TW202115115A - Immunoconjugates - Google Patents

Immunoconjugates Download PDF

Info

Publication number
TW202115115A
TW202115115A TW109121834A TW109121834A TW202115115A TW 202115115 A TW202115115 A TW 202115115A TW 109121834 A TW109121834 A TW 109121834A TW 109121834 A TW109121834 A TW 109121834A TW 202115115 A TW202115115 A TW 202115115A
Authority
TW
Taiwan
Prior art keywords
amino acid
domain
immunoconjugate
polypeptide
seq
Prior art date
Application number
TW109121834A
Other languages
Chinese (zh)
Inventor
葛倫雪伯 安 富雷摩捨
克里斯俊 克雷恩
帕伯羅 優瑪那
櫻加 華德豪爾
Original Assignee
瑞士商赫孚孟拉羅股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商赫孚孟拉羅股份公司 filed Critical 瑞士商赫孚孟拉羅股份公司
Publication of TW202115115A publication Critical patent/TW202115115A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2815Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD8
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2013IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6425Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a receptor, e.g. CD4, a cell surface antigen, i.e. not a peptide ligand targeting the antigen, or a cell surface determinant, i.e. a part of the surface of a cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Abstract

The present invention generally relates to immunoconjugates, particularly immunoconjugates comprising a mutant interleukin-2 polypeptide and an antibody that binds to CD8. In addition, the invention relates to polynucleotide molecules encoding the immunoconjugates, and vectors and host cells comprising such polynucleotide molecules. The invention further relates to methods for producing the mutant immunoconjugates, pharmaceutical compositions comprising the same, and uses thereof.

Description

免疫結合物Immunoconjugate

本發明大體上係關於免疫結合物,特定言之包含突變型介白素-2多肽及與CD8結合之抗體之免疫結合物,該等免疫結合物僅對於CD8+ 細胞具有強力順式-靶向效果。另外,本發明係關於編碼該等免疫結合物之聚核苷酸分子,以及包含此類聚核苷酸分子之載體及宿主細胞。本發明另外係關於產生該等突變型免疫結合物之方法、包含其之醫藥組合物及其用途。The present invention generally relates to immunoconjugates, specifically immunoconjugates comprising mutant interleukin-2 polypeptides and antibodies that bind to CD8. These immunoconjugates only have strong cis-targeting for CD8 + cells effect. In addition, the present invention relates to polynucleotide molecules encoding these immunoconjugates, as well as vectors and host cells containing such polynucleotide molecules. The present invention also relates to methods for producing these mutant immunoconjugates, pharmaceutical compositions containing them, and uses thereof.

介白素-2 (IL-2),亦稱為T細胞生長因子(TCGF),為15.5 kDa球形醣蛋白,其在淋巴球產生、存活及穩態方面起關鍵作用。其具有133個胺基酸之長度且由形成其功能必不可少之四級結構之四個反平行兩性α螺旋組成(Smith, Science 240, 1169-76 (1988);Bazan, Science 257, 410-413 (1992))。來自不同物種之IL-2之序列發現於NCBI RefSeq編號NP000577 (人類)、NP032392 (小鼠)、NP446288 (大鼠)或NP517425 (黑猩猩)。Interleukin-2 (IL-2), also known as T cell growth factor (TCGF), is a 15.5 kDa globular glycoprotein that plays a key role in lymphocyte production, survival and homeostasis. It has a length of 133 amino acids and is composed of four antiparallel amphoteric alpha helices that form a quaternary structure essential for its function (Smith, Science 240, 1169-76 (1988); Bazan, Science 257, 410- 413 (1992)). The sequence of IL-2 from different species is found in NCBI RefSeq number NP000577 (human), NP032392 (mouse), NP446288 (rat) or NP517425 (chimpanzee).

IL-2藉由與IL-2受體(IL-2R)結合來介導其作用,該等受體由至多三個個別次單元組成,其不同的結合可產生對於IL-2之親和力不同的受體形式。α (CD25)、β (CD122)及γ (γc CD132)次單元之結合產生IL-2的高親和力三聚合受體。由β及γ次單元組成之二聚合IL-2受體稱為中等親和力IL-2R。α次單元形成低親和力單體IL-2受體。雖然中等親和力的二聚合IL-2受體結合IL-2的親和力比高親和力三聚合受體低約100倍,但二聚合與三聚合IL-2受體變體均能夠在IL-2結合後傳輸信號(Minami等人, Annu Rev Immunol 11, 245-268 (1993))。因此,α次單元CD25對於IL-2信號傳導不係必要的。其賦予對於其受體之高親和力結合,儘管β次單元CD122及γ次單元對於信號轉導為關鍵的(Krieg等人, Proc Natl Acad Sci 107, 11906-11 (2010))。三聚合IL-2受體(包括CD25)由(靜息) CD4+ 叉頭框P3 (FoxP3)+ 調節T (Treg )細胞表現。其亦短暫誘導於習知活化T細胞上,而此等細胞在靜息狀態下僅表現二聚合IL-2受體。Treg 細胞在活體內始終最高量地表現CD25 (Fontenot等人, Nature Immunol 6, 1142-51 (2005))。IL-2 mediates its effects by binding to IL-2 receptors (IL-2R), which are composed of up to three individual subunits, and their different binding can produce different affinities for IL-2 Receptor form. The combination of α (CD25), β (CD122) and γ (γ c , CD132) subunits produces a high-affinity trimeric receptor for IL-2. The dipolymerized IL-2 receptor composed of β and γ subunits is called medium-affinity IL-2R. The alpha subunit forms the low-affinity monomer IL-2 receptor. Although the medium-affinity dimerized IL-2 receptor binds IL-2 with about 100 times lower affinity than the high-affinity trimerized receptor, both dimerized and trimerized IL-2 receptor variants can bind to IL-2 after binding. Transmission signal (Minami et al., Annu Rev Immunol 11, 245-268 (1993)). Therefore, the α subunit CD25 is not necessary for IL-2 signaling. It confers high affinity binding to its receptor, although the β subunit CD122 and the γ subunit are critical for signal transduction (Krieg et al., Proc Natl Acad Sci 107, 11906-11 (2010)). Trimeric IL-2 receptors (including CD25) are expressed by (resting) CD4 + forkhead box P3 (FoxP3) + regulatory T (T reg ) cells. It is also transiently induced on conventionally activated T cells, and these cells only exhibit dimerized IL-2 receptors in the resting state. T reg cells consistently express CD25 in the highest amount in vivo (Fontenot et al., Nature Immunol 6, 1142-51 (2005)).

IL-2主要由活化T細胞(特定而言,CD4+ 輔助T細胞)合成。其刺激T細胞增殖及分化,誘導細胞毒性T淋巴球(CTL)產生及周邊血液淋巴球分化成細胞毒性細胞及淋巴介質活化殺手(LAK)細胞,促進T細胞表現細胞介素及溶細胞分子,促進B細胞增殖及分化以及B細胞合成免疫球蛋白,且刺激自然殺手(NK)細胞產生、增殖及活化(綜述於例如Waldmann, Nat Rev Immunol 6, 595-601 (2009);Olejniczak及Kasprzak, Med Sci Monit 14, RA179-89 (2008);Malek, Annu Rev Immunol 26, 453-79 (2008)中)。IL-2 is mainly synthesized by activated T cells (specifically, CD4 + helper T cells). It stimulates the proliferation and differentiation of T cells, induces the production of cytotoxic T lymphocytes (CTL) and differentiation of peripheral blood lymphocytes into cytotoxic cells and lymphoid mediator activated killer (LAK) cells, promotes T cells to express cytokines and cytolytic molecules, Promote the proliferation and differentiation of B cells and the synthesis of immunoglobulin by B cells, and stimulate the production, proliferation and activation of natural killer (NK) cells (reviewed in, for example, Waldmann, Nat Rev Immunol 6, 595-601 (2009); Olejniczak and Kasprzak, Med Sci Monit 14, RA179-89 (2008); Malek, Annu Rev Immunol 26, 453-79 (2008)).

其使淋巴球群體在活體內擴增及增強此等細胞效應子功能的能力賦予IL-2抗腫瘤作用,使得IL-2免疫療法成為某些轉移性癌症之吸引人的治療選項。因此,高劑量IL-2療法已批准用於患有轉移性腎細胞癌及惡性黑素瘤的患者。Its ability to expand lymphocyte populations in vivo and enhance these cell effector functions confers IL-2 anti-tumor effects, making IL-2 immunotherapy an attractive treatment option for certain metastatic cancers. Therefore, high-dose IL-2 therapy has been approved for patients with metastatic renal cell carcinoma and malignant melanoma.

然而,IL-2在免疫反應方面具有雙重功能:其不僅介導效應子細胞之擴增及活性,而且主要涉及周邊免疫耐受性的維持。However, IL-2 has a dual function in immune response: it not only mediates the expansion and activity of effector cells, but also mainly involves the maintenance of peripheral immune tolerance.

周邊自身耐受性所依據的主要機制為IL-2誘導的T細胞中之活化誘導式細胞死亡(AICD)。AICD為一種過程,完全活化的T細胞藉此過程經由與細胞表面表現的死亡受體(諸如CD95 (亦稱為Fas)或TNF受體)接合而經歷程式化細胞死亡。當在增殖期間表現高親和力IL-2受體(預先暴露於IL-2之後)的抗原活化T細胞用抗原,經由T細胞受體(TCR)/CD3複合物再刺激時,誘導Fas配體(FasL)及/或腫瘤壞死因子(TNF)之表現,使得該等細胞容易發生Fas介導的細胞凋亡。此過程為IL-2依賴性的(Lenardo, Nature 353, 858-61 (1991))且經由STAT5介導。藉由T淋巴球中之AICD過程,可不僅建立對於自身抗原之耐受性且亦建立對於持久性抗原之耐受性,該等持久性抗原明確地不為宿主組成之一部分,諸如腫瘤抗原。The main mechanism underlying self-tolerance is IL-2 induced activation-induced cell death (AICD) in T cells. AICD is a process by which fully activated T cells undergo programmed cell death through engagement with death receptors (such as CD95 (also known as Fas) or TNF receptors) expressed on the cell surface. When antigens that exhibit high-affinity IL-2 receptors (after pre-exposure to IL-2) during proliferation activate antigens for T cells, and are re-stimulated via T cell receptor (TCR)/CD3 complexes, Fas ligands are induced ( The expression of FasL) and/or tumor necrosis factor (TNF) makes these cells prone to Fas-mediated apoptosis. This process is IL-2 dependent (Lenardo, Nature 353, 858-61 (1991)) and is mediated by STAT5. Through the AICD process in T lymphocytes, not only tolerance to self-antigens but also tolerance to persistent antigens can be established, which are definitely not part of the host, such as tumor antigens.

此外,IL-2亦涉及周邊CD4+ CD25+ 調節T (Treg )細胞的維持(Fontenot等人, Nature Immunol 6, 1142-51 (2005);D'Cruz及Klein, Nature Immunol 6, 1152-59 (2005);Maloy及Powrie, Nature Immunol 6, 1171-72 (2005),其亦稱為抑制T細胞。其經由細胞-細胞接觸,藉由抑制T細胞幫助及活化,或經由免疫抑制細胞介素(諸如IL-10或TGF-β)的釋放來抑制效應子T細胞摧毀其(自身)目標。已顯示Treg 細胞的耗竭可增強IL-2誘導的抗腫瘤免疫力(Imai等人, Cancer Sci 98, 416-23 (2007))。In addition, IL-2 is also involved in the maintenance of peripheral CD4 + CD25 + regulatory T (T reg ) cells (Fontenot et al., Nature Immunol 6, 1142-51 (2005); D'Cruz and Klein, Nature Immunol 6, 1152-59 (2005); Maloy and Powrie, Nature Immunol 6, 1171-72 (2005), which are also called suppressor T cells. They are assisted and activated by suppressor T cells via cell-cell contact, or via immunosuppressive cytokines (Such as IL-10 or TGF-β) to inhibit effector T cells from destroying their (self) targets. Depletion of T reg cells has been shown to enhance IL-2 induced anti-tumor immunity (Imai et al., Cancer Sci 98, 416-23 (2007)).

因此,IL-2並非抑制腫瘤生長之最佳選項,原因係在IL-2存在下,所產生的CTL可能會將腫瘤識別為自身且經歷AICD,或IL-2依賴性Treg 細胞可能會抑制免疫反應。Therefore, IL-2 is not the best option to inhibit tumor growth. The reason is that in the presence of IL-2, the generated CTL may recognize the tumor as itself and undergo AICD, or IL-2-dependent T reg cells may inhibit immune response.

關於IL-2免疫療法的另一個擔憂為重組人類IL-2治療所產生的副作用。接受高劑量IL-2治療的患者頻繁地經歷嚴重的心血管、肺、腎、肝、胃腸、神經、皮膚、血液及全身不良事件,此需要密集的監測及住院管理。此等副作用中的大部分可以解釋為:所謂血管(或毛細管)滲漏症候群(VLS)的發展;血管滲透性方面之病理性增強,引起多種器官之體液外滲(導致例如肺及皮膚水腫及肝臟細胞損傷)及血管內體液耗竭(導致血壓下降及心率補償性增加)。除停藥IL-2之外,不存在VLS之治療。為了避免VLS,已在患者中測試低劑量IL-2方案,然而以次最佳的治療結果為代價。咸信VLS係由促炎性細胞介素的釋放引起,諸如IL-2活化的NK細胞釋放腫瘤壞死因子(TNF)-α,然而最近已表明,IL-2誘發的肺水腫起因於IL-2直接與肺內皮細胞結合,該等肺內皮細胞表現低至中等水準之功能性αβγ IL-2受體(Krieg等人, Proc Nat Acad Sci USA 107, 11906-11 (2010))。Another concern about IL-2 immunotherapy is the side effects of recombinant human IL-2 therapy. Patients receiving high-dose IL-2 treatment frequently experience severe cardiovascular, lung, kidney, liver, gastrointestinal, neurological, skin, blood, and systemic adverse events, which require intensive monitoring and hospitalization. Most of these side effects can be explained as: the development of the so-called vascular (or capillary) leak syndrome (VLS); pathological enhancement of vascular permeability, causing fluid extravasation in various organs (leading to lung and skin edema and Liver cell damage) and fluid depletion in blood vessels (leading to a decrease in blood pressure and a compensatory increase in heart rate). Except for discontinuation of IL-2, there is no treatment for VLS. To avoid VLS, low-dose IL-2 regimens have been tested in patients, but at the cost of sub-optimal treatment results. It is believed that VLS is caused by the release of pro-inflammatory cytokines, such as IL-2 activated NK cells to release tumor necrosis factor (TNF)-α. However, it has recently been shown that IL-2 induced pulmonary edema is caused by IL-2. Binding directly to lung endothelial cells, these lung endothelial cells exhibit low to moderate levels of functional αβγ IL-2 receptors (Krieg et al., Proc Nat Acad Sci USA 107, 11906-11 (2010)).

已採取若干方法來克服與IL-2免疫療法相關的此等問題。舉例而言,已發現IL-2與某些抗IL-2單株抗體的組合使IL-2的活體內治療效果增強(Kamimura等人, J Immunol 177, 306-14 (2006);Boyman等人, Science 311, 1924-27 (2006))。在一替代方法中,IL-2已以各種方式突變,以減少其毒性且/或增強其功效。Hu等人(Blood 101, 4853-4861 (2003);美國專利公開案第2003/0124678號)已用色胺酸取代IL-2之位置38處的精胺酸殘基,以消除IL-2的血管通透活性。Shanafelt等人(Nature Biotechnol 18, 1197-1202 (2000))已使天冬醯胺88突變為精胺酸,以增強相對於NK細胞對T細胞的選擇性。Heaton等人(Cancer Res 53, 2597-602 (1993);美國專利第5,229,109號)已引入兩種突變Arg38Ala及Phe42Lys,以減少NK細胞分泌促炎性細胞介素。Gillies等人(美國專利公開案第2007/0036752號)已取代IL-2中之三個殘基(Asp20Thr、Asn88Arg及Gln126Asp),其有助於針對中等親和力IL-2受體的親和力,從而減輕VLS。Gillies等人(WO 2008/0034473)亦已藉由胺基酸取代Arg38Trp及Phe42Lys而使IL-2與CD25之界面發生突變,以減少與CD25之相互作用及Treg 細胞活化,從而增強功效。為了相同目的,Wittrup等人(WO 2009/061853)已產生IL-2突變體,其對CD25的親和力增強,但不活化該受體,從而充當拮抗劑。所引入的突變旨在中斷與受體之β-次單元及/或γ-次單元的相互作用。Several approaches have been taken to overcome these problems associated with IL-2 immunotherapy. For example, it has been found that the combination of IL-2 and certain anti-IL-2 monoclonal antibodies enhances the therapeutic effect of IL-2 in vivo (Kamimura et al., J Immunol 177, 306-14 (2006); Boyman et al. , Science 311, 1924-27 (2006)). In an alternative approach, IL-2 has been mutated in various ways to reduce its toxicity and/or enhance its efficacy. Hu et al. (Blood 101, 4853-4861 (2003); U.S. Patent Publication No. 2003/0124678) have replaced the arginine residue at position 38 of IL-2 with tryptophan to eliminate IL-2 Vascular permeability activity. Shanafelt et al. (Nature Biotechnol 18, 1197-1202 (2000)) have mutated aspartamide 88 to arginine to enhance the selectivity of T cells relative to NK cells. Heaton et al. (Cancer Res 53, 2597-602 (1993); US Patent No. 5,229,109) have introduced two mutations, Arg38Ala and Phe42Lys, to reduce the secretion of pro-inflammatory cytokines by NK cells. Gillies et al. (U.S. Patent Publication No. 2007/0036752) have replaced three residues in IL-2 (Asp20Thr, Asn88Arg, and Gln126Asp), which contribute to the affinity for medium-affinity IL-2 receptors, thereby reducing VLS. Gillies et al. (WO 2008/0034473) have also replaced Arg38Trp and Phe42Lys with amino acids to mutate the interface between IL-2 and CD25 to reduce the interaction with CD25 and the activation of T reg cells, thereby enhancing the efficacy. For the same purpose, Wittrup et al. (WO 2009/061853) have produced IL-2 mutants that have increased affinity for CD25, but do not activate the receptor, thereby acting as an antagonist. The introduced mutation is intended to interrupt the interaction with the β-subunit and/or the γ-subunit of the receptor.

WO 2012/107417中描述了一種特定的突變型IL-2多肽,其設計成克服與IL-2免疫療法相關的上文所提及之問題(VLS誘導所引起的毒性、AICD誘導所引起的腫瘤耐受性,及Treg 細胞活化所引起的免疫抑制)。IL-2之位置42處的苯丙胺酸殘基經丙胺酸取代、位置45處的酪胺酸殘基經丙胺酸取代及位置72處的白胺酸殘基經甘胺酸取代基本上消除了此突變型IL-2多肽與IL-2受體之α-次單元(CD25)的結合。WO 2012/107417 describes a specific mutant IL-2 polypeptide designed to overcome the above-mentioned problems related to IL-2 immunotherapy (toxicity caused by VLS induction, tumor caused by AICD induction Tolerance, and immunosuppression caused by T reg cell activation). The substitution of the phenylalanine residue at position 42 of IL-2 with alanine, the substitution of the tyrosine residue at position 45 with alanine and the substitution of the leucine residue at position 72 with glycine essentially eliminated this. The binding of mutant IL-2 polypeptide to the α-subunit of IL-2 receptor (CD25).

另外關於上文所提及之方法,IL-2免疫療法可藉由選擇性地將IL-2靶向腫瘤來改良,例如呈包含與腫瘤細胞上表現之抗原結合之抗體的免疫結合物形式。已描述若干種此類免疫結合物(參見例如Ko等人, J Immunother (2004) 27, 232-239;Klein等人, Oncoimmunology (2017) 6(3), e1277306)。In addition to the methods mentioned above, IL-2 immunotherapy can be improved by selectively targeting IL-2 to tumors, for example, in the form of immunoconjugates containing antibodies that bind to antigens expressed on tumor cells. Several such immunoconjugates have been described (see, for example, Ko et al., J Immunother (2004) 27, 232-239; Klein et al., Oncoimmunology (2017) 6(3), e1277306).

然而,腫瘤可以藉由使抗體之目標抗原排出、突變或下調而能夠逃避此類靶向。此外,靶向腫瘤的IL-2與主動排除淋巴球的腫瘤微環境中的效應子細胞(諸如細胞毒性T淋巴球(CTL))可能不會達成最佳的接觸。However, tumors can evade such targeting by excreting, mutating or down-regulating the target antigen of the antibody. In addition, tumor-targeted IL-2 may not reach optimal contact with effector cells in the tumor microenvironment that actively exclude lymphocytes, such as cytotoxic T lymphocytes (CTL).

因此,仍需要進一步改良IL-2免疫療法。可以避開腫瘤靶向問題的一種方法為使IL-2直接靶向效應子細胞,特定而言,CTL。Therefore, there is still a need to further improve IL-2 immunotherapy. One way to circumvent the problem of tumor targeting is to target IL-2 directly to effector cells, specifically, CTLs.

Ghasemi等人已描述IL-2與NKG2D結合蛋白之融合蛋白(Ghashemi等人, Nat Comm (2016) 7, 12878),其用於使IL-2靶向攜帶NKG2D的細胞,諸如自然殺手(NK)細胞。Ghasemi et al. have described a fusion protein of IL-2 and NKG2D binding protein (Ghashemi et al., Nat Comm (2016) 7, 12878), which is used to target IL-2 to cells carrying NKG2D, such as natural killer (NK) cell.

腫瘤組織中之免疫細胞之數目、類型及空間分佈之特徵可提供關於癌症診斷、預後、療法選擇及療法反應之關鍵資訊。具體言之,CD8+ 細胞毒性淋巴球已始終報導為在各種癌症中具有診斷性及預後意義。與CD8結合之抗體描述於例如WO 2019/033043 A2中。The characteristics of the number, type and spatial distribution of immune cells in tumor tissues can provide key information about cancer diagnosis, prognosis, treatment options and treatment response. Specifically, CD8 + cytotoxic lymphocytes have always been reported as having diagnostic and prognostic significance in various cancers. Antibodies that bind to CD8 are described in, for example, WO 2019/033043 A2.

本發明提供一種使具有免疫療法有利特性之突變型IL-2直接靶向免疫效應子細胞(諸如細胞毒性T淋巴球)而非腫瘤細胞的新穎方法。靶向免疫效應子細胞藉由突變型IL-2分子與同CD8結合之抗體結合來達成。The present invention provides a novel method for direct targeting of mutant IL-2 with advantageous properties of immunotherapy to immune effector cells (such as cytotoxic T lymphocytes) rather than tumor cells. Targeting immune effector cells is achieved by binding mutant IL-2 molecules to antibodies that bind to CD8.

本發明中所用之IL-2突變體已設計成克服與IL-2免疫療法相關的問題,特定而言,誘導VLS所引起的毒性、誘導AICD所引起的腫瘤耐受性,及活化Treg 細胞所引起的免疫抑制。除防止腫瘤躲避如上文所提及的腫瘤靶向之外,IL-2突變體靶向免疫效應子細胞可進一步增強相對於免疫抑制性Treg 細胞,對CTL的優先活化。如本文所揭示之與CD8結合之抗體對於CD8+ 細胞具有強力順式-靶向效果。因此,其不干擾T細胞抗原受體(TCR)與肽結合的主要組織相容複合物(pMHC)之相互作用。就此而言,抗體為非功能性的。The IL-2 mutant used in the present invention has been designed to overcome the problems associated with IL-2 immunotherapy, in particular, to induce toxicity caused by VLS, induce tumor tolerance caused by AICD, and activate T reg cells The immunosuppression caused. In addition to preventing tumors from evading tumor targeting as mentioned above, IL-2 mutant targeting immune effector cells can further enhance the preferential activation of CTL relative to immunosuppressive T reg cells. Antibodies that bind to CD8 as disclosed herein have a strong cis-targeting effect on CD8 + cells. Therefore, it does not interfere with the interaction between the T cell antigen receptor (TCR) and the peptide-bound major histocompatibility complex (pMHC). In this regard, antibodies are non-functional.

在一第一態樣中,本發明提供一種免疫結合物,其包含突變型介白素-2 (IL-2)多肽及與CD8結合之抗體,其中該IL-2多肽為包含胺基酸取代F42A、Y45A及L72G (相對於人類IL-2序列SEQ ID NO: 13編號)之突變型IL-2多肽。In a first aspect, the present invention provides an immunoconjugate comprising a mutant interleukin-2 (IL-2) polypeptide and an antibody that binds to CD8, wherein the IL-2 polypeptide contains amino acid substitutions Mutant IL-2 polypeptides of F42A, Y45A and L72G (numbering relative to the human IL-2 sequence SEQ ID NO: 13).

在另一態樣中,本發明提供一種免疫結合物,其包含突變型介白素-2 (IL-2)多肽及與CD8結合之抗體,其中該突變型IL-2多肽為包含胺基酸取代F42A、Y45A及L72G (相對於人類IL-2序列SEQ ID NO: 13編號)之人類IL-2分子;且其中該抗體包含:(a)重鏈可變區(VH),其包含含SEQ ID NO: 1之胺基酸序列的重鏈互補決定區(HCDR) 1、含SEQ ID NO: 2之胺基酸序列的HCDR 2、含SEQ ID NO: 3之胺基酸序列的HCDR 3;及(b)輕鏈可變區(VL),其包含含SEQ ID NO: 4之胺基酸序列的輕鏈互補決定區(LCDR) 1、含SEQ ID NO: 5之胺基酸序列的LCDR 2及含SEQ ID NO: 6或SEQ ID NO: 28之胺基酸序列的LCDR 3。In another aspect, the present invention provides an immunoconjugate comprising a mutant interleukin-2 (IL-2) polypeptide and an antibody that binds to CD8, wherein the mutant IL-2 polypeptide contains an amino acid Substitute the human IL-2 molecules of F42A, Y45A and L72G (numbered relative to the human IL-2 sequence SEQ ID NO: 13); and wherein the antibody comprises: (a) a heavy chain variable region (VH), which comprises SEQ ID NO: The heavy chain complementarity determining region (HCDR) of the amino acid sequence of ID NO: 1 1. HCDR containing the amino acid sequence of SEQ ID NO: 2 2. HCDR 3 containing the amino acid sequence of SEQ ID NO: 3; And (b) a light chain variable region (VL) comprising a light chain complementarity determining region (LCDR) containing the amino acid sequence of SEQ ID NO: 4 1, an LCDR containing the amino acid sequence of SEQ ID NO: 5 2 and LCDR 3 containing the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 28.

在另一態樣中,本發明提供一種免疫結合物,其包含突變型介白素-2 (IL-2)多肽及與CD8結合之抗體,其中該突變型IL-2多肽為包含胺基酸取代F42A、Y45A及L72G (相對於人類IL-2序列SEQ ID NO: 13編號)之人類IL-2分子;且其中該抗體包含:(a)重鏈可變區(VH),其包含與SEQ ID NO: 7之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列;及(b)輕鏈可變區(VL),其包含與SEQ ID NO: 8或SEQ ID NO: 29之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致的胺基酸序列。In another aspect, the present invention provides an immunoconjugate comprising a mutant interleukin-2 (IL-2) polypeptide and an antibody that binds to CD8, wherein the mutant IL-2 polypeptide contains an amino acid Substituting the human IL-2 molecule of F42A, Y45A and L72G (numbered relative to the human IL-2 sequence SEQ ID NO: 13); and wherein the antibody comprises: (a) a heavy chain variable region (VH), which comprises the same as SEQ ID NO: 13 The amino acid sequence of ID NO: 7 is at least about 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence; and (b) the light chain variable region (VL), which comprises An amino acid sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 8 or SEQ ID NO: 29.

在本發明之免疫結合物之一些實施例中,突變型IL-2多肽進一步包含胺基酸取代T3A及/或胺基酸取代C125A。In some embodiments of the immunoconjugate of the present invention, the mutant IL-2 polypeptide further comprises an amino acid substituted for T3A and/or an amino acid substituted for C125A.

在一些實施例中,突變型IL-2多肽包含SEQ ID NO: 14之序列。In some embodiments, the mutant IL-2 polypeptide comprises the sequence of SEQ ID NO: 14.

在一些實施例中,免疫結合物包含不多於一種突變型IL-2多肽。在一些此類實施例中,抗體包含由第一次單元及第二次單元構成的Fc域。在一些此類實施例中,Fc域為IgG類,尤其IgG1子類Fc域,且/或Fc域為人類Fc域。在一些實施例中,抗體為IgG類,尤其IgG1子類免疫球蛋白。In some embodiments, the immunoconjugate contains no more than one mutant IL-2 polypeptide. In some such embodiments, the antibody comprises an Fc domain composed of a first subunit and a second subunit. In some such embodiments, the Fc domain is an IgG class, especially an IgG1 subclass Fc domain, and/or the Fc domain is a human Fc domain. In some embodiments, the antibody is of the IgG class, especially an immunoglobulin of the IgG1 subclass.

在一些實施例中,其中免疫結合物包含Fc域,Fc域包含促進該Fc域之第一次單元與第二次單元結合的修飾。在一些實施例中,在Fc域之第一次單元之CH3域中,胺基酸殘基經具有較大側鏈體積的胺基酸殘基置換,藉此在第一次單元之CH3域內產生可定位於第二次單元之CH3域內之空腔中的隆凸,且在Fc域之第二次單元之CH3域中,胺基酸殘基經具有較小側鏈體積的胺基酸殘基置換,藉此在第二次單元之CH3域內產生可供第一次單元之CH3域內之隆凸可定位於其中的空腔。在一些實施例中,在Fc域之第一次單元中,位置366處之蘇胺酸殘基經色胺酸殘基置換(T366W),且在Fc域之第二次單元中,位置407處的酪胺酸殘基經纈胺酸殘基置換(Y407V),且視情況位置366處之蘇胺酸殘基經絲胺酸殘基置換(T366S)且位置368處之白胺酸殘基經丙胺酸殘基置換(L368A) (根據Kabat EU索引編號)。在一些此類實施例中,在Fc域之第一次單元中,另外,位置354處之絲胺酸殘基經半胱胺酸殘基(S354C)置換或位置356之麩胺酸殘基經半胱胺酸殘基置換(E356C),且在Fc域之第二次單元中,另外,位置349處之酪胺酸殘基經半胱胺酸殘基置換(Y349C) (根據Kabat EU索引編號)。在一些實施例中,突變型IL-2多肽在其胺基端胺基酸處與Fc域之次單元之一(特定言之,Fc域之第一次單元)之羧基端胺基酸融合,視情況經由連接肽融合。在一些此等實施例中,連接肽具有SEQ ID NO: 15之胺基酸序列。In some embodiments, wherein the immunoconjugate comprises an Fc domain, the Fc domain comprises a modification that promotes the binding of the first unit and the second unit of the Fc domain. In some embodiments, in the CH3 domain of the first unit of the Fc domain, the amino acid residue is replaced with an amino acid residue having a larger side chain volume, thereby being in the CH3 domain of the first unit Generates a bulge that can be located in the cavity in the CH3 domain of the second subunit, and in the CH3 domain of the second subunit of the Fc domain, the amino acid residue is passed through an amino acid with a smaller side chain volume. Residue replacement, thereby creating a cavity in the CH3 domain of the second unit where the protuberances in the CH3 domain of the first unit can be positioned. In some embodiments, in the first subunit of the Fc domain, the threonine residue at position 366 is replaced by a tryptophan residue (T366W), and in the second subunit of the Fc domain, position 407 The tyrosine residue is replaced by valine residue (Y407V), and optionally the threonine residue at position 366 is replaced by serine residue (T366S) and the leucine residue at position 368 is replaced by Alanine residue substitution (L368A) (numbered according to Kabat EU index). In some such embodiments, in the first unit of the Fc domain, in addition, the serine residue at position 354 is replaced by a cysteine residue (S354C) or the glutamine residue at position 356 is replaced by Cysteine residue replacement (E356C), and in the second unit of the Fc domain, in addition, the tyrosine residue at position 349 is replaced by a cysteine residue (Y349C) (numbering according to Kabat EU index ). In some embodiments, the mutant IL-2 polypeptide is fused to the carboxy terminal amino acid of one of the secondary units of the Fc domain (specifically, the first unit of the Fc domain) at its amino terminal amino acid, Optionally fused via a connecting peptide. In some of these embodiments, the connecting peptide has the amino acid sequence of SEQ ID NO:15.

在一些實施例中,其中免疫結合物包含Fc域,Fc域包含減少與Fc受體(特定言之Fcy受體)結合及/或效應子功能(特定言之抗體依賴性細胞介導之細胞毒性(ADCC)之一或多種胺基酸取代。在一些此類實施例中,該一或多種胺基酸取代係位於選自L234、L235及P329之群的一或多個位置(Kabat EU索引編號)處。在一些實施例中,Fc域中之各次單元包含胺基酸取代L234A、L235A及P329G (Kabat EU索引編號)。In some embodiments, wherein the immunoconjugate comprises an Fc domain, the Fc domain comprises reducing binding to Fc receptors (specifically Fcy receptors) and/or effector functions (specifically, antibody-dependent cell-mediated cytotoxicity) (ADCC) One or more amino acid substitutions. In some such embodiments, the one or more amino acid substitutions are located at one or more positions selected from the group of L234, L235, and P329 (Kabat EU index number ). In some embodiments, each subunit in the Fc domain includes amino acid substitutions L234A, L235A, and P329G (Kabat EU index number).

在根據本發明之一些實施例中,免疫結合物包含:多肽,其包含與SEQ ID NO:9或SEQ ID NO:30之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;多肽,其包含與SEQ ID NO:10之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;及多肽,其包含與SEQ ID NO:11或SEQ ID NO: 12之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列。In some embodiments according to the present invention, the immunoconjugate comprises: a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, sequence of SEQ ID NO: 9 or SEQ ID NO: 30, An amino acid sequence that is 97%, 98%, 99% or 100% identical; a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, and the sequence of SEQ ID NO: 10, An amino acid sequence that is 98%, 99%, or 100% identical; and a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96% with the sequence of SEQ ID NO: 11 or SEQ ID NO: 12 , 97%, 98%, 99% or 100% identical amino acid sequence.

在一些實施例中,免疫結合物包含:多肽,其包含SEQ ID NO:9或SEQ ID NO:29之胺基酸序列;多肽,其包含SEQ ID NO:10之胺基酸序列;及多肽,其包含SEQ ID NO:11之胺基酸序列。In some embodiments, the immunoconjugate comprises: a polypeptide comprising the amino acid sequence of SEQ ID NO: 9 or SEQ ID NO: 29; a polypeptide comprising the amino acid sequence of SEQ ID NO: 10; and a polypeptide, It includes the amino acid sequence of SEQ ID NO:11.

在一些實施例中,免疫結合物包含:多肽,其包含SEQ ID NO:9或SEQ ID NO:29之胺基酸序列;多肽,其包含SEQ ID NO:10之胺基酸序列;及多肽,其包含SEQ ID NO:12之胺基酸序列。In some embodiments, the immunoconjugate comprises: a polypeptide comprising the amino acid sequence of SEQ ID NO: 9 or SEQ ID NO: 29; a polypeptide comprising the amino acid sequence of SEQ ID NO: 10; and a polypeptide, It contains the amino acid sequence of SEQ ID NO: 12.

在一些實施例中,免疫結合物基本上由突變型IL-2多肽及IgG1免疫球蛋白分子藉由連接子序列接合而組成。In some embodiments, the immunoconjugate consists essentially of a mutant IL-2 polypeptide and an IgG1 immunoglobulin molecule joined by a linker sequence.

本發明進一步提供一或多種編碼如本文中所描述之本發明之免疫結合物的經分離之聚核苷酸、一或多種包含該聚核苷酸的載體(特定言之表現載體)及包含該聚核苷酸或該載體的宿主細胞。The present invention further provides one or more isolated polynucleotides encoding the immunoconjugates of the present invention as described herein, one or more vectors (specifically expression vectors) containing the polynucleotides, and The polynucleotide or the host cell of the vector.

亦提供一種產生包含突變型IL-2多肽及與CD8結合之抗體之免疫結合物的方法,該方法包含(a)在適合於表現該免疫結合物之條件下培養本發明的宿主細胞,及視情況(b)回收該免疫結合物。本發明亦提供一種藉由該方法產生之免疫結合物,其包含突變型IL-2多肽及與CD8結合之抗體。A method for producing an immunoconjugate comprising a mutant IL-2 polypeptide and an antibody that binds to CD8 is also provided, the method comprising (a) culturing the host cell of the present invention under conditions suitable for expressing the immunoconjugate, and visually Case (b) recover the immunoconjugate. The present invention also provides an immunoconjugate produced by the method, which comprises a mutant IL-2 polypeptide and an antibody that binds to CD8.

本發明進一步提供一種醫藥組合物,其包含本發明之免疫結合物及醫藥學上可接受之載劑;及使用本發明之免疫結合物的方法。The present invention further provides a pharmaceutical composition comprising the immunoconjugate of the present invention and a pharmaceutically acceptable carrier; and a method of using the immunoconjugate of the present invention.

特定言之,本發明涵蓋根據本發明的免疫結合物,其用作藥劑,及用於治療疾病。在一特定實施例中,該疾病為癌症。In particular, the present invention covers the immunoconjugates according to the present invention, which are used as medicaments, and for the treatment of diseases. In a specific embodiment, the disease is cancer.

本發明亦涵蓋一種根據本發明之免疫結合物之用途,其用於製造用於治療疾病之藥劑。在一特定實施例中,該疾病為癌症。The present invention also covers the use of an immunoconjugate according to the present invention for the manufacture of a medicament for the treatment of diseases. In a specific embodiment, the disease is cancer.

進一步提供一種治療個體之疾病之方法,其包含向該個體投與治療有效量之呈醫藥學上可接受之形式之包含根據本發明之免疫結合物的組合物。在一特定實施例中,該疾病為癌症。There is further provided a method of treating a disease in an individual, which comprises administering to the individual a therapeutically effective amount of a composition comprising the immunoconjugate according to the present invention in a pharmaceutically acceptable form. In a specific embodiment, the disease is cancer.

進一步提供一種刺激個體之免疫系統之方法,其包含向該個體投與有效量之呈醫藥學上可接受之形式之包含根據本發明之免疫結合物的組合物。There is further provided a method of stimulating the immune system of an individual, which comprises administering to the individual an effective amount of a composition comprising the immunoconjugate according to the present invention in a pharmaceutically acceptable form.

定義 除非下文中另外定義,否則術語在本文中的使用如此項技術中一般所用。 Definitions Unless otherwise defined below, terms are used herein as they are generally used in this technology.

除非另外指示,否則如本文所用,術語「介白素-2」或「IL-2」係指來自任何脊椎動物來源,包括哺乳動物,諸如靈長類動物(例如人類)及嚙齒動物(例如小鼠及大鼠)之任何原生IL-2。該術語涵蓋未加工之IL-2以及由細胞中進行之加工產生的IL-2之任何形式。該術語亦涵蓋天然存在之IL-2變體,例如剪接變體或等位基因變體。例示性人類IL-2之胺基酸序列顯示於SEQ ID NO: 13中。未加工之人類IL-2另外包含具有SEQ ID NO: 19之序列之N端20胺基酸信號肽,其不存在於成熟IL-2分子中。Unless otherwise indicated, as used herein, the term "interleukin-2" or "IL-2" refers to any vertebrate source, including mammals, such as primates (e.g., humans) and rodents (e.g., small animals). Rats and rats) any native IL-2. The term encompasses unprocessed IL-2 as well as any form of IL-2 produced by processing in the cell. The term also encompasses naturally occurring IL-2 variants, such as splice variants or allelic variants. The amino acid sequence of an exemplary human IL-2 is shown in SEQ ID NO: 13. The unprocessed human IL-2 additionally contains the N-terminal 20 amino acid signal peptide with the sequence of SEQ ID NO: 19, which is not present in the mature IL-2 molecule.

如本文所用,術語「IL-2突變體」或「突變型IL-2多肽」意欲涵蓋各種形式之IL-2分子的任何突變型,包括全長IL-2、截斷的IL-2形式及其中IL-2藉由融合或化學結合與另一分子連接的形式。「全長」當關於IL-2使用時,意欲意謂成熟、天然長度的IL-2分子。舉例而言,全長人類IL-2係指一種具有133個胺基酸的分子(參見例如SEQ ID NO: 13)。IL-2突變體之各種形式之特徵在於具有影響IL-2與CD25相互作用的至少一種胺基酸突變。此突變可能涉及通常位於該位置處之野生型胺基酸殘基的取代、缺失、截斷或修飾。較佳為藉由胺基酸取代獲得的突變體。除非另外指示,否則IL-2突變體在本文中可稱作突變型IL-2肽序列、突變型IL-2多肽、突變型IL-2蛋白或突變型IL-2類似物。As used herein, the term "IL-2 mutant" or "mutant IL-2 polypeptide" is intended to encompass any mutant form of IL-2 molecules in various forms, including full-length IL-2, truncated IL-2 forms, and IL-2 forms therein. -2 The form of linking with another molecule by fusion or chemical bonding. "Full length" when used in reference to IL-2, is intended to mean a mature, natural length IL-2 molecule. For example, full-length human IL-2 refers to a molecule with 133 amino acids (see, for example, SEQ ID NO: 13). The various forms of IL-2 mutants are characterized by having at least one amino acid mutation that affects the interaction of IL-2 with CD25. This mutation may involve substitution, deletion, truncation or modification of the wild-type amino acid residue normally located at this position. Preferably, it is a mutant obtained by amino acid substitution. Unless otherwise indicated, an IL-2 mutant may be referred to herein as a mutant IL-2 peptide sequence, a mutant IL-2 polypeptide, a mutant IL-2 protein, or a mutant IL-2 analog.

各種形式之IL-2在本文中根據SEQ ID NO: 13中所顯示的序列標示。本文中可以使用不同名稱指示相同突變。舉例而言,位置42處之苯丙胺酸突變為丙胺酸可以用42A、A42、A42 、F42A或Phe42Ala表示。The various forms of IL-2 are identified herein according to the sequence shown in SEQ ID NO: 13. Different names may be used herein to indicate the same mutation. For example, the phenylalanine at position 42 was mutated to alanine may be 42A, A42, A 42, F42A, or Phe42Ala FIG.

如本文所用,「人類IL-2分子」意謂包含與SEQ ID NO: 13之人類IL-2序列至少約90%、至少約91%、至少約92%、至少約93%、至少約94%、至少約95%或至少約96%一致之胺基酸序列的IL-2分子。特定言之,序列一致性為至少約95%,更特定言之至少約96%。在特定實施例中,人類IL-2分子為全長IL-2分子。As used herein, "human IL-2 molecule" means at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94% comprising the human IL-2 sequence of SEQ ID NO: 13 , IL-2 molecules with at least about 95% or at least about 96% identical amino acid sequence. Specifically, the sequence identity is at least about 95%, and more specifically at least about 96%. In a specific embodiment, the human IL-2 molecule is a full-length IL-2 molecule.

如本文所用,術語「胺基酸突變」意欲涵蓋胺基酸取代、缺失、插入及修飾。可產生取代、缺失、插入及修飾之任何組合以獲得最終構築體,其限制條件為該最終構築體擁有所需特徵,例如與CD25結合減少。胺基酸序列缺失及插入包括胺基酸之胺基端及/或羧基端缺失及插入。末端缺失之一實例為缺失全長人類IL-2之位置1中之丙胺酸殘基。較佳胺基酸突變為胺基酸取代。出於改變例如IL-2多肽之結合特徵之目的,非保守胺基酸取代,亦即一個胺基酸用具有不同結構及/或化學特性之另一胺基酸置換為尤其較佳的。較佳胺基酸取代包括親水性胺基酸置換疏水性胺基酸。胺基酸取代包括經非天然存在之胺基酸置換或經二十種標準胺基酸之天然存在之胺基酸衍生物(例如4-羥基脯胺酸、3-甲基組胺酸、鳥胺酸、高絲胺酸、5-羥基離胺酸)置換。胺基酸突變可使用此項技術中熟知之遺傳學或化學方法產生。遺傳學方法可包括定點突變誘發、PCR、基因合成及其類似方法。經考慮,藉由除遺傳學工程改造之外的方法(諸如化學修飾)改變胺基酸側鏈基團的方法亦可為適用的。As used herein, the term "amino acid mutation" is intended to encompass amino acid substitutions, deletions, insertions, and modifications. Any combination of substitutions, deletions, insertions and modifications can be made to obtain the final construct, and the limitation is that the final construct possesses the required characteristics, such as reduced binding to CD25. The deletion and insertion of the amino acid sequence includes the deletion and insertion of the amino end and/or the carboxyl end of the amino acid. An example of a terminal deletion is the deletion of the alanine residue in position 1 of full-length human IL-2. Preferably the amino acid mutation is an amino acid substitution. For the purpose of changing the binding characteristics of, for example, IL-2 polypeptides, non-conservative amino acid substitutions, that is, replacement of one amino acid with another amino acid with different structure and/or chemical properties are particularly preferred. Preferred amino acid substitutions include the substitution of hydrophilic amino acids for hydrophobic amino acids. Amino acid substitution includes substitution by non-naturally-occurring amino acids or naturally-occurring amino acid derivatives of twenty kinds of standard amino acids (e.g. 4-hydroxyproline, 3-methylhistidine, bird Amino acid, homoserine, 5-hydroxylysine) substitution. Amino acid mutations can be generated using genetic or chemical methods well known in the art. Genetic methods may include site-directed mutagenesis, PCR, gene synthesis and similar methods. It is considered that methods of changing amino acid side chain groups by methods other than genetic engineering (such as chemical modification) may also be applicable.

如本文所用,IL-2之「野生型」形式為IL-2之一種形式,其在其他方面與突變型IL-2多肽相同,但不同之處在於該野生型形式在突變型IL-2多肽之各胺基酸位置處具有野生型胺基酸。舉例而言,若IL-2突變體為全長IL-2 (亦即,IL-2不與任何其他分子融合或結合),則此突變體之野生型形式為全長原生IL-2。若IL-2突變體為IL-2與IL-2下游所編碼的另一多肽(例如抗體鏈)之間的融合物,則此IL-2突變體之野生型形式為具有野生型胺基酸序列的IL-2,其與相同的下游多肽融合。此外,若IL-2突變體為IL-2之截斷形式(IL-2之未截斷部分內的突變或經修飾序列),則此IL-2突變體之野生型形式為具有野生型序列的類似截斷之IL-2。出於比較IL-2突變體之各種形式與IL-2之對應野生型形式之IL-2受體的結合親和力或生物活性之目的,術語野生型涵蓋相較於天然存在之原生IL-2包含不影響IL-2受體結合之一或多種胺基酸突變的IL-2形式,諸如對應於人類IL-2之殘基125之位置處的半胱胺酸經丙胺酸取代。在一些實施例中,用於本發明目的之野生型IL-2包含胺基酸取代C125A (參見SEQ ID NO: 20)。在根據本發明之某些實施例中,與突變型IL-2多肽比較之野生型IL-2多肽包含SEQ ID NO: 13之胺基酸序列。在其他實施例中,與突變型IL-2多肽比較之野生型IL-2多肽包含SEQ ID NO: 20之胺基酸序列。As used herein, the "wild-type" form of IL-2 is a form of IL-2, which is otherwise the same as the mutant IL-2 polypeptide, but the difference is that the wild-type form is in the mutant IL-2 polypeptide Each amino acid position has a wild-type amino acid. For example, if the IL-2 mutant is full-length IL-2 (that is, IL-2 is not fused or bound to any other molecule), then the wild-type form of the mutant is full-length native IL-2. If the IL-2 mutant is a fusion between IL-2 and another polypeptide (such as an antibody chain) encoded downstream of IL-2, the wild-type form of this IL-2 mutant has a wild-type amino group The acid sequence of IL-2 is fused to the same downstream polypeptide. In addition, if the IL-2 mutant is a truncated form of IL-2 (mutation or modified sequence in the untruncated portion of IL-2), the wild-type form of the IL-2 mutant is similar to the wild-type sequence Truncated IL-2. For the purpose of comparing the binding affinity or biological activity of the various forms of IL-2 mutants with the corresponding wild-type IL-2 receptors of IL-2, the term wild-type encompasses as compared to naturally occurring native IL-2 A form of IL-2 that does not affect IL-2 receptor binding to one or more amino acid mutations, such as the substitution of alanine for cysteine at the position corresponding to residue 125 of human IL-2. In some embodiments, the wild-type IL-2 used for the purpose of the present invention contains the amino acid substitution C125A (see SEQ ID NO: 20). In certain embodiments according to the present invention, the wild-type IL-2 polypeptide compared with the mutant IL-2 polypeptide comprises the amino acid sequence of SEQ ID NO: 13. In other embodiments, the wild-type IL-2 polypeptide compared with the mutant IL-2 polypeptide comprises the amino acid sequence of SEQ ID NO: 20.

