度之時間演變,(B)在具有30 ms之寬度及2.0 kW cm 2之泵浦強度之10個及500個平均脈衝之後所量測之經囊封之混合階DFB雷射之發射光譜。(C)BSBCz之經刺激發射及三重態吸收截面光譜。自BSBCz純薄膜量測DFB雷射之發射光譜高於 E th。(D)在含有BSBCz之溶液中在Ar下量測三重態吸收光譜。( E)溶液(含BSBCz之二氯甲烷及及含二苯甲酮之苯)中之瞬態吸收光譜之激勵功率相關性。 28 .(A)展示接近(B)及高於(C)臨限值之DFB雷射之發射光束之發散的圖像。活性增益介質為BSBCz:CBP (20:80 wt.%)薄膜。裝置在長脈衝狀態(10 ms激勵)中經泵浦。 29 .(A)發射光譜隨偏光角度變化及(B)發射強度隨偏光角度變化。裝置基於BSBCz:CBP (20:80 wt.%)摻合物且使用混合階DFB光柵。泵浦強度為200 W cm 2且泵浦脈衝持續時間為800 µs。應注意,0 ° 對應於平行於DFB光柵之凹槽之方向。 30 .隨著用於(A,B) 1 µs及(C,D) 800 µs之長脈衝激勵寬度的泵浦強度變化的經囊封之混合階摻和裝置之發射光譜及雷射輸出強度及FWHM。 31 .條框攝影機影像,其展示來自用(A)藍寶石或(B)玻璃蓋囊封之混合階摻合BSBCz:CBP (20:80 wt.%) DFB裝置之雷射發射。(C) 針對伴隨2.0 kW cm −2之泵浦強度之各種脈衝寬度之用玻璃蓋囊封之裝置的發射光譜。發射光譜隨脈衝寬度延長變得較寬,其可由雷射臨限值隨脈衝寬度之顯著增加來解釋。舉例而言,在2 ms及3 ms之脈衝寬度之情況下,裝置在低於雷射臨限值下操作。(D)在用藍寶石或玻璃蓋囊封之DFB裝置中所量測之隨激勵脈衝寬度變化的雷射臨限值( E th)。虛線為視線之引導。 32 .在(A)由具有1 ms之寬度的100個激勵脈衝進行照射之前及(B)在該照射之後的未經囊封之摻合物混合階DFB雷射之雷射顯微鏡影像。插圖(B)中之厚度剖面展示有機薄膜在高強度CW照射期間剝蝕。泵浦強度為200 W cm −2。(C)及(D)中之條框攝影機影像展示自經囊封及未經囊封之摻合物在相同照射條件(1 ms 脈衝,200 W cm 2之泵浦強度及經100個脈衝的條框攝影機影像之整合)下之發射。 圖 33 .DFB有機雷射之方案。 34 .(a) 3層厚塊波導之方案。(b)TE及TM模式的隨雷射波長477 n下之薄膜厚度 d變化的有效折射率( n eff )。 35 .在正入射TE偏光下針對不同值的薄膜厚度之數值上計算的反射光譜(實線)及法諾剖面(Fano-profile)擬合的反射光譜(虛線)。 36 .(a)具有不同 d f 之經製造雷射裝置之實驗雷射發射光譜。(b)實驗雷射波長及經計算之共振波長。 37 .(a) E th (正方形)、自數值計算中提取之 Q因數( Q FEM 計算 (三角形)及法諾擬合 Q 法諾擬合 (星形))及Γ (圓形)隨 d f 變化之曲線圖,(b)雷射發射之實驗FWHM及自法諾共振計算之FWHM之曲線圖。 38 .用於熱模擬之幾何結構之示意圖。 39 .各脈衝末端處之最大溫度。 40 .在增益區中溫度隨著時間以及不同脈波寬度:(A) 1、(B) 10、(C) 30及(D) 40 ms之上升。 41 .在經囊封及未經囊封之裝置中針對10 ms之脈衝寬度,溫度隨著時間之上升。 42 .在增益區中溫度隨著時間或τ p=30 ms之脈衝數目之上升。 43 .用以製造DFB光柵及電驅動有機半導體DFB雷射二極體之有機雷射二極體之方法之示意性表示。不同連續步驟涉及將100 nm厚之SiO 2層濺鍍至經圖案化ITO電極之頂部,藉由電子束微影及乾式蝕刻在SiO 2中製造DFB共振器結構,及熱蒸發有機半導體薄膜及頂部電極。 44 .在ITO上進行DFB製造之不同步驟之後基板之示意性表示。( A)經圖案化ITO,( B)將SiO 2濺鍍至ITO上之後,( C)在ITO上製作DFB之後及( D)DFB結構。 45 .用於製造奈米壓印DFB光柵之方法之示意性表示。不同連續步驟涉及在經圖案化ITO電極頂部製備70 nm厚的聚合物層,隨後藉由低成本之簡單奈米壓印微影製程在聚合物中製造DFB共振器結構。 46 .用於有機雷射二極體之混合階DFB共振器之結構特性化。 ( A)雷射顯微鏡及( B)在ITO經圖案化玻璃基板之頂部上製備之混合階DFB SiO 2光柵結構之SEM影像(具有5000×及200000× (在插圖中)放大率)。( CD)在ITO頂部上製備之混合階DFB光柵之EDX及SEM分析。此等影像確認用於與裝置接觸之ITO之曝光。 47 .電驅動有機半導體DFB雷射之結構及屬性。 ( A)有機半導體雷射二極體之示意性表示及能量位準圖。( B)有機DFB雷射二極體及( C)在4 V下進行或不進行DC操作之參考裝置(無光柵之OLED)之顯微照片。裝置面積為140 × 200 μm。在DC及脈衝操作下在參考OLED裝置及有機DFB雷射二極體中量測之( D)電流密度-電壓(J-V)曲線及( E)外部量子效率-電流密度(EQE-J)曲線。 48 .(a)純電子裝置(b)純電洞裝置及(c)雙極裝置之能量位準圖。 49 .(a)針對用於BSBCz之電洞(藍色)及電子(紅色),Pool-Frankel場相關模型(實線)之經報告(符號)及擬合(實線)遷移率。(b)純電洞裝置(藍色)、純電子裝置(紅色)及雙極裝置(黑色)之實驗(符號)及模擬(實線) J( V)曲線。 50 .在所有層沈積之後雷射二極體結構之SEM ( AB)表面形態影像及( CD)截面影像。 51 .有機半導體雷射二極體之一些可能的組態之示意性表示。DFB共振器結構(二階及混合階光柵)可( A)藉由電子束微影及乾式蝕刻在SiO 2中,( B)藉由電子束微影及乾式蝕刻在ITO中,( C)藉由奈米壓印微影製程在經圖案化ITO電極之頂部上之聚合物中,或( D)藉由奈米壓印微影在作用層之頂部上製造。 52 .具有二維DFB共振器結構(二階及混合階光柵)用於2D DFB雷射之有機半導體雷射二極體之示意性表示。 53 .在4 V下進行或不進行DC操作之( AD )有機DFB雷射二極體之顯微照片( AB中之裝置係用具有由324個一階週期包圍之36個二階週期之DFB結構製備,且 DC中之裝置係用具有由12個一階週期包圍之4個二階週期之重複結構製備)。裝置面積為30 × 101 μm。( E)針對不同注入電流密度垂直於基板平面收集之電驅動有機半導體DFB雷射(此裝置之1階及2階光柵週期分別為140 nm及280 nm)之發射光譜及( F)隨電流密度變化的輸出強度。 54.BSBCz之電致發光及PL光譜(參考裝置之黑色PL光譜、紅色EL光譜,及光柵低於雷射臨限值之藍色EL光譜)。 55 .電驅動有機半導體DFB雷射二極體之雷射屬性。 ( A)針對不同注入電流密度垂直於基板平面收集之電驅動有機半導體DFB雷射(此裝置之1階及2階光柵週期分別為140 nm及280 nm)之發射光譜及( B)其隨電流密度變化的輸出強度。( C)發射光譜及( D)輸出強度相對於在分別使用150 nm之1階光柵週期及300 nm之2階光柵週期之有機DFB雷射二極體中獲得之電流密度。 56 .電驅動有機半導體DFB雷射二極體之雷射屬性。 ( A)針對不同注入電流密度垂直於基板平面收集之電驅動有機半導體DFB雷射(此裝置之1階及2階光柵週期分別為140 nm及280 nm)之發射光譜及( B)其隨電流密度變化的輸出強度。 57 .( A)具有或不具有DFB之電流密度-電壓(J-V)曲線。具有DFB之裝置分別具有150 nm之1階光柵週期及300 nm之2階光柵週期。( B)外部量子效率相對於電驅動有機DFB固態雷射中且在500 ns脈衝下不具有DFB的情況下之電流密度。 58 .在一階及二階區域中具有不同數目之週期之混合階光柵之SEM影像( ABCDE) ( F)在一階及二階區域中具有不同數目之週期用於設計DFB之混合階光柵之表。 59 .( A)具有不同數目之週期之混合階光柵之雷射光譜。各曲線圖頂部之週期的數目對應於可在 58中所見之2階週期的數目及1階週期的數目。底部曲線圖展示裝置之輸出特性。( B)二階區域中針對不同數目之週期之混合階光柵雷射之臨限能量。在光學泵浦之情況下,在一階及二階區域中分別使用4個及12個週期展示最低臨限值。光學泵浦源為在20 Hz之重複率及337 nm之波長下發射0.8 ns寬的脈衝激勵之氮雷射。在垂直於基板平面之方向上收集來自雷射裝置之發射。 60 .( A)在一階及二階區域中分別具有12個及4個週期之混合階光柵之SEM影像。( BC)在5 V下進行或不進行DC操作之有機DFB雷射二極體。裝置面積為2.9 × 10 μm。( D)參考OLED之發射光譜。 61. ( A)用於檢查雷射之極化之實驗設定之示意性表示。DFB雷射二極體之EL光譜( B)低於雷射臨限值(在415 A cm 2下)及( C)高於雷射臨限值(在823 A cm 2下)之極化相關性及( D)參考(在800 A cm 2下,無DFB),( E)隨偏光角度變化的EL強度。EL在裝置之平面中經偏振(TE模式)。 62 .( A)具有DFB之OLED之示意圖。( B) ITO基板上裝置面積為560 × 800 μm之DFB之顯微鏡影像。( C) DFB雷射之隨激勵密度變化的光學泵浦輸出強度;在405 nm下由CW雷射激勵。 63 .在4 V下進行或不進行DC操作之( AB)有機DFB雷射二極體及( CD)參考裝置(無光柵之OLED)之顯微照片。 64 .在ITO圖案基板上使用SiO 2製備的圓形混合階DFB光柵結構之雷射顯微鏡影像。 65 .有或無驅動之有機圓形DFB雷射之顯微鏡影像。具有或不具有圓形DFB之裝置之電流密度-電壓(J-V)曲線。外部量子效率相對於具有或不具有DFB之OLED中之電流密度。 66 .(a) DFB光柵OLED之示意性表示及(b) DFB光柵及參考OLED之實驗(符號)及模擬(實線) J( V)曲線。 67 .電荷載流子密度( np)之空間分佈及(a)10 V及(b) 70V下之電場 F 68 .(a)電洞密度 p、(b)70 V下之電子密度 n、(c)在 y=0.11 μ m時之 np切線通過2D部分之空間分佈之製圖。 69 .在70 V下(a)電場 F及(b)電流密度 J之剖面之製圖。 70 .(a) DFB裝置之剖面重組速率 R之製圖,(b)參考裝置之 R,(c) DFB裝置在 y=0.10 μ mR切線通過2D部分,及(d)在70 V下之DFB裝置在 y=0.164 μ mnp切線通過2D部分。 71 .(a)針對參考裝置之不同 E b 在(a)未經EFQ及經EFQ之情況下的 S( J)特性及(b)針對DFB裝置及參考裝置在 E b=0.6eV 時之 S( J)特性。 72 .在70 V下,(a)在經EFQ及未經EFQ之參考裝置內部的激子分佈,(b)在未經EFQ之DFB裝置內部的激子分佈,(c)在經EFQ之DFB裝置內部之激子分佈。 73 .在未經淬滅之DFB裝置內部之激子密度分佈(左上)、在經EFB之DFB裝置內部之激子密度分佈(左下)、在經PQ之DFB裝置內部之激子密度分佈(右上)、在經PQ及EFQ之DFB裝置內部之激子密度分佈(右下)。 74 .在DFB裝置(左上) Air/BSBCz/SiO 2、(右上) Air/BSBCz/SiO 2/ITO (底部)實際裝置Al/Ag/MoO 3/BSBCz/SiO 2/ITO內部之光學密度分佈。 75 .(a)八茀衍生物之化學結構。(b)在室溫下在旋塗八茀純薄膜中所量測之吸收及穩態PL光譜。所量測之PL光譜之激勵波長為376 nm。在UV照明下之八茀純薄膜之圖像展示於插圖中。(c)藉由可變角橢圓偏振光譜法量測之八茀純薄膜之普通及異常光學常數( kn)。薄膜厚度為約75 nm。 76 .含有CBP主體中之10及20 wt.%之八茀之摻合薄膜之(a)吸收及(b)穩態PL光譜。兩種薄膜之用於發射光譜之激勵波長為424 nm。 77 .在八茀純薄膜中及在含有CBP主體中之10及20 wt.%之八茀之摻合薄膜中所量測之PL衰變。激勵波長為365 nm。 78 .在旋塗八茀純薄膜中之不同入射角處所量測之實驗及模擬橢圓偏振資料ψ及Δ。 79 .(a)用以表徵有機薄膜之ASE屬性之實驗性組態之示意性表示。(b)針對低於及高於ASE臨限值之不同激勵強度自有機層之邊緣收集的260 nm厚之八茀純薄膜之發射光譜。穩態PL光譜亦用虛線展示。在劇烈光照射下之八茀純薄膜之圖像顯示於插圖中。(c)來自260 nm厚之薄膜(在所有波長內整合)之邊緣隨激勵密度變化的輸出強度。(d)隨八茀純薄膜厚度變化的ASE臨限值。激勵波長為337 nm。 80 .來自有機層(在所有波長內整合)之邊緣之輸出強度隨著具有介於53與540 nm之間的範圍內之各種厚度之若干八茀純薄膜中之激勵密度變化。此等資料用於檢查顯示於圖2d中之ASE臨限值之厚度相關性。 81 .按泵浦條帶與260 nm厚八茀純薄膜之邊緣之間的距離來標繪ASE強度。實線對應於自單指數衰變函數獲得的用以判定損失係數的擬合。 82 .在自置放於空氣抑或氮氣氣氛中之260 nm厚之八茀純薄膜之高於ASE臨限值之發射強度的時間衰變。泵浦強度為873 μJ/cm 2及10 Hz。 83 .(a)用以表徵八茀DFB雷射之屬性之實驗性組態之示意性表示。(b)用於此工作之混合階DFB光柵之SEM影像。(c)針對低於及高於雷射臨限值之不同激勵強度垂直於基板平面收集之基於八茀純薄膜之DFB雷射之發射光譜。(d)隨激勵密度變化的DFB雷射之輸出強度。 84 .(a)用於此研究中之OLED結構之示意性表示。亦提供用於此等裝置之有機材料之HOMO及LUMO。(b)外部量子效率相對於基於八茀純薄膜及CBP摻合薄膜之OLED中之電流密度。 85 .在空氣中使用光電子光譜分析判定純薄膜中之八茀之游離電位。考慮到自純薄膜之吸收光譜判定之光學帶隙值,隨後大致估計純薄膜中之八茀之電子親和力。然而,應著重注意,通常不滿足陳述垂直游離電位等於所計算之HOMO能量之絕對值的庫普曼定理(Koopman's theorem),此係因為電離製程及電子關聯期間之弛豫過程。儘管光學帶隙通常不同於真實電子間隙,但可自游離電位與光學帶隙值之間的差來大致估計電子親和力及LUMO。 86 .(a)在10 mA/cm 2之電流密度下所量測之EL光譜及(b)在基於八茀純薄膜及CBP摻合薄膜之OLED中之 J- V- L曲線。 87 .八茀純薄膜中之CW ASE。 88 .八茀純薄膜中之CW ASE。 89 .有機半導體DFB雷射二極體結構。 a 有機雷射二極體之示意性表示。 b c 在製備於ITO頂部之DFB SiO 2光柵結構之5,000×及200,000× (插圖)放大率下之雷射顯微鏡影像( b)及SEM影像( c)。 