TW202303184A - Notch filter codephase impact mitigation - Google Patents

Notch filter codephase impact mitigation Download PDF

Info

Publication number
TW202303184A
TW202303184A TW110143792A TW110143792A TW202303184A TW 202303184 A TW202303184 A TW 202303184A TW 110143792 A TW110143792 A TW 110143792A TW 110143792 A TW110143792 A TW 110143792A TW 202303184 A TW202303184 A TW 202303184A
Authority
TW
Taiwan
Prior art keywords
code
correction value
phase correction
determining
code phase
Prior art date
Application number
TW110143792A
Other languages
Chinese (zh)
Inventor
法努 西達德
慕克許 庫瑪
喬登 庫克曼
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/473,877 external-priority patent/US11736893B2/en
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202303184A publication Critical patent/TW202303184A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Circuits Of Receivers In General (AREA)
  • Radio Relay Systems (AREA)
  • Noise Elimination (AREA)

Abstract

Techniques are provided for utilizing notch filters to overcome narrowbandjamming. An example method for determining a range to a satellite vehicle with a receiver includes receiving a signal from the satellite vehicle, determining one or more notch filter configurations, determining a pseudorandom noise code and a doppler frequency associated with the signal, determining a codephase correction value based at least on the one or more notch filter configurations, the pseudorandom noise code and the doppler frequency, and computing the range to the satellite vehicle based at least in part on the signal and the codephase correction value.

Description

陷波濾波器碼相位影響減輕Notch Filter Code Phase Effect Mitigation

本發明關於陷波濾波器碼相位影響減輕。The present invention is concerned with mitigation of notch filter code phase effects.

無線通訊系統已經發展了幾代,包括第一代類比無線電話服務(1G)、第二代(2G)數位無線電話服務(包括用於過渡的2.5G和2.75G網路)、第三代(3G)高速資料、支援網際網路的無線服務、第四代(4G)服務(例如長期進化(LTE)或WiMax)和第五代(5G)服務等。目前有許多不同類型的無線通訊系統在使用,包括蜂巢和個人通訊服務(PCS)系統。已知蜂巢式系統的實例包括蜂巢類比先進行動電話系統(AMPS)、以及基於分碼多工存取(CDMA)、分頻多工存取(FDMA)、分時多工存取(TDMA)、TDMA的全球行動存取系統(GSM)變體等的數位蜂巢式系統。Wireless communication systems have been developed for several generations, including the first generation analog wireless telephone service (1G), the second generation (2G) digital wireless telephone service (including 2.5G and 2.75G networks for transition), the third generation (3G ) high-speed data, Internet-enabled wireless services, fourth-generation (4G) services (such as Long-Term Evolution (LTE) or WiMax) and fifth-generation (5G) services, etc. There are many different types of wireless communication systems in use today, including cellular and Personal Communications Service (PCS) systems. Examples of known cellular systems include the cellular analog Advanced Mobile Phone System (AMPS), and based on Code Division Multiple Access (CDMA), Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), A digital cellular system such as the Global System for Mobile Access (GSM) variant of TDMA.

通常期望知道使用者設備(UE)(例如,蜂巢式電話)的位置,術語「位置(location)」和「位置(position)」可以是同義的並在這裡可互換使用。位置服務(LCS)客戶端可能希望知道UE的位置,並且可以與位置中心通訊,以便請求UE的位置。位置中心和UE可以適當地交換訊息,以獲得對UE的位置估計。位置中心可以將位置估計返回給LCS客戶端,例如,用於一或多個應用。It is often desirable to know the location of a user equipment (UE) (eg, a cellular phone), and the terms "location" and "position" may be used synonymously and interchangeably herein. A location service (LCS) client may wish to know the UE's location and may communicate with a location center to request the UE's location. The location center and the UE may appropriately exchange messages to obtain a location estimate for the UE. The location center may return a location estimate to the LCS client, eg, for one or more applications.

獲取正在存取無線網路的行動設備的位置對於許多應用可能是有用的,包括例如緊急撥叫、個人導航、資產追蹤、定位朋友或家庭成員等。現有的定位方法包括基於量測從各種設備發射的無線電信號的方法,設備包括無線網路中的衛星載具和地面無線電源,諸如基地台和存取點。Obtaining the location of a mobile device that is accessing a wireless network can be useful for many applications including, for example, emergency dialing, personal navigation, asset tracking, locating friends or family members, and the like. Existing positioning methods include methods based on the measurement of radio signals emitted from various devices, including satellite vehicles in wireless networks and terrestrial radio sources, such as base stations and access points.

許多UE包括全球導航衛星系統(GNSS)接收器,並且可以藉由精確量測從多個衛星接收的訊號傳遞事件的到達時間來決定位置。GNSS中的衛星載具(SV)通常使用一種展頻編碼形式傳輸資料。例如,全球定位系統(GPS)利用分碼多工存取(CDMA)。為每個SV指派一個類似假性隨機雜訊的粗擷取(CA)碼,每個SV具有唯一的CA碼。每個SV使用自己的CA碼編碼資料,並在載波頻率上傳輸編碼資料。因此,多個SV可能同時在共享載波頻率上傳輸資料。每個CA碼由1023個「碼片」的序列組成,其中為每個碼片指派值1或0。CA碼以1.023 MHz的速率傳輸,因此,每個晶片週期約為0.977 us。每個SV不斷傳輸由SV自己的CA碼組成的重複圖案。GPS SV可以藉由反轉傳輸的CA碼來編碼導航或系統資料。CA碼相位是指CA碼與參考時鐘或其他SV傳輸的其他CA碼之間的關係。儘管在傳輸時,CA碼相位可以在SV之間同步,但是由於傳播時間不同,CA碼在GPS接收器處可能以不同的延遲被接收。通常,GPS接收器決定正在接收哪些CA碼,以便決定哪些GPS衛星在視野範圍內。Many UEs include Global Navigation Satellite System (GNSS) receivers and can determine position by precisely measuring the time of arrival of signaling events received from multiple satellites. Satellite vehicles (SVs) in GNSS typically transmit data using a form of spread spectrum coding. For example, the Global Positioning System (GPS) utilizes Code Division Multiple Access (CDMA). Each SV is assigned a pseudo-random noise-like Coarse Acquisition (CA) code, and each SV has a unique CA code. Each SV uses its own CA code to encode data and transmit the coded data on the carrier frequency. Therefore, multiple SVs may simultaneously transmit data on a shared carrier frequency. Each CA code consists of a sequence of 1023 "chips," where each chip is assigned a value of 1 or 0. The CA code is transmitted at a rate of 1.023 MHz, therefore, each chip cycle is approximately 0.977 us. Each SV continuously transmits a repeating pattern consisting of the SV's own CA code. GPS SV can encode navigation or system data by inverting the transmitted CA code. The CA code phase refers to the relationship between the CA code and the reference clock or other CA codes transmitted by other SVs. Although the CA code phase may be synchronized between SVs when transmitted, the CA code may be received with different delays at the GPS receiver due to differences in propagation time. Typically, the GPS receiver determines which CA codes are being received in order to determine which GPS satellites are in view.

從GPS衛星接收信號有許多障礙。尤其是,亦被配置為利用其他無線技術(諸如Wi-Fi、藍芽和其他基於蜂巢的技術)的UE可能會產生干擾GNSS接收器使用的展頻的信號。例如,UE內振盪器的諧波或其他偽像可能導致GNSS接收器所利用的無線電頻譜內的一或多個區域的局部干擾(jamming)。GNSS接收器內的陷波濾波可用於減少此類干擾信號的影響。There are many obstacles to receiving signals from GPS satellites. In particular, UEs that are also configured to utilize other wireless technologies, such as Wi-Fi, Bluetooth, and other cellular-based technologies, may generate signals that interfere with the spread spectrum used by GNSS receivers. For example, harmonics or other artifacts of an oscillator within the UE may cause localized jamming of one or more regions within the radio spectrum utilized by the GNSS receiver. Notch filtering within a GNSS receiver can be used to reduce the effect of such interfering signals.

根據本揭示的用於利用接收器決定到衛星載具的距離的示例方法包括:從衛星載具接收信號;決定一或多個陷波濾波器配置;決定假性隨機雜訊碼和與信號相關聯的都卜勒頻率;至少基於一或多個陷波濾波器配置、假性隨機雜訊碼和都卜勒頻率決定碼相位校正值;及至少部分基於信號和碼相位校正值計算到衛星載具的距離(range)。An example method for determining the range to a satellite vehicle using a receiver according to the present disclosure includes: receiving a signal from the satellite vehicle; determining one or more notch filter configurations; determining a pseudorandom noise code and correlating with the signal the associated Doppler frequency; determine a code phase correction value based at least on one or more notch filter configurations, a pseudorandom noise code, and the Doppler frequency; Tool distance (range).

此種方法的實現方式可以包括一或多個以下特徵。決定碼相位校正值可以包括基於一或多個陷波濾波器配置、假性隨機雜訊碼和都卜勒頻率從查閱資料表獲得碼相位校正值。可以從網路實體接收輔助資料,其中輔助資料包括查閱資料表。輔助資料可以經由一或多個長期進化定位協定(LPP)訊息來接收。輔助資料可以經由一或多個無線電資源控制(RRC)訊息來接收。決定碼相位校正值可以包括基於內插函數獲得碼相位校正值。查閱資料表可以由接收器基於複數個陷波濾波器配置的模型化自相關函數產生,並且其中決定碼相位校正值包括基於一或多個陷波濾波器配置、假性隨機雜訊碼和都卜勒頻率從查閱資料表獲得碼相位校正值。一或多個陷波濾波器配置可以包括一或多個陷波頻率以及與一或多個陷波頻率相關聯的一或多個頻寬。計算到衛星載具的距離可以包括基於信號決定到衛星載具的偽距。接收器可以包括一或多個陷波濾波器,該等陷波濾波器由一或多個具有可程式設計中心頻率和頻寬的數位濾波器組成。Implementations of such a method may include one or more of the following features. Determining a code phase correction value may include obtaining a code phase correction value from a lookup table based on one or more notch filter configurations, a pseudorandom noise code, and a Doppler frequency. Ancillary data may be received from a network entity, where the auxiliary data includes a lookup data table. Auxiliary data may be received via one or more Long Term Positioning Protocol (LPP) messages. The assistance data can be received via one or more radio resource control (RRC) messages. Determining the code phase correction value may include obtaining the code phase correction value based on an interpolation function. The look-up table may be generated by a receiver based on a modeled autocorrelation function of a plurality of notch filter configurations, and wherein determining a code phase correction value includes determining a code phase correction value based on one or more notch filter configurations, pseudorandom noise codes, and both Obtain the code phase correction value from the reference table for the Buller frequency. The one or more notch filter configurations may include one or more notch frequencies and one or more bandwidths associated with the one or more notch frequencies. Calculating the range to the satellite vehicle may include determining a pseudorange to the satellite vehicle based on the signal. The receiver may include one or more notch filters consisting of one or more digital filters with programmable center frequencies and bandwidths.

根據本揭示的示例裝置包括:記憶體;被配置為從衛星載具接收信號的至少一個衛星定位系統接收器;至少一個處理器,通訊耦合到記憶體和至少一個衛星定位系統接收器,並被配置為:從衛星載具接收信號,決定一或多個陷波濾波器配置,決定假性隨機雜訊碼和與信號相關聯的都卜勒頻率,至少基於一或多個陷波濾波器配置、假性隨機雜訊碼和都卜勒頻率決定碼相位校正值,以及至少部分基於信號和碼相位校正值計算到衛星載具的距離。An example apparatus according to the present disclosure includes: a memory; at least one satellite positioning system receiver configured to receive signals from a satellite vehicle; at least one processor communicatively coupled to the memory and the at least one satellite positioning system receiver and configured to: receive a signal from a satellite vehicle, determine one or more notch filter configurations, determine a pseudorandom noise code and a Doppler frequency associated with the signal, based at least on one or more notch filter configurations , the pseudorandom noise code and the Doppler frequency determine a code phase correction value, and calculate a range to the satellite vehicle based at least in part on the signal and the code phase correction value.

此種裝置的實現方式可以包括一或多個以下特徵。該至少一個處理器亦可以被配置為基於一或多個陷波濾波器配置、假性隨機雜訊碼和都卜勒頻率從查閱資料表中獲得碼相位校正值。該裝置可以包括至少一個收發器,該收發器通訊耦合到至少一個處理器,使得該至少一個處理器亦被配置為從網路實體接收輔助資料,並且其中該輔助資料包括查閱資料表。輔助資料可以經由一或多個長期進化定位協定(LPP)訊息來接收。輔助資料可以經由一或多個無線電資源控制(RRC)訊息來接收。該至少一個處理器亦可以被配置為基於內插函數獲得碼相位校正值。該至少一個處理器亦可以被配置為基於複數個陷波濾波器配置的模型化自相關函數產生查閱資料表,並且基於一或多個陷波濾波器配置、假性隨機雜訊碼和都卜勒頻率從查閱資料表獲得碼相位校正值。一或多個陷波濾波器配置可以包括一或多個陷波頻率以及與一或多個陷波頻率相關聯的一或多個頻寬。該至少一個處理器亦可以被配置為基於該信號決定到衛星載具的偽距。一或多個陷波濾波器配置可以包括一或多個具有可程式設計中心頻率和頻寬的數位濾波器。Implementations of such an apparatus may include one or more of the following features. The at least one processor may also be configured to obtain code phase correction values from a look-up table based on one or more notch filter configurations, pseudorandom noise codes, and Doppler frequencies. The apparatus may include at least one transceiver communicatively coupled to at least one processor such that the at least one processor is also configured to receive auxiliary data from a network entity, and wherein the auxiliary data includes a lookup data table. Auxiliary data may be received via one or more Long Term Positioning Protocol (LPP) messages. The assistance data can be received via one or more radio resource control (RRC) messages. The at least one processor may also be configured to obtain a code phase correction value based on an interpolation function. The at least one processor may also be configured to generate a look-up table based on a modeled autocorrelation function of the plurality of notch filter configurations, and based on one or more notch filter configurations, pseudorandom noise codes and Obtain the code phase correction value from the reference table for the Le frequency. The one or more notch filter configurations may include one or more notch frequencies and one or more bandwidths associated with the one or more notch frequencies. The at least one processor may also be configured to determine a pseudorange to a satellite vehicle based on the signal. The one or more notch filter configurations may include one or more digital filters with programmable center frequencies and bandwidths.

根據本揭示的用於決定到衛星載具的距離的示例裝置包括用於從衛星載具接收信號的構件;用於決定一或多個陷波濾波器配置的構件;用於決定假性隨機雜訊碼和與信號相關聯的都卜勒頻率的構件;用於至少基於一或多個陷波濾波器配置、假性隨機雜訊碼和都卜勒頻率決定碼相位校正值的構件;及用於至少部分基於信號和碼相位校正值計算到衛星載具的距離的構件。An example apparatus for determining a range to a satellite vehicle according to the present disclosure includes means for receiving a signal from the satellite vehicle; means for determining one or more notch filter configurations; means for a code and a Doppler frequency associated with a signal; means for determining a code phase correction value based at least on one or more notch filter configurations, a pseudorandom noise code, and a Doppler frequency; and means for calculating a range to a satellite vehicle based at least in part on signal and code phase correction values.

根據本揭示的包括用於使一或多個處理器決定到衛星載具的距離的處理器可讀取指令的示例非暫時性處理器可讀取儲存媒體包括用於從衛星載具接收信號的代碼;用於決定一或多個陷波濾波器配置的代碼;用於決定假性隨機雜訊碼和與信號相關聯的都卜勒頻率的代碼;用於至少基於一或多個陷波濾波器配置、假性隨機雜訊碼和都卜勒頻率決定碼相位校正值的代碼;及用於至少部分基於信號和碼相位校正值計算到衛星載具的距離的代碼。An example non-transitory processor-readable storage medium including processor-readable instructions for causing one or more processors to determine a distance to a satellite vehicle according to the present disclosure includes a device for receiving signals from a satellite vehicle. code; code for determining one or more notch filter configurations; code for determining a pseudorandom noise code and a Doppler frequency associated with a signal; for filtering based at least on one or more notch filters A code for determining a code phase correction value based on the configuration of the transmitter, a pseudorandom noise code, and a Doppler frequency; and a code for calculating a range to a satellite vehicle based at least in part on the signal and the code phase correction value.

本文描述的專案及/或技術可以提供一或多個以下能力,以及未提及的其他能力。GNSS接收器可以接收來自衛星載具的無線電頻譜中的信號。由於本端干擾,頻譜中一或多個頻率內的接收可能會減弱。陷波濾波器可用於減輕干擾的影響。由於陷波濾波器的使用,碼相位量測的準確性可能會降低。對碼相位量測的影響取決於接收信號的假性隨機雜訊碼、衛星載具都卜勒頻率和陷波配置。可以產生查閱資料表,以基於接收信號的假性隨機雜訊碼、衛星載具都卜勒頻率和陷波配置來選擇碼相位校正值。查閱資料表可以在GNSS接收器上本端產生,及/或作為輔助資料從網路接收。碼相位校正值可用於改進距離計算。GNSS位置估計的準確性可能會得到改進。亦可以提供其他能力,並且不是根據本揭示的每個實現方式皆必須提供所論述的任何能力,更不用說所有能力。The projects and/or technologies described herein may provide one or more of the following capabilities, as well as others not mentioned. GNSS receivers can receive signals in the radio spectrum from satellite vehicles. Reception may be impaired on one or more frequencies in the spectrum due to local interference. Notch filters can be used to mitigate the effects of interference. The accuracy of the code phase measurement may be reduced due to the use of the notch filter. The effect on the code phase measurement depends on the pseudo random noise code of the received signal, the satellite vehicle Doppler frequency and notch configuration. A look-up table may be generated to select a code phase correction value based on the pseudorandom noise code of the received signal, the satellite vehicle Doppler frequency, and the notch configuration. The lookup data table can be generated locally on the GNSS receiver and/or received from the network as auxiliary data. Code phase correction values can be used to improve distance calculations. The accuracy of GNSS position estimates may be improved. Other capabilities may also be provided, and not every implementation in accordance with the present disclosure is required to provide any, let alone all, of the capabilities discussed.

本文論述了利用陷波濾波器克服窄頻干擾的技術。陷波濾波器被定義為衰減或去除一部分接收信號的任何接收器元件或過程。例如,可程式設計濾波器可用於衰減程式設計窄頻干擾頻率周圍的一部分接收頻譜。或者,可以利用自動更新其頻率回應的自我調整濾波器來衰減動態出現的任何窄頻干擾器周圍的接收頻譜。或者,可以利用干擾消除器,其中窄頻干擾信號被估計並從接收信號中減去。濾波或干擾消除可以藉由類比或數位構件或其任意組合來實現。GNSS接收器中的數位前端(DFE)可以利用陷波濾波器來減輕窄頻干擾的影響,諸如由行動設備中的其他振盪器產生的初級及/或諧波信號引起的干擾。在操作中,陷波濾波器可能影響由GNSS接收器獲得的碼相位量測,因此亦可能影響基於量測的位置估計的準確性。碼相位量測中的失真可以基於幾個因素,諸如陷波濾波器的數量和頻寬、發送SV的假性隨機雜訊(PRN)碼以及相對於SV都卜勒頻率的陷波頻率。在實例中,本文提供的技術利用一或多個查閱資料表(LUT)來基於PRN碼、陷波頻率、陷波頻寬和SV都卜勒頻率決定碼相位誤差值。LUT可以經由通訊網路(例如,作為距離輔助資料)及/或其他設備到設備的通訊鏈路被提供給UE。在另一實例中,可以基於PRN碼、陷波頻率、陷波頻寬和SV都卜勒頻率線上產生(亦即,在UE上本端產生)碼相位誤差值。碼相位誤差的線上產生可以減輕動態陷波濾波。該等技術和配置是實例,並且可以使用其他技術和配置。This article discusses techniques for overcoming narrowband interference using notch filters. A notch filter is defined as any receiver element or process that attenuates or removes a portion of the received signal. For example, a programmable filter can be used to attenuate a portion of the received spectrum around a programmed narrowband interferer frequency. Alternatively, a self-tuning filter that automatically updates its frequency response can be utilized to attenuate the received spectrum around any narrowband jammers that appear dynamically. Alternatively, an interference canceller can be utilized, where narrowband interfering signals are estimated and subtracted from the received signal. Filtering or interference cancellation may be implemented by analog or digital means or any combination thereof. The digital front end (DFE) in a GNSS receiver can utilize notch filters to mitigate the effects of narrowband interference, such as that caused by primary and/or harmonic signals generated by other oscillators in the mobile device. In operation, the notch filter may affect the code phase measurements obtained by the GNSS receiver, and thus may also affect the accuracy of the position estimates based on the measurements. Distortion in code-phase measurements can be based on several factors, such as the number and bandwidth of notch filters, the pseudo-random noise (PRN) code with which the SV is transmitted, and the notch frequency relative to the SV Doppler frequency. In an example, techniques provided herein utilize one or more look-up tables (LUTs) to determine a code phase error value based on a PRN code, notch frequency, notch width, and SV Doppler frequency. The LUT may be provided to the UE via a communication network (eg, as distance assistance data) and/or other device-to-device communication links. In another example, the code phase error value may be generated online (that is, generated locally on the UE) based on the PRN code, notch frequency, notch bandwidth and SV Doppler frequency. On-line generation of code phase error can mitigate dynamic notch filtering. These techniques and configurations are examples, and other techniques and configurations may be used.