除非另外指示,否則如本文所用,術語「CD25」或「IL-2受體之α-次單元」係指來自任何脊椎動物來源(包括哺乳動物,諸如靈長類動物(例如人類)及嚙齒動物(例如小鼠及大鼠))之任何原生CD25。該術語涵蓋「全長」、未加工之CD25以及在細胞中加工而產生之CD25之任何形式。該術語亦涵蓋天然存在之CD25變體,例如剪接變體或等位基因變體。在某些實施例中,CD25為人類CD25。人類CD25之胺基酸序列發現於例如UniProt登錄號P01589 (型式185)中。Unless otherwise indicated, as used herein, the term "CD25" or "α-subunit of IL-2 receptor" refers to any vertebrate source (including mammals, such as primates (e.g., humans) and rodents). (E.g. mice and rats)) any native CD25. The term encompasses "full-length", unprocessed CD25, and any form of CD25 produced by processing in cells. The term also encompasses naturally occurring CD25 variants, such as splice variants or allelic variants. In certain embodiments, CD25 is human CD25. The amino acid sequence of human CD25 is found in, for example, UniProt accession number P01589 (type 185).

如本文所用,術語「高親和力IL-2受體」係指由以下組成之IL-2受體之雜三聚形式:受體γ-次單元(亦稱為共同細胞介素受體γ-次單元、γc 或CD132,參見UniProt登錄號P14784 (型式192))、受體β-次單元(亦稱為CD122或p70,參見UniProt登錄號P31785 (型式197))及受體α-次單元(亦稱為CD25或p55,參見UniProt登錄號P01589 (型式185))。相比之下,術語「中等親和力IL-2受體」係指僅包括γ-次單元及β-次單元而無α-次單元的IL-2受體(對於綜述,參見例如Olejniczak及Kasprzak, Med Sci Monit 14, RA179-189 (2008))。As used herein, the term "high-affinity IL-2 receptor" refers to the heterotrimeric form of IL-2 receptor consisting of: receptor γ-subunit (also known as common cytokine receptor γ-subunit Unit, γ c or CD132, see UniProt accession number P14784 (type 192)), receptor β-subunit (also known as CD122 or p70, see UniProt accession number P31785 (style 197)) and receptor α-subunit ( Also known as CD25 or p55, see UniProt accession number P01589 (type 185)). In contrast, the term "medium affinity IL-2 receptor" refers to an IL-2 receptor that includes only γ-subunits and β-subunits without α-subunits (for a review, see, for example, Olejniczak and Kasprzak, Med Sci Monit 14, RA179-189 (2008)).

「親和力」係指分子(例如受體)之單一結合位點與其結合搭配物(例如配體)之間的非共價相互作用力的總和。除非另外指明,否則如本文所用,「結合親和力」係指反映結合對成員(例如抗原結合部分與抗原,或受體與其配體)之間的1:1相互作用的固有結合親和力。分子X針對其搭配物Y之親和力一般可由解離常數(KD )表示,該解離常數為解離速率常數與結合速率常數(分別為koff 及kon )之比率。因此,等效親和力可包含不同速率常數,只要速率常數之比率保持相同即可。親和力可藉由此項技術中已知的沿用已久的方法量測,包括本文所描述之方法。一種用於量測親和力的特定方法為表面電漿子共振(SPR)。"Affinity" refers to the sum of non-covalent interaction forces between a single binding site of a molecule (such as a receptor) and its binding partner (such as a ligand). Unless otherwise specified, as used herein, "binding affinity" refers to the inherent binding affinity that reflects the 1:1 interaction between members of a binding pair (eg, an antigen-binding portion and an antigen, or a receptor and its ligand). The affinity of the molecule X to its partner Y can generally be represented by the dissociation constant (K D ), which is the ratio of the dissociation rate constant to the association rate constant (k off and k on, respectively ). Therefore, the equivalent affinity can include different rate constants as long as the ratio of the rate constants remains the same. Affinity can be measured by well-established methods known in the art, including the methods described herein. One specific method for measuring affinity is surface plasmon resonance (SPR).

突變型或野生型IL-2多肽針對各種形式之IL-2受體的親和力可以根據WO 2012/107417中所闡述之方法,藉由表面電漿子共振(SPR),使用標準儀器(諸如BIAcore儀(GE Healthcare))測定,且諸如受體次單元可以藉由重組表現獲得(參見例如Shanafelt等人, Nature Biotechnol 18, 1197-1202 (2000))。替代地,IL-2突變體針對不同形式之IL-2受體的結合親和力可使用已知表現一種或其他此類形式之受體的細胞株評價。量測結合親和力之特定說明性及例示性實施例描述於下文中。The affinity of mutant or wild-type IL-2 polypeptides for various forms of IL-2 receptors can be based on the method described in WO 2012/107417, by surface plasmon resonance (SPR), using standard instruments (such as BIAcore) (GE Healthcare)), and such as receptor subunits can be obtained by recombinant expression (see, for example, Shanafelt et al., Nature Biotechnol 18, 1197-1202 (2000)). Alternatively, the binding affinity of IL-2 mutants to different forms of IL-2 receptors can be evaluated using cell lines known to express one or other such forms of receptors. Specific illustrative and exemplary embodiments for measuring binding affinity are described below.

「調節T細胞」或「Treg 細胞」意謂一種特定類型的CD4+ T細胞,其可以抑制其他T細胞之反應。Treg 細胞之特徵在於表現IL-2受體之α-次單元(CD25)及轉錄因子叉頭框P3 (FOXP3) (Sakaguchi, Annu Rev Immunol 22, 531-62 (2004))且在誘導及維持針對抗原(包括腫瘤所表現的抗原)的周邊自身耐受性方面起關鍵作用。Treg 細胞需要IL-2來實現其功能及其抑制特徵之產生及誘導。"Regulatory T cell" or "T reg cell" means a specific type of CD4 + T cell that can inhibit the response of other T cells. T reg cells are characterized by expressing the α-subunit of IL-2 receptor (CD25) and the transcription factor forkhead box P3 (FOXP3) (Sakaguchi, Annu Rev Immunol 22, 531-62 (2004)) and are inducing and maintaining It plays a key role in peripheral self-tolerance to antigens (including antigens expressed by tumors). T reg cells require IL-2 to achieve their functions and the production and induction of its inhibitory characteristics.

如本文所用,術語「效應子細胞」係指介導IL-2細胞毒性作用之淋巴球群體。效應子細胞包括效應子T細胞,諸如CD8+ 細胞毒性T細胞、NK細胞、淋巴介質活化殺手(LAK)細胞及巨噬細胞/單核球。As used herein, the term "effector cells" refers to a population of lymphocytes that mediate the cytotoxic effects of IL-2. Effector cells include effector T cells, such as CD8 + cytotoxic T cells, NK cells, lymphoid mediator activated killer (LAK) cells, and macrophages/monocytes.

「特異性結合」意謂結合對於抗原而言具選擇性且可與非所需或非特異性相互作用區分。抗原與特定抗原(例如CD8)結合之能力可經由酶聯結免疫吸附分析(ELISA)或熟習此項技術者熟悉之其他技術,例如表面電漿子共振(SPR)技術(例如在BIAcore儀上分析) (Liljeblad等人, Glyco J 17, 323-329 (2000))及傳統結合分析(Heeley, Endocr Res 28, 217-229 (2002))量測。在一個實施例中,抗體與無關蛋白質結合之程度小於該抗體與抗原之結合的約10%,如藉由例如SPR所量測。包含於本文中所描述之免疫結合物中之抗體與CD8特異性結合。"Specific binding" means that the binding is selective for the antigen and distinguishable from undesired or non-specific interactions. The ability of an antigen to bind to a specific antigen (such as CD8) can be achieved through enzyme-linked immunosorbent assay (ELISA) or other techniques familiar to those familiar with the technology, such as surface plasmon resonance (SPR) technology (for example, analysis on a BIAcore instrument) (Liljeblad et al., Glyco J 17, 323-329 (2000)) and traditional combined analysis (Heeley, Endocr Res 28, 217-229 (2002)) measurement. In one embodiment, the degree of binding of an antibody to an unrelated protein is less than about 10% of the binding of the antibody to an antigen, as measured by, for example, SPR. The antibodies contained in the immunoconjugates described herein specifically bind to CD8.

如本文所用,術語「多肽」係指由單體(胺基酸)經醯胺鍵(亦稱為肽鍵)線性連接而構成之分子。術語「多肽」係指兩個或更多個胺基酸之任何鏈,且並非指產物之特定長度。因此,「多肽」之定義內包括肽、二肽、三肽、寡肽、「蛋白質」、「胺基酸鏈」或用於指兩個或更多個胺基酸之鏈的任何其他術語且可使用術語「多肽」替代此等術語中之任一者,或術語「多肽」可與此等術語中之任一者互換使用。術語「多肽」亦意指多肽之表現後修飾產物,包括(但不限於)醣基化、乙醯化、磷酸化、醯胺化、藉由已知保護/封端基團衍生化、蛋白質裂解或藉由非天然存在之胺基酸修飾。多肽可衍生自天然生物來源或藉由重組技術製得,但不一定自指定的核酸序列轉譯而成。其可以任何方式產生,包括藉由化學合成。多肽可具有定義的三維結構,但其不必定具有此類結構。具有定義之三維結構的多肽稱為摺疊的,且不具有定義之三維結構而是可採用許多不同構形的多肽稱為未摺疊的。As used herein, the term "polypeptide" refers to a molecule composed of monomers (amino acids) linearly connected via amide bonds (also known as peptide bonds). The term "polypeptide" refers to any chain of two or more amino acids, and does not refer to a specific length of the product. Therefore, the definition of "polypeptide" includes peptides, dipeptides, tripeptides, oligopeptides, "proteins", "amino acid chains" or any other terms used to refer to chains of two or more amino acids and The term "polypeptide" can be used in place of any of these terms, or the term "polypeptide" can be used interchangeably with any of these terms. The term "polypeptide" also refers to the post-modification products of the polypeptide, including (but not limited to) glycosylation, acetylation, phosphorylation, amination, derivatization with known protection/capping groups, and protein cleavage. Or modified by non-naturally occurring amino acids. Polypeptides can be derived from natural biological sources or produced by recombinant technology, but are not necessarily translated from a designated nucleic acid sequence. It can be produced in any way, including by chemical synthesis. A polypeptide may have a defined three-dimensional structure, but it does not necessarily have such a structure. Polypeptides with a defined three-dimensional structure are called folded, and polypeptides that do not have a defined three-dimensional structure but can adopt many different configurations are called unfolded.

「經分離」之多肽或其變體或衍生物意指不處於其天然環境下的多肽。不需要特定的純化水準。舉例而言,經分離之多肽可自其原生或天然環境中移出。出於本發明之目的,宿主細胞中所表現之重組產生型多肽及蛋白質被視為經分離的,已藉由任何合適技術分離、分級分離或部分或實質上純化的原生或重組多肽亦視為經分離。An "isolated" polypeptide or a variant or derivative thereof means a polypeptide that is not in its natural environment. No specific level of purification is required. For example, the isolated polypeptide can be removed from its native or natural environment. For the purpose of the present invention, recombinantly produced polypeptides and proteins expressed in host cells are considered to be isolated, and native or recombinant polypeptides that have been separated, fractionated, or partially or substantially purified by any suitable technique are also considered After separation.

相對於參考多肽序列之「胺基酸序列一致性百分比(%)」定義為在比對參考多肽序列與候選序列且必要時引入間隙以達成最大序列一致性百分比之後,且在不將任何保守取代視為序列一致性之一部分的情況下,候選序列中與參考多肽序列中之胺基酸殘基一致的胺基酸殘基之百分比。出於測定胺基酸序列一致性百分比之目的之比對可以此項技術中之技能範圍內的各種方式達成,例如使用公開可獲得的電腦軟體,諸如BLAST、BLAST-2、Clustal W、Megalign (DNASTAR)軟體或FASTA程式包。熟習此項技術者可測定用於比對序列之適當參數,包括在所比較序列之全長內達成最大比對所需的任何演算法。然而,出於本文之目的,胺基酸序列一致性%值係使用FASTA套裝36.3.8c版或更近版中之ggsearch程式,用BLOSUM50比較矩陣來產生。FASTA套裝程式的作者為W. R. Pearson及D. J. Lipman (1988),「Improved Tools for Biological Sequence Analysis」, PNAS 85:2444-2448;W. R. Pearson (1996) 「Effective protein sequence comparison」 Meth. Enzymol. 266:227-258;及Pearson等人(1997) Genomics 46:24-36,且公開可獲自http://fasta.bioch.virginia.edu/fasta_www2/fasta_down.shtml。可替代地,可使用在http://fasta.bioch.virginia.edu/fasta_www2/index.cgi可存取的公共伺服器來比較序列,使用ggsearch (全域蛋白質:蛋白質)程式及預設選項(BLOSUM50;開端:-10;ext:-2;Ktup = 2)以確保進行全域比對而非局域比對。胺基酸一致性百分比在輸出比對標題中給出。Relative to the reference polypeptide sequence, the "amino acid sequence identity percentage (%)" is defined as after aligning the reference polypeptide sequence with the candidate sequence and introducing gaps if necessary to achieve the maximum sequence identity percentage, and without any conservative substitutions The percentage of amino acid residues in the candidate sequence that are identical to the amino acid residues in the reference polypeptide sequence when considered as part of the sequence identity. The alignment for the purpose of determining the percent identity of amino acid sequences can be achieved in various ways within the skill of this technology, for example, using publicly available computer software, such as BLAST, BLAST-2, Clustal W, Megalign ( DNASTAR) software or FASTA package. Those skilled in the art can determine the appropriate parameters for the alignment of sequences, including any algorithms required to achieve the maximum alignment over the entire length of the sequence being compared. However, for the purpose of this article, the% amino acid sequence identity value is generated using the BLOSUM50 comparison matrix using the ggsearch program in FASTA Suite 36.3.8c or later. The authors of the FASTA package are WR Pearson and DJ Lipman (1988), "Improved Tools for Biological Sequence Analysis", PNAS 85:2444-2448; WR Pearson (1996) "Effective protein sequence comparison" Meth. Enzymol. 266:227- 258; and Pearson et al. (1997) Genomics 46:24-36, and publicly available from http://fasta.bioch.virginia.edu/fasta_www2/fasta_down.shtml. Alternatively, a public server accessible at http://fasta.bioch.virginia.edu/fasta_www2/index.cgi can be used to compare sequences, using the ggsearch (global protein: protein) program and the default option (BLOSUM50 ; Beginning: -10; ext: -2; Ktup = 2) to ensure a global comparison rather than a local comparison. The percentage of amino acid identity is given in the title of the output comparison.

術語「聚核苷酸」係指經分離之核酸分子或構築體,例如信使RNA (mRNA)、病毒源性RNA或質體DNA (pDNA)。聚核苷酸可包含習知磷酸二酯鍵或非習知鍵(例如醯胺鍵,諸如肽核酸(PNA)中所發現)。術語「核酸分子」係指聚核苷酸中存在之任一或多個核酸區段,例如DNA或RNA片段。The term "polynucleotide" refers to an isolated nucleic acid molecule or construct, such as messenger RNA (mRNA), virus-derived RNA or plastid DNA (pDNA). Polynucleotides may contain conventional phosphodiester bonds or non- conventional bonds (e.g., amide bonds, such as those found in peptide nucleic acids (PNA)). The term "nucleic acid molecule" refers to any one or more nucleic acid segments present in polynucleotides, such as DNA or RNA fragments.

「經分離」之核酸分子或聚核苷酸意欲為已自原生環境中移除之核酸分子、DNA或RNA。舉例而言,出於本發明之目的,編碼載體中所含之多肽的重組聚核苷酸視為經分離的。經分離之聚核苷酸之其他實例包括異源宿主細胞中所維持之重組聚核苷酸或溶液中經純化(部分或實質上)之聚核苷酸。經分離之聚核苷酸包括通常含有聚核苷酸分子之細胞中所含的聚核苷酸分子,但聚核苷酸分子存在於染色體外或與其天然染色體位置不同之染色體位置處。經分離之RNA分子包括本發明之活體內或活體外RNA轉錄物,以及正股及負股形式,及雙股形式。本發明之經分離之聚核苷酸或核酸進一步包括合成方式產生的此類分子。另外,聚核苷酸或核酸可為或可包括調節元件,諸如啟動子、核糖體結合位點或轉錄終止子。An "isolated" nucleic acid molecule or polynucleotide is intended to be a nucleic acid molecule, DNA or RNA that has been removed from the native environment. For example, for the purposes of the present invention, a recombinant polynucleotide encoding a polypeptide contained in a vector is considered to be isolated. Other examples of isolated polynucleotides include recombinant polynucleotides maintained in heterologous host cells or purified (partially or substantially) polynucleotides in solution. Isolated polynucleotides include polynucleotide molecules contained in cells that usually contain polynucleotide molecules, but polynucleotide molecules exist outside the chromosomes or at chromosomal locations that are different from their natural chromosomal locations. The isolated RNA molecules include the in vivo or in vitro RNA transcripts of the present invention, as well as positive and negative strand forms, and double strand forms. The isolated polynucleotide or nucleic acid of the present invention further includes such molecules produced synthetically. In addition, polynucleotides or nucleic acids may be or may include regulatory elements, such as promoters, ribosome binding sites, or transcription terminators.

「編碼[例如本發明之免疫結合物]之經分離之聚核苷酸(或核酸)」係指編碼抗體重鏈及輕鏈及/或IL-2多肽(或其片段)的一或多種聚核苷酸分子,包括單一載體或單獨載體中的此類聚核苷酸分子,及存在於宿主細胞中之一或多個位置處的此類核酸分子。"Isolated polynucleotide (or nucleic acid) encoding [such as the immunoconjugate of the present invention]" refers to one or more polynucleotides (or nucleic acids) encoding antibody heavy and light chains and/or IL-2 polypeptides (or fragments thereof). Nucleotide molecules include such polynucleotide molecules in a single vector or a separate vector, and such nucleic acid molecules present in one or more locations in a host cell.

術語「表現卡匣」係指以重組或合成方式產生之聚核苷酸,其具有容許特定核酸在目標細胞中發生轉錄的一系列特定核酸元件。重組表現卡匣可併入至質體、染色體、粒線體DNA、質體DNA、病毒或核酸片段中。通常,表現載體之重組表現卡匣部分包括待轉錄之核酸序列及啟動子,以及其他序列。在某些實施例中,表現卡匣包含編碼本發明之免疫結合物或其片段的聚核苷酸序列。The term "performance cassette" refers to a polynucleotide produced by recombinant or synthetic means, which has a series of specific nucleic acid elements that allow specific nucleic acid to be transcribed in the target cell. The recombination expression cassette can be incorporated into plastids, chromosomes, mitochondrial DNA, plastid DNA, viruses, or nucleic acid fragments. Generally, the recombinant performance cassette part of the expression vector includes the nucleic acid sequence to be transcribed, the promoter, and other sequences. In certain embodiments, the performance cassette comprises a polynucleotide sequence encoding the immunoconjugate of the present invention or a fragment thereof.

術語「載體」或「表現載體」係指用於引入特定基因且導引該特定基因之表現的DNA分子,該DNA分子在細胞中與該特定基因可操作地結合。該術語包括呈自我複製核酸結構之載體以及併入其已引入至之宿主細胞之基因體中的載體。本發明之表現載體包含表現卡匣。表現載體允許大量的穩定mRNA發生轉錄。一旦表現載體進入目標細胞內,則藉由細胞轉錄及/或轉譯機構產生由該基因編碼的核糖核酸分子或蛋白質。在一個實施例中,本發明之表現載體包含含有聚核苷酸序列的表現卡匣,該等聚核苷酸序列編碼本發明之免疫結合物或其片段。The term "vector" or "expression vector" refers to a DNA molecule used to introduce a specific gene and guide the expression of the specific gene, and the DNA molecule is operably combined with the specific gene in a cell. The term includes a vector in a self-replicating nucleic acid structure as well as a vector incorporated into the genome of a host cell into which it has been introduced. The performance carrier of the present invention includes a performance cassette. The expression vector allows transcription of large amounts of stable mRNA. Once the expression vector enters the target cell, the ribonucleic acid molecule or protein encoded by the gene is produced by the transcription and/or translation mechanism of the cell. In one embodiment, the expression vector of the present invention includes a performance cassette containing polynucleotide sequences that encode the immunoconjugate of the present invention or fragments thereof.

術語「宿主細胞」、「宿主細胞株」及「宿主細胞培養物」可互換使用,且係指已引入外源核酸之細胞,包括此類細胞之後代。宿主細胞包括「轉化體」及「轉化細胞」,其包括初代轉化細胞及自其衍生之後代(不考慮繼代次數)。後代之核酸含量與親本細胞可能不完全相同,但可能含有突變。本文包括與針對最初轉化細胞所篩選或選擇的具有相同功能或生物活性之突變型後代。宿主細胞為可以用於產生本發明之免疫結合物的任何類型之細胞系統。宿主細胞包括培養細胞,例如哺乳動物培養細胞,諸如HEK細胞、CHO細胞、BHK細胞、NS0細胞、SP2/0細胞、YO骨髓瘤細胞、P3X63小鼠骨髓瘤細胞、PER細胞、PER.C6細胞或融合瘤細胞、酵母細胞、昆蟲細胞及植物細胞(僅舉數例),且亦包括轉殖基因動物、轉殖基因植物或培養植物或動物組織內所含的細胞。The terms "host cell", "host cell line" and "host cell culture" are used interchangeably and refer to cells into which exogenous nucleic acid has been introduced, including the progeny of such cells. Host cells include "transformants" and "transformed cells", which include primary transformed cells and progeny derived therefrom (regardless of the number of generations). The nucleic acid content of the offspring may not be exactly the same as the parent cell, but it may contain mutations. This paper includes mutant progeny that have the same function or biological activity as screened or selected for the originally transformed cell. The host cell is any type of cell system that can be used to produce the immunoconjugate of the present invention. Host cells include cultured cells, such as mammalian cultured cells, such as HEK cells, CHO cells, BHK cells, NS0 cells, SP2/0 cells, YO myeloma cells, P3X63 mouse myeloma cells, PER cells, PER.C6 cells or Fusion tumor cells, yeast cells, insect cells, and plant cells (to name a few), and also include cells contained in transgenic animals, transgenic plants, or cultured plants or animal tissues.

本文中之術語「抗體」以最廣義意義使用且涵蓋各種抗體結構,包括(但不限於)單株抗體、一價抗體(例如單臂抗體)及抗體片段,只要其呈現所需抗原結合活性(亦即與CD8 ((諸如人類CD8、獼猴CD8及/或恆河猴CD8))結合)即可。The term "antibody" herein is used in the broadest sense and encompasses various antibody structures, including (but not limited to) monoclonal antibodies, monovalent antibodies (such as one-arm antibodies) and antibody fragments, as long as they exhibit the desired antigen-binding activity ( That is, it can be combined with CD8 (such as human CD8, rhesus CD8 and/or rhesus CD8)).

如本文所用,術語「單株抗體」係指獲自實質上均質抗體群體的抗體,亦即該群體中所包含之個別抗體相同及/或結合相同抗原決定基,但可能存在變異抗體,例如含有天然存在之突變或在單株抗體製劑產生期間發生的突變以外,此類變體一般以少量存在。相比於典型地包括針對不同決定子(抗原決定基)之不同抗體的多株抗體製劑,單株抗體製劑中之各單株抗體係針對抗原上之單一決定子。因此,修飾語「單株」指示抗體之特徵係自實質上均質的抗體群體獲得,且不應視為需要藉由任何特定方法產生該抗體。舉例而言,根據本發明使用之單株抗體可藉由多種技術製得,包括(但不限於)融合瘤方法、重組DNA方法、噬菌體呈現方法及利用含有所有或部分人類免疫球蛋白基因座之轉殖基因動物的方法、本文所描述的製備單株抗體之此類方法及其他例示性方法。As used herein, the term "monoclonal antibody" refers to an antibody obtained from a substantially homogeneous antibody population, that is, the individual antibodies contained in the population have the same and/or bind the same epitope, but there may be variant antibodies, such as containing Except for naturally occurring mutations or mutations that occur during the production of monoclonal antibody preparations, such variants are generally present in small amounts. In contrast to multiple antibody preparations which typically include different antibodies directed against different determinants (antigenic determinants), each monoclonal antibody system in a monoclonal antibody preparation is directed against a single determinant on the antigen. Therefore, the modifier "monoclonal" indicates that the characteristics of the antibody are obtained from a substantially homogeneous antibody population and should not be regarded as requiring the production of the antibody by any specific method. For example, the monoclonal antibodies used according to the present invention can be produced by a variety of techniques, including but not limited to fusion tumor methods, recombinant DNA methods, phage display methods, and the use of all or part of human immunoglobulin loci. Methods of transgenic animals, such methods of preparing monoclonal antibodies described herein, and other exemplary methods.

「經分離」之抗體為已與其天然環境之組分分離(亦即,不存在於其天然環境中)的抗體。不需要特定的純化水準。舉例而言,經分離之抗體可自其原生或天然環境中移出。出於本發明之目的,宿主細胞中所表現之重組產生型抗體視為經分離的,已藉由任何適合技術分離、分級分離或部分或實質上純化的天然或重組抗體亦視為經分離的。因而,本發明之免疫結合物為經分離的。在一些實施例中,抗體純化至大於95%或99%之純度,如藉由例如電泳(例如SDS-PAGE、等電聚焦(IEF)、毛細電泳法)或層析(例如離子交換或逆相HPLC)方法所測定。關於用於評定抗體純度之方法的綜述,參見例如Flatman等人,J. Chromatogr. B 848:79-87 (2007)。An "isolated" antibody is an antibody that has been separated from a component of its natural environment (ie, does not exist in its natural environment). No specific level of purification is required. For example, the isolated antibody can be removed from its native or natural environment. For the purpose of the present invention, recombinantly produced antibodies expressed in host cells are regarded as isolated, and natural or recombinant antibodies that have been separated, fractionated, or partially or substantially purified by any suitable technique are also regarded as isolated . Therefore, the immunoconjugates of the present invention are isolated. In some embodiments, the antibody is purified to a purity greater than 95% or 99%, such as by electrophoresis (such as SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis) or chromatography (such as ion exchange or reverse phase). HPLC) method. For a review of methods used to assess antibody purity, see, for example, Flatman et al., J. Chromatogr. B 848:79-87 (2007).

術語「全長抗體」、「完整抗體」及「完全抗體」在本文中可互換使用,其係指具有與原生抗體結構實質上類似之結構的抗體。The terms "full-length antibody", "complete antibody" and "complete antibody" are used interchangeably herein, and refer to an antibody having a structure that is substantially similar to the structure of the native antibody.

「抗體片段」係指不同於完整抗體,包含完整抗體之結合完整抗體所結合之抗原之部分的分子。抗體片段之實例包括(但不限於) Fv、Fab、Fab'、Fab'-SH、F(ab')2 、雙功能抗體、線性抗體、單鏈抗體分子(例如scFv)及單域抗體。關於某些抗體片段之綜述,參見Holliger及Hudson, Nature Biotechnology 23:1126-1136 (2005)。關於scFv片段之綜述,參見例如Plückthun, The Pharmacology of Monoclonal Antibodies, 第113卷, Rosenburg及Moore編, Springer-Verlag, New York, 第269-315頁 (1994);亦參見WO 93/16185;及美國專利第5,571,894號及第5,587,458號。關於包含救助受體結合抗原決定基殘基及具有增加之活體內半衰期之Fab及F(ab')2 片段的論述,參見美國專利第5,869,046號。雙功能抗體為其中兩個抗原結合位點可為二價或雙特異性之抗體片段。參見例如EP 404,097;WO 1993/01161;Hudson等人, Nat Med 9, 129-134 (2003);及Hollinger等人, Proc Natl Acad Sci USA 90, 6444-6448 (1993)。三功能抗體及四功能抗體亦描述於Hudson等人, Nat Med 9, 129-134 (2003)中。單域抗體為包含抗體之重鏈可變域之全部或一部分或輕鏈可變域之全部或一部分的抗體片段。在某些實施例中,單域抗體為人類單域抗體(Domantis, Inc., Waltham, MA;參見例如美國專利第6,248,516 B1號)。抗體片段可藉由各種技術製得,包括(但不限於)蛋白分解消化完整抗體以及藉由重組宿主細胞(例如大腸桿菌(E. coli)或噬菌體)產生,如本文所描述。"Antibody fragment" refers to a molecule that is different from an intact antibody and includes the part of an intact antibody that binds to the antigen to which an intact antibody binds. Examples of antibody fragments include, but are not limited to, Fv, Fab, Fab', Fab'-SH, F(ab') 2 , bifunctional antibodies, linear antibodies, single-chain antibody molecules (such as scFv), and single-domain antibodies. For a review of certain antibody fragments, see Holliger and Hudson, Nature Biotechnology 23:1126-1136 (2005). For a review of scFv fragments, see, for example, Plückthun, The Pharmacology of Monoclonal Antibodies, Volume 113, Rosenburg and Moore eds, Springer-Verlag, New York, pp. 269-315 (1994); see also WO 93/16185; and the United States Patent No. 5,571,894 and No. 5,587,458. For a discussion of Fab and F(ab') 2 fragments containing salvage receptor binding epitope residues and increased in vivo half-life, see US Patent No. 5,869,046. Bifunctional antibodies are antibody fragments in which two antigen binding sites can be bivalent or bispecific. See, for example, EP 404,097; WO 1993/01161; Hudson et al., Nat Med 9, 129-134 (2003); and Hollinger et al., Proc Natl Acad Sci USA 90, 6444-6448 (1993). Trifunctional antibodies and tetrafunctional antibodies are also described in Hudson et al., Nat Med 9, 129-134 (2003). Single domain antibodies are antibody fragments that comprise all or part of the heavy chain variable domain or all or part of the light chain variable domain of an antibody. In certain embodiments, the single domain antibody is a human single domain antibody (Domantis, Inc., Waltham, MA; see, for example, US Patent No. 6,248,516 B1). Antibody fragments can be prepared by various techniques, including (but not limited to) proteolytic digestion of intact antibodies and production by recombinant host cells (such as E. coli or phage), as described herein.

術語「免疫球蛋白分子」係指具有天然存在之抗體之結構的蛋白質。舉例而言,IgG類免疫球蛋白為約150,000道爾頓(dalton)之雜四聚體醣蛋白,其由兩條輕鏈及兩條重鏈經二硫鍵鍵結而構成。自N端至C端,各重鏈具有可變域(VH),亦稱為可變重鏈域或重鏈可變區,之後為三個恆定域(CH1、CH2及CH3),亦稱為重鏈恆定區。類似地,自N端至C端,各輕鏈具有可變域(VL),亦稱為可變輕鏈域或輕鏈可變區,之後為恆定輕鏈域(CL),亦稱為輕鏈恆定區。免疫球蛋白之重鏈可歸為五種類型之一,該五種類型稱為α (IgA)、δ (IgD)、ε (IgE)、γ (IgG)或μ (IgM),其中一些可進一步分成子類型,例如γ1 (IgG1 )、γ2 (IgG2 )、γ3 (IgG3 )、γ4 (IgG4 )、α1 (IgA1 )及α2 (IgA2 )。免疫球蛋白之輕鏈基於其恆定域之胺基酸序列可歸為兩種類型之一,該兩種類型稱為kappa (κ)及lambda (λ)。免疫球蛋白基本上由兩個Fab分子及一個Fc域經由免疫球蛋白鉸鏈區連接而組成。The term "immunoglobulin molecule" refers to a protein with the structure of a naturally occurring antibody. For example, IgG immunoglobulins are heterotetrameric glycoproteins of about 150,000 daltons (daltons), which are composed of two light chains and two heavy chains bonded by disulfide bonds. From the N-terminus to the C-terminus, each heavy chain has a variable domain (VH), also known as a variable heavy chain domain or a heavy chain variable region, followed by three constant domains (CH1, CH2, and CH3), also known as heavy Chain constant region. Similarly, from the N-terminus to the C-terminus, each light chain has a variable domain (VL), also known as a variable light chain domain or a light chain variable region, followed by a constant light chain domain (CL), also known as a light chain domain. Chain constant region. The heavy chain of immunoglobulin can be classified into one of five types, which are called α (IgA), δ (IgD), ε (IgE), γ (IgG) or μ (IgM), some of which can be further Divided into subtypes, such as γ 1 (IgG 1 ), γ 2 (IgG 2 ), γ 3 (IgG 3 ), γ 4 (IgG 4 ), α 1 (IgA 1 ), and α 2 (IgA 2 ). The light chain of immunoglobulin can be classified into one of two types based on the amino acid sequence of its constant domain. The two types are called kappa (κ) and lambda (λ). An immunoglobulin basically consists of two Fab molecules and an Fc domain connected via an immunoglobulin hinge region.

術語「抗原結合域」係指抗體中包含與抗原之一部分或全部特異性結合且與之互補的區域的部分。抗原結合域可由例如一或多個抗體可變域(亦稱為抗體可變區)提供。特定言之,抗原結合域包含抗體輕鏈可變域(VL)及抗體重鏈可變域(VH)。The term "antigen-binding domain" refers to a part of an antibody that contains a part or all of an antigen that specifically binds to and is complementary to a region. The antigen binding domain may be provided by, for example, one or more antibody variable domains (also referred to as antibody variable regions). Specifically, the antigen binding domain includes an antibody light chain variable domain (VL) and an antibody heavy chain variable domain (VH).

術語「可變區」或「可變域」係指抗體重鏈或輕鏈中參與抗體與抗原之結合的域。原生抗體之重鏈及輕鏈(分別為VH及VL)可變域通常具有類似的結構,其中各域包含四個保守性構架區(FR)及三個高變區(HVR)。參看例如Kindt等人, Kuby Immunology, 第6版, W.H. Freeman and Co., 第91頁 (2007)。單個VH或VL域可能足以賦予抗原結合特異性。如本文關於可變區序列所用,「Kabat編號」係指Kabat等人, Sequences of Proteins of Immunological Interest, 第5版.公共衛生處(Public Health Service),美國國家衛生研究院(National Institutes of Health), Bethesda, MD (1991)所闡述之編號系統。The term "variable region" or "variable domain" refers to the domain in the heavy or light chain of an antibody that participates in the binding of the antibody to the antigen. The variable domains of the heavy chain and light chain (VH and VL, respectively) of a native antibody usually have similar structures, and each domain contains four conserved framework regions (FR) and three hypervariable regions (HVR). See, for example, Kindt et al., Kuby Immunology, 6th edition, W.H. Freeman and Co., page 91 (2007). A single VH or VL domain may be sufficient to confer antigen binding specificity. As used herein with regard to variable region sequences, "Kabat numbering" refers to Kabat et al., Sequences of Proteins of Immunological Interest, 5th edition. Public Health Service, National Institutes of Health , Bethesda, MD (1991) described the numbering system.

如本文所用,重鏈及輕鏈之所有恆定區及恆定域中的胺基酸位置均根據Kabat等人, Sequences of Proteins of Immunological Interest, 第5版, 公共衛生處, 美國國家衛生研究院, Bethesda, MD (1991)中所描述之Kabat編號系統編號,在本文中稱為「根據Kabat編號」或「Kabat編號」。具體而言,κ及λ同型之輕鏈恆定域CL使用Kabat編號系統(參見Kabat等人, Sequences of Proteins of Immunological Interest, 第5版之第647-660頁, 公共衛生處, 美國國家衛生研究院, Bethesda, MD (1991))且重鏈恆定域(CH1、鉸鏈、CH2及CH3)使用Kabat EU索引編號系統(參見第661-723頁),在此情況下,在本文中藉由參考「根據Kabat EU索引編號」來進一步闡明。As used herein, all constant regions and amino acid positions in the constant regions of the heavy and light chains are based on Kabat et al., Sequences of Proteins of Immunological Interest, 5th Edition, Department of Public Health, National Institutes of Health, Bethesda , The Kabat numbering system described in MD (1991) is called "according to Kabat numbering" or "Kabat numbering" in this article. Specifically, the light chain constant domain CL of the kappa and lambda homotypes uses the Kabat numbering system (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th edition, pages 647-660, Department of Public Health, National Institutes of Health , Bethesda, MD (1991)) and the heavy chain constant domains (CH1, hinge, CH2, and CH3) use the Kabat EU index numbering system (see pages 661-723), in this case, by reference to "according to Kabat EU index number" to further clarify.

如本文所用,術語「高變區」或「HVR」係指抗體可變域中之各區域,其序列高變(「互補決定區」或「CDR」)及/或形成結構上定義之環(「高變環」)及/或含有抗原接觸殘基(「抗原觸點」)。一般而言,抗體包含六個HVR;三個在VH (H1、H2、H3)中,且三個在VL (L1、L2、L3)中。在本文中,例示性HVR包括: (a)出現在胺基酸殘基26-32 (L1)、50-52 (L2)、91-96 (L3)、26-32 (H1)、53-55 (H2)及96-101 (H3)處之高變環(Chothia及Lesk,J. Mol. Biol. 196:901-917(1987)); (b)出現在胺基酸殘基24-34 (L1)、50-56 (L2)、89-97 (L3)、31-35b (H1)、50-65 (H2)及95-102 (H3)處之CDR (Kabat等人,Sequences of Proteins of Immunological Interest , 第5版. 公共衛生處, 美國國家衛生研究院, Bethesda, MD (1991)); (c)出現在胺基酸殘基27c-36 (L1)、46-55 (L2)、89-96 (L3)、30-35b (H1)、47-58 (H2)及93-101 (H3)處之抗原觸點(MacCallum 等人J. Mol. Biol. 262: 732-745 (1996));及 (d) (a)、(b)及/或(c)之組合,包括HVR胺基酸殘基46-56 (L2)、47-56 (L2)、48-56 (L2)、49-56 (L2)、26-35 (H1)、26-35b (H1)、49-65 (H2)、93-102 (H3)及94-102 (H3)。As used herein, the term "hypervariable region" or "HVR" refers to each region in the variable domain of an antibody whose sequence is hypervariable ("complementarity determining region" or "CDR") and/or forms a structurally defined loop ( "Hypervariable loop") and/or contain antigen contact residues ("antigen contact"). Generally speaking, an antibody contains six HVRs; three in VH (H1, H2, H3), and three in VL (L1, L2, L3). In this article, exemplary HVRs include: (a) appearing in amino acid residues 26-32 (L1), 50-52 (L2), 91-96 (L3), 26-32 (H1), 53-55 (H2) and the hypervariable ring at 96-101 (H3) (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987)); (b) appears in amino acid residues 24-34 ( L1), 50-56 (L2), 89-97 (L3), 31-35b (H1), 50-65 (H2) and 95-102 (H3) CDRs (Kabat et al., Sequences of Proteins of Immunological Interest , 5th edition. Department of Public Health, National Institutes of Health, Bethesda, MD (1991)); (c) Appears in amino acid residues 27c-36 (L1), 46-55 (L2), 89- Antigen contacts at 96 (L3), 30-35b (H1), 47-58 (H2) and 93-101 (H3) (MacCallum et al . J. Mol. Biol. 262: 732-745 (1996)); And (d) a combination of (a), (b) and/or (c), including HVR amino acid residues 46-56 (L2), 47-56 (L2), 48-56 (L2), 49- 56 (L2), 26-35 (H1), 26-35b (H1), 49-65 (H2), 93-102 (H3) and 94-102 (H3).

除非另外指示,否則在本文中,根據Kabat等人之前述文獻對可變域中之HVR殘基及其他殘基(例如FR殘基)進行編號。Unless otherwise indicated, herein, HVR residues and other residues (e.g., FR residues) in the variable domain are numbered according to the aforementioned literature by Kabat et al.

「構架」或「FR」係指除高變區(HVR)殘基外的可變域殘基。可變域之FR一般由四個FR域組成:FR1、FR2、FR3及FR4。因此,HVR及FR序列一般在VH (或VL)中按以下次序出現:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。"Framework" or "FR" refers to variable domain residues other than hypervariable region (HVR) residues. The FR of a variable domain generally consists of four FR domains: FR1, FR2, FR3, and FR4. Therefore, HVR and FR sequences generally appear in the following order in VH (or VL): FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4.

「人類化」抗體係指包含來自非人類HVR之胺基酸殘基及來自人類FR之胺基酸殘基之嵌合抗體。在某些實施例中,人類化抗體將包含至少一個且通常兩個可變域之實質上所有,其中所有或實質上所有HVR (例如CDR)均對應於非人類抗體之HVR,且所有或實質上所有FR均對應於人類抗體之FR。此類可變域在本文中稱為「人類化可變區」。人類化抗體視情況可包含來源於人類抗體之抗體恆定區的至少一部分。在一些實施例中,人類化抗體中之一些FR殘基經來自非人類抗體(例如HVR殘基所來源之抗體)之對應殘基取代以例如恢復或提高抗體特異性或親和力。抗體(例如非人類抗體)之「人類化形式」係指已經受人類化之抗體。本發明涵蓋之「人類化抗體」之其他形式為其中恆定區已經額外修飾或自初始抗體發生變化以產生根據本發明之特性(尤其在C1q結合及/或Fc受體(FcR)結合方面)之抗體。"Humanized" antibodies refer to chimeric antibodies containing amino acid residues from non-human HVR and amino acid residues from human FR. In certain embodiments, the humanized antibody will comprise substantially all of at least one and usually two variable domains, wherein all or substantially all of the HVRs (e.g., CDRs) correspond to the HVR of the non-human antibody, and all or substantially all All FRs above correspond to the FRs of human antibodies. Such variable domains are referred to herein as "humanized variable regions". The humanized antibody may optionally comprise at least a part of the constant region of an antibody derived from a human antibody. In some embodiments, some FR residues in the humanized antibody are substituted with corresponding residues from a non-human antibody (eg, an antibody derived from HVR residues) to, for example, restore or improve antibody specificity or affinity. The "humanized form" of an antibody (such as a non-human antibody) refers to an antibody that has been humanized. Other forms of "humanized antibodies" covered by the present invention are those in which the constant region has been additionally modified or changed from the original antibody to produce the properties according to the present invention (especially in terms of C1q binding and/or Fc receptor (FcR) binding) Antibody.

「人類抗體」為胺基酸序列對應於由人類或人類細胞產生或來源於利用人類抗體譜系或其他人類抗體編碼序列之非人類來源之抗體的胺基酸序列之抗體。人類抗體之此定義特別排除包含非人類抗原結合殘基之人類化抗體。在某些實施例中,人類抗體來源於非人類轉殖基因哺乳動物,例如小鼠、大鼠或兔。在某些實施例中,人類抗體來源於融合瘤細胞株。自人類抗體庫分離之抗體或抗體片段在本文中亦視為人類抗體或人類抗體片段。A "human antibody" is an antibody whose amino acid sequence corresponds to the amino acid sequence of an antibody produced by human or human cells or derived from a non-human source that utilizes the human antibody lineage or other human antibody coding sequences. This definition of human antibody specifically excludes humanized antibodies that contain non-human antigen-binding residues. In certain embodiments, the human antibody is derived from a non-human transgenic mammal, such as a mouse, rat, or rabbit. In certain embodiments, the human antibody is derived from a fusion tumor cell line. Antibodies or antibody fragments isolated from human antibody libraries are also considered human antibodies or human antibody fragments herein.

抗體或免疫球蛋白之「類別」係指其重鏈所具有之恆定域或恆定區的類型。存在五個主要類別之抗體:IgA、IgD、IgE、IgG及IgM,且此等抗體中之若干者可進一步分成子類(同型),例如IgG1 、IgG2 、IgG3 、IgG4 、IgA1 及IgA2 。對應於不同類別之免疫球蛋白的重鏈恆定域分別稱為α、δ、ε、γ及μ。The "class" of an antibody or immunoglobulin refers to the type of constant domain or constant region possessed by its heavy chain. There are five main classes of antibodies: IgA, IgD, IgE, IgG, and IgM, and some of these antibodies can be further divided into subclasses (isotypes), such as IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgA 1 And IgA 2 . The heavy chain constant domains corresponding to different classes of immunoglobulins are called α, δ, ε, γ, and μ, respectively.