d 完整OSLD之截面SEM影像。 e OSLD之截面EDX影像。為改良低濃度Cs之可視性,增強對比度。 90 .OSLD之製造及結構。 a OSLD之製造步驟之示意圖。 b 用於此研究之經ITO塗佈之玻璃基板之結構以及DFB光柵之一般結構。不同光柵參數之具體值可見於表1中。 c d 製備於ITO頂部之混合階DFB光柵之EDX及SEM分析。此等影像確認與ITO達成電接觸之可能性。 91 .電泵浦有機半導體DFB雷射之電屬性。 a 具有針對有機物及無機物之功函數指示之最高經佔用及最低未佔用分子軌位準的OSLD之能量位準圖。 b 在3.0 V之DC操作下OSLD及參考OLED之顯微照片。個別一階光柵區域及二階光柵區域之長度為1.68 µm及1.12 µm。 c d 在脈衝操作(400 ns之脈衝寬度及1 kHz之重複率)下之OLED及OSLD中之電流密度-電壓( J- V)特性( c)及 η EQE- J特性( d)。 92 .有機層中之電洞及電子輸送。 a b 用以評估輸送之純電洞裝置( a)及純電子裝置( b)之架構。 c 在對數級及線性(插圖)級上在DC操作(填充符號)及脈衝操作(空符號)下,純電洞裝置(HOD)及純電子裝置(EOD)中之代表性電流密度-電壓( J - V)特性。裝置面積為200×200 µm。此等 J- V曲線指示此研究中製造之雷射二極體中之高電壓區域中的電洞及電子之良好的輸送。由於電洞電流之陷阱限制,較低電壓下之電子電流高於電洞電流。 93 .具有不同DFB幾何結構之OSLD之屬性。 a 在3.0 V之DC操作下OSLD之顯微照片。 b c d OSLD之電流密度-電壓( J- V)特性及 η EQE- J特性。 e J變化之電致發光強度及FWHM。 f 在垂直於基板平面之方向上收集之隨 J變化的發射光譜。 94 .裝置之直流特性及發射光譜。 a b 在DC操作下所量測之OLED及OSLD之電流密度-電壓( J- V)曲線( a)及 η EQE- J曲線( b)。 c 純BSBCz薄膜之PL光譜(黑線)及OLED之EL光譜(紅線)及低於雷射臨限值之OSLD (藍線)。 95 .OSLD之雷射屬性。 a 針對不同注入電流密度在垂直於基板平面之方向上收集之 OSLD之發射光譜。 b 接近雷射臨限值的發射光譜。 c 隨電流變化的輸出強度及FWHM。 d 隨電流變化的輸出功率。 該插圖為在50V之脈衝操作下之OSLD之像片。 96 .自OSLD發射之特性化。 a 在不同偏光角度處所量測之OSLD之發射光譜及發射強度(插圖)。此處,0 °對應於平行於DFB光柵之凹槽之方向。 b CCD攝影機影像,其展示在不同電流密度下來自OSLD之發射光束之空間高斯剖面(spatial Gaussian profiles)。 97 .在光學泵浦下之OSLD之特性。 a 用於光學上泵浦量測之DFB光柵之顯微鏡影像。就其他OSLD (參見圖89a)而言,相同層在量測之前沈積於光柵上。 b 在具有不同光激勵密度之光學泵浦下在垂直於基板平面之方向上收集之OSLD-6之發射光譜。OSLD-6之幾何結構在表1中給出。 c 隨光激勵密度變化的OSLD-6之輸出強度及FWHM。在337 nm下藉由N 2雷射的激勵為3.0 ns,且裝置處於環境溫度下。 98 .BSBCz之自由基陽離子及陰離子之吸收光譜。為研究組分之間的光譜重疊,量測純薄膜BSBCz (50 nm)及複合薄膜BSBCz:MoO 3及BSBCz:Cs,(1:1莫耳比率,50 nm)之吸收光譜。藉由分別自MoO 3摻雜薄膜及Cs摻雜薄膜之吸收光譜減去純薄膜之吸收光譜來計算BSBCz陽離子及陰離子之差分吸收光譜。使用吸收光譜儀(Lamda 950,PerkinElmer)來量測純薄膜及複合薄膜之紫外/可見光/近紅外吸收光譜。亦顯示BSBCz純薄膜之穩態PL光譜及在光學泵浦下來自BSBCz DFB雷射之代表性雷射發射光譜,以展示BSBCz OSLD中之極化子吸收應為可忽略的。 99 .光學及電學模擬。 a 純電洞裝置(藍色圓形)、純電子裝置(紅色正方形)及雙極裝置(黑色三角形)之實驗(符號)及模擬(實線) J- V曲線。藉由擬合至單極裝置自圖92提取模型參數,且彼等參數用於模擬雙極裝置。 b 比較使用自單極裝置(實線)提取之參數所計算之遷移率與BSBCz中電洞(藍色)及電子(紅色)之所報導 41之遷移率(符號)。 c OSLD之實驗(符號)及模擬(實線) J- V曲線。 d 用於計算之OSLD結構之示意圖。 e J=500 mA cm 2時OSLD之重組速率剖面 R之空間分佈。 f y =0.11 µm時DFB裝置之穿過(e)之截面。 g OSLD及OLED之隨電流密度變化的平均激子密度。 100 .OSLD之模擬。 a 激子密度 S之空間分佈。 b 在共振波長 λ 0=483 nm時經擴展以包括一階區域之結構之被動DFB共振腔之電場分佈。 c 隨電流密度變化的模態增益。 d J=500 A cm 2時在二階區域中針對一個週期的激子密度 S(x,y)與光學模式| E(x,y)| 2之間的空間重疊。除光柵以外的層經模型化為扁平的(參見圖99d),且 y= 0對應於BSBCz/MoO 3界面。 Figure 1. (a) Chemical structures of BSBCz and CBP, (b) Schematic diagram of BSBCz:CBP film embedded in a second-order DFB structure , (c) used to fabricate DFB resonator structures by electron beam lithography and dry etching. Schematic representation of the method, namely SEM images of the DFB structure at (d) 4500× magnification and (e) 120000× magnification, and (f) absorption and photoluminescence spectra of pure films of BSBCz and CBP. DFB structures are engraved directly onto the silicon dioxide surface. When the second-order mode ( m = 2) is used in the Bragg equation ( = 2 n eff Λ ), the diffracted beam is emitted in a direction perpendicular to the plane of the film as shown in (b). The large overlap of CBP emission and BSBCz absorption enables efficient Förster-type energy transfer from CBP to BSBCz. In the BSBCz:CBP blended film, CBP molecules are mainly excited by 337 nm light. Next, due to efficient energy transfer, emission comes from BSBCz, while no emission is observed from CBP. Figure 2. Emissions as a function of excitation intensity for (a, c) BSBCz:CBP blended films and (b, d) BSBCz pure films embedded in DFB structures, when excited with 0.8 ns wide pulses at 20 Hz. Emission spectra and graphs of intensity and FWHM excitation. The insets in (a, b) show measured emission spectra close to the laser threshold. Figure 3. (a) is the frame camera image of laser oscillation and (b, c) are the time changes of laser intensity in BSBCz:CBP blended film. The repetition rate changes from 0.01 MHz to 8 MHz. The excitation light intensity is fixed at approximately 0.44 μ J cm −2 , which is 1.8 times higher than E th = 0.25 μ J cm −2 . The time scale of (a, b) is 500 μs and the time scale of (c) is 2 μs. Figure 4. (a): Curve plot of laser threshold value as a function of repetition rate and (b): Operation stability of laser oscillation in organic DFB laser based on BSBCz:CBP blended film and BSBCz pure film . To measure the stability, the laser device was operated continuously and accurately at 8 MHz. The excitation light intensity is 1.5 times higher than the laser threshold value. Figure 5. (a): Chemical structure of liquid carbazole (ECHz) main body and seven derivatives. (b): Schematic representation of liquid DFB laser prepared using first-order 1D grating patterns. (c): SEM image of a PUA pattern with a period of 140 nm and a height of 100 nm. Scale bar represents 200 nm. (d): The emission spectrum of a nitrided and oxidized liquid DFB laser measured above the threshold value at a repetition rate of 1 MHz. (e): Image of an oxidized blue liquid DFB laser operating in a quasi-cw state. Figure 6. (a, b) are frame camera images of laser emission and (c, d) are the time changes of laser intensity in nitrided and oxidized EHCz:7-DFB lasers. Repetition rate increased from 0.01 MHz to 4 MHz. The excitation light intensity was kept constant at 2.5 μJ cm −2 . Figure 7. Changes in the output emission intensity and full width at half maximum of the nitrided EHCz: Qifu DFB laser with the excitation intensity at different repetition rates. Figure 8. Changes in output emission intensity and full width at half maximum of oxidized EHCz: Qifu DFB laser with excitation intensity at different repetition rates. Figure 9. (a) Laser threshold value of nitrided and oxidized liquid DFB organic semiconductor laser as a function of repetition rate. (b) Photostability of an oxidized and nitrided liquid organic semiconductor DFB laser operating in a quasi-cw state at a repetition rate of 1 MHz. The excitation light intensity is 2.5 μJ cm - 2 . Figure 10. (a) Triplet-triplet absorption spectrum of Qifu in oxidized and nitrided chloroform solution. The triplet-triplet absorption disappears in the oxidized solution due to quenching of the triplet by molecular oxygen. Also shown is a representative laser spectrum measured in an oxidized DFB device. (b) Transient decay of triplet-triplet absorption specific gravity with a time constant much higher than 1 ms. Figure 11. Kinetics of photoluminescence intensity measured at 0.5 kW cm -2 in