TW202135134A - Glass wafers for semiconductor device fabrication - Google Patents

Glass wafers for semiconductor device fabrication Download PDF

Info

Publication number
TW202135134A
TW202135134A TW109141539A TW109141539A TW202135134A TW 202135134 A TW202135134 A TW 202135134A TW 109141539 A TW109141539 A TW 109141539A TW 109141539 A TW109141539 A TW 109141539A TW 202135134 A TW202135134 A TW 202135134A
Authority
TW
Taiwan
Prior art keywords
coating
layer
silicon
glass
glass wafer
Prior art date
Application number
TW109141539A
Other languages
Chinese (zh)
Inventor
張雅慧
卡爾威廉 科赫三世
林仁傑
建之 張
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW202135134A publication Critical patent/TW202135134A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3482Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising silicon, hydrogenated silicon or a silicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1604Amorphous materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Embodiments of a glass wafer for semiconductor fabrication processes are described herein. In some embodiments, a glass wafer includes: a glass substrate comprising: a top surface, a bottom surface opposing the top surface, and an edge surface between the top surface and the bottom surface; a first coating disposed atop the glass substrate, wherein the first coating is a doped crystalline silicon coating having a sheet-resistance of 100 to 1,000,000 ohm per square; and a second coating having one or more layers disposed atop the glass substrate, wherein the second coating comprises a silicon containing coating, wherein the glass wafer has an average transmittance (T) of less than 50% over an entire wavelength range of 400 nm to 1000 nm.

Description

用於半導體元件製造的玻璃晶圓Glass wafers for semiconductor component manufacturing

本申請主張於2019年11月27日提交的美國臨時申請序列號62/940,996的基於專利法的優先權的權益,其內容依賴於此並透過引用整體併入本文。This application claims the right of priority based on the patent law of the U.S. Provisional Application Serial No. 62/940,996 filed on November 27, 2019, the content of which relies on this and is incorporated herein by reference in its entirety.

本公開發明的實施例總體上涉及半導體製造處理,並且更具體地涉及用於半導體元件製造的玻璃晶圓。The embodiments of the disclosed invention generally relate to semiconductor manufacturing processes, and more specifically to glass wafers for semiconductor component manufacturing.

數十年來,各種形式的矽晶圓已經用於製造積體電路。因此,建立了現代半導體製造設備以檢測和處理矽晶圓。For decades, various forms of silicon wafers have been used to manufacture integrated circuits. Therefore, modern semiconductor manufacturing equipment was established to inspect and process silicon wafers.

例如,在製造積體電路和其他設備的過程中使用的製造工具包括自動裝載和卸載設備(例如,裝載和卸載到微影設備、蝕刻設備等中的晶圓盒自動裝載器等)。這些晶圓盒自動裝載器依靠各種感測器來確定晶圓進出工具時的放置、位置和位置確認。這是透過使用位於晶圓邊緣的晶圓平面、凹口或其他類似機構完成的,該機構必須在工具內正確定向。For example, manufacturing tools used in the process of manufacturing integrated circuits and other equipment include automatic loading and unloading equipment (for example, automatic loading and unloading of wafer cassettes in lithography equipment, etching equipment, etc.). These wafer cassette autoloaders rely on a variety of sensors to determine the placement, position, and position confirmation of wafers when they enter and exit the tool. This is done through the use of wafer planes, notches, or other similar mechanisms located at the edge of the wafer, which must be correctly oriented within the tool.

矽是當今使用的主要半導體材料。為了將玻璃用於被設計用於檢測和處理矽晶圓的製造設備中,需要對半導體製造設備進行設備調整以適合玻璃。例如,一個問題是許多感測器被設計為感測矽晶圓。現有的感測器本質上是機械的、光學的和/或電感的/電容的。雖然機械類型的感測器可以與其他材料一起使用,但電性或光學感測器並不總是與其他材料一起使用。儘管可以改變工具上的每個感測器以能夠感測由其他(即非矽)材料製成的晶圓,但這在製造環境中是不合需要的。另一個問題是,通常在半導體製造設備中使用的靜電吸盤會利用靜電場將晶圓固定在適當的位置,但是為矽晶圓配置的靜電吸盤不適用於不易受靜電場(例如電介質)影響的晶圓材料如玻璃材料。Silicon is the main semiconductor material used today. In order to use glass in manufacturing equipment designed to inspect and process silicon wafers, semiconductor manufacturing equipment needs to be adjusted to suit the glass. For example, one problem is that many sensors are designed to sense silicon wafers. Existing sensors are mechanical, optical and/or inductive/capacitive in nature. Although mechanical type sensors can be used with other materials, electrical or optical sensors are not always used with other materials. Although each sensor on the tool can be changed to be able to sense wafers made of other (ie, non-silicon) materials, this is undesirable in a manufacturing environment. Another problem is that the electrostatic chuck usually used in semiconductor manufacturing equipment uses an electrostatic field to hold the wafer in place, but the electrostatic chuck configured for silicon wafers is not suitable for those that are not susceptible to electrostatic fields (such as dielectrics). Wafer material such as glass material.

因此,發明人開發了用於半導體元件製造處理的改進的玻璃基板。Therefore, the inventor has developed an improved glass substrate for semiconductor element manufacturing process.

本文描述了用於半導體元件的玻璃晶圓的實施例。在一些實施例中,用於半導體元件的玻璃晶圓包括:玻璃基板,其包括:頂表面(102),與頂表面相對的底表面(104)以及在頂表面和底表面之間的邊緣表面(106);第一塗層(108),其設置在玻璃基板的上方,其中第一塗層是具有每平方100至1000000歐姆的薄層電阻的摻雜晶體的矽塗層;一第二塗層(110),該第二塗層具有設置在玻璃基板上的一層或多層,其中第二塗層包括含矽塗層,其中玻璃晶圓在400nm至1000nm的整個波長範圍內的平均透射率(T)小於50%。This document describes an example of a glass wafer used for semiconductor components. In some embodiments, the glass wafer for semiconductor components includes: a glass substrate, which includes: a top surface (102), a bottom surface (104) opposite to the top surface, and an edge surface between the top surface and the bottom surface (106); The first coating (108), which is arranged above the glass substrate, wherein the first coating is a silicon coating of doped crystals with a sheet resistance of 100 to 1,000,000 ohms per square; a second coating Layer (110), the second coating has one or more layers disposed on the glass substrate, wherein the second coating includes a silicon-containing coating, and the average transmittance of the glass wafer in the entire wavelength range from 400nm to 1000nm ( T) is less than 50%.

在一些實施例中,用於半導體元件的玻璃晶圓包括:玻璃基板,其包括:頂表面(102),與頂表面相對的底表面(104)以及在頂表面和底表面之間的邊緣表面(106);塗層(110),該塗層(110)具有設置在玻璃晶圓上的一層或多層,其中該塗層包括含矽塗層,並且其中玻璃晶圓在400nm到1000nm的整個波長範圍內的平均透射率(T)小於50%。In some embodiments, the glass wafer for semiconductor components includes: a glass substrate, which includes: a top surface (102), a bottom surface (104) opposite to the top surface, and an edge surface between the top surface and the bottom surface (106); Coating (110), the coating (110) has one or more layers disposed on the glass wafer, wherein the coating includes a silicon-containing coating, and the glass wafer is in the entire wavelength of 400nm to 1000nm The average transmittance (T) in the range is less than 50%.

在一些實施例中,一種製造電子元件的方法包括:將玻璃晶圓裝載到基板對準器腔室內的基板支撐件上,其中,基板對準器包括光源;以及光學感測器,該光學感測器被配置為檢測來自光源的光束,其中玻璃晶圓包括:玻璃基板,其包括:頂表面,與頂表面相對的底表面,以及在頂表面和底表面之間的邊緣表面;第一塗層,其設置在玻璃基板的上方,其中,第一塗層是具有每平方100至1000000歐姆的薄層電阻的摻雜晶體的矽塗層;第二塗層,其具有設置在玻璃基板上方的一層或多層,其中第二塗層包括含矽塗層,其中玻璃晶圓在400nm至1000nm的整個波長範圍內的平均透射率(T)小於50%;旋轉基板支撐件以將玻璃晶圓定位在基板對準器腔室中的預定位置,其中當光學感測器檢測到來自光源的光束時到達預定位置;並將玻璃晶圓轉移至半導體處理腔室以進行進一步處理。In some embodiments, a method of manufacturing an electronic component includes: loading a glass wafer on a substrate support in a substrate aligner chamber, wherein the substrate aligner includes a light source; and an optical sensor, the optical sensor The detector is configured to detect the light beam from the light source, wherein the glass wafer includes: a glass substrate, which includes: a top surface, a bottom surface opposite to the top surface, and an edge surface between the top surface and the bottom surface; Layer, which is arranged above the glass substrate, wherein the first coating is a silicon coating of doped crystals with a sheet resistance of 100 to 1000000 ohms per square; the second coating has a silicon coating arranged above the glass substrate One or more layers, where the second coating includes a silicon-containing coating, where the average transmittance (T) of the glass wafer in the entire wavelength range from 400nm to 1000nm is less than 50%; the substrate support is rotated to position the glass wafer on A predetermined position in the substrate aligner chamber, where the light beam from the light source reaches the predetermined position when the optical sensor detects the light beam; and the glass wafer is transferred to the semiconductor processing chamber for further processing.

在一些實施例中,用於半導體元件的玻璃晶圓包括:玻璃基板,其包括:頂表面(102),與頂表面相對的底表面(104)以及在頂表面和底表面之間的邊緣表面(106);以及設置在玻璃基板上的含矽塗層,其中所述含矽塗層包括至少兩個含矽層,並且其中相鄰層的折射率值之差大於0.5。In some embodiments, the glass wafer for semiconductor components includes: a glass substrate, which includes: a top surface (102), a bottom surface (104) opposite to the top surface, and an edge surface between the top surface and the bottom surface (106); and a silicon-containing coating disposed on a glass substrate, wherein the silicon-containing coating includes at least two silicon-containing layers, and the difference in refractive index values of adjacent layers is greater than 0.5.

下文描述本公開發明的其他和進一步的實施例。Other and further embodiments of the disclosed invention are described below.