本文術語「Fc域」或「Fc區」用於定義含有恆定區之至少一部分的免疫球蛋白重鏈之C端區。該術語包括原生序列Fc區及變異Fc區。雖然IgG重鏈之Fc區的邊界可能稍微變化,但人類IgG重鏈Fc區通常定義為自Cys226或自Pro230延伸至重鏈之羧基端。然而,宿主細胞所產生的抗體可能在重鏈之C端經歷一或多個(特定言之,一或兩個)胺基酸之轉譯後分裂。因此,宿主細胞藉由表現編碼全長重鏈之特定核酸分子而產生的抗體可包括該全長重鏈,或其可包括該全長重鏈的分裂型變體(在本文中亦稱為「分裂型變體重鏈」)。在重鏈之最末兩個C端胺基酸為甘胺酸(G446)及離胺酸(K447,根據Kabat EU索引編號)的情況下,情況可為如此。因此,Fc區之C末端離胺酸(Lys447)或C末端甘胺酸(Gly446)及離胺酸(K447)可能存在或可能不存在。若未另外指示,則包括Fc域(或如本文所定義之Fc域之次單元)之重鏈的胺基酸序列在本文中表示無C端甘胺酸-離胺酸二肽。在本發明之一個實施例中,本發明之免疫結合物中所包含的重鏈(該重鏈包括如本文說明的Fc域之次單元)包含額外C端甘胺酸-離胺酸二肽(G446及K447,根據Kabat EU索引編號)。在本發明的一個實施例中,本發明之免疫結合物中所包含之重鏈(包括如本文中所指定的Fc域之次單元)包含另一個C端甘胺酸殘基(G446,根據Kabat EU索引編號)。本發明之組合物,例如本文所描述之醫藥組合物,包含本發明之免疫結合物之群體。免疫結合物之群體可包含具有全長重鏈的分子及具有分裂型變體重鏈的分子。免疫結合物之群體可由具有全長重鏈之分子與具有分裂型變體重鏈之分子的混合物組成,其中至少50%、至少60%、至少70%、至少80%或至少90%的免疫結合物具有分裂型變體重鏈。在本發明的一個實施例中,包含本發明之免疫結合物群體之組合物包含含包括如本文中指定之Fc域之次單元之重鏈的免疫結合物,所描述重鏈具有額外的C端甘胺酸-離胺酸二肽(G446及K447,根據Kabat EU索引編號)。在本發明的一個實施例中,包含本發明之免疫結合物群體的組合物包含含包括如本文中指定之Fc域次單元之重鏈的免疫結合物,所描述重鏈具有額外的C端甘胺酸殘基(G446,根據Kabat EU索引編號)。在本發明之一個實施例中,此類組合物包含免疫結合物群體,所描述群體包含:包含包括如本文中指定之Fc域之次單元之重鏈的分子;包含包括如本文指定之Fc域之次單元之重鏈的分子,所描述重鏈具有額外的C端甘胺酸殘基(G446,根據Kabat EU索引編號);及包含包括如本文中指定之Fc域之次單元之重鏈的分子,所描述重鏈具有額外的C端甘胺酸-離胺酸二肽(G446及K447,根據Kabat EU索引編號)。除非本文另外說明,否則Fc區或恆定區中之胺基酸殘基之編號係根據EU編號系統,亦稱為EU索引,如Kabat等人, Sequences of Proteins of Immunological Interest, 第5版.。公共衛生處, 美國國家衛生研究院, Bethesda, MD, 1991 (亦參見上述)中所描述。如本文所用,Fc域之「次單元」係指形成二聚Fc域之兩個多肽中之一者,亦即包含免疫球蛋白重鏈之C端恆定區的多肽,其能夠穩定的自結合。舉例而言,IgG Fc域之次單元包含IgG CH2及IgG CH3恆定域。The term "Fc domain" or "Fc region" herein is used to define the C-terminal region of an immunoglobulin heavy chain containing at least a part of a constant region. The term includes native sequence Fc region and variant Fc region. Although the boundaries of the Fc region of an IgG heavy chain may vary slightly, the Fc region of a human IgG heavy chain is usually defined as extending from Cys226 or from Pro230 to the carboxyl end of the heavy chain. However, the antibody produced by the host cell may undergo the translation of one or more (specifically, one or two) amino acids at the C-terminus of the heavy chain and then divide. Therefore, an antibody produced by a host cell by expressing a specific nucleic acid molecule encoding a full-length heavy chain may include the full-length heavy chain, or it may include a split-type variant of the full-length heavy chain (also referred to herein as a "split-type variant"). Weight chain"). This can be the case when the last two C-terminal amino acids of the heavy chain are glycine (G446) and lysine (K447, numbered according to the Kabat EU index). Therefore, the C-terminal lysine (Lys447) or C-terminal glycine (Gly446) and lysine (K447) of the Fc region may or may not exist. If not otherwise indicated, the amino acid sequence of the heavy chain including the Fc domain (or a subunit of the Fc domain as defined herein) means herein no C-terminal glycine-lysine dipeptide. In one embodiment of the present invention, the heavy chain contained in the immunoconjugate of the present invention (the heavy chain includes the subunit of the Fc domain as described herein) includes an additional C-terminal glycine-lysine dipeptide ( G446 and K447, according to the Kabat EU index number). In one embodiment of the present invention, the heavy chain (including the subunit of the Fc domain as specified herein) contained in the immunoconjugate of the present invention contains another C-terminal glycine residue (G446, according to Kabat EU index number). The composition of the present invention, such as the pharmaceutical composition described herein, includes the population of immunoconjugates of the present invention. The population of immunoconjugates can include molecules with full-length heavy chains and molecules with split variant heavy chains. The population of immunoconjugates can be composed of a mixture of molecules with full-length heavy chains and molecules with split variant heavy chains, wherein at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% of immunoconjugates have Split type variable weight chain. In one embodiment of the present invention, the composition comprising the immunoconjugate population of the present invention comprises an immunoconjugate comprising a heavy chain comprising a subunit of the Fc domain as specified herein, the heavy chain described having an additional C-terminus Glycine-lysine dipeptide (G446 and K447, numbered according to the Kabat EU index). In one embodiment of the present invention, the composition comprising the immunoconjugate population of the present invention comprises an immunoconjugate comprising a heavy chain including a subunit of the Fc domain as specified herein, the heavy chain described having an additional C-terminal glycoside Amino acid residue (G446, numbered according to Kabat EU index). In one embodiment of the present invention, such a composition comprises a population of immunoconjugates, and the population described comprises: a molecule comprising a heavy chain comprising a subunit of an Fc domain as specified herein; comprising a heavy chain comprising an Fc domain as specified herein The molecule of the heavy chain of the secondary unit, the heavy chain described has an additional C-terminal glycine residue (G446, according to the Kabat EU index number); and the heavy chain comprising the secondary unit of the Fc domain as specified herein The molecule, the heavy chain described has an additional C-terminal glycine-lysine dipeptide (G446 and K447, numbered according to the Kabat EU index). Unless otherwise specified herein, the numbering of amino acid residues in the Fc region or the constant region is based on the EU numbering system, also known as the EU index, such as Kabat et al., Sequences of Proteins of Immunological Interest, 5th edition. Department of Public Health, National Institutes of Health, Bethesda, MD, 1991 (see also above). As used herein, the "subunit" of the Fc domain refers to one of the two polypeptides forming the dimeric Fc domain, that is, the polypeptide comprising the C-terminal constant region of the immunoglobulin heavy chain, which is capable of stably self-binding. For example, the subunits of the IgG Fc domain include IgG CH2 and IgG CH3 constant domains.

「促進Fc域之第一及第二次單元之結合的修飾」為肽主鏈之操縱或Fc域次單元之轉譯後修飾,從而減少或阻止包含Fc域次單元之多肽與一致多肽結合形成均二聚體。如本文所用,促進結合之修飾特定言之包括對希望結合之兩個Fc域次單元(亦即,Fc域之第一及第二次單元)中之每一者所做的單獨修飾,其中該等修飾彼此互補,以便促進兩個Fc域次單元之結合。舉例而言,促進結合之修飾可改變Fc域次單元中之一或兩者的結構或電荷以便使其結合在空間上或在靜電上分別係有利的。因此,在包含第一Fc域次單元之多肽與包含第二Fc域次單元之多肽之間發生(雜)二聚,其在與該等次單元(例如抗原結合部分)中之每一者融合的其他組分不相同的意義上可能不相同。在一些實施例中,促進結合之修飾包含Fc域中之胺基酸突變,尤其胺基酸取代。在一特定實施例中,促進結合之修飾包含Fc域之兩個次單元中之每一者中的單獨的胺基酸突變,尤其胺基酸取代。"Modifications that promote the binding of the first and second subunits of the Fc domain" are manipulations of the peptide backbone or post-translational modification of the subunits of the Fc domain, thereby reducing or preventing the binding of the polypeptides containing the subunits of the Fc domain to the consistent polypeptide Dimer. As used herein, a modification that promotes binding specifically includes individual modifications to each of the two Fc domain subunits (ie, the first and second subunits of the Fc domain) that are desired to bind, wherein the Such modifications are complementary to each other in order to promote the binding of the two Fc domain subunits. For example, a modification that promotes binding can change the structure or charge of one or both of the Fc domain subunits in order to make it sterically or electrostatically advantageous, respectively. Therefore, (hetero)dimerization occurs between the polypeptide comprising the first Fc domain subunit and the polypeptide comprising the second Fc domain subunit, which is fused to each of these subunits (eg, antigen-binding portions) The meaning of the other components is not the same may not be the same. In some embodiments, the modification to promote binding includes amino acid mutations in the Fc domain, especially amino acid substitutions. In a specific embodiment, the modification that promotes binding comprises individual amino acid mutations, especially amino acid substitutions, in each of the two subunits of the Fc domain.

術語「效應子功能」當關於抗體使用時,係指可歸因於抗體之Fc區的彼等生物活性,其因抗體同型而異。抗體效應子功能之實例包括:C1q結合及補體依賴性細胞毒性(CDC)、Fc受體結合、抗體依賴性細胞介導的細胞毒性(ADCC)、抗體依賴性細胞吞噬作用(ADCP)、細胞介素分泌、免疫複合物介導之抗原呈遞細胞吸收抗原、下調細胞表面受體(例如B細胞受體)及B細胞活化。The term "effector function" when used in relation to antibodies refers to their biological activities attributable to the Fc region of the antibody, which vary by antibody isotype. Examples of antibody effector functions include: C1q binding and complement-dependent cytotoxicity (CDC), Fc receptor binding, antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), cell-mediated Antigen secretion, immune complex-mediated antigen-presenting cell uptake of antigens, down-regulation of cell surface receptors (such as B cell receptors) and B cell activation.

抗體依賴性細胞介導之細胞毒性(ADCC)為促使免疫效應子細胞裂解塗有抗體之目標細胞的免疫機制。目標細胞為包含Fc區之抗體或其衍生物特異性結合(一般經由處於Fc區N端之蛋白質部分來結合)的細胞。如本文所用,術語「降低之ADCC」定義為在圍繞目標細胞之介質中,在既定的抗體濃度下,在指定時間內,藉由上文所定義之ADCC機制裂解之目標細胞的數目減少,及/或在圍繞目標細胞之介質中,在指定時間內藉由ADCC機制達成指定數目個目標細胞裂解所需的抗體濃度增加。ADCC降低係相對於由同類型宿主細胞使用相同的標準生產、純化、調配及儲存方法(熟習此項技術者已知)所產生、但尚未經工程改造之相同抗體介導的ADCC而言。舉例而言,Fc域中包含降低ADCC之胺基酸取代的抗體所介導之ADCC降低係相對於Fc域中無此胺基酸取代之相同抗體所介導的ADCC而言。適合於量測ADCC之分析為此項技術中熟知的(參見例如PCT公開案第WO 2006/082515號或PCT公開案第WO 2012/130831號)。Antibody-dependent cell-mediated cytotoxicity (ADCC) is an immune mechanism that prompts immune effector cells to lyse target cells coated with antibodies. The target cell is a cell that specifically binds to an antibody or a derivative thereof containing an Fc region (generally via a protein portion at the N-terminal of the Fc region). As used herein, the term "decreased ADCC" is defined as the decrease in the number of target cells lysed by the ADCC mechanism defined above in the medium surrounding the target cells at a predetermined antibody concentration within a specified time, and / Or in the medium surrounding the target cells, the antibody concentration required to achieve the lysis of a specified number of target cells by the ADCC mechanism within a specified time increases. ADCC reduction is relative to ADCC mediated by the same antibody that is produced by the same type of host cell using the same standard production, purification, formulation and storage methods (known to those skilled in the art), but has not been engineered. For example, the ADCC reduction mediated by an antibody containing an amino acid substitution that reduces ADCC in the Fc domain is relative to the ADCC mediated by the same antibody without the amino acid substitution in the Fc domain. Analysis suitable for measuring ADCC is well known in the art (see, for example, PCT Publication No. WO 2006/082515 or PCT Publication No. WO 2012/130831).

「活化Fc受體」為一種Fc受體,其與抗體之Fc域接合之後,引發刺激攜帶受體之細胞執行效應子功能的信號傳導事件。人類活化Fc受體包括FcγRIIIa (CD16a)、FcγRI (CD64)、FcγRIIa (CD32)及FcαRI (CD89)。"Activated Fc receptor" is an Fc receptor that, after being engaged with the Fc domain of an antibody, triggers a signaling event that stimulates the receptor-bearing cells to perform effector functions. Human activated Fc receptors include FcyRIIIa (CD16a), FcyRI (CD64), FcyRIIa (CD32) and FcaRI (CD89).

如本文所用,術語「工程改造(engineer/engineered/engineering)」視為包括任何肽主鏈操縱或天然存在或重組多肽或其片段之轉譯後修飾。工程改造包括胺基酸序列、醣基化模式或個別胺基酸之側鏈基團之修飾,以及此等方法之組合。As used herein, the term "engineered/engineered/engineering" is deemed to include any peptide backbone manipulation or post-translational modification of naturally occurring or recombinant polypeptides or fragments thereof. Engineering modification includes modification of amino acid sequence, glycosylation pattern, or side chain group of individual amino acid, and a combination of these methods.

「降低的結合」(例如與Fc受體或CD25的降低的結合)係指對應相互作用的親和力降低,如藉由例如SPR所量測。出於清楚起見,該術語亦包括親和力降低至零(或低於分析方法之偵測極限),亦即完相互作用全去除。相反,「增強的結合」係指各別相互作用之結合親和力增強。"Reduced binding" (eg, decreased binding to Fc receptors or CD25) refers to a decrease in the affinity of the corresponding interaction, as measured by, for example, SPR. For the sake of clarity, the term also includes that the affinity is reduced to zero (or below the detection limit of the analytical method), that is, the interaction is completely removed. In contrast, "enhanced binding" refers to an increase in the binding affinity of individual interactions.

如本文所用,術語「免疫結合物」係指包括至少一種IL-2分子及至少一種抗體的多肽分子。IL-2分子可藉由多種相互作用及如本文所描述之多種組態與抗體接合。在特定實施例中,IL-2分子與抗體經由肽連接子融合。根據本發明之特定免疫結合物基本上由一種IL-2分子及抗體藉由一或多個連接序列接合而組成。As used herein, the term "immunoconjugate" refers to a polypeptide molecule that includes at least one IL-2 molecule and at least one antibody. IL-2 molecules can engage with antibodies through a variety of interactions and a variety of configurations as described herein. In a specific embodiment, the IL-2 molecule is fused to the antibody via a peptide linker. The specific immunoconjugate according to the present invention basically consists of an IL-2 molecule and an antibody joined by one or more linking sequences.

「融合」意謂組分(例如抗體及IL-2分子)藉由肽鍵直接連接連接或經由一或多個肽連接子連接。"Fusion" means that components (such as antibodies and IL-2 molecules) are connected directly by peptide bonds or connected via one or more peptide linkers.

如本文所用,當存在大於一種的各類型部分時,關於Fc域次單元等的術語「第一」及「第二」係為了方便區分而使用。此等術語之使用並非旨在賦予免疫結合物之特定次序或取向,除非明確有如此陳述。As used herein, when there are more than one type of parts, the terms "first" and "second" regarding the Fc domain subunits, etc. are used for the convenience of distinction. The use of these terms is not intended to confer a specific order or orientation of immunoconjugates, unless explicitly stated as such.

藥劑之「有效量」係指在所投與之細胞或組織中產生生理變化所需的量。The "effective amount" of a drug refers to the amount required to produce physiological changes in the cells or tissues administered.

藥劑(例如醫藥組合物)之「治療有效量」係指在劑量及必需時間段下,有效達成所需治療性或預防性結果的量。舉例而言,治療有效量之藥劑可消除、減少、延遲、最小化或預防疾病之副作用。The "therapeutically effective amount" of a medicament (such as a pharmaceutical composition) refers to an amount that is effective to achieve the desired therapeutic or preventive results at the dosage and the necessary time period. For example, a therapeutically effective amount of an agent can eliminate, reduce, delay, minimize or prevent the side effects of the disease.

「個體(individual/ subject)」為哺乳動物。哺乳動物包括(但不限於)馴養動物(例如牛、綿羊、貓、狗及馬)、靈長類動物(例如人類及非人類靈長類動物,諸如猴)、兔及嚙齒動物(例如小鼠及大鼠)。特定言之,個體(individual/subject)為人類。"Individual/subject" is a mammal. Mammals include, but are not limited to, domesticated animals (such as cows, sheep, cats, dogs, and horses), primates (such as humans and non-human primates, such as monkeys), rabbits, and rodents (such as mice) And rats). In particular, individuals (individual/subject) are humans.

術語「醫藥組合物」係指所呈形式允許其中所含活性成分之生物活性有效發揮的製劑,且其不含對調配物將投與之個體具有不可接受毒性之其他組分。The term "pharmaceutical composition" refers to a preparation in a form that allows the biological activity of the active ingredients contained therein to be effectively exerted, and it does not contain other components that have unacceptable toxicity to the individual to which the formulation will be administered.

「醫藥學上可接受之載劑」係指醫藥組合物中除活性成分之外的對個體無毒的成分。醫藥學上可接受之載劑包括(但不限於)緩衝劑、賦形劑、穩定劑或防腐劑。"Pharmaceutically acceptable carrier" refers to ingredients in a pharmaceutical composition that are not toxic to an individual except for the active ingredients. Pharmaceutically acceptable carriers include, but are not limited to, buffers, excipients, stabilizers or preservatives.

如本文所用,「治療(treatment)」(及其文法變化形式,諸如「治療(treat)」或「治療(treating)」)係指試圖改變所治療個體之疾病之自然過程的臨床介入且可出於預防或在臨床病理學過程期間進行。所需治療效果包括(但不限於)預防疾病發生或復發、緩解症狀、減輕疾病之任何直接或間接病理性結果、預防癌轉移、降低疾病進展速率、改善或緩和疾病病況及緩解或改良預後。在一些實施例中,本發明之免疫結合物用於延遲疾病發展或減慢疾病進展。As used herein, "treatment" (and its grammatical variants, such as "treat" or "treating") refers to clinical intervention that attempts to change the natural course of the individual's disease and can produce For prevention or during the clinical pathology process. The desired therapeutic effects include, but are not limited to, preventing the occurrence or recurrence of the disease, alleviating symptoms, alleviating any direct or indirect pathological results of the disease, preventing cancer metastasis, reducing the rate of disease progression, improving or alleviating the disease condition, and alleviating or improving the prognosis. In some embodiments, the immunoconjugates of the present invention are used to delay or slow down disease progression.

實施例之詳細描述Detailed description of the embodiment

突變型 IL-2 多肽 本發明之免疫結合物包含具有免疫療法有利特性之突變型IL-2多肽。特定言之,突變型IL-2多肽中排除了造成毒性、但不為IL-2功效必需的IL-2藥理學特性。此類突變型IL-2多肽詳細地描述於WO 2012/107417中,該文獻以全文引用之方式併入本文中。如上文所論述,不同形式的IL-2受體由不同次單元組成且對IL-2呈現不同親和力。由β及γ受體次單元組成之中等親和力IL-2受體表現於靜息效應子細胞上且足以供IL-2信號傳導。另外包含受體之α-次單元之高親和力IL-2受體主要表現於調節T (Treg )細胞上以及活化效應子細胞上,其中其與IL-2的接合可以分別促進Treg 細胞介導的免疫抑制或活化誘導的細胞死亡(AICD)。因此,不希望受理論所束縛,IL-2對IL-2受體之α-次單元之親和力降低或消除應降低IL-2誘導的藉由調節T細胞的效應子細胞功能下調及減小AICD過程產生腫瘤耐受性。另一方面,對中等親和力IL-2受體維持親和力應該保持IL-2誘導效應子細胞(如NK及T細胞)之增殖及活化。 Mutant IL-2 Peptides The immunoconjugate of the present invention comprises a mutant IL-2 polypeptide with advantageous properties of immunotherapy. Specifically, the mutant IL-2 polypeptide excludes the pharmacological properties of IL-2 that cause toxicity but are not necessary for the efficacy of IL-2. Such mutant IL-2 polypeptides are described in detail in WO 2012/107417, which is incorporated herein by reference in its entirety. As discussed above, different forms of IL-2 receptors are composed of different subunits and exhibit different affinities for IL-2. Intermediate affinity IL-2 receptors composed of β and γ receptor subunits are expressed on resting effector cells and are sufficient for IL-2 signal transduction. In addition, the high-affinity IL-2 receptor containing the α-subunit of the receptor is mainly manifested in the regulation of T (Treg ) On cells and on activated effector cells, where its engagement with IL-2 can promote Treg Cell-mediated immunosuppression or activation-induced cell death (AICD). Therefore, without wishing to be bound by theory, the reduction or elimination of the affinity of IL-2 for the α-subunit of the IL-2 receptor should reduce the IL-2 induced down-regulation of effector cell functions by regulatory T cells and reduce AICD The process produces tumor resistance. On the other hand, maintaining the affinity for the medium-affinity IL-2 receptor should maintain the proliferation and activation of IL-2 induced effector cells (such as NK and T cells).

本發明之免疫結合物中所包含的突變型介白素-2 (IL-2)多肽包含至少一個胺基酸突變,該突變消除或降低突變型IL-2多肽對IL-2受體之α-次單元的親和力且保持突變型IL-2多肽對中等親和力IL-2受體的親和力,各相較於野生型IL-2多肽。The mutant interleukin-2 (IL-2) polypeptide contained in the immunoconjugate of the present invention contains at least one amino acid mutation that eliminates or reduces the α of the mutant IL-2 polypeptide on the IL-2 receptor -The affinity of the subunit and maintain the affinity of the mutant IL-2 polypeptide to the medium-affinity IL-2 receptor, each compared to the wild-type IL-2 polypeptide.

對CD25之親和力降低的人類IL-2 (hIL-2)之突變體可例如由胺基酸位置35、38、42、43、45或72處之胺基酸取代或其組合(相對於人類IL-2序列SEQ ID NO: 13編號)產生。例示性胺基酸取代包括K35E、K35A、R38A、R38E、R38N、R38F、R38S、R38L、R38G、R38Y、R38W、F42L、F42A、F42G、F42S、F42T、F42Q、F42E、F42N、F42D、F42R、F42K、K43E、Y45A、Y45G、Y45S、Y45T、Y45Q、Y45E、Y45N、Y45D、Y45R、Y45K、L72G、L72A、L72S、L72T、L72Q、L72E、L72N、L72D、L72R及L72K。適用於本發明之免疫結合物中的特定IL-2突變體包含對應於人類IL-2之殘基42、45或72之胺基酸位置的胺基酸突變,或其組合。在一個實施例中,該胺基酸突變為選自以下之群組的胺基酸取代:F42A、F42G、F42S、F42T、F42Q、F42E、F42N、F42D、F42R、F42K、Y45A、Y45G、Y45S、Y45T、Y45Q、Y45E、Y45N、Y45D、Y45R、Y45K、L72G、L72A、L72S、L72T、L72Q、L72E、L72N、L72D、L72R及L72K,更特定言之,選自F42A、Y45A及L72G之群組的胺基酸取代。相較於IL-2突變體之野生型形式,此等突變體對中等親和力IL-2受體呈現實質上類似的結合親和力,且對IL-2受體之α-次單元及高親和力IL-2受體的親和力實質上降低。A mutant of human IL-2 (hIL-2) with reduced affinity for CD25 can be, for example, substituted with an amino acid at positions 35, 38, 42, 43, 45 or 72 of the amino acid or a combination thereof (relative to human IL-2). -2 sequence SEQ ID NO: 13 numbering) was generated. Exemplary amino acid substitutions include K35E, K35A, R38A, R38E, R38N, R38F, R38S, R38L, R38G, R38Y, R38W, F42L, F42A, F42G, F42S, F42T, F42Q, F42E, F42N, F42D, F42R, F42K , K43E, Y45A, Y45G, Y45S, Y45T, Y45Q, Y45E, Y45N, Y45D, Y45R, Y45K, L72G, L72A, L72S, L72T, L72Q, L72E, L72N, L72D, L72R and L72K. Specific IL-2 mutants suitable for use in the immunoconjugates of the present invention include amino acid mutations corresponding to the amino acid positions of residue 42, 45 or 72 of human IL-2, or a combination thereof. In one embodiment, the amino acid mutation is an amino acid substitution selected from the group consisting of F42A, F42G, F42S, F42T, F42Q, F42E, F42N, F42D, F42R, F42K, Y45A, Y45G, Y45S, Y45T, Y45Q, Y45E, Y45N, Y45D, Y45R, Y45K, L72G, L72A, L72S, L72T, L72Q, L72E, L72N, L72D, L72R and L72K, more specifically, selected from the group of F42A, Y45A and L72G Amino acid substitution. Compared with the wild-type form of IL-2 mutants, these mutants show substantially similar binding affinity to the medium-affinity IL-2 receptor, and to the α-subunit of the IL-2 receptor and high-affinity IL- 2 The affinity of the receptor is substantially reduced.

適用突變體之其他特徵可以包括誘導帶有IL-2受體之T細胞及/或NK細胞增殖的能力、誘導帶有IL-2受體之T細胞及/或NK細胞中之IL-2信號傳導之能力、NK細胞產生干擾素(IFN)-γ作為二級細胞介素的能力、誘導周邊血液單核細胞(PBMC)加工二級細胞介素(特定言之,IL-10及TNF-α)的能力降低、活化調節T細胞的能力降低、誘導T細胞發生細胞凋亡的能力降低,及活體內毒性分佈降低。Other characteristics of applicable mutants may include the ability to induce the proliferation of T cells and/or NK cells with IL-2 receptors, and the induction of IL-2 signals in T cells and/or NK cells with IL-2 receptors The ability of conduction, the ability of NK cells to produce interferon (IFN)-γ as a secondary cytokine, and induce peripheral blood mononuclear cells (PBMC) to process secondary cytokines (specifically, IL-10 and TNF-α) ) Decreased ability, decreased ability to activate regulatory T cells, decreased ability to induce apoptosis of T cells, and decreased toxicity distribution in vivo.

適用於本發明的特定突變體IL-2多肽包含三種胺基酸突變,所描述胺基酸突變消除或降低突變型IL-2多肽對IL-2受體之α-次單元的親和力,但保持突變型IL-2多肽對中等親和力IL-2受體的親和力。在一個實施例中,該三個胺基酸突變位於對應於人類IL-2之殘基42、45及72的位置處。在一個實施例中,該三個胺基酸突變為胺基酸取代。在一個實施例中,該三個胺基酸突變為選自以下群組之胺基酸取代:F42A、F42G、F42S、F42T、F42Q、F42E、F42N、F42D、F42R、F42K、Y45A、Y45G、Y45S、Y45T、Y45Q、Y45E、Y45N、Y45D、Y45R、Y45K、L72G、L72A、L72S、L72T、L72Q、L72E、L72N、L72D、L72R及L72K。在一特定實施例中,該三個胺基酸突變為胺基酸取代F42A、Y45A及L72G (相對於SEQ ID NO: 13之人類IL-2序列編號)。The specific mutant IL-2 polypeptide suitable for the present invention contains three amino acid mutations. The amino acid mutations described eliminate or reduce the affinity of the mutant IL-2 polypeptide to the α-subunit of the IL-2 receptor, but maintain The affinity of the mutant IL-2 polypeptide to the medium-affinity IL-2 receptor. In one embodiment, the three amino acid mutations are located at positions corresponding to residues 42, 45 and 72 of human IL-2. In one embodiment, the three amino acids are mutated to amino acid substitutions. In one embodiment, the three amino acids are mutated into amino acid substitutions selected from the following group: F42A, F42G, F42S, F42T, F42Q, F42E, F42N, F42D, F42R, F42K, Y45A, Y45G, Y45S , Y45T, Y45Q, Y45E, Y45N, Y45D, Y45R, Y45K, L72G, L72A, L72S, L72T, L72Q, L72E, L72N, L72D, L72R and L72K. In a specific embodiment, the three amino acids are mutated into amino acid substitutions F42A, Y45A and L72G (relative to the human IL-2 sequence numbering in SEQ ID NO: 13).

在某些實施例中,該胺基酸突變使突變型IL-2多肽對IL-2受體之α-次單元的親和力降低至少5倍,尤其至少10倍,更尤其至少25倍。在存在多於一個使突變型IL-2多肽對IL-2受體之α-次單元之親和力降低之胺基酸突變的實施例中,此等胺基酸突變之組合可使突變型IL-2多肽對IL-2受體之α-次單元的親和力降低至少30倍、至少50倍或甚至至少100倍。在一個實施例中,該胺基酸突變或胺基酸突變之組合消除突變型IL-2多肽對IL-2受體之α-次單元的親和力,以使得表面電漿子共振偵測不到結合。In certain embodiments, the amino acid mutation reduces the affinity of the mutant IL-2 polypeptide to the α-subunit of the IL-2 receptor by at least 5-fold, especially at least 10-fold, and more especially at least 25-fold. In embodiments where there is more than one amino acid mutation that reduces the affinity of the mutant IL-2 polypeptide to the α-subunit of the IL-2 receptor, the combination of these amino acid mutations can make the mutant IL- 2 The affinity of the polypeptide to the α-subunit of IL-2 receptor is reduced by at least 30-fold, at least 50-fold, or even at least 100-fold. In one embodiment, the amino acid mutation or the combination of amino acid mutation eliminates the affinity of the mutant IL-2 polypeptide to the α-subunit of the IL-2 receptor, so that the surface plasmon resonance cannot be detected Combine.

當IL-2突變體對中等親和力IL-2受體之親和力呈現出高於對IL-2突變體之野生型形式之親和力的約70%時,達成對中等親和力受體之實質上類似的結合,亦即,保持突變型IL-2多肽對該受體的親和力。本發明之IL-2突變體可呈現高於此類親和力之約80%且甚至高於約90%。When the affinity of the IL-2 mutant to the medium-affinity IL-2 receptor is higher than that of the wild-type form of the IL-2 mutant by about 70%, a substantially similar binding to the medium-affinity receptor is achieved That is, the affinity of the mutant IL-2 polypeptide to the receptor is maintained. The IL-2 mutant of the present invention may exhibit an affinity higher than about 80% and even higher than about 90%.

IL-2對IL-2受體之α-次單元之親和力降低與IL-2之O-醣基化之消除的組合產生特性改良的IL-2蛋白質。舉例而言,當突變型IL-2多肽表現於哺乳動物細胞(諸如CHO或HEK細胞)中時,消除O-醣基化位點會產生較均質的產物。The combination of the reduced affinity of IL-2 for the α-subunit of the IL-2 receptor and the elimination of O-glycosylation of IL-2 produces IL-2 proteins with improved properties. For example, when the mutant IL-2 polypeptide is expressed in mammalian cells (such as CHO or HEK cells), elimination of the O-glycosylation site results in a more homogeneous product.

因此,在某些實施例中,突變型IL-2多肽包含額外的胺基酸突變,該胺基酸突變消除對應於人類IL-2之殘基3之位置處的IL-2 O-醣基化位點。在一個實施例中,消除對應於人類IL-2之殘基3之位置處的IL-2 O-醣基化位點的該額外胺基酸突變為胺基酸取代。例示性胺基酸取代包括T3A、T3G、T3Q、T3E、T3N、T3D、T3R、T3K及T3P。在一特定實施例中,該額外胺基酸突變為胺基酸取代T3A。Therefore, in certain embodiments, the mutant IL-2 polypeptide contains an additional amino acid mutation that eliminates the IL-2 O-glycosyl group at the position corresponding to residue 3 of human IL-2化site. In one embodiment, the elimination of this additional amino acid mutation corresponding to the IL-2 O-glycosylation site at the position of residue 3 of human IL-2 is an amino acid substitution. Exemplary amino acid substitutions include T3A, T3G, T3Q, T3E, T3N, T3D, T3R, T3K, and T3P. In a specific embodiment, the additional amino acid is mutated to an amino acid instead of T3A.

在某些實施例中,突變型IL-2多肽基本上為全長IL-2分子。在某些實施例中,突變型IL-2多肽為人類IL-2分子。在一個實施例中,突變型IL-2多肽包含具有至少一種胺基酸突變之SEQ ID NO: 13之序列,相較於包含不具有該突變之SEQ ID NO: 13的IL-2多肽,該至少一種胺基酸突變消除或降低突變型IL-2多肽對IL-2受體之α-次單元的親和力,但保持突變型IL-2多肽對中等親和力IL-2受體的親和力。在另一實施例中,突變型IL-2多肽包含具有至少一種胺基酸突變之SEQ ID NO: 13之序列,相較於包含不具有該突變之SEQ ID NO: 13的IL-2多肽,該至少一種胺基酸突變消除或降低突變型IL-2多肽對IL-2受體之α-次單元之親和力,但保持突變型IL-2多肽對中等親和力IL-2受體之親和力。In certain embodiments, the mutant IL-2 polypeptide is substantially a full-length IL-2 molecule. In certain embodiments, the mutant IL-2 polypeptide is a human IL-2 molecule. In one embodiment, the mutant IL-2 polypeptide comprises the sequence of SEQ ID NO: 13 with at least one amino acid mutation, compared to the IL-2 polypeptide comprising SEQ ID NO: 13 without the mutation. At least one amino acid mutation eliminates or reduces the affinity of the mutant IL-2 polypeptide to the α-subunit of the IL-2 receptor, but maintains the affinity of the mutant IL-2 polypeptide to the medium-affinity IL-2 receptor. In another embodiment, the mutant IL-2 polypeptide comprises the sequence of SEQ ID NO: 13 with at least one amino acid mutation, compared to the IL-2 polypeptide comprising SEQ ID NO: 13 without the mutation, The at least one amino acid mutation eliminates or reduces the affinity of the mutant IL-2 polypeptide to the α-subunit of the IL-2 receptor, but maintains the affinity of the mutant IL-2 polypeptide to the medium-affinity IL-2 receptor.

在一特定實施例中,突變型IL-2多肽可引發選自由以下組成之群的一或多種細胞反應:活化T淋巴球增殖、活化T淋巴球分化、細胞毒性T細胞(CTL)活性、活化B細胞增殖、活化B細胞分化、自然殺手(NK)細胞增殖、NK細胞分化、活化T細胞或NK細胞分泌細胞介素,及NK/淋巴球活化殺手(LAK)抗腫瘤細胞毒性。In a specific embodiment, the mutant IL-2 polypeptide can trigger one or more cellular responses selected from the group consisting of: activated T lymphocyte proliferation, activated T lymphocyte differentiation, cytotoxic T cell (CTL) activity, activation B cell proliferation, activated B cell differentiation, natural killer (NK) cell proliferation, NK cell differentiation, activated T cell or NK cell to secrete cytokines, and NK/lymphocyte activated killer (LAK) anti-tumor cytotoxicity.

在一個實施例中,相較於野生型IL-2多肽,突變型IL-2多肽誘導調節T細胞中之IL-2信號傳遞的能力減小。在一個實施例中,相較於野生型IL-2多肽,突變型IL-2多肽誘導T細胞發生的活化誘導細胞死亡(AICD)較少。在一個實施例中,相較於野生型IL-2多肽,突變型IL-2多肽具有減小的活體內毒性分佈。在一個實施例中,相較於野生型IL-2多肽,突變型IL-2多肽具有延長的血清半衰期。In one embodiment, the mutant IL-2 polypeptide has a reduced ability to induce and regulate IL-2 signaling in T cells compared to the wild-type IL-2 polypeptide. In one embodiment, the mutant IL-2 polypeptide induces less activation-induced cell death (AICD) of T cells than the wild-type IL-2 polypeptide. In one embodiment, the mutant IL-2 polypeptide has a reduced toxicity profile in vivo compared to the wild-type IL-2 polypeptide. In one embodiment, the mutant IL-2 polypeptide has an extended serum half-life compared to the wild-type IL-2 polypeptide.

適用於本發明之特定突變型IL-2多肽包含位於對應於人類IL-2之殘基3、42、45及72之位置處的四個胺基酸取代。特定胺基酸取代為T3A、F42A、Y45A及L72G。如WO 2012/107417中所示,該四重突變型IL-2多肽未呈現出可偵測的對CD25之結合、誘導T細胞發生細胞凋亡的能力減小、誘導Treg 細胞中之IL-2信號傳遞的能力減小,及活體內毒性分佈減少。然而,其保持活化效應子細胞中之IL-2信號傳遞、誘導效應子細胞增殖及NK細胞產生IFN-γ作為二級細胞介素的能力。The specific mutant IL-2 polypeptide suitable for use in the present invention contains four amino acid substitutions at positions corresponding to residues 3, 42, 45 and 72 of human IL-2. The specific amino acids are substituted with T3A, F42A, Y45A and L72G. As shown in WO 2012/107417, the quadruple mutant IL-2 polypeptide does not exhibit detectable binding to CD25, reduces the ability of T cells to induce apoptosis, and induces IL- in T reg cells. 2 The ability of signal transmission is reduced, and the distribution of toxicity in vivo is reduced. However, it retains the ability to activate IL-2 signaling in effector cells, induce effector cell proliferation, and NK cells to produce IFN-γ as a secondary cytokine.

此外,該突變型IL-2多肽具有其他有利特性,諸如減小的表面疏水性、良好穩定性及良好表現量,如WO 2012/107417中所描述。出乎意料地,相較於野生型IL-2,該突變型IL-2多肽亦提供延長的血清半衰期。In addition, the mutant IL-2 polypeptide has other advantageous properties, such as reduced surface hydrophobicity, good stability, and good performance, as described in WO 2012/107417. Unexpectedly, the mutant IL-2 polypeptide also provides an extended serum half-life compared to wild-type IL-2.

除IL-2與CD25或醣基化位點形成界面之IL-2區域中具有突變之外,適用於本發明的IL-2突變體亦可以在此等區域外部的胺基酸序列中具有一或多種突變。人類IL-2中之此類額外突變可提供額外優點,諸如表現或穩定性增強。舉例而言,位置125之半胱胺酸可經中性胺基酸置換,諸如絲胺酸、丙胺酸、蘇胺酸或纈胺酸,從而分別產生C125S IL-2、C125A IL-2、C125T IL-2或C125V IL-2,如美國專利第4,518,584號中所描述。如其中所描述,亦可使IL-2之N端丙胺酸殘基缺失,從而產生諸如des-A1 C125S或des-A1 C125A等突變體。替代地或結合地,IL-2突變體可包括如下突變:其中野生型人類IL-2之位置104處通常存在的甲硫胺酸經中性胺基酸(諸如丙胺酸)置換(參見美國專利第5,206,344號)。所得突變體,例如des-A1 M104A IL-2、des-A1 M104A C125S IL-2、M104A IL-2、M104A C125A IL-2、des-A1 M104A C125A IL-2或M104A C125S IL-2 (此等及其他突變體可以發現於美國專利第5,116,943號及Weiger等人, Eur J Biochem 180, 295-300 (1989)中),可聯合本發明之特定IL-2突變使用。In addition to mutations in the IL-2 region that forms the interface between IL-2 and CD25 or glycosylation sites, IL-2 mutants suitable for use in the present invention may also have a mutation in the amino acid sequence outside these regions. Or multiple mutations. Such additional mutations in human IL-2 may provide additional advantages, such as enhanced performance or stability. For example, the cysteine at position 125 can be replaced with a neutral amino acid, such as serine, alanine, threonine or valine, to produce C125S IL-2, C125A IL-2, C125T, respectively IL-2 or C125V IL-2, as described in U.S. Patent No. 4,518,584. As described therein, the N-terminal alanine residue of IL-2 can also be deleted to generate mutants such as des-A1 C125S or des-A1 C125A. Alternatively or in combination, IL-2 mutants may include mutations in which the methionine normally present at position 104 of wild-type human IL-2 is replaced with a neutral amino acid (such as alanine) (see U.S. Patent No. 5,206,344). The resulting mutants, such as des-A1 M104A IL-2, des-A1 M104A C125S IL-2, M104A IL-2, M104A C125A IL-2, des-A1 M104A C125A IL-2 or M104A C125S IL-2 (these And other mutants can be found in US Patent No. 5,116,943 and Weiger et al., Eur J Biochem 180, 295-300 (1989)), which can be used in combination with specific IL-2 mutations of the present invention.

因此,在某些實施例中,突變型IL-2多肽包含對應於人類IL-2之殘基125之位置處的額外胺基酸突變。在一個實施例中,該額外胺基酸突變為胺基酸取代C125A。Therefore, in certain embodiments, the mutant IL-2 polypeptide comprises an additional amino acid mutation at a position corresponding to residue 125 of human IL-2. In one embodiment, the additional amino acid is mutated to an amino acid substitution C125A.

熟習此項技術者將能夠判定哪些額外突變可以提供額外優點以用於本發明之目的。舉例而言,其應瞭解,IL-2序列中會降低或消除IL-2對中等親和力IL-2受體之親和力的胺基酸突變,諸如D20T、N88R或Q126D (參見例如US 2007/0036752),可能不適於納入根據本發明之突變型IL-2多肽中。Those skilled in the art will be able to determine which additional mutations can provide additional advantages for the purposes of the present invention. For example, it should be understood that amino acid mutations in the IL-2 sequence that reduce or eliminate the affinity of IL-2 for the medium-affinity IL-2 receptor, such as D20T, N88R or Q126D (see, for example, US 2007/0036752) , May not be suitable for inclusion in the mutant IL-2 polypeptide according to the present invention.

在一個實施例中,相較於對應野生型IL-2序列,例如SEQ ID NO: 13之人類IL-2序列,突變型IL-2多肽包含不多於12個、不多於11個、不多於10個、不多於9個、不多於8個、不多於7個、不多於6個或不多於5個胺基酸突變。在一特定實施例中,相較於對應野生型IL-2序列,例如SEQ ID NO: 13之人類IL-2序列,突變型IL-2多肽包含不多於5個胺基酸突變。In one embodiment, compared to the corresponding wild-type IL-2 sequence, such as the human IL-2 sequence of SEQ ID NO: 13, the mutant IL-2 polypeptide contains no more than 12, no more than 11, and no More than 10, no more than 9, no more than 8, no more than 7, no more than 6, or no more than 5 amino acid mutations. In a specific embodiment, the mutant IL-2 polypeptide contains no more than 5 amino acid mutations compared to the corresponding wild-type IL-2 sequence, such as the human IL-2 sequence of SEQ ID NO: 13.

在一個實施例中,突變型IL-2多肽包含SEQ ID NO: 14之序列。在一個實施例中,突變型IL-2多肽由SEQ ID NO: 14之序列組成。In one embodiment, the mutant IL-2 polypeptide comprises the sequence of SEQ ID NO: 14. In one embodiment, the mutant IL-2 polypeptide consists of the sequence of SEQ ID NO: 14.

免疫結合物 如本文所描述之免疫結合物包含IL-2分子及抗體。此類免疫結合物藉由使例如將IL-2直接靶向腫瘤微環境而顯著增強IL-2療法之功效。根據本發明,免疫結合物中所包含之抗體可為完全抗體或免疫球蛋白,或具有生物功能(諸如抗原特異性結合親和力)之其一部分或變體。 Immunoconjugate The immunoconjugates as described herein include IL-2 molecules and antibodies. Such immunoconjugates significantly enhance the efficacy of IL-2 therapy by, for example, targeting IL-2 directly to the tumor microenvironment. According to the present invention, the antibody contained in the immunoconjugate may be a complete antibody or an immunoglobulin, or a part or variant thereof having a biological function (such as antigen-specific binding affinity).

免疫結合物療法之一般益處顯而易見。舉例而言,免疫結合物中所包含之抗體識別腫瘤特異性抗原決定基且引起免疫結合物分子靶向腫瘤部位。因此,使用劑量比未結合的IL-2所需低得多的免疫結合物,可將高濃度之IL-2遞送至腫瘤微環境中,藉此引起本文中提及之多種免疫效應子細胞之活化及增殖。此外,由於IL-2以免疫結合物形式施用可使細胞介素本身劑量降低,因此IL-2之潛在的不合需要之副作用受到限制,且藉助於免疫結合物使IL-2靶向體內特定部位亦可減少全身暴露且因此減少副作用(與未結合的IL-2所得的副作用相比)。另外,免疫結合物之循環半衰期相較於未結合的IL-2延長促進免疫結合物之功效。然而,IL-2免疫結合物之此特徵可能再次加重IL-2分子之潛在副作用:因為IL-2免疫結合物在血流中之循環半衰期相對於未結合的IL-2顯著更長,融合蛋白分子中之IL-2或其他部分活化通常存在於血管中的組分之機率增加。對於含有與其他部分(諸如Fc或白蛋白)融合的IL-2的其他融合蛋白有相同擔憂,其使得IL-2在循環中之半衰期延長。因此,包含如本文及WO 2012/107417中所描述之突變型IL-2多肽的免疫結合物特別有利,其毒性相較於IL-2野生型形式減小。The general benefits of immunoconjugate therapy are obvious. For example, the antibody contained in the immunoconjugate recognizes a tumor-specific epitope and causes the immunoconjugate molecule to target the tumor site. Therefore, the use of immunoconjugates at a much lower dose than unbound IL-2 can deliver high concentrations of IL-2 to the tumor microenvironment, thereby causing the various immune effector cells mentioned in this article. Activation and proliferation. In addition, since IL-2 is administered in the form of immunoconjugates to reduce the dose of cytokines themselves, the potential undesirable side effects of IL-2 are limited, and IL-2 is targeted to specific parts of the body with the help of immunoconjugates It can also reduce systemic exposure and thus reduce side effects (compared to those obtained with unbound IL-2). In addition, the circulating half-life of the immunoconjugate is longer than that of unbound IL-2 to promote the efficacy of the immunoconjugate. However, this feature of IL-2 immunoconjugates may once again aggravate the potential side effects of IL-2 molecules: because the circulating half-life of IL-2 immunoconjugates in the bloodstream is significantly longer than that of unbound IL-2, the fusion protein The IL-2 or other parts of the molecule have an increased chance of activating components normally present in blood vessels. There is the same concern with other fusion proteins containing IL-2 fused to other parts (such as Fc or albumin), which increases the half-life of IL-2 in the circulation. Therefore, immunoconjugates containing mutant IL-2 polypeptides as described herein and WO 2012/107417 are particularly advantageous, and their toxicity is reduced compared to the wild-type IL-2 form.

如上文所描述,使IL-2直接靶向免疫效應子細胞而非腫瘤細胞可有利於IL-2免疫療法。As described above, targeting IL-2 directly to immune effector cells rather than tumor cells can be beneficial for IL-2 immunotherapy.

因此,本發明提供一種如上文所描述之突變型IL-2多肽及一種與CD8結合之抗體。在一個實施例中,突變型IL-2多肽與抗體形成融合蛋白,亦即突變型IL-2多肽與抗體共用肽鍵。在一些實施例中,抗體包含由第一及第二次單元構成的Fc域。在一特定實施例中,突變型IL-2多肽在其胺基端胺基酸處與Fc域之一次單元的羧基端胺基酸融合,視情況經由連接肽融合。在一些實施例中,抗體為全長抗體。在一些實施例中,抗體為免疫球蛋白分子,特定言之,IgG類免疫球蛋白分子,更特定言之,IgG1 子類免疫球蛋白分子。在一個此類實施例中,突變型IL-2多肽與免疫球蛋白重鏈之一共用胺基端肽鍵。在某些實施例中,抗體為抗體片段。在一些實施例中,抗體為Fab分子或scFv分子。在一個實施例中,抗體為Fab分子。在另一實施例中,抗體為scFv分子。免疫結合物亦可包含多於一種抗體。在免疫結合物中包含多於一種抗體,例如,第一抗體及第二抗體之情況下,各抗體可獨立地選自抗體及抗體片段之各種形式。舉例而言,第一抗體可為Fab分子且第二抗體可為scFv分子。在一特定實施例中,該第一抗體與該第二抗體中之每一者為scFv分子或該第一抗體與該第二抗體中之每一者為Fab分子。在一特定實施例中,該第一抗體與該第二抗體中之每一者為Fab分子。在一個實施例中,該第一抗體與該第二抗體中之每一者與CD8結合。Therefore, the present invention provides a mutant IL-2 polypeptide as described above and an antibody that binds to CD8. In one embodiment, the mutant IL-2 polypeptide and the antibody form a fusion protein, that is, the mutant IL-2 polypeptide and the antibody share a peptide bond. In some embodiments, the antibody comprises an Fc domain composed of first and second subunits. In a specific embodiment, the mutant IL-2 polypeptide is fused to the carboxy terminal amino acid of the primary unit of the Fc domain at its amino terminal amino acid, optionally via a linker peptide. In some embodiments, the antibody is a full-length antibody. In some embodiments, the antibody is an immunoglobulin molecule, specifically, an IgG class immunoglobulin molecule, more specifically, an IgG 1 subclass immunoglobulin molecule. In one such embodiment, the mutant IL-2 polypeptide shares an amino terminal peptide bond with one of the immunoglobulin heavy chains. In certain embodiments, the antibody is an antibody fragment. In some embodiments, the antibody is a Fab molecule or a scFv molecule. In one embodiment, the antibody is a Fab molecule. In another embodiment, the antibody is a scFv molecule. The immunoconjugate may also contain more than one antibody. When more than one antibody is included in the immunoconjugate, for example, a first antibody and a second antibody, each antibody can be independently selected from various forms of antibodies and antibody fragments. For example, the first antibody can be a Fab molecule and the second antibody can be a scFv molecule. In a specific embodiment, each of the first antibody and the second antibody is a scFv molecule or each of the first antibody and the second antibody is a Fab molecule. In a specific embodiment, each of the first antibody and the second antibody is a Fab molecule. In one embodiment, each of the first antibody and the second antibody binds to CD8.