nitrided and oxidized EHCz:Qifu blends for 4 different pulse durations ranging from 50 to 800 μs. For this experiment, the gain medium package was sandwiched between two identical flat fused silica substrates. The sample is then optically pumped by laser pulses from a cw HeCd laser emitting at 325 nm. The light spot area is 2.0 × 10 - 5 cm 2 . The sample was irradiated in a direction perpendicular to the substrate plane and the PL intensity was measured using a photomultiplier tube at an angle of 45°. These results clearly demonstrate that oxygenation induces suppression of STA loss due to quenching of the triplet state by molecular oxygen. Figure 12. Manufacturing method of organic semiconductor DFB laser. It is a schematic representation of the method used to make organic DFB lasers. Different sequential steps involve fabrication of the DFB resonator structure by electron beam lithography, thermal evaporation of the organic semiconductor film and spin-coating of the CYTOP polymer film, followed by sealing the device with a high thermal conductivity (TC) sapphire cap. Figure 13. Structure of mixed-order DFB resonator. ( A ) Schematic representation of the mixed-order DFB grating structure used in this study. SEM images with ( B ) 2500× magnification and ( C ) 100000× magnification after depositing a 200 nm thick BSBCz:CBP blended film, and ( D ) SEM image of the device and (E) cross-sectional SEM of the device image. Figure 14. Laser properties of organic DFB laser in quasi-CW state. Bar camera images showing laser oscillations from a representative BSBCz:CBP encapsulated hybrid-stage DFB device at repetition rates from 0.01 MHz to 80 MHz over a period of ( A ) 500 µs or ( B ) 200 ns (only 80 MHz). The excitation intensity is fixed at approximately 0.5 µJ cm 2 , which is above the laser threshold ( E th ). ( C ) Time evolution of the laser output intensity at various repetition rates (f) in the encapsulated BSBCz:CBP hybrid-stage DFB laser. ( D ) Laser thresholds as a function of repetition rate in certain types of DFB devices. Lines guide the line of sight. Figure 15. Laser properties of organic DFB laser in long pulse state. ( A ) Frame camera image showing integration of 100 pulses from an encapsulated mixed-stage DFB device using BSBCz:CBP (20:80 wt.%) film as gain medium and by 30 ms and 2.0 kW Optically pumped laser emission with pulses of cm -2 (top) or 800 µs and 200 W cm -2 (bottom) . ( B ) Photograph of the DFB device operating in the long pulse regime (30 ms excitation). ( C ) Laser threshold ( E th ) as a function of excitation duration in various DFB devices. The dotted line guides the line of sight. ( D ) Laser output intensity from organic DFB laser changes with the number of incident pulses (100 µs, 200 W cm 2 ). Figure 16. Schematic representation of the geometry used for optical simulations. Figure 17. Laser threshold values of mixed-order DFB laser based on BSBCz:CBP (6:94 wt.%) 200 nm thick film for second-order gratings of different sizes. The device was optically pumped by delivering an 800 ps pulse of nitrogen laser at a repetition rate of 20 Hz and a wavelength of 337 nm. Figure 18. (A) Absorption spectrum, (B) steady-state photoluminescence spectrum and (C) transient state of BSBCz:CBP (6:94 wt.% ) films encapsulated with or without CYTOP film Photoluminescence decay. Figure 19. Representative organic hybrid - stage DFB lasers based on (A) BSBCz:CBP (6:94 wt.%) and (B) BSBCz pure films at various pump intensities below and above the laser threshold. The emission spectrum below. The inset shows the emission spectrum near the laser threshold. Emission output intensity and FWHM change with pump intensity in (C) blended film and (D) pure film DFB laser. In these experiments, the organic film was covered by a spin-coated CYTOP film and a sapphire cap. The optical pump source is a nitrogen laser that emits a 0.8 ns wide pulse excitation at a repetition rate of 20 Hz and a wavelength of 337 nm. Emissions from the laser device are collected in a direction perpendicular to the plane of the substrate. Figure 20. Emission output intensity and FWHM as a function of pump intensity in a representative encapsulated blend mixed-stage DFB laser at repetition rates of (A ) 0.01 MHz and (B) 80 MHz. Figure 21. Laser threshold as a function of repetition rate measured in the forward direction (increasing repetition rate) and reverse direction (decreasing repetition rate). The irreversible change in the laser threshold is attributed to the degradation of the gain medium under strong light excitation. Figure 22. (A) Frame camera image and (B) corresponding emission spectra from an unencapsulated 2-stage DFB device, an unencapsulated mixed-stage DFB device , and an encapsulated mixed-stage DFB device. Emission at a repetition rate of 80 MHz and a pump intensity of 0.5 μJ cm 2 . Figure 23. (A) Operational stability of laser output oscillations from different organic DFB lasers based on BSBCz:CBP (6:94 wt . %) blend films. To measure the stability, operate the laser device continuously in quasi-CW at 8 MHz or 80 MHz for 20 minutes. For each device, the excitation light intensity is 1.5 times its laser threshold. (B) Image of an encapsulated blended DFB laser operating in quasi-CW regime at 80 MHz. Figure 24. (A) In a 200 nm thick BSBCz:CBP ( 20:80wt.%) film, the output intensity of ASE concentrated at 472 nm changes with pump energy and strip length. The dashed line was fitted to the data using the equation reported in references ( 7 , 8 ). The net gain of the waveguide is determined based on these fits. (B) ASE intensity emitted from the edge of the waveguide film versus the distance between the pump strip and the edge of the blended film. The ASE characteristics of the films were studied using inorganic laser diodes with different pulse widths (0.1, 10 and 50 μs) emitting at 405 nm. Figure 25. Encapsulated 20 wt.% blend mixed - order DFB mine measured at pump intensities of 200 W cm 2 and 2.0 kW cm 2 for long pulse durations of 800 µs and 30 ms, respectively. Radiation emission spectrum. Figure 26. Frame camera image showing laser emission integrated within 100 pulses from an encapsulated mixed-stage DFB device during a 30 ms long optical excitation with a pump power of 2.0 kW cm -2 . The gain medium is BSBCz:CBP (20:80 wt.