在以下詳細描述中,出於解釋而非限制的目的,闡述了公開具體細節的示例實施例以提供對本公開發明的各種原理的透徹理解。然而,對於本領域的普通技術人員將顯而易見的是,本公開發明可以在不同於本文公開的具體細節的其他實施例中實踐。此外,可以省略對眾所周知的裝置、方法和材料的描述,以免模糊本公開發明的各種原理的描述。最後,在適用的地方,相同的元件符號表示相同的元件。In the following detailed description, for the purpose of explanation and not limitation, example embodiments disclosing specific details are set forth to provide a thorough understanding of various principles of the disclosed invention. However, it will be obvious to a person of ordinary skill in the art that the disclosed invention can be practiced in other embodiments different from the specific details disclosed herein. In addition, descriptions of well-known devices, methods, and materials may be omitted so as not to obscure the description of various principles of the disclosed invention. Finally, where applicable, the same component symbols indicate the same components.

除非另有明確說明,否則決不意圖將本文闡述的任何方法解釋為要求其步驟以特定順序執行。因此,在方法請求項沒有實際敘述其步驟要遵循的順序的情況下,或者在申請專利範圍或說明書中沒有以其他方式具體說明步驟應限於特定的順序的情況下,絕不意味著在任何方面都可以推斷出順序。這適用於任何可能的非表達的解釋基礎,包括:有關步驟安排或操作流程的邏輯問題;源自語法組織或標點的簡單含義;說明書中描述的實施例的數量或類型。Unless expressly stated otherwise, it is by no means intended to interpret any method set forth herein as requiring its steps to be executed in a specific order. Therefore, in the case that the method claim does not actually state the order in which the steps are to be followed, or the scope of the patent application or the specification does not specify in other ways that the steps should be limited to a specific order, it does not mean that in any respect Can infer the order. This applies to any possible non-expressive interpretation basis, including: logical problems related to the arrangement of steps or operating procedures; simple meanings derived from grammatical organization or punctuation; and the number or type of embodiments described in the specification.

如本文所用,術語「和/或」當用於兩個或多個項目的列表中時,是指所列項目中的任何一個可單獨使用,或所列的兩個或多個中的任何組合可以使用的項目。例如,如果組合物被描述為包含部件A,B和/或C,則該組合物可以單獨包含A;單獨包含B,或單獨包含C;A和B組合; A和C結合;B和C結合;或A、B和C組合。As used herein, the term "and/or" when used in a list of two or more items means that any one of the listed items can be used alone, or any combination of two or more of the listed items Available items. For example, if the composition is described as comprising parts A, B and/or C, the composition may comprise A alone; B alone, or C alone; A and B combined; A and C combined; B and C combined ; Or A, B and C combination.

半導體元件透過一系列製造步驟來製造,例如薄膜沉積、氧化或硝化、蝕刻、拋光以及熱和微影處理。儘管可以在單個處理裝置中執行多個製造步驟,但是對於至少一些製造步驟,必須在不同的處理工具之間運送晶圓。Semiconductor components are manufactured through a series of manufacturing steps, such as thin film deposition, oxidation or nitrification, etching, polishing, and thermal and lithographic processing. Although multiple manufacturing steps can be performed in a single processing apparatus, for at least some manufacturing steps, wafers must be transported between different processing tools.

半導體製造步驟是使用自動機械進行的。晶圓儲存在輸送機中,以在處理工具和其他位置之間轉移。在運輸到處理工具之前,必須將輸送晶圓正確對齊以使處理工具完成必要的製造步驟。The semiconductor manufacturing steps are carried out using automated machinery. Wafers are stored in conveyors for transfer between processing tools and other locations. Before being transported to the processing tool, the transported wafers must be correctly aligned to enable the processing tool to complete the necessary manufacturing steps.

常用的定向方法涉及使用光學感測器,該等光學感測器具有通常為可見光源的光源以及用於產生和檢測光束的檢測器。沿其邊緣具有凹口的矽晶圓位於旋轉的支撐表面上。矽晶圓的表面是不透明的,會阻擋光束通過光源和檢測器之間。然而,當旋轉矽晶圓使得凹口位於光束的位置時,檢測器感測光束並停止支撐表面的旋轉。然後,經停止的支撐表面維持矽晶圓且接著位於適當的位置,以轉移到例如用於對晶圓進行處理以形成電路的微影設備。Commonly used orientation methods involve the use of optical sensors that have a light source, usually a visible light source, and a detector for generating and detecting a light beam. A silicon wafer with notches along its edges is located on the rotating support surface. The surface of the silicon wafer is opaque and will block the light beam from passing between the light source and the detector. However, when the silicon wafer is rotated so that the notch is at the position of the beam, the detector senses the beam and stops the rotation of the support surface. Then, the stopped support surface maintains the silicon wafer and is then in place for transfer to, for example, a lithography device for processing the wafer to form a circuit.

由於玻璃晶圓是透明的,因此來自光源的光束將穿過玻璃晶圓以及凹口。即,感測器無法區分玻璃晶圓和切口。因此,玻璃晶圓將不會停止旋轉,並且不會發生向製造工具的轉移。Since the glass wafer is transparent, the light beam from the light source will pass through the glass wafer and the notch. That is, the sensor cannot distinguish between the glass wafer and the notch. Therefore, the glass wafer will not stop rotating, and the transfer to the manufacturing tool will not occur.

本公開發明描述了用於半導體元件製造的玻璃晶圓,其克服了與不與玻璃晶圓一起工作的感測器相關的問題。如本文所用,術語「晶圓」是指適於在其上形成電子元件的支撐表面。此外,玻璃具有某些獨特的特性,使其成為某些應用的理想選擇。例如,對於射頻(RF)部件,與一般的矽相比,玻璃具有較低的RF損耗和較低的非線性。諸如射頻開關和天線調諧器之類的產品可以受益於下一代網路和行動電話中的玻璃。本文所述的玻璃晶圓的實施例具有在其上形成的各種塗層。為了方便起見,術語「塗層」意欲包括設置在表面上的膜、塗層或層。The presently disclosed invention describes glass wafers for semiconductor device manufacturing, which overcomes the problems associated with sensors that do not work with glass wafers. As used herein, the term "wafer" refers to a supporting surface suitable for forming electronic components thereon. In addition, glass has certain unique characteristics that make it ideal for certain applications. For example, for radio frequency (RF) components, glass has lower RF loss and lower non-linearity compared to ordinary silicon. Products such as radio frequency switches and antenna tuners can benefit from glass in next-generation networks and mobile phones. The embodiments of glass wafers described herein have various coatings formed thereon. For convenience, the term "coating" is intended to include a film, coating, or layer disposed on a surface.

佈置在玻璃晶圓上的塗層透過本領域中任何已知的方法形成,包括離散沉積或連續沉積處理。在一些實施方案中,如本領域通常使用的,透過電漿增強化學氣相沉積(PECVD)沉積塗層。在一些實施例中,如本領域中通常使用的,透過物理氣相沉積(PVD)來沉積塗層。如本文所使用的(例如,關於玻璃晶圓100),術語「佈置」包括使用本領域中任何已知的方法在表面上塗覆、沉積和/或形成材料。所佈置的材料可以構成本文定義的塗層。短語「置於...上」包括在表面上形成材料以使材料與表面直接接觸的實例,還包括在表面上形成材料的實例,其中一種或多種中間材料在經設置的材料和表面之間。如本文所定義,中間材料可以構成塗層。The coating layer disposed on the glass wafer is formed by any method known in the art, including discrete deposition or continuous deposition process. In some embodiments, the coating is deposited by plasma enhanced chemical vapor deposition (PECVD) as commonly used in the art. In some embodiments, as commonly used in the art, the coating is deposited by physical vapor deposition (PVD). As used herein (eg, with respect to glass wafer 100), the term "arrangement" includes coating, depositing, and/or forming materials on a surface using any method known in the art. The arranged material may constitute a coating as defined herein. The phrase "placed on" includes an example of forming a material on a surface so that the material is in direct contact with the surface, and also includes an example of forming a material on the surface, in which one or more intermediate materials are placed between the material and the surface. between. As defined herein, the intermediate material may constitute the coating.

本文所述的玻璃晶圓的實施例包括玻璃基板118,該玻璃基板118包括頂表面102,與頂表面102相對的底表面104,以及在頂表面102和底表面104之間的邊緣表面106,第一塗層和第二塗層。圖1A描繪了玻璃基板118,其包括:頂表面102,與頂表面102相對的底表面104,以及在頂表面102和底表面104之間的邊緣表面106。頂表面102是玻璃基板118的表面,該玻璃基板118具有佈置在其上的各種塗層,如本文所述。在一些實施例中,玻璃基板118可以是適合與現有的半導體製造設備一起使用的任何尺寸。例如,在一些實施例中,玻璃基板118可以具有300mm的直徑。在一些實施例中,玻璃基板118可以具有200mm的直徑。在一些實施例中,玻璃基板118具有300mm的直徑和0.3mm至1mm的厚度、較佳地0.5mm至0.8mm的厚度,更較佳地0.75mm至0.8mm的厚度。在一些實施例中,玻璃基板118具有300mm的直徑和0.775mm的厚度。在一些實施例中,玻璃基板118具有200mm的直徑和0.725mm的厚度。The embodiment of the glass wafer described herein includes a glass substrate 118 including a top surface 102, a bottom surface 104 opposite to the top surface 102, and an edge surface 106 between the top surface 102 and the bottom surface 104, The first coating and the second coating. FIG. 1A depicts a glass substrate 118 that includes a top surface 102, a bottom surface 104 opposite to the top surface 102, and an edge surface 106 between the top surface 102 and the bottom surface 104. The top surface 102 is the surface of a glass substrate 118, which has various coatings disposed thereon, as described herein. In some embodiments, the glass substrate 118 may be any size suitable for use with existing semiconductor manufacturing equipment. For example, in some embodiments, the glass substrate 118 may have a diameter of 300 mm. In some embodiments, the glass substrate 118 may have a diameter of 200 mm. In some embodiments, the glass substrate 118 has a diameter of 300 mm and a thickness of 0.3 mm to 1 mm, preferably a thickness of 0.5 mm to 0.8 mm, more preferably a thickness of 0.75 mm to 0.8 mm. In some embodiments, the glass substrate 118 has a diameter of 300 mm and a thickness of 0.775 mm. In some embodiments, the glass substrate 118 has a diameter of 200 mm and a thickness of 0.725 mm.