參考圖1,通訊系統100的實例包括UE 105、無線電存取網路(RAN)135(這裡是第五代(5G)下一代(NG)RAN(NG-RAN)和5G核心網路(5GC)140。UE 105可以是例如IoT設備、位置追蹤設備、蜂巢式電話或其他設備。5G網路亦可以稱為新無線電(NR)網路;NG-RAN 135可以被稱為5G RAN或NR RAN;並且5GC 140可以被稱為NG核心網路(NGC)。第三代合作夥伴計畫(3GPP)正在進行NG-RAN和5GC的標準化。因此,NG-RAN 135和5GC 140可以符合來自3GPP的5G支援的當前或未來標準。RAN 135可以是另一種類型的RAN,例如,3G RAN、4G長期進化(LTE)RAN等。通訊系統100可以將來自衛星載具(SV)190、191、192、193的群集185的資訊用於衛星定位系統(SPS)(例如,全球導航衛星系統(GNSS)),如全球定位系統(GPS)、全球導航衛星系統(GLONASS)、伽利略或北斗或一些其他本端或區域SPS,諸如印度區域導航衛星系統(IRNSS)、歐洲地球靜止導航重疊服務(EGNOS)或廣域增強系統(WAAS)。下文描述通訊系統100的附加部件。通訊系統100可以包括附加的或替代的部件。Referring to FIG. 1 , an example communication system 100 includes UE 105, radio access network (RAN) 135 (here fifth generation (5G) next generation (NG) RAN (NG-RAN) and 5G core network (5GC) 140. The UE 105 may be, for example, an IoT device, a location tracking device, a cellular phone or other device. The 5G network may also be referred to as a New Radio (NR) network; the NG-RAN 135 may be referred to as 5G RAN or NR RAN; And 5GC 140 may be called NG Core Network (NGC). Standardization of NG-RAN and 5GC is underway by 3rd Generation Partnership Project (3GPP). Therefore, NG-RAN 135 and 5GC 140 may comply with 5G from 3GPP Current or future standards supported. The RAN 135 may be another type of RAN, for example, 3G RAN, 4G Long Term Evolution (LTE) RAN, etc. The communication system 100 may transmit data from satellite vehicles (SV) 190, 191, 192, 193 The information of the cluster 185 is used for satellite positioning systems (SPS) (eg, Global Navigation Satellite System (GNSS)), such as Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), Galileo or BeiDou or some other local or Regional SPS, such as Indian Regional Navigation Satellite System (IRNSS), European Geostationary Navigation Overlay Service (EGNOS) or Wide Area Augmentation System (WAAS). Additional components of communication system 100 are described below. Communication system 100 may include additional or alternative part.

如圖1所示,NG-RAN 135包括NR節點B(gNB)110a、110b和下一代e節點B(ng-eNB) 114,並且5GC 140包括存取和行動性管理功能(AMF)115、通信期管理功能(SMF)117、位置管理功能(LMF)120和閘道行動位置中心(GMLC)125。gNB 110a、110b和ng-eNB 114彼此通訊耦合,各自被配置為與UE 105進行雙向無線通訊,並且各自通訊耦合到AMF 115,並被配置為與AMF 115進行雙向通訊。AMF 115、SMF 117、LMF 120和GMLC 125彼此通訊耦合,並且GMLC通訊耦合到外部客戶端130。SMF 117可以充當服務控制功能(SCF)(未圖示)的初始接觸點,以建立、控制和刪除媒體通信期。As shown in Figure 1, NG-RAN 135 includes NR Node Bs (gNBs) 110a, 110b and Next Generation eNode B (ng-eNB) 114, and 5GC 140 includes Access and Mobility Management Function (AMF) 115, communication Period Management Function (SMF) 117, Location Management Function (LMF) 120 and Gateway Operations Location Center (GMLC) 125. gNBs 110 a , 110 b and ng-eNB 114 are communicatively coupled to each other, each configured for two-way wireless communication with UE 105 , and each communicatively coupled to AMF 115 and configured for two-way communication with AMF 115 . AMF 115 , SMF 117 , LMF 120 , and GMLC 125 are communicatively coupled to each other, and the GMLC is communicatively coupled to an external client 130 . SMF 117 may act as the initial point of contact for a service control function (SCF) (not shown) to establish, control and delete media communication sessions.

圖1提供了各種部件的概括說明,其中的任何一個或全部可以適當地利用,並且其中的每一個可以根據需要被複製或省略。具體而言,儘管僅示出一個UE 105,但是通訊系統100中可以利用許多UE(例如,數百、數千、數百萬等)。類似地,通訊系統100可以包括更大(或更小)數量的SV(亦即,多於或少於所示的四個SV 190-193)、gNB 110a、110b、ng-eNB 114、AMF 115、外部客戶端130及/或其他部件。示出的連接通訊系統100中各種部件的連接包括資料和訊號傳遞連接,其可以包括附加(中間)部件、直接或間接實體及/或無線連接及/或附加網路。此外,取決於期望的功能,部件可以被重新佈置、組合、分離、替換及/或省略。Figure 1 provides a general illustration of various components, any or all of which may be utilized as appropriate, and each of which may be duplicated or omitted as desired. Specifically, although only one UE 105 is shown, many UEs (eg, hundreds, thousands, millions, etc.) may be utilized in the communications system 100 . Similarly, communication system 100 may include a greater (or lesser) number of SVs (ie, more or less than the four SVs 190-193 shown), gNBs 110a, 110b, ng-eNBs 114, AMFs 115 , external client 130 and/or other components. The connections shown connecting the various components in the communication system 100 include data and signaling connections, which may include additional (intermediate) components, direct or indirect physical and/or wireless connections and/or additional networks. Furthermore, components may be rearranged, combined, separated, replaced, and/or omitted depending on desired functions.

儘管圖1示出基於5G的網路,但是類似的網路實現方式和配置可以用於其他通訊技術,諸如3G、長期進化(LTE)等。在此描述的實現方式(無論是針對5G技術及/或針對一或多個其他通訊技術及/或協定)可以用於發送(或廣播)定向同步信號,在UE(例如,UE 105)處接收和量測定向信號,及/或(經由GMLC 125或其他位置伺服器)向UE 105提供位置輔助,及/或基於在UE 105處接收到的針對此種定向發送信號的量測量,在諸如UE 105、gNB 110a、110b或LMF 120之類的具有定位能力的設備處計算UE 105的位置。閘道行動位置中心(GMLC)125、位置管理功能(LMF)120、存取和行動性管理功能(AMF) 115、SMF 117、ng-eNB (e節點B)114以及gNB(g節點B)110a、110b是實例,並且在各種實施例中,可以分別由各種其他定位伺服器功能及/或基地台功能來代替或包括各種其他位置伺服器功能及/或基地台功能。Although FIG. 1 shows a 5G-based network, similar network implementations and configurations may be used for other communication technologies, such as 3G, Long Term Evolution (LTE), and the like. Implementations described herein (whether for 5G technology and/or for one or more other communication technologies and/or protocols) can be used to send (or broadcast) directional synchronization signals, received at a UE (eg, UE 105) and/or provide location assistance to the UE 105 (via the GMLC 125 or other location server), and/or based on volume measurements received at the UE 105 for such directional signals, such as at the UE 105 , a location-capable device such as gNB 110a, 110b or LMF 120 calculates the location of UE 105 . Gateway Mobile Location Center (GMLC) 125, Location Management Function (LMF) 120, Access and Mobility Management Function (AMF) 115, SMF 117, ng-eNB (eNodeB) 114 and gNB (gNodeB) 110a , 110b are examples, and in various embodiments may be replaced by or include various other location server functions and/or base station functions, respectively.

UE 105可以包括及/或可以被稱為設備、行動設備、無線設備、行動終端、終端、行動站(MS)、使能安全使用者平面定位(SUPL)的終端(SET)或一些其他名稱。此外,UE 105可以對應於手機、智慧手機、膝上型電腦、平板電腦、PDA、追蹤設備、導航設備、物聯網路(IoT)設備、資產追蹤器、健康監視器、安全系統、智慧城市感測器、智慧型儀器表、可穿戴追蹤器或一些其他可攜式或可移動設備。通常,儘管不是必須的,UE 105可以支援使用一或多個無線電存取技術(RAT)的無線通訊,諸如行動通訊全球系統(GSM)、分碼多工存取(CDMA)、寬頻CDMA(WCDMA)、LTE、高速封包資料(HRPD)、IEEE 802.11 WiFi(亦稱為Wi-Fi)、藍芽®(BT)、全球互通微波存取(WiMAX)、5G新無線電(NR)(例如,使用NG-RAN 135和5GC 140)等。UE 105可以支援使用無線區域網路(WLAN)的無線通訊,該無線區域網路可以使用例如數位用戶線路(DSL)或封包電纜連線到其他網路(例如,網際網路)。該等RAT中的一或多個的使用可以允許UE 105與外部客戶端130通訊(例如,經由圖1中未圖示的5GC 140的元件,或者可能經由GMLC 125),及/或允許外部客戶端130接收關於UE 105的位置資訊(例如,經由GMLC 125)。A UE 105 may include and/or may be referred to as a device, mobile device, wireless device, mobile terminal, terminal, mobile station (MS), secure user plane positioning (SUPL) enabled terminal (SET), or some other name. Additionally, UE 105 may correspond to cell phones, smartphones, laptops, tablets, PDAs, tracking devices, navigation devices, Internet of Things (IoT) devices, asset trackers, health monitors, security systems, smart city sensors, meter, smart watch, wearable tracker, or some other portable or removable device. Typically, though not necessarily, UE 105 can support wireless communications using one or more Radio Access Technologies (RATs), such as Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA), Wideband CDMA (WCDMA ), LTE, High Speed Packet Data (HRPD), IEEE 802.11 WiFi (also known as Wi-Fi), Bluetooth® (BT), Worldwide Interoperability for Microwave Access (WiMAX), 5G New Radio (NR) (for example, using NG -RAN 135 and 5GC 140) etc. UE 105 may support wireless communication using a Wireless Local Area Network (WLAN), which may be connected to other networks (eg, the Internet) using, for example, Digital Subscriber Line (DSL) or packet cable. Use of one or more of these RATs may allow UE 105 to communicate with external clients 130 (e.g., via elements of 5GC 140 not shown in FIG. 1 , or possibly via GMLC 125), and/or allow external clients Peer 130 receives location information about UE 105 (eg, via GMLC 125).

UE 105可以包括單個實體或者可以包括多個實體,諸如在個人區域網中,其中使用者可以採用音訊、視訊及/或資料I/O(輸入/輸出)設備及/或身體感測器以及單獨的有線或無線數據機。對UE 105的位置的估計可以被稱為定位、位置估計、位置決定、決定、決定位置、位置估計、或位置決定,並且可以是地理層面的,由此提供UE 105的位置座標(例如,緯度和經度),其可以包括或不包括海拔分量(例如,高於海平面的高度、高於地平面的高度或或低於地平面的深度、樓面水平或地下室水平)。可選地,UE 105的位置可以被表示為城市位置(例如,作為郵政位址或建築物中某個點或小型區域的標誌,諸如特定的房間或樓層)。UE 105的位置可以表示為期望UE 105以一定概率或置信水平(例如,67%、95%等)位於其中的面積或體積(以地理或城市形式定義)。UE 105的位置可以表示為相對位置,包括例如距已知位置的距離和方向。相對位置可以表示為相對於已知位置處的某個原點定義的相對座標(例如,X、Y(和Z)座標),該已知位置可以在例如地理上、以市政術語或藉由參考例如地圖、樓層平面圖或建築平面圖上指示的點、面積或體積來定義。在本文包含的描述中,除非另有指示,術語位置的使用可以包括該等變體中的任何一種。當計算UE的位置時,通常是求解局部x、y和可能的z座標,隨後,若需要,將局部座標轉換為絕對座標(例如,高於或低於平均海平面的緯度、經度和海拔)。UE 105 may comprise a single entity or may comprise multiple entities, such as in a personal area network, where a user may employ audio, video and/or data I/O (input/output) devices and/or body sensors and separate wired or wireless modem. Estimation of the location of the UE 105 may be referred to as a position fix, location estimate, location decision, decision, location decision, location estimate, or location decision, and may be geographical in scope, thereby providing location coordinates (e.g., latitude and longitude) of the UE 105 and longitude), which may or may not include an altitude component (eg, height above sea level, height above ground level, or depth below ground level, floor level, or basement level). Alternatively, the location of the UE 105 may be represented as a city location (eg, as a postal address or as a marker of a point or small area in a building, such as a specific room or floor). The location of the UE 105 may be expressed as an area or volume (defined in geographic or urban form) within which the UE 105 is expected to be located with a certain probability or confidence level (eg, 67%, 95%, etc.). The location of UE 105 may be expressed as a relative location, including, for example, distance and direction from known locations. A relative location may be expressed as relative coordinates (e.g., X, Y (and Z) coordinates) defined relative to some origin at a known location, for example, geographically, in municipal terms, or by reference For example, points, areas or volumes indicated on maps, floor plans or building plans. In the description contained herein, use of the term position may include any of these variations unless otherwise indicated. When computing the UE's position, it is common to solve for local x, y and possibly z coordinates, and then, if necessary, convert the local coordinates to absolute coordinates (e.g. latitude, longitude and altitude above or below mean sea level) .

UE 105可以被配置為使用多種技術中的一或多個與其他實體通訊。UE 105可以被配置為經由一或多個設備到設備(D2D)同級間(P2P)鏈路間接連接到一或多個通訊網路。D2D P2P鏈路可以由任何適當的D2D無線電存取技術(RAT)來支援,諸如LTE直連(LTE-D)、WiFi直連(WiFi-D)、藍芽®等。利用D2D通訊的一組UE中的一或多個可以在發送/接收點(TRP)的地理覆蓋區域內,諸如一或多個gNB 110a、110b及/或ng-eNB 114。該組中的其他UE可能在該等地理覆蓋區域之外,或者可能無法以其他方式從基地台接收傳輸。經由D2D通訊進行通訊的UE組可以利用一對多(1:M)系統,其中每個UE可以向組中的其他UE進行發送。TRP可能有助於為D2D通訊排程資源。在其他情況下,D2D通訊可以在不涉及TRP的情況下在UE之間進行。UE 105 may be configured to communicate with other entities using one or more of a variety of techniques. The UE 105 may be configured to connect indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links. The D2D P2P link may be supported by any suitable D2D radio access technology (RAT), such as LTE Direct (LTE-D), WiFi Direct (WiFi-D), Bluetooth®, and the like. One or more of a group of UEs utilizing D2D communication may be within the geographic coverage area of a transmission/reception point (TRP), such as one or more gNBs 110 a , 110 b and/or ng-eNB 114 . Other UEs in the group may be outside such geographic coverage areas, or may not otherwise be able to receive transmissions from the base station. A group of UEs communicating via D2D communication may utilize a one-to-many (1:M) system, where each UE may transmit to other UEs in the group. TRP may help to schedule resources for D2D communication. In other cases, D2D communication can take place between UEs without involving TRP.

圖1所示的NG-RAN 135中的基地台(BS)包括NR節點B,稱為gNB 110a和110b。NG-RAN 135中的成對的gNB 110a、110b可以經由一或多個其他gNB相互連接。經由UE 105和一或多個gNB 110a、110b之間的無線通訊,向UE 105提供對5G網路的存取,其中gNB 110a、110b可以使用5G代表UE 105提供對5GC 140的無線通訊存取。在圖1中,假設UE 105的服務gNB是gNB 110a,儘管若UE 105移動到另一個位置,另一個gNB(例如,gNB 110b)可以充當服務gNB,或者可以充當輔助gNB來向UE 105提供額外的傳輸量和頻寬。The base stations (BSs) in the NG-RAN 135 shown in Figure 1 include NR Node Bs, referred to as gNBs 110a and 110b. The paired gNBs 110a, 110b in the NG-RAN 135 may be interconnected via one or more other gNBs. providing access to the 5G network to the UE 105 via wireless communication between the UE 105 and one or more gNBs 110a, 110b, wherein the gNBs 110a, 110b may provide wireless communication access to the 5GC 140 on behalf of the UE 105 using 5G . In FIG. 1, it is assumed that the serving gNB of UE 105 is gNB 110a, although another gNB (e.g., gNB 110b) may act as a serving gNB if UE 105 moves to another location, or may act as a secondary gNB to provide UE 105 with additional throughput and bandwidth.

圖1所示的NG-RAN 135中的基地台(BS)可以包括ng-eNB 114,亦稱為下一代進化節點B。ng-eNB 114可以連接到NG-RAN 135中的一或多個gNB 110a、110b,可能經由一或多個其他gNB及/或一或多個其他ng-eNB。ng-eNB 114可以向UE 105提供LTE無線存取及/或進化型LTE(eLTE)無線存取。gNB 110a、110b及/或ng-eNB 114中的一或多個可以被配置為用作僅定位信標,其可以發送信號以輔助決定UE 105的位置,但是可以不從UE 105或其他UE接收信號。A base station (BS) in the NG-RAN 135 shown in FIG. 1 may include an ng-eNB 114, also known as a next-generation evolved Node B. The ng-eNB 114 may be connected to one or more gNBs 110a, 110b in the NG-RAN 135, possibly via one or more other gNBs and/or one or more other ng-eNBs. The ng-eNB 114 can provide LTE radio access and/or evolved LTE (eLTE) radio access to the UE 105 . One or more of gNBs 110a, 110b, and/or ng-eNB 114 may be configured to act as location-only beacons, which may transmit signals to assist in determining the location of UE 105, but may not receive signals from UE 105 or other UEs Signal.

基地台,諸如gNB 110a、gNB 110b和ng-eNB 114,可以各自包括一或多個TRP。例如,BS的細胞內的每個扇區可以包括TRP,但多個TRP可以共享一或多個部件(例如,共享處理器但具有單獨的天線)。系統100可以包括巨集TRP,或者系統100可以具有不同類型的TRP,例如巨集、微微及/或毫微微TRP等。巨集TRP可以覆蓋相對較大的地理區域(例如,半徑幾公里),並且可以允許具有服務訂閱的終端不受限制地存取。微微TRP可以覆蓋相對較小的地理區域(例如,微微細胞),並且可以允許具有服務訂閱的終端不受限制地存取。毫微微或家庭TRP可以覆蓋相對較小的地理區域(例如,毫微微細胞),並且可以允許與毫微微細胞相關聯的終端(例如,家庭中使用者的終端)進行受限存取。Base stations, such as gNB 110a, gNB 110b, and ng-eNB 114, may each include one or more TRPs. For example, each sector within a cell of a BS may include a TRP, but multiple TRPs may share one or more components (eg, share a processor but have separate antennas). System 100 may include macro TRPs, or system 100 may have different types of TRPs, such as macro, pico, and/or femto TRPs, among others. A macro TRP may cover a relatively large geographic area (eg, several kilometers in radius) and may allow unrestricted access by terminals with service subscriptions. A pico TRP may cover a relatively small geographic area (eg, a pico cell) and may allow unrestricted access by terminals with service subscriptions. A femto or home TRP may cover a relatively small geographic area (eg, a femto cell) and may allow restricted access by terminals associated with the femto cell (eg, a terminal of a user in a home).

如所述,儘管圖1描繪了被配置為根據5G通訊協定進行通訊的節點,但是可以使用被配置為根據其他通訊協定進行通訊的節點,諸如,例如,LTE協定或IEEE 802.11x協定。例如,在向UE 105提供LTE無線存取的進化封包系統(EPS)中,RAN可以包括進化通用行動電信系統(UMTS)地面無線電存取網路(E-UTRAN),其可以包括基地台,該基地台包括進化節點B(eNB)。EPS的核心網路可以包括進化封包核心(EPC)。EPS可以包括E-UTRAN加EPC,其中E-UTRAN對應於NG-RAN 135,並且EPC對應於圖1中的5GC 140。As noted, although FIG. 1 depicts nodes configured to communicate in accordance with the 5G protocol, nodes configured to communicate in accordance with other protocols may be used, such as, for example, the LTE protocol or the IEEE 802.11x protocol. For example, in an Evolved Packet System (EPS) that provides LTE radio access to UE 105, the RAN may include an Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN), which may include base stations, the Base stations include evolved Node Bs (eNBs). The core network of the EPS may include the Evolved Packet Core (EPC). The EPS may include E-UTRAN plus EPC, where E-UTRAN corresponds to NG-RAN 135 and EPC corresponds to 5GC 140 in FIG. 1 .

gNB 110a、110b和ng-eNB 114可以與AMF 115通訊,後者與LMF 120通訊用於定位功能。AMF 115可以支援UE 105的行動性,包括細胞改變和交遞,並且可以參與支援到UE 105的訊號傳遞連接,並且可能支援UE 105的資料和語音承載。LMF 120可以例如經由無線通訊直接與UE 105通訊。LMF 120可以支援當UE 105存取NG-RAN 135時UE 105的定位,並且可以支援定位程序/方法,諸如輔助GNSS(A-GNSS)、觀察到達時間差(OTDOA)、即時運動學(RTK)、精確點定位(PPP)、差分GNSS(DGNSS)、增強型細胞ID(E-CID)、到達角(AOA)、離開角(AOD)及/或其他定位方法。LMF 120可以處理例如從AMF 115或GMLC 125接收的針對UE 105的定位服務請求。LMF 120可以連接到AMF 115及/或GMLC 125。LMF 120可以被稱作其他名稱,諸如位置管理器(LM)、位置功能(LF)、商業LMF(CLMF)或增值LMF(VLMF)。實現LMF 120的節點/系統可以附加地或替代地實現其他類型的位置支援模組,諸如增強型服務行動定位中心(E-SMLC)或安全使用者平面定位(SUPL)定位平臺(SLP)。定位功能的至少一部分(包括推導UE 105的位置)可以在UE 105處執行(例如,使用由UE 105針對由諸如gNB 110a、110b和ng-eNB 114的無線節點發送的信號獲得的信號量測,及/或例如由LMF 120提供給UE 105的輔助資料)。The gNBs 110a, 110b and ng-eNB 114 may communicate with the AMF 115, which communicates with the LMF 120 for positioning functions. AMF 115 may support UE 105 mobility, including cell change and handover, and may participate in supporting signaling connections to UE 105, and may support UE 105 data and voice bearers. LMF 120 may communicate directly with UE 105, eg, via wireless communication. LMF 120 may support positioning of UE 105 when UE 105 accesses NG-RAN 135 and may support positioning procedures/methods such as Assisted GNSS (A-GNSS), Observed Time Difference of Arrival (OTDOA), Real Time Kinematics (RTK), Precise Point Positioning (PPP), Differential GNSS (DGNSS), Enhanced Cell ID (E-CID), Angle of Arrival (AOA), Angle of Departure (AOD) and/or other positioning methods. LMF 120 may handle location service requests for UE 105 received, eg, from AMF 115 or GMLC 125 . LMF 120 may be connected to AMF 115 and/or GMLC 125 . LMF 120 may be called other names such as Location Manager (LM), Location Function (LF), Commercial LMF (CLMF) or Value Added LMF (VLMF). Nodes/systems implementing LMF 120 may additionally or alternatively implement other types of location support modules, such as Enhanced Service Action Location Center (E-SMLC) or Secure User Plane Location (SUPL) Location Platform (SLP). At least part of the positioning functionality, including deriving the location of the UE 105, may be performed at the UE 105 (e.g., using signal measurements obtained by the UE 105 for signals transmitted by wireless nodes such as gNB 110a, 110b and ng-eNB 114, and/or assistance data, such as provided by the LMF 120 to the UE 105).