%). The excitation wavelength is 405 nm. To observe the laser during 30 ms using our frame camera system, the duty cycle percentage is changed to 2% to observe the 30 ms pulse in a 1 ms frame (0.02 × 30 ms = 0.6 ms). Figure 27. (A) Time evolution of laser output intensity , (B) encapsulated laser measured after 10 and 500 average pulses with a width of 30 ms and a pump intensity of 2.0 kW cm 2 Emission spectrum of mixed-order DFB laser. (C) Stimulated emission and triplet absorption cross-section spectra of BSBCz. The emission spectrum of the DFB laser measured from the BSBCz pure film is higher than E th . (D) Triplet absorption spectrum measured under Ar in a solution containing BSBCz. ( E ) Excitation power dependence of transient absorption spectra in solutions (dichloromethane containing BSBCz and benzene containing benzophenone). Figure 28. (A) Images showing the divergence of the emitted beam of a DFB laser near (B) and above (C) the threshold. The active gain medium is BSBCz:CBP (20:80 wt.%) film. The device was pumped in the long pulse regime (10 ms excitation). Figure 29. (A) Emission spectrum as a function of polarization angle and (B ) Emission intensity as a function of polarization angle. The device is based on a BSBCz:CBP (20:80 wt.%) blend and uses a mixed-order DFB grating. The pump intensity is 200 W cm 2 and the pump pulse duration is 800 µs. It should be noted that 0 ° corresponds to the direction parallel to the groove of the DFB grating. Figure 30. Emission spectra and laser output intensity of the encapsulated mixed-stage doping device as a function of pump intensity for long pulse excitation widths of (A, B) 1 µs and (C, D) 800 µs . and FWHM. Figure 31. Frame camera images showing laser emissions from mixed-stage blended BSBCz:CBP (20:80 wt.%) DFB devices encapsulated with (A ) sapphire or (B) glass cover. (C) Emission spectra of the device encapsulated with a glass cover for various pulse widths with a pump intensity of 2.0 kW cm −2 . The emission spectrum becomes broader with longer pulse width, which can be explained by the significant increase in laser threshold with pulse width. For example, with pulse widths of 2 ms and 3 ms, the device operates below the laser threshold. (D) Laser threshold ( E th ) as a function of excitation pulse width measured in DFB devices encapsulated with sapphire or glass lids. The dotted line guides the line of sight. Figure 32. Laser microscopy images of unencapsulated blend hybrid - stage DFB lasers before (A) and (B) after irradiation by 100 excitation pulses with a width of 1 ms. The thickness profile in inset (B) shows the ablation of an organic film during high-intensity CW irradiation. The pump intensity is 200 W cm −2 . The framed camera images in (C) and (D) show the results of encapsulated and non-encapsulated blends under the same irradiation conditions (1 ms pulse, 200 W cm 2 pump intensity and 100 pulses Integration of framed camera images). Figure 33. Scheme of DFB organic laser. Figure 34. (a) Scheme of 3 - layer thick block waveguide. (b) Effective refractive index ( n eff ) of TE and TM modes as a function of film thickness d at laser wavelength 477 n. Figure 35. Reflection spectrum calculated numerically (solid line) and Fano - profile fitted reflection spectrum (dashed line) for different values of film thickness under normal incident TE polarization. Figure 36. (a) Experimental laser emission spectra of fabricated laser devices with different d f . (b) Experimental laser wavelength and calculated resonance wavelength. Figure 37. (a) E th (square), Q factor extracted from numerical calculation ( Q FEM calculation (triangle) and Fano fit Q Fano fit (star)) and Γ (circle) with d Graph of f change, (b) graph of experimental FWHM of laser emission and FWHM calculated from Fano resonance. Figure 38. Schematic of the geometry used for thermal simulation. Figure 39. Maximum temperature at the end of each pulse. Figure 40. Temperature rise in the gain region with time and different pulse widths: (A) 1, (B) 10, (C) 30 and ( D ) 40 ms. Figure 41. Temperature rise over time for a pulse width of 10 ms in encapsulated and unencapsulated devices. Figure 42. Temperature rise in the gain region with time or number of pulses for τ p =30 ms. Figure 43. Schematic representation of methods for fabricating DFB gratings and organic laser diodes for electrically driving organic semiconductor DFB laser diodes. Different sequential steps involve sputtering a 100 nm thick SiO2 layer on top of the patterned ITO electrode, fabricating the DFB resonator structure in SiO2 by electron beam lithography and dry etching, and thermal evaporation of the organic semiconductor film and top electrode. Figure 44. Schematic representation of the substrate after different steps of DFB fabrication on ITO. ( A ) Patterned ITO, ( B ) after sputtering SiO2 onto ITO, ( C ) after fabricating DFB on ITO and ( D ) DFB structure. Figure 45. Schematic representation of the method used to fabricate nanoimprinted DFB gratings. Different sequential steps involve the preparation of a 70 nm thick polymer layer on top of the patterned ITO electrode, followed by the fabrication of the DFB resonator structure in the polymer using a simple, low-cost nanoimprint lithography process. Figure 46. Structural characterization of mixed - stage DFB resonators for organic laser diodes. ( A ) Laser microscopy and ( B ) SEM images (with 5000× and 200000× (in inset) magnification) of mixed-level DFB SiO grating structures prepared on top of ITO patterned glass substrates. ( C , D ) EDX and SEM analysis of mixed-level DFB gratings prepared on top of ITO. These images confirm the exposure of ITO used in contact with the device. Figure 47. Structure and properties of electrically driven organic semiconductor DFB laser. ( A ) Schematic representation and energy level diagram of an organic semiconductor laser diode. ( B ) Micrographs of organic DFB laser diodes and ( C ) reference device (OLED without grating) with and without DC operation at 4 V. The device area is 140 × 200 μm. ( D ) Current density-voltage (JV) curves and ( E ) external quantum efficiency-current density (EQE-J) curves measured in a reference OLED device and organic DFB laser