在一些實施例中,玻璃基板118可以是高純度熔融二氧化矽(HPFS)玻璃,或無鹼矽酸鹽玻璃,或硼矽酸鹽玻璃,或鹼金屬鋁矽酸鹽玻璃,或鹼金屬鋁硼矽酸鹽玻璃,或鹼土硼鋁矽酸鹽玻璃等。高純度熔融石英(例如康寧公司的HPFS®型高純度熔融石英7980玻璃)由於其製造處理而具有極高的純度,並且與生產線前端(FEOL)環境100%兼容。生產線前端(FEOL)是指積體電路製造的第一部分,其中在半導體中對各個元件(例如電晶體,電容,電阻等)進行圖案化。因此,生產線前端(FEOL)處理對污染物(即積體電路製造中通常不存在的材料)的引入很敏感。此外,在許多FEOL處理中,不允許使用非矽基金屬。因此,下文討論的塗層是含矽材料,例如非晶矽、多晶矽、氮化矽、二氧化矽或氮氧化矽。在一些實施例中,下文討論的塗層可以是非晶鍺(a-Ge)。如下所述,儘管基於干涉的塗層可以提供寬帶低透射率,但是某些光學感測器可能需要極低的透射率,只有反射或吸收性濾光片才能實現。儘管許多金屬是良好的反射材料,但它們對FEOL不友善,因此在典型的半導體製造中不被接受。另一方面,鍺被廣泛接受為半導體製造處理中的合適材料。非晶鍺是具有吸收和透射特性的示例性材料,其可用於在可見光譜窗口中傳遞低透射率的塗層,而在近紅外(NIR)窗口中直至1000nm的透射率均低於40%。圖9A顯示了在775 µm厚的熔融石英基板上300nm厚的a-Ge層的透射率。圖9B顯示了在775µm厚的熔融石英基板上結合了300nm厚的a-Ge層和50nm摻雜的奈米晶矽層的透射率。後一種組合將提供典型半導體工廠所需的光學和電性能,其中半導體工廠被配置為用於處理矽晶圓。300nm厚的a-Ge層在650nm處的透射率小於0.01%,這是與LED光源一起使用的典型感測器波長。In some embodiments, the glass substrate 118 may be high-purity fused silica (HPFS) glass, or alkali-free silicate glass, or borosilicate glass, or alkali metal aluminosilicate glass, or alkali metal aluminum. Borosilicate glass, or alkaline earth boroaluminosilicate glass, etc. High-purity fused silica (such as Corning's HPFS® high-purity fused silica 7980 glass) has extremely high purity due to its manufacturing process and is 100% compatible with the front end of the production line (FEOL) environment. The front end of the production line (FEOL) refers to the first part of integrated circuit manufacturing, where individual components (such as transistors, capacitors, resistors, etc.) are patterned in the semiconductor. Therefore, the front end of the production line (FEOL) processing is sensitive to the introduction of contaminants (materials that are not normally present in integrated circuit manufacturing). In addition, in many FEOL treatments, non-silicon-based metals are not allowed. Therefore, the coatings discussed below are silicon-containing materials, such as amorphous silicon, polysilicon, silicon nitride, silicon dioxide, or silicon oxynitride. In some embodiments, the coating discussed below may be amorphous germanium (a-Ge). As described below, although interference-based coatings can provide broadband and low transmittance, some optical sensors may require extremely low transmittance, which can only be achieved with reflective or absorptive filters. Although many metals are good reflective materials, they are not friendly to FEOL and therefore are not accepted in typical semiconductor manufacturing. On the other hand, germanium is widely accepted as a suitable material in semiconductor manufacturing processes. Amorphous germanium is an exemplary material with absorption and transmission characteristics, which can be used to deliver coatings with low transmittance in the visible spectrum window, while the transmittance up to 1000 nm in the near infrared (NIR) window is less than 40%. Figure 9A shows the transmittance of a 300nm thick a-Ge layer on a 775 µm thick fused silica substrate. Figure 9B shows the transmittance of a 300nm thick a-Ge layer combined with a 50nm doped nanocrystalline silicon layer on a 775µm thick fused silica substrate. The latter combination will provide the optical and electrical performance required by a typical semiconductor factory, where the semiconductor factory is configured to process silicon wafers. The transmittance of a 300nm thick a-Ge layer at 650nm is less than 0.01%, which is a typical sensor wavelength used with LED light sources.

在一些實施例中,玻璃基板118是熔融成型的玻璃。熔融拉伸處理可能會產生嶄新的拋光玻璃表面,從而減少高分辨率TFT背板和彩色濾光片的表面調解變形。本文可使用下拉薄片拉伸處理,及特別是美國專利 美國專利號3,338,696和3,682,609(均屬於Dockerty)中所述的熔融處理,該等專利案以引用方式併入本案。不受任何特定的操作理論的束縛,據信熔融處理可以生產不需要拋光的玻璃基板。透過熔融處理生產的玻璃基板具有的平均表面粗糙度,透過原子力顯微鏡法測得小於0.2nm(Ra)。這種低粗糙度有助於在需要黏合到另一個平坦表面的關鍵應用。In some embodiments, the glass substrate 118 is melt-formed glass. Melt stretching treatment may produce a brand-new polished glass surface, thereby reducing the surface adjustment distortion of high-resolution TFT backplanes and color filters. The down-draw sheet stretching process can be used herein, and especially the melting process described in US Patent Nos. 3,338,696 and 3,682,609 (both of Dockerty), which are incorporated into this case by reference. Without being bound by any particular theory of operation, it is believed that melt processing can produce glass substrates that do not require polishing. The average surface roughness of the glass substrate produced by the melting process is less than 0.2nm (Ra) measured by atomic force microscopy. This low roughness helps in critical applications that require bonding to another flat surface.

在一些實施例中,如圖2所示,玻璃基板118可以具有鈍化塗層112。對於不是純二氧化矽(即100重量%二氧化矽)的玻璃基板118,鈍化塗層112防止非矽玻璃成分遷移出並污染半導體製造設備。在一些實施例中,鈍化塗層112設置在玻璃基板118的頂表面102、底表面104和邊緣表面106上。在一些實施例中,鈍化塗層112是氮化矽、二氧化矽或氮氧化矽中的一種。鈍化塗層112的厚度可以基於鈍化塗層的密度和孔隙率以及基於半導體製造處理中塗層的溫度和溫度暴露時間來調節。在一些實施例中,鈍化塗層112具有100埃至10000埃,較佳地500埃至1000埃的厚度。In some embodiments, as shown in FIG. 2, the glass substrate 118 may have a passivation coating 112. For glass substrates 118 that are not pure silicon dioxide (ie 100% by weight silicon dioxide), the passivation coating 112 prevents non-silicon glass components from migrating out and contaminating semiconductor manufacturing equipment. In some embodiments, the passivation coating 112 is provided on the top surface 102, the bottom surface 104 and the edge surface 106 of the glass substrate 118. In some embodiments, the passivation coating 112 is one of silicon nitride, silicon dioxide, or silicon oxynitride. The thickness of the passivation coating 112 may be adjusted based on the density and porosity of the passivation coating and based on the temperature and temperature exposure time of the coating in the semiconductor manufacturing process. In some embodiments, the passivation coating 112 has a thickness of 100 angstroms to 10,000 angstroms, preferably 500 angstroms to 1000 angstroms.

圖3A和3B描繪了具有玻璃基板118的玻璃晶圓 100,玻璃基板118帶有(可選的)鈍化塗層112和第一塗層108和第二塗層110。3A and 3B depict a glass wafer 100 having a glass substrate 118 with an (optional) passivation coating 112 and a first coating 108 and a second coating 110.

第一塗層108是摻雜晶體矽塗層,其矽晶體尺寸在奈米至微米範圍(奈米晶體至微晶體範圍)內。可以使用的示例性摻雜劑包括磷、硼或砷。半導體製造設備中的典型靜電吸盤被設計為吸附晶圓,因此,如果沒有明顯更高的工作電壓,將不能吸附玻璃晶圓。因此,設置在玻璃基板118的一側上的第一塗層108為典型的靜電吸盤提供了足夠的導電性(即,在適合於吸附矽晶圓的工作電壓下)以將玻璃基板吸附至靜電吸盤。為了使玻璃晶圓100能夠吸附到靜電吸盤,摻雜晶體矽塗層的薄層電阻為每平方100歐姆至每平方1000000歐姆,較佳為每平方100歐姆至每平方250000歐姆,並且更較佳為每平方100歐姆到每平方50000歐姆。如本文所用,術語「薄層電阻」表示相對於其厚度的層的等向性電阻率。薄層電阻可以使用四點探針法測量。四點探針法是用於測量任何半導體材料的電阻率的常用測試方法。四點探針設置由四個有限半徑的等間距鎢金屬尖端組成。每個尖端的另一端均由彈簧支撐,以最大程度減少探測過程中樣品的損壞。四個金屬尖端是自動機械平台的一部分,該平台在測量過程中會上下移動。高阻抗電流源用於透過外部的兩個探針提供電流;電壓表測量內部兩個探針的電壓以確定樣品的電阻率。典型的探針間距約為1毫米。The first coating 108 is a doped crystalline silicon coating, and its silicon crystal size is in the range of nanometers to micrometers (a range of nanocrystals to microcrystals). Exemplary dopants that can be used include phosphorus, boron, or arsenic. The typical electrostatic chuck in semiconductor manufacturing equipment is designed to suck wafers, so glass wafers cannot be sucked without a significantly higher operating voltage. Therefore, the first coating 108 provided on one side of the glass substrate 118 provides a typical electrostatic chuck with sufficient conductivity (that is, at a working voltage suitable for the adsorption of silicon wafers) to attract the glass substrate to the electrostatic Sucker. In order to enable the glass wafer 100 to be adsorbed to the electrostatic chuck, the sheet resistance of the doped crystalline silicon coating is 100 ohms per square to 1,000,000 ohms per square, preferably 100 ohms per square to 250,000 ohms per square, and more preferably It ranges from 100 ohms per square to 50,000 ohms per square. As used herein, the term "sheet resistance" refers to the isotropic resistivity of a layer relative to its thickness. The sheet resistance can be measured using the four-point probe method. The four-point probe method is a common test method used to measure the resistivity of any semiconductor material. The four-point probe setup consists of four tungsten tips with finite radius and equal spacing. The other end of each tip is supported by a spring to minimize damage to the sample during detection. The four metal tips are part of an automated mechanical platform that moves up and down during the measurement process. The high impedance current source is used to provide current through the two external probes; the voltmeter measures the voltage of the two internal probes to determine the resistivity of the sample. The typical probe pitch is about 1 mm.