免疫結合物型式 例示性免疫結合物型式描述於PCT公開案第WO 2011/020783號中,該案以全文引用之方式併入本文中。此等免疫結合物包含至少兩種抗體。因此,在一個實施例中,根據本發明之免疫結合物包含如本文中所描述之突變型IL-2多肽及至少一種第一及第二抗體。在一特定實施例中,該第一及第二抗體係獨立地選自由Fv分子(特定言之,scFv分子)及Fab分子組成之群。在一特定實施例中,該突變型IL-2多肽與該第一抗體共用胺基或羧基端肽鍵,且該第二抗體與i)突變型IL-2多肽或ii)第一抗體共用胺基或羧基端肽鍵。在一特定實施例中,免疫結合物基本上由突變型IL-2多肽與第一及第二抗體,尤其Fab分子藉由一或多個連接序列連接而組成。此類型式之優點在於,其以高親和力與靶抗原(CD8)結合,但僅單體與IL-2受體結合,從而避免使免疫結合物靶向除目標位點外之其他位置處的攜帶有IL-2受體之免疫細胞。在一特定實施例中,突變型IL-2多肽與第一抗體,特定言之,第一Fab分子共用羧基端肽鍵,且進一步與第二抗體,特定言之,第二Fab分子共用胺基端肽鍵。在另一實施例中,第一抗體,特定言之,第一Fab分子與突變型IL-2多肽共用羧基端肽鍵,且進一步與第二抗體,特定言之,第二Fab分子共用胺基端肽鍵。在另一實施例中,第一抗體,特定言之,第一Fab分子與第一突變型IL-2多肽共用胺基端肽鍵,且進一步與第二抗體,特定言之,第二Fab分子共用羧基端肽。在一特定實施例中,突變型IL-2多肽與第一重鏈可變區共用羧基端肽鍵且另外與第二重鏈可變區共用胺基端肽鍵。在另一實施例中,突變型IL-2多肽與第一輕鏈可變區共用羧基端肽鍵且另外與第二輕鏈可變區共用胺基端肽鍵。在另一實施例中,第一重鏈或輕鏈可變區藉由羧基端肽鍵與突變型IL-2多肽接合且另外藉由胺基端肽鍵與第二重鏈或輕鏈可變區接合。在另一實施例中,第一重鏈或輕鏈可變區藉由胺基端肽鍵與突變型IL-2多肽接合且另外藉由羧基端肽鍵與第二重鏈或輕鏈可變區接合。在一個實施例中,突變型IL-2多肽與第一Fab重鏈或輕鏈共用羧基端肽鍵且另外與第二Fab重鏈或輕鏈共用胺基端肽鍵。在另一實施例中,第一Fab重鏈或輕鏈與突變型IL-2多肽共用羧基端肽鍵且另外與第二Fab重鏈或輕鏈共用胺基端肽鍵。在其他實施例中,第一Fab重鏈或輕鏈與突變型IL-2多肽共用胺基端肽鍵且進一步與第二Fab重鏈或輕鏈共用羧基端肽鍵。在一個實施例中,免疫結合物包含突變型IL-2多肽,該多肽與一或多個scFv分子共用胺基端肽鍵且另外與一或多個scFv分子共用羧基端肽鍵。 Immunoconjugate patterns Exemplary immunoconjugate patterns are described in PCT Publication No. WO 2011/020783, which is incorporated herein by reference in its entirety. These immunoconjugates contain at least two antibodies. Therefore, in one embodiment, the immunoconjugate according to the present invention comprises a mutant IL-2 polypeptide as described herein and at least one first and second antibody. In a specific embodiment, the first and second antibody systems are independently selected from the group consisting of Fv molecules (specifically, scFv molecules) and Fab molecules. In a specific embodiment, the mutant IL-2 polypeptide and the first antibody share an amine group or carboxy-terminal peptide bond, and the second antibody shares an amine group with i) the mutant IL-2 polypeptide or ii) the first antibody. Group or carboxyl terminal peptide bond. In a specific embodiment, the immunoconjugate basically consists of the mutant IL-2 polypeptide and the first and second antibodies, especially Fab molecules connected by one or more linking sequences. The advantage of this type of formula is that it binds to the target antigen (CD8) with high affinity, but only the monomer binds to the IL-2 receptor, thus avoiding the carrying of the immune conjugate to other positions except the target site Immune cells with IL-2 receptors. In a specific embodiment, the mutant IL-2 polypeptide and the first antibody, specifically, the first Fab molecule shares the carboxy-terminal peptide bond, and further shares the amino group with the second antibody, specifically, the second Fab molecule Terminal peptide bond. In another embodiment, the first antibody, in particular, the first Fab molecule and the mutant IL-2 polypeptide share the carboxy terminal peptide bond, and further shares the amino group with the second antibody, in particular, the second Fab molecule Terminal peptide bond. In another embodiment, the first antibody, in particular, the first Fab molecule shares an amino terminal peptide bond with the first mutant IL-2 polypeptide, and is further connected to the second antibody, in particular, the second Fab molecule Shared carboxy terminal peptide. In a specific embodiment, the mutant IL-2 polypeptide shares the carboxy terminal peptide bond with the first heavy chain variable region and additionally shares the amino terminal peptide bond with the second heavy chain variable region. In another embodiment, the mutant IL-2 polypeptide shares the carboxy terminal peptide bond with the first light chain variable region and additionally shares the amino terminal peptide bond with the second light chain variable region. In another embodiment, the variable region of the first heavy or light chain is joined to the mutant IL-2 polypeptide by a carboxy-terminal peptide bond and is additionally variable with the second heavy or light chain via an amino-terminal peptide bond.区接。 Zone junction. In another embodiment, the variable region of the first heavy or light chain is joined to the mutant IL-2 polypeptide by an amino-terminal peptide bond and is additionally variable with the second heavy or light chain by a carboxy-terminal peptide bond.区接。 Zone junction. In one embodiment, the mutant IL-2 polypeptide shares the carboxy terminal peptide bond with the first Fab heavy chain or light chain and additionally shares the amino terminal peptide bond with the second Fab heavy chain or light chain. In another embodiment, the first Fab heavy chain or light chain shares the carboxy terminal peptide bond with the mutant IL-2 polypeptide and additionally shares the amino terminal peptide bond with the second Fab heavy chain or light chain. In other embodiments, the first Fab heavy chain or light chain shares an amino terminal peptide bond with the mutant IL-2 polypeptide and further shares a carboxy terminal peptide bond with the second Fab heavy chain or light chain. In one embodiment, the immunoconjugate comprises a mutant IL-2 polypeptide that shares an amino terminal peptide bond with one or more scFv molecules and additionally shares a carboxy terminal peptide bond with one or more scFv molecules.

然而,尤其適用於根據本發明之免疫結合物之型式包含免疫球蛋白分子作為抗體。此類免疫結合物型式描述於WO 2012/146628中,其以全文引用之方式併入本文中。However, a form particularly suitable for the immunoconjugate according to the present invention contains immunoglobulin molecules as antibodies. This type of immunoconjugate is described in WO 2012/146628, which is incorporated herein by reference in its entirety.

因此,在特定實施例中,免疫結合物包含如本文所描述之突變型IL-2多肽及與CD8結合之免疫球蛋白分子,特定言之IgG分子,更特定言之IgG1 分子。在一個實施例中,免疫結合物包含不多於一種突變型IL-2多肽。在一個實施例中,免疫球蛋白分子為人類免疫球蛋白分子。在一個實施例中,免疫球蛋白分子包含人類恆定區,例如人類CH1、CH2、CH3及/或CL域。在一個實施例中,免疫球蛋白包含人類Fc域,特定言之人類IgG1 Fc域。在一個實施例中,突變型IL-2多肽與免疫球蛋白分子共用胺基或羧基端肽鍵。在一個實施例中,免疫結合物基本上由突變型IL-2多肽與免疫球蛋白分子(特定言之IgG分子,更特定言之IgG1 分子)藉由一或多個連接序列接合而組成。在一特定實施例中,突變型IL-2多肽在胺基端胺基酸處與免疫球蛋白重鏈之一的羧基端胺基酸融合,視情況經由連接肽融合。Thus, in certain embodiments, an immunoconjugate comprises a mutant IL-2 polypeptide as described herein, and the binding of the immunoglobulin molecules CD8, IgG molecules specific words, more specific words. 1 IgG molecule. In one embodiment, the immunoconjugate contains no more than one mutant IL-2 polypeptide. In one embodiment, the immunoglobulin molecule is a human immunoglobulin molecule. In one embodiment, the immunoglobulin molecule comprises human constant regions, such as human CH1, CH2, CH3, and/or CL domains. In one embodiment, the immunoglobulin comprises a human Fc domain, specifically a human IgG 1 Fc domain. In one embodiment, the mutant IL-2 polypeptide shares an amine or carboxy terminal peptide bond with the immunoglobulin molecule. In one embodiment, immunoconjugates consisting essentially of mutant IL-2 polypeptide with an immunoglobulin molecule (IgG molecule specific words, words more particularly IgG molecules. 1) or by a plurality of connection sequences bonding composition. In a specific embodiment, the mutant IL-2 polypeptide is fused to the carboxy terminal amino acid of one of the immunoglobulin heavy chains at the amino terminal amino acid, optionally via a linker peptide.

突變型IL-2多肽可直接或經由連接肽與抗體融合,該連接肽包含一或多個胺基酸,典型地約2至20個胺基酸。連接肽在此項技術中已知且描述於本文中。適合的非免疫原性連接肽包括例如(G4 S)n 、(SG4 )n 、(G4 S)n 或G4 (SG4 )n 連接肽。「n」一般為1至10,通常2至4之整數。在一個實施例中,連接肽具有至少5個胺基酸之長度;在一個實施例中,具有5至100個胺基酸之長度;在另一實施例中,具有10至50個胺基酸之長度。在一特定實施例中,連接肽具有15個胺基酸之長度。在一個實施例中,連接肽為(GxS)n 或(GxS)n Gm ,其中G=甘胺酸,S=絲胺酸,且(x=3,n=3、4、5或6,且m=0、1、2或3)或(x=4,n=2、3、4或5且m=0、1、2或3),在一個實施例中,x=4且n=2或3,在另一實施例中,x=4且n=3。在一特定實施例中,連接肽為(G4 S)3 (SEQ ID NO: 15)。在一個實施例中,連接肽具有(或由以下組成)SEQ ID NO: 15之胺基酸序列。The mutant IL-2 polypeptide can be fused to the antibody either directly or via a linker peptide that contains one or more amino acids, typically about 2 to 20 amino acids. Connecting peptides are known in the art and are described herein. Suitable non-immunogenic linker peptides include, for example, (G 4 S) n , (SG 4 ) n , (G 4 S) n or G 4 (SG 4 ) n linker peptides. "N" is generally 1 to 10, usually an integer of 2 to 4. In one embodiment, the connecting peptide has a length of at least 5 amino acids; in one embodiment, it has a length of 5 to 100 amino acids; in another embodiment, it has a length of 10 to 50 amino acids. The length. In a specific embodiment, the connecting peptide has a length of 15 amino acids. In one embodiment, the connecting peptide is (GxS) n or (GxS) n G m , where G=glycine, S=serine, and (x=3, n=3, 4, 5, or 6, And m=0, 1, 2 or 3) or (x=4, n=2, 3, 4 or 5 and m=0, 1, 2 or 3), in one embodiment, x=4 and n= 2 or 3. In another embodiment, x=4 and n=3. In a specific embodiment, the connecting peptide is (G 4 S) 3 (SEQ ID NO: 15). In one embodiment, the connecting peptide has (or consists of) the amino acid sequence of SEQ ID NO: 15.

在一特定實施例中,免疫結合物包含突變型IL-2分子及與CD8結合之免疫球蛋白分子,特定言之IgG1 子類免疫球蛋白分子,其中突變型IL-2分子在其胺基端胺基酸處與免疫球蛋白重鏈中之一者的羧基端胺基酸經由SEQ ID NO: 15之連接肽融合。In a specific embodiment, the immunoconjugate comprises a mutant IL-2 molecule and an immunoglobulin molecule that binds to CD8, specifically, an immunoglobulin molecule of the IgG 1 subclass, wherein the mutant IL-2 molecule is in its amino group. The terminal amino acid is fused to the carboxy terminal amino acid of one of the immunoglobulin heavy chains via the connecting peptide of SEQ ID NO: 15.

在一特定實施例中,免疫結合物包含突變型)IL-2分子及與CD8結合之抗體,其中該抗體包含由第一及第二次單元構成之Fc域,特定言之人類IgG1 Fc域,且突變型IL-2分子在其胺基端胺基酸處與Fc域之次單元中之一者的羧基端胺基酸經由SEQ ID NO: 15之連接肽融合。In a specific embodiment, the immunoconjugate includes a mutant IL-2 molecule and an antibody that binds to CD8, wherein the antibody includes an Fc domain composed of the first and second subunits, specifically, the human IgG 1 Fc domain , And the mutant IL-2 molecule is fused to the carboxy terminal amino acid of one of the subunits of the Fc domain at its amino terminal amino acid via the connecting peptide of SEQ ID NO: 15.

CD8 抗體 本發明之免疫結合物中包含之抗體與CD8 (特定言之人類CD8)結合,且能夠將突變型IL-2多肽導向其中表現CD8之目標位點,特定言之例如與腫瘤相關聯之表現CD8的T細胞。 CD8 Antibody The antibody contained in the immunoconjugate of the present invention binds to CD8 (specifically, human CD8), and can direct the mutant IL-2 polypeptide to the target site where CD8 is expressed, specifically, for example, the expression CD8 associated with tumors T cells.

可用於本發明之免疫結合物中之適合的CD8抗體描述於PCT公開案第WO 2019/033043 A2號中,該案以全文引用之方式併入本文中。Suitable CD8 antibodies that can be used in the immunoconjugates of the present invention are described in PCT Publication No. WO 2019/033043 A2, which is incorporated herein by reference in its entirety.

本發明之免疫結合物可包含兩種或更多種抗體,該等抗體可與相同或不同抗原結合。然而,在特定實施例中,此等抗體中之每一者與CD8結合。在一個實施例中,本發明之免疫結合物中所包含之抗體為單特異性的。在一特定實施例中,免疫結合物包含單一的單特異性抗體,特定言之單特異性免疫球蛋白分子。The immunoconjugate of the present invention may comprise two or more antibodies, and these antibodies may bind to the same or different antigens. However, in specific embodiments, each of these antibodies binds to CD8. In one embodiment, the antibody contained in the immunoconjugate of the present invention is monospecific. In a specific embodiment, the immunoconjugate comprises a single monospecific antibody, specifically a monospecific immunoglobulin molecule.

抗體可為保持與CD8 (特定言之人類CD8)特異性結合之任何類型的抗體或其片段。抗體片段包括(但不限於) Fv分子、scFv分子、Fab分子及F(ab')2 分子。然而,在特定實施例中,抗體為全長抗體。在一些實施例中,抗體包含由第一及第二次單元構成的Fc域。在一些實施例中,抗體為免疫球蛋白,特定言之IgG類,更特定言之IgG1 子類免疫球蛋白。The antibody may be any type of antibody or fragment thereof that retains specific binding to CD8 (specifically, human CD8). Antibody fragments include (but are not limited to) Fv molecules, scFv molecules, Fab molecules and F(ab') 2 molecules. However, in certain embodiments, the antibody is a full-length antibody. In some embodiments, the antibody comprises an Fc domain composed of first and second subunits. In some embodiments, the antibody is an immunoglobulin, specifically an IgG class, more specifically an IgG 1 subclass immunoglobulin.

在一些實施例中,抗體為單株抗體。In some embodiments, the antibody is a monoclonal antibody.

功能特徵 本文提供之抗CD8抗體具有以下特徵中之一或多者:(a)抗體不抑制或刺激CD8+ T細胞之活化;(b)抗體不誘導CD8+ T細胞增殖;(c)抗體不誘導IFNγ產生;(d)抗體特異性結合人類CD8;(e)抗體特異性結合恆河猴CD8;(f)抗體特異性結合獼猴CD8;(g)抗體不結合CD4+ 細胞;(g)抗體不結合CD3- 細胞;及(h)抗體不自循環消耗CD8+ T細胞。此類特徵可使用熟知方法,例如PCT申請案WO 2019/033043 A2中所使用之方法來評定。 Functional characteristics The anti-CD8 antibodies provided herein have one or more of the following characteristics: (a) The antibody does not inhibit or stimulate CD8+ Activation of T cells; (b) Antibody does not induce CD8+ T cell proliferation; (c) antibody does not induce IFNγ production; (d) antibody specifically binds to human CD8; (e) antibody specifically binds to rhesus CD8; (f) antibody specifically binds to rhesus CD8; (g) antibody does not Combine CD4+ Cell; (g) Antibody does not bind CD3- Cell; and (h) antibody does not consume CD8 from the circulation+ T cells. Such characteristics can be assessed using well-known methods, such as the method used in PCT application WO 2019/033043 A2.

抗CD8抗體為以足夠親和力及特異性與CD8結合之抗體。在某些實施例中,抗CD8抗體以約以下中之任一者之Kn結合人類CD8:l μM、100 nM、50 nM、40 nM、30 nM、20 nM、10 nM、5 nM、1 nM、0.5 nM、0.1 nM、0.05 nM或0.001 nM (例如10- nM8 M或更小,例如10-8 M至10-13 M,例如10-9 M至10-13 M),包括此等值之間的任何範圍。在某些實施例中,抗CD8抗體以約以下中之任一者之Kn結合恆河猴CD8:1 μM、100 nM、50 nM、40 nM、30 nM、20 nM、10 nM、5 nM、1 nM、0.5 nM、0.1 nM、0.05 nM或0.001 nM (例如10-8 M或更小,例如10-8 M至10-13 M,例如10-9 M至10-13 M),包括此等值之間的任何範圍。在某些實施例中,抗CD8抗體以以下之Kn結合食蟹獼猴CD8:1 μM、100 nM、50 nM、40 nM、30 nM、20 nM、10 nM、5 nM、1 nM、0.5 nM、0.1 nM、0.05 nM或0.001 nM (例如10-8 M或更小,例如10-8 M至10-13 M,例如10-9 M至10-13 M),包括此等值之間的任何範圍。Anti-CD8 antibodies are antibodies that bind to CD8 with sufficient affinity and specificity. In certain embodiments, the anti-CD8 antibody binds to human CD8 with a Kn of about any of the following: 1 μM, 100 nM, 50 nM, 40 nM, 30 nM, 20 nM, 10 nM, 5 nM, 1 nM , 0.5 nM, 0.1 nM, 0.05 nM or 0.001 nM (e.g. 10 - nM 8 M or less, e.g. 10 -8 M to 10 -13 M, e.g. 10 -9 M to 10 -13 M), including these values Any range in between. In certain embodiments, the anti-CD8 antibody binds to rhesus CD8 with a Kn of about any of the following: 1 μM, 100 nM, 50 nM, 40 nM, 30 nM, 20 nM, 10 nM, 5 nM, 1 nM, 0.5 nM, 0.1 nM, 0.05 nM, or 0.001 nM (for example, 10 -8 M or less, for example, 10 -8 M to 10 -13 M, for example, 10 -9 M to 10 -13 M), including these Any range between values. In certain embodiments, the anti-CD8 antibody binds cynomolgus CD8 with the following Kn: 1 μM, 100 nM, 50 nM, 40 nM, 30 nM, 20 nM, 10 nM, 5 nM, 1 nM, 0.5 nM, 0.1 nM, 0.05 nM, or 0.001 nM (e.g. 10 -8 M or less, such as 10 -8 M to 10 -13 M, such as 10 -9 M to 10 -13 M), including any range between these values .

在某些實施例中,抗CD8抗體以以下之Kn結合(a)人類CD8:約1 μM、100 nM、50 nM、40 nM、30 nM、20 nM、10 nM、5 nM、1 nM、0.5 nM、0.1 nM、0.05 nM或0.001 nM (例如10-8 M或更小,例如10-8 M至10-13 M,例如10-9 M至10-13 M),包括此等值之間的任何範圍;以以下之Kn結合(b)恆河猴CD8:約1 μM、100 nM、50 nM、40 nM、30 nM、20 nM、10 nM、5 nM、1 nM、0.5 nM、1.1 nM、0.05 nM或0.001 nM (例如10-8 M或更小,例如10-8 M至10-13 M,例如10-9 M至10-13 M),包括此等值之間的任何範圍;及以以下之Kn結合(c)食蟹獼猴CD8:約1 μM、100 nM、50 nM、40 nM、30 nM、20 nM、10 nM、5 nM、1 nM、0.5 nM、0.l nM、0.05 nM或0.001 nM (例如10-8 M或更小,例如10-8 M至10-13 M,例如10-9 M至10-13 M),包括此等值之間的任何範圍。本文提供之抗CD8抗體針對人類CD8、恆河猴CD8及/或獼猴CD8之Kn可藉由此項技術中已知之任何方法來測定,包括(但不限於)例如ELISA、螢光活化細胞分選(FACS)分析、放射免疫沈澱(RIA)及表面電漿子共振(SPR)。在某些實施例中,本文提供之抗CD8抗體針對人類CD8、恆河猴CD8及/或獼猴CD8之Kn經由SPR測定。在某些實施例中,本文提供之抗CD8抗體針對人類CD8、恆河猴CD8及/或獼猴CD8之Kn經由FACS測定。In certain embodiments, the anti-CD8 antibody binds to (a) human CD8 with the following Kn: about 1 μM, 100 nM, 50 nM, 40 nM, 30 nM, 20 nM, 10 nM, 5 nM, 1 nM, 0.5 nM, 0.1 nM, 0.05 nM or 0.001 nM (e.g. 10 -8 M or less, such as 10 -8 M to 10 -13 M, such as 10 -9 M to 10 -13 M), including those between these values Any range; bind with the following Kn (b) Rhesus monkey CD8: about 1 μM, 100 nM, 50 nM, 40 nM, 30 nM, 20 nM, 10 nM, 5 nM, 1 nM, 0.5 nM, 1.1 nM, 0.05 nM or 0.001 nM (e.g. 10 -8 M or less, such as 10 -8 M to 10 -13 M, such as 10 -9 M to 10 -13 M), including any range between these equivalent values; and The following Kn binding (c) Cynomolgus CD8: about 1 μM, 100 nM, 50 nM, 40 nM, 30 nM, 20 nM, 10 nM, 5 nM, 1 nM, 0.5 nM, 0.1 nM, 0.05 nM Or 0.001 nM (e.g. 10 -8 M or less, e.g. 10 -8 M to 10 -13 M, e.g. 10 -9 M to 10 -13 M), including any range between these equivalent values. The Kn of the anti-CD8 antibodies provided herein against human CD8, rhesus CD8 and/or rhesus CD8 can be determined by any method known in the art, including (but not limited to) such as ELISA, fluorescence activated cell sorting (FACS) analysis, radioimmunoprecipitation (RIA) and surface plasmon resonance (SPR). In certain embodiments, the Kn of the anti-CD8 antibodies provided herein against human CD8, rhesus CD8 and/or rhesus CD8 is determined by SPR. In certain embodiments, the Kn of the anti-CD8 antibodies provided herein against human CD8, rhesus CD8 and/or rhesus CD8 is determined by FACS.

在某些實施例中,本文提供之抗CD8抗體不結合(例如特異性結合)小鼠CD8。在某些實施例中,抗CD8抗體不結合(例如特異性結合)大鼠CD8。在某些實施例中,抗CD8抗體不結合(例如特異性結合)小鼠CD8或大鼠CD8,例如如經由SPR及/或FACS測定。In certain embodiments, the anti-CD8 antibodies provided herein do not bind (eg, specifically bind) mouse CD8. In certain embodiments, the anti-CD8 antibody does not bind (eg, specifically bind) to rat CD8. In certain embodiments, the anti-CD8 antibody does not bind (eg, specifically bind) mouse CD8 or rat CD8, for example, as determined by SPR and/or FACS.

在一些實施例中,抗體包含:(a)HCDR1,其包含SEQ ID NO:1之胺基酸序列;HCDR2,其包含SEQ ID NO:2之胺基酸序列;HCDR3,其包含SEQ ID NO:3之胺基酸序列;LCDR1,其包含SEQ ID NO:4之胺基酸序列;LCDR2,其包含SEQ ID NO:5之胺基酸序列;及LCDR3,其包含SEQ ID NO:6之胺基酸序列。In some embodiments, the antibody comprises: (a) HCDR1, which comprises the amino acid sequence of SEQ ID NO: 1; HCDR2, which comprises the amino acid sequence of SEQ ID NO: 2; HCDR3, which comprises SEQ ID NO: The amino acid sequence of 3; LCDR1, which includes the amino acid sequence of SEQ ID NO: 4; LCDR2, which includes the amino acid sequence of SEQ ID NO: 5; and LCDR3, which includes the amino acid sequence of SEQ ID NO: 6 Acid sequence.

在一些實施例中,抗體包含:(a)重鏈可變區(VH),其包含含SEQ ID NO:1之胺基酸序列的HCDR1、含SEQ ID NO:2之胺基酸序列的HCDR2、含SEQ ID NO:3之胺基酸序列的HCDR3;及(b)輕鏈可變區(VL),其包含含SEQ ID NO:4之胺基酸序列的LCDR1、含SEQ ID NO:5之胺基酸序列的LCDR2及含SEQ ID NO:6之胺基酸序列的LCDR3 在一些實施例中,重鏈及/或輕鏈可變區為人類化可變區。在一些實施例中,重鏈及/或輕鏈可變區包含人類構架區(FR)。In some embodiments, the antibody comprises: (a) a heavy chain variable region (VH), which comprises HCDR1 containing the amino acid sequence of SEQ ID NO: 1 and HCDR2 containing the amino acid sequence of SEQ ID NO: 2 , HCDR3 containing the amino acid sequence of SEQ ID NO: 3; and (b) the light chain variable region (VL), which comprises LCDR1 containing the amino acid sequence of SEQ ID NO: 4, and containing SEQ ID NO: 5 The amino acid sequence of LCDR2 and the LCDR3 containing the amino acid sequence of SEQ ID NO: 6 In some embodiments, the heavy chain and/or light chain variable regions are humanized variable regions. In some embodiments, the heavy chain and/or light chain variable regions comprise human framework regions (FR).

在一些實施例中,抗體包含含與SEQ ID NO:7之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的重鏈可變區(VH)。在一些實施例中,抗體包含含與SEQ ID NO:8之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的輕鏈可變區(VL)。在一些實施例中,抗體包含:(a)重鏈可變區(VH),其包含與SEQ ID NO:7之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列;及(b)輕鏈可變區(VL),其包含與SEQ ID NO:8之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列。In some embodiments, the antibody comprises a variable heavy chain comprising an amino acid sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 7 District (VH). In some embodiments, the antibody comprises a variable light chain containing an amino acid sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 8 Area (VL). In some embodiments, the antibody comprises: (a) a heavy chain variable region (VH) comprising at least about 95%, 96%, 97%, 98%, 99% of the amino acid sequence of SEQ ID NO: 7 Or 100% identical amino acid sequence; and (b) the light chain variable region (VL), which comprises at least about 95%, 96%, 97%, 98%, and the amino acid sequence of SEQ ID NO: 8 99% or 100% identical amino acid sequence.

在一特定實施例中,抗體包含:(a)包含SEQ ID NO: 7之胺基酸序列的重鏈可變區(VH);及(b)包含SEQ ID NO: 8之胺基酸序列的輕鏈可變區(VL)。In a specific embodiment, the antibody comprises: (a) a heavy chain variable region (VH) comprising the amino acid sequence of SEQ ID NO: 7; and (b) a heavy chain variable region (VH) comprising the amino acid sequence of SEQ ID NO: 8 Light chain variable region (VL).

在一些實施例中,抗體包含:HCDR1,其包含SEQ ID NO:1之胺基酸序列;HCDR2,其包含SEQ ID NO:2之胺基酸序列;HCDR3,其包含SEQ ID NO:3之胺基酸序列;LCDR1,其包含SEQ ID NO:4之胺基酸序列;LCDR2,其包含SEQ ID NO:5之胺基酸序列;及LCDR3,其包含SEQ ID NO:28之胺基酸序列。In some embodiments, the antibody comprises: HCDR1, which comprises the amino acid sequence of SEQ ID NO: 1; HCDR2, which comprises the amino acid sequence of SEQ ID NO: 2; HCDR3, which comprises the amine of SEQ ID NO: 3 LCDR1, which includes the amino acid sequence of SEQ ID NO: 4; LCDR2, which includes the amino acid sequence of SEQ ID NO: 5; and LCDR3, which includes the amino acid sequence of SEQ ID NO: 28.

在一些實施例中,抗體包含:(a)重鏈可變區(VH),其包含含SEQ ID NO:1之胺基酸序列的HCDR1、含SEQ ID NO:2之胺基酸序列的HCDR2、含SEQ ID NO:3之胺基酸序列的HCDR3;及(b)輕鏈可變區(VL),其包含含SEQ ID NO:4之胺基酸序列的LCDR1、含SEQ ID NO:5之胺基酸序列的LCDR2及含SEQ ID NO:28之胺基酸序列的LCDR3。在一些實施例中,重鏈及/或輕鏈可變區為人類化可變區。在一些實施例中,重鏈及/或輕鏈可變區包含人類構架區(FR)。In some embodiments, the antibody comprises: (a) a heavy chain variable region (VH), which comprises HCDR1 containing the amino acid sequence of SEQ ID NO: 1 and HCDR2 containing the amino acid sequence of SEQ ID NO: 2 , HCDR3 containing the amino acid sequence of SEQ ID NO: 3; and (b) the light chain variable region (VL), which comprises LCDR1 containing the amino acid sequence of SEQ ID NO: 4, and containing SEQ ID NO: 5 The amino acid sequence of LCDR2 and the LCDR3 containing the amino acid sequence of SEQ ID NO:28. In some embodiments, the heavy chain and/or light chain variable regions are humanized variable regions. In some embodiments, the heavy chain and/or light chain variable regions comprise human framework regions (FR).

在一些實施例中,抗體包含含與SEQ ID NO:7之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的重鏈可變區(VH)。在一些實施例中,抗體包含含與SEQ ID NO:29之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的輕鏈可變區(VL)。在一些實施例中,抗體包含:(a)重鏈可變區(VH),其包含與SEQ ID NO:7之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列;及(b)輕鏈可變區(VL),其包含與SEQ ID NO:29之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列。In some embodiments, the antibody comprises a variable heavy chain comprising an amino acid sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 7 District (VH). In some embodiments, the antibody comprises a variable light chain containing an amino acid sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 29 Area (VL). In some embodiments, the antibody comprises: (a) a heavy chain variable region (VH) comprising at least about 95%, 96%, 97%, 98%, 99% of the amino acid sequence of SEQ ID NO: 7 Or a 100% identical amino acid sequence; and (b) the light chain variable region (VL), which comprises at least about 95%, 96%, 97%, 98%, and the amino acid sequence of SEQ ID NO: 29, 99% or 100% identical amino acid sequence.

在一特定實施例中,抗體包含:(a)包含SEQ ID NO: 7之胺基酸序列的重鏈可變區(VH);及(b)包含SEQ ID NO: 29之胺基酸序列的輕鏈可變區(VL)。In a specific embodiment, the antibody comprises: (a) a heavy chain variable region (VH) comprising the amino acid sequence of SEQ ID NO: 7; and (b) a heavy chain variable region (VH) comprising the amino acid sequence of SEQ ID NO: 29 Light chain variable region (VL).

在一些實施例中,抗體為人類化抗體。在一個實施例中,抗體為包含人類恆定區之免疫球蛋白分子,特定言之包含人類CH1、CH2、CH3及/或CL域之IgG類免疫球蛋白分子。人類恆定域之例示性序列載於SEQ ID NO: 22及23 (分別為人類κ及λ CL域)及SEQ ID NO: 24 (人類IgG1重鏈恆定域CH1-CH2-CH3)中。在一些實施例中,抗體包含輕鏈恆定區,該輕鏈恆定區包含SEQ ID NO: 22或SEQ ID NO: 23之胺基酸序列,特定言之SEQ ID NO: 24之胺基酸序列。在一些實施例中,抗體包含含與SEQ ID NO: 24之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列的重鏈恆定區。特定言之,如本文所描述,重鏈恆定區可包含Fc域中之胺基酸突變。In some embodiments, the antibody is a humanized antibody. In one embodiment, the antibody is an immunoglobulin molecule containing a human constant region, specifically, an IgG immunoglobulin molecule containing human CH1, CH2, CH3, and/or CL domains. Exemplary sequences of human constant domains are shown in SEQ ID NOs: 22 and 23 (human κ and λ CL domains, respectively) and SEQ ID NO: 24 (human IgG1 heavy chain constant domains CH1-CH2-CH3). In some embodiments, the antibody comprises a light chain constant region comprising the amino acid sequence of SEQ ID NO: 22 or SEQ ID NO: 23, in particular the amino acid sequence of SEQ ID NO: 24. In some embodiments, the antibody comprises a heavy chain constant region containing an amino acid sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 24 . In particular, as described herein, the heavy chain constant region may include amino acid mutations in the Fc domain.

Fc 在特定實施例中,根據本發明之免疫結合物中所包含之抗體包含由第一及第二次單元構成的Fc域。抗體之Fc域由包含免疫球蛋白分子之重鏈域的一對多肽鏈組成。舉例而言,免疫球蛋白G (IgG)分子之Fc域為二聚體,其中各次單元包含CH2及CH3 IgG重鏈恆定域。Fc域之兩個次單元彼此間能夠穩定結合。在一個實施例中,本發明之免疫結合物包含不多於一個Fc域。 Fc domain In a specific embodiment, the antibody contained in the immunoconjugate according to the present invention comprises an Fc domain composed of first and second subunits. The Fc domain of an antibody consists of a pair of polypeptide chains containing the heavy chain domain of an immunoglobulin molecule. For example, the Fc domain of an immunoglobulin G (IgG) molecule is a dimer, where each subunit includes CH2 and CH3 IgG heavy chain constant domains. The two subunits of the Fc domain can bind to each other stably. In one embodiment, the immunoconjugate of the present invention contains no more than one Fc domain.

在一個實施例中,免疫結合物中所包含之抗體中之Fc域為IgG Fc域。在一特定實施例中,Fc域為IgG1 Fc域。在另一實施例中,Fc域為IgG4 Fc域。在一更具體實施例中,Fc域為包含位置S228 (Kabat EU索引編號)處之胺基酸取代(特定言之胺基酸取代S228P)的IgG4 Fc域。此胺基酸取代減少活體內IgG4 抗體之Fab臂交換(參見Stubenrauch等人, Drug Metabolism and Disposition 38, 84-91 (2010))。在另一特定實施例中,Fc域為人類Fc域。在一甚至更特定實施例中,Fc域為人類IgG1 Fc域。人類IgG1 Fc區之例示性序列載於SEQ ID NO: 21中。In one embodiment, the Fc domain in the antibody contained in the immunoconjugate is an IgG Fc domain. In a specific embodiment, the Fc domain is an IgG 1 Fc domain. In another embodiment, the Fc domain is an IgG 4 Fc domain. In a more specific embodiment, the Fc domain is an IgG 4 Fc domain comprising an amino acid substitution (specifically, the amino acid substitution S228P) at position S228 (Kabat EU index number). This amino acid substitution reduces the Fab arm exchange of IgG 4 antibodies in vivo (see Stubenrauch et al., Drug Metabolism and Disposition 38, 84-91 (2010)). In another specific embodiment, the Fc domain is a human Fc domain. In an even more specific embodiment, the Fc domain is a human IgG 1 Fc domain. An exemplary sequence of the Fc region of human IgG 1 is set forth in SEQ ID NO:21.

促進雜二聚之 Fc 域修飾 根據本發明之免疫結合物包含突變型IL-2多肽,特定言之與Fc域之兩個次單元中之一個或另一個融合之單一(不多於一個)突變型IL-2多肽,因此Fc域之兩個次單元通常包含於兩條不同多肽鏈中。此等多肽之重組共表現及隨後二聚化引起兩種多肽出現若干種可能的組合。為了改良重組製造中之免疫結合物之產率及純度,因此將促進所需多肽之結合的修飾引入抗體之Fc域中係為有利的。 Modification of the Fc domain to promote heterodimerization The immunoconjugate according to the present invention comprises a mutant IL-2 polypeptide, specifically a single (not more than one) mutation fused to one or the other of the two subunits of the Fc domain Type IL-2 polypeptide, so the two subunits of the Fc domain are usually contained in two different polypeptide chains. Recombinant co-expression of these polypeptides and subsequent dimerization caused several possible combinations of the two polypeptides. In order to improve the yield and purity of immunoconjugates in recombinant manufacturing, it is therefore advantageous to introduce modifications that promote the binding of the desired polypeptide into the Fc domain of the antibody.

因此,在特定實施例中,根據本發明之免疫結合物中所包含之抗體之Fc域包含促進Fc域之第一與第二次單元結合的修飾。人類IgG Fc域中之兩個次單元之間的最廣泛蛋白質-蛋白質相互作用的位點位於Fc域之CH3域中。因此,在一個實施例中,該修飾存在於Fc域之CH3域中。Therefore, in a specific embodiment, the Fc domain of the antibody contained in the immunoconjugate according to the present invention comprises a modification that promotes the binding of the first and second subunits of the Fc domain. The site of the most extensive protein-protein interaction between the two subunits in the human IgG Fc domain is located in the CH3 domain of the Fc domain. Therefore, in one embodiment, the modification is present in the CH3 domain of the Fc domain.

存在若干種修飾Fc域之CH3域以加強雜二聚之方法,其充分描述例如於 WO 96/27011、WO 98/050431、EP 1870459、WO 2007/110205、WO 2007/147901、WO 2009/089004、WO 2010/129304、WO 2011/90754、WO 2011/143545、WO 2012058768、WO 2013157954、WO 2013096291中。通常,在所有此類方法中,Fc域之第一次單元之CH3域與Fc域之第二次單元之CH3域均以互補方式經工程改造,使得各CH3域(或包含其之重鏈)本身可不再發生均二聚,而是被迫與以互補方式經工程改造之另一CH3域雜二聚(以使得第一與第二CH3域發生雜二聚且兩個第一或兩個第二CH3域之間不形成均二聚體)。There are several methods for modifying the CH3 domain of the Fc domain to enhance heterodimerization, which are fully described in, for example, WO 96/27011, WO 98/050431, EP 1870459, WO 2007/110205, WO 2007/147901, WO 2009/089004, WO 2010/129304, WO 2011/90754, WO 2011/143545, WO 2012058768, WO 2013157954, WO 2013096291. Generally, in all such methods, the CH3 domain of the first unit of the Fc domain and the CH3 domain of the second unit of the Fc domain are both engineered in a complementary manner such that each CH3 domain (or its heavy chain) It can no longer occur homodimerization itself, but is forced to heterodimerize with another CH3 domain that has been engineered in a complementary manner (so that the first and second CH3 domains are heterodimerized and the two first or second second No homodimer is formed between the two CH3 domains).

在一特定實施例中,促進Fc域之第一及第二次單元之結合的該修飾為所謂的「杵-臼(knob-into-hole)」修飾,其包含Fc域之兩個次單元中之一者中的「杵」修飾及Fc域之兩個次單元中之另一者中的「臼」修飾。In a specific embodiment, the modification that promotes the binding of the first and second subunits of the Fc domain is a so-called "knob-into-hole" modification, which includes the two subunits of the Fc domain. The "knob" modification in one of the two subunits of the Fc domain and the "hole" modification in the other of the two subunits of the Fc domain.

杵-臼技術描述於例如US5,731,168;US7,695,936;Ridgway等人, Prot Eng 9, 617-621 (1996)及Carter, J Immunol Meth 248, 7-15 (2001)中。一般而言,方法包括在第一多肽之界面處引入隆凸(「杵」)及在第二多肽之界面處引入相應空腔(「臼」),使得隆凸可定位於空腔中以便促進雜二聚體形成且阻礙均二聚體形成。藉由用較大側鏈(例如酪胺酸或色胺酸)置換第一多肽界面中之小胺基酸側鏈來構築隆凸。大小與隆凸相同或類似之補償性空腔係在第二多肽之界面中藉由用較小胺基酸側鏈(例如丙胺酸或蘇胺酸)置換大胺基酸側鏈來產生。The pestle-and-mortar technique is described in, for example, US 5,731,168; US 7,695,936; Ridgway et al., Prot Eng 9, 617-621 (1996) and Carter, J Immunol Meth 248, 7-15 (2001). Generally speaking, the method includes introducing a bulge ("punch") at the interface of the first polypeptide and a corresponding cavity ("mortar") at the interface of the second polypeptide, so that the bulge can be positioned in the cavity In order to promote the formation of heterodimers and hinder the formation of homodimers. The bump is constructed by replacing the small amino acid side chain in the interface of the first polypeptide with a larger side chain (such as tyrosine or tryptophan). Compensating cavities with the same or similar size as the bulge are created in the interface of the second polypeptide by replacing the side chain of a large amino acid with a side chain of a smaller amino acid (for example, alanine or threonine).

相應地,在一特定實施例中,在免疫結合物中所包含的抗體之Fc域之第一次單元的CH3域中,胺基酸殘基經具有較大側鏈體積的胺基酸殘基置換,從而在第一次單元之CH3域內產生可定位於第二次單元之CH3域內之空腔中的隆凸,且在Fc域之第二次單元的CH3域中,胺基酸殘基經具有較小側鏈體積的胺基酸殘基置換,從而在第二次單元之CH3域內產生供第一次單元之CH3域內之隆凸可定位於其中的空腔。Correspondingly, in a specific embodiment, in the CH3 domain of the first unit of the Fc domain of the antibody contained in the immunoconjugate, the amino acid residue is passed through the amino acid residue having a larger side chain volume. Replacement to produce a bulge in the CH3 domain of the first subunit that can be located in the cavity in the CH3 domain of the second subunit, and in the CH3 domain of the second subunit of the Fc domain, amino acid residues The group is replaced by an amino acid residue with a smaller side chain volume, thereby creating a cavity in the CH3 domain of the second subunit for the protrusions in the CH3 domain of the first subunit to be located.

較佳地,具有較大側鏈體積之該胺基酸殘基係選自由精胺酸(R)、苯丙胺酸(F)、酪胺酸(Y)、色胺酸(W)組成之群。Preferably, the amino acid residue with larger side chain volume is selected from the group consisting of arginine (R), phenylalanine (F), tyrosine (Y), and tryptophan (W).

較佳地,具有較小側鏈體積之該胺基酸殘基係選自由丙胺酸(A)、絲胺酸(S)、蘇胺酸(T)、纈胺酸(V)組成之群。Preferably, the amino acid residue with a smaller side chain volume is selected from the group consisting of alanine (A), serine (S), threonine (T), and valine (V).

隆凸及空腔可藉由改變編碼多肽之核酸,例如藉由位點特異性突變誘發或藉由肽合成來製備。The bumps and cavities can be prepared by changing the nucleic acid encoding the polypeptide, for example, by site-specific mutagenesis or by peptide synthesis.

在一特定實施例中,在Fc域之第一次單元(「杵」次單元)之CH3域中,位置366處之蘇胺酸殘基經色胺酸殘基置換(T366W),且在Fc域之第二次單元(「臼」次單元)之CH3域中,位置407處之酪胺酸殘基經纈胺酸殘基置換(Y407V)。在一個實施例中,在Fc域之第二次單元中,另外,位置366處之蘇胺酸殘基經絲胺酸殘基置換(T366S)且位置368處之白胺酸殘基經丙胺酸殘基置換(L368A)(根據Kabat EU索引編號)。In a specific embodiment, in the CH3 domain of the first subunit ("knob" subunit) of the Fc domain, the threonine residue at position 366 is replaced with a tryptophan residue (T366W), and in the Fc domain In the CH3 domain of the second subunit ("hole" subunit) of the domain, the tyrosine residue at position 407 is replaced with a valine residue (Y407V). In one embodiment, in the second subunit of the Fc domain, in addition, the threonine residue at position 366 is replaced by serine residue (T366S) and the leucine residue at position 368 is replaced by alanine Residue substitution (L368A) (numbered according to Kabat EU index).

在又另一實施例中,在Fc域之第一次單元中,另外,位置354處之絲胺酸殘基經半胱胺酸殘基置換(S354C),或位置356處之麩胺酸殘基經半胱胺酸殘基置換(E356C) (特定言之,位置354處之絲胺酸殘基經半胱胺酸殘基置換),且在Fc域之第二次單元中,另外,位置349處之酪胺酸殘基經半胱胺酸殘基置換(Y349C) (根據Kabat EU索引編號)。引入此兩個半胱胺酸殘基使得在Fc域之兩個次單元之間形成二硫橋鍵,從而進一步使二聚體穩定(Carter, J Immunol Methods 248, 7-15 (2001))。In yet another embodiment, in the first unit of the Fc domain, in addition, the serine residue at position 354 is replaced by a cysteine residue (S354C), or the glutamine residue at position 356 The group is replaced by a cysteine residue (E356C) (specifically, the serine residue at position 354 is replaced by a cysteine residue), and in the second subunit of the Fc domain, in addition, the position The tyrosine residue at 349 was replaced with a cysteine residue (Y349C) (numbering according to the Kabat EU index). The introduction of these two cysteine residues allows the formation of a disulfide bridge between the two subunits of the Fc domain, thereby further stabilizing the dimer (Carter, J Immunol Methods 248, 7-15 (2001)).

在一特定實施例中,Fc域之第一次單元包含胺基酸取代S354C及T366W,且Fc域之第二次單元包含胺基酸取代Y349C、T366S、L368A及Y407V (根據Kabat EU索引編號)。In a specific embodiment, the first unit of the Fc domain includes amino acid substitutions S354C and T366W, and the second unit of the Fc domain includes amino acid substitutions Y349C, T366S, L368A, and Y407V (numbered according to the Kabat EU index) .

在一些實施例中,Fc域之第二次單元另外包含胺基酸取代H435R及Y436F (根據Kabat EU索引編號)。In some embodiments, the second subunit of the Fc domain additionally includes amino acid substitutions H435R and Y436F (numbered according to the Kabat EU index).

在一特定實施例中,突變型IL-2多肽與Fc域之第一次單元(包含「杵」修飾)融合(視情況經由連接肽)。不希望受理論所束縛,突變型IL-2多肽與Fc域之含杵次單元的融合(進一步)使包含兩種突變型IL-2多肽之免疫結合物的產生降至最低(兩種含杵多肽發生空間位阻)。In a specific embodiment, the mutant IL-2 polypeptide is fused to the first unit of the Fc domain (including the "knob" modification) (optionally via a linker peptide). Without wishing to be bound by theory, the fusion of the mutant IL-2 polypeptide with the knob-containing subunit of the Fc domain (further) minimizes the production of immunoconjugates containing two mutant IL-2 polypeptides (two knobs-containing The peptide is sterically hindered).

考慮用於加強雜二聚之CH3修飾之其他技術作為根據本發明之替代,且描述例如於WO 96/27011、WO 98/050431、EP 1870459、WO 2007/110205、WO 2007/147901、WO 2009/089004、WO 2010/129304、WO 2011/90754、WO 2011/143545、WO 2012/058768、WO 2013/157954、WO 2013/096291中。Other techniques for enhancing heterodimerization of CH3 modification are considered as alternatives according to the present invention, and are described, for example, in WO 96/27011, WO 98/050431, EP 1870459, WO 2007/110205, WO 2007/147901, WO 2009/ 089004, WO 2010/129304, WO 2011/90754, WO 2011/143545, WO 2012/058768, WO 2013/157954, WO 2013/096291.

在一個實施例中,替代地使用EP 1870459中所描述之雜二聚方法。此方法係基於在Fc域之兩個次單元之間的CH3/CH3域界面中的特定胺基酸位置引入具有相反電荷的帶電胺基酸。針對免疫結合物中所包含之抗體之一個較佳實施例為存在於(Fc域之)兩個CH3域中之一者中的胺基酸突變R409D、K370E及存在於Fc域之CH3域中之另一者中的胺基酸突變D399K、E357K (根據Kabat EU索引編號)。In one embodiment, the heterodimerization method described in EP 1870459 is used instead. This method is based on the introduction of charged amino acids with opposite charges at specific amino acid positions in the CH3/CH3 domain interface between the two subunits of the Fc domain. A preferred embodiment for the antibody contained in the immunoconjugate is the amino acid mutation R409D, K370E present in one of the two CH3 domains (of the Fc domain) and the one present in the CH3 domain of the Fc domain. The amino acid mutations in the other were D399K and E357K (numbered according to the Kabat EU index).

在另一實施例中,本發明之免疫結合物中所包含之抗體包含:Fc域之第一次單元之CH3域中的胺基酸突變T366W;及Fc域之第二次單元之CH3域中的胺基酸突變T366S、L368A、Y407V;及Fc域之第一次單元之CH3域中的另外胺基酸突變R409D、K370E;及Fc域之第二次單元之CH3域中的胺基酸突變D399K、E357K (根據Kabat EU索引編號)。In another embodiment, the antibody contained in the immunoconjugate of the present invention comprises: amino acid mutation T366W in the CH3 domain of the first unit of the Fc domain; and in the CH3 domain of the second unit of the Fc domain Amino acid mutations T366S, L368A, Y407V; and other amino acid mutations in the CH3 domain of the first unit of the Fc domain; R409D, K370E; and amino acid mutations in the CH3 domain of the second unit of the Fc domain D399K, E357K (according to Kabat EU index number).