GMLC 125可以支援從外部客戶端130接收的對UE 105的定位請求,並且可以將此種定位請求轉發到AMF 115,以便由AMF 115轉發到LMF 120,或者可以將定位請求直接轉發到LMF 120。來自LMF 120的位置回應(例如,包含UE 105的位置估計)可以直接或經由AMF 115返回到GMLC 125,隨後GMLC 125可以將位置回應(例如,包含位置估計)返回到外部客戶端130。GMLC 125被示為連接到AMF 115和LMF 120,但在一些實現方式中5GC 140可能只支援該等連接中的一個。GMLC 125 may support positioning requests for UE 105 received from external client 130, and may forward such positioning requests to AMF 115 for forwarding by AMF 115 to LMF 120, or may forward positioning requests directly to LMF 120. A location response (eg, containing a location estimate for UE 105 ) from LMF 120 may be returned to GMLC 125 directly or via AMF 115 , which may then return a location response (eg, containing a location estimate) to external client 130 . GMLC 125 is shown connected to AMF 115 and LMF 120, but in some implementations 5GC 140 may only support one of these connections.

如圖1中進一步示出的,LMF 120可以使用新無線電位置協定A(其可以被稱為NPPa或NRPPa)與gNB 110a、110b及/或ng-eNB 114通訊,這可以在3GPP技術規範(TS) 38.455中定義。NRPPa可以與3GPP TS 36.455中定義的LTE定位協定A(LPPa)相同、相似或者是其擴展,NRPPa訊息經由AMF 115在gNB 110a(或gNB 110b)和LMF 120之間及/或在ng-eNB 114和LMF 120之間傳遞。如圖1中進一步示出的,LMF 120和UE 105可以使用在3GPP TS 36.355中定義的LTE定位協定(LPP)進行通訊。LMF 120和UE 105亦可以或替代地使用新無線電定位協定(其可以被稱為NPP或NRPP)進行通訊,新無線電定位協定可以與LPP相同、相似或者是其擴展。這裡,LPP及/或NPP訊息可以經由AMF 115和用於UE 105的服務gNB 110a、110b或服務ng-eNB 114在UE 105和LMF 120之間傳遞。例如,LPP及/或NPP訊息可以使用5G定位服務應用協定(LCS AP)在LMF 120和AMF 115之間傳遞,並且可以使用5G非存取層(NAS)協定在AMF 115和UE 105之間傳遞。LPP及/或NPP協定可用於支援使用UE輔助及/或基於UE的定位方法(諸如A-GNSS、RTK、OTDOA及/或E-CID)對UE 105進行定位。NRPPa協定可用於使用基於網路的定位方法來支援UE 105的定位,諸如E-CID(例如,當與由gNB 110a、110b或ng-eNB 114獲得的量測一起使用時),及/或可由LMF 120用於從gNB 110a、110b及/或ng-eNB 114獲得位置相關資訊,諸如定義來自gNB 110a、110b及/或ng-eNB 114的定向SS傳輸的參數。As further shown in FIG. 1, LMF 120 may communicate with gNBs 110a, 110b and/or ng-eNB 114 using New Radio Location Protocol A (which may be referred to as NPPa or NRPPa), which may be described in the 3GPP Technical Specification (TS ) as defined in 38.455. NRPPa can be the same as, similar to or an extension of LTE Positioning Protocol A (LPPa) defined in 3GPP TS 36.455, NRPPa messages are communicated between gNB 110a (or gNB 110b) and LMF 120 via AMF 115 and/or at ng-eNB 114 and LMF 120 transfers. As further shown in Figure 1, LMF 120 and UE 105 may communicate using the LTE Positioning Protocol (LPP) defined in 3GPP TS 36.355. LMF 120 and UE 105 may also or instead communicate using New Radiolocation Protocol (which may be referred to as NPP or NRPP), which may be the same as, similar to, or an extension of LPP. Here, LPP and/or NPP messages may be communicated between UE 105 and LMF 120 via AMF 115 and serving gNB 110a, 110b or serving ng-eNB 114 for UE 105 . For example, LPP and/or NPP messages may be communicated between LMF 120 and AMF 115 using the 5G Location Services Application Protocol (LCS AP), and may be communicated between AMF 115 and UE 105 using the 5G Non-Access Stratum (NAS) protocol . LPP and/or NPP protocols may be used to support positioning of the UE 105 using UE-assisted and/or UE-based positioning methods such as A-GNSS, RTK, OTDOA, and/or E-CID. The NRPPa protocol can be used to support positioning of UE 105 using network-based positioning methods, such as E-CID (e.g., when used with measurements obtained by gNB 110a, 110b or ng-eNB 114), and/or can be used by LMF 120 is used to obtain location related information from gNB 110a, 110b and/or ng-eNB 114, such as parameters defining directed SS transmissions from gNB 110a, 110b and/or ng-eNB 114.

利用UE輔助定位方法,UE 105可以獲得位置量測,並將量測發送到網路實體,諸如基地台或位置伺服器(例如,LMF 120),用於計算UE 105的位置估計。例如,位置量測可以包括用於gNB 110a、110b、ng-eNB 114及/或WLAN AP的接收信號強度指示(RSSI)、往返信號傳播時間(RTT)、參考信號時間差(RSTD)、參考信號接收功率(RSRP)及/或參考信號接收品質(RSRQ)中的一或多個。位置量測亦可以或替代地包括GNSS偽距、SV 190-193的碼相位及/或載波相位的量測。Using UE-assisted positioning methods, the UE 105 can obtain location measurements and send the measurements to a network entity, such as a base station or a location server (eg, LMF 120 ), for computing a location estimate for the UE 105 . For example, location measurements may include Received Signal Strength Indication (RSSI), Round Trip Signal Travel Time (RTT), Reference Signal Time Difference (RSTD), Reference Signal Received One or more of Power (RSRP) and/or Reference Signal Received Quality (RSRQ). Position measurements may also or alternatively include GNSS pseudorange, code phase and/or carrier phase measurements of SVs 190-193.

利用基於UE的定位方法,UE 105可以獲得位置量測(例如,其可以與UE輔助定位方法的位置量測相同或相似),並且可以計算UE 105的位置(例如,借助於從諸如位置伺服器(諸如LMF 120)之類的網路實體接收的或者由gNB 110a、110b、ng-eNB 114或其他基地台或AP廣播的輔助資料)。With UE-based positioning methods, the UE 105 can obtain location measurements (e.g., which can be the same or similar to those of the UE-assisted positioning method), and can calculate the location of the UE 105 (e.g., by means of (Auxiliary data received by network entities such as LMF 120) or broadcast by gNB 110a, 110b, ng-eNB 114 or other base stations or APs).

利用基於網路的定位方法,一或多個基地台(例如,gNB 110a、110b及/或ng-eNB 114)或AP可以獲得位置量測(例如,由UE 105發送的信號的RSSI、RTT、RSRP、RSRQ或到達時間(TOA)的量測)及/或可以接收由UE 105獲得的量測。一或多個基地台或AP可以將量測發送到諸如位置伺服器(例如,LMF 120)的網路實體,用於計算UE 105的位置估計。Using network-based positioning methods, one or more base stations (e.g., gNB 110a, 110b and/or ng-eNB 114) or APs can obtain location measurements (e.g., RSSI, RTT, Measurements of RSRP, RSRQ, or Time of Arrival (TOA)) and/or measurements obtained by UE 105 may be received. One or more base stations or APs may send measurements to a network entity, such as a location server (eg, LMF 120 ), for computing a location estimate for UE 105 .

由gNB 110a、110b及/或ng-eNB 114使用NRPPa向LMF 120提供的資訊可以包括定向SS傳輸的時序和配置資訊以及位置座標。LMF 120可以經由NG-RAN 135和5GC 140在LPP及/或NPP訊息中向UE 105提供此資訊的一些或全部作為輔助資料。The information provided by gNB 110a, 110b and/or ng-eNB 114 to LMF 120 using NRPPa may include timing and configuration information and location coordinates for directional SS transmissions. LMF 120 may provide some or all of this information to UE 105 via NG-RAN 135 and 5GC 140 in LPP and/or NPP messages as auxiliary data.

取決於期望的功能,從諸如LMF 120的網路實體發送到UE 105的LPP或NPP訊息可以指示UE 105執行多種事情中的任何一種。例如,LPP或NPP訊息可以包含使UE 105獲得GNSS(或A-GNSS)、WLAN、E-CID及/或OTDOA(或一些其他定位方法)的量測的指令。在E-CID的情況下,LPP或NPP訊息可以指示UE 105獲得在由gNB 110a、110b及/或ng-eNB 114的一或多個支援(或由諸如eNB或WiFi AP的一些其他類型的基地台支援)的特定細胞內傳輸的定向信號的一或多個量測量(例如,波束ID、波束寬度、平均角度、RSRP、RSRQ量測)。UE 105可以經由服務gNB 110a(或服務ng-eNB 114)和AMF 115在LPP或NPP訊息中(例如,在5G NAS訊息內部)將量測量發送回LMF 120。Depending on the desired functionality, an LPP or NPP message sent from a network entity such as LMF 120 to UE 105 may instruct UE 105 to do any of a variety of things. For example, an LPP or NPP message may include instructions for the UE 105 to obtain measurements of GNSS (or A-GNSS), WLAN, E-CID, and/or OTDOA (or some other positioning method). In the case of E-CID, the LPP or NPP message may instruct UE 105 to obtain support from one or more of gNB 110a, 110b and/or ng-eNB 114 (or by some other type of base such as eNB or WiFi AP One or more quantity measurements (eg, beam ID, beam width, average angle, RSRP, RSRQ measurements) of directional signals transmitted within a particular cell supported by a station). UE 105 may send volume measurements back to LMF 120 via serving gNB 110a (or serving ng-eNB 114 ) and AMF 115 in an LPP or NPP message (eg, within a 5G NAS message).

如所述,儘管通訊系統100是關於5G技術描述的,但是通訊系統100可以被實現為支援其他通訊技術,諸如GSM、WCDMA、LTE等,其用於支援諸如UE 105的行動設備並與之互動(例如,實現語音、資料、定位和其他功能)。在一些此種實施例中,5GC 140可以被配置為控制不同的空中介面。例如,5GC 140可以使用5GC 150中的非3GPP互通功能(N3IWF,圖1中未圖示)連接到WLAN。例如,WLAN可以支援UE 105的IEEE 802.11 WiFi存取,並且可以包括一或多個WiFi AP。這裡,N3IWF可以連接到WLAN和5GC 140中的其他元件,諸如AMF 115。在一些實施例中,NG-RAN 135和5GC 140皆可以由一或多個其他RAN和一或多個其他核心網路代替。例如,在EPS中,NG-RAN 135可以由包含eNB的E-UTRAN代替,並且5GC 140可以由EPC代替,EPC包含行動性管理實體(MME)而不是AMF 115、E-SMLC而不是LMF 120、以及可以類似於GMLC 125的GMLC。在此種EPS中,E-SMLC可以使用LPPa來代替NRPPa,以向E-UTRAN中的eNB發送位置資訊和從E-UTRAN中的eNB接收位置資訊,並且可以使用LPP來支援UE 105的定位。在該等其他實施例中,可以以類似於這裡針對5G網路描述的方式來支援使用定向PRS的UE 105的定位,不同之處在於,這裡針對gNB 110a、110b、ng-eNB 114、AMF 115和LMF 120描述的功能和程序在一些情況下可以替代地應用於其他網路元件,諸如eNB、WiFi AP、MME和E-SMLC。As mentioned, although the communication system 100 is described with respect to 5G technology, the communication system 100 can be implemented to support other communication technologies, such as GSM, WCDMA, LTE, etc., for supporting and interacting with mobile devices such as UE 105 (for example, to implement voice, data, location and other functions). In some such embodiments, 5GC 140 may be configured to control various air interfaces. For example, the 5GC 140 may connect to the WLAN using a non-3GPP interworking function (N3IWF, not shown in FIG. 1 ) in the 5GC 150 . For example, a WLAN may support IEEE 802.11 WiFi access for UE 105 and may include one or more WiFi APs. Here, the N3IWF may connect to the WLAN and other elements in the 5GC 140 , such as the AMF 115 . In some embodiments, both NG-RAN 135 and 5GC 140 may be replaced by one or more other RANs and one or more other core networks. For example, in EPS, NG-RAN 135 can be replaced by E-UTRAN including eNB, and 5GC 140 can be replaced by EPC, EPC contains Mobility Management Entity (MME) instead of AMF 115, E-SMLC instead of LMF 120, And a GMLC that can be similar to GMLC 125. In such EPS, E-SMLC can use LPPa instead of NRPPa to send and receive location information to and from eNB in E-UTRAN, and can use LPP to support UE 105 positioning. In these other embodiments, positioning of UE 105 using directional PRS may be supported in a manner similar to that described here for 5G networks, except here for gNB 110a, 110b, ng-eNB 114, AMF 115 The functions and procedures described with LMF 120 may in some cases be applied instead to other network elements, such as eNBs, WiFi APs, MMEs and E-SMLCs.

如所述,在一些實施例中,定位功能可以至少部分地使用由基地台(諸如gNB 110a、110b及/或ng-eNB 114)發送的定向SS波束來實現,該等基地台在要決定其位置的UE(例,如圖1的UE 105)的範圍內。在一些情況下,UE可以使用來自複數個基地台(諸如gNB 110a、110b、ng-eNB 114等)的定向SS波束來計算UE的位置。As noted, in some embodiments, positioning functionality may be implemented at least in part using directional SS beams transmitted by base stations (such as gNB 110a, 110b and/or ng-eNB 114) that are to determine their The location is within range of the UE (eg, UE 105 of FIG. 1 ). In some cases, the UE may use directional SS beams from a plurality of base stations (such as gNB 110a, 110b, ng-eNB 114, etc.) to calculate the UE's position.

亦參考圖2,UE 200是UE 105的實例,並且包括計算平臺,該計算平臺包括處理器210、包括軟體(SW)212的記憶體211、一或多個感測器213、用於收發器215(包括無線收發器240及/或有線收發器250)的收發器介面214、使用者介面216、衛星定位系統(SPS)接收器217、相機218和位置(運動)設備219。處理器210、記憶體211、(多個)感測器213、收發器介面214、使用者介面216、SPS接收器217、相機218和位置(運動)設備219可以藉由匯流排220(其可以被配置用於例如光及/或電通訊)彼此通訊耦合。一或多個所示的處理器可讀取指令裝置(例如,相機218、位置(運動)設備219及/或一或多個感測器213等)可以從UE 200中省略。處理器210可以包括一或多個智慧硬體設備,例如中央處理單元(CPU)、微控制器、特殊應用積體電路(ASIC)等。處理器210可以包括多個處理器,包括通用/應用處理器230、數位訊號處理器(DSP)231、數據機處理器232、視訊處理器233及/或感測器處理器234。處理器230-234中的一或多個可以包括多個設備(例如,多個處理器)。數據機處理器232可以支援雙SIM/雙連接(或者甚至更多的SIM)。例如,SIM(用戶身份模組或用戶標識模組)可以由原始設備製造商(OEM)使用,而另一個SIM可以由UE 200的終端使用者用於連接。記憶體211是非暫時性儲存媒體,其可以包括隨機存取記憶體(RAM)、快閃記憶體、光碟記憶體及/或唯讀記憶體(ROM)等。記憶體211儲存軟體212,軟體212可以是處理器可讀取的、處理器可執行的軟體代碼,包含被配置為當被執行時使處理器210執行這裡描述的各種功能的指令。可選地,軟體212可以不被處理器210直接執行,而是可以被配置成使得處理器210例如在被編譯和執行時執行該等功能。該描述可以指執行功能的處理器210,但是這包括其他實現方式,諸如處理器210執行軟體及/或韌體。該描述可以將執行功能的處理器210作為執行該功能的一或多個處理器230-234的簡寫。該描述可以將執行功能的UE 200作為執行該功能的UE 200的一或多個適當部件的簡寫。除了及/或代替記憶體211,處理器210可以包括具有儲存指令的記憶體。處理器210的功能將在下文更全面地論述。Referring also to FIG. 2, UE 200 is an example of UE 105 and includes a computing platform including a processor 210, memory 211 including software (SW) 212, one or more sensors 213, for transceiver 215 (including wireless transceiver 240 and/or wired transceiver 250 ), user interface 214 , satellite positioning system (SPS) receiver 217 , camera 218 and location (motion) device 219 . Processor 210, memory 211, sensor(s) 213, transceiver interface 214, user interface 216, SPS receiver 217, camera 218, and position (motion) device 219 may be connected via bus 220 (which may configured for eg optical and/or electrical communication) are communicatively coupled to each other. One or more of the illustrated processor-readable instruction devices (eg, camera 218 , position (motion) device 219 , and/or one or more sensors 213 , etc.) may be omitted from UE 200 . The processor 210 may include one or more intelligent hardware devices, such as a central processing unit (CPU), a microcontroller, an application specific integrated circuit (ASIC), and the like. The processor 210 may include multiple processors, including a general purpose/application processor 230 , a digital signal processor (DSP) 231 , a modem processor 232 , a video processor 233 and/or a sensor processor 234 . One or more of processors 230-234 may include multiple devices (eg, multiple processors). The modem processor 232 can support dual SIM/dual connectivity (or even more SIMs). For example, a SIM (Subscriber Identity Module or Subscriber Identity Module) may be used by an original equipment manufacturer (OEM), while another SIM may be used by an end user of the UE 200 for the connection. The memory 211 is a non-transitory storage medium, which may include random access memory (RAM), flash memory, optical disk memory, and/or read only memory (ROM). The memory 211 stores software 212, which may be processor-readable and processor-executable software code, comprising instructions configured to cause the processor 210 to perform various functions described herein when executed. Alternatively, the software 212 may not be directly executed by the processor 210, but may be configured such that the processor 210, for example, when compiled and executed, performs the functions. The description may refer to processor 210 performing a function, but this includes other implementations, such as processor 210 executing software and/or firmware. The description may refer to processor 210 performing a function as shorthand for one or more processors 230-234 performing that function. This description may refer to UE 200 performing a function as shorthand for one or more appropriate components of UE 200 performing that function. In addition to and/or instead of memory 211 , processor 210 may include a memory having stored instructions. The functionality of processor 210 will be discussed more fully below.

圖2所示的UE 200的配置是包括請求項在內的本揭示的實例而非限制,並且可以使用其他配置。例如,UE的示例配置包括處理器210的一或多個處理器230-234、記憶體211和無線收發器240。其他示例配置包括處理器210的一或多個處理器230-234、記憶體211、無線收發器240、以及(多個)感測器213、使用者介面216、SPS接收器217、相機218、PMD 219及/或有線收發器250中的一或多個。The configuration of UE 200 shown in FIG. 2 is an example of the present disclosure including claims and not limitation, and other configurations may be used. For example, an example configuration of a UE includes one or more processors 230 - 234 of processor 210 , memory 211 and wireless transceiver 240 . Other example configurations include one or more processors 230-234 of processor 210, memory 211, wireless transceiver 240, and sensor(s) 213, user interface 216, SPS receiver 217, camera 218, One or more of PMD 219 and/or wired transceiver 250 .

UE 200可以包括數據機處理器232,數據機處理器232能夠對收發器215及/或SPS接收器217接收和降頻轉換的信號執行基頻處理。數據機處理器232可以對要升頻轉換的信號進行基頻處理,以由收發器215發送。此外或可選地,基頻處理可以由通用處理器230及/或DSP 231執行。然而,可以使用其他配置來執行基頻處理。UE 200 may include a modem processor 232 capable of performing baseband processing on signals received and down-converted by transceiver 215 and/or SPS receiver 217 . The modem processor 232 may perform baseband processing on the signal to be upconverted for transmission by the transceiver 215 . Additionally or alternatively, baseband processing may be performed by general purpose processor 230 and/or DSP 231 . However, other configurations may be used to perform baseband processing.

UE 200可以包括(多個)感測器213,(多個)感測器213可以包括例如慣性量測單元(IMU)270、一或多個磁力計271及/或一或多個環境感測器272。IMU 270可以包括一或多個慣性感測器,例如,一或多個加速度計273(例如,共同回應於UE 200的三維加速度)及/或一或多個陀螺儀274。(多個)磁力計可以提供量測以決定方位(例如,相對於磁北及/或真北),該方位可以用於多種目的中的任何一種,例如,支援一或多個羅盤應用。(多個)環境感測器272可以包括例如一或多個溫度感測器、一或多個氣壓感測器、一或多個環境光感測器、一或多個相機成像器及/或一或多個麥克風等。(多個)感測器213可以產生類比及/或數位信號,其指示可以儲存在記憶體211中,並由DSP 231及/或通用處理器230處理,以支援一或多個應用,諸如,例如針對定位及/或導航操作的應用。UE 200 may include sensor(s) 213 which may include, for example, an inertial measurement unit (IMU) 270, one or more magnetometers 271, and/or one or more environmental sensing device 272. IMU 270 may include one or more inertial sensors, eg, one or more accelerometers 273 (eg, collectively responsive to three-dimensional acceleration of UE 200 ) and/or one or more gyroscopes 274 . The magnetometer(s) may provide measurements to determine an orientation (eg, relative to magnetic north and/or true north), which may be used for any of a variety of purposes, eg, to support one or more compass applications. Environmental sensor(s) 272 may include, for example, one or more temperature sensors, one or more barometric pressure sensors, one or more ambient light sensors, one or more camera imagers, and/or One or more microphones, etc. Sensor(s) 213 may generate analog and/or digital signals, indications of which may be stored in memory 211 and processed by DSP 231 and/or general purpose processor 230 to support one or more applications, such as, For example, applications for positioning and/or navigation operations.