在一些實施例中,摻雜晶體矽塗層108的厚度為至少100埃,並且較佳地為至少500埃。在一些實施例中,摻雜晶體矽塗層108是磷摻雜的奈米晶體矽,其具有500埃的厚度和2000歐姆/平方的薄層電阻。In some embodiments, the thickness of the doped crystalline silicon coating 108 is at least 100 angstroms, and preferably at least 500 angstroms. In some embodiments, the doped crystalline silicon coating 108 is phosphorus-doped nanocrystalline silicon, which has a thickness of 500 angstroms and a sheet resistance of 2000 ohms/square.

在一些實施例中,第二塗層110是由一層或多層組成的含矽塗層。在一些實施例中,第二塗層110包括未摻雜非晶矽層。在一些實施例中,第二塗層110包括未摻雜非晶鍺層。在一些實施例中,第二塗層110包括氮化矽層、未摻雜非晶矽層,和二氧化矽層,其中氮化矽層設置在未摻雜非晶矽層的上方、未摻雜非晶矽層設置在二氧化矽層的上方,且二氧化矽層在摻雜晶體矽塗層的上方。上述塗層及其順序是示例性的,並且可以由本領域普通技術人員進行修改以實現具有下述透射率(T)範圍的玻璃基板。In some embodiments, the second coating 110 is a silicon-containing coating composed of one or more layers. In some embodiments, the second coating 110 includes an undoped amorphous silicon layer. In some embodiments, the second coating 110 includes an undoped amorphous germanium layer. In some embodiments, the second coating layer 110 includes a silicon nitride layer, an undoped amorphous silicon layer, and a silicon dioxide layer, wherein the silicon nitride layer is disposed on the undoped amorphous silicon layer and is undoped The hetero amorphous silicon layer is arranged above the silicon dioxide layer, and the silicon dioxide layer is above the doped crystalline silicon coating. The above-mentioned coatings and their order are exemplary, and can be modified by a person of ordinary skill in the art to realize a glass substrate having a transmittance (T) range described below.

在一些實施例中,第二塗層110和第一塗層108的總厚度小於5微米。在一些實施例中,第二塗層110和第一塗層108的總厚度小於4微米。在一些實施例中,第二塗層110和第一塗層108的總厚度小於3微米。在一些實施例中,第二塗層110和第一塗層108的總厚度小於2微米。在一些實施例中,第二塗層110和第一塗層108的總厚度小於1微米。在一些實施例中,第二塗層110和第一塗層108的總厚度大於0.1微米至小於5微米。在一些實施例中,第二塗層110和第一塗層108的總厚度大於0.1微米至小於1微米。In some embodiments, the total thickness of the second coating 110 and the first coating 108 is less than 5 microns. In some embodiments, the total thickness of the second coating 110 and the first coating 108 is less than 4 microns. In some embodiments, the total thickness of the second coating 110 and the first coating 108 is less than 3 microns. In some embodiments, the total thickness of the second coating 110 and the first coating 108 is less than 2 microns. In some embodiments, the total thickness of the second coating 110 and the first coating 108 is less than 1 micron. In some embodiments, the total thickness of the second coating 110 and the first coating 108 is greater than 0.1 micrometers to less than 5 micrometers. In some embodiments, the total thickness of the second coating 110 and the first coating 108 is greater than 0.1 micrometer to less than 1 micrometer.

在一些實施例中,摻雜晶體矽塗層108設置在玻璃基板118的頂表面102上。在一些實施例中,如圖3A-3B所示,將摻雜晶體矽設置在玻璃基板118的整個頂表面102上。在一些實施例中,摻雜晶體矽塗層108直接設置在玻璃基板118的頂表面102上(即,在玻璃基板118和摻雜晶體矽塗層108之間沒有中間塗層)。在一些實施例中,如圖3A所示,將摻雜晶體矽塗層108直接設置在鈍化塗層112上。在一些實施例中,如圖3B所示,摻雜晶體矽塗層108可以是由第二塗層所形成的多層堆疊的一部分(如下所述),其中第二塗層包括至少兩層並且第一塗層108位於第二塗層110a,11b的至少兩層之間。In some embodiments, the doped crystalline silicon coating 108 is provided on the top surface 102 of the glass substrate 118. In some embodiments, as shown in FIGS. 3A-3B, the doped crystalline silicon is disposed on the entire top surface 102 of the glass substrate 118. In some embodiments, the doped crystalline silicon coating 108 is directly disposed on the top surface 102 of the glass substrate 118 (ie, there is no intermediate coating between the glass substrate 118 and the doped crystalline silicon coating 108). In some embodiments, as shown in FIG. 3A, the doped crystalline silicon coating 108 is directly disposed on the passivation coating 112. In some embodiments, as shown in FIG. 3B, the doped crystalline silicon coating 108 may be part of a multilayer stack formed by a second coating (described below), where the second coating includes at least two layers and the first A coating 108 is located between at least two layers of the second coating 110a, 11b.

在一些實施例中,如圖3A所示,第二塗層110直接設置在摻雜晶體矽塗層108上。在一些實施例中,第二塗層110直接設置在玻璃基板100上(即,沒有鈍化塗層並且沒有第一塗層)。在一些實施例中,第二塗層110直接設置在鈍化塗層112上(即沒有第一塗層)。在一些實施例中,第二塗層110覆蓋正下方的層的整個頂表面(例如,玻璃基板118的整個表面)。在一些實施例中,第二塗層110覆蓋正下方的表面的一部分,該部分從邊緣到朝向正下方的表面的中心達2mm徑向距離。In some embodiments, as shown in FIG. 3A, the second coating 110 is directly disposed on the doped crystalline silicon coating 108. In some embodiments, the second coating 110 is directly disposed on the glass substrate 100 (ie, there is no passivation coating and no first coating). In some embodiments, the second coating 110 is directly disposed on the passivation coating 112 (ie, there is no first coating). In some embodiments, the second coating 110 covers the entire top surface of the layer directly below (eg, the entire surface of the glass substrate 118). In some embodiments, the second coating 110 covers a portion of the surface directly below, the portion having a radial distance of 2 mm from the edge to the center of the surface facing directly below.

下文的表1描繪了根據本公開發明的一些實施例的玻璃晶圓的實例,其中玻璃基板118是高純度熔融石英玻璃,其具有設置在高純度熔融石英玻璃基板上方的磷摻雜奈米晶矽層、設置在磷摻雜奈米晶體矽層上方的二氧化矽(SiO2 )層,設置在二氧化矽層上方的非晶矽層,設置在非晶矽層上方的氮化矽層。表1還示出了設置在玻璃基板上方上的含矽塗層的每一層的折射率。表1中所示的塗層具有四個含矽層,其中相鄰層之間的折射率值差大於0.5。在一些實施例中,相鄰層之間的折射率值之差大於1。在一些實施例中,相鄰層之間的折射率值之差大於2。在表1所示的實施例中,最外層(即距基板最遠的位置的層)是氮化矽。在一些實施例中,最外層可以是二氧化矽或氮氧化矽。在一些實施例中,氮化矽或氮氧化矽的最外層為玻璃晶圓提供機械耐磨性。 表1 材料 510nm的折射率 實體厚度(nm) 1 氮化矽 1.84 75 2 非晶矽 4.52 52 3 二氧化矽 (SiO2 ) 1.48 116 4 磷摻雜奈米晶矽 4.11 45 基板 高純度熔融二氧化矽(HPFS) 1.46   The following Table 1 depicts an example of a glass wafer according to some embodiments of the presently disclosed invention, in which the glass substrate 118 is high-purity fused silica glass, which has phosphorus-doped nanocrystals disposed above the high-purity fused silica glass substrate. A silicon layer, a silicon dioxide (SiO 2 ) layer arranged above the phosphorus-doped nanocrystalline silicon layer, an amorphous silicon layer arranged above the silicon dioxide layer, and a silicon nitride layer arranged above the amorphous silicon layer. Table 1 also shows the refractive index of each layer of the silicon-containing coating disposed on the glass substrate. The coating shown in Table 1 has four silicon-containing layers, where the difference in refractive index values between adjacent layers is greater than 0.5. In some embodiments, the difference in refractive index values between adjacent layers is greater than one. In some embodiments, the difference in refractive index values between adjacent layers is greater than two. In the embodiment shown in Table 1, the outermost layer (that is, the layer farthest from the substrate) is silicon nitride. In some embodiments, the outermost layer may be silicon dioxide or silicon oxynitride. In some embodiments, the outermost layer of silicon nitride or silicon oxynitride provides mechanical wear resistance to the glass wafer. Table 1 Floor Material 510nm refractive index Body thickness (nm) 1 Silicon nitride 1.84 75 2 Amorphous silicon 4.52 52 3 Silicon dioxide (SiO 2 ) 1.48 116 4 Phosphorus-doped nanocrystalline silicon 4.11 45 Substrate High purity fused silica (HPFS) 1.46

圖7A描繪了透射率與波長的關係圖,其中表1中的塗層的每一層的厚度係透過隨機數而被隨機地調整(例如,增加或減少),該隨機數對應於其平均值為層設計厚度且其方差為層設計厚度的10%的高斯分佈。計算出在400nm至1000nm的波長範圍內隨機調整的塗層的透射率。此處理執行100次,並產生圖7A中所示的曲線。如圖7A所示,對於10%的隨機厚度變化,表1中塗層的透射率在400nm至1000nm的波長範圍內小於40%。Figure 7A depicts the relationship between transmittance and wavelength, in which the thickness of each layer of the coating in Table 1 is randomly adjusted (for example, increased or decreased) through a random number, and the random number corresponds to its average value. A Gaussian distribution with the design thickness of the layer and its variance equal to 10% of the design thickness of the layer. Calculate the transmittance of the coating randomly adjusted in the wavelength range of 400nm to 1000nm. This process is executed 100 times, and produces the curve shown in FIG. 7A. As shown in FIG. 7A, for a random thickness change of 10%, the transmittance of the coating in Table 1 is less than 40% in the wavelength range of 400 nm to 1000 nm.