在另一實施例中,本發明之免疫結合物中所包含之抗體包含Fc域之第一次單元之CH3域中的胺基酸突變S354C、T366W,及Fc域之第二次單元之CH3域中的胺基酸突變Y349C、T366S、L368A、Y407V;或該抗體包含Fc域之第一次單元之CH3域中的胺基酸突變Y349C、T366W及Fc域之第二次單元之CH3域中的胺基酸突變S354C、T366S、L368A、Y407V,及Fc域之第一次單元之CH3域中的另外胺基酸突變R409D、K370E,及Fc域之第二次單元之CH3域中的胺基酸突變D399K、E357K (全部均根據Kabat EU索引編號)。In another embodiment, the antibody contained in the immunoconjugate of the present invention includes amino acid mutations S354C and T366W in the CH3 domain of the first unit of the Fc domain, and the CH3 domain of the second unit of the Fc domain The amino acid mutations in Y349C, T366S, L368A, Y407V; or the antibody contains amino acid mutations in the CH3 domain of the first unit of the Fc domain, Y349C, T366W, and CH3 domains of the second unit of the Fc domain Amino acid mutations S354C, T366S, L368A, Y407V, and other amino acid mutations in the CH3 domain of the first unit of the Fc domain R409D, K370E, and amino acids in the CH3 domain of the second unit of the Fc domain Mutations D399K, E357K (all are numbered according to the Kabat EU index).

在一個實施例中,替代地使用WO 2013/157953中所描述之雜二聚方法。在一個實施例中,第一CH3域包含胺基酸突變T366K,且第二CH3域包含胺基酸突變L351D (根據Kabat EU索引編號)。在又一實施例中,第一CH3域進一步包含胺基酸突變L351K。在又一實施例中,第二CH3域進一步包含選自Y349E、Y349D及L368E之胺基酸突變(較佳為L368E) (根據Kabat EU索引編號)。In one embodiment, the heterodimerization method described in WO 2013/157953 is used instead. In one embodiment, the first CH3 domain contains the amino acid mutation T366K, and the second CH3 domain contains the amino acid mutation L351D (numbered according to the Kabat EU index). In yet another embodiment, the first CH3 domain further comprises an amino acid mutation L351K. In another embodiment, the second CH3 domain further comprises an amino acid mutation selected from Y349E, Y349D and L368E (preferably L368E) (numbered according to the Kabat EU index).

在一個實施例中,替代地使用WO 2012/058768中所描述之雜二聚方法。在一個實施例中,第一CH3域包含胺基酸突變L351Y、Y407A,且第二CH3域包含胺基酸突變T366A、K409F。在又一實施例中,第二CH3域包含位置T411、D399、S400、F405、N390或K392處之另一胺基酸突變,例如選自以下之胺基酸突變:a) T411N、T411R、T411Q、T411K、T411D、T411E或T411W;b) D399R、D399W、D399Y或D399K;c) S400E、S400D、S400R或S400K;d) F405I、F405M、F405T、F405S、F405V或F405W;e) N390R、N390K或N390D;f) K392V、K392M、K392R、K392L、K392F或K392E (根據Kabat EU索引編號)。在又一實施例中,第一CH3域包含胺基酸突變L351Y、Y407A,且第二CH3域包含胺基酸突變T366V、K409F。在又一實施例中,第一CH3域包含胺基酸突變Y407A,且第二CH3域包含胺基酸突變T366A、K409F。在又一實施例中,第二CH3域進一步包含胺基酸突變K392E、T411E、D399R及S400R (根據Kabat EU索引編號)。In one embodiment, the heterodimerization method described in WO 2012/058768 is used instead. In one embodiment, the first CH3 domain contains amino acid mutations L351Y, Y407A, and the second CH3 domain contains amino acid mutations T366A, K409F. In yet another embodiment, the second CH3 domain comprises another amino acid mutation at positions T411, D399, S400, F405, N390, or K392, such as amino acid mutations selected from: a) T411N, T411R, T411Q , T411K, T411D, T411E, or T411W; b) D399R, D399W, D399Y, or D399K; c) S400E, S400D, S400R, or S400K; d) F405I, F405M, F405T, F405S, F405V, or F405W; e) N390R, N390K, or N390D ; F) K392V, K392M, K392R, K392L, K392F or K392E (according to Kabat EU index number). In another embodiment, the first CH3 domain includes amino acid mutations L351Y, Y407A, and the second CH3 domain includes amino acid mutations T366V, K409F. In another embodiment, the first CH3 domain includes amino acid mutation Y407A, and the second CH3 domain includes amino acid mutations T366A, K409F. In another embodiment, the second CH3 domain further includes amino acid mutations K392E, T411E, D399R and S400R (numbered according to the Kabat EU index).

在一個實施例中,替代地使用WO 2011/143545中所描述之雜二聚方法,例如在選自由368及409組成之群的位置處具有胺基酸修飾(根據Kabat EU索引編號)。In one embodiment, the heterodimerization method described in WO 2011/143545 is used instead, for example having amino acid modifications (according to the Kabat EU index number) at positions selected from the group consisting of 368 and 409.

在一個實施例中,替代地使用WO 2011/090762中所描述之雜二聚方法,其亦使用上文所描述之杵-臼技術。在一個實施例中,第一CH3域包含胺基酸突變T366W,且第二CH3域包含胺基酸突變Y407A。在一個實施例中,第一CH3域包含胺基酸突變T366Y,且第二CH3域包含胺基酸突變Y407T (根據Kabat EU索引編號)。In one embodiment, the heterodimerization method described in WO 2011/090762 is used instead, which also uses the above-described pestle-and-mortar technique. In one embodiment, the first CH3 domain contains the amino acid mutation T366W, and the second CH3 domain contains the amino acid mutation Y407A. In one embodiment, the first CH3 domain contains the amino acid mutation T366Y, and the second CH3 domain contains the amino acid mutation Y407T (numbered according to the Kabat EU index).

在一個實施例中,免疫結合物中所包含之抗體或其Fc域屬於IgG2 子類,且替代地使用WO 2010/129304中所描述之雜二聚方法。In one embodiment, the antibody or its Fc domain contained in the immunoconjugate belongs to the IgG 2 subclass, and the heterodimerization method described in WO 2010/129304 is used instead.

在一替代實施例中,促進Fc域之第一與第二次單元結合之修飾包含介導靜電轉向效應之修飾,例如如PCT公開案WO 2009/089004中所描述。一般而言,此方法涉及用帶電胺基酸殘基置換兩個Fc域次單元之界面處之一或多個胺基酸殘基,使得均二聚體形成在靜電上不利的,但雜二聚在靜電上為有利的。在一個此類實施例中,第一CH3域包含用帶負電胺基酸(例如麩胺酸(E)或天冬胺酸(D),較佳為K392D或N392D)對K392或N392進行的胺基酸取代,且第二CH3域包含用帶正電胺基酸(例如離胺酸(K)或精胺酸(R),較佳為D399K、E356K、D356K或E357K,且更佳為D399K及E356K)對D399、E356、D356或E357進行的胺基酸取代。在又一實施例中,第一CH3域進一步包含用帶負電胺基酸(例如麩胺酸(E)或天冬胺酸(D),較佳為K409D或R409D)對K409或R409進行的胺基酸取代。在又一實施例中,第一CH3域進一步或替代地包含用帶負電荷胺基酸(例如麩胺酸(E)或天冬胺酸(D))對K439及/或K370進行的胺基酸取代(所有均根據Kabat EU索引編號)。In an alternative embodiment, the modification that promotes the binding of the first and second subunits of the Fc domain includes a modification that mediates the electrostatic steering effect, for example, as described in PCT Publication WO 2009/089004. Generally speaking, this method involves replacing one or more amino acid residues at the interface of two Fc domain subunits with charged amino acid residues, so that the formation of homodimers is electrostatically unfavorable, but heterodimers It is advantageous to concentrate on static electricity. In one such embodiment, the first CH3 domain comprises a negatively charged amino acid (e.g., glutamine (E) or aspartic acid (D), preferably K392D or N392D) against K392 or N392. The second CH3 domain contains a positively charged amino acid (such as lysine (K) or arginine (R), preferably D399K, E356K, D356K or E357K, and more preferably D399K and E356K) Amino acid substitution of D399, E356, D356 or E357. In yet another embodiment, the first CH3 domain further comprises a negatively charged amino acid (such as glutamic acid (E) or aspartic acid (D), preferably K409D or R409D) for K409 or R409 Base acid substitution. In yet another embodiment, the first CH3 domain further or alternatively includes the amino acid of K439 and/or K370 with a negatively charged amino acid (such as glutamic acid (E) or aspartic acid (D)). Acid substitution (all are numbered according to the Kabat EU index).

在又另一實施例中,替代地使用WO 2007/147901中所描述之雜二聚方法。在一個實施例中,第一CH3域包含胺基酸突變K253E、D282K及K322D,且第二CH3域包含胺基酸突變D239K、E240K及K292D (根據Kabat EU索引編號)。In yet another embodiment, the heterodimerization method described in WO 2007/147901 is used instead. In one embodiment, the first CH3 domain includes amino acid mutations K253E, D282K, and K322D, and the second CH3 domain includes amino acid mutations D239K, E240K, and K292D (numbered according to the Kabat EU index).

在再一實施例中,可替代地使用WO 2007/110205中所描述之雜二聚方法。In yet another embodiment, the heterodimerization method described in WO 2007/110205 may be used instead.

在一個實施例中,Fc域之第一次單元包含胺基酸取代K392D及K409D,且Fc域之第二次單元包含胺基酸取代D356K及D399K (根據Kabat EU索引編號)。In one embodiment, the first unit of the Fc domain includes amino acid substitutions K392D and K409D, and the second unit of the Fc domain includes amino acid substitutions D356K and D399K (numbered according to the Kabat EU index).

Fc 域修飾降低 Fc 受體結合及 / 或效應子功能 Fc域賦予免疫結合物有利藥物動力學特性,包括促成在目標組織中之良好積聚的長血清半衰期及有利的組織-血液分佈比率。然而,其可能同時引起免疫結合物對表現Fc受體之細胞而非較佳抗原攜帶細胞的非所需靶向。此外,Fc受體信號傳遞路徑之共活化可引起細胞介素釋放,其與IL-2多肽及免疫結合物之長半衰期組合,引起細胞介素受體過度活化且在全身性投藥後引起嚴重副作用。據此,與輸注反應相關的習知IgG-IL-2免疫結合物已有描述(參見例如King等人, J Clin Oncol 22, 4463-4473 (2004))。 Fc domain modification reduces Fc receptor binding and / or effector functions. The Fc domain confers favorable pharmacokinetic properties on immune conjugates, including a long serum half-life that promotes good accumulation in target tissues and a favorable tissue-blood distribution ratio. However, it may also cause undesired targeting of immune conjugates to cells expressing Fc receptors rather than the preferred antigen-carrying cells. In addition, the co-activation of the Fc receptor signaling pathway can cause the release of cytokines, which, in combination with the long half-life of IL-2 polypeptides and immune conjugates, cause excessive activation of cytokines receptors and cause serious side effects after systemic administration . Accordingly, conventional IgG-IL-2 immunoconjugates related to infusion reactions have been described (see, for example, King et al., J Clin Oncol 22, 4463-4473 (2004)).

因此,在特定實施例中,相較於原生IgG1 Fc域,根據本發明之免疫結合物中所包含之抗體之Fc域呈現對Fc受體降低的結合親和力及/或降低的效應子功能。在一個此類實施例中,Fc域(或包含該Fc域之抗體)呈現相較於原生IgG1 Fc域(或包含原生IgG1 Fc域之抗體)小於50%,較佳小於20%,更佳小於10%且最佳小於5%的對Fc受體的結合親和力,及/或相較於原生IgG1 Fc域(或包含原生IgG1 Fc域之抗體)小於50%,較佳小於20%,更佳小於10%且最佳小於5%的效應子功能。在一個實施例中,Fc域(或包含該Fc域之抗體)實質上不與Fc受體結合及/或誘導效應子功能。在一特定實施例中,Fc受體為Fcγ受體。在一個實施例中,Fc受體為人類Fc受體。在一個實施例中,Fc受體為活化性Fc受體。在一特定實施例中,Fc受體為活化性人類Fcγ受體,更具體而言人類FcγRIIIa、FcγRI或FcγRIIa,最具體而言人類FcγRIIIa。在一個實施例中,效應子功能為選自CDC、ADCC、ADCP及細胞介素分泌之群的一或多者。在一特定實施例中,效應子功能為ADCC。在一個實施例中,相較於原生IgG1 Fc域,Fc域對新生兒Fc受體(FcRn)呈現實質上類似的結合親和力。當Fc域(或包含該Fc域之抗體)呈現出比原生IgG1 Fc域(或包含原生IgG1 Fc域之抗體)高約70%,特定言之高約80%,更特定言之高90%的對FcRn之結合親和力時,達成對FcRn實質上類似的結合。Therefore, in a specific embodiment, the Fc domain of the antibody contained in the immunoconjugate according to the present invention exhibits reduced binding affinity for Fc receptors and/or reduced effector function compared to the native IgG 1 Fc domain. In one such embodiment, the Fc domain (or antibody comprising the Fc domain) exhibits less than 50%, preferably less than 20%, and more than the native IgG 1 Fc domain (or antibody comprising the native IgG 1 Fc domain). Preferably less than 10% and most preferably less than 5% of the binding affinity to the Fc receptor, and/or less than 50% compared to the native IgG 1 Fc domain (or antibody containing the native IgG 1 Fc domain), preferably less than 20% , More preferably less than 10% and most preferably less than 5% of the effector function. In one embodiment, the Fc domain (or an antibody comprising the Fc domain) does not substantially bind to Fc receptors and/or induce effector functions. In a specific embodiment, the Fc receptor is an Fcγ receptor. In one embodiment, the Fc receptor is a human Fc receptor. In one embodiment, the Fc receptor is an activating Fc receptor. In a specific embodiment, the Fc receptor is an activating human Fcγ receptor, more specifically human FcγRIIIa, FcγRI or FcγRIIa, most specifically human FcγRIIIa. In one embodiment, the effector function is one or more selected from the group of CDC, ADCC, ADCP, and cytokine secretion. In a specific embodiment, the effector function is ADCC. In one embodiment, the Fc domain exhibits substantially similar binding affinity to the neonatal Fc receptor (FcRn) compared to the native IgG 1 Fc domain. When the Fc domain (or antibody containing the Fc domain) appears to be about 70% higher than the native IgG 1 Fc domain (or antibody containing the native IgG 1 Fc domain), specifically about 80% higher, and more specifically 90 higher % Of binding affinity to FcRn, a substantially similar binding to FcRn is achieved.

在某些實施例中,Fc域經工程改造以相較於未經工程改造之Fc域,與Fc受體之結合親和力降低及/或效應子功能降低。在特定實施例中,免疫結合物中所包含之抗體之Fc域包含降低Fc域對Fc受體之結合親和力及/或效應子功能的一或多個胺基酸突變。典型地,Fc域之兩個次單元中之每一者中存在相同的一或多個胺基酸突變。在一個實施例中,胺基酸突變使Fc域對Fc受體的結合親和力降低。在一個實施例中,胺基酸突變使Fc域對Fc受體的結合親和力降低至少2倍、至少5倍或至少10倍。在其中存在大於一個使Fc域與Fc受體之結合親和力降低之胺基酸突變的實施例中,此等胺基酸突變之組合可使Fc域與Fc受體之結合親和力降低至少10倍、至少20倍或甚至至少50倍。在一個實施例中,包含經工程改造之Fc域之抗體呈現相較於包含未經工程改造之Fc域之抗體,小於20%,特定言之小於10%,更特定言之小於5%的與Fc受體之結合親和力。在一特定實施例中,Fc受體為Fcγ受體。在一些實施例中,Fc受體為人類Fc受體。在一些實施例中,Fc受體為活化性Fc受體。在一特定實施例中,Fc受體為活化性人類Fcγ受體,更具體而言人類FcγRIIIa、FcγRI或FcγRIIa,最具體而言人類FcγRIIIa。較佳地,降低與此等受體中之每一者的結合。在一些實施例中,對補體組分的結合親和力,具體言之對C1q的結合親和力,亦降低。在一個實施例中,對新生兒Fc受體(FcRn)的結合親和力未降低。當Fc域(或包含該Fc域之抗體)呈現出比Fc域之未經工程改造之形式(或包含Fc域之該未經工程改造之形式的抗體)高約70%的對FcRn之結合親和力時,達成對FcRn實質上類似的結合,亦即保持Fc域對該受體之結合親和力。Fc域或本發明之免疫結合物中所包含之包含該Fc域之抗體可呈現大於約80%且甚至大於約90%之此類親和力。在某些實施例中,相較於未經工程改造之Fc域,免疫結合物中所包含之抗體的Fc域經工程改造而具有降低的效應子功能。降低的效應子功能可包括(但不限於)以下中之一或多者:補體依賴性細胞毒性(CDC)降低、抗體依賴性細胞介導之細胞毒性(ADCC)降低、抗體依賴性細胞吞噬(ADCP)減少、細胞介素分泌減少、免疫複合物介導之抗原呈遞細胞攝入抗原減少、與NK細胞之結合減少、與巨噬細胞之結合減少、與單核細胞之結合減少、與多形核細胞之結合減少、誘導細胞凋亡之直接信號傳導減少、目標所結合抗體之交聯減少、樹突狀細胞成熟減少或T細胞激活減少。在一個實施例中,降低的效應子功能為選自以下之群的一或多者:CDC降低、ADCC降低、ADCP減少及細胞介素分泌減少。在一特定實施例中,降低的效應子功能為ADCC降低。在一個實施例中,ADCC降低為小於藉由未經工程改造之Fc域(或包含未經工程改造之Fc域的抗體)所誘導的ADCC的20%。In certain embodiments, the Fc domain is engineered to have reduced binding affinity to Fc receptors and/or reduced effector functions compared to unengineered Fc domains. In a specific embodiment, the Fc domain of the antibody contained in the immunoconjugate includes one or more amino acid mutations that reduce the binding affinity of the Fc domain to Fc receptors and/or effector functions. Typically, the same one or more amino acid mutations are present in each of the two subunits of the Fc domain. In one embodiment, the amino acid mutation reduces the binding affinity of the Fc domain to the Fc receptor. In one embodiment, the amino acid mutation reduces the binding affinity of the Fc domain to the Fc receptor by at least 2-fold, at least 5-fold, or at least 10-fold. In embodiments where there is more than one amino acid mutation that reduces the binding affinity of the Fc domain to the Fc receptor, the combination of these amino acid mutations can reduce the binding affinity of the Fc domain to the Fc receptor by at least 10-fold, At least 20 times or even at least 50 times. In one embodiment, an antibody comprising an engineered Fc domain exhibits a ratio of less than 20%, specifically less than 10%, and more specifically less than 5% compared to an antibody comprising an unengineered Fc domain. Binding affinity of Fc receptor. In a specific embodiment, the Fc receptor is an Fcγ receptor. In some embodiments, the Fc receptor is a human Fc receptor. In some embodiments, the Fc receptor is an activating Fc receptor. In a specific embodiment, the Fc receptor is an activating human Fcγ receptor, more specifically human FcγRIIIa, FcγRI or FcγRIIa, most specifically human FcγRIIIa. Preferably, the binding to each of these receptors is reduced. In some embodiments, the binding affinity for complement components, specifically the binding affinity for C1q, is also reduced. In one embodiment, the binding affinity to neonatal Fc receptor (FcRn) is not reduced. When the Fc domain (or the antibody comprising the Fc domain) exhibits a binding affinity to FcRn that is about 70% higher than the unengineered form of the Fc domain (or the unengineered form of the antibody comprising the Fc domain) At the same time, a substantially similar binding to FcRn is achieved, that is, the binding affinity of the Fc domain to the receptor is maintained. The Fc domain or the antibody comprising the Fc domain contained in the immunoconjugate of the present invention may exhibit such an affinity of greater than about 80% and even greater than about 90%. In certain embodiments, the Fc domain of the antibody contained in the immunoconjugate is engineered to have reduced effector functions compared to the unengineered Fc domain. Reduced effector functions may include (but are not limited to) one or more of the following: reduction of complement-dependent cytotoxicity (CDC), reduction of antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis ( ADCP) decreased, decreased secretion of cytokines, decreased uptake of antigen by immune complex-mediated antigen-presenting cells, decreased binding to NK cells, decreased binding to macrophages, decreased binding to monocytes, and polymorphism Decreased nuclear cell binding, decreased direct signaling that induces apoptosis, decreased cross-linking of target-bound antibodies, decreased dendritic cell maturation, or decreased T cell activation. In one embodiment, the reduced effector function is one or more selected from the group consisting of reduced CDC, reduced ADCC, reduced ADCP, and reduced secretion of cytokines. In a specific embodiment, the reduced effector function is ADCC reduction. In one embodiment, the ADCC reduction is less than 20% of the ADCC induced by an unengineered Fc domain (or an antibody comprising an unengineered Fc domain).

在一個實施例中,使Fc域與Fc受體之結合親和力及/或效應子功能降低的胺基酸突變為胺基酸取代。在一個實施例中,Fc域包含位於選自以下之群之位置的胺基酸取代:E233、L234、L235、N297、P331及P329 (根據Kabat EU索引編號)。在一更特定實施例中,Fc域包含處於選自以下之群之位置處的胺基酸取代:L234、L235及P329 (根據Kabat EU索引編號)。在一些實施例中,Fc域包含胺基酸取代L234A及L235A (根據Kabat EU索引編號)。在一個此類實施例中,Fc域為IgG1 Fc域,尤其人類IgG1 Fc域。在一個實施例中,Fc域包含位置P329處之胺基酸取代。在一更特定實施例中,胺基酸取代為P329A或P329G,特定言之P329G (根據Kabat EU索引編號)。在一個實施例中,Fc域包含位置P329處之胺基酸取代及選自E233、L234、L235、N297及P331之位置處的另一胺基酸取代(根據Kabat EU索引編號)。在一更特定實施例中,另一胺基酸取代為E233P、L234A、L235A、L235E、N297A、N297D或P331S。在特定實施例中,Fc域包含位置P329、L234及L235處之胺基酸取代(根據Kabat EU索引編號)。在更特定實施例中,Fc域包含胺基酸突變L234A、L235A及P329G (「P329G LALA」、「PGLALA」或「LALAPG」)。具體言之,在特定實施例中,Fc域中之各次單元包含胺基酸取代L234A、L235A及P329G (Kabat EU索引編號),亦即,在Fc域之第一及第二次單元中之每一者中,位置234處之白胺酸殘基經丙胺酸殘基置換(L234A),位置235處之白胺酸殘基經丙胺酸殘基置換(L235A)且位置329處之脯胺酸殘基經甘胺酸殘基置換(P329G) (根據Kabat EU索引編號)。在一個此類實施例中,Fc域為IgG1 Fc域,尤其人類IgG1 Fc域。「P329G LALA」胺基酸取代組合幾乎完全消除人類IgG1 Fc域與Fcγ受體(以及補體)之結合,如PCT公開案第WO 2012/130831號中所描述,該案以全文引用之方式併入本文中。WO 2012/130831亦描述製備此類突變型Fc域之方法及用於測定其特性(諸如Fc受體結合或效應子功能)之方法。In one embodiment, the amino acid that reduces the binding affinity and/or effector function of the Fc domain to the Fc receptor is mutated into an amino acid substitution. In one embodiment, the Fc domain comprises amino acid substitutions at positions selected from the group: E233, L234, L235, N297, P331, and P329 (numbered according to the Kabat EU index). In a more specific embodiment, the Fc domain comprises amino acid substitutions at positions selected from the group: L234, L235, and P329 (numbered according to the Kabat EU index). In some embodiments, the Fc domain contains amino acid substitutions L234A and L235A (numbered according to the Kabat EU index). In one such embodiment, the Fc domain is an IgG 1 Fc domain, especially a human IgG 1 Fc domain. In one embodiment, the Fc domain comprises an amino acid substitution at position P329. In a more specific embodiment, the amino acid is substituted with P329A or P329G, specifically P329G (according to the Kabat EU index number). In one embodiment, the Fc domain comprises an amino acid substitution at position P329 and another amino acid substitution at a position selected from E233, L234, L235, N297, and P331 (numbered according to the Kabat EU index). In a more specific embodiment, the other amino acid is substituted with E233P, L234A, L235A, L235E, N297A, N297D, or P331S. In a specific embodiment, the Fc domain comprises amino acid substitutions at positions P329, L234, and L235 (numbered according to the Kabat EU index). In a more specific embodiment, the Fc domain includes amino acid mutations L234A, L235A, and P329G ("P329G LALA", "PGLALA" or "LALAPG"). Specifically, in a specific embodiment, each subunit in the Fc domain includes amino acid substitutions L234A, L235A, and P329G (Kabat EU index numbers), that is, in the first and second subunits of the Fc domain In each, the leucine residue at position 234 is replaced by an alanine residue (L234A), the leucine residue at position 235 is replaced by an alanine residue (L235A) and the proline at position 329 The residue was replaced with a glycine residue (P329G) (numbered according to the Kabat EU index). In one such embodiment, the Fc domain is an IgG 1 Fc domain, especially a human IgG 1 Fc domain. The "P329G LALA" amino acid substitution combination almost completely eliminates the binding of the human IgG 1 Fc domain to the Fcγ receptor (and complement), as described in PCT Publication No. WO 2012/130831, which is incorporated by reference in its entirety. Into this article. WO 2012/130831 also describes methods for preparing such mutant Fc domains and methods for determining their properties (such as Fc receptor binding or effector function).

相較於IgG1 抗體,IgG4 抗體呈現降低之Fc受體結合親和力及降低之效應子功能。因此,在一些實施例中,本發明之免疫結合物中所包含之抗體之Fc域為IgG4 Fc域,特定言之人類IgG4 Fc域。在一個實施例中,IgG4 Fc域包含位置S228處之胺基酸取代,特定言之胺基酸取代S228P (根據Kabat EU索引編號)。為了進一步降低其對Fc受體之結合親和力及/或其效應子功能,在一個實施例中,IgG4 Fc域包含位置L235處之胺基酸取代,特定言之胺基酸取代L235E (根據Kabat EU索引編號)。在另一實施例中,IgG4 Fc域包含位置P329處之胺基酸取代,具體言之胺基酸取代P329G (根據Kabat EU索引編號)。在一特定實施例中,IgG4 Fc域包含位置S228、L235及P329處之胺基酸取代,具體言之胺基酸取代S228P、L235E及P329G (根據Kabat EU索引編號)。此類IgG4 Fc域突變體及其Fcγ受體結合特性描述於PCT公開案第WO 2012/130831號中,該案以全文引用之方式併入本文中。Compared with IgG 1 antibody, IgG 4 antibody exhibits reduced Fc receptor binding affinity and reduced effector function. Therefore, in some embodiments, the Fc domain of the antibody contained in the immunoconjugate of the present invention is an IgG 4 Fc domain, specifically, a human IgG 4 Fc domain. In one embodiment, the IgG 4 Fc domain contains an amino acid substitution at position S228, specifically the amino acid substitution S228P (numbered according to the Kabat EU index). In order to further reduce its binding affinity to the Fc receptor and/or its effector function, in one embodiment, the IgG 4 Fc domain contains an amino acid substitution at position L235, specifically the amino acid substitution L235E (according to Kabat EU index number). In another embodiment, the IgG 4 Fc domain contains an amino acid substitution at position P329, specifically the amino acid substitution P329G (numbered according to the Kabat EU index). In a specific embodiment, the IgG 4 Fc domain contains amino acid substitutions at positions S228, L235 and P329, specifically amino acid substitutions S228P, L235E and P329G (numbered according to the Kabat EU index). Such IgG 4 Fc domain mutants and their Fcγ receptor binding properties are described in PCT Publication No. WO 2012/130831, which is incorporated herein by reference in its entirety.

在一特定實施例中,相較於原生IgG1 Fc域呈現與Fc受體之結合親和力降低及/或效應子功能降低的Fc域為包含胺基酸取代L234A、L235A及視情況存在之P329G的人類IgG1 Fc域,或包含胺基酸取代S228P、L235E及視情況存在之P329G的人類IgG4 Fc域(根據Kabat EU索引編號)。In a specific embodiment, the Fc domain that exhibits reduced binding affinity to Fc receptors and/or reduced effector functions compared to the native IgG 1 Fc domain is one that includes amino acid substitutions L234A, L235A, and optionally P329G. Human IgG 1 Fc domain, or human IgG 4 Fc domain (numbered according to Kabat EU index) containing amino acid substitutions S228P, L235E, and optionally P329G.

在某些實施例中,Fc域之N醣基化已消除。在一個此類實施例中,Fc域包含位置N297處之胺基酸突變,特定言之丙胺酸置換天冬醯胺的胺基酸取代(N297A)或天冬胺酸置換天冬醯胺的胺基酸取代(N297D) (根據Kabat EU索引編號)。In certain embodiments, N glycosylation of the Fc domain has been eliminated. In one such embodiment, the Fc domain comprises an amino acid mutation at position N297, specifically the amino acid substitution of alanine for asparagine (N297A) or aspartic acid for the amine of asparagine Base acid substitution (N297D) (numbered according to Kabat EU index).

除上文及PCT公開案第WO 2012/130831號中所描述之Fc域之外,Fc受體結合及/或效應子功能降低之Fc域亦包括具有Fc域殘基238、265、269、270、297、327及329中之一或多者之取代的Fc域(美國專利第6,737,056號) (根據Kabat EU索引編號)。此類Fc突變體包括具有胺基酸位置265、269、270、297及327中之兩者或兩者以上之取代的Fc突變體,包括殘基265及297取代為丙胺酸的所謂「DANA」 Fc突變體(美國專利第7,332,581號)。In addition to the Fc domain described above and in PCT Publication No. WO 2012/130831, Fc domains with reduced Fc receptor binding and/or effector function also include Fc domain residues 238, 265, 269, 270 A substituted Fc domain of one or more of, 297, 327, and 329 (US Patent No. 6,737,056) (according to Kabat EU index number). Such Fc mutants include Fc mutants with substitutions of two or more of amino acid positions 265, 269, 270, 297, and 327, including the so-called "DANA" in which residues 265 and 297 are substituted with alanine Fc mutant (US Patent No. 7,332,581).

突變Fc域可使用此項技術中熟知之遺傳學或化學方法藉由胺基酸缺失、取代、插入或修飾來製備。遺傳學方法可包括編碼DNA序列之位點特異性突變誘發、PCR、基因合成及其類似方法。正確的核苷酸變化可藉由例如定序來驗證。The mutant Fc domain can be prepared by amino acid deletion, substitution, insertion or modification using genetic or chemical methods well known in the art. Genetic methods may include site-specific mutagenesis of coding DNA sequences, PCR, gene synthesis and similar methods. The correct nucleotide change can be verified by, for example, sequencing.

與Fc受體之結合可容易地測定,例如藉由ELISA,或藉由表面電漿子共振(SPR),使用標準儀器,諸如BIAcore儀(GE Healthcare),且可諸如藉由重組表現來獲得Fc受體。替代地,Fc域或包含Fc域之抗體針對Fc受體之結合親和力可使用已知表現特定Fc受體之細胞株(諸如表現FcγIIIa受體之人類NK細胞)來評價。The binding to the Fc receptor can be easily determined, for example, by ELISA, or by surface plasmon resonance (SPR), using standard instruments, such as BIAcore instrument (GE Healthcare), and Fc can be obtained, for example, by recombinant expression. Receptor. Alternatively, the binding affinity of an Fc domain or an antibody containing an Fc domain to an Fc receptor can be evaluated using a cell line known to express a specific Fc receptor (such as human NK cells expressing an FcγIIIa receptor).

Fc域或包含Fc域之抗體的效應子功能可藉由此項技術中已知之方法量測。用於評定所關注分子之ADCC活性之活體外分析之實例描述於美國專利第5,500,362號;Hellstrom等人 Proc Natl Acad Sci USA 83, 7059-7063 (1986);及Hellstrom等人, Proc Natl Acad Sci USA 82, 1499-1502 (1985);美國專利第5,821,337號;Bruggemann等人, J Exp Med 166, 1351-1361 (1987)中。替代地,可採用非放射性分析方法(參見例如用於流式細胞測量術之ACTI™非放射性細胞毒性分析(CellTechnology, Inc. Mountain View, CA);及CytoTox 96® 非放射性細胞毒性分析(Promega, Madison, WI))。適用於此類分析之效應子細胞包括外周血液單核細胞(PBMC)及自然殺手(NK)細胞。可替代地或另外,可在活體內,例如在動物模型中,諸如Clynes等人, Proc Natl Acad Sci USA 95, 652-656 (1998)中所揭示之動物模型中評定所關注分子之ADCC活性。The effector function of an Fc domain or an antibody containing an Fc domain can be measured by methods known in the art. Examples of in vitro assays used to assess the ADCC activity of molecules of interest are described in U.S. Patent No. 5,500,362; Hellstrom et al. Proc Natl Acad Sci USA 83, 7059-7063 (1986); and Hellstrom et al., Proc Natl Acad Sci USA 82, 1499-1502 (1985); US Patent No. 5,821,337; Bruggemann et al., J Exp Med 166, 1351-1361 (1987). Alternatively, non-radioactive analysis methods can be used (see, for example, ACTI™ non-radioactive cytotoxicity analysis for flow cytometry (CellTechnology, Inc. Mountain View, CA); and CytoTox 96 ® non-radioactive cytotoxicity analysis (Promega, Madison, WI)). Effector cells suitable for this type of analysis include peripheral blood mononuclear cells (PBMC) and natural killer (NK) cells. Alternatively or additionally, the ADCC activity of the molecule of interest can be assessed in vivo, for example in animal models such as those disclosed in Clynes et al., Proc Natl Acad Sci USA 95, 652-656 (1998).

在一些實施例中,Fc域與補體組分(具體言之與C1q)的結合降低。因此,在其中Fc域經工程改造而具有降低的效應子功能的一些實施例中,該降低的效應子功能包括降低的CDC。可進行C1q結合分析以判定Fc域或包含Fc域之抗體是否能夠結合C1q且因此具有CDC活性。參見例如WO 2006/029879及WO 2005/100402中之C1q及C3c結合ELISA。為了評定補體活化,可進行CDC分析(參見例如Gazzano-Santoro等人, J Immunol Methods 202, 163 (1996);Cragg等人, Blood 101, 1045-1052 (2003);及Cragg及Glennie, Blood 103, 2738-2743 (2004))。In some embodiments, the binding of the Fc domain to complement components (specifically to Clq) is reduced. Therefore, in some embodiments where the Fc domain is engineered to have reduced effector function, the reduced effector function includes reduced CDC. C1q binding analysis can be performed to determine whether the Fc domain or an Fc domain-containing antibody can bind to C1q and therefore have CDC activity. See, for example, C1q and C3c binding ELISA in WO 2006/029879 and WO 2005/100402. To assess complement activation, CDC analysis can be performed (see, for example, Gazzano-Santoro et al., J Immunol Methods 202, 163 (1996); Cragg et al., Blood 101, 1045-1052 (2003); and Cragg and Glennie, Blood 103, 2738-2743 (2004)).

亦可使用此項技術中已知之方法(參見例如Petkova, S.B.等人,Int'l. Immunol. 18(12):1759-1769 (2006);WO 2013/120929)進行FcRn結合及活體內清除/半衰期測定。Methods known in the art (see, for example, Petkova, SB, et al., Int'l. Immunol. 18(12): 1759-1769 (2006); WO 2013/120929) can also be used for FcRn binding and in vivo clearance/ Half-life determination.

本發明之特定態樣 在一個態樣中,本發明提供一種免疫結合物,其包含突變型IL-2多肽及與CD8結合之抗體, 其中該突變型IL-2多肽為人類IL-2分子,其包含胺基酸取代F42A、Y45A及L72G (相對於人類IL-2序列SEQ ID NO: 13編號);及 其中該抗體包含:(a)重鏈可變區(VH),其包含SEQ ID NO:7之胺基酸序列;及(b)輕鏈可變區(VL),其包含SEQ ID NO:8之胺基酸序列。Specific aspects of the invention In one aspect, the present invention provides an immunoconjugate comprising a mutant IL-2 polypeptide and an antibody that binds to CD8, Wherein the mutant IL-2 polypeptide is a human IL-2 molecule, which contains amino acid substitutions F42A, Y45A and L72G (numbering relative to the human IL-2 sequence SEQ ID NO: 13); and Wherein the antibody comprises: (a) a heavy chain variable region (VH), which comprises the amino acid sequence of SEQ ID NO: 7; and (b) a light chain variable region (VL), which comprises SEQ ID NO: 8 The amino acid sequence.

在一個態樣中,本發明提供一種免疫結合物,其包含突變型IL-2多肽及與CD8結合之抗體, 其中該突變型IL-2多肽為人類IL-2分子,其包含胺基酸取代T3A、F42A、Y45A、L72G及C125A (相對於人類IL-2序列SEQ ID NO: 13編號);及 其中該抗體包含:(a)重鏈可變區(VH),其包含SEQ ID NO:7之胺基酸序列;及(b)輕鏈可變區(VL),其包含SEQ ID NO:8之胺基酸序列。In one aspect, the present invention provides an immunoconjugate comprising a mutant IL-2 polypeptide and an antibody that binds to CD8, Wherein the mutant IL-2 polypeptide is a human IL-2 molecule, which contains amino acid substitutions T3A, F42A, Y45A, L72G and C125A (numbering relative to the human IL-2 sequence SEQ ID NO: 13); and Wherein the antibody comprises: (a) a heavy chain variable region (VH), which comprises the amino acid sequence of SEQ ID NO: 7; and (b) a light chain variable region (VL), which comprises SEQ ID NO: 8 The amino acid sequence.

在一個態樣中,本發明提供一種免疫結合物,其包含突變型IL-2多肽及與CD8結合之抗體, 其中該突變型IL-2多肽包含SEQ ID NO: 14之胺基酸序列;及 其中該抗體包含:(a)重鏈可變區(VH),其包含SEQ ID NO:7之胺基酸序列;及(b)輕鏈可變區(VL),其包含SEQ ID NO:8之胺基酸序列。In one aspect, the present invention provides an immunoconjugate comprising a mutant IL-2 polypeptide and an antibody that binds to CD8, Wherein the mutant IL-2 polypeptide comprises the amino acid sequence of SEQ ID NO: 14; and Wherein the antibody comprises: (a) a heavy chain variable region (VH), which comprises the amino acid sequence of SEQ ID NO: 7; and (b) a light chain variable region (VL), which comprises SEQ ID NO: 8 The amino acid sequence.

在一個實施例中,根據本發明之任一上述態樣,抗體為IgG類免疫球蛋白,其包含由第一及第二次單元構成的人類IgG1 Fc域, 其中在Fc域之第一次單元中,位置366處之蘇胺酸殘基經色胺酸殘基置換(T366W),且在Fc域之第二次單元中,位置407處之酪胺酸殘基經纈胺酸殘基置換(Y407V)且視情況,位置366處之蘇胺酸殘基經絲胺酸殘基置換(T366S)且位置368處之白胺酸殘基經丙胺酸殘基置換(L368A) (根據Kabat EU索引編號), 且其中,Fc域中之各次單元進一步包含胺基酸取代L234A、L235A及P329G (Kabat EU索引編號)。In one embodiment, according to any one of the above aspects of the present invention, the antibody is an IgG immunoglobulin comprising a human IgG 1 Fc domain composed of first and second subunits, wherein the first time in the Fc domain In the unit, the threonine residue at position 366 is replaced by a tryptophan residue (T366W), and in the second unit of the Fc domain, the tyrosine residue at position 407 is replaced by a valine residue (Y407V) and optionally, the threonine residue at position 366 is replaced by serine residue (T366S) and the leucine residue at position 368 is replaced by alanine residue (L368A) (according to Kabat EU index Numbering), and wherein each subunit in the Fc domain further includes amino acid substitutions L234A, L235A and P329G (Kabat EU index numbering).

在此實施例中,該突變型IL-2多肽可在其胺基端胺基酸處與Fc域之第一次單元的羧基端胺基酸融合,經由SEQ ID NO: 15之連接肽融合。In this embodiment, the mutant IL-2 polypeptide can be fused to the carboxy terminal amino acid of the first unit of the Fc domain at its amino terminal amino acid, and fused via the connecting peptide of SEQ ID NO: 15.

在一個態樣中,本發明提供一種免疫結合物,其包含:多肽,其包含與SEQ ID NO:9之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;多肽,其包含與SEQ ID NO:10之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;及多肽,其包含與SEQ ID NO:11之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列。In one aspect, the present invention provides an immunoconjugate comprising: a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98% of the sequence of SEQ ID NO: 9 %, 99%, or 100% identical amino acid sequence; polypeptide, which comprises at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the sequence of SEQ ID NO: 10 % Or 100% identical amino acid sequence; and a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or the sequence of SEQ ID NO: 11 100% identical amino acid sequence.

在一較佳實施例中,本發明提供一種免疫結合物,其包含:多肽,其包含SEQ ID NO:9之胺基酸序列;多肽,其包含SEQ ID NO:10之胺基酸序列;及多肽,其包含SEQ ID NO:11之胺基酸序列。在一更佳實施例中,本發明提供一種免疫結合物,其包含:兩條多肽,其包含SEQ ID NO:9之胺基酸序列;多肽,其包含SEQ ID NO:10之胺基酸序列;及多肽,其包含SEQ ID NO:11之胺基酸序列。In a preferred embodiment, the present invention provides an immunoconjugate comprising: a polypeptide comprising the amino acid sequence of SEQ ID NO: 9; a polypeptide comprising the amino acid sequence of SEQ ID NO: 10; and A polypeptide comprising the amino acid sequence of SEQ ID NO:11. In a more preferred embodiment, the present invention provides an immunoconjugate comprising: two polypeptides comprising the amino acid sequence of SEQ ID NO: 9; polypeptides comprising the amino acid sequence of SEQ ID NO: 10 ; And a polypeptide comprising the amino acid sequence of SEQ ID NO:11.

在一個態樣中,本發明提供一種免疫結合物,其包含:多肽,其包含與SEQ ID NO:9之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;多肽,其包含與SEQ ID NO:10之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;及多肽,其包含與SEQ ID NO:12之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列。In one aspect, the present invention provides an immunoconjugate comprising: a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98% of the sequence of SEQ ID NO: 9 %, 99%, or 100% identical amino acid sequence; polypeptide, which comprises at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the sequence of SEQ ID NO: 10 % Or 100% identical amino acid sequence; and a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or the sequence of SEQ ID NO: 12 100% identical amino acid sequence.

在一較佳實施例中,本發明提供一種免疫結合物,其包含:多肽,其包含SEQ ID NO:9之胺基酸序列;多肽,其包含SEQ ID NO:10之胺基酸序列;及多肽,其包含SEQ ID NO:12之胺基酸序列。In a preferred embodiment, the present invention provides an immunoconjugate comprising: a polypeptide comprising the amino acid sequence of SEQ ID NO: 9; a polypeptide comprising the amino acid sequence of SEQ ID NO: 10; and A polypeptide comprising the amino acid sequence of SEQ ID NO: 12.

在另一態樣中,本發明提供一種免疫結合物,其包含突變型IL-2多肽及與CD8結合之抗體,其中該突變型IL-2多肽為包含胺基酸取代F42A、Y45A及L72G (相對於人類IL-2序列SEQ ID NO: 13編號)之人類IL-2分子;且其中該抗體包含:(a)重鏈可變區(VH),其包含SEQ ID NO:7之胺基酸序列;及(b)輕鏈可變區(VL),其包含SEQ ID NO:29之胺基酸序列。In another aspect, the present invention provides an immunoconjugate comprising a mutant IL-2 polypeptide and an antibody that binds to CD8, wherein the mutant IL-2 polypeptide contains amino acid substitutions F42A, Y45A, and L72G ( Relative to the human IL-2 sequence SEQ ID NO: 13) human IL-2 molecule; and wherein the antibody comprises: (a) heavy chain variable region (VH), which comprises the amino acid of SEQ ID NO: 7 Sequence; and (b) the light chain variable region (VL), which includes the amino acid sequence of SEQ ID NO:29.

在一個態樣中,本發明提供一種免疫結合物,其包含突變型IL-2多肽及與CD8結合之抗體,其中該突變型IL-2多肽為包含胺基酸取代T3A、F42A、Y45A、L72G及C125A (相對於人類IL-2序列SEQ ID NO: 13編號)之人類IL-2分子;且其中該抗體包含:(a)重鏈可變區(VH),其包含SEQ ID NO:7之胺基酸序列;及(b)輕鏈可變區(VL),其包含SEQ ID NO:29之胺基酸序列。In one aspect, the present invention provides an immunoconjugate comprising a mutant IL-2 polypeptide and an antibody that binds to CD8, wherein the mutant IL-2 polypeptide contains amino acid substitutions T3A, F42A, Y45A, L72G And C125A (numbered relative to the human IL-2 sequence SEQ ID NO: 13) human IL-2 molecule; and wherein the antibody comprises: (a) heavy chain variable region (VH), which comprises SEQ ID NO: 7 The amino acid sequence; and (b) the light chain variable region (VL), which includes the amino acid sequence of SEQ ID NO:29.

在一個態樣中,本發明提供一種免疫結合物,其包含突變型IL-2多肽及與CD8結合之抗體,其中該突變型IL-2多肽包含SEQ ID NO: 14之胺基酸序列;且其中該抗體包含:(a)重鏈可變區(VH),其包含SEQ ID NO:7之胺基酸序列;及(b)輕鏈可變區(VL),其包含SEQ ID NO:29之胺基酸序列。In one aspect, the present invention provides an immunoconjugate comprising a mutant IL-2 polypeptide and an antibody that binds to CD8, wherein the mutant IL-2 polypeptide comprises the amino acid sequence of SEQ ID NO: 14; and Wherein the antibody comprises: (a) a heavy chain variable region (VH), which comprises the amino acid sequence of SEQ ID NO: 7; and (b) a light chain variable region (VL), which comprises SEQ ID NO: 29 The amino acid sequence.

在一個實施例中,根據本發明之任一上述態樣,抗體為IgG類免疫球蛋白,其包含由第一及第二次單元構成的人類IgG1 Fc域, 其中在Fc域之第一次單元中,位置366處之蘇胺酸殘基經色胺酸殘基置換(T366W),且在Fc域之第二次單元中,位置407處之酪胺酸殘基經纈胺酸殘基置換(Y407V)且視情況位置366處之蘇胺酸殘基經絲胺酸殘基置換(T366S)及位置368處之白胺酸殘基經丙胺酸殘基置換(L368A) (根據Kabat EU索引編號),且其中Fc域之各次單元進一步包含胺基酸取代L234A、L235A及P329G (Kabat EU索引編號)。In one embodiment, according to any one of the above aspects of the present invention, the antibody is an IgG immunoglobulin comprising a human IgG 1 Fc domain composed of first and second subunits, wherein the first time in the Fc domain In the unit, the threonine residue at position 366 is replaced by a tryptophan residue (T366W), and in the second unit of the Fc domain, the tyrosine residue at position 407 is replaced by a valine residue (Y407V) and optionally the threonine residue at position 366 is replaced by serine residue (T366S) and the leucine residue at position 368 is replaced by alanine residue (L368A) (according to Kabat EU index numbering) ), and each subunit of the Fc domain further includes amino acid substitutions L234A, L235A and P329G (Kabat EU index number).

在此實施例中,該突變型IL-2多肽可在其胺基端胺基酸處與Fc域之第一次單元的羧基端胺基酸融合,經由SEQ ID NO: 15之連接肽融合。In this embodiment, the mutant IL-2 polypeptide can be fused to the carboxy terminal amino acid of the first unit of the Fc domain at its amino terminal amino acid, and fused via the connecting peptide of SEQ ID NO: 15.

在一個態樣中,本發明提供一種免疫結合物,其包含:多肽,其包含與SEQ ID NO:30之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;多肽,其包含與SEQ ID NO:10之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;及多肽,其包含與SEQ ID NO:11之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列。In one aspect, the present invention provides an immunoconjugate comprising: a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98% of the sequence of SEQ ID NO: 30 %, 99%, or 100% identical amino acid sequence; polypeptide, which comprises at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the sequence of SEQ ID NO: 10 % Or 100% identical amino acid sequence; and a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or the sequence of SEQ ID NO: 11 100% identical amino acid sequence.