(多個)感測器213可用於相對位置量測、相對位置決定、運動決定等。由感測器213偵測的資訊可以用於運動偵測、相對位移、航位推算、基於感測器的位置決定及/或感測器輔助的位置決定。(多個)感測器213可用於決定UE 200是固定的(靜止的)還是移動的,及/或是否向LMF 120報告關於UE 200的行動性的某些有用資訊。例如,基於由(多個)感測器213獲得/量測的資訊,UE 200可以向LMF 120通知/報告UE 200已經偵測到移動或者UE 200已經移動,並且報告相對位移/距離(例如,經由航位推算、或基於感測器的位置決定、或由(多個)感測器213啟用的感測器輔助位置決定)。在另一個實例中,對於相對定位資訊,感測器/IMU可以用於決定另一個設備相對於UE 200的角度及/或方位等。The sensor(s) 213 may be used for relative position measurement, relative position determination, motion determination, and the like. Information detected by the sensors 213 may be used for motion detection, relative displacement, dead reckoning, sensor-based position determination, and/or sensor-assisted position determination. The sensor(s) 213 may be used to decide whether the UE 200 is stationary (stationary) or mobile, and/or whether to report some useful information about the mobility of the UE 200 to the LMF 120 . For example, based on the information obtained/measured by the sensor(s) 213, the UE 200 may notify/report to the LMF 120 that the UE 200 has detected movement or that the UE 200 has moved, and report the relative displacement/distance (e.g., via dead reckoning, or sensor based position determination, or sensor assisted position determination enabled by sensor(s) 213 ). In another example, for relative positioning information, the sensor/IMU can be used to determine the angle and/or orientation of another device relative to the UE 200 , etc.

IMU 270可以被配置為提供關於UE 200的運動方向及/或運動速度的量測,其可以用於相對位置決定。例如,IMU 270的一或多個加速度計273及/或一或多個陀螺儀274可以分別偵測UE 200的線性加速度和旋轉速度。UE 200的線性加速度和旋轉速度量測可以在時間上積分,以決定UE 200的暫態運動方向和位移。暫態運動方向和位移可以被積分以追蹤UE 200的位置。例如,可以決定UE 200的參考位置,諸如在某一時刻使用SPS接收器217(及/或藉由一些其他構件),並且在該時刻之後從(多個)加速度計273和(多個)陀螺儀274獲得的量測值可以用於航位推算,以基於UE 200相對於參考位置的移動(方向和距離)來決定UE 200的當前位置。The IMU 270 may be configured to provide measurements regarding the direction of motion and/or speed of motion of the UE 200, which may be used for relative position determination. For example, one or more accelerometers 273 and/or one or more gyroscopes 274 of the IMU 270 can detect the linear acceleration and rotational velocity of the UE 200, respectively. The linear acceleration and rotational velocity measurements of UE 200 can be integrated over time to determine the transient motion direction and displacement of UE 200 . The transient motion direction and displacement can be integrated to track the UE 200 position. For example, a reference position of UE 200 may be determined, such as using SPS receiver 217 (and/or by some other means) at a certain moment, and after that moment from accelerometer(s) 273 and gyro(s) Measurements obtained by meter 274 may be used in dead reckoning to determine the current location of UE 200 based on the movement (direction and distance) of UE 200 relative to a reference location.

(多個)磁力計271可以決定不同方向上的磁場強度,該等磁場強度可以用於決定UE 200的方位。例如,方位可以用於為UE 200提供數位羅盤。(多個)磁力計271可以包括二維磁力計,其被配置為偵測並提供兩個正交維度的磁場強度指示。此外或可選地,磁力計271可以包括三維磁力計,其被配置為偵測並提供三個正交維度的磁場強度指示。(多個)磁力計271可以提供用於感測磁場並向例如處理器210提供磁場指示的構件。The magnetometer(s) 271 can determine magnetic field strengths in different directions, which can be used to determine the orientation of the UE 200 . For example, the bearing can be used to provide the UE 200 with a digital compass. Magnetometer(s) 271 may include a two-dimensional magnetometer configured to detect and provide an indication of magnetic field strength in two orthogonal dimensions. Additionally or alternatively, magnetometer 271 may comprise a three-dimensional magnetometer configured to detect and provide an indication of magnetic field strength in three orthogonal dimensions. Magnetometer(s) 271 may provide means for sensing a magnetic field and providing an indication of the magnetic field to, eg, processor 210 .

收發器215可以包括無線收發器240和有線收發器250,其被配置為分別經由無線連接和有線連接與其他設備通訊。例如,無線收發器240可以包括耦合到一或多個天線246的發送器242和接收器244,用於發送(例如,在一或多個上行鏈路通道及/或一或多個側鏈路通道上)及/或接收(例如,在一或多個下行鏈路通道及/或一或多個側鏈路通道上)無線信號248,並將信號從無線信號248轉換成有線(例如,電及/或光)信號,並且從有線(例如,電及/或光)信號轉換成無線信號248。因此,發送器242可以包括多個發送器,該等發送器可以是個別部件或組合/集成部件,及/或接收器244可以包括多個接收器,該等接收器可以是個別部件或組合/集成部件。無線收發器240可以被配置為根據各種無線電存取技術(RAT)來傳送信號(例如,利用TRP及/或一或多個其他設備),諸如5G新無線電(NR)、GSM(行動通訊全球系統)、UMTS(通用行動電信系統)、AMPS(先進行動電話系統)、CDMA(分碼多工存取)、WCDMA(寬頻CDMA)、LTE(長期進化)、LTE直連(LTE-D)、3GPP LTE載具到萬物(V2X)(PC5)、IEEE 802.11(含IEEE 802.11p)、WiFi、WiFi直連(WiFi-D)、藍芽®、Zigbee等。新無線電可能使用毫米波頻率及/或低於6千兆赫的頻率。有線收發器250可以包括發送器252和接收器254,其被配置用於有線通訊,例如與網路135進行有線通訊,以例如向gNB 110a發送通訊和從gNB 110a接收通訊。發送器252可以包括多個發送器,該等發送器可以是個別部件或組合/集成部件,及/或接收器254可以包括多個接收器,該等接收器可以是個別部件或組合/集成部件。有線收發器250可以被配置用於例如光通訊及/或電通訊。收發器215可以例如藉由光及/或電連接通訊耦合到收發器介面214。收發器介面214可以至少部分地與收發器215集成在一起。Transceiver 215 may include a wireless transceiver 240 and a wired transceiver 250 configured to communicate with other devices via wireless and wired connections, respectively. For example, wireless transceiver 240 may include a transmitter 242 and a receiver 244 coupled to one or more antennas 246 for transmitting (e.g., on one or more uplink channels and/or one or more sidelink channel) and/or receive (e.g., on one or more downlink channels and/or one or more sidelink channels) wireless signals 248, and convert signals from wireless signals 248 to wired (e.g., electrical and/or optical) signals, and convert 248 from wired (eg, electrical and/or optical) signals to wireless signals. Accordingly, transmitter 242 may comprise multiple transmitters which may be individual components or combined/integrated components, and/or receiver 244 may comprise multiple receivers which may be individual components or combined/integrated components. Integrated components. The wireless transceiver 240 may be configured to transmit signals (eg, utilizing TRP and/or one or more other devices) according to various radio access technologies (RATs), such as 5G New Radio (NR), GSM (Global System for Mobile Communications), ), UMTS (Universal Mobile Telecommunications System), AMPS (Advanced Mobile Phone System), CDMA (Code Division Multiple Access), WCDMA (Wideband CDMA), LTE (Long Term Evolution), LTE Direct (LTE-D), 3GPP LTE Vehicle to Everything (V2X) (PC5), IEEE 802.11 (including IEEE 802.11p), WiFi, WiFi Direct (WiFi-D), Bluetooth®, Zigbee, etc. New radios may use millimeter wave frequencies and/or frequencies below 6 GHz. The wired transceiver 250 may include a transmitter 252 and a receiver 254 configured for wired communication, eg, with the network 135, eg, to send communications to and receive communications from the gNB 110a. Transmitter 252 may include multiple transmitters, which may be individual components or combined/integrated components, and/or receiver 254 may include multiple receivers, which may be individual components or combined/integrated components . Wired transceiver 250 may be configured for optical communication and/or electrical communication, for example. Transceiver 215 may be communicatively coupled to transceiver interface 214, eg, by optical and/or electrical connections. The transceiver interface 214 may be at least partially integrated with the transceiver 215 .

使用者介面216可以包括若干設備中的一或多個,諸如,例如揚聲器、麥克風、顯示設備、振動設備、鍵盤、觸控式螢幕等。使用者介面216可以包括該等設備中的任一者的多於一個設備。使用者介面216可以被配置為使得使用者能夠與由UE 200託管的一或多個應用進行互動。例如,使用者介面216可以將類比及/或數位信號的指示儲存在記憶體211中,以由DSP 231及/或通用處理器230回應於使用者的動作進行處理。類似地,在UE 200上託管的應用可以在記憶體211中儲存類比及/或數位信號的指示,以向使用者呈現輸出信號。使用者介面216可以包括音訊輸入/輸出(I/O)設備,該設備包括例如揚聲器、麥克風、數位類比電路、類比數位電路、放大器及/或增益控制電路(包括該等設備中任一者的的多於一個設備)。可以使用音訊I/O設備的其他配置。此外或可選地,使用者介面216可以包括一或多個觸控式感測器,以回應例如使用者介面216的鍵盤及/或觸控式螢幕上的觸碰及/或壓力。User interface 216 may include one or more of several devices such as, for example, speakers, microphones, display devices, vibration devices, keyboards, touch screens, and the like. User interface 216 may include more than one device of any of these devices. User interface 216 may be configured to enable a user to interact with one or more applications hosted by UE 200 . For example, the user interface 216 may store analog and/or digital signal indications in the memory 211 for processing by the DSP 231 and/or the general processor 230 in response to user actions. Similarly, an application hosted on UE 200 may store indications of analog and/or digital signals in memory 211 for presenting output signals to the user. User interface 216 may include audio input/output (I/O) devices including, for example, speakers, microphones, digital analog circuits, analog digital circuits, amplifiers, and/or gain control circuits (including any of these devices) more than one device). Other configurations of audio I/O devices may be used. Additionally or alternatively, the user interface 216 may include one or more touch sensors to respond to touch and/or pressure on, for example, the keypad and/or touch screen of the user interface 216 .

SPS接收器217(例如,全球定位系統(GPS)接收器)能夠經由SPS天線262接收和獲取SPS信號260。天線262被配置成將無線SPS信號260轉換成有線信號,例如電或光信號,並且可以與天線246集成。SPS接收器217可以被配置為全部或部分地處理所獲取的SPS信號260,用於估計UE 200的位置。例如,SPS接收器217可以被配置為藉由使用SPS信號260的三邊量測來決定UE 200的位置。通用處理器230、記憶體211、DSP 231及/或一或多個專用處理器(未圖示)可以被用來處理全部或部分獲取的SPS信號,及/或結合SPS接收器217計算UE 200的估計位置。記憶體211可以儲存SPS信號260及/或其他信號(例如,從無線收發器240獲取的信號)的指示(例如,量測),用於執行定位操作。通用處理器230、DSP 231及/或一或多個專用處理器及/或記憶體211可以提供或支援定位引擎,用於處理量測以估計UE 200的位置。SPS receiver 217 (eg, a global positioning system (GPS) receiver) is capable of receiving and acquiring SPS signals 260 via SPS antenna 262 . Antenna 262 is configured to convert wireless SPS signal 260 into a wired signal, such as an electrical or optical signal, and may be integrated with antenna 246 . The SPS receiver 217 may be configured to process the acquired SPS signal 260 in whole or in part for estimating the position of the UE 200 . For example, the SPS receiver 217 may be configured to determine the location of the UE 200 by using trilateration of the SPS signal 260 . The general-purpose processor 230, the memory 211, the DSP 231, and/or one or more special-purpose processors (not shown) may be used to process all or part of the acquired SPS signals, and/or in conjunction with the SPS receiver 217 to calculate the UE 200 the estimated location of . The memory 211 may store indications (eg, measurements) of the SPS signal 260 and/or other signals (eg, signals obtained from the wireless transceiver 240 ) for use in performing positioning operations. The general purpose processor 230 , DSP 231 and/or one or more special purpose processors and/or memory 211 may provide or support a positioning engine for processing measurements to estimate the position of the UE 200 .

UE 200可以包括用於擷取靜止或移動圖像的相機218。相機218可以包括例如成像感測器(例如,電荷耦合設備或CMOS成像器)、透鏡、類比數位電路、訊框緩衝器等。表示擷取圖像的信號的附加處理、調節、編碼及/或壓縮可以由通用處理器230及/或DSP 231執行。此外或可選地,視訊處理器233可以對表示擷取圖像的信號執行調節、編碼、壓縮及/或操縱。視訊處理器233可以解碼/解壓縮儲存的圖像資料,以呈現在例如使用者介面216的顯示設備(未圖示)上。UE 200 may include a camera 218 for capturing still or moving images. The camera 218 may include, for example, an imaging sensor (eg, a charge-coupled device or CMOS imager), a lens, analog-to-digital circuitry, a frame buffer, and the like. Additional processing, conditioning, encoding and/or compression of signals representing captured images may be performed by general purpose processor 230 and/or DSP 231 . Additionally or alternatively, video processor 233 may perform conditioning, encoding, compression, and/or manipulation on signals representing captured images. The video processor 233 can decode/decompress the stored image data for presentation on a display device (not shown) such as the user interface 216 .

位置(運動)設備(PMD)219可以被配置為決定UE 200的位置和可能的運動。例如,PMD 219可以與SPS接收器217通訊,及/或包括SPS接收器217的一些或全部。PMD 219亦可以或可替換地被配置成使用用於三邊量測的基於地面的信號(例如,至少一些信號248)來決定UE 200的位置,用於輔助獲得和使用SPS信號260,或者兩者兼有。PMD 219可以被配置為使用一或多個其他技術(例如,依賴於UE自報告的位置(例如,UE位置信標的一部分))來決定UE 200的位置,並且可以使用技術的組合(例如,SPS和地面定位信號)來決定UE 200的位置。PMD 219可以包括一或多個感測器213(例如(多個)陀螺儀、(多個)加速度計、(多個)磁力計等),其可以感測UE 200的方位及/或運動,並提供處理器210(例如,通用處理器230及/或DSP 231)可以被配置用於決定UE 200的運動(例如,速度向量及/或加速度向量)的指示。PMD 219可以被配置為提供所決定的位置及/或運動中的不決定性及/或誤差的指示。在實例中,PMD 219可以被稱為定位引擎(PE),並且可以由通用處理器230來執行。例如,PMD 219可以是邏輯實體,並且可以與通用處理器230和記憶體211集成。A position (motion) device (PMD) 219 may be configured to determine the location and possible motion of the UE 200 . For example, PMD 219 may communicate with and/or include some or all of SPS receiver 217 . PMD 219 may also or alternatively be configured to use ground-based signals for trilateration (e.g., at least some of signals 248) to determine the location of UE 200, to assist in obtaining and using SPS signals 260, or both Both. PMD 219 may be configured to determine the location of UE 200 using one or more other techniques (e.g., relying on UE self-reported location (e.g., part of a UE location beacon)), and may use a combination of techniques (e.g., SPS and ground positioning signals) to determine the location of UE 200. The PMD 219 may include one or more sensors 213 (eg, gyroscope(s), accelerometer(s), magnetometer(s), etc.), which may sense the orientation and/or motion of the UE 200, And provide an indication that the processor 210 (eg, the general purpose processor 230 and/or the DSP 231 ) may be configured to determine the motion (eg, the velocity vector and/or the acceleration vector) of the UE 200 . PMD 219 may be configured to provide an indication of uncertainty and/or error in the determined position and/or motion. In an example, PMD 219 may be referred to as a Positioning Engine (PE), and may be executed by a general purpose processor 230 . For example, PMD 219 may be a logical entity and may be integrated with general purpose processor 230 and memory 211 .

亦參考圖3,gNB 110a、gNB 110b和ng-eNB 114的TRP 300的實例包括計算平臺,該計算平臺包括處理器310、包括軟體(SW)312的記憶體311、收發器315和(可選地)SPS接收器317。處理器310、記憶體311、收發器315和SPS接收器317可以藉由匯流排320(其可以被配置用於例如光及/或電通訊)彼此通訊耦合。所示裝置中的一或多個(例如,無線介面及/或SPS接收器317)可以從TRP 300中省略。SPS接收器317可以類似於SPS接收器217被配置成能夠經由SPS天線362接收和獲取SPS信號360。處理器310可以包括一或多個智慧硬體設備,例如,中央處理單元(CPU)、微控制器、特殊應用積體電路(ASIC)等。處理器310可以包括多個處理器(例如,包括通用/應用處理器、DSP、數據機處理器、視訊處理器及/或感測器處理器,如圖2所示)。記憶體311是非暫時性儲存媒體,其可以包括隨機存取記憶體(RAM)、快閃記憶體、光碟記憶體及/或唯讀記憶體(ROM)等。記憶體311儲存軟體312,軟體312可以是處理器可讀取的、處理器可執行的軟體代碼,包含被配置為當被執行時使處理器310執行本文描述的各種功能的指令。可選地,軟體312可以不被處理器310直接執行,而是可以被配置成使得處理器310例如在被編譯和執行時執行該等功能。該描述可以指執行功能的處理器310,但是這包括其他實現方式,諸如處理器310執行軟體及/或韌體。該描述可以將執行功能的處理器310作為包含在執行該功能的處理器310中的一或多個處理器的簡寫。該描述可以將執行功能的TRP 300作為執行該功能的TRP 300(以及因此gNB 110a、gNB 110b、ng-eNB 114之一)的一或多個適當部件的簡寫。除了及/或代替記憶體311,處理器310可以包括具有儲存指令的記憶體。處理器310的功能將在下文更全面地論述。Referring also to FIG. 3 , an example of a TRP 300 for gNB 110a, gNB 110b, and ng-eNB 114 includes a computing platform that includes a processor 310, memory 311 including software (SW) 312, a transceiver 315, and (optionally ground) SPS receiver 317. Processor 310, memory 311, transceiver 315, and SPS receiver 317 may be communicatively coupled to each other by bus 320 (which may be configured for, eg, optical and/or electrical communication). One or more of the devices shown (eg, wireless interface and/or SPS receiver 317 ) may be omitted from TRP 300 . SPS receiver 317 may be configured similarly to SPS receiver 217 to be capable of receiving and acquiring SPS signal 360 via SPS antenna 362 . The processor 310 may include one or more intelligent hardware devices, such as a central processing unit (CPU), a microcontroller, an application specific integrated circuit (ASIC), and the like. The processor 310 may include multiple processors (eg, including a general purpose/application processor, a DSP, a modem processor, a video processor, and/or a sensor processor, as shown in FIG. 2 ). The memory 311 is a non-transitory storage medium, which may include random access memory (RAM), flash memory, optical disk memory, and/or read only memory (ROM). The memory 311 stores software 312, which may be processor-readable and processor-executable software code comprising instructions configured to cause the processor 310 to perform various functions described herein when executed. Alternatively, the software 312 may not be directly executed by the processor 310, but may be configured such that the processor 310, for example, when compiled and executed, performs the functions. The description may refer to processor 310 performing a function, but this includes other implementations, such as processor 310 executing software and/or firmware. The description may use the processor performing a function 310 as shorthand for one or more processors included in the processor performing the function 310 . The description may refer to TRP 300 performing a function as shorthand for one or more appropriate components of TRP 300 (and thus one of gNB 110a, gNB 110b, ng-eNB 114) performing that function. In addition to and/or instead of memory 311 , processor 310 may include memory with stored instructions. The functionality of processor 310 will be discussed more fully below.

收發器315可以包括無線收發器340和有線收發器350,其被配置為分別經由無線連接和有線連接與其他設備通訊。例如,無線收發器340可以包括耦合到一或多個天線346的發送器342和接收器344,用於發送(例如,在一或多個上行鏈路通道、下行鏈路通道及/或側鏈路通道上)及/或接收(例如,在一或多個下行鏈路通道、上行鏈路通道及/或側鏈路通道上)無線信號348,並將信號從無線信號348轉換成有線(例如,電及/或光)信號,並且從有線(例如,電及/或光)信號轉換成無線信號348。因此,發送器342可以包括多個發送器,該等發送器可以是個別部件或組合/集成部件,及/或接收器344可以包括多個接收器,該等接收器可以是個別部件或組合/集成部件。無線收發器340可以被配置為根據各種無線電存取技術(RAT)來傳送信號(例如,與UE 200、一或多個其他UE及/或一或多個其他設備),諸如5G新無線電(NR)、GSM(行動通訊全球系統)、UMTS(通用行動電信系統)、AMPS(先進行動電話系統)、CDMA(分碼多工存取)、WCDMA(寬頻CDMA)、LTE(長期進化)、LTE直連(LTE-D)、3GPP LTE-V2X(PC5)、IEEE 802.11(含IEEE 802.11p)、WiFi、WiFi直連(WiFi-D)、藍芽®、Zigbee等。有線收發器350可以包括發送器352和接收器354,其被配置用於有線通訊,例如與網路140進行有線通訊,以例如向LMF 120發送通訊和從LMF 120接收通訊。發送器352可以包括多個發送器,該等發送器可以是個別部件或組合/集成部件,及/或接收器354可以包括多個接收器,該等接收器可以是個別部件或組合/集成部件。有線收發器350可以被配置用於例如光通訊及/或電通訊。Transceiver 315 may include a wireless transceiver 340 and a wired transceiver 350 configured to communicate with other devices via wireless and wired connections, respectively. For example, wireless transceiver 340 may include a transmitter 342 and a receiver 344 coupled to one or more antennas 346 for transmitting (e.g., on one or more uplink channels, downlink channels, and/or sidechain road channel) and/or receive (e.g., on one or more downlink channels, uplink channels, and/or sidelink channels) wireless signals 348, and convert signals from wireless signals 348 to wired (e.g., , electrical and/or optical) signals, and convert 348 from wired (eg, electrical and/or optical) signals to wireless signals. Accordingly, transmitter 342 may comprise multiple transmitters which may be individual components or combined/integrated components, and/or receiver 344 may comprise multiple receivers which may be individual components or combined/integrated components. Integrated components. Wireless transceiver 340 may be configured to transmit signals (eg, with UE 200, one or more other UEs, and/or one or more other devices) according to various radio access technologies (RATs), such as 5G New Radio (NRAT) ), GSM (Global System for Mobile Communications), UMTS (Universal Mobile Telecommunications System), AMPS (Advanced Mobile Phone System), CDMA (Code Division Multiple Access), WCDMA (Wideband CDMA), LTE (Long Term Evolution), LTE Direct Connect (LTE-D), 3GPP LTE-V2X (PC5), IEEE 802.11 (including IEEE 802.11p), WiFi, WiFi Direct (WiFi-D), Bluetooth®, Zigbee, etc. Wired transceiver 350 may include a transmitter 352 and a receiver 354 configured for wired communication, such as with network 140 , to send and receive communications to and from LMF 120 , for example. Transmitter 352 may include multiple transmitters, which may be individual components or combined/integrated components, and/or receiver 354 may include multiple receivers, which may be individual components or combined/integrated components . Wired transceiver 350 may be configured for optical communication and/or electrical communication, for example.