diode under DC and pulse operation. Figure 48. Energy level diagrams of (a) pure electronic devices (b) pure hole devices and (c) bipolar devices. Figure 49. (a) Reported (symbols) and fitted ( solid line) mobilities of the Pool-Frankel field correlation model (solid line) for holes (blue) and electrons (red) for BSBCz. (b) Experimental (symbols) and simulated (solid lines) J ( V ) curves of pure hole devices (blue), pure electronic devices (red), and bipolar devices (black). Figure 50. SEM ( A , B ) surface morphology images and ( C , D ) cross-sectional images of the laser diode structure after all layers have been deposited. Figure 51. Schematic representation of some possible configurations of organic semiconductor laser diodes. DFB resonator structures (second-order and mixed-order gratings) can be produced ( A ) by electron beam lithography and dry etching in SiO2 , ( B ) by electron beam lithography and dry etching in ITO, ( C ) by electron beam lithography and dry etching in ITO Nanoimprint lithography in the polymer on top of a patterned ITO electrode, or ( D ) fabricated by nanoimprint lithography on top of the active layer. Figure 52. Schematic representation of organic semiconductor laser diodes with two -dimensional DFB resonator structures (second-order and mixed-order gratings) for 2D DFB laser. Figure 53. Micrographs (A to D ) of organic DFB laser diodes ( A to D ) with and without DC operation at 4 V. The device in A , B was constructed with 36 first-order periods surrounded by 324 The DFB structure of the second-order period was prepared, and the devices in D and C were prepared using a repeating structure with 4 second-order periods surrounded by 12 first-order periods). The device area is 30 × 101 μm. ( E ) Emission spectra of an electrically driven organic semiconductor DFB laser (the first-order and second-order grating periods of this device are 140 nm and 280 nm, respectively) collected perpendicular to the substrate plane for different injection current densities and ( F ) with current density Varying output intensity. Figure 54. Electroluminescence and PL spectra of BSBCz (reference device black PL spectrum, red EL spectrum, and blue EL spectrum with grating below laser threshold). Figure 55. Laser properties of electrically driven organic semiconductor DFB laser diodes. ( A ) The emission spectrum of an electrically driven organic semiconductor DFB laser (the first-order and second-order grating periods of this device are 140 nm and 280 nm, respectively) collected perpendicular to the substrate plane for different injection current densities and ( B ) its current dependence Output intensity of density changes. ( C ) Emission spectrum and ( D ) output intensity versus current density obtained in an organic DFB laser diode using a 1st-order grating period of 150 nm and a 2nd-order grating period of 300 nm, respectively. Figure 56. Laser properties of electrically driven organic semiconductor DFB laser diodes. ( A ) The emission spectrum of an electrically driven organic semiconductor DFB laser (the first-order and second-order grating periods of this device are 140 nm and 280 nm, respectively) collected perpendicular to the substrate plane for different injection current densities and ( B ) its current dependence Output intensity of density changes. Figure 57. ( A ) Current density-voltage (JV) curves with and without DFB. Devices with DFB have a first-order grating period of 150 nm and a second-order grating period of 300 nm. ( B ) External quantum efficiency versus current density in an electrically driven organic DFB solid-state laser without DFB at a 500 ns pulse. Figure 58. SEM images of mixed - order gratings with different numbers of periods in the first-order and second-order regions ( A , B , C , D , and E ) . ( F ) Table of mixed-order gratings with different numbers of periods in the first-order and second-order regions used to design DFB. Figure 59. ( A ) Laser spectra of mixed -order gratings with different numbers of periods. The number of cycles at the top of each graph corresponds to the number of 2nd order cycles and the number of 1st order cycles that can be seen in Figure 58 . The bottom graph shows the output characteristics of the device. ( B ) Threshold energy of mixed-order grating lasers in the second-order region for different numbers of periods. In the case of optical pumping, the lowest threshold is demonstrated using 4 and 12 cycles in the first-order and second-order regions respectively. The optical pump source is a nitrogen laser that emits a 0.8 ns wide pulse excitation at a repetition rate of 20 Hz and a wavelength of 337 nm. Emissions from the laser device are collected in a direction perpendicular to the plane of the substrate. Figure 60. ( A ) SEM image of a mixed - order grating with 12 and 4 periods in the first-order and second-order regions, respectively. ( B , C ) Organic DFB laser diode with or without DC operation at 5 V. The device area is 2.9 × 10 μm. ( D ) Reference OLED emission spectrum. Figure 61. ( A ) Schematic representation of the experimental setup for examining the polarization of lasers. The EL spectrum of the DFB laser diode ( B ) is below the laser threshold value (at 415 A cm 2 ) and ( C ) is above the laser threshold value (at 823 A cm −2 ) ionization correlation and ( D ) reference (at 800 A cm 2 , no DFB), ( E ) EL intensity as a function of polarization angle. EL is polarized in the plane of the device (TE mode). Figure 62. ( A ) Schematic diagram of OLED with DFB. ( B ) Microscope image of a DFB with a device area of 560 × 800 μm on an ITO substrate. ( C ) Optical pump output intensity as a function of excitation density for DFB laser; excited by CW laser at 405 nm. Figure 63. Micrographs of ( A , B ) organic DFB laser diodes and ( C , D ) reference devices (grating-less OLEDs) with and without DC operation at 4 V. Figure 64. Laser microscope image of a circular mixed-order DFB grating structure prepared using SiO 2 on an ITO patterned substrate. Figure 65. Microscope images of organic circular DFB lasers with and without drive. Current density-voltage (JV) curves for devices with and without circular DFB. External quantum efficiency versus current density in OLEDs with or without DFB. Figure 