圖7B描繪了透射率與波長的關係圖,其中表1中塗層的每一層的厚度透過隨機數而被隨機地調整(例如,增加或減少),該隨機數對應於其平均值為層設計厚度且其方差為層設計厚度的10%的高斯分佈,並且每層的折射率透過隨機數而被隨機調整(例如,增加或減少),該隨機數對應於其平均值為層折射率且其方差為層折射率的5%的高斯分佈。計算出在400nm至1000nm的波長範圍內隨機調整的塗層的透射率。此處理執行100次,並產生圖7B中所示的曲線。如圖7B所示,對於10%的隨機厚度變化率和5%的隨機折射率變化率,表1中的塗層的透射率在400nm至1000nm的波長範圍內小於50%。Figure 7B depicts the relationship between transmittance and wavelength, where the thickness of each layer of the coating in Table 1 is randomly adjusted (for example, increased or decreased) through a random number, the random number corresponding to its average value for the layer design Thickness and its variance is a Gaussian distribution of 10% of the layer design thickness, and the refractive index of each layer is randomly adjusted (for example, increased or decreased) through a random number, which corresponds to the average value of the layer refractive index and its The variance is a Gaussian distribution of 5% of the refractive index of the layer. Calculate the transmittance of the coating randomly adjusted in the wavelength range of 400nm to 1000nm. This process is executed 100 times, and the curve shown in FIG. 7B is produced. As shown in FIG. 7B, for a random thickness change rate of 10% and a random refractive index change rate of 5%, the transmittance of the coating in Table 1 is less than 50% in the wavelength range of 400 nm to 1000 nm.

下文的表2描繪了根據本公開發明的一些實施例的玻璃晶圓的實例,其中玻璃基板118是高純度熔融石英玻璃,其具有設置在高純度熔融石英玻璃基板之上的奈米晶矽層、設置在奈米晶體矽上方的二氧化矽(SiO2 )層、設置在二氧化矽層上方的非晶矽層,以及設置在非晶矽層上方的二氧化矽層。表1還示出了設置在玻璃基板上方上的含矽塗層的每一層的折射率。 表2 材料 950nm的折射率 實體厚度 1 二氧化矽 1.45 50 nm 2 非晶矽 3.60 38 nm 3 二氧化矽(SiO2 1.45 99 nm 4 奈米晶矽 4.11 75 nm 基板 高純度熔融二氧化矽(HPFS) 1.46 0.7mm The following Table 2 depicts an example of a glass wafer according to some embodiments of the presently disclosed invention, in which the glass substrate 118 is high-purity fused silica glass, which has a nanocrystalline silicon layer disposed on the high-purity fused silica glass substrate , A silicon dioxide (SiO 2 ) layer arranged on the nanocrystalline silicon, an amorphous silicon layer arranged on the silicon dioxide layer, and a silicon dioxide layer arranged on the amorphous silicon layer. Table 1 also shows the refractive index of each layer of the silicon-containing coating disposed on the glass substrate. Table 2 Floor Material 950nm refractive index Body thickness 1 Silicon dioxide 1.45 50 nm 2 Amorphous silicon 3.60 38 nm 3 Silicon dioxide (SiO 2 ) 1.45 99 nm 4 Nanocrystalline silicon 4.11 75 nm Substrate High purity fused silica (HPFS) 1.46 0.7mm

圖8A描繪了透射率與波長的關係圖,其中,表2中塗層的每一層的厚度透過隨機數而被隨機地調整(例如,增加或減少),該隨機數對應於其平均值為層設計厚度且其方差為層設計厚度的10%的高斯分佈。計算出在400nm至1000nm的波長範圍內隨機調整的塗層的透射率。此處理執行100次,並產生圖8A中所示的曲線。如圖8A所示,對於10%的隨機厚度變化,表2中塗層的透射率在400nm至1000nm的波長範圍內小於40%。Figure 8A depicts the relationship between transmittance and wavelength, where the thickness of each layer of the coating in Table 2 is randomly adjusted (for example, increased or decreased) through a random number, which corresponds to the average value of the layer A Gaussian distribution with a design thickness and a variance of 10% of the layer design thickness. Calculate the transmittance of the coating randomly adjusted in the wavelength range of 400nm to 1000nm. This process is performed 100 times, and produces the curve shown in FIG. 8A. As shown in FIG. 8A, for a random thickness change of 10%, the transmittance of the coating in Table 2 is less than 40% in the wavelength range of 400 nm to 1000 nm.

圖8B描繪了透射率與波長的關係圖,其中表2中塗層的每一層的厚度透過隨機數而被隨機地調整(例如,增加或減少),該隨機數對應於其平均值為層設計厚度且其方差為層設計厚度的10%的高斯分佈,並且每層的折射率透過隨機數而被隨機調整(例如,增加或減少),該隨機數對應於其平均值為層折射率且其方差為層折射率的5%的高斯分佈。計算出在400nm至1000nm的波長範圍內隨機調整的塗層的透射率。此處理執行100次,並產生圖8B中所示的曲線。如圖8B所示,對於10%的隨機厚度變化率和5%的隨機折射率變化率,表2中塗層的透射率在400nm至1000nm的波長範圍內小於60%。Figure 8B depicts the relationship between transmittance and wavelength, in which the thickness of each layer of the coating in Table 2 is randomly adjusted (for example, increased or decreased) through a random number, the random number corresponding to its average value for the layer design Thickness and its variance is a Gaussian distribution of 10% of the layer design thickness, and the refractive index of each layer is randomly adjusted (for example, increased or decreased) through a random number, which corresponds to the average value of the layer refractive index and its The variance is a Gaussian distribution of 5% of the refractive index of the layer. Calculate the transmittance of the coating randomly adjusted in the wavelength range of 400nm to 1000nm. This process is executed 100 times, and the curve shown in FIG. 8B is produced. As shown in FIG. 8B, for a random thickness change rate of 10% and a random refractive index change rate of 5%, the transmittance of the coating in Table 2 is less than 60% in the wavelength range of 400 nm to 1000 nm.

玻璃晶圓100在400nm至1000nm的整個波長範圍內具有小於50%,較佳小於40%,更較佳小於30%的平均透射率(T)值。如本文中所使用的,「平均透射率值」是指在限定的波長範圍內的每個波長處的透射率值的總和除以限定的波長範圍內的波長的數量。在一些實施例中,玻璃晶圓100在400nm至2500nm的整個波長範圍內具有小於50%,較佳小於40%,更較佳小於30%的平均透射率(T)值。在一些實施例中,玻璃晶圓100在限定的波長範圍(例如400nm至1000nm或400nm至2500nm)中的每個波長處的透射率值小於50%,較佳地小於40%,並且更較佳地小於30%。如本文所使用的,術語「透射率」定義為在給定的波長範圍內透射透過玻璃晶圓100的入射光功率的百分比。通常,透射率是使用特定的線寬測量的。The glass wafer 100 has an average transmittance (T) value of less than 50%, preferably less than 40%, and more preferably less than 30% in the entire wavelength range of 400 nm to 1000 nm. As used herein, the "average transmittance value" refers to the sum of the transmittance values at each wavelength in the defined wavelength range divided by the number of wavelengths in the defined wavelength range. In some embodiments, the glass wafer 100 has an average transmittance (T) value of less than 50%, preferably less than 40%, and more preferably less than 30% in the entire wavelength range of 400 nm to 2500 nm. In some embodiments, the glass wafer 100 has a transmittance value of less than 50%, preferably less than 40%, and more preferably at each wavelength in a defined wavelength range (for example, 400nm to 1000nm or 400nm to 2500nm) Land is less than 30%. As used herein, the term "transmittance" is defined as the percentage of incident light power transmitted through the glass wafer 100 within a given wavelength range. Generally, transmittance is measured using a specific line width.

圖4描繪了根據本公開發明的一些實施例的示例性晶圓,該示例性晶圓位於根據本公開發明的一些示例性半導體製造系統內。為了在形成處理的每個步驟中將玻璃晶圓正確定位或定向,玻璃晶圓可沿著邊緣的一部分具有一個凹口,該凹口用於在基板對準器腔室408中進行定向。圖1B描繪了沿其邊緣具有凹口114的玻璃晶圓100。凹口在SEMI™半導體晶圓標準中指定。FIG. 4 depicts an exemplary wafer according to some embodiments of the disclosed invention, the exemplary wafer being located in some exemplary semiconductor manufacturing systems according to the disclosed invention. In order to correctly position or orient the glass wafer in each step of the forming process, the glass wafer may have a notch along a part of the edge, and the notch is used for orientation in the substrate aligner chamber 408. Figure 1B depicts a glass wafer 100 with notches 114 along its edges. The notch is specified in the SEMI™ semiconductor wafer standard.