圖3所示的TRP 300的配置是包括請求項在內的本揭示的實例而非限制,並且可以使用其他配置。例如,本文的描述論述了TRP 300被配置為執行若干功能,但是該等功能中的一或多個可以由LMF 120及/或UE 200執行(亦即,LMF 120及/或UE 200可以被配置為執行該等功能中的一或多個)。The configuration of TRP 300 shown in FIG. 3 is an example and not limiting of the present disclosure including claim items, and other configurations may be used. For example, the description herein discusses that TRP 300 is configured to perform several functions, but one or more of these functions may be performed by LMF 120 and/or UE 200 (i.e., LMF 120 and/or UE 200 may be configured to perform one or more of these functions).

亦參考圖4,以LMF 120為例的伺服器400包括計算平臺,該計算平臺包括處理器410、包括軟體(SW)412的記憶體411和收發器415。處理器410、記憶體411和收發器415可以藉由匯流排420(其可以被配置用於例如光及/或電通訊)彼此通訊耦合。所示裝置中的一或多個(例如,無線介面)可以從伺服器400中省略。處理器410可以包括一或多個智慧硬體設備,例如中央處理單元(CPU)、微控制器、特殊應用積體電路(ASIC)等。處理器410可以包括多個處理器(例如,包括通用/應用處理器、DSP、數據機處理器、視訊處理器及/或感測器處理器,如圖2所示)。記憶體411是非暫時性儲存媒體,其可以包括隨機存取記憶體(RAM)、快閃記憶體、光碟記憶體及/或唯讀記憶體(ROM)等。記憶體411儲存軟體412,軟體412可以是處理器可讀取的、處理器可執行的軟體代碼,包含被配置為當被執行時使處理器410執行本文描述的各種功能的指令。可選地,軟體412可以不被處理器410直接執行,而是可以被配置成使得處理器410例如在被編譯和執行時執行該等功能。該描述可以指執行功能的處理器410,但是這包括其他實現方式,諸如處理器410執行軟體及/或韌體。該描述可以將執行功能的處理器410作為包含在執行該功能的處理器410中的一或多個處理器的簡寫。該描述可以將執行功能的伺服器400(或LMF 120)作為執行該功能的伺服器400(例如,LMF 120)的一或多個適當部件的簡寫。除了及/或代替記憶體411,處理器410可以包括具有儲存指令的記憶體。處理器410的功能將在下文更全面地論述。Referring also to FIG. 4 , the server 400 , exemplified by the LMF 120 , includes a computing platform including a processor 410 , a memory 411 including software (SW) 412 , and a transceiver 415 . Processor 410, memory 411, and transceiver 415 may be communicatively coupled to each other by bus 420 (which may be configured for, eg, optical and/or electrical communication). One or more of the devices shown (eg, the wireless interface) may be omitted from server 400 . The processor 410 may include one or more intelligent hardware devices, such as a central processing unit (CPU), a microcontroller, an application specific integrated circuit (ASIC), and the like. The processor 410 may include multiple processors (eg, including a general purpose/application processor, a DSP, a modem processor, a video processor, and/or a sensor processor, as shown in FIG. 2 ). The memory 411 is a non-transitory storage medium, which may include random access memory (RAM), flash memory, optical disk memory, and/or read only memory (ROM). The memory 411 stores software 412 which may be processor-readable and processor-executable software code comprising instructions configured to cause the processor 410 to perform various functions described herein when executed. Alternatively, the software 412 may not be directly executed by the processor 410, but may be configured such that the processor 410 performs the functions, for example when compiled and executed. The description may refer to processor 410 performing a function, but this includes other implementations, such as processor 410 executing software and/or firmware. The description may use the processor performing a function 410 as shorthand for one or more processors included in the processor performing the function 410 . This description may refer to server 400 (or LMF 120 ) performing a function as shorthand for one or more appropriate components of server 400 (eg, LMF 120 ) performing that function. In addition to and/or instead of memory 411 , processor 410 may include memory with stored instructions. The functionality of processor 410 will be discussed more fully below.

收發器415可以包括無線收發器440和有線收發器450,其被配置為分別經由無線連接和有線連接與其他設備通訊。例如,無線收發器440可以包括耦合到一或多個天線446的發送器442和接收器444,用於發送(例如,在一或多個下行鏈路通道上)及/或接收(例如,在一或多個上行鏈路通道上)無線信號448,並將信號從無線信號448轉換成有線(例如,電及/或光)信號,並且從有線(例如,電及/或光)信號轉換成無線信號448。因此,發送器442可以包括多個發送器,該等發送器可以是個別部件或組合/集成部件,及/或接收器444可以包括多個接收器,該等接收器可以是個別部件或組合/集成部件。無線收發器440可以被配置為根據各種無線電存取技術(RAT)來傳送信號(例如,與UE 200、一或多個其他UE及/或一或多個其他設備),諸如5G新無線電(NR)、GSM(行動通訊全球系統)、UMTS(通用行動電信系統)、AMPS(先進行動電話系統)、CDMA(分碼多工存取)、WCDMA(寬頻CDMA)、LTE(長期進化)、LTE直連(LTE-D)、3GPP LTE-V2X(PC5)、IEEE 802.11(含IEEE 802.11p)、WiFi、WiFi直連(WiFi-D)、藍芽®、Zigbee等。有線收發器450可以包括發送器452和接收器454,其被配置用於有線通訊,例如與網路135進行有線通訊,以例如向TRP 300發送通訊和從TRP 300接收通訊。發送器452可以包括多個發送器,該等發送器可以是個別部件或組合/集成部件,及/或接收器454可以包括多個接收器,該等接收器可以是個別部件或組合/集成部件。有線收發器450可以被配置用於例如光通訊及/或電通訊。Transceiver 415 may include a wireless transceiver 440 and a wired transceiver 450 configured to communicate with other devices via wireless and wired connections, respectively. For example, wireless transceiver 440 may include a transmitter 442 and a receiver 444 coupled to one or more antennas 446 for transmitting (e.g., on one or more downlink channels) and/or receiving (e.g., on on one or more uplink channels) wireless signals 448, and convert signals from wireless signals 448 to wired (e.g., electrical and/or optical) signals, and from wired (e.g., electrical and/or optical) signals to Wireless signal 448. Accordingly, transmitter 442 may comprise multiple transmitters, which may be separate components or combined/integrated components, and/or receiver 444 may comprise multiple receivers, which may be separate components or combined/integrated components. Integrated components. Wireless transceiver 440 may be configured to transmit signals (eg, with UE 200, one or more other UEs, and/or one or more other devices) according to various radio access technologies (RATs), such as 5G New Radio (NRAT) ), GSM (Global System for Mobile Communications), UMTS (Universal Mobile Telecommunications System), AMPS (Advanced Mobile Phone System), CDMA (Code Division Multiple Access), WCDMA (Wideband CDMA), LTE (Long Term Evolution), LTE Direct Connect (LTE-D), 3GPP LTE-V2X (PC5), IEEE 802.11 (including IEEE 802.11p), WiFi, WiFi Direct (WiFi-D), Bluetooth®, Zigbee, etc. Wired transceiver 450 may include a transmitter 452 and a receiver 454 configured for wired communication, such as with network 135 , to send and receive communications to and from TRP 300 , for example. Transmitter 452 may include multiple transmitters, which may be individual components or combined/integrated components, and/or receiver 454 may include multiple receivers, which may be individual components or combined/integrated components . Wired transceiver 450 may be configured for optical communication and/or electrical communication, for example.

圖4所示的伺服器400的配置是包括請求項在內的本揭示的實例而非限制,並且可以使用其他配置。例如,可以省略無線收發器440。同樣或可選地,本文的描述論述了伺服器400被配置為執行若干功能,但是該等功能中的一或多個可以由TRP 300及/或UE 200執行(亦即,TRP 300及/或UE 200可以被配置為執行該等功能中的一或多個)。The configuration of server 400 shown in FIG. 4 is an example and not limiting of the present disclosure including request items, and other configurations may be used. For example, wireless transceiver 440 may be omitted. Also or alternatively, the description herein discusses that server 400 is configured to perform several functions, but one or more of these functions may be performed by TRP 300 and/or UE 200 (i.e., TRP 300 and/or UE 200 may be configured to perform one or more of these functions).

參考圖5,圖示示例GNSS接收器500的示意圖。UE 200和TRP 300中的SPS接收器217、317可以包括GNSS接收器500的一或多個部件,並且因此可以是GNSS接收器500的實例。在實例中,GNSS接收器500包括但不限於天線501、類比部分502、數位部分503和處理器504。UE 200和TRP 300上的天線262、362是天線501的實例。GNSS衛星信號由天線501接收,並耦合到類比部分502的輸入端。類比部分502被配置為處理GNSS衛星信號,並藉由用類比數位轉換器(ADC)對GNSS衛星信號進行取樣來產生數位中頻(IF)信號。在一個實施例中,取樣速率可以是大約每秒83兆取樣(Ms/s)。數位IF信號耦合到數位部分503的輸入端。數位部分503被配置成藉由產生耦合到處理器504的獲取和追蹤資料,利用數位IF信號從GNSS衛星群集內獲取和追蹤衛星。數位部分503可以被配置為基於GNSS頻譜中窄頻干擾信號的存在來實現一或多個陷波濾波器。在實例中,數位部分503可以將一或多個陷波濾波器配置為具有可程式設計中心頻率和頻寬的一或多個數位濾波器。處理器504可以是中央處理單元CPU、微處理器、數位訊號處理器或可以讀取和執行程式設計指令的任何其他此種設備。處理器504被配置為分析獲取和追蹤資料以決定導航資訊,諸如位置和速度。SV可以在複數個頻率上發送信號,並且處理器504可以被配置為基於本領域已知的GNSS模型來決定偽距和載波相位量測。例如,通常,頻率 f 1上到衛星

Figure 02_image001
的偽距量測
Figure 02_image003
可以被模型化為:
Figure 02_image005
(1) 其中
Figure 02_image007
是衛星-
Figure 02_image009
和使用者位置之間的真實距離。
Figure 02_image011
是使用者設備中的共同偏差。
Figure 02_image013
是衛星-
Figure 02_image009
的衛星時鐘偏差,包括頻率 f 1上的任何衛星群延遲。 c是光速。 B 1是在頻率 f 1上進行量測時使用者設備中共同的附加偏差。
Figure 02_image016
是電離層延遲,影響頻率 f 1上來自衛星-
Figure 02_image018
的信號。
Figure 02_image020
是對流層引入來自衛星-
Figure 02_image009
的信號的延遲,與頻率無關。
Figure 02_image023
是考慮噪音和任何未模型化的影響。 Referring to FIG. 5 , a schematic diagram of an example GNSS receiver 500 is illustrated. The SPS receivers 217 , 317 in the UE 200 and TRP 300 may include one or more components of the GNSS receiver 500 and thus may be instances of the GNSS receiver 500 . In an example, the GNSS receiver 500 includes, but is not limited to, an antenna 501 , an analog part 502 , a digital part 503 and a processor 504 . Antennas 262 , 362 on UE 200 and TRP 300 are examples of antenna 501 . GNSS satellite signals are received by antenna 501 and coupled to the input of analog section 502 . The analog section 502 is configured to process GNSS satellite signals and generate digital intermediate frequency (IF) signals by sampling the GNSS satellite signals with an analog-to-digital converter (ADC). In one embodiment, the sampling rate may be approximately 83 megasamples per second (Ms/s). The digital IF signal is coupled to an input of digital section 503 . The digital section 503 is configured to acquire and track satellites from within the constellation of GNSS satellites using digital IF signals by generating acquisition and tracking data coupled to the processor 504 . The digital portion 503 may be configured to implement one or more notch filters based on the presence of narrow-band jamming signals in the GNSS spectrum. In an example, the digital section 503 may configure the one or more notch filters as one or more digital filters with programmable center frequencies and bandwidths. Processor 504 may be a central processing unit CPU, a microprocessor, a digital signal processor, or any other such device that can read and execute programmed instructions. Processor 504 is configured to analyze acquisition and tracking data to determine navigational information, such as position and velocity. The SV may transmit signals on a plurality of frequencies, and the processor 504 may be configured to determine pseudorange and carrier phase measurements based on GNSS models known in the art. For example, typically, frequency f 1 up to the satellite
Figure 02_image001
pseudorange measurement
Figure 02_image003
can be modeled as:
Figure 02_image005
(1) of which
Figure 02_image007
is a satellite -
Figure 02_image009
The real distance from the user's location.
Figure 02_image011
is a common deviation in user equipment.
Figure 02_image013
is a satellite -
Figure 02_image009
The satellite clock bias of , including any constellation delay at frequency f 1 . c is the speed of light. B 1 is the common additional deviation in the UE when the measurement is performed at frequency f 1 .
Figure 02_image016
is the ionospheric delay, affecting frequency f 1 from the satellite -
Figure 02_image018
signal of.
Figure 02_image020
is the tropospheric introduction from the satellite-
Figure 02_image009
The delay of the signal is independent of the frequency.
Figure 02_image023
is to account for noise and any unmodeled effects.

其他GNSS模型和變數亦可用於決定到SV的距離。Other GNSS models and variables can also be used to determine the distance to SV.

參考圖6A,圖示示例GNSS頻譜602的圖600。在操作中,可以用各種方式調制無線電載波。例如,GPS系統可以利用三個不同的頻帶(例如,L1、L2和L5),並利用相位調制將代碼從SV遞送到接收器。GPS信號可以利用展頻,使得GPS信號的總頻寬比其所攜帶的資訊的頻寬寬得多。具體來說,L1以1575.42兆赫為中心,L2以1227.60兆赫為中心,並且L5以1176.45兆赫為中心,並且該等頻率上的GPS信號的寬度比預期的要大。例如,在L1上,CA碼信號在2.046兆赫左右的寬度上擴展,P(Y)碼信號在大約20.46兆赫的寬度上擴展。頻譜602描繪了在SV的都卜勒頻率附近的大約2兆赫(亦即,+/-1兆赫)。GNSS接收器的數位前端(DFE)(例如,數位部分503)被配置為對在頻譜602中接收的信號執行自相關過程,以獲得碼相位量測。由其他發送器或振盪器(例如諧波信號)引起的本端干擾可能會顯著影響或削弱自相關過程。GNSS接收器可以被配置成實現一或多個陷波濾波器,以減少干擾的影響。例如,頻譜602上+0.5兆赫的陷波濾波器將降低頻譜602中的接收功率,如信號下降604所描繪。陷波濾波器和對應的信號下降604可能影響接收的自相關函數和對應的碼相位量測。例如,參考圖6B,圖示具有和不具有陷波濾波器的示例自相關函數(ACF)的比較的圖610。與陷波濾波的ACF 614相比,典型ACF 612提供相對較高的幅度峰值。由於一或多個陷波濾波器,整個ACF形狀的失真,以及在某些情況下ACF中幅度的損失,可能會降低GNSS位置計算的準確性。亦即,ACF形狀的失真可能導致在錯誤的碼相位中偵測到峰值,這可能導致量測偏差。因此,由於GNSS位置估計的準確性部分基於其量測碼相位的準確性,陷波濾波器的使用亦會影響位置準確性。定位誤差的程度(亦即,碼相位影響)取決於PRN碼、SV都卜勒、陷波頻率和陷波頻寬。例如,參考圖6C,圖示基於示例陷波濾波器頻率的碼相位誤差值622的圖表620。圖表620描繪了當陷波濾波器頻率在SV都卜勒頻率(亦即,圖6C中的零)附近從-1兆赫變化到+1兆赫時,SV(亦即,SV ID 5)的碼相位誤差(以釐米為單位)。每個誤差值622基於從-1兆赫到+1兆赫的100千赫步長。示例誤差值622從大約-50釐米到+25釐米變化。其他SV(例如,PRN碼)、SV都卜勒值和陷波頻寬(可以包括多陷波濾波器)可以具有不同的誤差距離值和不同的誤差值分佈。Referring to FIG. 6A , a diagram 600 of an example GNSS spectrum 602 is illustrated. In operation, a radio carrier can be modulated in various ways. For example, a GPS system can utilize three different frequency bands (eg, L1, L2, and L5) and utilize phase modulation to deliver codes from the SV to the receiver. GPS signals can utilize spread spectrum, making the overall bandwidth of the GPS signal much wider than the bandwidth of the information it carries. Specifically, L1 is centered at 1575.42 MHz, L2 is centered at 1227.60 MHz, and L5 is centered at 1176.45 MHz, and the width of the GPS signal on these frequencies is wider than expected. For example, on L1, the CA code signal spreads over a width of about 2.046 MHz, and the P(Y) code signal spreads over a width of about 20.46 MHz. Spectrum 602 depicts approximately 2 MHz (ie, +/- 1 MHz) around the Doppler frequency of the SV. A digital front end (DFE) (eg, digital section 503 ) of a GNSS receiver is configured to perform an autocorrelation process on the received signal in frequency spectrum 602 to obtain code phase measurements. Local interference caused by other transmitters or oscillators (eg harmonic signals) can significantly affect or impair the autocorrelation process. GNSS receivers can be configured to implement one or more notch filters to reduce the effects of interference. For example, a +0.5 MHz notch filter on spectrum 602 will reduce the received power in spectrum 602 as depicted by signal dip 604 . The notch filter and corresponding signal drop 604 may affect the received autocorrelation function and corresponding code phase measurement. For example, referring to FIG. 6B , there is illustrated a graph 610 comparing an example autocorrelation function (ACF) with and without a notch filter. Typical ACF 612 provides relatively higher amplitude peaks compared to notch filtered ACF 614 . Distortion of the overall ACF shape, and in some cases loss of amplitude in the ACF due to one or more notch filters, may reduce the accuracy of GNSS position calculations. That is, distortion of the ACF shape may cause peaks to be detected in the wrong code phase, which may lead to measurement bias. Therefore, since the accuracy of a GNSS position estimate is partly based on the accuracy of its measured code phase, the use of a notch filter will also affect the position accuracy. The degree of positioning error (ie, code phase impact) depends on the PRN code, SV Doppler, notch frequency and notch bandwidth. For example, referring to FIG. 6C , a graph 620 of code phase error values 622 based on example notch filter frequencies is illustrated. Graph 620 depicts the code phase of the SV (i.e., SV ID 5) as the notch filter frequency varies from -1 MHz to +1 MHz around the SV Doppler frequency (i.e., zero in FIG. 6C ) Error in centimeters. Each error value 622 is based on a 100 kilohertz step from -1 MHz to +1 MHz. Example error values 622 vary from about -50 centimeters to +25 centimeters. Other SVs (eg, PRN codes), SV Doppler values, and notch bandwidths (which may include multiple notch filters) may have different error distance values and different error value distributions.

參考圖7,進一步參考圖5和圖6A至圖6C,圖示基於陷波濾波器配置的離線相位補償的示例過程700的方塊圖。過程700利用一或多個離線查閱資料表(LUT)702在階段710基於陷波濾波器配置704和SV PRN和都卜勒頻率資訊706應用碼相位校正。通常,LUT 702中的碼相位校正值取決於三個參數:SVID(例如,SV PRN)、SV都卜勒頻率和陷波配置資訊(亦即,陷波的數量、每個陷波頻率和每個陷波頻寬)。在實例中,對於每個陷波配置,可以計算並儲存一個二維陣列LUT。亦可以利用用於不同陷波組合的不同LUT,並且每個LUT可以是二維陣列,使得第{ i, j}個元素將是對應於第 i個SVID和第 j個SV都卜勒(其中SVID是有限數)的碼相位校正值。可以基於操作要求選擇不同的陷波濾波器配置704和LUT網格中的SV都卜勒解析度。例如,在2兆赫的頻寬中,SV都卜勒可以以1千赫的步長變化以提供2001個網格點,或者以100千赫的步長變化以提供21個網格點。對應LUT的大小可以由此倍增。 Referring to FIG. 7 , with further reference to FIGS. 5 and 6A-6C , there is illustrated a block diagram of an example process 700 for off-line phase compensation based on notch filter configurations. Process 700 utilizes one or more offline look-up tables (LUTs) 702 to apply code phase correction based on notch filter configuration 704 and SV PRN and Doppler frequency information 706 at stage 710 . Typically, the code phase correction value in LUT 702 depends on three parameters: SVID (e.g., SV PRN), SV Doppler frequency, and notch configuration information (i.e., number of notches, frequency per notch, and frequency per notch). notch bandwidth). In an example, for each notch configuration, a two-dimensional array of LUTs can be calculated and stored. Different LUTs for different notch combinations can also be utilized, and each LUT can be a two-dimensional array such that the { i , j }th element will be the Doppler corresponding to the i -th SVID and the j -th SV (where SVID is a finite number) of code phase correction values. Different notch filter configurations 704 and SV Doppler resolution in the LUT grid can be selected based on operational requirements. For example, in a bandwidth of 2 MHz, the SV Doppler can be varied in steps of 1 kHz to provide 2001 grid points, or in steps of 100 kHz to provide 21 grid points. The size of the corresponding LUT can thus be multiplied.