66. (a) Schematic representation of DFB grating OLED and (b) experimental (symbol) and simulated (solid line) J ( V ) curves of DFB grating and reference OLED. Figure 67. Spatial distribution of charge carrier density ( n , p ) and electric field F at (a) 10 V and (b) 70V . Figure 68. (a) The hole density p , (b) the electron density n at 70 V , (c) the spatial distribution of the n and p tangent lines passing through the 2D part at y = 0.11 μ m . Figure 69. Drawing of cross-sections of (a) electric field F and (b) current density J at 70 V. Figure 70. Plot of profile recombination rate R for (a) DFB device, (b) R for reference device, (c ) R tangent through 2D section for DFB device at y = 0.10 μm , and (d) at 70 V. When the DFB device is at y = 0.164 μ m , the n and p tangents pass through the 2D part. Figure 71. (a) S ( J ) characteristics for different E b (a ) without EFQ and after EFQ for the reference device and (b) for the DFB device and the reference device at E b =0.6eV S ( J ) characteristics. Figure 72. At 70 V , (a) exciton distribution inside the reference device with and without EFQ, (b ) exciton distribution inside the DFB device without EFQ, (c) exciton distribution inside the EFQ device. Exciton distribution inside the DFB device. Figure 73. Exciton density distribution inside the DFB device without quenching (upper left), exciton density distribution inside the DFB device after EFB (lower left), exciton density distribution inside the DFB device after PQ ( Upper right), exciton density distribution inside the DFB device after PQ and EFQ (lower right). Figure 74. Optical density distribution inside the DFB device (upper left) Air/BSBCz/SiO 2 and ( upper right) Air/BSBCz/SiO 2 /ITO (bottom) actual device Al/Ag/MoO 3 /BSBCz/SiO 2 /ITO . Figure 75. (a) Chemical structure of Bafu derivatives. (b) Absorption and steady-state PL spectra measured in spin-coated Bafu pure films at room temperature. The excitation wavelength of the measured PL spectrum is 376 nm. An image of the eight pure films under UV illumination is shown in the inset. (c) Ordinary and extraordinary optical constants ( k and n ) of eight pure films measured by variable angle ellipsometry. The film thickness is approximately 75 nm. Figure 76. (a) Absorption and (b) steady - state PL spectra of blended films containing 10 and 20 wt.% of octanoic acid in CBP host. The excitation wavelength used for the emission spectra of both films was 424 nm. Figure 77. PL decay measured in Bafu pure films and in blended films containing 10 and 20 wt . % Bafu in CBP host. The excitation wavelength is 365 nm. Figure 78. Experimental and simulated ellipsometric data ψ and Δ measured at different incident angles in spin-coated Bafu pure films. Figure 79. (a) Schematic representation of an experimental configuration used to characterize the ASE properties of organic films. (b) Emission spectra of a 260 nm thick eight-foot pure film collected from the edge of the organic layer for different excitation intensities below and above the ASE threshold. Steady-state PL spectra are also shown with dashed lines. An image of a pure film under intense light illumination is shown in the inset. (c) Output intensity from the edge of a 260 nm thick film (integrated over all wavelengths) as a function of excitation density. (d) ASE threshold as a function of Bafu pure film thickness. The excitation wavelength is 337 nm. Figure 80. Output intensity from the edge of the organic layer (integrated over all wavelengths) as a function of excitation density in several pure films with various thicknesses in the range between 53 and 540 nm. This data was used to examine the thickness dependence of the ASE threshold shown in Figure 2d. Figure 81. ASE intensity plotted as a function of the distance between the pump strip and the edge of a 260 nm thick eight-foot pure film. The solid line corresponds to the fit obtained from the single exponential decay function to determine the loss coefficient. Figure 82. Time decay of emission intensity above the ASE threshold for 260 nm thick 8-nm pure films self-exposed in air or nitrogen atmospheres. The pump intensity is 873 μJ/cm 2 and 10 Hz. Figure 83. (a) Schematic representation of the experimental configuration used to characterize the properties of the eight-foot DFB laser. (b) SEM image of the mixed-order DFB grating used in this work. (c) Emission spectra of a DFB laser based on a pure film collected perpendicular to the substrate plane for different excitation intensities below and above the laser threshold. (d) The output intensity of the DFB laser changes with the excitation density. Figure 84. (a) Schematic representation of the OLED structure used in this study. HOMO and LUMO of organic materials used in these devices are also provided. (b) External quantum efficiency versus current density in OLEDs based on Bafu pure film and CBP blended film. Figure 85. Photoelectron spectroscopy in air determines the ionization potential of a pure film in a thin film. Taking into account the optical band gap value determined from the absorption spectrum of the pure film, the electron affinity of the eight atoms in the pure film is then roughly estimated. However, it is important to note that Koopman's theorem, which states that the vertical ionization potential is equal to the absolute value of the calculated HOMO energy, is usually not satisfied due to relaxation processes during the ionization process and electron correlation. Although the optical band gap usually differs from the true electron gap, the electron affinity and LUMO can be roughly estimated from the difference between the ionization potential and the optical band gap value. Figure 86. (a) EL spectrum measured at a current density of 10 mA/cm 2 and (b) J - V - L curves in OLEDs based on Bafu pure film and CBP blended film. Figure 87. CW ASE in eight pure films. Figure 88. CW ASE in eight pure films. Figure 89. Organic semiconductor DFB laser diode structure . a , Schematic representation of organic laser diode. b , c , Laser microscope image ( b ) and SEM image ( c ) of the DFB SiO 2 grating structure prepared on the top of ITO at 5,000× and 200,000× (inset) magnification. d , Cross-sectional SEM image of the complete OSLD. e , Cross-sectional EDX