在一些實施例中,一種製造電子元件的方法包括將如以上實施例中所述的玻璃晶圓400裝載到基板對準器腔室408內的基板支撐件(未示出)上。基板對準器腔室408包括光源404和被配置為檢測來自光源404的光束的光學感測器406。玻璃晶圓404包括頂表面,與頂側相對的底表面,在頂表面和底表面之間的邊緣表面,如以上實施方式中所述的第一塗層和如以上實施方式中所述的第二塗層。在一些實施例中,玻璃晶圓404還可包括鈍化塗層。基板支撐件將玻璃晶圓400旋轉到基板對準器腔室中的預定位置。當光學感測器檢測到來自光源的光束時,會到達預定位置。當玻璃晶圓400在圖4所示的基板對準器腔室408中旋轉時,由於設置在玻璃晶圓400上的第二塗層110,光學感測器406無法讀取來自光源404的光。當凹口402到達光束時,由光學感測器406讀取該凹口,並且玻璃晶圓400因此處於適當的位置,以轉移至製造工具410以進行進一步處理。In some embodiments, a method of manufacturing an electronic component includes loading a glass wafer 400 as described in the above embodiments on a substrate support (not shown) in a substrate aligner chamber 408. The substrate aligner chamber 408 includes a light source 404 and an optical sensor 406 configured to detect the light beam from the light source 404. The glass wafer 404 includes a top surface, a bottom surface opposite to the top side, an edge surface between the top surface and the bottom surface, the first coating layer as described in the above embodiment and the first coating layer as described in the above embodiment. Two coatings. In some embodiments, the glass wafer 404 may also include a passivation coating. The substrate support rotates the glass wafer 400 to a predetermined position in the substrate aligner chamber. When the optical sensor detects the light beam from the light source, it will reach a predetermined position. When the glass wafer 400 is rotated in the substrate aligner chamber 408 shown in FIG. 4, the optical sensor 406 cannot read the light from the light source 404 due to the second coating 110 provided on the glass wafer 400 . When the notch 402 reaches the light beam, the notch is read by the optical sensor 406, and the glass wafer 400 is therefore in place for transfer to the manufacturing tool 410 for further processing.

在一些實施例中,玻璃晶圓可以經歷半導體製造處理,其中在該處理中玻璃晶圓被加熱然後被冷卻至室溫。在攝氏350度下進行2小時的熱處理後,以每分鐘攝氏10度的冷卻速度冷卻至室溫(例如攝氏25度)後,本文所述的玻璃晶圓的實施例將平均透射率和在該波長範圍內的每個波長下的透射率維持在小於50%,較佳小於30%。In some embodiments, the glass wafer may undergo a semiconductor manufacturing process in which the glass wafer is heated and then cooled to room temperature. After heat treatment at 350 degrees Celsius for 2 hours, and cooling to room temperature (for example 25 degrees Celsius) at a cooling rate of 10 degrees per minute, the glass wafers described in the examples herein compare the average transmittance to the The transmittance at each wavelength in the wavelength range is maintained at less than 50%, preferably less than 30%.

圖5A和5B示出了示例性玻璃晶圓的透射率與波長的關係圖,該玻璃晶圓具有直接設置在玻璃晶圓100的頂表面102上的摻雜的奈米晶體矽塗層、氮化矽層、未摻雜非晶矽層和二氧化矽層。氮化矽層設置在未摻雜非晶矽層的上方。未摻雜非晶矽層設置在二氧化矽層的上方。二氧化矽層在摻雜的奈米晶體矽塗層的上方。5A and 5B show the transmittance versus wavelength diagram of an exemplary glass wafer having a doped nanocrystalline silicon coating, nitrogen, and a doped nanocrystalline silicon coating directly disposed on the top surface 102 of the glass wafer 100 A silicon layer, an undoped amorphous silicon layer and a silicon dioxide layer. The silicon nitride layer is arranged above the undoped amorphous silicon layer. The undoped amorphous silicon layer is arranged above the silicon dioxide layer. The silicon dioxide layer is on top of the doped nanocrystalline silicon coating.

圖5A中描繪的曲線圖500示出了示例性玻璃晶圓在經過攝氏350度的熱處理2小時並且以每分鐘(「熱處理」)攝氏10度的冷卻速率冷卻至室溫(例如攝氏25度)之後的透射率曲線504以及和玻璃晶圓經過熱處理之前的透射率曲線502。對於曲線圖500,從沿未塗覆側的玻璃晶圓邊緣的兩個點收集透射率資料。圖5B中描繪的曲線圖506示出了示例性玻璃晶圓在經過攝氏350度的熱處理2小時並且以每分鐘攝氏10度的冷卻速率冷卻至室溫(例如攝氏25度)之後的透射率曲線508,以及玻璃晶圓在經受熱處理之前的透射率曲線510。對於曲線圖506,沿玻璃晶圓在塗覆側的邊緣從兩個點收集透射率資料。基於曲線圖5A和5B,即使在上述加熱處理之後,示例性玻璃晶圓將平均透射率,以及從400nm至1100nm的波長的波長範圍內的每個波長下的透射率維持小於50%。The graph 500 depicted in FIG. 5A shows that an exemplary glass wafer has been heat treated at 350 degrees Celsius for 2 hours and cooled to room temperature (eg, 25 degrees Celsius) at a cooling rate of 10 degrees Celsius per minute ("heat treatment") The subsequent transmittance curve 504 and the transmittance curve 502 before the heat treatment of the glass wafer. For the graph 500, transmittance data is collected from two points along the edge of the glass wafer on the uncoated side. The graph 506 depicted in FIG. 5B shows the transmittance curve of an exemplary glass wafer after being heat treated at 350 degrees Celsius for 2 hours and cooled to room temperature (eg, 25 degrees Celsius) at a cooling rate of 10 degrees Celsius per minute 508, and the transmittance curve 510 of the glass wafer before being subjected to the heat treatment. For graph 506, transmittance data is collected from two points along the edge of the glass wafer on the coated side. Based on the graphs 5A and 5B, the exemplary glass wafer maintains an average transmittance and transmittance at each wavelength in the wavelength range from 400 nm to 1100 nm to be less than 50% even after the above-described heat treatment.

圖6A-6D示出了以上關於圖5A-5B所述的示例性玻璃輸送晶圓的反射率與波長的關係圖。圖6A是反射率與波長的關係曲線圖600,其示出了玻璃晶圓在經過攝氏350度的熱處理2小時並且以每分鐘攝氏10度的冷卻速率冷卻至室溫(例如攝氏25度)之後的反射率曲線602,且示出了對於在進行熱處理之前的玻璃晶圓的反射率曲線604,其中反射率是從玻璃晶片的未塗覆面以5度入射角所測量的。FIGS. 6A-6D show the relationship between reflectivity and wavelength of the exemplary glass transport wafer described above with respect to FIGS. 5A-5B. 6A is a graph 600 of reflectance versus wavelength, which shows that the glass wafer has been heat treated at 350 degrees Celsius for 2 hours and cooled to room temperature (for example, 25 degrees Celsius) at a cooling rate of 10 degrees Celsius per minute. The reflectance curve 602 of, and shows the reflectance curve 604 for the glass wafer before the heat treatment, where the reflectance is measured from the uncoated surface of the glass wafer at an incident angle of 5 degrees.

圖6B是反射率與波長的關係曲線圖606,示出了玻璃晶圓在經過攝氏350度的熱處理2小時並以每分鐘攝氏10度的冷卻速率冷卻至室溫(例如攝氏25度)後的反射率曲線608,以及玻璃晶圓進行熱處理之前的反射率曲線610,其中反射率是從玻璃晶圓的未塗覆面以45度的入射角所測量的。Figure 6B is a graph 606 of reflectance versus wavelength, showing the glass wafer after being heat treated at 350 degrees Celsius for 2 hours and cooled to room temperature (for example, 25 degrees Celsius) at a cooling rate of 10 degrees per minute. The reflectance curve 608, and the reflectance curve 610 of the glass wafer before heat treatment, where the reflectance is measured from the uncoated surface of the glass wafer at an incident angle of 45 degrees.

圖6C是反射率與波長的關係曲線圖612,其示出了在經過攝氏350度的熱處理2小時並以每分鐘攝氏10度的冷卻速率冷卻至室溫(例如攝氏25度)後玻璃晶圓的反射率曲線614,以及玻璃晶圓在進行熱處理之前的反射率曲線616,其中反射率係從玻璃晶圓的塗覆面以5度的入射角所測量的。如圖6C所示,玻璃晶圓經過熱處理之後,在400nm至1100nm的波長範圍內的反射率值基本上類似於熱處理之前的反射率值。6C is a graph 612 of reflectance versus wavelength, which shows the glass wafer after being heat-treated at 350 degrees Celsius for 2 hours and cooled to room temperature (for example, 25 degrees Celsius) at a cooling rate of 10 degrees Celsius per minute The reflectance curve 614 of the glass wafer, and the reflectance curve 616 of the glass wafer before the heat treatment, where the reflectance is measured from the coated surface of the glass wafer at an incident angle of 5 degrees. As shown in FIG. 6C, after the heat treatment of the glass wafer, the reflectance value in the wavelength range of 400 nm to 1100 nm is substantially similar to the reflectance value before the heat treatment.

圖6D是反射率與波長的關係曲線圖618,示出了玻璃晶圓在經過攝氏350度的熱處理2小時並以每分鐘攝氏10度的冷卻速率冷卻至室溫(例如攝氏25度)後的反射率曲線620,以及玻璃晶圓在經歷熱處理之前的反射率曲線622,其中反射率係從玻璃晶圓的塗覆面以45度的入射角所測量的。Figure 6D is a graph 618 of reflectance versus wavelength, showing the glass wafer after being heat treated at 350 degrees Celsius for 2 hours and cooled to room temperature (for example, 25 degrees Celsius) at a cooling rate of 10 degrees per minute. The reflectance curve 620, and the reflectance curve 622 of the glass wafer before the heat treatment, where the reflectance is measured from the coated surface of the glass wafer at an incident angle of 45 degrees.

在一些實施例中,在半導體處理設備中使用的晶圓具有最小反射率值,以使設備能夠感測晶圓的存在。圖6D示出了在400nm至1100nm的波長範圍內矽(一種常用的晶圓材料)的反射率值。如圖6D所示,具有所述示例性塗層的玻璃晶圓在約510nm至1100nm的波長範圍內具有達到或超過矽的平均反射率值。在一些實施例中,在大約510nm至1100nm的波長範圍內的每個波長處的反射率值達到或超過矽的反射率值。如本文所使用的,「平均反射率值」是指在限定的波長範圍(例如510nm至1100nm)中的每個波長處的反射率值的總和除以限定的波長範圍內的波長的數量。In some embodiments, the wafer used in the semiconductor processing equipment has a minimum reflectivity value to enable the equipment to sense the presence of the wafer. Figure 6D shows the reflectance values of silicon (a commonly used wafer material) in the wavelength range of 400nm to 1100nm. As shown in FIG. 6D, the glass wafer with the exemplary coating has an average reflectance value that meets or exceeds silicon in the wavelength range of about 510 nm to 1100 nm. In some embodiments, the reflectance value at each wavelength in the wavelength range of approximately 510 nm to 1100 nm meets or exceeds the reflectance value of silicon. As used herein, "average reflectance value" refers to the sum of reflectance values at each wavelength in a defined wavelength range (for example, 510 nm to 1100 nm) divided by the number of wavelengths in the defined wavelength range.