在一較佳實施例中,本發明提供一種免疫結合物,其包含:多肽,其包含SEQ ID NO:30之胺基酸序列;多肽,其包含SEQ ID NO:10之胺基酸序列;及多肽,其包含SEQ ID NO:11之胺基酸序列。在一更佳實施例中,本發明提供一種免疫結合物,其包含:兩條多肽,其包含SEQ ID NO:30之胺基酸序列;多肽,其包含SEQ ID NO:10之胺基酸序列;及多肽,其包含SEQ ID NO:11之胺基酸序列。In a preferred embodiment, the present invention provides an immunoconjugate comprising: a polypeptide comprising the amino acid sequence of SEQ ID NO: 30; a polypeptide comprising the amino acid sequence of SEQ ID NO: 10; and A polypeptide comprising the amino acid sequence of SEQ ID NO:11. In a more preferred embodiment, the present invention provides an immunoconjugate comprising: two polypeptides comprising the amino acid sequence of SEQ ID NO: 30; polypeptides comprising the amino acid sequence of SEQ ID NO: 10 ; And a polypeptide comprising the amino acid sequence of SEQ ID NO:11.

在一個態樣中,本發明提供一種免疫結合物,其包含:多肽,其包含與SEQ ID NO:30之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;多肽,其包含與SEQ ID NO:10之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列;及多肽,其包含與SEQ ID NO:12之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致的胺基酸序列。In one aspect, the present invention provides an immunoconjugate comprising: a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98% of the sequence of SEQ ID NO: 30 %, 99%, or 100% identical amino acid sequence; polypeptide, which comprises at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of the sequence of SEQ ID NO: 10 % Or 100% identical amino acid sequence; and a polypeptide comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or the sequence of SEQ ID NO: 12 100% identical amino acid sequence.

在一較佳實施例中,本發明提供一種免疫結合物,其包含:多肽,其包含SEQ ID NO:30之胺基酸序列;多肽,其包含SEQ ID NO:10之胺基酸序列;及多肽,其包含SEQ ID NO:12之胺基酸序列。In a preferred embodiment, the present invention provides an immunoconjugate comprising: a polypeptide comprising the amino acid sequence of SEQ ID NO: 30; a polypeptide comprising the amino acid sequence of SEQ ID NO: 10; and A polypeptide comprising the amino acid sequence of SEQ ID NO: 12.

聚核苷酸 本發明進一步提供編碼如本文所描述之免疫結合物或其片段之經分離之聚核苷酸。在一些實施例中,該片段為抗原結合片段。 Polynucleotides The present invention further provides isolated polynucleotides encoding the immunoconjugates or fragments thereof as described herein. In some embodiments, the fragment is an antigen binding fragment.

編碼本發明之免疫結合物之聚核苷酸可作為編碼完整免疫結合物的單一聚核苷酸或作為共表現的多種(例如兩種或更多種)聚核苷酸表現。由共表現之聚核苷酸編碼之多肽可以經由例如二硫鍵或其他方式結合,以形成功能性免疫結合物。舉例而言,抗體之輕鏈部分可由來自包含抗體重鏈部分及突變型IL-2多肽之免疫結合物之部分的個別聚核苷酸編碼。當共表現時,重鏈多肽與輕鏈多肽結合而形成免疫結合物。在另一實例中,包含兩種Fc域次單元之一及突變型IL-2多肽之免疫結合物的部分可由來自包含兩種Fc域次單元之另一者之免疫結合物之該部分的個別聚核苷酸編碼。當共表現時,Fc域次單元將結合以形成Fc域。The polynucleotide encoding the immunoconjugate of the present invention can be expressed as a single polynucleotide encoding the complete immunoconjugate or as multiple (for example, two or more) polynucleotides co-expressing. Polypeptides encoded by co-expressed polynucleotides can be combined via, for example, disulfide bonds or other means to form functional immune conjugates. For example, the light chain portion of the antibody can be encoded by individual polynucleotides from the portion of the immunoconjugate comprising the heavy chain portion of the antibody and the mutant IL-2 polypeptide. When co-expression, heavy chain polypeptides and light chain polypeptides combine to form an immunoconjugate. In another example, the part of the immunoconjugate comprising one of the two Fc domain subunits and the mutant IL-2 polypeptide can be derived from the individual part of the immunoconjugate comprising the other of the two Fc domain subunits. Polynucleotide encoding. When co-expressed, the Fc domain subunits will combine to form an Fc domain.

在一些實施例中,經分離之聚核苷酸編碼如本文所描述之根據本發明之完整免疫結合物。在其他實施例中,經分離之聚核苷酸編碼如本文所描述之根據本發明之免疫結合物中所包含之多肽。In some embodiments, the isolated polynucleotide encodes a complete immunoconjugate according to the invention as described herein. In other embodiments, the isolated polynucleotide encodes the polypeptide contained in the immunoconjugate according to the invention as described herein.

在一個實施例中,本發明之經分離之聚核苷酸編碼免疫結合物中所包含之抗體之重鏈(例如免疫球蛋白重鏈)及突變型IL-2多肽。在另一實施例中,本發明之經分離之聚核苷酸編碼免疫結合物中所包含之抗體之輕鏈。In one embodiment, the isolated polynucleotide of the present invention encodes the heavy chain (e.g., immunoglobulin heavy chain) and mutant IL-2 polypeptide of the antibody contained in the immunoconjugate. In another embodiment, the isolated polynucleotide of the present invention encodes the light chain of the antibody contained in the immunoconjugate.

在某些實施例中,該聚核苷酸或核酸為DNA。在其他實施例中,本發明之聚核苷酸為RNA,例如呈信使RNA (mRNA)形式。本發明之RNA可為單股或雙股的。In certain embodiments, the polynucleotide or nucleic acid is DNA. In other embodiments, the polynucleotide of the present invention is RNA, for example, in the form of messenger RNA (mRNA). The RNA of the present invention can be single-stranded or double-stranded.

重組方法 適用於本發明之突變型IL-2多肽可使用此項技術中熟知之遺傳學或化學方法,藉由缺失、取代、插入或修飾來製備。遺傳學方法可包括編碼DNA序列之位點特異性突變誘發、PCR、基因合成及其類似方法。正確的核苷酸變化可藉由例如定序來驗證。就此而言,原生IL-2之核苷酸序列已由Taniguchi等人描述(Nature 302, 305-10 (1983))且編碼人類IL-2之核酸獲自公共保藏機構,諸如美國菌種保藏中心(American Type Culture Collection,Rockville MD)。原生人類IL-2之序列顯示於SEQ ID NO: 13中。取代或插入可能涉及天然以及非天然胺基酸殘基。胺基酸修飾包括熟知的化學修飾方法,諸如添加醣基化位點或碳水化合物連接及其類似方法。 Recombinant methods The mutant IL-2 polypeptides suitable for use in the present invention can be prepared by deletion, substitution, insertion or modification using genetic or chemical methods well known in the art. Genetic methods may include site-specific mutagenesis of coding DNA sequences, PCR, gene synthesis and similar methods. The correct nucleotide change can be verified by, for example, sequencing. In this regard, the nucleotide sequence of native IL-2 has been described by Taniguchi et al. (Nature 302, 305-10 (1983)) and the nucleic acid encoding human IL-2 was obtained from public collection agencies, such as the American Type Culture Collection (American Type Culture Collection, Rockville MD). The sequence of native human IL-2 is shown in SEQ ID NO: 13. Substitutions or insertions may involve natural and non-natural amino acid residues. Amino acid modification includes well-known chemical modification methods, such as the addition of glycosylation sites or carbohydrate linkages and the like.

本發明之免疫結合物可例如藉由固態肽合成(例如梅里菲爾德固相合成(Merrifield solid phase synthesis))或重組產生獲得。為了重組產生,分離出編碼免疫結合物(片段)之一或多種聚核苷酸(例如如上文所描述)且插入一或多種載體中以便進一步選殖於宿主細胞中及/或在宿主細胞中表現。此類聚核苷酸可使用習知程序容易地分離及定序。在一個實施例中,提供包含本發明之一或多種聚核苷酸的載體,較佳為表現載體。熟習此項技術者已熟知的方法可以用於構築含有免疫結合物(片段)之編碼序列以及適當轉錄/轉譯控制信號的表現載體。此等方法包括活體外重組DNA技術、合成技術及活體內重組/基因重組。參見例如Maniatis等人, MOLECULAR CLONING: A LABORATORY MANUAL, Cold Spring Harbor Laboratory, N.Y. (1989);及Ausubel等人, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Associates and Wiley Interscience, N.Y (1989)中所描述之技術。表現載體可為質體、病毒之一部分,或可為核酸片段。表現載體包括表現卡匣,編碼免疫結合物(片段)的聚核苷酸(亦即編碼區)與啟動子及/或其他轉錄或轉譯控制元件以可操作結合方式選殖於該表現卡匣中。如本文所用,「編碼區」為由轉譯成胺基酸之密碼子組成的核酸之一部分。雖然「終止密碼子」(TAG、TGA或TAA)未轉譯成胺基酸,但可將其視為編碼區(若存在)之一部分,但任何側接序列(例如啟動子、核糖體結合位點、轉錄終止子、內含子、5'及3'非轉譯區及類似序列)不為編碼區之一部分。在單一聚核苷酸構築體中,例如在單一載體上,或在單獨聚核苷酸構築體中,例如在單獨(不同)載體上,可存在兩個或更多個編碼區。此外,任何載體可含有單一編碼區,或可包含兩個或更多個編碼區,例如本發明之載體可編碼一或多個多肽,其經由蛋白質裂解而轉譯後或共轉譯分離成最終蛋白質。另外,本發明之載體、聚核苷酸或核酸可編碼異源編碼區,該等異源編碼區與編碼本發明之免疫結合物或其變體或衍生物的聚核苷酸融合或不融合。異源編碼區包括(但不限於)專用元件或基元,諸如分泌性信號肽或異源功能域。可操作結合為當基因產物(例如多肽)之編碼區與一或多個調控序列以使得基因產物之表現置於調控序列之影響或控制下的方式結合時。若誘導啟動子功能導致編碼所要基因產物之mRNA轉錄且若兩個DNA片段之間連接的性質不干擾表現調控序列導引基因產物表現的能力或不干擾DNA模板轉錄的能力,則兩個DNA片段(諸如多肽編碼區及與其結合的啟動子)為「可操作地結合」。因此,若啟動子能夠影響該核酸之轉錄,則啟動子區域與編碼多肽之核酸可操作地結合。啟動子可為僅導引預定細胞中之DNA實質性轉錄之細胞特異性啟動子。除啟動子以外的其他轉錄控制元件(例如增強子、操縱子、抑制子及轉錄終止信號)可與引導細胞特異性轉錄之聚核苷酸可操作地結合。適合的啟動子及其他轉錄控制區揭示於本文中。多個轉錄控制區已為熟習此項技術者所知。此等區域包括(但不限於)在脊椎動物細胞中起作用的轉錄控制區,諸如(但不限於)啟動子及增強子區段,其來自巨細胞病毒(例如即刻早期啟動子,連同內含子-A)、猿猴病毒40 (例如早期啟動子)及反轉錄病毒(諸如勞斯肉瘤病毒(Rous sarcoma virus))。其他轉錄控制區包括來源於脊椎動物基因(諸如肌動蛋白、熱休克蛋白、牛生長激素及兔β-血球蛋白)之彼等區,以及能夠控制真核細胞中之基因表現的其他序列。其他適合的轉錄控制區包括組織特異性啟動子及增強子以及誘導性啟動子(例如啟動子誘導性四環素(tetracyclin))。類似地,多種轉譯控制元件已為一般技術者所知。此等元件包括(但不限於)核糖體結合位點、轉譯起始及終止密碼子,以及來源於病毒系統的元件(特定言之,內部核糖體進入位點或IRES,亦稱為CITE序列)。表現卡匣亦可包括其他特徵,諸如複製起點,及/或染色體整合元件,諸如反轉錄病毒長末端重複序列(LTR),或腺相關聯病毒(AAV)反向末端重複序列(ITR)。The immunoconjugate of the present invention can be obtained, for example, by solid-state peptide synthesis (for example, Merrifield solid phase synthesis) or recombinant production. For recombinant production, one or more polynucleotides (for example as described above) encoding immunoconjugates (fragments) are isolated and inserted into one or more vectors for further colonization in and/or in host cells which performed. Such polynucleotides can be easily separated and sequenced using conventional procedures. In one embodiment, a vector containing one or more polynucleotides of the present invention is provided, preferably an expression vector. The methods well known to those skilled in the art can be used to construct expression vectors containing coding sequences of immunoconjugates (fragments) and appropriate transcription/translation control signals. These methods include in vitro recombinant DNA technology, synthetic technology and in vivo recombination/gene recombination. See, for example, Maniatis et al., MOLECULAR CLONING: A LABORATORY MANUAL, Cold Spring Harbor Laboratory, NY (1989); and Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Associates and Wiley Interscience, NY (1989). . The expression vector can be a part of a plastid, a virus, or a nucleic acid fragment. The expression vector includes a performance cassette, and a polynucleotide (ie, a coding region) encoding an immunoconjugate (fragment) is operably combined with a promoter and/or other transcription or translation control elements to be colonized in the performance cassette. . As used herein, a "coding region" is a portion of a nucleic acid composed of codons that are translated into amino acids. Although the "stop codon" (TAG, TGA, or TAA) is not translated into an amino acid, it can be regarded as part of the coding region (if present), but any flanking sequence (e.g., promoter, ribosome binding site) , Transcription terminator, intron, 5'and 3'non-translated regions and similar sequences) are not part of the coding region. In a single polynucleotide construct, such as on a single vector, or in a separate polynucleotide construct, such as on a separate (different) vector, two or more coding regions may be present. In addition, any vector can contain a single coding region, or can contain two or more coding regions. For example, the vector of the present invention can encode one or more polypeptides, which are translated or co-translated into the final protein after protein cleavage. In addition, the vector, polynucleotide or nucleic acid of the present invention can encode heterologous coding regions, and these heterologous coding regions are fused or not fused with the polynucleotide encoding the immunoconjugate of the present invention or its variants or derivatives. . Heterologous coding regions include, but are not limited to, dedicated elements or motifs, such as secretory signal peptides or heterologous functional domains. The operative binding is when the coding region of a gene product (eg, a polypeptide) is combined with one or more regulatory sequences in such a way that the expression of the gene product is under the influence or control of the regulatory sequence. If the induced promoter function results in the transcription of the mRNA encoding the desired gene product and if the nature of the connection between the two DNA fragments does not interfere with the ability of the expression regulatory sequence to direct the expression of the gene product or does not interfere with the ability of the DNA template to be transcribed, then two DNA fragments (Such as the polypeptide coding region and the promoter that binds to it) is "operably bound". Therefore, if the promoter can affect the transcription of the nucleic acid, the promoter region is operably bound to the nucleic acid encoding the polypeptide. The promoter may be a cell-specific promoter that only directs substantial transcription of DNA in a predetermined cell. Other transcription control elements (such as enhancers, operons, repressors, and transcription termination signals) other than promoters can be operably combined with polynucleotides that direct cell-specific transcription. Suitable promoters and other transcription control regions are disclosed herein. Many transcription control regions are already known to those familiar with this technology. These regions include (but are not limited to) transcriptional control regions that function in vertebrate cells, such as (but not limited to) promoters and enhancer segments, which are derived from cytomegalovirus (such as immediate early promoters, together with internal Sub-A), simian virus 40 (e.g. early promoter) and retroviruses (such as Rous sarcoma virus). Other transcription control regions include those derived from vertebrate genes (such as actin, heat shock protein, bovine growth hormone, and rabbit β-hemoglobulin), and other sequences that can control gene expression in eukaryotic cells. Other suitable transcription control regions include tissue-specific promoters and enhancers, as well as inducible promoters (such as the promoter-inducible tetracyclin). Similarly, a variety of translation control elements are known to those skilled in the art. These elements include (but are not limited to) ribosome binding sites, translation start and stop codons, and elements derived from viral systems (specifically, internal ribosome entry sites or IRES, also known as CITE sequences) . Performance cassettes may also include other features, such as origins of replication, and/or chromosomal integration elements, such as retrovirus long terminal repeats (LTR), or adeno-associated virus (AAV) inverted terminal repeats (ITR).

本發明之聚核苷酸及核酸編碼區可能與編碼分泌性肽或信號肽的其他編碼區連接,從而導引由本發明之聚核苷酸編碼的多肽之分泌。根據信號假設,哺乳動物細胞所分泌之蛋白質具有信號肽或分泌性前導序列,一旦生長蛋白質鏈跨越粗糙內質網之輸出已起始,該信號肽或分泌性前導序列自成熟蛋白質裂解下。一般熟習此項技術者認識到,脊椎動物細胞分泌的多肽通常具有與多肽之N端融合的信號肽,該信號肽自所轉譯之多肽裂解以產生呈分泌或「成熟」形式的多肽。舉例而言,人類IL-2經由位於多肽N端之20個胺基酸信號序列轉譯,該信號序列隨後裂解而產生成熟的133個胺基酸人類IL-2。在某些實施例中,使用原生信號肽,例如IL-2信號肽或免疫球蛋白重鏈或輕鏈信號肽,或彼序列之保持導引與其可操作地連接之多肽分泌之能力的功能衍生物。可替代地,可使用異源哺乳動物信號肽,或其功能衍生物。舉例而言,野生型前導序列可經人類組織纖維蛋白溶酶原活化因子(TPA)或小鼠β-葡糖醛酸酶之前導序列取代。The polynucleotide and nucleic acid coding region of the present invention may be connected to other coding regions encoding secretory peptides or signal peptides, thereby guiding the secretion of the polypeptide encoded by the polynucleotide of the present invention. According to the signal hypothesis, the protein secreted by mammalian cells has a signal peptide or secretory leader sequence. Once the output of the growing protein chain across the rough endoplasmic reticulum has started, the signal peptide or secretory leader sequence is cleaved from the mature protein. Those skilled in the art recognize that polypeptides secreted by vertebrate cells usually have a signal peptide fused to the N-terminus of the polypeptide, and the signal peptide is cleaved from the translated polypeptide to produce the polypeptide in a secreted or "mature" form. For example, human IL-2 is translated through a 20 amino acid signal sequence located at the N-terminus of the polypeptide, which is then cleaved to produce mature 133 amino acid human IL-2. In certain embodiments, native signal peptides are used, such as IL-2 signal peptide or immunoglobulin heavy chain or light chain signal peptide, or a functional derivation of that sequence that maintains the ability to guide the secretion of the polypeptide to which it is operably linked Things. Alternatively, a heterologous mammalian signal peptide, or a functional derivative thereof, can be used. For example, the wild-type leader sequence can be replaced with a human tissue plasminogen activator (TPA) or mouse β-glucuronidase leader sequence.

在編碼免疫結合物(片段)之聚核苷酸內或在該聚核苷酸之末端處,可包括編碼可用以幫助後續純化(例如組胺酸標籤)或有助於標記免疫結合物之短蛋白質序列的DNA。Within the polynucleotide encoding the immunoconjugate (fragment) or at the end of the polynucleotide, there may be a short code that can be used to facilitate subsequent purification (such as histidine tag) or to help label the immunoconjugate. DNA of protein sequence.

在又一實施例中,提供一種宿主細胞,其包含本發明之一或多種聚核苷酸。在某些實施例中,提供一種宿主細胞,其包含本發明之一或多種載體。聚核苷酸及載體可單獨或組合地併有本文分別與聚核苷酸及載體相關描述之任一特徵。在一個此類實施例中,宿主細胞包含一或多種載體(例如已經該等載體轉化或轉染),該等載體包含編碼本發明之免疫結合物的一或多種聚核苷酸。如本文所用,術語「宿主細胞」係指任何種類的細胞系統,其可經工程改造以產生本發明之免疫結合物或其片段。適合於複製及支持免疫結合物表現的宿主細胞在此項技術中已熟知。此類細胞在適當時可經特定表現載體轉染或轉導,且可以培養含有大量載體之細胞以用於接種大型醱酵槽,從而獲得足量的免疫結合物用於臨床應用。適合的宿主細胞包括原核微生物,諸如大腸桿菌,或各種真核生物細胞,諸如中國倉鼠卵巢細胞(CHO)、昆蟲細胞或其類似物。舉例而言,可在細菌中產生多肽,尤其在不需要醣基化時。表現之後,可自可溶性部分中之細菌細胞漿中分離出多肽且可對該多肽進一步純化。除原核生物外,諸如絲狀真菌或酵母之真核微生物為適用於編碼多肽之載體的選殖或表現宿主,包括醣基化路徑已經「人類化」,從而產生具有部分或完全人類醣基化型態之多肽的真菌及酵母菌株。參見Gerngross, Nat Biotech 22, 1409-1414 (2004),及Li等人, Nat Biotech 24, 210-215 (2006)。適用於表現(醣基化)多肽的宿主細胞亦來源於多細胞生物體(無脊椎動物及脊椎動物)。無脊椎動物細胞之實例包含植物細胞及昆蟲細胞。已鑑別出眾多可與昆蟲細胞結合使用,尤其用於轉染草地黏蟲(Spodoptera frugiperda )細胞之桿狀病毒株。植物細胞培養物亦可用作宿主。參見例如美國專利第5,959,177號、第6,040,498號、第6,420,548號、第7,125,978號及第6,417,429號(描述在轉殖基因植物中產生抗體的PLANTIBODIESTM 技術)。脊椎動物細胞亦可用作宿主。舉例而言,適於在懸浮液中生長之哺乳動物細胞株可為適用的。適用哺乳動物宿主細胞株之其他實例為經SV40轉化的猴腎CV1細胞株(COS-7);人類胚腎細胞株(293或293T細胞,如例如Graham等人, J Gen Virol 36, 59 (1977)中所描述);幼倉鼠腎細胞(BHK);小鼠塞特利氏細胞(mouse sertoli cells) (TM4細胞,如例如Mather, Biol Reprod 23, 243-251 (1980)中所描述);猴腎細胞(CV1);非洲綠猴腎細胞(VERO-76);人類子宮頸癌細胞(HELA);犬腎細胞(MDCK);水牛鼠肝細胞(BRL 3A);人類肺細胞(W138);人類肝細胞(Hep G2);小鼠乳腺腫瘤細胞(MMT 060562);TRI細胞(如例如Mather等人, Annals N. Y. Acad Sci 383, 44-68 (1982)中所描述);MRC 5細胞及FS4細胞。其他適用之哺乳動物宿主細胞株包括中國倉鼠卵巢(CHO)細胞,包括dhfr- CHO細胞(Urlaub等人, Proc Natl Acad Sci USA 77, 4216 (1980));及骨髓瘤細胞株,諸如YO、NS0、P3X63及Sp2/0。關於適用於蛋白質產生之某些哺乳動物宿主細胞株之綜述,參見例如Yazaki及Wu, Methods in Molecular Biology, 第248卷(B.K.C. Lo編, Humana Press, Totowa, NJ), 第255-268頁 (2003)。宿主細胞包括經培養細胞,例如經培養之哺乳動物細胞、酵母細胞、昆蟲細胞、細菌細胞及植物細胞(僅舉數例),且亦包括轉殖基因動物、轉殖基因植物或經培養之植物或動物組織中所包含的細胞。在一個實施例中,宿主細胞為真核細胞,較佳為哺乳動物細胞,諸如中國倉鼠卵巢(CHO)細胞、人胎腎(HEK)細胞或淋巴細胞(例如Y0、NS0、Sp20細胞)。In yet another embodiment, a host cell is provided, which comprises one or more polynucleotides of the present invention. In certain embodiments, a host cell is provided, which comprises one or more vectors of the present invention. Polynucleotides and vectors may be used alone or in combination to incorporate any of the features described herein in relation to polynucleotides and vectors, respectively. In one such embodiment, the host cell contains one or more vectors (e.g., has been transformed or transfected with the vectors), and the vectors contain one or more polynucleotides encoding the immunoconjugates of the invention. As used herein, the term "host cell" refers to any kind of cell system, which can be engineered to produce the immunoconjugate of the present invention or fragments thereof. Host cells suitable for replicating and supporting the expression of immunoconjugates are well known in the art. Such cells can be transfected or transduced with specific expression vectors when appropriate, and cells containing a large number of vectors can be cultured for inoculation of large fermenters, so as to obtain sufficient immunoconjugates for clinical applications. Suitable host cells include prokaryotic microorganisms, such as Escherichia coli, or various eukaryotic cells, such as Chinese hamster ovary cells (CHO), insect cells or the like. For example, polypeptides can be produced in bacteria, especially when glycosylation is not required. After expression, the polypeptide can be isolated from the bacterial cytoplasm in the soluble fraction and the polypeptide can be further purified. In addition to prokaryotes, eukaryotic microorganisms such as filamentous fungi or yeasts are suitable for selection or expression hosts for vectors encoding polypeptides, including glycosylation pathways that have been "humanized", resulting in partial or complete human glycosylation. Types of peptide fungi and yeast strains. See Gerngross, Nat Biotech 22, 1409-1414 (2004), and Li et al., Nat Biotech 24, 210-215 (2006). Host cells suitable for expressing (glycosylated) polypeptides are also derived from multicellular organisms (invertebrates and vertebrates). Examples of invertebrate cells include plant cells and insect cells. Many baculovirus strains that can be used in combination with insect cells have been identified, especially for the transfection of Spodoptera frugiperda cells. Plant cell cultures can also be used as hosts. See, for example, U.S. Patent Nos. 5,959,177, 6,040,498, 6,420,548, 7,125,978, and 6,417,429 (describes PLANTIBODIES technology for producing antibodies in transgenic plants). Vertebrate cells can also be used as hosts. For example, mammalian cell lines suitable for growth in suspension may be suitable. Other examples of suitable mammalian host cell lines are monkey kidney CV1 cell lines (COS-7) transformed with SV40; human embryonic kidney cell lines (293 or 293T cells, such as Graham et al., J Gen Virol 36, 59 (1977) )); baby hamster kidney cells (BHK); mouse sertoli cells (TM4 cells, as described in, for example, Mather, Biol Reprod 23, 243-251 (1980)); monkey Kidney Cells (CV1); African Green Monkey Kidney Cells (VERO-76); Human Cervical Cancer Cells (HELA); Canine Kidney Cells (MDCK); Buffalo Rat Hepatocytes (BRL 3A); Human Lung Cells (W138); Human Hepatocytes (Hep G2); mouse breast tumor cells (MMT 060562); TRI cells (as described in, for example, Mather et al., Annals NY Acad Sci 383, 44-68 (1982)); MRC 5 cells and FS4 cells. Other applicable mammalian host cell lines include Chinese Hamster Ovary (CHO) cells, including dhfr - CHO cells (Urlaub et al., Proc Natl Acad Sci USA 77, 4216 (1980)); and myeloma cell lines, such as YO, NS0 , P3X63 and Sp2/0. For a review of certain mammalian host cell lines suitable for protein production, see, for example, Yazaki and Wu, Methods in Molecular Biology, Volume 248 (Edited by BKC Lo, Humana Press, Totowa, NJ), pages 255-268 (2003 ). Host cells include cultured cells, such as cultured mammalian cells, yeast cells, insect cells, bacterial cells, and plant cells (to name a few), and also include transgenic animals, transgenic plants, or cultured plants Or cells contained in animal tissues. In one embodiment, the host cell is a eukaryotic cell, preferably a mammalian cell, such as Chinese hamster ovary (CHO) cells, human fetal kidney (HEK) cells or lymphocytes (e.g., Y0, NS0, Sp20 cells).

在此等系統中表現外源基因之標準技術為此項技術中已知的。表現與抗體之重鏈或輕鏈融合之突變型IL-2多肽的細胞可以經工程改造,以便亦表現其他抗體鏈,使得經表現的突變型IL-2融合產物為具有重鏈與輕鏈的抗體。Standard techniques for expressing foreign genes in these systems are known in the art. Cells expressing mutant IL-2 polypeptides fused to the heavy or light chain of an antibody can be engineered to also express other antibody chains, so that the expressed mutant IL-2 fusion product has a heavy chain and a light chain Antibody.

在一個實施例中,提供一種製備根據本發明之免疫結合物的方法,其中該方法包含在適於表現免疫結合物的條件下培養如本文所提供之包含一或多種編碼免疫結合物之聚核苷酸的宿主細胞,及視情況自宿主細胞(或宿主細胞培養基)回收免疫結合物。In one embodiment, there is provided a method of preparing an immunoconjugate according to the present invention, wherein the method comprises culturing the polynucleus comprising one or more encoding immunoconjugates as provided herein under conditions suitable for expressing the immunoconjugate Utilize the host cell, and optionally recover the immunoconjugate from the host cell (or host cell culture medium).

在本發明之免疫結合物中,突變型IL-2多肽可與抗體遺傳地融合,或可與抗體化學地結合。可設計IL-2多肽與抗體之基因融合,使得IL-2序列直接與多肽融合或經由連接子序列間接融合。連接子之組成及長度可根據此項技術中熟知之方法判定且可測試其功效。本文中描述了特定連接肽。亦可包括額外序列以併入裂解位點,以在必要時分離融合體之個別組分,該等額外序列例如肽鏈內切酶識別序列。另外,亦可使用此項技術中熟知的多肽合成方法(例如梅里菲爾德固相合成),以化學方式合成IL-2融合蛋白。可使用熟知的化學結合方法,以化學方式使突變型IL-2多肽與其他分子(例如抗體)結合。出於此目的,可使用雙官能交聯劑,諸如此項技術中熟知的同官能及雜官能交聯劑。使用的交聯劑類型視與IL-2偶聯的分子性質而定且可容易地由熟習此項技術者鑑別。替代地或另外,希望結合的突變型IL-2及/或分子可以化學方式衍生化,使得兩者可以此項技術中亦熟知的個別反應結合。In the immunoconjugate of the present invention, the mutant IL-2 polypeptide may be genetically fused with the antibody, or may be chemically bound to the antibody. The gene fusion of IL-2 polypeptide and antibody can be designed so that the IL-2 sequence is directly fused with the polypeptide or indirectly fused via a linker sequence. The composition and length of the linker can be determined according to methods well known in the art and its efficacy can be tested. Specific connecting peptides are described herein. Additional sequences may also be included to incorporate the cleavage site to separate the individual components of the fusion if necessary, such as the endopeptidase recognition sequence. In addition, it is also possible to chemically synthesize IL-2 fusion proteins using peptide synthesis methods well known in the art (for example, Merrifield solid phase synthesis). A well-known chemical binding method can be used to chemically bind the mutant IL-2 polypeptide to other molecules (eg, antibodies). For this purpose, bifunctional crosslinkers can be used, such as homofunctional and heterofunctional crosslinkers well known in the art. The type of cross-linking agent used depends on the nature of the molecule coupled to IL-2 and can be easily identified by those skilled in the art. Alternatively or in addition, the mutant IL-2 and/or molecule to which it is desired to bind can be chemically derivatized so that the two can be combined in separate reactions that are also well known in the art.

本發明之免疫結合物包含抗體。產生抗體之方法為此項技術中熟知的(參見例如Harlow及Lane, 「Antibodies, a laboratory manual」, Cold Spring Harbor Laboratory, 1988)。非天然存在之抗體可使用固相肽合成法來構築,可以重組方式產生(例如,如美國專利第4,186,567號中所描述)或可藉由例如篩選包含可變重鏈及可變輕鏈之組合庫來獲得(參見例如McCafferty之美國專利第5,969,108號)。免疫結合物、抗體及其產生方法亦詳細地描述於例如PCT公開案第WO 2011/020783號、第WO 2012/107417號及第WO 2012/146628中,該等案中之各者以全文引用之方式併入本文中。The immunoconjugate of the present invention includes an antibody. The method of producing antibodies is well known in the art (see, for example, Harlow and Lane, "Antibodies, a laboratory manual", Cold Spring Harbor Laboratory, 1988). Non-naturally occurring antibodies can be constructed using solid-phase peptide synthesis, can be produced recombinantly (for example, as described in US Patent No. 4,186,567) or can be screened for combinations comprising variable heavy chains and variable light chains, for example Library to obtain (see, for example, McCafferty, U.S. Patent No. 5,969,108). Immunoconjugates, antibodies and methods for their production are also described in detail in, for example, PCT Publication Nos. WO 2011/020783, WO 2012/107417, and WO 2012/146628, each of which is cited in full The method is incorporated into this article.

在本發明之免疫結合物中可使用任何動物物種之抗體。適用於本發明之非限制性抗體可為鼠類、靈長類或人類來源。若免疫結合物旨在用於人類用途,則可以使用嵌合形式之抗體,其中抗體恆定區來自人類。呈人類化或完全人類形式之抗體亦可根據此項技術中熟知之方法製備(參見例如Winter之美國專利第5,565,332號)。人類化可藉由多種方法來達成,包括(但不限於):(a)將非人類(例如供體抗體) CDR移植至人類(例如受體抗體)構架區及恆定區上,保留或不保留關鍵構架殘基(例如對於保留良好抗原結合親和力或抗體功能而言具有重要作用之彼等殘基);(b)僅將非人類特異性決定區(SDR或a-CDR;對於抗體-抗原相互作用而言具有關鍵作用之殘基)移植至人類構架區及恆定區上;或(c)移植整個非人類可變域,但藉由表面殘基置換而用人類類似區段對其進行「遮掩」。人類化抗體及其製備方法評述於例如Almagro及Fransson,Front. Biosci. 13:1619-1633 (2008)中,且進一步描述於例如Riechmann等人,Nature 332:323-329 (1988);Queen等人,Proc. Nat'l Acad. Sci. USA 86:10029-10033 (1989);美國專利第5,821,337號、第7,527,791號、第6,982,321號及第7,087,409號;Kashmiri等人,Methods 36:25-34 (2005) (描述特異性決定區(SDR)移植);Padlan,Mol. Immunol. 28:489-498 (1991) (描述「表面再塑」);Dall'Acqua等人,Methods 36:43-60 (2005) (描述「FR改組」);及Osbourn等人,Methods 36:61-68 (2005)及Klimka等人,Br. J. Cancer , 83:252-260 (2000) (描述FR改組之「導引選擇」方法)。可用於人類化之人類構架區包括(但不限於):使用「最佳擬合(best-fit)」法選擇之構架區(參見例如Sims等人,J. Immunol. 151:2296 (1993));來源於具有輕鏈或重鏈可變區之特定子組之人類抗體的共同序列之構架區(參見例如Carter等人,Proc. Natl. Acad. Sci. USA , 89:4285 (1992);及Presta等人,J. Immunol. , 151:2623 (1993));人類成熟(體細胞突變)構架區或人類生殖系構架區(參見例如Almagro及Fransson,Front. Biosci. 13:1619-1633 (2008));及來源於篩選FR庫之構架區(參見例如Baca等人,J. Biol. Chem. 272:10678-10684 (1997)及Rosok等人,J. Biol. Chem. 271:22611-22618 (1996))。Antibodies of any animal species can be used in the immunoconjugate of the present invention. Non-limiting antibodies suitable for use in the present invention may be of murine, primate or human origin. If the immunoconjugate is intended for human use, a chimeric form of the antibody can be used, in which the constant region of the antibody is derived from a human. Antibodies in humanized or fully human form can also be prepared according to methods well known in the art (see, for example, US Patent No. 5,565,332 to Winter). Humanization can be achieved by a variety of methods, including (but not limited to): (a) grafting non-human (such as donor antibody) CDRs to human (such as acceptor antibody) framework regions and constant regions, with or without retention Key framework residues (such as those residues that have an important role in retaining good antigen binding affinity or antibody function); (b) Only non-human specificity determining regions (SDR or a-CDR; for antibody-antigen interactions) Residues that have a key role in terms of function) are transplanted to human framework regions and constant regions; or (c) the entire non-human variable domain is transplanted, but the surface residues are replaced with human-like segments to "mask it"". Humanized antibodies and their preparation methods are reviewed in, for example, Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008), and are further described in, for example, Riechmann et al., Nature 332:323-329 (1988); Queen et al. , Proc. Nat'l Acad. Sci. USA 86:10029-10033 (1989); U.S. Patent Nos. 5,821,337, 7,527,791, 6,982,321 and 7,087,409; Kashmiri et al., Methods 36:25-34 (2005 ) (Describe specificity determining region (SDR) transplantation); Padlan, Mol. Immunol. 28:489-498 (1991) (describe "surface remodeling");Dall'Acqua et al., Methods 36:43-60 (2005 ) (Description "FR reorganization"); and Osbourn et al., Methods 36:61-68 (2005) and Klimka et al., Br. J. Cancer , 83:252-260 (2000) (description of FR reorganization "guide Method of choosing). Human framework regions that can be used for humanization include (but are not limited to): framework regions selected using the "best-fit" method (see, for example, Sims et al., J. Immunol. 151:2296 (1993)) ; Framework regions derived from the common sequence of human antibodies with a specific subgroup of light chain or heavy chain variable regions (see, for example, Carter et al., Proc. Natl. Acad. Sci. USA , 89:4285 (1992); and Presta et al., J. Immunol. , 151:2623 (1993)); human mature (somatic mutation) framework regions or human germline framework regions (see, for example, Almagro and Fransson, Front. Biosci. 13:1619-1633 (2008) )); and the framework regions derived from the screening FR library (see, for example, Baca et al., J. Biol. Chem. 272:10678-10684 (1997) and Rosok et al., J. Biol. Chem. 271:22611-22618 ( 1996)).

可使用此項技術中已知之各種技術來產生人類抗體。人類抗體大體上描述於van Dijk及van de Winkel, Curr Opin Pharmacol 5, 368-74 (2001)及Lonberg, Curr Opin Immunol 20, 450-459 (2008)中。人類抗體可藉由向已經改造可回應於抗原挑戰而產生完整人類抗體或具有人類可變區之完整抗體的轉殖基因動物投與免疫原來製備。此類動物通常含有人類免疫球蛋白基因座的全部或一部分,其置換內源性免疫球蛋白基因座,或存在於染色體外或隨機整合至動物染色體中。在此類轉殖基因小鼠中,內源性免疫球蛋白基因座一般已失活。關於自轉殖基因動物獲得人類抗體之方法的綜述,參見Lonberg,Nat. Biotech. 23:1117-1125 (2005)。亦參見例如描述XENOMOUSETM 技術之美國專利第6,075,181號及第6,150,584號;描述HUMAB®技術之美國專利第5,770,429號;描述美K-M MOUSE®技術之國專利第7,041,870號;及描述VELOCIMOUSE®技術之美國專利申請公開案第US 2007/0061900號。可進一步修飾由此類動物產生之完整抗體之人類可變區,例如藉由與不同人類恆定區組合。Various techniques known in the art can be used to produce human antibodies. Human antibodies are generally described in van Dijk and van de Winkel, Curr Opin Pharmacol 5, 368-74 (2001) and Lonberg, Curr Opin Immunol 20, 450-459 (2008). Human antibodies can be prepared by administering immunogens to transgenic animals that have been engineered to produce complete human antibodies or complete antibodies with human variable regions in response to an antigen challenge. Such animals usually contain all or part of the human immunoglobulin locus, which replaces the endogenous immunoglobulin locus, or exists outside the chromosomes or is randomly integrated into the animal chromosomes. In such transgenic mice, the endogenous immunoglobulin locus is generally inactivated. For a review of methods for obtaining human antibodies from transgenic animals, see Lonberg, Nat. Biotech. 23:1117-1125 (2005). See also, for example , U.S. Patent Nos. 6,075,181 and 6,150,584 describing XENOMOUSE TM technology; U.S. Patent No. 5,770,429 describing HUMAB® technology; National Patent No. 7,041,870 describing U.S. KM MOUSE® technology; and U.S. Patent describing VELOCIMOUSE® technology Application Publication No. US 2007/0061900. The human variable regions of intact antibodies produced by such animals can be further modified, for example, by combining with different human constant regions.

人類抗體亦可藉由基於融合瘤之方法製備得。已描述用於產生人類單株抗體之人類骨髓瘤及小鼠-人類雜骨髓瘤細胞株。(參見例如KozborJ. Immunol. , 133: 3001 (1984);Brodeur等人,Monoclonal Antibody Production Techniques and Applications , 第51-63頁 (Marcel Dekker, Inc., New York, 1987);及Boerner等人,J. Immunol. , 147: 86 (1991))。經由人類B細胞融合瘤技術產生之人類抗體亦描述於Li等人,Proc. Natl. Acad. Sci. USA , 103:3557-3562 (2006)中。其他方法包括例如美國專利第7,189,826號(描述自融合瘤細胞株產生單株人類IgM抗體)及Ni,Xiandai Mianyixue 26(4):265-268 (2006) (描述人類-人類融合瘤)中所描述之彼等方法。人類融合瘤技術(三源融合瘤技術(Trioma technology))亦描述於Vollmers及Brandlein,Histology and Histopathology , 20(3):927-937 (2005),及Vollmers及Brandlein,Methods and Findings in Experimental and Clinical Pharmacology , 27(3):185-91 (2005)中。Human antibodies can also be prepared by methods based on fusion tumors. Human myeloma and mouse-human hybrid myeloma cell lines for the production of human monoclonal antibodies have been described. (See, for example, Kozbor J. Immunol. , 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications , pages 51-63 (Marcel Dekker, Inc., New York, 1987); and Boerner et al., J. Immunol. , 147: 86 (1991)). Human antibodies produced by human B-cell fusion tumor technology are also described in Li et al., Proc. Natl. Acad. Sci. USA , 103:3557-3562 (2006). Other methods include, for example, U.S. Patent No. 7,189,826 (describes the production of single human IgM antibodies from fusion tumor cell lines) and described in Ni, Xiandai Mianyixue 26(4):265-268 (2006) (description of human-human fusion tumors) Of their methods. Human fusion tumor technology (Trioma technology) is also described in Vollmers and Brandlein, Histology and Histopathology , 20(3):927-937 (2005), and Vollmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology , 27(3): 185-91 (2005).

人類抗體亦可藉由自人類抗體庫分離而產生,如本文所描述。Human antibodies can also be produced by isolation from human antibody repertoires, as described herein.

適用於本發明之抗體可藉由自組合庫中篩選出具有所需一或多種活性之抗體來分離出。用於篩選組合庫之方法評述於例如Lerner等人之Nature Reviews 16:498-508 (2016)中。舉例而言,此項技術中已知用於產生噬菌體呈現庫及篩選此類庫中之具有所需結合特徵之抗體的多種方法。此類方法評述於例如Frenzel等人之mAbs 8:1177-1194 (2016);Bazan等人之Human Vaccines and Immunotherapeutics 8:1817-1828 (2012)及Zhao等人之Critical Reviews in Biotechnology 36:276-289 (2016)以及Hoogenboom等人之Methods in Molecular Biology 178:1-37 (O'Brien等人編, Human Press, Totowa, NJ, 2001)及Marks及Bradbury之Methods in Molecular Biology 248:161-175 (Lo編, Human Press, Totowa, NJ, 2003)中。Antibodies suitable for use in the present invention can be isolated by screening combinatorial libraries for antibodies with the desired activity or activities. The method for screening combinatorial libraries is reviewed in, for example, Nature Reviews 16:498-508 (2016) by Lerner et al. For example, various methods for generating phage display libraries and screening such libraries for antibodies with desired binding characteristics are known in the art. Such methods are reviewed in, for example, Frenzel et al. mAbs 8:1177-1194 (2016); Bazan et al. Human Vaccines and Immunotherapeutics 8:1817-1828 (2012) and Zhao et al. Critical Reviews in Biotechnology 36:276-289 (2016) and Hoogenboom et al. Methods in Molecular Biology 178:1-37 (O'Brien et al., Human Press, Totowa, NJ, 2001) and Marks and Bradbury’s Methods in Molecular Biology 248:161-175 (Lo Editor, Human Press, Totowa, NJ, 2003).

在某些噬菌體呈現方法中,VH及VL基因之譜系分別藉由聚合酶鏈式反應(PCR)選殖且在噬菌體文庫中隨機重組,接著可如Winter等人之Annual Review of Immunology 12: 433-455 (1994)中所描述,篩選抗原結合噬菌體。噬菌體典型地呈現呈單鏈Fv (scFv)片段或Fab片段形式之抗體片段。來自經免疫之來源之庫提供對免疫原之高親和力抗體而無需構築融合瘤。替代地,可選殖(例如自人類)原生譜系以提供對廣泛範圍之非自體抗原以及自體抗原之單一抗體來源而無需任何免疫接種,如Griffiths等人之EMBO Journal 12: 725-734 (1993)中所描述。最終,原生庫亦可以合成方式藉由自幹細胞選殖未經重排之V基因區段,且使用含有隨機序列以編碼高度可變CDR3區及實現活體外重排之PCR引子來製得,如由Hoogenboom及Winter之Journal of Molecular Biology 227: 381-388 (1992)中所描述。描述人類抗體噬菌體庫之專利公開案包括例如美國專利第5,750,373號、第7,985,840號、第7,785,903號及第8,679,490號,以及美國專利公開案第2005/0079574號、第2007/0117126號、第2007/0237764號及第2007/0292936號。此項技術中已知用於針對具有一或多種所需活性之抗體篩選組合庫的方法之其他實例包括核糖體及mRNA呈現,以及用於細菌、哺乳動物細胞、昆蟲細胞或酵母細胞上之抗體呈現及選擇的方法。用於酵母表面呈現之方法評述於例如Scholler等人之Methods in Molecular Biology 503:135-56 (2012)及Cherf等人之Methods in Molecular biolo gy 1319:155-175 (2015)以及Zhao等人之Methods in Molecular Biology 889:73-84 (2012)中。用於核糖體呈現之方法描述於例如He等人之Nucleic Acids Research 25:5132-5134 (1997)及Hanes等人之PNAS 94:4937-4942 (1997)。In some phage display methods, the lineages of the VH and VL genes are respectively selected by polymerase chain reaction (PCR) and randomly recombined in a phage library, and then can be used as described in Annual Review of Immunology 12: 433- by Winter et al. As described in 455 (1994), screening for antigen-binding phages. Phages typically present antibody fragments in the form of single chain Fv (scFv) fragments or Fab fragments. The library from immunized sources provides high-affinity antibodies to the immunogen without the need to construct fusion tumors. Alternatively, the native lineage can be cloned (e.g. from humans) to provide a single source of antibodies against a wide range of non-self antigens and self-antigens without any immunization, such as Griffiths et al. EMBO Journal 12: 725-734 ( 1993). Finally, the native library can also be prepared synthetically by cloning unrearranged V gene segments from stem cells, and using PCR primers that contain random sequences to encode highly variable CDR3 regions and achieve in vitro rearrangement, such as Described in Hoogenboom and Winter Journal of Molecular Biology 227: 381-388 (1992). Patent publications describing human antibody phage libraries include, for example, U.S. Patent Nos. 5,750,373, 7,985,840, 7,785,903, and 8,679,490, and U.S. Patent Publications No. 2005/0079574, No. 2007/0117126, No. 2007/0237764 No. and No. 2007/0292936. Other examples of methods known in the art for screening combinatorial libraries for antibodies with one or more desired activities include ribosomal and mRNA presentation, and antibodies used on bacteria, mammalian cells, insect cells, or yeast cells Methods of presentation and selection. A method for rendering the surface of yeast reviewed in e.g. the Scholler et al Methods in Molecular Biology 503: 135-56 ( 2012) and the Cherf et al. Methods in Molecular biolo gy 1319: 155-175 (2015) and Zhao et al. Methods of in Molecular Biology 889:73-84 (2012). Methods for ribosome presentation are described in, for example, He et al., Nucleic Acids Research 25:5132-5134 (1997) and Hanes et al., PNAS 94:4937-4942 (1997).

可能需要對本發明之免疫結合物作進一步化學修飾。舉例而言,藉由與實質上直鏈聚合物(諸如聚乙二醇(PEG)或聚丙二醇(PPG))結合可改良免疫原性及短半衰期之問題(參見例如WO 87/00056)。It may be necessary to further chemically modify the immunoconjugate of the present invention. For example, the problem of immunogenicity and short half-life can be improved by combining with substantially linear polymers such as polyethylene glycol (PEG) or polypropylene glycol (PPG) (see, for example, WO 87/00056).