在實施例中,處理器504可以被配置為存取包含一或多個LUT 702的(多個)本端記憶體模組,LUT 702儲存基於PRN碼、陷波頻率、陷波頻寬和SV都卜勒資訊的碼相位誤差值。例如,陷波濾波器配置704可以指示陷波頻率(例如,從SV都卜勒值+/-1兆赫)和陷波頻寬(例如,1、2、5、10千赫等)。SV PRN和都卜勒頻率資訊706與發送GNSS接收器500正在接收的信號的SV相關聯。LUT 702包含如圖6C所描繪的誤差量測資料點。階段708處的碼相位校正決定可以基於在處理器504上執行的選擇、分類及/或匹配功能或演算法或其他儲存程序,以基於陷波濾波器配置704以及SV PRN和都卜勒頻率資訊706從LUT 702中選擇碼相位誤差值。碼相位校正值可以是距離(例如,1釐米、5釐米、10釐米、100釐米等),處理器504被配置為在階段710基於SV信號將校正應用於距離量測(例如,偽距、載波相位量測)。離線LUT 702提供了以記憶體使用為代價獲得相對快速的碼相位誤差解決方案的優點,因為陷波濾波器配置和SV資訊的不同變化必須被儲存。藉由增加LUT 702中值的量化和使用內插常式來估計碼相位誤差,可以獲得一些記憶體效率。In an embodiment, processor 504 may be configured to access local memory module(s) including one or more LUTs 702 that store data based on PRN code, notch frequency, notch bandwidth, and SV Code phase error value of Doppler information. For example, notch filter configuration 704 may indicate a notch frequency (eg, +/- 1 megahertz from the SV Doppler value) and notch bandwidth (eg, 1, 2, 5, 10 kilohertz, etc.). The SV PRN and Doppler frequency information 706 is associated with the SV transmitting the signal that the GNSS receiver 500 is receiving. LUT 702 includes error measurement data points as depicted in Figure 6C. The code phase correction decision at stage 708 may be based on selection, sorting and/or matching functions or algorithms or other stored procedures executed on processor 504 to base notch filter configuration 704 and SV PRN and Doppler frequency information 706 selects a code phase error value from LUT 702 . The code phase correction value may be a distance (e.g., 1 cm, 5 cm, 10 cm, 100 cm, etc.), and the processor 504 is configured to apply the correction to the distance measurement (e.g., pseudorange, carrier phase measurement). Offline LUT 702 offers the advantage of relatively fast code phase error resolution at the cost of memory usage, since different changes in notch filter configuration and SV information must be stored. Some memory efficiency can be gained by increasing the quantization of the values in the LUT 702 and using an interpolation routine to estimate the code phase error.

參考圖8,圖示用於計算碼相位校正值的示例過程800。基於陷波濾波器配置704以及GNSS接收器500正在接收的SV PRN和都卜勒頻率資訊706(亦即,SVID 706a和SV都卜勒706b),可以藉由LUT 702中的值之間的平滑內插來計算碼相位校正。通常,LUT 702中的碼相位值在二維空間中的有限和離散點處是已知的,並且內插函數可以用於計算該空間中其他任意點處的值。例如,在階段802,處理器504可以被配置為從與接收到的SV信號相關聯的數位部分503接收輸入。輸入可以包括SVID 706a、SV都卜勒706b和陷波配置704。處理器504被配置成獲得LUT 702中輸入值的最近的「k」個鄰點,並且隨後在階段804計算每個鄰點的碼相位誤差的加權平均「y」。在階段806,加權平均「y」可以被用作碼相位校正值。過程800是實例,而不是限制,因為其他多變數內插技術亦可以用於決定最終碼相位校正值。Referring to FIG. 8, an example process 800 for calculating code phase correction values is illustrated. Based on the notch filter configuration 704 and the SV PRN and Doppler frequency information 706 (i.e., SVID 706a and SV Doppler 706b) that the GNSS receiver 500 is receiving, smoothing between values in the LUT 702 interpolated to calculate the code phase correction. In general, code phase values in LUT 702 are known at finite and discrete points in two-dimensional space, and interpolation functions can be used to compute values at other arbitrary points in that space. For example, at stage 802, the processor 504 may be configured to receive an input from the digital portion 503 associated with the received SV signal. Inputs may include SVID 706a , SV Doppler 706b , and notch configuration 704 . The processor 504 is configured to obtain the nearest "k" neighbors of the input value in the LUT 702, and then at stage 804 calculate a weighted average "y" of the code phase errors for each neighbor. At stage 806, the weighted average "y" may be used as the code phase correction value. Process 800 is an example, not a limitation, as other multivariate interpolation techniques can also be used to determine the final code phase correction value.

參考圖9,圖示基於陷波濾波器配置的線上相位計算的示例過程900。與取決於於LUT 702的圖7中的離線過程700相反,當GNSS接收器500的配置改變時(例如,當偵測到新的干擾信號時),線上過程900本端地計算LUT值。例如,如前述,處理器504可以從數位部分503接收陷波濾波器配置資訊902以及SV PRN和都卜勒頻率資訊904。在階段906,處理器504可以經由如圖6A至圖6C所述的具有離散點的模擬來計算SV的LUT表值。在階段908,處理器504可以利用陷波濾波器配置資訊902和SV PRN和都卜勒頻率資訊904以及諸如圖8中描述的內插技術,來基於本端產生的LUT獲得碼相位校正值。在階段910,處理器504可以將碼相位校正應用於為接收的SV信號計算的距離量測(例如,偽距、載波相位量測)。Referring to FIG. 9 , an example process 900 for in-line phase calculation based on a notch filter configuration is illustrated. In contrast to the offline process 700 in FIG. 7 which depends on the LUT 702, the online process 900 locally calculates LUT values when the configuration of the GNSS receiver 500 changes (eg, when a new interference signal is detected). For example, processor 504 may receive notch filter configuration information 902 and SV PRN and Doppler frequency information 904 from digital portion 503 as previously described. At stage 906, the processor 504 may calculate a LUT table value for the SV via a simulation with discrete points as described in FIGS. 6A-6C. At stage 908 , the processor 504 may use the notch filter configuration information 902 and the SV PRN and Doppler frequency information 904 and an interpolation technique such as that described in FIG. 8 to obtain a code phase correction value based on the locally generated LUT. At stage 910, the processor 504 may apply a code phase correction to a range measure (eg, pseudorange, carrier phase measure) calculated for the received SV signal.

參考圖10A至圖10D,圖示複數個衛星載具和陷波濾波器配置的碼相位誤差的示例圖表。該等圖表是實例,並且被提供用於說明不同的SV PRN可能具有不同的陷波頻率誤差分佈。所描繪的誤差值表示LUT中的離散值,其可以離線(如在過程700中)或線上(如在過程900中)產生。所繪製的誤差值表示相對於SV都卜勒頻率(例如,圖表中的零都卜勒)在-1兆赫和+1兆赫之間以100千赫為步長的陷波頻率。作為實例而非限制,GPS L1 CA信號的典型碼相位校正值在+1米和-1米之間。其他信號類型可能具有不同範圍的校正值。圖10A描繪了具有在-60釐米和+30釐米之間的第一誤差分佈的第一示例SV(SV:14)。圖10B描繪了具有在-90釐米和+10釐米之間的第二誤差分佈的第二示例SV(SV:25)。圖10C描繪了具有在-60釐米和+30釐米之間的第三誤差分佈的第三示例SV(SV:17)。圖10D描繪了具有在-70釐米和+20釐米之間的第四誤差分佈的第四示例SV(SV:08)。SV、圖表和取樣大小(例如,陷波濾波器步長值)是實例而非限制。可以用其他SV和更大或更小的陷波濾波器步長,來運行其他模擬。Referring to FIGS. 10A-10D , example graphs of code phase error for a plurality of satellite vehicles and notch filter configurations are illustrated. These graphs are examples and are provided to illustrate that different SV PRNs may have different notch frequency error distributions. The depicted error values represent discrete values in the LUT, which can be generated offline (as in process 700 ) or online (as in process 900 ). The error values plotted represent the notch frequency in 100 kHz steps between -1 MHz and +1 MHz relative to the SV Doppler frequency (eg, zero Doppler in the graph). By way of example and not limitation, typical code phase correction values for GPS L1 CA signals are between +1 meter and -1 meter. Other signal types may have different ranges of correction values. FIG. 10A depicts a first example SV (SV: 14) with a first error distribution between -60 centimeters and +30 centimeters. FIG. 10B depicts a second example SV (SV: 25) with a second error distribution between -90 centimeters and +10 centimeters. FIG. 10C depicts a third example SV (SV: 17) with a third error distribution between -60 centimeters and +30 centimeters. Figure 10D depicts a fourth example SV (SV: 08) with a fourth error distribution between -70 centimeters and +20 centimeters. SVs, graphs, and sample sizes (eg, notch filter step values) are examples and not limitations. Other simulations can be run with other SVs and larger or smaller notch filter step sizes.

參考圖11,進一步參考圖1至圖10D,用於計算到衛星載具的距離的方法1100包括所示的階段。然而,方法1100是實例而非限制。方法1100可以被改變,例如,藉由添加、移除、重新佈置、組合、併發執行一些階段,及/或將單個階段分成多個階段。Referring to FIG. 11 , with further reference to FIGS. 1-10D , a method 1100 for calculating a distance to a satellite vehicle includes the stages shown. However, method 1100 is an example and not a limitation. Method 1100 may be changed, for example, by adding, removing, rearranging, combining, executing stages concurrently, and/or breaking a single stage into multiple stages.

在階段1102,該方法包括從衛星載具接收信號。GNSS接收器500的類比部分502是用於從SV接收信號的構件。一般來說,GNSS SV在L頻帶的兩個或兩個以上頻率上發送導航信號。該等信號包含測距碼和導航資料,以允許GNSS接收器500計算從衛星到接收器的行進時間和任何時期(epoch)的衛星座標。該信號可以包括載波、測距碼(例如,SVID、PRN序列或PRN碼)和其他導航資料(例如,關於SV星曆表的資訊、時鐘偏差參數、曆書資訊、SV資訊、和其他相關聯的導航資訊)。At stage 1102, the method includes receiving a signal from a satellite vehicle. The analog portion 502 of the GNSS receiver 500 is a means for receiving signals from the SV. Generally, GNSS SV transmits navigation signals on two or more frequencies in the L-band. These signals contain ranging codes and navigation data to allow the GNSS receiver 500 to calculate the travel time from the satellite to the receiver and the satellite coordinates for any epoch. The signal may include a carrier, ranging code (e.g., SVID, PRN sequence, or PRN code), and other navigation data (e.g., information about SV ephemeris, clock bias parameters, almanac information, SV information, and other associated navigation information).

在階段1104,該方法包括決定一或多個陷波濾波器配置。數位部分503和處理器504是用於決定一或多個陷波濾波器配置的構件。陷波濾波器可以基於本端或外部RF源產生的窄頻干擾信號的存在。在實例中,可以基於UE的狀態得知一或多個干擾信號(亦即,當Wi-Fi或藍芽發送器啟動時)。在實施例中,處理器504可以被配置為執行頻譜分析以找到干擾信號。陷波濾波器配置可以包括頻率分量和頻寬分量,以減輕一或多個干擾信號的干擾。在實施例中,陷波濾波器配置可以包括複數個頻率,每個陷波濾波器具有相同或不同的頻寬。At stage 1104, the method includes determining one or more notch filter configurations. The digital section 503 and the processor 504 are components used to determine one or more notch filter configurations. Notch filters can be based on the presence of narrowband interfering signals generated locally or by external RF sources. In an example, one or more interfering signals may be known based on the state of the UE (ie, when the Wi-Fi or Bluetooth transmitter is on). In an embodiment, the processor 504 may be configured to perform spectral analysis to find interfering signals. The notch filter configuration may include frequency components and bandwidth components to mitigate interference from one or more interfering signals. In an embodiment, the notch filter configuration may include a plurality of frequencies, each notch filter having the same or a different bandwidth.

在階段1106,該方法包括決定假性隨機雜訊碼和與信號相關聯的都卜勒頻率。處理器504是用於決定PRN碼和都卜勒頻率的構件。PRN碼包括在階段1102接收的信號中。都卜勒頻率對應於主要基於SV上的天線和GNSS接收器之間的相對速度的接收信號的都卜勒偏移。其他時鐘頻率誤差偏移亦可以包括在都卜勒頻率中。通常,信號的都卜勒偏移是載波相位的時間導數。At stage 1106, the method includes determining a pseudorandom noise code and a Doppler frequency associated with the signal. Processor 504 is the means for determining the PRN code and Doppler frequency. The PRN code is included in the signal received at stage 1102 . The Doppler frequency corresponds to the Doppler shift of the received signal based primarily on the relative velocity between the antenna on the SV and the GNSS receiver. Other clock frequency error offsets can also be included in the Doppler frequency. In general, the Doppler shift of a signal is the time derivative of the carrier phase.

在階段1108,該方法包括至少基於一或多個陷波濾波器配置、假性隨機雜訊碼和都卜勒頻率來決定碼相位校正值。處理器504是用於決定碼相位校正值的構件。在操作中,處理器504可以利用包括陷波濾波器配置資訊、SV PRN和都卜勒頻率資訊的一或多個LUT、以及相關聯的碼相位校正值。例如,諸如分類、選擇、匹配等查詢工具可以用於基於陷波濾波器和SV配置資訊來決定碼相位校正值。可以經由輔助資料向UE提供LUT(亦即,離線解決方案),及/或可以在UE上本端地產生一或多個LUT(亦即,線上解決方案)。在離線解決方案中,通訊網路100可以經由具有LUT的無線收發器240向UE提供輔助資料。輔助資料可以經由網路協定發送,諸如LPP和無線電資源控制(RRC)訊息傳遞。其他訊息傳遞,諸如側鏈路技術,亦可以用於將LUT傳播到網路中的其他UE。一或多個LUT表包括PRN碼(例如,SV ID)、都卜勒頻率和陷波濾波器配置的各種組合的碼相位校正值。碼相位校正值可以是諸如圖6C和圖10A至圖10D中的值的距離。諸如圖8中描述的內插技術亦可以用於從LUT中獲得碼相位校正值。At stage 1108, the method includes determining a code phase correction value based at least on one or more notch filter configurations, a pseudorandom noise code, and a Doppler frequency. The processor 504 is a means for determining a code phase correction value. In operation, processor 504 may utilize one or more LUTs including notch filter configuration information, SV PRN and Doppler frequency information, and associated code phase correction values. For example, query tools such as sort, select, match, etc. can be used to determine code phase correction values based on notch filter and SV configuration information. LUTs may be provided to the UE via assistance data (ie, an offline solution) and/or one or more LUTs may be generated locally on the UE (ie, an online solution). In the offline solution, the communication network 100 can provide the auxiliary data to the UE via the wireless transceiver 240 with LUT. Assistance data can be sent via network protocols, such as LPP and Radio Resource Control (RRC) messaging. Other messaging, such as sidelink techniques, can also be used to propagate the LUT to other UEs in the network. One or more LUT tables include code phase correction values for various combinations of PRN code (eg, SV ID), Doppler frequency, and notch filter configuration. The code phase correction value may be a distance such as the values in FIG. 6C and FIGS. 10A-10D . Interpolation techniques such as those described in FIG. 8 can also be used to obtain code phase correction values from the LUT.

在階段1110,該方法包括至少部分基於信號和碼相位校正值計算到衛星載具的距離。處理器504是用於計算到SV的距離的構件。在實例中,處理器504可以基於信號決定到SV的偽距,並且應用本領域已知的並且在等式1中描述的適當的偏差和校正。在階段1108決定的碼相位值可以應用於偽距以產生距離值。At stage 1110, the method includes calculating a range to the satellite vehicle based at least in part on the signal and code phase correction values. Processor 504 is means for calculating the distance to the SV. In an example, processor 504 may determine the pseudorange to the SV based on the signal, and apply appropriate biases and corrections known in the art and described in Equation 1 . The code phase values determined at stage 1108 may be applied to pseudoranges to generate distance values.

其他實例和實現方式在本揭示和所附請求項的範圍內。例如,由於軟體和電腦的性質,上述功能可以使用由處理器執行的軟體、硬體、韌體、硬佈線或該等的任意組合來實現。實現功能的特徵亦可以實體地位於不同的位置,包括被分佈使得部分功能在不同的實體位置實現。Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software and computers, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or any combination thereof. Features implementing functions may also be physically located at different locations, including being distributed such that some functions are implemented at different physical locations.

除非另有說明,否則在附圖中示出及/或在此論述的彼此連接或通訊的功能部件或其他部件是通訊耦合的。亦即,其可以直接或間接連接,以實現其間的通訊。Unless otherwise indicated, functional or other components shown in the figures and/or discussed herein that are connected or in communication with each other are communicatively coupled. That is, they can be directly or indirectly connected to enable communication therebetween.

如本文所使用的,單數形式「一(a)」、「一(an)」和「該」亦包括複數形式,除非上下文清楚地做出其他指示。例如,「一處理器」可以包括一個處理器或多個處理器。術語「包括(comprises)」、「包括(comprising)」、「包含(includes)」及/或「包含(including)」在本文中使用時,指定所陳述的特徵、整體、步驟、操作、元件及/或部件的存在,但不排除一或多個其他特徵、整體、步驟、操作、元件、部件及/或其群組的存在或添加。As used herein, the singular forms "a", "an" and "the" also include plural forms unless the context clearly dictates otherwise. For example, "a processor" may include one processor or multiple processors. The terms "comprises", "comprising", "includes" and/or "including" when used herein designate stated features, integers, steps, operations, elements and The presence of/or a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.

如本文所使用的,除非另有說明,功能或操作「基於」某個項目或條件的陳述意味著功能或操作基於所述項目或條件,並且可以基於除了所述項目或條件之外的一或多個項目及/或條件。As used herein, unless otherwise stated, a statement that a function or operation is "based on" an item or condition means that the function or operation is based on that item or condition, and may be based on one or more conditions other than the stated item or condition. Multiple items and/or conditions.

此外,如本文所用,「或」在項目列表中使用時(可能以「至少一個」開頭或以「一或多個」開頭),指示選言列表,使得例如,「A、B或C中的至少一個」的列表或「A、B或C中的一或多個」的列表或「A或B或C」的列表意味著A或B或C或AB(A和B)或AC(A和C)或BC(B和C)或ABC(亦即,A和B和C),或具有一個以上特徵的組合(例如,AA、AAB、ABBC等)。因此,項目(例如,處理器)被配置為執行關於A或B中的至少一個的功能的陳述,或者項目被配置為執行功能A或功能B的陳述,意味著該項目可以被配置為執行關於A的功能,或者可以被配置為執行關於B的功能,或者可以被配置為執行關於A和B的功能。例如,「被配置成量測A或B中的至少一個的處理器」或「被配置成量測A或量測B的處理器」的片語意味著處理器可以被配置成量測A(並且可以被配置成或可以不被配置成量測B),或者可以被配置成量測B(並且可以被配置成或可以不被配置成量測A),或者可以被配置成量測A和量測B(並且可以被配置成選擇量測A和B中的哪一個或兩個)。 類似地,用於量測A或B中的至少一個的構件的陳述包括用於量測A的構件(其可以或不可以量測B),或者用於量測B的構件(其可以或不可以被配置為量測A),或者用於量測A和B的構件(其可以選擇量測A和B中的哪一個或兩個)。作為另一個實例,項目(例如,處理器)被配置為執行功能X或執行功能Y中的至少一個意味著該項目可以被配置為執行功能X,或者可以被配置為執行功能Y,或者可以被配置為執行功能X和執行功能Y。例如,「被配置為量測X或量測Y中的至少一個的處理器」的片語意味著該處理器可以被配置為量測X(並且可以被配置為量測Y,亦可以不被配置為量測Y),或者可以被配置為量測Y(並且可以被配置為量測X,亦可以不被配置為量測X),或者可以被配置為量測X和量測Y(可以被配置為選擇量測X和Y中的哪一個或兩個)。Also, as used herein, "or" when used in a list of items (which may begin with "at least one" or with "one or more") indicates a list of predicates such that, for example, "of A, B, or C A list of at least one or a list of "one or more of A, B or C" or a list of "A or B or C" means A or B or C or AB (A and B) or AC (A and C) or BC (B and C) or ABC (that is, A and B and C), or a combination of more than one characteristic (for example, AA, AAB, ABBC, etc.). Thus, an item (e.g., a processor) configured to perform a statement about at least one of A or B's functions, or an item configured to perform function A or function B, means that the item can be configured to perform about The function of A may either be configured to perform functions with respect to B, or may be configured to perform functions with respect to both A and B. For example, the phrase "a processor configured to measure at least one of A or B" or "a processor configured to measure A or B" means that the processor can be configured to measure A ( and may or may not be configured to measure B), or may be configured to measure B (and may or may not be configured to measure A), or may be configured to measure A and Measurement B (and can be configured to select which or both of Measurements A and B). Similarly, a statement of means for measuring at least one of A or B includes means for measuring A (which may or may not measure B), or means for measuring B (which may or may not Can be configured as a measurement A), or a component for measurement A and B (it can choose which one or both of A and B to measure). As another example, an item (eg, a processor) configured to perform at least one of function X or function Y means that the item may be configured to perform function X, or may be configured to perform function Y, or may be Configured to perform function X and perform function Y. For example, the phrase "a processor configured to at least one of measure X or measure Y" means that the processor may be configured to measure X (and may or may not be configured to measure Y) configured to measure Y), or can be configured to measure Y (and can be configured to measure X, or not configured to measure X), or can be configured to measure X and measure Y (can configured to select which one or both of X and Y to measure).

可根據具體要求進行實質性變更。例如,亦可以使用定製的硬體,及/或特定元件可以在硬體、由處理器執行的軟體(包括可攜式軟體,諸如小程式等)或兩者中實現。此外,可以採用到諸如網路輸入/輸出設備的其他計算設備的連接。Substantial changes may be made based on specific requirements. For example, custom hardware could also be used, and/or particular elements could be implemented in hardware, software (including portable software, such as applets, etc.) executed by a processor, or both. Additionally, connections to other computing devices such as network input/output devices may be employed.