儘管前述內容針對本公開發明的實施例,但是在不脫離本公開發明的基本範圍的情況下,可以設計本公開發明的其他和進一步的實施例。Although the foregoing content is directed to the embodiments of the disclosed invention, other and further embodiments of the disclosed invention can be designed without departing from the basic scope of the disclosed invention.

102:頂表面 104:底表面 106:邊緣表面 108:第一塗層 110:第二塗層 100:玻璃晶圓 118:玻璃基板 112:鈍化塗層 108:摻雜晶體矽塗層 100:玻璃基板 408:對準器腔室 114:凹口 400:玻璃晶圓 404:光源 406:光學感測器 402:凹口 410:製造工具 500:曲線圖 504:透射率曲線 502:透射率曲線 506:曲線圖 602:反射率曲線 600:曲線圖 604:反射率曲線 606:曲線圖 608:反射率曲線 610:反射率曲線 612:曲線圖 614:反射率曲線 616:反射率曲線 618:曲線圖 620:反射率曲線 622:反射率曲線102: top surface 104: bottom surface 106: edge surface 108: First coating 110: second coating 100: glass wafer 118: Glass substrate 112: Passivation coating 108: doped crystalline silicon coating 100: glass substrate 408: aligner chamber 114: Notch 400: Glass wafer 404: light source 406: Optical Sensor 402: Notch 410: Manufacturing Tools 500: curve graph 504: Transmittance curve 502: Transmittance curve 506: curve graph 602: reflectivity curve 600: curve graph 604: reflectivity curve 606: curve graph 608: reflectivity curve 610: reflectivity curve 612: Graph 614: reflectivity curve 616: reflectivity curve 618: curve graph 620: reflectivity curve 622: reflectivity curve

透過參考在附圖中描繪的本公開發明的說明性實施例,可以在上文簡要概述並且在下文更詳細地討論本公開發明的實施例。然而,應當注意,附圖僅示出了本公開發明的典型實施例,因此不應被認為是對其範圍的限制。By referring to the illustrative embodiments of the presently disclosed invention depicted in the accompanying drawings, the embodiments of the presently disclosed invention may be briefly summarized above and discussed in more detail below. However, it should be noted that the drawings only show typical embodiments of the disclosed invention, and therefore should not be considered as limiting its scope.

圖1A-1B描繪了根據本公開發明的一些實施例的示例性玻璃基板。Figures 1A-1B depict exemplary glass substrates according to some embodiments of the disclosed invention.

圖2描繪了根據本公開發明的一些實施例的具有鈍化塗層的示例性玻璃基板。Figure 2 depicts an exemplary glass substrate with a passivation coating according to some embodiments of the disclosed invention.

圖3A-3B描繪了根據本公開發明的一些實施例的示例性玻璃晶圓。Figures 3A-3B depict exemplary glass wafers according to some embodiments of the disclosed inventions.

圖4描繪了位於根據本公開發明的一些實施例的示例性半導體製造系統內的根據本公開發明的一些實施例的示例性玻璃晶圓。4 depicts an exemplary glass wafer according to some embodiments of the disclosed invention located within an exemplary semiconductor manufacturing system according to some embodiments of the disclosed invention.

圖5A和5B示出了根據本公開發明的一些實施例的示例性玻璃晶圓的透射率與波長的關係圖。5A and 5B show graphs of transmittance versus wavelength of exemplary glass wafers according to some embodiments of the presently disclosed invention.

圖6A-6D示出了根據本公開發明的一些實施例的示例性玻璃晶圓的反射率與波長的關係曲線圖。6A-6D show graphs of reflectance versus wavelength of exemplary glass wafers according to some embodiments of the presently disclosed invention.

圖7A描繪了表1中示例性塗層的透射率與波長的關係曲線圖,其每一層的厚度變化率為10%。FIG. 7A depicts a graph of the transmittance versus wavelength of the exemplary coating in Table 1, and the thickness change rate of each layer is 10%.

圖7B描繪了表1中的示例性塗層的透射率與波長的關係曲線圖,其每一層具有10%的厚度變化率和5%的折射率變化率。FIG. 7B depicts a graph of the transmittance versus wavelength of the exemplary coating in Table 1, each of which has a thickness change rate of 10% and a refractive index change rate of 5%.

圖8A描繪了表2中示例性塗層的透射率與波長的關係曲線圖,每一層的厚度變化率為10%。FIG. 8A depicts a graph of the transmittance versus wavelength of the exemplary coating in Table 2, and the thickness change rate of each layer is 10%.

圖8B描繪了表2中的示例性塗層的透射率與波長的關係曲線圖,每一層的厚度變化率為10%,折射率變化率為5%。FIG. 8B depicts a graph of the relationship between transmittance and wavelength of the exemplary coatings in Table 2. The thickness change rate of each layer is 10%, and the refractive index change rate is 5%.

圖9A描繪了在熔融二氧化矽基板上的300nm厚的a-Ge層的透射。Figure 9A depicts the transmission of a 300nm thick a-Ge layer on a fused silica substrate.

圖9B示出了在熔融二氧化矽基板上組合的300nm厚的a-Ge層與50nm摻雜的奈米晶矽層的透射。Figure 9B shows the transmission of a 300nm thick a-Ge layer and a 50nm doped nanocrystalline silicon layer combined on a fused silica substrate.

為了便於理解,在可能的情況下使用了相同的元件符號來表示圖中共有的相同元件。附圖未按比例繪製,並且為清楚起見可以簡化。可以預期的是,一個實施例的元件和特徵可以有益地併入其他實施例中,而無需進一步敘述。For ease of understanding, the same component symbols are used where possible to represent the same components in the drawings. The drawings are not drawn to scale and may be simplified for clarity. It is expected that the elements and features of one embodiment can be beneficially incorporated into other embodiments without further description.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無Domestic deposit information (please note in the order of deposit institution, date and number) without Foreign hosting information (please note in the order of hosting country, institution, date, and number) without

102:頂表面 102: top surface

104:底表面 104: bottom surface

106:邊緣表面 106: edge surface

118:玻璃基板 118: Glass substrate

Claims (13)