如本文所描述製備之免疫結合物可藉由此項技術中已知的技術(諸如高效液相層析、離子交換層析、凝膠電泳、親和力層析、尺寸排阻層析及其類似技術)純化。用於純化特定蛋白質之實際條件部分地視諸如淨電荷、疏水性、親水性等因素而定,且對於熟習此項技術者而言為顯而易見的。對於親和層析純化而言,可使用免疫結合物所結合之抗體、配體、受體或抗原。舉例而言,可使用特異性結合突變型IL-2多肽的抗體。對於親和層析而言,可使用具有蛋白質A或蛋白質G之基質純化本發明之免疫結合物。舉例而言,可以基本上如實例中所描述,使用依序進行的蛋白質A或G親和層析及尺寸排阻層析來分離免疫結合物。免疫結合物之純度可以藉由多種熟知分析方法中之任一種來測定,包括凝膠電泳、高壓液相層析及其類似方法。The immunoconjugate prepared as described herein can be prepared by techniques known in the art (such as high performance liquid chromatography, ion exchange chromatography, gel electrophoresis, affinity chromatography, size exclusion chromatography and similar techniques). )purification. The actual conditions used to purify a particular protein depend in part on factors such as net charge, hydrophobicity, hydrophilicity, etc., and are obvious to those skilled in the art. For affinity chromatography purification, antibodies, ligands, receptors, or antigens bound by immunoconjugates can be used. For example, antibodies that specifically bind to mutant IL-2 polypeptides can be used. For affinity chromatography, a matrix with protein A or protein G can be used to purify the immunoconjugate of the present invention. For example, the immunoconjugates can be separated using protein A or G affinity chromatography and size exclusion chromatography performed in sequence, substantially as described in the examples. The purity of the immunoconjugate can be determined by any of a variety of well-known analytical methods, including gel electrophoresis, high pressure liquid chromatography and the like.

組合物、調配物及投藥途徑 在另一態樣中,本發明提供包含如本文中所描述之免疫結合物的醫藥組合物,例如供任一種下述治療方法使用。在一個實施例中,醫藥組合物包含本文提供之任一種免疫結合物及醫藥學上可接受之載劑。在另一實施例中,醫藥組合物包含本文提供之任一種免疫結合物及至少一種額外治療劑,例如如下文所描述。 Compositions, formulations and routes of administration In another aspect, the present invention provides pharmaceutical compositions comprising an immunoconjugate as described herein, for example, for use in any of the following treatment methods. In one embodiment, the pharmaceutical composition includes any of the immunoconjugates provided herein and a pharmaceutically acceptable carrier. In another embodiment, the pharmaceutical composition comprises any one of the immunoconjugates provided herein and at least one additional therapeutic agent, for example as described below.

另外提供一種產生呈適於活體內投與形式之本發明之免疫結合物的方法,該方法包含(a)獲得根據本發明之免疫結合物,及(b)用至少一種醫藥學上可接受之載劑調配該免疫結合物,其中免疫結合物製劑係針對活體內投與而調配。In addition, there is provided a method for producing the immunoconjugate of the present invention in a form suitable for in vivo administration, the method comprising (a) obtaining the immunoconjugate according to the present invention, and (b) using at least one pharmaceutically acceptable The carrier formulates the immunoconjugate, wherein the immunoconjugate preparation is formulated for in vivo administration.

本發明之醫藥組合物包含溶解或分散於醫藥學上可接受之載劑中之治療有效量的免疫結合物。片語「醫藥學上或藥理學上可接受」係指分子實體及組合物在所用劑量及濃度下對於接受者而言一般為無毒性的,亦即當適當時向動物(諸如人類)投與時,不會產生有害的過敏反應或其他不良反應。熟習此項技術者依據本發明將得知含有免疫結合物及視情況存在之額外活性成分的醫藥組合物之製備,如Remington's Pharmaceutical Sciences, 第18版, Mack Printing Company, 1990所例示,該文獻以引用之方式併入本文中。此外,關於動物(例如人類)投藥,應瞭解,製劑應滿足FDA生物學標準局(FDA Office of Biological Standards)或其他國家之對應機關所要求的無菌性、發熱性、總體安全及純度標準。較佳組合物為凍乾調配物或水溶液。如本文所用,術語「醫藥學上可接受之載劑」包括如熟習此項技術者將已知的任何及所有溶劑、緩衝劑、分散介質、包衣、界面活性劑、抗氧化劑、防腐劑(例如抗細菌劑、抗真菌劑)、等張劑、吸收延遲劑、鹽、抗氧化劑、蛋白質、藥物、藥物穩定劑、聚合物、凝膠、黏合劑、賦形劑、崩解劑、潤滑劑、甜味劑、調味劑、染料及其類似材料及其組合(參見例如Remington's Pharmaceutical Sciences,第18版,Mack Printing Company,1990,第1289-1329頁,其以引用之方式併入本文中)。除非任何習知載劑與活性成分不相容,否則考慮其在治療或醫藥組合物中之用途。The pharmaceutical composition of the present invention comprises a therapeutically effective amount of the immunoconjugate dissolved or dispersed in a pharmaceutically acceptable carrier. The phrase "pharmaceutically or pharmacologically acceptable" means that molecular entities and compositions are generally non-toxic to the recipient at the dose and concentration used, that is, when appropriate, when administered to animals (such as humans) At times, no harmful allergic reactions or other adverse reactions will occur. Those skilled in the art will know the preparation of pharmaceutical compositions containing immunoconjugates and optionally additional active ingredients according to the present invention, as exemplified in Remington's Pharmaceutical Sciences, 18th edition, Mack Printing Company, 1990. The way of citation is incorporated into this article. In addition, with regard to the administration of drugs to animals (such as humans), it should be understood that the preparations should meet the sterility, fever, overall safety and purity standards required by the FDA Office of Biological Standards or corresponding agencies in other countries. The preferred composition is a lyophilized formulation or an aqueous solution. As used herein, the term "pharmaceutically acceptable carrier" includes any and all solvents, buffers, dispersion media, coatings, surfactants, antioxidants, preservatives ( Such as antibacterial agents, antifungal agents), isotonic agents, absorption delay agents, salts, antioxidants, proteins, drugs, drug stabilizers, polymers, gels, binders, excipients, disintegrants, lubricants , Sweeteners, flavors, dyes, and similar materials and combinations thereof (see, for example, Remington's Pharmaceutical Sciences, 18th edition, Mack Printing Company, 1990, pages 1289-1329, which are incorporated herein by reference). Unless any conventional carrier is incompatible with the active ingredient, its use in therapeutic or pharmaceutical compositions is considered.

本發明之免疫結合物(及任何其他治療劑)可藉由任何適合之方式,包括非經腸、肺內及鼻內且必要時針對局部治療,病灶內投與來投與。非經腸輸注包括肌肉內、靜脈內、動脈內、腹膜內或皮下投與。部分地視投藥之短期或長期性而定,給藥可藉由任何適合之途徑(例如藉由注射,諸如靜脈內或皮下注射)來進行。The immunoconjugate (and any other therapeutic agent) of the present invention can be administered by any suitable method, including parenteral, intrapulmonary, and intranasal, and if necessary, for local treatment, intralesional administration. Parenteral infusion includes intramuscular, intravenous, intraarterial, intraperitoneal or subcutaneous administration. Depending in part on the short-term or long-term nature of the administration, the administration can be carried out by any suitable route (for example, by injection, such as intravenous or subcutaneous injection).

非經腸組合物包括為藉由注射(例如皮下、皮內、病灶內、靜脈內、動脈內、肌肉內、鞘內或腹膜內注射)投藥所設計的彼等組合物。對於注射而言,本發明之免疫結合物可以在水溶液中,較佳在生理學上相容之緩衝液(諸如漢克氏溶液(Hank's solution)、林格氏溶液(Ringer's solution)或生理鹽水緩衝液)中調配。溶液可含有調配劑,諸如懸浮劑、穩定劑及/或分散劑。替代地,免疫結合物可呈粉末形式,其在使用之前用適合媒劑(例如無菌無熱原質水)復原。必要時,藉由將所需量之本發明之免疫結合物與下文列舉之多種其他成分一起併入適當溶劑中來製備無菌可注射溶液。無菌性可容易藉由例如無菌過濾膜過濾來實現。一般而言,分散液係藉由將各種經滅菌之活性成分併入含有基本分散介質及/或其他成分的無菌媒劑中來製備。在無菌粉末用於製備無菌可注射溶液、懸浮液或乳液之情況下,較佳製備方法為真空乾燥及冷凍乾燥技術,其利用預先無菌過濾之液體介質產生活性成分與任何其他所需成分之粉末。必要時,液體介質宜經緩衝,且在與足夠生理鹽水或葡萄糖一起注射之前首先用液體稀釋劑產生等張性。該組合物在製造及儲存條件下必須為穩定的,且必須避免諸如細菌及真菌之微生物的污染作用。應瞭解,內毒素污染應最低限度地保持在安全水準,例如低於0.5 ng/mg蛋白質。適合的醫藥學上可接受之載劑包括(但不限於):緩衝劑,諸如磷酸鹽、檸檬酸鹽及其他有機酸;抗氧化劑,包括抗壞血酸及甲硫胺酸;防腐劑(諸如氯化十八烷基二甲基苯甲基銨;氯化六羥季銨;苯紮氯銨(benzalkonium chloride);苄索氯銨(benzethonium chloride);苯酚、丁醇或苯甲醇;對羥苯甲酸烷基酯,諸如對羥基苯甲酸甲酯或對羥基苯甲酸丙酯;兒茶酚;間苯二酚;環己醇;3-戊醇;及間甲酚);低分子量(小於約10個殘基)多肽;蛋白質,諸如血清白蛋白、明膠或免疫球蛋白;親水性聚合物,諸如聚乙烯吡咯啶酮;胺基酸,諸如甘胺酸、麩醯胺酸、天冬醯胺、組胺酸、精胺酸或離胺酸;單醣、雙醣及其他碳水化合物,包括葡萄糖、甘露糖或糊精;螯合劑,諸如EDTA;糖,諸如蔗糖、甘露糖醇、海藻糖或山梨糖醇;成鹽抗衡離子,諸如鈉;金屬錯合物(例如Zn-蛋白質錯合物);及/或非離子性界面活性劑,諸如聚乙二醇(PEG)。水性注射懸浮液可含有增加懸浮液黏度之化合物,諸如羧甲基纖維素鈉、山梨糖醇、聚葡萄糖或其類似物。視情況,懸浮液亦可含有適合的穩定劑或增加化合物溶解性之藥劑以允許製備高度濃縮之溶液。另外,活性化合物之懸浮液可視需要製備成油性注射懸浮液。適合的親脂性溶劑或媒劑包括脂肪油,諸如芝麻油;或合成脂肪酸酯,諸如油酸乙酯或三酸甘油酯;或脂質體。Parenteral compositions include those designed for administration by injection (e.g., subcutaneous, intradermal, intralesional, intravenous, intraarterial, intramuscular, intrathecal, or intraperitoneal injection). For injection, the immunoconjugate of the present invention may be in an aqueous solution, preferably a physiologically compatible buffer (such as Hank's solution, Ringer's solution or physiological saline buffer). Liquid) in the deployment. The solution may contain formulation agents such as suspending agents, stabilizers and/or dispersants. Alternatively, the immunoconjugate may be in powder form, which is reconstituted with a suitable vehicle (e.g., sterile pyrogen-free water) before use. When necessary, a sterile injectable solution is prepared by incorporating the required amount of the immunoconjugate of the present invention together with various other ingredients listed below in an appropriate solvent. Sterility can be easily achieved by, for example, sterile filtration membrane filtration. Generally speaking, dispersions are prepared by incorporating various sterilized active ingredients into a sterile vehicle containing a basic dispersion medium and/or other ingredients. When sterile powders are used to prepare sterile injectable solutions, suspensions or emulsions, the preferred preparation methods are vacuum drying and freeze-drying techniques, which use pre-sterile filtered liquid media to produce powders of the active ingredient and any other required ingredients . If necessary, the liquid medium should be buffered, and the liquid diluent should first be used to produce isotonicity before being injected with enough saline or glucose. The composition must be stable under the conditions of manufacture and storage, and must avoid contamination by microorganisms such as bacteria and fungi. It should be understood that endotoxin contamination should be kept at a minimum safety level, such as less than 0.5 ng/mg protein. Suitable pharmaceutically acceptable carriers include (but are not limited to): buffers, such as phosphate, citrate and other organic acids; antioxidants, including ascorbic acid and methionine; preservatives (such as decachloride Octaalkyl dimethyl benzyl ammonium; hexahydroxy quaternary ammonium chloride; benzalkonium chloride; benzethonium chloride; phenol, butanol or benzyl alcohol; alkyl paraben Esters, such as methyl or propyl p-hydroxybenzoate; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) ) Polypeptides; proteins, such as serum albumin, gelatin or immunoglobulin; hydrophilic polymers, such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, asparagine, histidine , Arginine or lysine; monosaccharides, disaccharides and other carbohydrates, including glucose, mannose or dextrin; chelating agents, such as EDTA; sugars, such as sucrose, mannitol, trehalose or sorbitol; Salt-forming counterions, such as sodium; metal complexes (e.g., Zn-protein complexes); and/or nonionic surfactants, such as polyethylene glycol (PEG). Aqueous injection suspensions may contain compounds that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, polydextrose or the like. Optionally, the suspension may also contain suitable stabilizers or agents that increase the solubility of the compound to allow the preparation of highly concentrated solutions. In addition, the suspension of the active compound can be prepared as an oily injection suspension if necessary. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil; or synthetic fatty acid esters, such as ethyl oleate or triglycerides; or liposomes.

活性成分可包覆於微膠囊中,例如藉由凝聚技術或藉由界面聚合法所製備之微膠囊,例如分別為羥甲基纖維素或明膠微膠囊及聚(甲基丙烯酸甲酯)微膠囊;包覆於膠態藥物遞送系統(例如脂質體、白蛋白微球體、微乳液、奈米粒子及奈米膠囊)中或巨乳液中。此類技術揭示於Remington's Pharmaceutical Sciences (第18版, Mack Printing Company, 1990)中。可以製備持續釋放型製劑。持續釋放型製劑之適合實例包括含有多肽之固體疏水性聚合物之半滲透基質,該等基質呈成形物品形式,例如膜或微膠囊。在特定實施例中,可藉由在組合物中使用延遲吸收之藥劑,諸如單硬脂酸鋁、明膠或其組合來延長可注射組合物之吸收。The active ingredient can be encapsulated in microcapsules, such as microcapsules prepared by coacervation technology or by interfacial polymerization, such as hydroxymethylcellulose or gelatin microcapsules and poly(methyl methacrylate) microcapsules, respectively ; Coated in colloidal drug delivery systems (such as liposomes, albumin microspheres, microemulsions, nanoparticles and nanocapsules) or macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences (18th edition, Mack Printing Company, 1990). Sustained release formulations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing polypeptides, which matrices are in the form of shaped articles, such as films or microcapsules. In certain embodiments, the absorption of the injectable composition can be prolonged by using an agent that delays absorption in the composition, such as aluminum monostearate, gelatin, or a combination thereof.

除先前描述之組合物以外,免疫結合物亦可調配成儲槽式製劑。此類長效調配物可藉由植入(例如皮下或肌肉內植入)或藉由肌肉內注射來投與。因此,舉例而言,免疫結合物可用適合的聚合物或疏水性材料調配(例如在可接受之油中調配成乳液)或用離子交換樹脂調配,或調配成微溶衍生物,例如微溶鹽。In addition to the previously described composition, the immunoconjugate can also be formulated into a depot preparation. Such long acting formulations can be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Therefore, for example, the immunoconjugate can be formulated with suitable polymers or hydrophobic materials (for example, as an emulsion in an acceptable oil) or with ion exchange resins, or as a sparingly soluble derivative, such as a sparingly soluble salt. .

包含本發明之免疫結合物的醫藥組合物可藉助於習知混合、溶解、乳化、囊封、包覆或凍乾製程製造。醫藥組合物可使用生理學上可接受之有利於將蛋白質處理成可在醫藥學上使用之製劑的一或多種載劑、稀釋劑、賦形劑或助劑,以習知方式調配。適當之調配物視所選擇之投藥途徑而定。The pharmaceutical composition containing the immunoconjugate of the present invention can be manufactured by means of a conventional mixing, dissolving, emulsifying, encapsulating, coating or freeze-drying process. The pharmaceutical composition can be formulated in a conventional manner using one or more carriers, diluents, excipients, or adjuvants that are physiologically acceptable for processing the protein into a preparation that can be used in medicine. The appropriate formulation depends on the chosen route of administration.

免疫結合物可調配成呈游離酸或鹼、中性或鹽形式的組合物。醫藥學上可接受之鹽為實質上保留游離酸或鹼之生物活性的鹽。此等鹽包括酸加成鹽,例如與蛋白質組合物之游離胺基形成的鹽,或與無機酸(諸如鹽酸或磷酸)或有機酸(諸如乙酸、草酸、酒石酸或杏仁酸)形成的鹽。與自由羧基形成的鹽亦可衍生自無機鹼,諸如氫氧化鈉、氫氧化鉀、氫氧化銨、氫氧化鈣或氫氧化鐵;或有機鹼,諸如異丙胺、三甲胺、組胺酸或普魯卡因(procaine)。相較於對應游離鹼形式,醫藥鹽傾向於更溶於水性及其他質子溶劑中。The immunoconjugate can be formulated into a composition in free acid or base, neutral or salt form. A pharmaceutically acceptable salt is a salt that substantially retains the biological activity of the free acid or base. Such salts include acid addition salts, such as salts formed with free amine groups of protein compositions, or salts formed with inorganic acids (such as hydrochloric acid or phosphoric acid) or organic acids (such as acetic acid, oxalic acid, tartaric acid, or mandelic acid). Salts with free carboxyl groups can also be derived from inorganic bases, such as sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, or iron hydroxide; or organic bases, such as isopropylamine, trimethylamine, histidine or general Procaine. Compared to the corresponding free base form, pharmaceutical salts tend to be more soluble in aqueous and other protic solvents.

治療方法及組合物 本文提供之任一種免疫結合物可用於治療方法中。本發明之免疫結合物可用作免疫治療劑,例如治療癌症的免疫治療劑。 Treatment methods and compositions Any of the immunoconjugates provided herein can be used in treatment methods. The immunoconjugate of the present invention can be used as an immunotherapeutic agent, such as an immunotherapeutic agent for treating cancer.

為了用於治療方法中,本發明之免疫結合物將以符合良好醫學實踐的方式調配、給藥及投與。在此情形下,考慮因素包括所治療之特定病症、所治療之特定哺乳動物、個別患者之臨床病狀、病症之病因、藥劑遞送位點、投藥方法、投藥時程及從醫者已知之其他因素。In order to be used in a therapeutic method, the immunoconjugate of the present invention will be formulated, administered and administered in a manner consistent with good medical practice. In this case, the consideration factors include the specific disease being treated, the specific mammal being treated, the clinical condition of individual patients, the etiology of the disease, the site of drug delivery, the method of administration, the time course of administration, and others known to the medical practitioner factor.

本發明之免疫結合物可以尤其適用於治療其中刺激宿主免疫系統有益的疾病狀態,特定而言,其中需要增強的細胞免疫反應的病狀。此等疾病狀態可以包括其中宿主免疫反應不足或缺乏的疾病狀態。可投與本發明之免疫結合物的疾病狀態包含例如其中細胞免疫反應將為特定免疫之關鍵機制的腫瘤或感染。本發明之免疫結合物可以本身或以任何適合的醫藥組合物投與。The immunoconjugates of the present invention may be particularly suitable for the treatment of disease states in which stimulation of the host immune system is beneficial, in particular, diseases in which an enhanced cellular immune response is required. Such disease states may include disease states in which the host immune response is insufficient or lacking. Disease states in which the immunoconjugates of the present invention can be administered include, for example, tumors or infections in which the cellular immune response will be a key mechanism of specific immunity. The immunoconjugate of the present invention can be administered by itself or in any suitable pharmaceutical composition.

在一個態樣中,提供用作藥劑之本發明之免疫結合物。在其他態樣中,提供用於治療疾病之本發明之免疫結合物。在某些實施例中,提供治療方法用的本發明之免疫結合物。在一個實施例中,本發明提供用於治療有需要之個體之疾病之如本文所描述的免疫結合物。在某些實施例中,本發明提供治療患有疾病之個體之方法中使用的免疫結合物,其包含向該個體投與治療有效量之免疫結合物。在某些實施例中,待治療之疾病為增生性病症。在一特定實施例中,疾病為癌症。在某些實施例中,該方法進一步包含向個體投與治療有效量之至少一種額外治療劑,例如若待治療之疾病為癌症,則投與抗癌劑。在其他實施例中,本發明提供用於刺激免疫系統的免疫結合物。在某些實施例中,本發明提供刺激個體之免疫系統之方法中使用的免疫結合物,該方法包含向個體投與有效量之刺激免疫系統的免疫結合物。根據任一上述實施例之「個體」為哺乳動物,較佳為人類。根據任一上述實施例之「免疫系統之刺激」可包括以下中之任一者或多者:免疫功能的整體提高、T細胞功能的提高、B細胞功能的提高、淋巴球功能的恢復、IL-2受體表現的增強、T細胞反應的增強、自然殺手細胞活性或淋巴介質活化的殺手(LAK)細胞活性的增強,及其類似者。In one aspect, the immunoconjugate of the present invention for use as a medicament is provided. In other aspects, the immunoconjugate of the present invention for use in the treatment of diseases is provided. In certain embodiments, the immunoconjugates of the present invention for use in therapeutic methods are provided. In one embodiment, the present invention provides an immunoconjugate as described herein for use in the treatment of a disease in an individual in need. In certain embodiments, the present invention provides an immunoconjugate for use in a method of treating an individual suffering from a disease, which comprises administering to the individual a therapeutically effective amount of the immunoconjugate. In certain embodiments, the disease to be treated is a proliferative disorder. In a specific embodiment, the disease is cancer. In certain embodiments, the method further comprises administering to the individual a therapeutically effective amount of at least one additional therapeutic agent, for example, if the disease to be treated is cancer, administering an anticancer agent. In other embodiments, the present invention provides immunoconjugates for stimulating the immune system. In certain embodiments, the present invention provides an immune conjugate used in a method of stimulating the immune system of an individual, the method comprising administering to the individual an effective amount of an immune conjugate that stimulates the immune system. The "individual" according to any of the above embodiments is a mammal, preferably a human. The "stimulation of the immune system" according to any of the above embodiments may include any one or more of the following: overall improvement of immune function, improvement of T cell function, improvement of B cell function, recovery of lymphocyte function, IL -2 receptor expression enhancement, T cell response enhancement, natural killer cell activity or lymphoid mediator activated killer (LAK) cell activity enhancement, and the like.

在另一態樣中,本發明提供一種本發明之免疫結合物之用途,其用於製造或製備藥劑。在一個實施例中,該藥劑係用於治療有需要之個體的疾病。在一個實施例中,藥物係用於治療疾病之方法中,該方法包含向患有疾病之個體投與治療有效量之藥物。在某些實施例中,待治療之疾病為增生性病症。在一特定實施例中,疾病為癌症。在一個實施例中,該方法進一步包含向個體投與治療有效量之至少一種額外治療劑,例如若待治療之疾病為癌症,則投與抗癌劑。在另一個實施例中,該藥劑係用於刺激免疫系統。在另一實施例中,該藥劑係用於刺激個體之免疫系統的方法中,該方法包含向個體投與有效量之刺激免疫系統的藥劑。根據任一上述實施例之「個體」可為哺乳動物,較佳為人類。根據任一上述實施例之「免疫系統之刺激」可包括以下中之任一者或多者:免疫功能的整體提高、T細胞功能的提高、B細胞功能的提高、淋巴球功能的恢復、IL-2受體表現的增強、T細胞反應的增強、自然殺手細胞活性或淋巴介質活化的殺手(LAK)細胞活性的增強,及其類似者。In another aspect, the present invention provides a use of the immunoconjugate of the present invention for the manufacture or preparation of a medicament. In one embodiment, the medicament is used to treat a disease in an individual in need. In one embodiment, the drug is used in a method of treating a disease, the method comprising administering a therapeutically effective amount of the drug to an individual suffering from the disease. In certain embodiments, the disease to be treated is a proliferative disorder. In a specific embodiment, the disease is cancer. In one embodiment, the method further comprises administering to the individual a therapeutically effective amount of at least one additional therapeutic agent, for example, if the disease to be treated is cancer, administering an anticancer agent. In another embodiment, the agent is used to stimulate the immune system. In another embodiment, the agent is used in a method of stimulating the immune system of an individual, and the method comprises administering to the individual an effective amount of an agent that stimulates the immune system. The "individual" according to any of the above embodiments may be a mammal, preferably a human. The "stimulation of the immune system" according to any of the above embodiments may include any one or more of the following: overall improvement of immune function, improvement of T cell function, improvement of B cell function, recovery of lymphocyte function, IL -2 receptor expression enhancement, T cell response enhancement, natural killer cell activity or lymphoid mediator activated killer (LAK) cell activity enhancement, and the like.

在另一態樣中,本發明提供一種治療個體疾病之方法。在一個實施例中,該方法包含向患有此類疾病之個體投與治療有效量之本發明之免疫結合物。在一個實施例中,向該個體投與包含本發明之免疫結合物之組合物,該組合物呈醫藥學上可接受之形式。在某些實施例中,待治療之疾病為增生性病症。在一特定實施例中,疾病為癌症。在某些實施例中,該方法進一步包含向個體投與治療有效量之至少一種額外治療劑,例如若待治療之疾病為癌症,則投與抗癌劑。在另一態樣中,本發明提供一種刺激個體免疫系統的方法,其包含向個體投與有效量之刺激免疫系統的免疫結合物。根據任一上述實施例之「個體」可為哺乳動物,較佳為人類。根據任一上述實施例之「免疫系統之刺激」可包括以下中之任一者或多者:免疫功能的整體提高、T細胞功能的提高、B細胞功能的提高、淋巴球功能的恢復、IL-2受體表現的增強、T細胞反應的增強、自然殺手細胞活性或淋巴介質活化的殺手(LAK)細胞活性的增強,及其類似者。In another aspect, the present invention provides a method of treating an individual's disease. In one embodiment, the method comprises administering a therapeutically effective amount of the immunoconjugate of the invention to an individual suffering from such diseases. In one embodiment, a composition comprising the immunoconjugate of the present invention is administered to the individual, the composition is in a pharmaceutically acceptable form. In certain embodiments, the disease to be treated is a proliferative disorder. In a specific embodiment, the disease is cancer. In certain embodiments, the method further comprises administering to the individual a therapeutically effective amount of at least one additional therapeutic agent, for example, if the disease to be treated is cancer, administering an anticancer agent. In another aspect, the present invention provides a method for stimulating the immune system of an individual, which comprises administering to the individual an effective amount of an immune conjugate that stimulates the immune system. The "individual" according to any of the above embodiments may be a mammal, preferably a human. The "stimulation of the immune system" according to any of the above embodiments may include any one or more of the following: overall improvement of immune function, improvement of T cell function, improvement of B cell function, recovery of lymphocyte function, IL -2 receptor expression enhancement, T cell response enhancement, natural killer cell activity or lymphoid mediator activated killer (LAK) cell activity enhancement, and the like.

在某些實施例中,所治療之疾病為增生性病症,特定言之癌症。癌症之非限制性實例包括膀胱癌、腦癌、頭頸癌、胰臟癌、肺癌、乳癌、卵巢癌、子宮癌、子宮頸癌、子宮內膜癌、食道癌、結腸癌、結腸直腸癌、直腸癌、胃癌、前列腺癌、血液癌、皮膚癌、鱗狀細胞癌、骨癌及腎臟癌。可使用本發明之免疫結合物治療的其他細胞增生性病症包括(但不限於)位於以下中之贅瘤:腹部、骨骼、乳房、消化系統、肝臟、胰臟、腹膜、內分泌腺體(腎上腺、副甲狀腺、垂體、睾丸、卵巢、胸腺、甲狀腺)、眼、頭頸部、神經系統(中樞及周邊)、淋巴系統、骨盆、皮膚、軟組織、脾臟、胸部區域及泌尿生殖系統。亦包括癌前病狀或病變及癌症轉移。在某些實施例中,癌症係選自由以下組成之群:腎癌、皮膚癌、肺癌、結腸直腸癌、乳癌、腦癌、頭頸癌、前列腺癌及膀胱癌。熟習此項技術者容易認識到,在許多情況下,免疫結合物可能不會提供治癒,而僅僅可能提供部分益處。在一些實施例中,具有一些益處之生理學變化亦視為治療上有益的。因此,在一些實施例中,提供生理學變化之免疫結合物的量視為「有效量」或「治療有效量」。需要治療之個體(subject)、患者或個體(individual)通常為哺乳動物,更特定言之人類。In some embodiments, the disease to be treated is a proliferative disorder, specifically cancer. Non-limiting examples of cancers include bladder cancer, brain cancer, head and neck cancer, pancreatic cancer, lung cancer, breast cancer, ovarian cancer, uterine cancer, cervical cancer, endometrial cancer, esophageal cancer, colon cancer, colorectal cancer, rectum Cancer, stomach cancer, prostate cancer, blood cancer, skin cancer, squamous cell cancer, bone cancer and kidney cancer. Other cell proliferative disorders that can be treated with the immunoconjugates of the present invention include (but are not limited to) neoplasms located in the following: abdomen, bones, breasts, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal glands, Parathyroid, pituitary, testis, ovary, thymus, thyroid), eyes, head and neck, nervous system (central and peripheral), lymphatic system, pelvis, skin, soft tissue, spleen, chest area and genitourinary system. It also includes precancerous conditions or lesions and cancer metastasis. In certain embodiments, the cancer is selected from the group consisting of kidney cancer, skin cancer, lung cancer, colorectal cancer, breast cancer, brain cancer, head and neck cancer, prostate cancer, and bladder cancer. Those familiar with this technology can easily realize that in many cases, immunoconjugates may not provide a cure, but may only provide partial benefits. In some embodiments, physiological changes with some benefits are also considered therapeutically beneficial. Therefore, in some embodiments, the amount of the immunoconjugate that provides a physiological change is regarded as an "effective amount" or a "therapeutically effective amount". The subject, patient or individual in need of treatment is usually a mammal, more specifically a human.

在一些實施例中,向細胞投與有效量之本發明之免疫結合物。在其他實施例中,向個體投與治療有效量之本發明之免疫結合物以用於治療疾病。In some embodiments, an effective amount of the immunoconjugate of the invention is administered to the cell. In other embodiments, a therapeutically effective amount of the immunoconjugate of the present invention is administered to an individual for the treatment of diseases.

為了預防或治療疾病,本發明之免疫結合物(當單獨或與一或多種其他額外治療劑組合使用時)的適當劑量視以下而定:待治療之疾病類型、投藥途徑、患者體重、分子類型(例如包含或不包含Fc域)、疾病嚴重程度及過程、免疫結合物是為了預防目的還是為了治療目的而投與、預先或並行治療干預、患者臨床史及對免疫結合物的反應,及主治醫師之判斷。負責投藥的從業者將在任何情況下判定組合物中活性成分之濃度及適用於個別個體的劑量。本文中考慮各種給藥時程,包括(但不限於)單次投藥或在不同時間點的多次投藥、快速投藥及脈衝式輸注。In order to prevent or treat diseases, the appropriate dosage of the immunoconjugate of the present invention (when used alone or in combination with one or more other additional therapeutic agents) depends on the following: type of disease to be treated, route of administration, patient weight, molecular type (For example, including or not including the Fc domain), severity and course of the disease, whether the immune conjugate was administered for preventive or therapeutic purposes, pre- or concurrent therapeutic intervention, patient clinical history and response to the immune conjugate, and indications The judgment of the physician. The practitioner responsible for the administration will determine the concentration of the active ingredient in the composition and the dosage applicable to an individual in any case. Various administration schedules are considered herein, including (but not limited to) single administration or multiple administrations at different time points, rapid administration and pulse infusion.

免疫結合物宜一次性或經一系列治療向患者投與。視疾病類型及嚴重程度而定,約1 µg/kg至15 mg/kg (例如0.1 mg/kg-10 mg/kg)之免疫結合物可為向患者投與的初始候選劑量,不論藉由例如一或多次分開投與或藉由連續輸注。視上文所提及之因素而定,一個典型的日劑量可在約1 μg/kg至100 mg/kg之範圍內或更高。對於歷經數日或更長時間之重複投藥,視病狀而定,治療通常將持續至疾病症狀之所需抑制發生為止。免疫結合物之一種例示性劑量將在約0.005 mg/kg至約10 mg/kg之範圍內。在其他非限制性實例中,劑量亦可包含每次投與約1微克/公斤/體重、約5微克/公斤/體重、約10微克/公斤/體重、約50微克/公斤/體重、約100微克/公斤/體重、約200微克/公斤/體重、約350微克/公斤/體重、約500微克/公斤/體重、約1毫克/公斤/體重、約5毫克/公斤/體重、約10毫克/公斤/體重、約50毫克/公斤/體重、約100毫克/公斤/體重、約200毫克/公斤/體重、約350毫克/公斤/體重、約500毫克/公斤/體重至約1000 毫克/公斤/體重或更大,及可在其中導出之任何範圍。在本文所列數值之可導出範圍之非限制性實例中,基於上述數值,可投與的範圍為約5毫克/公斤/體重至約100毫克/公斤/體重、約5毫克/公斤/體重至約500毫克/公斤/體重等。因此,可向患者投與約0.5 mg/kg、2.0 mg/kg、5.0 mg/kg或10 mg/kg (或其任何組合)中之一或多個劑量。此類劑量可以間歇性地投與,例如每週或每三週(例如使得患者接受約兩次至約二十次或例如約六次劑量的免疫結合物)。可投與初始較高起始劑量,接著可投與一或多個較低劑量。然而,其他給藥方案可為適用的。此療法之進展易於藉由習知技術及分析來監測。The immunoconjugate should be administered to the patient at one time or after a series of treatments. Depending on the type and severity of the disease, an immunoconjugate of about 1 µg/kg to 15 mg/kg (for example, 0.1 mg/kg-10 mg/kg) can be the initial candidate dose for administration to the patient, regardless of whether by, for example, One or more divided doses or by continuous infusion. Depending on the factors mentioned above, a typical daily dose may range from about 1 μg/kg to 100 mg/kg or higher. For repeated administrations over several days or longer, depending on the condition, the treatment will usually continue until the desired suppression of disease symptoms occurs. An exemplary dose of the immunoconjugate will be in the range of about 0.005 mg/kg to about 10 mg/kg. In other non-limiting examples, the dosage may also include about 1 microgram/kg/body weight, about 5 micrograms/kg/body weight, about 10 micrograms/kg/body weight, about 50 micrograms/kg/body weight, about 100 micrograms/kg/body weight per administration. Μg/kg/body weight, about 200 μg/kg/body weight, about 350 μg/kg/body weight, about 500 μg/kg/body weight, about 1 mg/kg/body weight, about 5 mg/kg/body weight, about 10 mg/ Kg/body weight, about 50 mg/kg/body weight, about 100 mg/kg/body weight, about 200 mg/kg/body weight, about 350 mg/kg/body weight, about 500 mg/kg/body weight to about 1000 mg/kg/ Body weight or greater, and any range that can be derived from it. In the non-limiting example of the derivable range of the values listed herein, based on the above values, the range that can be administered is from about 5 mg/kg/body weight to about 100 mg/kg/body weight, and about 5 mg/kg/body weight to about 5 mg/kg/body weight. About 500 mg/kg/body weight, etc. Therefore, one or more doses of about 0.5 mg/kg, 2.0 mg/kg, 5.0 mg/kg, or 10 mg/kg (or any combination thereof) can be administered to the patient. Such doses may be administered intermittently, for example every week or every three weeks (e.g., allowing the patient to receive about two to about twenty or for example about six doses of the immunoconjugate). An initial higher starting dose can be administered, followed by one or more lower doses. However, other dosing regimens may be applicable. The progress of this therapy is easily monitored by conventional techniques and analysis.

本發明之免疫結合物通常將以有效達成預定目的的量使用。為了用於治療或預防疾病病狀,本發明之免疫結合物或其醫藥組合物係以治療有效量投與或施用。治療有效量之判定完全在熟習此項技術者之能力範圍內,尤其根據本文所提供之詳細揭示內容。The immunoconjugate of the present invention will usually be used in an amount effective to achieve the intended purpose. In order to be used for the treatment or prevention of disease conditions, the immunoconjugate of the present invention or the pharmaceutical composition thereof is administered or administered in a therapeutically effective amount. The determination of the therapeutically effective dose is completely within the ability of those who are familiar with the technology, especially according to the detailed disclosure provided in this article.

關於全身性投藥,可首先根據活體外分析(諸如細胞培養分析)估計治療有效劑量。可接著在動物模型中調配劑量以達成循環濃度範圍,包括如在細胞培養物中所測定之IC50 。此類資訊可用於更準確地判定適用於人類之劑量。Regarding systemic administration, the therapeutically effective dose can be estimated first based on in vitro analysis (such as cell culture analysis). It may then be formulated in animal models to achieve a circulating concentration range of doses, including the IC 50 as determined in cell culture, such as. Such information can be used to more accurately determine the dose applicable to humans.

亦可使用此項技術中熟知的技術根據活體內資料(例如動物模型)估計初始劑量。一般熟習此項技術者容易基於動物資料而使向人類投藥最佳化。Techniques well known in the art can also be used to estimate the initial dose based on in vivo data (such as animal models). Generally, those who are familiar with this technology can easily optimize the administration of drugs to humans based on animal data.

劑量及時間間隔可個別地調整以提供足以維持治療效果之免疫結合物血漿含量。常見的患者注射投藥劑量在約0.1至50毫克/公斤/天,通常約0.5至1毫克/公斤/天範圍內。治療有效血漿含量可藉由每日投與多次劑量來達成。血漿含量可藉由例如HPLC量測。The dosage and time interval can be adjusted individually to provide sufficient plasma levels of the immune conjugate to maintain the therapeutic effect. The usual injection dosage for patients is in the range of about 0.1 to 50 mg/kg/day, usually about 0.5 to 1 mg/kg/day. The therapeutically effective plasma content can be achieved by administering multiple doses daily. The plasma content can be measured by, for example, HPLC.

在局部投藥或選擇性吸收之情況下,免疫結合物之局部有效濃度可能與血漿濃度無關。熟習此項技術者能夠使治療有效局部劑量最佳化而無需進行過度實驗。In the case of local administration or selective absorption, the local effective concentration of the immunoconjugate may not be related to plasma concentration. Those familiar with this technique can optimize the therapeutically effective local dose without undue experimentation.

本文所描述之免疫結合物的治療有效劑量一般將提供治療益處而不引起實質毒性。可藉由標準醫藥學程序測定免疫結合物在細胞培養物或實驗動物中之毒性及治療功效。可使用細胞培養分析及動物研究來測定LD50 (50%群體致死劑量)及ED50 (50%群體治療有效劑量)。毒性與治療效果之間的劑量比率為治療指數,其可表述為比率LD50 /ED50 。呈現大治療指數之免疫結合物為較佳的。在一個實施例中,根據本發明之免疫結合物呈現高治療指數。自細胞培養分析及動物研究獲得之資料可用於調配適用於人類的劑量範圍。劑量較佳在循環濃度範圍內,其包括毒性極小或無毒性之ED50 。劑量可視多種因素而在此範圍內變化,該等因素例如所用劑型、所用投藥途徑、個體之病狀及其類似因素。確切配方、投藥途徑及劑量可由個別醫師考慮患者病狀而選擇。(參見例如Fingl等人, 1975之The Pharmacological Basis of Therapeutics, 第1章, 第1頁,該文獻以全文引用之方式併入本文中)。The therapeutically effective dose of the immunoconjugates described herein will generally provide therapeutic benefit without causing substantial toxicity. The toxicity and therapeutic efficacy of the immunoconjugate in cell culture or laboratory animals can be determined by standard medical procedures. Cell culture analysis and animal studies can be used to determine LD 50 (50% population lethal dose) and ED 50 (50% population therapeutically effective dose). The dose ratio between toxic and therapeutic effects is the therapeutic index, which can be expressed as the ratio LD 50 / ED 50. Immunoconjugates exhibiting a large therapeutic index are preferred. In one embodiment, the immunoconjugate according to the present invention exhibits a high therapeutic index. The data obtained from cell culture analysis and animal studies can be used to formulate a range of dosages suitable for humans. The dosage is preferably within a range of circulating concentrations, which includes the ED 50 with little or no toxicity. The dosage may vary within this range depending on a variety of factors, such as the dosage form used, the route of administration used, the individual's condition and the like. The exact formula, route of administration and dosage can be selected by individual physicians in consideration of the patient's condition. (See, for example, Fingl et al., The Pharmacological Basis of Therapeutics, 1975, Chapter 1, page 1, which is incorporated herein by reference in its entirety).

經本發明之免疫結合物治療之患者的主治醫師知道如何及何時終止、中斷或調整因毒性、器官功能障礙及其類似者所致的投藥。反之,主治醫師亦已知在臨床反應不充足(排除毒性)時將治療調節至較高水準。管理所關注病症時所投與之劑量的量值將隨待治療之病狀的嚴重程度、投藥途徑及其類似因素而變化。病狀之嚴重程度可例如部分地藉由標準預後評價方法來加以評價。此外,劑量及可能的給藥頻率亦將根據個別患者之年齡、體重及反應而改變。The attending physician of a patient treated with the immunoconjugate of the present invention knows how and when to terminate, interrupt or adjust the administration due to toxicity, organ dysfunction and the like. Conversely, the attending physician is also known to adjust the treatment to a higher level when the clinical response is insufficient (to rule out toxicity). The amount of the dose administered in the management of the condition of concern will vary with the severity of the condition to be treated, the route of administration and similar factors. The severity of the condition can be evaluated, for example, in part by standard prognostic evaluation methods. In addition, the dosage and possible frequency of administration will also vary according to the age, weight and response of individual patients.

相對於包含野生型IL-2之免疫結合物所用的最大治療劑量,可以增加包含如本文所描述之突變型IL-2多肽之免疫結合物的最大治療劑量。The maximum therapeutic dose of the immunoconjugate containing the mutant IL-2 polypeptide as described herein can be increased relative to the maximum therapeutic dose used for the immunoconjugate containing wild-type IL-2.

其他藥劑及療法 根據本發明之免疫結合物可與一或多種其他治療藥劑組合投與。舉例而言,本發明之免疫結合物可與至少一種額外治療劑共投與。術語「治療劑」涵蓋投與以治療需要此類治療之個體之症狀或疾病的任何藥劑。此類額外治療劑可包含適於治療特定適應症的任何活性成分,較佳為具有互補活性、彼此間無不利影響的彼等活性成分。在某些實施例中,其他治療劑為免疫調節劑、細胞抑制劑、細胞黏附抑制劑、細胞毒性劑、細胞凋亡活化劑或增強細胞對細胞凋亡誘導劑之敏感性的藥劑。在一特定實施例中,額外治療劑為抗癌劑,例如微管中斷劑、抗代謝物、拓樸異構酶抑制劑、DNA嵌入劑、烷化劑、激素療法、激酶抑制劑、受體拮抗劑、腫瘤細胞凋亡活化劑或抗血管生成劑。 Other agents and therapies The immunoconjugates according to the present invention can be administered in combination with one or more other therapeutic agents. For example, the immunoconjugates of the invention can be co-administered with at least one additional therapeutic agent. The term "therapeutic agent" encompasses any agent administered to treat a symptom or disease in an individual in need of such treatment. Such additional therapeutic agents may contain any active ingredients suitable for the treatment of specific indications, preferably those active ingredients with complementary activities that do not adversely affect each other. In certain embodiments, other therapeutic agents are immunomodulators, cytostatic agents, cell adhesion inhibitors, cytotoxic agents, apoptosis activators, or agents that enhance the sensitivity of cells to apoptosis-inducing agents. In a specific embodiment, the additional therapeutic agent is an anticancer agent, such as a microtubule disrupting agent, antimetabolites, topoisomerase inhibitors, DNA intercalators, alkylating agents, hormone therapy, kinase inhibitors, receptors Antagonist, tumor cell apoptosis activator or anti-angiogenesis agent.

此類其他藥劑宜以可有效達成預定目的之量組合存在。此類其他藥劑之有效量視所用免疫結合物之量、病症或治療之類型及如上文所描述之其他因素而定。免疫結合物一般以與如本文中所描述的相同的劑量及投藥途徑使用,或以本文中所描述劑量之1至99%,或以任何劑量及憑經驗/臨床上判定為適當的任何途徑使用。Such other agents are preferably present in combination in an amount effective to achieve the intended purpose. The effective amount of such other agents depends on the amount of the immunoconjugate used, the type of disorder or treatment, and other factors as described above. The immunoconjugate is generally used at the same dosage and route of administration as described herein, or at 1 to 99% of the dosage described herein, or at any dosage and any route judged empirically/clinically as appropriate .

上文提及之此類組合療法涵蓋組合投藥(其中相同或單獨的組合物中包括兩種或更多種治療劑),且單獨的投藥(在此情況下,投與本發明之免疫結合物)可以發生於額外治療劑及/或佐劑投與之前、同時及/或之後。本發明之免疫結合物亦可與輻射療法組合使用。Such combination therapies mentioned above encompass combined administration (wherein two or more therapeutic agents are included in the same or separate composition), and separate administration (in this case, administration of the immunoconjugate of the present invention ) Can occur before, at the same time and/or after the administration of the additional therapeutic agent and/or adjuvant. The immunoconjugate of the present invention can also be used in combination with radiation therapy.

製品 在本發明之另一態樣中,提供一種含有適用於治療、預防及/或診斷上文所描述之病症之材料的製品。製品包含容器及容器上或容器隨附之標記或藥品說明書。適合的容器包括例如瓶子、小瓶、注射器、IV溶液袋等。容器可由多種材料(諸如玻璃或塑膠)形成。容器容納單獨或與有效治療、預防及/或診斷病狀之另一組合物組合之組合物,且可具有無菌接取口(例如容器可為具有可由皮下注射針刺穿之塞子的靜脈內溶液袋或小瓶)。組合物中之至少一種活性劑為本發明之免疫結合物。標記或藥品說明書指示組合物用於治療所選病狀。此外,製品可包含:(a)其中含有組合物之第一容器,其中該組合物包含本發明之免疫結合物;及(b)其中含有組合物之第二容器,其中該組合物包含另一細胞毒性劑或其他治療劑。本發明之此實施例中之製品可進一步包含指示組合物可用於治療特定病狀之藥品說明書。可替代地或另外,該製品可進一步包含第二(或第三)容器,其包含醫藥學上可接受之緩衝劑,諸如注射用抑菌水(BWFI)、磷酸鹽緩衝鹽水、林格氏溶液(Ringer's solution)及右旋糖溶液。其可進一步包括就商業及使用者觀點而言所期望之其他材料,包括其他緩衝劑、稀釋劑、過濾器、針及注射器。 Articles In another aspect of the present invention, there is provided an article containing materials suitable for treating, preventing and/or diagnosing the conditions described above. The product includes the container and the markings or drug inserts on the container or accompanying the container. Suitable containers include, for example, bottles, vials, syringes, IV solution bags, and the like. The container can be formed of a variety of materials, such as glass or plastic. The container contains a composition alone or in combination with another composition effective in treating, preventing and/or diagnosing the condition, and may have a sterile access port (for example, the container may be an intravenous solution having a stopper pierced by a hypodermic injection needle Bag or vial). At least one active agent in the composition is the immunoconjugate of the present invention. The label or package insert indicates that the composition is used to treat the selected condition. In addition, the product may comprise: (a) a first container containing the composition, wherein the composition contains the immunoconjugate of the present invention; and (b) a second container containing the composition, wherein the composition contains another Cytotoxic agents or other therapeutic agents. The article of this embodiment of the present invention may further include a package insert indicating that the composition can be used to treat a specific condition. Alternatively or in addition, the product may further comprise a second (or third) container, which contains a pharmaceutically acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate buffered saline, Ringer's solution (Ringer's solution) and dextrose solution. It may further include other materials desired from a commercial and user point of view, including other buffers, diluents, filters, needles and syringes.