上文論述的系統和設備是實例。各種配置可以適當地省略、替換或添加各種程序或部件。例如,關於某些配置描述的特徵可以在各種其他配置中組合。配置的不同態樣和元素可以以類似的方式組合。此外,技術在發展,並且因此,許多元素是實例,並不限制本揭示或請求項的範圍。The systems and devices discussed above are examples. Various configurations may omit, substitute, or add various programs or components as appropriate. For example, features described with respect to certain configurations may be combined in various other configurations. Different aspects and elements of configuration can be combined in a similar fashion. In addition, technology evolves and, therefore, many of the elements are examples and do not limit the scope of the disclosure or claims.

無線通訊系統是通訊被無線遞送的系統,亦即,藉由穿過大氣空間傳播的電磁波及/或聲波,而不是經由電線或其他實體連接。無線通訊網路可以不具有無線發送的所有通訊,但是被配置為具有無線發送的至少一些通訊。此外,術語「無線通訊設備」或類似術語並不要求該設備的功能專門或主要用於通訊,或者該設備是行動設備,而是指示該設備包括無線通訊能力(單向或雙向),例如,包括至少一個無線電設備(每個無線電設備是發送器、接收器或收發器的一部分)用於無線通訊。A wireless communication system is a system in which communications are delivered wirelessly, that is, by electromagnetic and/or acoustic waves propagating through atmospheric space, rather than via wires or other physical connections. A wireless communication network may not have all communications sent wirelessly, but be configured to have at least some communications sent wirelessly. In addition, the term "wireless communication device" or similar terms do not require that the function of the device is exclusively or primarily for communication, or that the device is a mobile device, but rather indicate that the device includes wireless communication capabilities (one-way or two-way), for example, Include at least one radio device (each radio device being part of a transmitter, receiver or transceiver) for wireless communication.

具體細節在描述中提供,以提供對示例配置(包括實現方式)的透徹理解。然而,可以在沒有該等具體細節的情況下實踐配置。例如,已經圖示眾所周知的電路、過程、演算法、結構和技術,而沒有不必要的細節,以避免混淆配置。該描述僅提供示例配置,而不限制請求項的範圍、適用性或配置。相反,前面對配置的描述提供了對實現所描述的技術的描述。在不脫離本揭示的範圍的情況下,可以對元件的功能和佈置進行各種改變。Specific details are provided in the description to provide a thorough understanding of example configurations including implementation. However, configurations may be practiced without these specific details. For example, well-known circuits, procedures, algorithms, structures and techniques have been illustrated without unnecessary detail in order to avoid obscuring the configuration. This description provides an example configuration only, and does not limit the scope, applicability, or configuration of the requested item. Rather, the preceding description of the configurations provides a description of implementing the described techniques. Various changes may be made in the function and arrangement of elements without departing from the scope of the disclosure.

本文使用的術語「處理器可讀取媒體」、「機器可讀取媒體」和「電腦可讀取媒體」是指參與提供使機器以特定方式操作的資料的任何媒體。使用計算平臺,各種處理器可讀取媒體可以參與向處理器提供指令/代碼以供執行及/或可以用於儲存及/或攜帶此種指令/代碼(例如,作為信號)。在許多實現方式中,處理器可讀取媒體是實體及/或有形儲存媒體。此種媒體可以採取許多形式,包括但不限於非揮發性媒體和揮發性媒體。非揮發性媒體包括例如光碟及/或磁碟。揮發性媒體包括但不限於動態記憶體。The terms "processor-readable medium", "machine-readable medium" and "computer-readable medium" are used herein to refer to any medium that participates in providing information that causes a machine to operate in a specific manner. Using a computing platform, various processor-readable media can participate in providing instructions/code to the processor for execution and/or can be used to store and/or carry such instructions/code (eg, as signals). In many implementations, the processor-readable medium is a physical and/or tangible storage medium. Such media can take many forms, including but not limited to, non-volatile media and volatile media. Non-volatile media include, for example, optical and/or magnetic disks. Volatile media includes, but is not limited to, dynamic memory.

值超過(或大於或高於)第一閾值的陳述等同於值滿足或超過略大於第一閾值的第二閾值的陳述,例如,在計算系統的解析度中,第二閾值比第一閾值高一個值。值小於(或在其範圍內或低於)第一閾值的陳述等同於值小於或等於略低於第一閾值的第二閾值的陳述,例如,在計算系統的解析度中,第二閾值比第一閾值低一個值。A statement that a value exceeds (or is greater than or higher than) a first threshold is equivalent to a statement that a value meets or exceeds a second threshold that is slightly greater than the first threshold, e.g., the second threshold is higher than the first threshold in the resolution of the computing system a value. A statement that a value is less than (or within or within the range of) a first threshold is equivalent to a statement that a value is less than or equal to a second threshold slightly lower than the first threshold, e.g., in the resolution of the computing system, the second threshold is less than The first threshold is lower by one value.

以下編號條款描述了實施方式實例:The following numbered clauses describe implementation examples:

1.一種用於利用接收器決定到衛星載具的距離的方法,包括:1. A method for determining the range to a satellite vehicle using a receiver comprising:

從該衛星載具接收信號;receive signals from the satellite vehicle;

決定一或多個陷波濾波器配置;determining one or more notch filter configurations;

決定假性隨機雜訊碼和與該信號相關聯的都卜勒頻率;determining a pseudorandom noise code and a Doppler frequency associated with the signal;

至少基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率,決定碼相位校正值;及determining a code phase correction value based at least on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency; and

至少部分基於該信號和該碼相位校正值,計算到該衛星載具的該距離。The distance to the satellite vehicle is calculated based at least in part on the signal and the code phase correction value.

2.如條款1所述的方法,其中決定該碼相位校正值包括基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率從查閱資料表獲得該碼相位校正值。2. The method of clause 1, wherein determining the code phase correction value comprises obtaining the code from a lookup table based on the one or more notch filter configurations, the pseudorandom noise code, and the Doppler frequency Phase correction value.

3.如條款2所述的方法,進一步包括從網路實體接收輔助資料,其中該輔助資料包括該查閱資料表。3. The method of clause 2, further comprising receiving auxiliary data from a network entity, wherein the auxiliary data includes the lookup data table.

4.如條款3所述的方法,其中該輔助資料經由一或多個長期進化定位協定(LPP)訊息來接收。4. The method of clause 3, wherein the assistance data is received via one or more Long Term Positioning Protocol (LPP) messages.

5.如條款3所述的方法,其中該輔助資料經由一或多個無線電資源控制(RRC)訊息來接收。5. The method of clause 3, wherein the assistance data is received via one or more radio resource control (RRC) messages.

6.如條款2所述的方法,其中決定該碼相位校正值包括基於內插函數獲得該碼相位校正值。6. The method of clause 2, wherein determining the code phase correction value comprises obtaining the code phase correction value based on an interpolation function.

7.如條款1所述的方法,進一步包括利用該接收器基於複數個陷波濾波器配置的模型化自相關函數產生查閱資料表,並且其中決定該碼相位校正值包括:基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率從該查閱資料表獲得該碼相位校正值。7. The method of clause 1, further comprising generating a look-up table with the receiver based on a modeled autocorrelation function of the plurality of notch filter configurations, and wherein determining the code phase correction value comprises: based on the one or more A notch filter configuration, the pseudo-random noise code and the Doppler frequency obtain the code phase correction value from the look-up table.

8.如條款1所述的方法,其中該一或多個陷波濾波器配置包括一或多個陷波頻率以及與該一或多個陷波頻率相關聯的一或多個頻寬。8. The method of clause 1, wherein the one or more notch filter configurations include one or more notch frequencies and one or more bandwidths associated with the one or more notch frequencies.

9.如條款1所述的方法,其中計算到該衛星載具的該距離包括基於該信號決定到該衛星載具的偽距。9. The method of clause 1, wherein calculating the distance to the satellite vehicle comprises determining a pseudorange to the satellite vehicle based on the signal.

10.如條款1所述的方法,其中該接收器包括一或多個陷波濾波器,該一或多個陷波濾波器由一或多個具有可程式設計中心頻率和頻寬的數位濾波器組成。10. The method of clause 1, wherein the receiver includes one or more notch filters composed of one or more digital filter filters with programmable center frequency and bandwidth device composition.

11.一種裝置,包括:11. A device comprising:

記憶體;Memory;

被配置為從衛星載具接收信號的至少一個衛星定位系統接收器;at least one satellite positioning system receiver configured to receive signals from satellite vehicles;

通訊耦合到該記憶體和該至少一個衛星定位系統接收器並被配置為執行以下操作的至少一個處理器:at least one processor communicatively coupled to the memory and the at least one satellite positioning system receiver and configured to:

從該衛星載具接收該信號;receiving the signal from the satellite vehicle;

決定一或多個陷波濾波器配置;determining one or more notch filter configurations;

決定假性隨機雜訊碼和與該信號相關聯的都卜勒頻率;determining a pseudorandom noise code and a Doppler frequency associated with the signal;

至少基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率決定碼相位校正值;及determining a code phase correction value based at least on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency; and

至少部分基於該信號和該碼相位校正值計算到該衛星載具的距離。A range to the satellite vehicle is calculated based at least in part on the signal and the code phase correction value.

12.如條款11所述的裝置,其中該至少一個處理器進一步被配置為基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率從查閱資料表獲得該碼相位校正值。12. The apparatus of clause 11, wherein the at least one processor is further configured to obtain from a lookup table based on the one or more notch filter configurations, the pseudorandom noise code, and the Doppler frequency The code phase correction value.

13.如條款12所述的裝置,進一步包括至少一個收發器,該收發器通訊耦合到該至少一個處理器,使得該至少一個處理器進一步被配置為從網路實體接收輔助資料,並且其中該輔助資料包括該查閱資料表。13. The apparatus of clause 12, further comprising at least one transceiver communicatively coupled to the at least one processor such that the at least one processor is further configured to receive assistance data from a network entity, and wherein the Auxiliary data includes the lookup data sheet.

14.如條款13所述的裝置,其中該輔助資料經由一或多個長期進化定位協定(LPP)訊息來接收。14. The device of clause 13, wherein the assistance data is received via one or more Long Term Positioning Protocol (LPP) messages.

15.如條款13所述的裝置,其中該輔助資料經由一或多個無線電資源控制(RRC)訊息來接收。15. The device of clause 13, wherein the assistance data is received via one or more radio resource control (RRC) messages.

16.如條款12所述的裝置,其中該至少一個處理器進一步被配置為基於內插函數獲得該碼相位校正值。16. The apparatus of clause 12, wherein the at least one processor is further configured to obtain the code phase correction value based on an interpolation function.

17.如條款11所述的裝置,其中該至少一個處理器進一步被配置為基於複數個陷波濾波器配置的模型化自相關函數產生查閱資料表,並且基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率從該查閱資料表獲得該碼相位校正值。17. The apparatus of clause 11, wherein the at least one processor is further configured to generate a look-up table based on a modeled autocorrelation function of the plurality of notch filter configurations, and based on the one or more notch filter The configuration, the pseudo-random noise code and the Doppler frequency obtain the code phase correction value from the look-up table.

18.如條款11所述的裝置,其中該一或多個陷波濾波器配置包括一或多個陷波頻率以及與該一或多個陷波頻率相關聯的一或多個頻寬。18. The apparatus of clause 11, wherein the one or more notch filter configurations comprise one or more notch frequencies and one or more bandwidths associated with the one or more notch frequencies.

19.如條款11所述的裝置,其中該至少一個處理器進一步被配置成基於該信號決定到該衛星載具的偽距。19. The apparatus of clause 11, wherein the at least one processor is further configured to determine a pseudorange to the satellite vehicle based on the signal.

20.如條款11所述的裝置,其中該一或多個陷波濾波器配置包括一或多個具有可程式設計中心頻率和頻寬的數位濾波器。20. The apparatus of clause 11, wherein the one or more notch filter configurations comprise one or more digital filters having programmable center frequencies and bandwidths.

21.一種用於決定到衛星載具的距離的裝置,包括:21. An apparatus for determining a distance to a satellite vehicle comprising:

用於從該衛星載具接收信號的構件;means for receiving signals from the satellite vehicle;

用於決定一或多個陷波濾波器配置的構件;means for determining one or more notch filter configurations;

用於決定假性隨機雜訊碼和與該信號相關聯的都卜勒頻率的構件;means for determining the pseudorandom noise code and the Doppler frequency associated with the signal;

用於至少基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率決定碼相位校正值的構件;及means for determining a code phase correction value based at least on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency; and

用於至少部分基於該信號和該碼相位校正值計算到該衛星載具的該距離的構件。means for calculating the distance to the satellite vehicle based at least in part on the signal and the code phase correction value.

22.如條款21所述的裝置,其中用於決定該碼相位校正值的該構件包括:用於基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率從查閱資料表獲得該碼相位校正值的構件。22. The apparatus of clause 21, wherein the means for determining the code phase correction value comprises: for The code phase correction value is obtained from the frequency reference table.

23.如條款22所述的裝置,進一步包括用於從網路實體接收輔助資料的構件,其中該輔助資料包括該查閱資料表。23. The apparatus of clause 22, further comprising means for receiving auxiliary data from a network entity, wherein the auxiliary data includes the lookup data table.

24.如條款23所述的裝置,其中該輔助資料經由一或多個長期進化定位協定(LPP)訊息來接收。24. The device of clause 23, wherein the assistance data is received via one or more Long Term Positioning Protocol (LPP) messages.

25.如條款23所述的裝置,其中該輔助資料經由一或多個無線電資源控制(RRC)訊息來接收。25. The device of clause 23, wherein the assistance data is received via one or more radio resource control (RRC) messages.

26.如條款22所述的裝置,其中用於決定該碼相位校正值的該構件包括用於基於內插函數獲得該碼相位校正值的構件。26. The apparatus of clause 22, wherein the means for determining the code phase correction value comprises means for obtaining the code phase correction value based on an interpolation function.

27.如條款21所述的裝置,進一步包括用於基於複數個陷波濾波器配置的模型化自相關函數產生查閱資料表的構件,其中用於決定該碼相位校正值的該構件包括:用於基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率從該查閱資料表獲得該碼相位校正值的構件。27. The apparatus of clause 21, further comprising means for generating a look-up table based on a modeled autocorrelation function of the plurality of notch filter configurations, wherein the means for determining the code phase correction value comprises: using means for obtaining the code phase correction value from the look-up table based on the one or more notch filter configurations, the pseudo-random noise code and the Doppler frequency.

28.如條款21所述的裝置,其中該一或多個陷波濾波器配置包括一或多個陷波頻率以及與該一或多個陷波頻率相關聯的一或多個頻寬。28. The apparatus of clause 21, wherein the one or more notch filter configurations comprise one or more notch frequencies and one or more bandwidths associated with the one or more notch frequencies.

29.如條款21所述的裝置,其中用於計算到該衛星載具的該距離的該構件包括用於基於該信號決定到該衛星載具的偽距的構件。29. The apparatus of clause 21, wherein the means for calculating the distance to the satellite vehicle comprises means for determining a pseudorange to the satellite vehicle based on the signal.

30.如條款21所述的裝置,進一步包括一或多個陷波濾波器,該一或多個陷波濾波器由一或多個具有可程式設計中心頻率和頻寬的數位濾波器組成。30. The apparatus of clause 21, further comprising one or more notch filters consisting of one or more digital filters with programmable center frequencies and bandwidths.

31.一種非暫時性處理器可讀取儲存媒體,包括用於使一或多個處理器決定到衛星載具的距離的處理器可讀取指令,包括:31. A non-transitory processor readable storage medium comprising processor readable instructions for causing one or more processors to determine a distance to a satellite vehicle, comprising:

用於從該衛星載具接收信號的代碼;the code used to receive signals from the satellite vehicle;

用於決定一或多個陷波濾波器配置的代碼;code for determining the configuration of one or more notch filters;

用於決定假性隨機雜訊碼和與該信號相關聯的都卜勒頻率的代碼;the code used to determine the pseudorandom noise code and the Doppler frequency associated with the signal;

用於至少基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率決定碼相位校正值的代碼;及a code for determining a code phase correction value based at least on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency; and

用於至少部分基於該信號和該碼相位校正值計算到該衛星載具的該距離的代碼。A code for calculating the range to the satellite vehicle based at least in part on the signal and the code phase correction value.

32.如條款31所述的非暫時性處理器可讀取儲存媒體,其中用於決定該碼相位校正值的該代碼包括用於基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率從查閱資料表獲得該碼相位校正值的代碼。32. The non-transitory processor-readable storage medium of clause 31, wherein the code for determining the code phase correction value includes a method for determining the code phase correction value based on the one or more notch filter configurations, the pseudo-random The noise code and the Doppler frequency code are obtained from a reference table for the phase correction value of the code.

33.如條款32所述的非暫時性處理器可讀取儲存媒體,進一步包括用於從網路實體接收輔助資料的代碼,其中該輔助資料包括該查閱資料表。33. The non-transitory processor-readable storage medium of clause 32, further comprising code for receiving auxiliary data from a network entity, wherein the auxiliary data includes the lookup data table.

34.如條款33所述的非暫時性處理器可讀取儲存媒體,其中該輔助資料經由一或多個長期進化定位協定(LPP)訊息來接收。34. The non-transitory processor-readable storage medium of clause 33, wherein the assistance data is received via one or more Long Term Positioning Protocol (LPP) messages.

35.如條款33所述的非暫時性處理器可讀取儲存媒體,其中該輔助資料經由一或多個無線電資源控制(RRC)訊息來接收。35. The non-transitory processor-readable storage medium of clause 33, wherein the assistance data is received via one or more radio resource control (RRC) messages.

36.如條款32所述的非暫時性處理器可讀取儲存媒體,其中用於決定該碼相位校正值的該代碼包括用於基於內插函數獲得該碼相位校正值的代碼。36. The non-transitory processor-readable storage medium of clause 32, wherein the code for determining the code phase correction value comprises code for obtaining the code phase correction value based on an interpolation function.

37.如條款31所述的非暫時性處理器可讀取儲存媒體,進一步包括用於基於複數個陷波濾波器配置的模型化自相關函數產生查閱資料表的代碼,並且其中用於決定該碼相位校正值的該代碼包括用於基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率從該查閱資料表獲得該碼相位校正值的代碼。37. The non-transitory processor-readable storage medium of clause 31, further comprising code for generating a look-up table based on a modeled autocorrelation function of the plurality of notch filter configurations, and wherein for determining the The code for a code phase correction value includes code for obtaining the code phase correction value from the lookup table based on the one or more notch filter configurations, the pseudo random noise code, and the Doppler frequency.

38.如條款31所述的非暫時性處理器可讀取儲存媒體,其中該一或多個陷波濾波器配置包括一或多個陷波頻率以及與該一或多個陷波頻率相關聯的一或多個頻寬。38. The non-transitory processor-readable storage medium of clause 31, wherein the one or more notch filter configurations include one or more notch frequencies and One or more bandwidths of .

39.如條款31所述的非暫時性處理器可讀取儲存媒體,其中用於計算到該衛星載具的該距離的該代碼包括用於基於該信號決定到該衛星載具的偽距的代碼。39. The non-transitory processor-readable storage medium of clause 31, wherein the code for calculating the distance to the satellite vehicle includes a code for determining a pseudorange to the satellite vehicle based on the signal code.

40.如條款31所述的非暫時性處理器可讀取儲存媒體,進一步包括一或多個陷波濾波器,該一或多個陷波濾波器由一或多個具有可程式設計中心頻率和頻寬的數位濾波器組成。40. The non-transitory processor-readable storage medium of clause 31, further comprising one or more notch filters composed of one or more and bandwidth digital filters.

100:通訊系統 105:UE 110a:NR節點B(gNB) 110b:NR節點B(gNB) 114:下一代e節點B(ng-eNB) 115:存取和行動性管理功能(AMF) 117:通信期管理功能(SMF) 120:位置管理功能(LMF) 125:閘道行動位置中心(GMLC) 130:外部客戶端 135:無線電存取網路(RAN) 140:5G核心網路(5GC) 185:群集 190:衛星載具(SV) 191:衛星載具(SV) 192:衛星載具(SV) 193:衛星載具(SV) 200:UE 210:處理器 211:記憶體 212:軟體(SW) 213:感測器 214:收發器介面 215:收發器 216:使用者介面 217:衛星定位系統(SPS)接收器 218:相機 219:位置(運動)設備 220:匯流排 230:通用/應用處理器 231:數位訊號處理器(DSP) 232:數據機處理器 233:視訊處理器 234:感測器處理器 240:無線收發器 242:發送器 244:接收器 246:天線 248:無線信號 250:有線收發器 252:發送器 254:接收器 260:SPS信號 262:SPS天線 270:慣性量測單元(IMU) 271:磁力計 272:環境感測器 273:加速度計 274:陀螺儀 300:TRP 310:處理器 311:記憶體 312:軟體(SW) 315:收發器 317:SPS接收器 320:匯流排 340:無線收發器 342:發送器 344:接收器 346:天線 348:無線信號 350:有線收發器 352:發送器 354:接收器 360:SPS信號 362:SPS天線 400:伺服器 410:處理器 411:記憶體 412:軟體(SW) 415:收發器 420:匯流排 440:無線收發器 442:發送器 444:接收器 446:天線 448:無線信號 450:有線收發器 452:發送器 454:接收器 500:GNSS接收器 501:天線 502:類比部分 503:數位部分 504:處理器 600:圖 602:GNSS頻譜 604:信號下降 610:圖 612:典型ACF 614:ACF 620:圖表 622:碼相位誤差值 700:過程 702:離線查閱資料表(LUT) 704:陷波濾波器配置 706:SV PRN和都卜勒頻率資訊 706a:SVID 706b:SV都卜勒 708:階段 710:階段 800:過程 802:階段 804:階段 806:階段 900:過程 902:陷波濾波器配置資訊 904:SV PRN和都卜勒頻率資訊 906:階段 908:階段 910:階段 1100:方法 1102:階段 1104:階段 1106:階段 1108:階段 1110:階段 100: Communication system 105:UE 110a: NR Node B (gNB) 110b: NR Node B (gNB) 114: Next Generation eNode B (ng-eNB) 115: Access and Mobility Management Function (AMF) 117: Communication period management function (SMF) 120: Location management function (LMF) 125: Gateway Operations Location Center (GMLC) 130: external client 135: Radio Access Network (RAN) 140: 5G core network (5GC) 185: cluster 190:Satellite Vehicle (SV) 191:Satellite Vehicle (SV) 192:Satellite Vehicle (SV) 193:Satellite Vehicle (SV) 200:UE 210: Processor 211: Memory 212: Software (SW) 213: sensor 214: transceiver interface 215: Transceiver 216: User interface 217: Satellite Positioning System (SPS) Receiver 218: camera 219: Position (Motion) Devices 220: busbar 230: General/Application Processor 231:Digital signal processor (DSP) 232: Modem processor 233: video processor 234: sensor processor 240: wireless transceiver 242: Transmitter 244: Receiver 246: Antenna 248: wireless signal 250: wired transceiver 252: Transmitter 254: Receiver 260: SPS signal 262: SPS antenna 270: Inertial Measurement Unit (IMU) 271: Magnetometer 272: Environmental sensor 273: Accelerometer 274: Gyroscope 300:TRP 310: Processor 311: memory 312: Software (SW) 315: Transceiver 317: SPS receiver 320: busbar 340: wireless transceiver 342: Transmitter 344: Receiver 346: Antenna 348: wireless signal 350: wired transceiver 352: Transmitter 354: Receiver 360: SPS signal 362:SPS Antenna 400: server 410: Processor 411: Memory 412: Software (SW) 415: Transceiver 420: busbar 440: wireless transceiver 442: Transmitter 444: Receiver 446: Antenna 448: wireless signal 450: wired transceiver 452: sender 454: Receiver 500: GNSS receiver 501: Antenna 502: Analogy part 503: digital part 504: Processor 600: figure 602:GNSS Spectrum 604: signal drop 610: figure 612: Typical ACF 614:ACF 620: chart 622: code phase error value 700: process 702: Offline lookup table (LUT) 704: Notch filter configuration 706: SV PRN and Doppler frequency information 706a: SVID 706b: SV Doppler 708: stage 710: stage 800: process 802: stage 804: stage 806: stage 900: process 902: Notch filter configuration information 904: SV PRN and Doppler frequency information 906: stage 908: stage 910: stage 1100: method 1102: stage 1104: stage 1106: stage 1108: stage 1110: stage

圖1是示例無線通訊系統的簡圖。Figure 1 is a simplified diagram of an example wireless communication system.