image of OSLD. To improve the visibility of low-concentration Cs and enhance contrast. Figure 90. Fabrication and structure of OSLD. a , Schematic diagram of the manufacturing steps of OSLD. b , Structure of the ITO-coated glass substrate used in this study and the general structure of the DFB grating. The specific values of different grating parameters can be seen in Table 1. c , d , EDX and SEM analysis of mixed-level DFB gratings prepared on top of ITO. These images confirm the possibility of electrical contact with the ITO. Figure 91. Electrical properties of electrically pumped organic semiconductor DFB laser. a , Energy level diagram of OSLD with highest occupied and lowest unoccupied molecular orbital levels indicated by work functions for organic and inorganic species. b , Micrograph of OSLD and reference OLED under DC operation of 3.0 V. The lengths of individual first-order grating areas and second-order grating areas are 1.68 µm and 1.12 µm. c , d , Current density-voltage ( J - V ) characteristics ( c ) and eta EQE - J characteristics ( d ) in OLED and OSLD under pulse operation (pulse width of 400 ns and repetition rate of 1 kHz). Figure 92. Holes and electron transport in organic layers . a and b , the structures used to evaluate the transmission of pure hole devices ( a ) and pure electronic devices ( b ). c , Representative current density-voltage in a pure hole device (HOD) and a pure electron device (EOD) under DC operation (filled symbols) and pulse operation (empty symbols) on logarithmic and linear (inset) levels ( J - V )Characteristics. The device area is 200×200 µm. These J - V curves indicate good transport of holes and electrons in the high voltage region in the laser diodes fabricated in this study. Due to the trap limitation of hole current, the electron current at lower voltage is higher than the hole current. Figure 93. Properties of OSLD with different DFB geometries. a , Micrograph of OSLD operating at DC 3.0 V. b , c , d , current density-voltage ( J - V ) characteristics and eta EQE - J characteristics of OSLD. e , electroluminescence intensity and FWHM changing with J. f , Emission spectrum as a function of J collected in the direction perpendicular to the substrate plane. Figure 94. DC characteristics and emission spectrum of the device. a , b , current density-voltage ( J - V ) curve ( a ) and eta EQE - J curve ( b ) of OLED and OSLD measured under DC operation. c , PL spectrum of pure BSBCz film (black line) and EL spectrum of OLED (red line) and OSLD below the laser threshold (blue line). Figure 95. Laser properties of OSLD. a , Emission spectra of OSLD collected in the direction perpendicular to the substrate plane for different injection current densities. b , Emission spectrum close to the laser threshold. c , Output intensity and FWHM as the current changes . d , output power as a function of current . The illustration is a photo of an OSLD operating under 50V pulses. Figure 96. Characterization of emissions from OSLD. a , The emission spectrum and emission intensity of OSLD measured at different polarization angles (inset). Here, 0 ° corresponds to the direction parallel to the groove of the DFB grating. b , CCD camera image showing the spatial Gaussian profiles of the emitted beam from the OSLD at different current densities. Figure 97. Characteristics of OSLD under optical pumping. a , Microscope image of the DFB grating used for optical pump measurement. As with other OSLDs (see Figure 89a), the same layer is deposited on the grating before measurement. b , Emission spectra of OSLD-6 collected in the direction perpendicular to the substrate plane under optical pumping with different optical excitation densities. The geometric structure of OSLD-6 is given in Table 1. c , The output intensity and FWHM of OSLD-6 as the optical excitation density changes. Excitation by N2 laser at 337 nm was 3.0 ns with the device at ambient temperature. Figure 98. Absorption spectra of radical cations and anions of BSBCz. To study the spectral overlap between components, the absorption spectra of pure film BSBCz (50 nm) and composite films BSBCz: MoO3 and BSBCz:Cs, (1:1 molar ratio, 50 nm) were measured. The differential absorption spectra of BSBCz cations and anions were calculated by subtracting the absorption spectra of pure films from the absorption spectra of MoO3 -doped films and Cs-doped films, respectively. An absorption spectrometer (Lamda 950, PerkinElmer) was used to measure the UV/visible/near-infrared absorption spectra of pure films and composite films. The steady-state PL spectrum of a pure BSBCz film and a representative laser emission spectrum from a BSBCz DFB laser under optical pumping are also shown to demonstrate that polaron absorption in BSBCz OSLD should be negligible. Figure 99. Optical and electrical simulation. a , Experimental (symbols) and simulated (solid lines) J - V curves of pure hole devices (blue circles), pure electronic devices (red squares) and bipolar devices (black triangles). Model parameters were extracted from Figure 92 by fitting to a unipolar device, and they were used to simulate a bipolar device. b , Comparison of the calculated mobilities using parameters extracted from the monopolar device (solid line) with the reported 41 mobilities (symbols) of holes (blue) and electrons (red) in BSBCz. c , Experimental (symbol) and simulated (solid line) J - V curves of OSLD. d , Schematic diagram of the OSLD structure used for calculations. e , Spatial distribution of the recombination rate profile R of OSLD at J =500 mA cm 2 . f , cross section of the DFB device through (e) at y = 0.11 µm. g , the average exciton density of OSLD and OLED as the current density changes. Figure 100. Simulation of OSLD. a , Spatial distribution of exciton density S. b , Electric field distribution of the passive DFB resonant cavity expanded to include the structure of the first-order region at the resonance wavelength λ 0 =483 nm. c , Modal gain as a function of current density. d , Spatial overlap between the exciton density S (x,y) and the optical mode | E (x,y)| 2 for one period in the second-order region at J =500 A cm 2 . Layers other than the grating are modeled flat (see Figure 99d), and y = 0 corresponds to the BSBCz/ MoO interface.