一種用於半導體元件的玻璃晶圓,包括: 一玻璃基板,其包括:一頂表面;與該頂表面相對的一底表面;以及在該頂表面和該底表面之間的一邊緣表面;以及 一第一塗層,其設置在該玻璃基板的上方,其中該第一塗層是一摻雜晶體矽塗層,其具有每平方100至1000000歐姆的一薄層電阻;和 一第二塗層,該第二塗層具有設置在該玻璃基板上方的一層或多層,其中該第二塗層包括一含矽塗層, 其中,該玻璃晶圓在400nm至1000nm的一整個波長範圍內的一平均透射率(T)小於50%。A glass wafer for semiconductor components, including: A glass substrate comprising: a top surface; a bottom surface opposite to the top surface; and an edge surface between the top surface and the bottom surface; and A first coating layer disposed on the glass substrate, wherein the first coating layer is a doped crystalline silicon coating having a sheet resistance of 100 to 1,000,000 ohms per square; and A second coating, the second coating having one or more layers disposed on the glass substrate, wherein the second coating includes a silicon-containing coating, Wherein, the average transmittance (T) of the glass wafer in an entire wavelength range from 400 nm to 1000 nm is less than 50%. 根據請求項1所述的玻璃晶圓,其中,在該波長範圍內的每個波長下的一透射率小於50%。The glass wafer according to claim 1, wherein a transmittance at each wavelength in the wavelength range is less than 50%. 根據請求項1所述的玻璃晶圓,其中:(i)將該第一塗層直接設置在該玻璃基板的該頂表面上,將該第二塗層直接設置在該第一塗層的上方,或者(ii)該第二塗層包括至少兩層,並且其中該第一塗層位於該第二塗層的該至少兩層之間。The glass wafer according to claim 1, wherein: (i) the first coating is directly disposed on the top surface of the glass substrate, and the second coating is directly disposed on the first coating Or (ii) the second coating layer includes at least two layers, and wherein the first coating layer is located between the at least two layers of the second coating layer. 根據請求項1所述的玻璃晶圓,其中,該摻雜晶體矽塗層是一磷摻雜晶體矽、一硼摻雜晶體矽或一砷摻雜晶體矽中的一者。The glass wafer according to claim 1, wherein the doped crystalline silicon coating is one of a phosphorus-doped crystalline silicon, a boron-doped crystalline silicon, or an arsenic-doped crystalline silicon. 根據請求項1所述的玻璃晶圓,其中,該第二塗層包括:一未摻雜非晶矽層。The glass wafer according to claim 1, wherein the second coating layer includes: an undoped amorphous silicon layer. 根據請求項1所述的玻璃晶圓,其中,該第二塗層包括:一氮化矽層、一非摻雜非晶矽層和一二氧化矽層, 其中該氮化矽層設置在該未摻雜非晶矽層的上方, 其中該未摻雜非晶矽層設置在該二氧化矽層的上方,和 其中該二氧化矽層在該摻雜晶體矽塗層的上方。The glass wafer according to claim 1, wherein the second coating layer includes: a silicon nitride layer, an undoped amorphous silicon layer, and a silicon dioxide layer, The silicon nitride layer is disposed above the undoped amorphous silicon layer, Wherein the undoped amorphous silicon layer is disposed above the silicon dioxide layer, and The silicon dioxide layer is above the doped crystalline silicon coating. 根據請求項1-6中任一項所述的玻璃晶圓,還包括一鈍化塗層,其在該玻璃基板的該頂表面、該底表面和該邊緣表面上,其中該鈍化塗層是氮化矽、二氧化矽或氮氧化矽中的一種。The glass wafer according to any one of claims 1-6, further comprising a passivation coating on the top surface, the bottom surface and the edge surface of the glass substrate, wherein the passivation coating is nitrogen One of silicon dioxide, silicon dioxide or silicon oxynitride. 一種用於半導體元件的玻璃晶圓,包括: 一玻璃基板,其包括:一頂表面;與該頂表面相對的一底表面;以及在該頂表面和該底表面之間的一邊緣表面;以及 一塗層,其具有設置在該玻璃晶圓上的一層或多層,其中該塗層包括一含矽塗層,並且其中該玻璃晶圓在400 nm至1000 nm的整個波長範圍內的一平均透射率(T)小於50% 。A glass wafer for semiconductor components, including: A glass substrate comprising: a top surface; a bottom surface opposite to the top surface; and an edge surface between the top surface and the bottom surface; and A coating having one or more layers disposed on the glass wafer, wherein the coating includes a silicon-containing coating, and wherein the glass wafer has an average transmission in the entire wavelength range of 400 nm to 1000 nm The rate (T) is less than 50%. 根據請求項8所述的玻璃晶圓,其中:(i)該塗層覆蓋該玻璃基板的一整個頂表面,或(ii)該塗層覆蓋該玻璃基板的該頂表面的一部分,該部分從該邊緣表面到該頂表面的一中心的一徑向距離為2mm。The glass wafer according to claim 8, wherein: (i) the coating covers an entire top surface of the glass substrate, or (ii) the coating covers a part of the top surface of the glass substrate, and the part is from A radial distance from the edge surface to a center of the top surface is 2 mm. 根據請求項8所述的玻璃晶圓,其中,在該波長範圍內的每個波長下的一透射率小於50%。The glass wafer according to claim 8, wherein a transmittance at each wavelength in the wavelength range is less than 50%. 根據請求項8所述的玻璃晶圓,其中,該塗層包括:(i)一未摻雜非晶矽層,或(ii)一氮化矽層、一非摻雜非晶矽層和一二氧化矽層, 其中該氮化矽層設置在該未摻雜非晶矽層的上方, 其中該未摻雜非晶矽層設置在該二氧化矽層的上方。The glass wafer according to claim 8, wherein the coating includes: (i) an undoped amorphous silicon layer, or (ii) a silicon nitride layer, an undoped amorphous silicon layer, and Silicon dioxide layer, The silicon nitride layer is disposed above the undoped amorphous silicon layer, The undoped amorphous silicon layer is arranged above the silicon dioxide layer. 一種用於半導體元件的玻璃晶圓,包括: 一玻璃基板,其包括:一頂表面;與該頂表面相對的一底表面;以及在該頂表面和該底表面之間的一邊緣表面;以及 在該玻璃基板上設置有一含矽塗層,其中該含矽塗層包括至少兩個含矽層,並且其中相鄰層的折射率值之差大於0.5。A glass wafer for semiconductor components, including: A glass substrate comprising: a top surface; a bottom surface opposite to the top surface; and an edge surface between the top surface and the bottom surface; and A silicon-containing coating is arranged on the glass substrate, wherein the silicon-containing coating includes at least two silicon-containing layers, and the difference between the refractive index values of adjacent layers is greater than 0.5. 根據請求項12所述的玻璃晶圓,其中,該塗層包括:一氮化矽層、一未摻雜非晶矽層,一二氧化矽層和一磷摻雜結晶矽層,其中,該氮化矽層設置在該未摻雜非晶矽層上方,其中該未摻雜非晶矽層設置在該二氧化矽層上方,其中該二氧化矽層設置在該磷摻雜晶體矽層上方。The glass wafer according to claim 12, wherein the coating comprises: a silicon nitride layer, an undoped amorphous silicon layer, a silicon dioxide layer and a phosphorus-doped crystalline silicon layer, wherein the A silicon nitride layer is disposed above the undoped amorphous silicon layer, wherein the undoped amorphous silicon layer is disposed above the silicon dioxide layer, and the silicon dioxide layer is disposed above the phosphorus-doped crystalline silicon layer .
TW109141539A 2019-11-27 2020-11-26 Glass wafers for semiconductor device fabrication TW202135134A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962940996P 2019-11-27 2019-11-27
US62/940,996 2019-11-27

Publications (1)

Publication Number Publication Date
TW202135134A true TW202135134A (en) 2021-09-16

Family

ID=75974244

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141539A TW202135134A (en) 2019-11-27 2020-11-26 Glass wafers for semiconductor device fabrication

Country Status (7)

Country Link
US (1) US11948792B2 (en)
EP (1) EP4066276A4 (en)
JP (1) JP2023503576A (en)
KR (1) KR20220106156A (en)
CN (1) CN114746981A (en)
TW (1) TW202135134A (en)
WO (1) WO2021108393A1 (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338696A (en) 1964-05-06 1967-08-29 Corning Glass Works Sheet forming apparatus
BE757057A (en) 1969-10-06 1971-04-05 Corning Glass Works METHOD AND APPARATUS FOR CHECKING THE THICKNESS OF A NEWLY STRETCHED SHEET OF GLASS
JP4086925B2 (en) * 1996-12-27 2008-05-14 株式会社半導体エネルギー研究所 Active matrix display
JPH10268280A (en) * 1997-03-24 1998-10-09 Semiconductor Energy Lab Co Ltd Substrate for semiconductor device and production thereof
US6291837B1 (en) * 1997-03-18 2001-09-18 Semiconductor Energy Laboratory Co., Ltd. Substrate of semiconductor device and fabrication method thereof as well as semiconductor device and fabrication method thereof
US6229611B1 (en) 1999-09-20 2001-05-08 United Microelectronics Corp. Method of detecting a transparent quartz wafer in a semiconductor equipment
JP4247739B2 (en) * 2003-07-09 2009-04-02 Toto株式会社 Method of attracting glass substrate by electrostatic chuck and electrostatic chuck
TWI274396B (en) 2006-01-11 2007-02-21 Ind Tech Res Inst Transparent wafer with optical alignment function and fabricating method and alignment method thereof
US8658887B2 (en) * 2006-11-20 2014-02-25 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
US8133599B2 (en) * 2008-11-19 2012-03-13 Ppg Industries Ohio, Inc Undercoating layers providing improved photoactive topcoat functionality
CN102265380A (en) * 2009-03-09 2011-11-30 夏普株式会社 Semiconductor device and method for manufacturing same
WO2011066485A2 (en) * 2009-11-25 2011-06-03 Gigasi Solar, Inc. Systems, methods and products including features of laser irradiation and/or cleaving of silicon with other substrates or layers
US8405169B2 (en) 2010-10-15 2013-03-26 Taiwan Semiconductor Manufacturing Company, Ltd. Handling layer for transparent substrate
US8859103B2 (en) * 2010-11-05 2014-10-14 Joseph Eugene Canale Glass wafers for semiconductor fabrication processes and methods of making same
CN102543675B (en) * 2010-12-31 2014-11-05 中芯国际集成电路制造(上海)有限公司 Method for processing glass substrate
US9058973B2 (en) 2011-04-13 2015-06-16 International Business Machines Corporation Passive devices fabricated on glass substrates, methods of manufacture and design structures
US20130105806A1 (en) * 2011-11-01 2013-05-02 Guojun Liu Structures incorporating silicon nanoparticle inks, densified silicon materials from nanoparticle silicon deposits and corresponding methods
WO2016025773A1 (en) * 2014-08-13 2016-02-18 Solexel, Inc. Rear wide band gap passivated perc solar cells
WO2016103843A1 (en) * 2014-12-26 2016-06-30 Hoya株式会社 Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
US10224297B2 (en) * 2016-07-26 2019-03-05 Palo Alto Research Center Incorporated Sensor and heater for stimulus-initiated fracture of a substrate
EP3601182A1 (en) * 2017-03-21 2020-02-05 Corning Incorporated Hardcoated glass-ceramic articles
JP6863169B2 (en) * 2017-08-15 2021-04-21 Agc株式会社 Reflective mask blank, and reflective mask

Also Published As

Publication number Publication date
CN114746981A (en) 2022-07-12
EP4066276A4 (en) 2024-03-27
KR20220106156A (en) 2022-07-28
JP2023503576A (en) 2023-01-31
EP4066276A1 (en) 2022-10-05
US20210159076A1 (en) 2021-05-27
WO2021108393A1 (en) 2021-06-03
US11948792B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
US9159587B2 (en) Glass wafers for semiconductors fabrication processes and methods of making same
JP6515235B2 (en) Substrate for mask blank, substrate with multilayer reflective film, reflective mask blank, reflective mask and method for manufacturing semiconductor device
TWI823862B (en) Reflective mask base and reflective mask
US20170225433A1 (en) Polymer film coated with a layer of silane coupling agent
KR20140099226A (en) Reflective mask blank for euv lithography and production method thereof
US9726969B2 (en) Reflective mask blank, method of manufacturing same, reflective mask and method of manufacturing semiconductor device
CN102959436A (en) Method for producing wavelength plate
WO2007111067A1 (en) Method for smoothing a surface of a glass substrate, and substrate for a reflective mask blank used in euv lithography, obtainable by that method
US20200227294A1 (en) Optical stack deposition and on-board metrology
US9383637B2 (en) Substrate with multilayer reflective film, reflective mask blank for EUV lithography, method of manufacturing reflective mask for EUV lithography and method of manufacturing semiconductor device
US10077188B2 (en) Manufacturing method of MEMS chip
TW202135134A (en) Glass wafers for semiconductor device fabrication
US8076220B2 (en) Fabrication method for device structure having transparent dielectric substrate
WO2015012658A1 (en) Method for handling ultra-thin glass for display panel
US8741747B2 (en) Method for processing a glass substrate
Zhang et al. Enabling glass wafers in a Si fab
JP2008159605A (en) Reflection type mask blank for euv lithography, substrate with inspection film therefor and inspection method
Zhang et al. Enabling the Use of High Precision Glass Wafers in a Conventional Si Fab
KR20030085536A (en) Film thickness measuring monitor wafer
TWI832258B (en) Substrate with conductive film and reflective mask base
US11262250B2 (en) Method for measuring a temperature
JP7424785B2 (en) Temperature sensor film, conductive film and manufacturing method thereof
TWI600070B (en) Dummy wafer and manufacture thereof
JPH08133771A (en) Glass substrate for liquid crystal display element and its production
JP2000031246A (en) Substrate processing device