圖2是圖1所示的示例使用者設備的部件的方塊圖。FIG. 2 is a block diagram of components of the example UE shown in FIG. 1 .

圖3是示例發送/接收點的部件的方塊圖。Figure 3 is a block diagram of components of an example transmit/receive point.

圖4是示例伺服器的部件的方塊圖,其各種實施例在圖1中圖示。FIG. 4 is a block diagram of components of an example server, various embodiments of which are illustrated in FIG. 1 .

圖5是使用者設備中的示例GNSS接收器的圖。5 is a diagram of an example GNSS receiver in a user device.

圖6A是應用陷波濾波器的示例GNSS頻譜的圖。6A is a graph of an example GNSS spectrum with a notch filter applied.

圖6B是具有和不具有陷波濾波器的示例自相關函數的比較圖。Figure 6B is a comparison graph of an example autocorrelation function with and without a notch filter.

圖6C是基於示例陷波濾波器頻率的碼相位誤差值的圖。6C is a graph of code phase error values based on example notch filter frequencies.

圖7是基於陷波濾波器配置的離線相位補償的示例過程的方塊圖。7 is a block diagram of an example process for off-line phase compensation based on a notch filter configuration.

圖8是計算碼相位校正值的示例過程的方塊圖。8 is a block diagram of an example process for calculating code phase correction values.

圖9是基於陷波濾波器配置的線上相位計算的示例過程的方塊圖。9 is a block diagram of an example process for in-line phase calculation based on a notch filter configuration.

圖10A至圖10D包括複數個衛星載具和陷波濾波器配置的碼相位誤差的示例圖表。10A-10D include example graphs of code phase error for a plurality of satellite vehicles and notch filter configurations.

圖11是用於計算到衛星載具的距離的示例方法的過程流程圖。11 is a process flow diagram of an example method for calculating distance to a satellite vehicle.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

700:過程 700: process

702:離線查閱資料表(LUT) 702: Offline lookup table (LUT)

704:陷波濾波器配置 704: Notch filter configuration

706:SV PRN和都卜勒頻率資訊 706: SV PRN and Doppler frequency information

706a:SVID 706a: SVID

706b:SV都卜勒 706b: SV Doppler

708:階段 708: stage

710:階段 710: stage

Claims (40)

一種用於利用一接收器決定到一衛星載具的一距離的方法,包括以下步驟: 從該衛星載具接收一信號; 決定一或多個陷波濾波器配置; 決定一假性隨機雜訊碼和與該信號相關聯的一都卜勒頻率; 至少基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率,決定一碼相位校正值;及 至少部分基於該信號和該碼相位校正值,計算到該衛星載具的該距離。 A method for determining a distance to a satellite vehicle using a receiver, comprising the steps of: receiving a signal from the satellite vehicle; determining one or more notch filter configurations; determining a pseudorandom noise code and a Doppler frequency associated with the signal; determining a code phase correction value based at least on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency; and The distance to the satellite vehicle is calculated based at least in part on the signal and the code phase correction value. 如請求項1所述的方法,其中決定該碼相位校正值包括以下步驟:基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率,從一查閱資料表獲得該碼相位校正值。The method as recited in claim 1, wherein determining the code phase correction value comprises the steps of: based on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency, from a lookup data Table to obtain the code phase correction value. 如請求項2所述的方法,進一步包括從一網路實體接收輔助資料,其中該輔助資料包括該查閱資料表。The method of claim 2, further comprising receiving auxiliary data from a network entity, wherein the auxiliary data includes the lookup data table. 如請求項3所述的方法,其中該輔助資料經由一或多個長期進化定位協定(LPP)訊息來接收。The method of claim 3, wherein the assistance data is received via one or more Long Term Positioning Protocol (LPP) messages. 如請求項3所述的方法,其中該輔助資料經由一或多個無線電資源控制(RRC)訊息來接收。The method of claim 3, wherein the assistance data is received via one or more radio resource control (RRC) messages. 如請求項2所述的方法,其中決定該碼相位校正值包括以下步驟:基於一內插函數獲得該碼相位校正值。The method as claimed in claim 2, wherein determining the code phase correction value comprises the following steps: obtaining the code phase correction value based on an interpolation function. 如請求項1所述的方法,進一步包括利用該接收器基於複數個陷波濾波器配置的模型化自相關函數產生一查閱資料表,並且其中決定該碼相位校正值包括以下步驟:基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率,從該查閱資料表獲得該碼相位校正值。The method as claimed in claim 1, further comprising generating a look-up table using the receiver based on the modeled autocorrelation function of the plurality of notch filter configurations, and wherein determining the code phase correction value comprises the steps of: based on the or a plurality of notch filter configurations, the pseudo-random noise code and the Doppler frequency, the code phase correction value is obtained from the look-up table. 如請求項1所述的方法,其中該一或多個陷波濾波器配置包括:一或多個陷波頻率、以及與該一或多個陷波頻率相關聯的一或多個頻寬。The method of claim 1, wherein the one or more notch filter configurations include: one or more notch frequencies, and one or more bandwidths associated with the one or more notch frequencies. 如請求項1所述的方法,其中計算到該衛星載具的該距離包括以下步驟:基於該信號決定到該衛星載具的一偽距。The method of claim 1, wherein calculating the distance to the satellite vehicle comprises the step of: determining a pseudorange to the satellite vehicle based on the signal. 如請求項1所述的方法,其中該接收器包括一或多個陷波濾波器,該一或多個陷波濾波器由一或多個具有可程式設計中心頻率和頻寬的數位濾波器組成。The method as claimed in claim 1, wherein the receiver includes one or more notch filters, the one or more notch filters are composed of one or more digital filters with programmable center frequency and bandwidth composition. 一種裝置,包括: 一記憶體; 至少一個衛星定位系統接收器,被配置為從一衛星載具接收一信號;及 至少一個處理器,通訊耦合到該記憶體和該至少一個衛星定位系統接收器,並被配置為: 從該衛星載具接收該信號; 決定一或多個陷波濾波器配置; 決定一假性隨機雜訊碼和與該信號相關聯的一都卜勒頻率; 至少基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率,決定一碼相位校正值;及 至少部分基於該信號和該碼相位校正值,計算到該衛星載具的一距離。 A device comprising: a memory; at least one satellite positioning system receiver configured to receive a signal from a satellite vehicle; and at least one processor, communicatively coupled to the memory and the at least one satellite positioning system receiver, and configured to: receiving the signal from the satellite vehicle; determining one or more notch filter configurations; determining a pseudorandom noise code and a Doppler frequency associated with the signal; determining a code phase correction value based at least on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency; and A distance to the satellite vehicle is calculated based at least in part on the signal and the code phase correction value. 如請求項11所述的裝置,其中該至少一個處理器進一步被配置為基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率從一查閱資料表獲得該碼相位校正值。The apparatus of claim 11, wherein the at least one processor is further configured to obtain from a lookup table based on the one or more notch filter configurations, the pseudorandom noise code, and the Doppler frequency The code phase correction value. 如請求項12所述的裝置,進一步包括通訊耦合到該至少一個處理器的至少一個收發器,其中該至少一個處理器進一步被配置為從一網路實體接收輔助資料,並且其中該輔助資料包括該查閱資料表。The apparatus of claim 12, further comprising at least one transceiver communicatively coupled to the at least one processor, wherein the at least one processor is further configured to receive assistance data from a network entity, and wherein the assistance data includes The lookup table. 如請求項13所述的裝置,其中該輔助資料經由一或多個長期進化定位協定(LPP)訊息來接收。The device of claim 13, wherein the assistance data is received via one or more Long Term Positioning Protocol (LPP) messages. 如請求項13所述的裝置,其中該輔助資料經由一或多個無線電資源控制(RRC)訊息來接收。The device of claim 13, wherein the assistance data is received via one or more radio resource control (RRC) messages. 如請求項12所述的裝置,其中該至少一個處理器進一步被配置為基於一內插函數獲得該碼相位校正值。The device of claim 12, wherein the at least one processor is further configured to obtain the code phase correction value based on an interpolation function. 如請求項11所述的裝置,其中該至少一個處理器進一步被配置為基於複數個陷波濾波器配置的模型化自相關函數產生一查閱資料表,並且基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率,從該查閱資料表獲得該碼相位校正值。The device as claimed in claim 11, wherein the at least one processor is further configured to generate a look-up table based on the modeled autocorrelation function of the plurality of notch filter configurations, and based on the one or more notch filters The configuration, the pseudo-random noise code and the Doppler frequency, and the code phase correction value are obtained from the look-up table. 如請求項11所述的裝置,其中該一或多個陷波濾波器配置包括:一或多個陷波頻率、以及與該一或多個陷波頻率相關聯的一或多個頻寬。The apparatus of claim 11, wherein the one or more notch filter configurations comprise: one or more notch frequencies, and one or more bandwidths associated with the one or more notch frequencies. 如請求項11所述的裝置,其中該至少一個處理器進一步被配置為基於該信號決定到該衛星載具的一偽距。The apparatus of claim 11, wherein the at least one processor is further configured to determine a pseudorange to the satellite vehicle based on the signal. 如請求項11所述的裝置,其中該一或多個陷波濾波器配置包括一或多個具有可程式設計中心頻率和頻寬的數位濾波器。The apparatus of claim 11, wherein the one or more notch filter configurations comprise one or more digital filters with programmable center frequencies and bandwidths. 一種用於決定到一衛星載具的一距離的裝置,包括: 用於從該衛星載具接收一信號的構件; 用於決定一或多個陷波濾波器配置的構件; 用於決定一假性隨機雜訊碼和與該信號相關聯的一都卜勒頻率的構件; 用於至少基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率、而決定一碼相位校正值的構件;及 用於至少部分基於該信號和該碼相位校正值、而計算到該衛星載具的該距離的構件。 An apparatus for determining a distance to a satellite vehicle comprising: means for receiving a signal from the satellite vehicle; means for determining one or more notch filter configurations; means for determining a pseudorandom noise code and a Doppler frequency associated with the signal; means for determining a code phase correction value based at least on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency; and means for calculating the distance to the satellite vehicle based at least in part on the signal and the code phase correction value. 如請求項21所述的裝置,其中用於決定該碼相位校正值的該構件包括:用於基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率、而從一查閱資料表獲得該碼相位校正值的構件。The device as claimed in claim 21, wherein the means for determining the code phase correction value comprises: for determining the code phase correction value based on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency , and obtain the code phase correction value from a look-up data table. 如請求項22所述的裝置,進一步包括用於從一網路實體接收輔助資料的構件,其中該輔助資料包括該查閱資料表。The apparatus of claim 22, further comprising means for receiving auxiliary data from a network entity, wherein the auxiliary data includes the lookup data table. 如請求項23所述的裝置,其中該輔助資料經由一或多個長期進化定位協定(LPP)訊息來接收。The device of claim 23, wherein the assistance data is received via one or more Long Term Positioning Protocol (LPP) messages. 如請求項23所述的裝置,其中該輔助資料經由一或多個無線電資源控制(RRC)訊息來接收。The device of claim 23, wherein the assistance data is received via one or more radio resource control (RRC) messages. 如請求項22所述的裝置,其中用於決定該碼相位校正值的該構件包括:用於基於一內插函數獲得該碼相位校正值的構件。The apparatus of claim 22, wherein the means for determining the code phase correction value comprises: means for obtaining the code phase correction value based on an interpolation function. 如請求項21所述的裝置,進一步包括用於基於複數個陷波濾波器配置的模型化自相關函數產生一查閱資料表的構件,並且其中用於決定該碼相位校正值的該構件包括:用於基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率、而從該查閱資料表獲得該碼相位校正值的構件。The apparatus of claim 21, further comprising means for generating a look-up table based on the modeled autocorrelation function of the plurality of notch filter configurations, and wherein the means for determining the code phase correction value comprises: means for obtaining the code phase correction value from the look-up table based on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency. 如請求項21所述的裝置,其中該一或多個陷波濾波器配置包括:一或多個陷波頻率、以及與該一或多個陷波頻率相關聯的一或多個頻寬。The apparatus of claim 21, wherein the one or more notch filter configurations comprise: one or more notch frequencies, and one or more bandwidths associated with the one or more notch frequencies. 如請求項21所述的裝置,其中用於計算到該衛星載具的該距離的該構件包括:用於基於該信號決定到該衛星載具的一偽距的構件。The apparatus of claim 21, wherein the means for calculating the distance to the satellite vehicle comprises means for determining a pseudorange to the satellite vehicle based on the signal. 如請求項21所述的裝置,進一步包括一或多個陷波濾波器,該一或多個陷波濾波器由一或多個具有可程式設計中心頻率和頻寬的數位濾波器組成。The device according to claim 21, further comprising one or more notch filters, the one or more notch filters are composed of one or more digital filters with programmable center frequency and bandwidth. 一種非暫時性處理器可讀取儲存媒體,包括用於使一或多個處理器決定到一衛星載具的一距離的處理器可讀取指令,包括: 用於從該衛星載具接收一信號的代碼; 用於決定一或多個陷波濾波器配置的代碼; 用於決定一假性隨機雜訊碼和與該信號相關聯的一都卜勒頻率的代碼; 用於至少基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率、而決定一碼相位校正值的代碼;及 用於至少部分基於該信號和該碼相位校正值、而計算到該衛星載具的該距離的代碼。 A non-transitory processor readable storage medium comprising processor readable instructions for causing one or more processors to determine a distance to a satellite vehicle, comprising: a code for receiving a signal from the satellite vehicle; code for determining the configuration of one or more notch filters; a code for determining a pseudorandom noise code and a Doppler frequency associated with the signal; code for determining a code phase correction value based at least on the one or more notch filter configurations, the pseudo random noise code and the Doppler frequency; and A code for calculating the distance to the satellite vehicle based at least in part on the signal and the code phase correction value. 如請求項31所述的非暫時性處理器可讀取儲存媒體,其中用於決定該碼相位校正值的該代碼包括:用於基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率、而從一查閱資料表獲得該碼相位校正值的代碼。The non-transitory processor-readable storage medium as recited in claim 31, wherein the code for determining the code phase correction value includes: for determining the code phase correction value based on the one or more notch filter configurations, the pseudo-random Noise code and the Doppler frequency, and the code of the code phase correction value is obtained from a look-up table. 如請求項32所述的非暫時性處理器可讀取儲存媒體,進一步包括用於從一網路實體接收輔助資料的代碼,其中該輔助資料包括該查閱資料表。The non-transitory processor-readable storage medium of claim 32, further comprising code for receiving auxiliary data from a network entity, wherein the auxiliary data includes the lookup data table. 如請求項33所述的非暫時性處理器可讀取儲存媒體,其中該輔助資料經由一或多個長期進化定位協定(LPP)訊息來接收。The non-transitory processor-readable storage medium of claim 33, wherein the assistance data is received via one or more Long Term Positioning Protocol (LPP) messages. 如請求項33所述的非暫時性處理器可讀取儲存媒體,其中該輔助資料經由一或多個無線電資源控制(RRC)訊息來接收。The non-transitory processor-readable storage medium of claim 33, wherein the auxiliary data is received via one or more radio resource control (RRC) messages. 如請求項32所述的非暫時性處理器可讀取儲存媒體,其中用於決定該碼相位校正值的該代碼包括:用於基於一內插函數獲得該碼相位校正值的代碼。The non-transitory processor-readable storage medium as claimed in claim 32, wherein the code for determining the code phase correction value comprises: code for obtaining the code phase correction value based on an interpolation function. 如請求項31所述的非暫時性處理器可讀取儲存媒體,進一步包括用於基於複數個陷波濾波器配置的模型化自相關函數產生一查閱資料表的代碼,並且其中用於決定該碼相位校正值的該代碼包括:用於基於該一或多個陷波濾波器配置、該假性隨機雜訊碼和該都卜勒頻率、而從該查閱資料表獲得該碼相位校正值的代碼。The non-transitory processor-readable storage medium of claim 31, further comprising code for generating a look-up table based on the modeled autocorrelation function of the plurality of notch filter configurations, and wherein for determining the The code for a code phase correction value includes: for obtaining the code phase correction value from the look-up table based on the one or more notch filter configurations, the pseudo random noise code, and the Doppler frequency code. 如請求項31所述的非暫時性處理器可讀取儲存媒體,其中該一或多個陷波濾波器配置包括:一或多個陷波頻率、以及與該一或多個陷波頻率相關聯的一或多個頻寬。The non-transitory processor-readable storage medium as described in claim 31, wherein the one or more notch filter configurations include: one or more notch frequencies, and One or more bandwidths associated. 如請求項31所述的非暫時性處理器可讀取儲存媒體,其中用於計算到該衛星載具的該距離的該代碼包括:用於基於該信號決定到該衛星載具的一偽距的代碼。The non-transitory processor-readable storage medium of claim 31, wherein the code for calculating the distance to the satellite vehicle comprises: determining a pseudorange to the satellite vehicle based on the signal code. 如請求項31所述的非暫時性處理器可讀取儲存媒體,進一步包括一或多個陷波濾波器,該一或多個陷波濾波器由一或多個具有可程式設計中心頻率和頻寬的數位濾波器組成。The non-transitory processor-readable storage medium as described in claim 31, further comprising one or more notch filters, the one or more notch filters are composed of one or more programmable center frequencies and Bandwidth digital filter composition.
TW110143792A 2021-01-25 2021-11-24 Notch filter codephase impact mitigation TW202303184A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202163141056P 2021-01-25 2021-01-25
US63/141,056 2021-01-25
US17/473,877 US11736893B2 (en) 2021-01-25 2021-09-13 Notch filter codephase impact mitigation
US17/473,877 2021-09-13
PCT/US2021/060432 WO2022159169A1 (en) 2021-01-25 2021-11-23 Notch filter codephase impact mitigation
WOPCT/US21/60432 2021-11-23

Publications (1)

Publication Number Publication Date
TW202303184A true TW202303184A (en) 2023-01-16

Family

ID=78957590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110143792A TW202303184A (en) 2021-01-25 2021-11-24 Notch filter codephase impact mitigation

Country Status (6)

Country Link
EP (1) EP4281806A1 (en)
JP (1) JP2024503669A (en)
KR (1) KR20230132788A (en)
BR (1) BR112023013991A2 (en)
TW (1) TW202303184A (en)
WO (1) WO2022159169A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8665147B2 (en) * 2010-04-28 2014-03-04 Maxlinear, Inc. GPS antenna diversity and noise mitigation
WO2012157142A1 (en) * 2011-05-16 2012-11-22 古野電気株式会社 Interference wave signal removal device, gnss receiver device, mobile terminal, interference wave signal removal program, and interference wave signal removal method
US9008249B2 (en) * 2012-02-10 2015-04-14 Qualcomm Incorporated Detection and filtering of an undesired narrowband signal contribution in a wireless signal receiver

Also Published As

Publication number Publication date
WO2022159169A1 (en) 2022-07-28
EP4281806A1 (en) 2023-11-29
KR20230132788A (en) 2023-09-18
JP2024503669A (en) 2024-01-26
BR112023013991A2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
KR20230007326A (en) Neural network-based line-of-sight detection for positioning
CN114731615A (en) UE-based positioning
US20220061014A1 (en) Reporting measurement distribution for positioning
US11796687B2 (en) Method and apparatus for location determination using plate tectonics models
US11818626B2 (en) Precise positioning services with an Internet of Things network
US20220231805A1 (en) Reference selection for double difference positioning
KR20240038154A (en) Base station location and orientation calculation procedure
US11736893B2 (en) Notch filter codephase impact mitigation
TW202303184A (en) Notch filter codephase impact mitigation
CN116670542B (en) Method and apparatus for position determination
CN116802519A (en) Notch filter code phase impact mitigation
US20240036185A1 (en) Reported mobile device location assessment
US11909582B2 (en) Network notification of a cell timing source outage
US20230090412A1 (en) Integer ambiguity search space reduction
US20240094414A1 (en) Carrier signal positioning
US20230045849A1 (en) Utilizing sidelink procedures to react to timing source outages
KR20240036587A (en) Sidelink assisted arrival time difference-based positioning
EP4308956A2 (en) On-demand positioning reference signal selection for double difference positioning schemes
WO2021207018A1 (en) Multi-path positioning signal determination