Claims (8)

一種有機雷射裝置之模擬模型化方法,其具有以下步驟中至少一者: 計算裝置内之電荷載流子輸送與電荷載流子之重組速率,進行電學模擬; 使用亥姆霍茲方程式求出裝置内之光傳播模式,據以進行光學模擬; 計算求出裝置内之熱源及熱導,進行溫度模擬,估計操作穩定性; 計算包含增益、激子之輻射衰變常數k r及非輻射衰變常數k nr之速率方程式,估計雷射屬性。 A simulation modeling method of an organic laser device, which has at least one of the following steps: Calculate the charge carrier transport and charge carrier recombination rate in the device, and perform electrical simulation; Use the Helmholtz equation to obtain The light propagation mode in the device is used to perform optical simulation; Calculate the heat source and thermal conductivity in the device, conduct temperature simulation, and estimate the operational stability; Calculate the radiative decay constant k r and non-radiative decay constant including gain, exciton The rate equation of k nr estimates the laser properties. 如請求項1之模擬模型化方法,其具有上述各步驟中至少二者。The simulation modeling method of claim 1 includes at least two of the above steps. 如請求項1之模擬模型化方法,其具有所有上述各步驟。The simulation modeling method of claim 1 has all the above steps. 如請求項1至3中任一項之模擬模型化方法,其中上述有機雷射裝置為電流激勵型有機半導體雷射裝置。The simulation modeling method according to any one of claims 1 to 3, wherein the organic laser device is a current-excited organic semiconductor laser device. 如請求項1至3中任一項之模擬模型化方法,其中上述有機雷射裝置為光激勵有機雷射裝置。The simulation modeling method of any one of claims 1 to 3, wherein the organic laser device is a photoexcited organic laser device. 一種程式,其用於執行如請求項1至5中任一項之模擬模型化方法。A program for executing the simulation modeling method of any one of claims 1 to 5. 如請求項6之程式,其具有輸出以下至少一者之步驟:電流密度-電壓曲線、電場分佈、電荷載流子密度、激子密度、光學共振器結構之本徵模式、光學共振器結構之Q值及限制因數、以及增益。Such as the program of claim 6, which has the step of outputting at least one of the following: current density-voltage curve, electric field distribution, charge carrier density, exciton density, eigenmode of the optical resonator structure, and Q value and limiting factor, as well as gain. 一種有機雷射裝置之製造方法,其包含使用如請求項1至5中任一項之模擬模型化方法設計有機雷射裝置之步驟。A method of manufacturing an organic laser device, which includes the step of designing an organic laser device using the simulation modeling method of any one of claims 1 to 5.
TW112103527A 2016-09-02 2017-09-01 Simulation modeling method for an organic laser device, program for performing the simulation modeling method, and method for manufacturing an organic laser device TW202335384A (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
TW105128542 2016-09-02
TW105128542 2016-09-02
JP2016197484 2016-10-05
JP2016-197484 2016-10-05
JP2017017936 2017-02-02
JP2017-017936 2017-02-02
JP2017020797 2017-02-07
JP2017-020797 2017-02-07
JP2017-136063 2017-07-12
JP2017136063 2017-07-12

Publications (1)

Publication Number Publication Date
TW202335384A true TW202335384A (en) 2023-09-01

Family

ID=63258085

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106130060A TWI793080B (en) 2016-09-02 2017-09-01 Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode
TW112103527A TW202335384A (en) 2016-09-02 2017-09-01 Simulation modeling method for an organic laser device, program for performing the simulation modeling method, and method for manufacturing an organic laser device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106130060A TWI793080B (en) 2016-09-02 2017-09-01 Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode

Country Status (1)

Country Link
TW (2) TWI793080B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402652B2 (en) * 2019-10-04 2023-12-21 株式会社日本マイクロニクス Optical probes, optical probe arrays, inspection systems and inspection methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881089A (en) * 1997-05-13 1999-03-09 Lucent Technologies Inc. Article comprising an organic laser
JP2004186599A (en) * 2002-12-05 2004-07-02 Ricoh Co Ltd Organic semiconductor laser
US6807211B1 (en) * 2003-05-27 2004-10-19 Eastman Kodak Company White-light laser
US7348516B2 (en) * 2003-08-19 2008-03-25 Electro Scientific Industries, Inc. Methods of and laser systems for link processing using laser pulses with specially tailored power profiles

Also Published As

Publication number Publication date
TWI793080B (en) 2023-02-21
TW201820729A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
JP7372623B2 (en) Simulation modeling methods, programs and organic laser devices
JP7474430B2 (en) Current injection organic semiconductor laser diode, its design and manufacturing method, and program
Wallikewitz et al. A Lasing Organic Light‐Emitting Diode
Kim et al. Extremely low amplified spontaneous emission threshold and blue electroluminescence from a spin-coated octafluorene neat film
Senevirathne et al. Markedly improved performance of optically pumped organic lasers with two-dimensional distributed-feedback gratings
Senevirathne et al. Recycling of Triplets into Singlets for High‐Performance Organic Lasers
Tang et al. Electron‐Affinity Substituent in 2, 6‐Dicarbonitrile Diphenyl‐1λ5‐Phosphinine Towards High‐Quality Organic Lasing and Electroluminescence under High Current Injection
TWI793080B (en) Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode
KR102402133B1 (en) Continuous-wave organic thin-film distributed feedback laser and electrically driven organic semiconductor laser diode
TWI843470B (en) Current-injection organic semiconductor laser diode, method for producing same and program
Tang et al. Lasing and Transport Properties of Poly [(9, 9-dioctyl-2, 7-divinylenefluorenylene)-alt-co-(2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylene)](POFP) for the Application of Diode-Pumped Organic Solid Lasers
KR20210133999A (en) Electrically driven organic semiconductor laser diode and method for manufacturing the same
Tang et al. NANO EXPRESS Open Access
叶浩 Development of deep-red and near-infrared organic luminescent materials and their applications in organic light-emitting diodes and continuous-wave organic semiconductor lasers
アディカリ,ムディヤンサラゲ,チャトゥランガニ,セネヴィラトゥネ Development of materials and device architectures aimed for high-performance continuous-wave organic semiconductor lasers