胺基酸序列Amino acid sequence 胺基酸序列Amino acid sequence SEQ ID NOSEQ ID NO HCDR1_抗CD8HCDR1_anti-CD8 DTYIHDTYIH 11 HCDR2_抗CD8HCDR2_anti-CD8 RIDPANDNTLYASKFQGRIDPANDNTLYASKFQG 22 HCDR3_抗CD8HCDR3_anti-CD8 GYGYYVFDHGYGYYVFDH 33 LCDR1_抗CD8LCDR1_anti-CD8 RTSRSISQYLARTSRSISQYLA 44 LCDR2_抗CD8LCDR2_anti-CD8 SGSTLQSSGSTLQS 55 LCDR3_抗CD8LCDR3_anti-CD8 QQHNENPLTQQHNENPLT 66 VH_抗CD8VH_anti-CD8 EVQLVQSGAEVKKPGASVKVSCKASGFNIKDTYIHWVRQAPGQGLEWIGRIDPANDNTLYASKFQGRATITADTSTSTAYLELSSLRSEDTAVYYCGRGYGYYVFDHWGQGTLVTVSSEVQLVQSGAEVKKPGASVKVSCKASGFNIKDTYIHWVRQAPGQGLEWIGRIDPANDNTLYASKFQGRATITADTSTSTAYLELSSLRSEDTAVYYCGRGYGYYVFDHWGQGTLVTVSS 77 VL_抗CD8VL_anti-CD8 DVQITQSPSSLSASVGDRVTITCRTSRSISQYLAWYQEKPGKTNKLLIYSGSTLQSGIPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQHNENPLTFGQGTKVEIKDVQITQSPSSLSASVGDRVTITCRTSRSISQYLAWYQEKPGKTNKLLIYSGSTLQSGIPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQHNENPLTFGQGTKVEIK 88 鏈A:LC (CD8-IL2v OA/TA)Chain A: LC (CD8-IL2v OA/TA) DVQITQSPSSLSASVGDRVTITCRTSRSISQYLAWYQEKPGKTNKLLIYSGSTLQSGIPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQHNENPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECDVQITQSPSSLSASVGDRVTITCRTSRSISQYLAWYQEKPGKTNKLLIYSGSTLQSGIPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQHNENPLTFGQGTKVEIKRTTKTLTKVAAPSVFIFPPSDEQLKSGTASVVCLLKANNFYPREAKTLSVQWKESVVCLLKANNFYPREAKTLSVQGEDYSVVCLLKANNFYPREAKTLSVQWKESVVCLLKANNFYPREAKTLSVQWKESVSSVSLQSGV 99 鏈H:臼(CD8-IL2v OA/TA)Chain H: socket (CD8-IL2v OA/TA) EVQLVQSGAEVKKPGASVKVSCKASGFNIKDTYIHWVRQAPGQGLEWIGRIDPANDNTLYASKFQGRATITADTSTSTAYLELSSLRSEDTAVYYCGRGYGYYVFDHWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKEVQLVQSGAEVKKPGASVKVSCKASGFNIKDTYIHWVRQAPGQGLEWIGRIDPANDNTLYASKFQGRATITADTSTSTAYLELSSLRSEDTAVYYCGRGYGYYVFDHWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 1010 鏈K:杵(CD8-IL2v TA)Chain K: Pestle (CD8-IL2v TA) EVQLVQSGAEVKKPGASVKVSCKASGFNIKDTYIHWVRQAPGQGLEWIGRIDPANDNTLYASKFQGRATITADTSTSTAYLELSSLRSEDTAVYYCGRGYGYYVFDHWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEVLNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLTEVQLVQSGAEVKKPGASVKVSCKASGFNIKDTYIHWVRQAPGQGLEWIGRIDPANDNTLYASKFQGRATITADTSTSTAYLELSSLRSEDTAVYYCGRGYGYYVFDHWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEVLNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLT 1111 鏈K:杵(CD8-IL2v OA)Chain K: Pestle (CD8-IL2v OA) DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEVLNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLTDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEVLNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLT 1212 人類IL-2Human IL-2 APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLTAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT 1313 人類IL-2 (T3A、F42A、Y45Y、L72G、C125A)Human IL-2 (T3A, F42A, Y45Y, L72G, C125A) APASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEVLNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLTAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEVLNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLT 1414 連接子Linker GGGGSGGGGSGGGGSGGGGSGGGGSGGGGS 1515 人類IL-2Human IL-2 APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLTAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT 1616 人類IL-2 (T3A、F42A、Y45Y、L72G、C125A)Human IL-2 (T3A, F42A, Y45Y, L72G, C125A) APASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEVLNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLTAPASSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTAKFAMPKKATELKHLQCLEEELKPLEEVLNGAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLT 1717 連接子Linker GGGGSGGGGSGGGGSGGGGSGGGGSGGGGS 1818 hIL-2信號肽hIL-2 signal peptide MYRMQLLSCIALSLALVTNSMYRMQLLSCIALSLALVTNS 1919 人類IL-2 (C125A)Human IL-2 (C125A) APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLTAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFAQSIISTLT 2020 人類IgG1 Fc域Human IgG1 Fc domain DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPVSNKALPAPIEKTISKAKGQPREPVSKVYTLPPSRTKNQVSLTCLVKGFYPSNYCSHYGLSHYPSRTKNQVSLTCLVKGFYPSNYKSLYKNQVSLTCLVKGFYPSNYSKAKGQPREPVSKGVHSGNSH 21twenty one 人類κ CL域Human κ CL domain RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 22twenty two 人類λ CL域Human lambda CL domain QPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS 23twenty three 人類IgG1重鏈恆定區(CH1-CH2-CH3)Human IgG1 heavy chain constant region (CH1-CH2-CH3) ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP 24twenty four muFAP HC-Fc (DD)-muIL2vmuFAP HC-Fc (DD)-muIL2v EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAIIGSGASTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGWFGGFNYWGQGTLVTVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSQTVTCNVAHPASSTKVDKKIVPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVAISKDDPEVQFSWFVDDVEVHTAQTKPREEQINSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFGAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITNFFPEDITVEWQWNGQPAENYDNTQPIMDTDGSYFVYSDLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGGGGGSGGGGSGGGGSAPASSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPRMLTAKFALPKQATELKDLQCLEDELGPLRHVLDGTQSKSFQLEDAENFISNIRVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFAQSIISTSPQEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAIIGSGASTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGWFGGFNYWGQGTLVTVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSQTVTCNVAHPASSTKVDKKIVPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVAISKDDPEVQFSWFVDDVEVHTAQTKPREEQINSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFGAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITNFFPEDITVEWQWNGQPAENYDNTQPIMDTDGSYFVYSDLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGGGGGSGGGGSGGGGSAPASSSTSSSTAEAQQQQQQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPRMLTAKFALPKQATELKDLQCLEDELGPLRHVLDGTQSKSFQLEDAENFISNIRVTVVKLKGSDNTFECQFDDESATVVDFLRRWIAFAQSIISTSPQ 2525 muFAP HC-Fc (KK)muFAP HC-Fc (KK) EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAIIGSGASTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGWFGGFNYWGQGTLVTVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSQTVTCNVAHPASSTKVDKKIVPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVAISKDDPEVQFSWFVDDVEVHTAQTKPREEQINSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFGAPIEKTISKTKGRPKAPQVYTIPPPKKQMAKDKVSLTCMITNFFPEDITVEWQWNGQPAENYKNTQPIMKTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGKEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAIIGSGASTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGWFGGFNYWGQGTLVTVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSQTVTCNVAHPASSTKVDKKIVPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVAISKDDPEVQFSWFVDDVEVHTAQTKPREEQINSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFGAPIEKTISKTKGRPKAPQVYTIPPPKKQMAKDKVSLTCMITNFFPEDITVEWQWNGQPAENYKNTQPIMKTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPGK 2626 muFAP LCmuFAP LC EIVLTQSPGTLSLSPGERATLSCRASQSVTSSYLAWYQQKPGQAPRLLINVGSRRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQGIMLPPTFGQGTKVEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNECEIVLTQSPGTLSLSPGERATLSCRASQSVTSSYLAWYQQKPGQAPRLLINVGSRRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQGIMLPPTFGQGTKVEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSTLTKDEPNVKWKIDGSERQNGVLNSWTSTLTKDERNVKWKIDGSERQNGVLNSWTDNSERTCRNVKFNYSMHTSKD 2727 LCDR3抗CD8 - Okt8.v11LCDR3 anti-CD8-Okt8.v11 QQVNEFPPTQQVNEFPPT 2828 VL_抗CD8-Okt8.v11VL_anti-CD8-Okt8.v11 DVQITQSPSSLSASVGDRVTITCRTSRSISQYLAWYQEKPGKTNKLLIYSGSTLQSGIPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQVNEFPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECDVQITQSPSSLSASVGDRVTITCRTSRSISQYLAWYQEKPGKTNKLLIYSGSTLQSGIPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQVNEFPPTFGQGTKVEIKRTTKTVAAPSVFIFPPSDEQLKSGTASVVCLLKANNFYPREAKTLSVQGEDYSVVCLLKANNFYPREAKTLSVQWKESVVCLLKANNFYPREAKTLSVQWKESVVCLLKANNFYPREAKTLSVQGEDYKESVVCLLKANNFYPEDFATYYCQQVNEFPPTFGQGTKVEIKRTTKVAAPSVFIFPPSD 2929 鏈A:LC (CD8-(Okt8.v11)IL2v OA/TA)Chain A: LC (CD8-(Okt8.v11)IL2v OA/TA) DVQITQSPSSLSASVGDRVTITCRTSRSISQYLAWYQEKPGKTNKLLIYSGSTLQSGIPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQVNEFPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECDVQITQSPSSLSASVGDRVTITCRTSRSISQYLAWYQEKPGKTNKLLIYSGSTLQSGIPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQVNEFPPTFGQGTKVEIKRTTKTVAAPSVFIFPPSDEQLKSGTASVVCLLKANNFYPREAKTLSVQGEDYSVVCLLKANNFYPREAKTLSVQWKESVVCLLKANNFYPREAKTLSVQWKESVVCLLKANNFYPREAKTLSVQGEDYKESVVCLLKANNFYPEDFATYYCQQVNEFPPTFGQGTKVEIKRTTKVAAPSVFIFPPSD 3030

實例 以下為本發明之方法及組合物之實例。應理解,考慮到上文所提供之一般描述,可實踐各種其他實施例。 Examples The following are examples of the methods and compositions of the present invention. It should be understood that various other embodiments may be practiced in view of the general description provided above.

實例Instance 11

實例1.1 靶向人類CD8之抗CD8-IL2v TA結合物及抗CD8-IL2v OA結合物之產生 縮寫「TA」在本文中表示「兩臂」。縮寫「OA」在本文中表示「單臂」。術語「抗CD8-IL2v TA」及「CD8-IL2v TA」在本文中可互換使用。術語「抗CD8-IL2v OA」及「CD8-IL2v OA」在本文中可互換使用。 Example 1.1 Production of anti-CD8-IL2v TA conjugates and anti-CD8-IL2v OA conjugates targeting human CD8 The abbreviation "TA" means "two arms" in this article. The abbreviation "OA" means "single arm" in this article. The terms "anti-CD8-IL2v TA" and "CD8-IL2v TA" are used interchangeably herein. The terms "anti-CD8-IL2v OA" and "CD8-IL2v OA" are used interchangeably herein.

全部基因之表現均在人類CMV啟動子-內含子A-5'UTR卡匣之控制下。BGH聚腺苷酸化信號位於基因之下游。為了用於HEK293 EBNA細胞中,載體含有用於穩定游離型維持質體之oriP元件。The performance of all genes is under the control of the human CMV promoter-intron A-5'UTR cassette. The BGH polyadenylation signal is located downstream of the gene. In order to be used in HEK293 EBNA cells, the vector contains oriP elements for stabilizing the free form and maintaining plastids.

實例 1.2 HEK293 EBNA 細胞中產生 IgG 樣蛋白質 藉由瞬時轉染HEK293 EBNA細胞來產生IgG-IL2分子。對於抗CD8-IL2v TA而言,該等細胞用對應表現載體以1:1:2比率(「載體重鏈(VH-CH1-CH2-CH3)」:「載體重鏈(VH-CH1-CH2-CH3-IL2v)」:「載體輕鏈(VL-CL)」)轉染。對於抗CD8-IL2v OA而言,該等細胞用對應表現載體以1:1:1比率(「載體重鏈(VH-CH1-CH2-CH3)」:「載體重鏈(CH2-CH3-IL2v)」:「載體輕鏈(VL-CL)」)轉染。將細胞離心,且培養基經預溫熱CD CHO培養基(Thermo Fisher, 目錄號10743029)置換。在CD CHO培養基中混合表現載體,添加PEI (Polyethylenimine, Polysciences, Inc, 目錄號23966-1),將溶液渦旋且在室溫下培育10分鐘。隨後,將細胞(2百萬個/毫升)與載體/PEI溶液混合,轉移至燒瓶中且在具有5% CO2 氛圍的振盪培育箱中在37℃下培育3小時。在培育後,添加具有補充劑(總體積之80%)之Excell培養基(W. Zhou及A. Kantardjieff, Mammalian Cell Cultures for Biologics Manufacturing, 數位物件識別碼:10.1007/978-3-642-54050-9; 2014)。轉染後的第一天,添加補充劑(饋料,總體積之12%)。7天後,藉由離心及隨後過濾(0.2 μm過濾器)收穫細胞上清液,且藉由如下文所指示之標準方法自所收穫之上清液純化蛋白質。 1.2 Examples of production of IgG-like protein in HEK293 EBNA cells by transient transfection of HEK293 EBNA cells to produce IgG-IL2 molecule. For anti-CD8-IL2v TA, these cells use the corresponding expression vector at a ratio of 1:1:2 ("vector heavy chain (VH-CH1-CH2-CH3)": "vector heavy chain (VH-CH1-CH2- CH3-IL2v)": "Vector light chain (VL-CL)") transfection. For anti-CD8-IL2v OA, these cells use the corresponding expression vector at a ratio of 1:1:1 ("vector heavy chain (VH-CH1-CH2-CH3)": "vector heavy chain (CH2-CH3-IL2v) ": "Vector light chain (VL-CL)") transfection. The cells were centrifuged, and the medium was replaced with pre-warmed CD CHO medium (Thermo Fisher, catalog number 10743029). The expression vector was mixed in CD CHO medium, PEI (Polyethylenimine, Polysciences, Inc, catalog number 23966-1) was added, the solution was vortexed and incubated at room temperature for 10 minutes. Subsequently, the cells (2 million cells/ml) were mixed with the carrier/PEI solution, transferred to a flask and incubated at 37°C for 3 hours in a shaking incubator with a 5% CO 2 atmosphere. After incubation, add Excell medium (W. Zhou and A. Kantardjieff, Mammalian Cell Cultures for Biologics Manufacturing, digital object identification code: 10.1007/978-3-642-54050-9) with supplements (80% of the total volume) ; 2014). On the first day after transfection, add supplements (feeding material, 12% of the total volume). After 7 days, the cell supernatant was harvested by centrifugation and subsequent filtration (0.2 μm filter), and the protein was purified from the harvested supernatant by standard methods as indicated below.

實例 1.3 IgG 樣蛋白質之純化 參考標準方案,自經過濾之細胞培養物上清液純化蛋白質。簡言之,藉由蛋白質A親和層析(平衡緩衝液:20 mM檸檬酸鈉,20 mM磷酸鈉,pH 7.5;溶離緩衝液:20 mM檸檬酸鈉,100 mM NaCl,100 mM甘胺酸,pH 3.0)自細胞培養物上清液純化含有Fc之蛋白質。在pH 3.0下達成溶離,隨後立即pH中和樣本。藉由離心(Millipore Amicon® ULTRA-15 (技術編號:UFC903096))濃縮蛋白質,且在20 mM組胺酸、140 mM氯化鈉(pH 6.0)中藉由尺寸排阻層析將聚集之蛋白質與單體蛋白質分開。 Example 1.3 Purification of IgG-like proteins Refer to the standard protocol to purify proteins from filtered cell culture supernatants. In short, by protein A affinity chromatography (equilibration buffer: 20 mM sodium citrate, 20 mM sodium phosphate, pH 7.5; dissociation buffer: 20 mM sodium citrate, 100 mM NaCl, 100 mM glycine, pH 3.0) Purify Fc-containing protein from cell culture supernatant. Dissolution is achieved at pH 3.0, and the sample is immediately pH neutralized. The protein was concentrated by centrifugation (Millipore Amicon® ULTRA-15 (Technical Code: UFC903096)), and the aggregated protein was combined with size exclusion chromatography in 20 mM histidine and 140 mM sodium chloride (pH 6.0). The monomeric proteins are separated.

實例 1.4 IgG 樣蛋白質之分析 藉由使用根據Pace,等人, Protein Science, 1995, 4, 2411-1423,基於胺基酸序列計算之質量消光係數量測280 nm下之吸收來測定經純化蛋白質之濃度。蛋白質之純度及分子量在存在及不存在還原劑之情況下使用LabChipGXII (Perkin Elmer)藉由CE-SDS分析。聚集物含量之測定在25℃下使用分析型尺寸排阻管柱(TSKgel G3000 SW XL或UP-SW3000),在操作緩衝液(分別為25 mM K2 HPO4 ,125 mM NaCl,200 mM L-精胺酸單鹽酸鹽,pH 6.7或200 mM KH2 PO4 ,250 mM KCl pH 6.2)中平衡,藉由HPLC層析進行。 Example 1.4 Analysis of IgG-like protein. The purified protein was measured by measuring the absorption at 280 nm using the mass extinction coefficient calculated based on the amino acid sequence according to Pace, et al., Protein Science, 1995, 4, 2411-1423. concentration. The purity and molecular weight of the protein were analyzed by CE-SDS using LabChipGXII (Perkin Elmer) in the presence and absence of reducing agents. The aggregate content was determined using analytical size exclusion column (TSKgel G3000 SW XL or UP-SW3000) at 25°C in operating buffer (25 mM K 2 HPO 4 , 125 mM NaCl, 200 mM L- Arginine monohydrochloride, pH 6.7 or 200 mM KH 2 PO 4 , 250 mM KCl pH 6.2) equilibrate in HPLC chromatography.

以相當且良好的質量純化兩種IgG-IL2v構築體,其中藉由尺寸排阻層析來測定之單體含量高於98%。主峰之百分比(藉由CE-SDS來測定)高於92%。純化後之產量(以mg為單位之所純化的量除以以L為單位之所產生上清液的體積)為2.1 mg/L (抗CD8-IL2v TA)及7.8 mg/L (抗CD8-IL2v OA)。The two IgG-IL2v constructs were purified with comparable and good quality, and the monomer content determined by size exclusion chromatography was higher than 98%. The percentage of the main peak (determined by CE-SDS) is higher than 92%. The yield after purification (the purified amount in mg divided by the volume of the supernatant produced in L) was 2.1 mg/L (anti-CD8-IL2v TA) and 7.8 mg/L (anti-CD8- IL2v OA).

抗CD8-IL2v TA由以下組成(格式:A2HK):具有SEQ ID NO:9之胺基酸序列的兩條多肽、具有SEQ ID NO:10之胺基酸序列的一條多肽及具有SEQ ID NO:11之胺基酸序列的一條多肽。抗CD8-IL2v OA由以下組成(格式:AHK):具有SEQ ID NO:9之胺基酸序列的一條多肽、具有SEQ ID NO:10之胺基酸序列的一條多肽及具有SEQ ID NO:12之胺基酸序列的一條多肽。The anti-CD8-IL2v TA consists of the following (format: A2HK): two polypeptides with the amino acid sequence of SEQ ID NO: 9, one polypeptide with the amino acid sequence of SEQ ID NO: 10, and a polypeptide with SEQ ID NO: A polypeptide of 11 amino acid sequence. Anti-CD8-IL2v OA consists of the following (format: AHK): a polypeptide with the amino acid sequence of SEQ ID NO: 9, a polypeptide with the amino acid sequence of SEQ ID NO: 10, and a polypeptide with SEQ ID NO: 12 A polypeptide of the amino acid sequence.

抗CD8(OKT8.v11)-IL2v TA由以下組成(格式:A2HK):具有SEQ ID NO:30之胺基酸序列的兩條多肽、具有SEQ ID NO:10之胺基酸序列的一條多肽及具有SEQ ID NO:11之胺基酸序列的一條多肽。術語「抗CD8(OKT8.v11)-IL2v TA」、「抗CD8-IL2v OKT8.v11 TA」及「CD8-IL2v OKT8.v11 TA」在本文中可互換使用。抗CD8(OKT8.v11)-IL2v OA由以下組成(格式:AHK):具有SEQ ID NO:30之胺基酸序列的一條多肽、具有SEQ ID NO:10之胺基酸序列的一條多肽及具有SEQ ID NO:12之胺基酸序列的一條多肽。術語「抗CD8(OKT8.v11)-IL2v OA」、「抗CD8-IL2v OKT8.v11 OA」及「CD8-IL2v OKT8.v11 OA」在本文中可互換使用。Anti-CD8 (OKT8.v11)-IL2v TA consists of the following (format: A2HK): two polypeptides with the amino acid sequence of SEQ ID NO: 30, one polypeptide with the amino acid sequence of SEQ ID NO: 10, and A polypeptide having the amino acid sequence of SEQ ID NO: 11. The terms "anti-CD8(OKT8.v11)-IL2v TA", "anti-CD8-IL2v OKT8.v11 TA" and "CD8-IL2v OKT8.v11 TA" are used interchangeably in this article. Anti-CD8 (OKT8.v11)-IL2v OA consists of the following (format: AHK): a polypeptide with the amino acid sequence of SEQ ID NO: 30, a polypeptide with the amino acid sequence of SEQ ID NO: 10, and A polypeptide of the amino acid sequence of SEQ ID NO: 12. The terms "anti-CD8(OKT8.v11)-IL2v OA", "anti-CD8-IL2v OKT8.v11 OA" and "CD8-IL2v OKT8.v11 OA" are used interchangeably in this article.

此實例中製備之結合物在以下實例中進一步使用。The conjugate prepared in this example is further used in the following examples.

實例Instance 22

CD8-IL2v TA CD8-IL2v OA CD8 T 細胞 之結合 對自健康供體新鮮分離之PBMC進行計數,且將其轉移至圓底96孔盤中(每孔100'000個細胞)。細胞用FACS緩衝液(PBS,2% FBS,5 mM EDTA,0.025% NaN3 )洗滌且在4℃下用30 μl含指示分子之FACS緩衝液染色30 min。細胞用FACS緩衝液洗滌兩次以移除未結合的分子。接著,將20 µl經稀釋之FITC抗人類Fc特異性二級抗體(1:50稀釋,109-096-098,Jackson ImmunoResearch)與CD3 PE抗體(344806,BioLegend)及用於偵測CD8 T細胞之CD8 APC-Cy7抗體(557834,BD Bioscience)一起添加至細胞。在4℃下30 min培育之後,未結合之抗體藉由用FACS緩衝液洗滌兩次來移除。最終,將細胞再懸浮於FACS緩衝液中且使用對CD3+ CD8+ 細胞(CD8 T細胞)進行閘控之BD Fortessa進行量測。 And anti-CD8-IL2v TA binding anti-CD8-IL2v OA and CD8 T cells of the counts were isolated from PBMC of a healthy donor fresh, and transferred to a round bottom 96 well plates (100'000 cells per well). The cells were washed with FACS buffer (PBS, 2% FBS, 5 mM EDTA, 0.025% NaN 3 ) and stained with 30 μl of FACS buffer containing indicator molecules at 4° C. for 30 min. The cells were washed twice with FACS buffer to remove unbound molecules. Then, 20 µl of the diluted FITC anti-human Fc specific secondary antibody (diluted 1:50, 109-096-098, Jackson ImmunoResearch) and CD3 PE antibody (344806, BioLegend) and used to detect CD8 T cells CD8 APC-Cy7 antibody (557834, BD Bioscience) was added to the cells together. After incubation for 30 min at 4°C, unbound antibody was removed by washing twice with FACS buffer. Finally, the cells were resuspended in FACS buffer and measured using BD Fortessa, which gated CD3 + CD8 + cells (CD8 T cells).

評價抗CD8-IL2v TA及抗CD8-IL2v OA分子之與FAP-IL2v (如例如揭示於WO2012107417A1中,其以引用之方式併入;FAP-IL2v包含根據SEQ ID NO: 25、26及27之多肽)相比,與PBMC內之CD8 T細胞結合的能力。如圖2中所示,抗CD8-IL2v TA顯示極強的與CD8 T細胞之結合,抗CD8-IL2v OA與CD8 T細胞之結合較弱但仍比FAP-IL2v強許多。此與以下事實一致:抗CD8-IL2v OA可僅單價地與CD8結合,而抗CD8-IL2v TA可二價地與CD8結合,從而使得後者針對CD8之親和性更高。如FAP-IL2v所見,IL2v對於與CD8 T細胞之結合之貢獻僅為極少的,因為靜息CD8 T細胞之IL2Rβ/γ表現相較於CD8表現很低(圖2)。Evaluation of anti-CD8-IL2v TA and anti-CD8-IL2v OA molecules with FAP-IL2v (as disclosed, for example, in WO2012107417A1, which is incorporated by reference; FAP-IL2v includes polypeptides according to SEQ ID NOs: 25, 26, and 27 ) Compared to the ability to bind to CD8 T cells in PBMC. As shown in Figure 2, anti-CD8-IL2v TA showed extremely strong binding to CD8 T cells, and anti-CD8-IL2v OA bound to CD8 T cells weakly but still much stronger than FAP-IL2v. This is consistent with the fact that anti-CD8-IL2v OA can only bind to CD8 monovalently, while anti-CD8-IL2v TA can bind to CD8 divalently, making the latter have a higher affinity for CD8. As seen by FAP-IL2v, the contribution of IL2v to the binding of CD8 T cells is only minimal, because the IL2Rβ/γ performance of resting CD8 T cells is lower than that of CD8 (Figure 2).

實例Instance 33

在用 CD8-IL2v TA CD8-IL2v OA 處理後免疫細胞之 STAT5 磷酸化 將自健康供體新鮮分離之PBMC接種於圓底96孔盤之溫培養基(RPMI1640,10% FCS,2 mM麩醯胺酸) (200'000個細胞/孔)中。培養盤以300 g離心10 min且移除上清液。將細胞再懸浮於100 µl含有IL2v結合物之培養基中且在37℃下刺激20 min。為了保持磷酸化狀態,細胞在37℃下用等量的預溫熱Cytofix緩衝液(554655,BD Bioscience)刺激10 min之後立即固定。隨後,培養盤以300 g離心10 min且移除上清液。為了達成細胞內染色,使細胞在200 µl Phosflow Perm緩衝液III (558050,BD Bioscience)中,在4℃下滲透30 min。接著,細胞用150 µl冷FACS緩衝液洗滌兩次且拆分至兩個圓底96孔盤中且在冰箱中各用20 μl抗體混合物I或II染色60 min。抗體混合物I用於將CD4 T細胞及調節T細胞中之pSTAT5染色,且抗體混合物II用於將CD8 T細胞及NK細胞中之pSTAT5染色。隨後,細胞用FACS緩衝液洗滌兩次且再懸浮於每孔200 µl含有2% PFA的FACS緩衝液中。使用對CD8 T細胞(CD3+ CD8+ )、NK細胞(CD3- CD56+ 、CD4 T細胞(CD4+ )及Treg (CD4+ CD25+ FoxP3+ )進行閘控之BD Fortessa流式細胞儀來進行分析。 1 . FACS抗體混合物I (CD4 T細胞及調節T細胞) 抗體 體積/樣本 CD4 PE/Cy7,純系SK3,小鼠IgG1,κ (557852, BD Bioscience) 0.5微升/孔 CD25 APC,純系M-A251,小鼠IgG1,κ (356110, BioLegend) 0.5微升/孔 PE小鼠抗人類FoxP3純系259D/C7 (560046, BD Bioscience) 1微升/孔 A488 pSTAT5 (pY694) ,純系47,小鼠IgG1 (562075, BD Bioscience) 0.5微升/孔 2 . FACS抗體混合物II (CD8 T細胞及NK細胞) 抗體 體積/樣本 CD3 PE/Cy7,純系UCHT1,小鼠IgG1,κ (300420, BioLegend) 0.5微升/孔 CD56 APC,純系HCD56,小鼠IgG1,κ (318310, BioLegend) 0.5微升/孔 CD8 PE,純系HIT8a,小鼠IgG1 (555635, BD Bioscience) 0.5微升/孔 A488 pSTAT5 (pY694),純系47,小鼠IgG1 (BD Bioscience) 0.5微升/孔 Phosphorylation of STAT5 in immune cells after treatment with anti- CD8-IL2v TA and anti- CD8-IL2v OA . Freshly isolated PBMCs from healthy donors were inoculated into warm medium (RPMI1640, 10% FCS, 2 mM bran) in round bottom 96-well plates. Amino acid) (200'000 cells/well). The culture plate was centrifuged at 300 g for 10 min and the supernatant was removed. The cells were resuspended in 100 µl of medium containing IL2v conjugate and stimulated at 37°C for 20 min. In order to maintain the phosphorylation state, the cells were fixed immediately after stimulation with an equal amount of pre-warmed Cytofix buffer (554655, BD Bioscience) at 37°C for 10 min. Subsequently, the culture plate was centrifuged at 300 g for 10 min and the supernatant was removed. In order to achieve intracellular staining, cells were permeated in 200 µl Phosflow Perm Buffer III (558050, BD Bioscience) at 4°C for 30 min. Then, the cells were washed twice with 150 µl of cold FACS buffer and split into two round-bottom 96-well plates and stained with 20 µl of antibody mixture I or II each for 60 min in the refrigerator. Antibody mixture I was used to stain pSTAT5 in CD4 T cells and regulatory T cells, and antibody mixture II was used to stain pSTAT5 in CD8 T cells and NK cells. Subsequently, the cells were washed twice with FACS buffer and resuspended in 200 µl of FACS buffer containing 2% PFA per well. Analyze using the BD Fortessa flow cytometer that gates CD8 T cells (CD3 + CD8 + ), NK cells (CD3 - CD56 + , CD4 T cells (CD4 + ) and Treg (CD4 + CD25 + FoxP3 +) table 1. FACS antibody mixture I (CD4 T cells and regulatory T cells) Antibody Volume/sample CD4 PE/Cy7, pure SK3, mouse IgG1, κ (557852, BD Bioscience) 0.5 μl/hole CD25 APC, pure line M-A251, mouse IgG1, κ (356110, BioLegend) 0.5 μl/hole PE mouse anti-human FoxP3 pure line 259D/C7 (560046, BD Bioscience) 1 μl/well A488 pSTAT5 (pY694), pure line 47, mouse IgG1 (562075, BD Bioscience) 0.5 μl/hole Table 2. FACS Antibody Mix II (CD8 T cells and NK cells) Antibody Volume/sample CD3 PE/Cy7, pure UCHT1, mouse IgG1, κ (300420, BioLegend) 0.5 μl/hole CD56 APC, pure line HCD56, mouse IgG1, κ (318310, BioLegend) 0.5 μl/hole CD8 PE, pure HIT8a, mouse IgG1 (555635, BD Bioscience) 0.5 μl/hole A488 pSTAT5 (pY694), pure line 47, mouse IgG1 (BD Bioscience) 0.5 μl/hole

將抗CD8-IL2v TA及抗CD8-IL2v OA誘導STAT5磷酸化之功能活性與PBMC內之不同免疫細胞子集上之FAP-IL2v的功能活性進行比較。STAT5磷酸化用作IL2受體(IL2R)活化之標記。如圖3中所示,在CD4 T細胞及調節T細胞(Treg)上,所有三種所測試分子在誘導STAT5磷酸化方面具有相同活性。在CD8 T細胞上,抗CD8-IL2v TA及抗CD8-IL2v OA在誘導STAT5磷酸化方面具有高得多的效能,其中抗CD8-IL2v TA比抗CD8-IL2v OA略微更強效。在NK細胞上,抗CD8-IL2v TA及抗CD8-IL2v OA比FAP-IL2v強一些,可能係因為呈CD8陽性之一部分NK細胞。此等資料指示,將IL2v靶向CD8 T細胞可經由IL2v強烈增強IL2R之活化,且此效果僅順式介導,因為CD8陰性T細胞上之IL2R之活化不增加(圖3)。The functional activity of anti-CD8-IL2v TA and anti-CD8-IL2v OA in inducing STAT5 phosphorylation was compared with the functional activity of FAP-IL2v on different immune cell subsets in PBMC. STAT5 phosphorylation is used as a marker for IL2 receptor (IL2R) activation. As shown in Figure 3, on CD4 T cells and regulatory T cells (Treg), all three tested molecules have the same activity in inducing phosphorylation of STAT5. On CD8 T cells, anti-CD8-IL2v TA and anti-CD8-IL2v OA have much higher potency in inducing phosphorylation of STAT5, among which anti-CD8-IL2v TA is slightly more potent than anti-CD8-IL2v OA. On NK cells, anti-CD8-IL2v TA and anti-CD8-IL2v OA are stronger than FAP-IL2v, which may be due to some of the NK cells that are CD8 positive. These data indicate that targeting IL2v to CD8 T cells can strongly enhance IL2R activation via IL2v, and this effect is only cis-mediated, because the activation of IL2R on CD8-negative T cells does not increase (Figure 3).

實例Instance 44

在用 CD8-IL2v CD8-IL2v OA 處理後免疫細胞之增殖 自健康供體新鮮分離之PBMC用CFSE (5(6)-羧基螢光素二乙酸酯N-丁二醯亞胺基酯,21888,Sigma-Aldrich)標記。用PBS短暫地洗滌3000萬個PBMC一次。同時,CSFE儲備溶液(2 mM於DMSO中) 以1:20稀釋於PBS中。將PBMC再懸浮於30 ml預溫熱之PBS中,添加30 μl CFSE溶液且立即混合細胞。對於最佳標記而言,在37℃下培育細胞15 min。接著,添加10 ml預溫熱培養基(RPMI1640,10% FCS,1%麩醯胺酸)以中止標記反應。細胞以400 g短暫離心10 min 且再懸浮於20 ml新鮮培養基中 且在37℃下再培育30 min。最終,細胞用培養基洗滌一次且以每毫升1百萬個細胞再懸浮於新鮮培養基中。將經標記之PBMC接種於圓底96孔盤中(100'000個細胞每孔)且用指示分子處理5天。在培育之後,細胞用FACS緩衝液洗滌一次,且在4℃下用CD3 APC-Cy7 (557834,BD Bioscience)、CD8 APC (純系SK1,344722,BioLegend)、CD4 PE (300508,BioLegend)及CD56 BV421 (318328,BioLegend)於FACS緩衝液中之20 μl混合物染色30 min。隨後,在用含1% PFA之FACS緩衝液將PBMC固定且用BD Fortessa量測螢光之前,PBMC用FACS緩衝液洗滌兩次。藉由量測CD8 T細胞(CD3+ CD8+ )、CD4 T細胞(CD3+ CD4+ )及NK細胞(CD3- CD56+ )之CFSE稀釋液來測定增殖。 Proliferation of immune cells after treatment with CD8-IL2v and CD8-IL2v OA . PBMC freshly isolated from healthy donors used CFSE (5(6)-carboxyfluorescein diacetate N-succinimidyl ester, 21888, Sigma-Aldrich) label. 30 million PBMCs were briefly washed once with PBS. At the same time, CSFE stock solution (2 mM in DMSO) was diluted 1:20 in PBS. Resuspend the PBMC in 30 ml of pre-warmed PBS, add 30 μl of CFSE solution and mix the cells immediately. For optimal labeling, incubate cells at 37°C for 15 min. Next, add 10 ml of pre-warmed medium (RPMI1640, 10% FCS, 1% glutamic acid) to stop the labeling reaction. The cells were briefly centrifuged at 400 g for 10 min and resuspended in 20 ml of fresh medium and incubated for another 30 min at 37°C. Finally, the cells were washed once with medium and resuspended in fresh medium at 1 million cells per milliliter. The labeled PBMCs were seeded in round bottom 96-well plates (100'000 cells per well) and treated with indicator molecules for 5 days. After incubation, the cells were washed once with FACS buffer, and CD3 APC-Cy7 (557834, BD Bioscience), CD8 APC (pure SK1, 344722, BioLegend), CD4 PE (300508, BioLegend) and CD56 BV421 were used at 4°C. (318328, BioLegend) 20 μl mixture in FACS buffer was stained for 30 min. Subsequently, before fixing PBMC with FACS buffer containing 1% PFA and measuring fluorescence with BD Fortessa, PBMC was washed twice with FACS buffer. The proliferation was measured by measuring CD8 T cells (CD3 + CD8 + ), CD4 T cells (CD3 + CD4 + ) and NK cells (CD3 - CD56 + ) in CFSE dilution.

測試CD8-IL2v及CD8-IL2v OA與FAP-IL2v相比之誘導CD8 T細胞、CD4 T細胞及NK細胞之增殖的能力。如圖4中所示,CD8-IL2v TA及CD8-IL2v OA具有與FAP-IL2v類似的誘導CD4 T細胞及NK細胞之增殖的活性。相比之下,在CD8 T細胞上,兩種分子在誘導增殖方面比FAP-IL2v更強效許多,此係歸因於經由CD8將分子直接靶向此等細胞。CD8-IL2v TA更強效約1300倍,且CD8-IL2v OA更強效約200倍。此與在CD8 T細胞上之結合及STAT5磷酸化方面所觀測到之差異一致。The ability of CD8-IL2v and CD8-IL2v OA to induce the proliferation of CD8 T cells, CD4 T cells and NK cells compared with FAP-IL2v was tested. As shown in Figure 4, CD8-IL2v TA and CD8-IL2v OA have similar activities to induce the proliferation of CD4 T cells and NK cells as FAP-IL2v. In contrast, on CD8 T cells, the two molecules are much more potent than FAP-IL2v in inducing proliferation. This is due to the direct targeting of the molecules to these cells via CD8. CD8-IL2v TA is about 1300 times more potent, and CD8-IL2v OA is about 200 times more potent. This is consistent with the observed differences in binding on CD8 T cells and phosphorylation of STAT5.

實例Instance 55

在用 CD8-IL2v TA CD8-IL2v OKT8.v11 TA 處理後免疫細胞之 STAT5 磷酸化 將自健康供體新鮮分離之PBMC接種於圓底96孔盤之溫培養基(RPMI1640,10% FCS,2 mM麩醯胺酸) (200'000個細胞/孔)中。培養盤以300 g離心10 min且移除上清液。將細胞再懸浮於100 µl含有IL2v分子之培養基中且在37℃下刺激20 min。為了保持磷酸化狀態,細胞在37℃下用等量的預溫熱Cytofix緩衝液(554655,BD Bioscience)刺激10 min之後立即固定。隨後,培養盤以300 g離心10 min且移除上清液。為了達成細胞內染色,使細胞在200 µl Phosflow Perm緩衝液III (558050,BD Bioscience)中,在4℃下滲透30 min。接著,細胞用150 µl冷FACS緩衝液洗滌兩次且拆分至兩個圓底96孔盤中且在冰箱中各用20 μl抗體混合物I或II染色60 min。抗體混合物I用於將CD4 T細胞及調節T細胞中之pSTAT5染色,且抗體混合物II用於將CD8 T細胞及NK細胞中之pSTAT5染色。隨後,細胞用FACS緩衝液洗滌兩次且再懸浮於每孔200 µl含有2% PFA的FACS緩衝液中。使用對CD8 T細胞(CD3+ CD8+ )、NK細胞(CD3- CD56+ 、CD4 T細胞(CD4+ )及Treg (CD4+ CD25+ FoxP3+ )進行閘控之BD Fortessa流式細胞儀來進行分析。 表3. FACS抗體混合物I (CD4 T細胞及調節T細胞) 抗體 體積/樣本 CD4 PE/Cy7,純系SK3,小鼠IgG1,κ (557852, BD Bioscience) 0.5微升/孔 CD25 APC,純系M-A251,小鼠IgG1,κ (356110, BioLegend) 0.5微升/孔 PE小鼠抗人類FoxP3純系259D/C7 (560046, BD Bioscience) 1微升/孔 A488 pSTAT5 (pY694),純系47,小鼠IgG1 (562075, BD Bioscience) 0.5微升/孔 表4. FACS抗體混合物II (CD8 T細胞及NK細胞) 抗體 體積/樣本 CD3 PE/Cy7,純系UCHT1,小鼠IgG1,κ (300420, BioLegend) 0.5微升/孔 CD56 APC,純系HCD56,小鼠IgG1,κ (318310, BioLegend) 0.5微升/孔 CD8 PE,純系HIT8a,小鼠IgG1 (555635, BD Bioscience) 0.5微升/孔 A488 pSTAT5 (pY694),純系47,小鼠IgG1 (BD Bioscience) 0.5微升/孔 Phosphorylation of STAT5 in immune cells after treatment with CD8-IL2v TA and CD8-IL2v OKT8.v11 TA . Freshly isolated PBMCs from healthy donors were inoculated in warm medium (RPMI1640, 10% FCS, 2 mM) in round bottom 96-well plates. Glutamic acid) (200'000 cells/well). The culture plate was centrifuged at 300 g for 10 min and the supernatant was removed. The cells were resuspended in 100 µl of medium containing IL2v molecules and stimulated at 37°C for 20 min. In order to maintain the phosphorylation state, the cells were fixed immediately after stimulation with an equal amount of pre-warmed Cytofix buffer (554655, BD Bioscience) at 37°C for 10 min. Subsequently, the culture plate was centrifuged at 300 g for 10 min and the supernatant was removed. In order to achieve intracellular staining, cells were permeated in 200 µl Phosflow Perm Buffer III (558050, BD Bioscience) at 4°C for 30 min. Then, the cells were washed twice with 150 µl of cold FACS buffer and split into two round-bottom 96-well plates and stained with 20 µl of antibody mixture I or II each for 60 min in the refrigerator. Antibody mixture I was used to stain pSTAT5 in CD4 T cells and regulatory T cells, and antibody mixture II was used to stain pSTAT5 in CD8 T cells and NK cells. Subsequently, the cells were washed twice with FACS buffer and resuspended in 200 µl of FACS buffer containing 2% PFA per well. Analyze using the BD Fortessa flow cytometer that gates CD8 T cells (CD3 + CD8 + ), NK cells (CD3 - CD56 + , CD4 T cells (CD4 + ) and Treg (CD4 + CD25 + FoxP3 +) Table 3. FACS antibody mixture I (CD4 T cells and regulatory T cells) Antibody Volume/sample CD4 PE/Cy7, pure SK3, mouse IgG1, κ (557852, BD Bioscience) 0.5 μl/hole CD25 APC, pure line M-A251, mouse IgG1, κ (356110, BioLegend) 0.5 μl/hole PE mouse anti-human FoxP3 pure line 259D/C7 (560046, BD Bioscience) 1 μl/well A488 pSTAT5 (pY694), pure line 47, mouse IgG1 (562075, BD Bioscience) 0.5 μl/hole Table 4. FACS Antibody Mix II (CD8 T cells and NK cells) Antibody Volume/sample CD3 PE/Cy7, pure UCHT1, mouse IgG1, κ (300420, BioLegend) 0.5 μl/hole CD56 APC, pure line HCD56, mouse IgG1, κ (318310, BioLegend) 0.5 μl/hole CD8 PE, pure HIT8a, mouse IgG1 (555635, BD Bioscience) 0.5 μl/hole A488 pSTAT5 (pY694), pure line 47, mouse IgG1 (BD Bioscience) 0.5 μl/hole

將CD8-IL2v TA及CD8-IL2v OKT8.v11 TA誘導STAT5磷酸化之功能活性與PBMC內之不同免疫細胞子集上之FAP-IL2v的功能活性進行比較。STAT5磷酸化用作IL2受體(IL2R)活化之標記。在CD4 T細胞及調節T細胞(Treg)上,所有三種所測試分子在誘導STAT5磷酸化方面均顯示相同活性。在CD8 T細胞上,CD8-IL2v TA及CD8-IL2v OKT8.v11 TA顯示在誘導STAT5磷酸化方面高得多的效能,但在CD8-IL2v TA與CD8-IL2v OKT8.v11 TA之間在活化方面不存在差異。在NK細胞上,CD8-IL2v TA及CD8-IL2v OKT8.v11 TA比FAP-IL2v強一些,可能係因為呈CD8陽性之一部分NK細胞。此等資料指示,將IL2v靶向CD8 T細胞可經由IL2v強烈增強IL2R之活化,且此效果僅順式介導,因為CD8陰性T細胞上之IL2R之活化不增加(圖5)。 *   *   *The functional activity of CD8-IL2v TA and CD8-IL2v OKT8.v11 TA in inducing STAT5 phosphorylation was compared with the functional activity of FAP-IL2v on different immune cell subsets in PBMC. STAT5 phosphorylation is used as a marker for IL2 receptor (IL2R) activation. On CD4 T cells and regulatory T cells (Treg), all three tested molecules showed the same activity in inducing phosphorylation of STAT5. On CD8 T cells, CD8-IL2v TA and CD8-IL2v OKT8.v11 TA showed much higher potency in inducing phosphorylation of STAT5, but CD8-IL2v TA and CD8-IL2v OKT8.v11 TA showed much higher potency in activation. There is no difference. On NK cells, CD8-IL2v TA and CD8-IL2v OKT8.v11 TA are stronger than FAP-IL2v, possibly because some NK cells are CD8 positive. These data indicate that targeting IL2v to CD8 T cells can strongly enhance the activation of IL2R via IL2v, and this effect is only cis-mediated, because the activation of IL2R on CD8-negative T cells does not increase (Figure 5). * * *

儘管出於清楚理解之目的,已藉助於說明及實例相當詳細地描述前述之本發明,但描述及實例不應解釋為限制本發明之範疇。本文中所引用之所有專利及科學文獻之揭示內容均以全文引用之方式明確併入本文中。Although for the purpose of clear understanding, the foregoing invention has been described in considerable detail with the help of illustrations and examples, the description and examples should not be construed as limiting the scope of the invention. The disclosures of all patents and scientific documents cited in this article are expressly incorporated into this article by reference in their entirety.

1A 及圖 1B. 包含突變型IL-2多肽之IgG-IL-2免疫結合物型式的示意表示。(圖1A)兩臂抗CD8;(圖2A)單臂抗CD8。 Figure 1A and Figure 1B. Schematic representation of the type of IgG-IL-2 immunoconjugate containing mutant IL-2 polypeptide. (Figure 1A) Two-arm anti-CD8; (Figure 2A) One-arm anti-CD8.

2. 藉由流式細胞測量術來測定與抗FAP-IL2v (FAP-IL2v)同靜息PBMC內之CD8 T細胞之結合相比,兩臂抗CD8-IL2v (CD8-IL2v TA)及單臂抗CD8-IL2v (CD8-IL2v OA)與CD8 T細胞之結合。用經螢光標記之抗人類Fc特異性二級抗體偵測分子。使用PBMC之CD3及CD8染色來鑑別CD8 T細胞。 Figure 2. Two-arm anti-CD8-IL2v (CD8-IL2v TA) and single-arm anti-CD8-IL2v (CD8-IL2v TA) compared with the binding of anti-FAP-IL2v (FAP-IL2v) to CD8 T cells in resting PBMC by flow cytometry Arm anti-CD8-IL2v (CD8-IL2v OA) binding to CD8 T cells. A fluorescently labeled anti-human Fc-specific secondary antibody is used to detect the molecule. CD3 and CD8 staining of PBMC was used to identify CD8 T cells.

3A 、圖 3B 、圖 3C 及圖 3D. 藉由流式細胞測量術來測定在用CD8-IL2v TA、CD8-IL2v OA及FAP-IL2v處理靜息PBMC後,CD8 T細胞(圖3A)、CD4 T細胞(圖3C)、調節T細胞(圖3D)及NK細胞(圖3D)中之STAT5磷酸化。 Figure 3A , Figure 3B , Figure 3C, and Figure 3D. Flow cytometry was used to determine the CD8 T cells (Figure 3A), after the resting PBMC were treated with CD8-IL2v TA, CD8-IL2v OA, and FAP-IL2v. STAT5 phosphorylation in CD4 T cells (Figure 3C), regulatory T cells (Figure 3D) and NK cells (Figure 3D).

4A 、圖 4B 及圖 4C. 藉由流式細胞測量術來測定用CD8-IL2v TA、CD8-IL2v OA及FAP-IL2v之PBMC中之NK細胞(圖4C)、CD4 T細胞(圖4B)及CD8 T細胞(圖4C)的增殖。 Figure 4A , Figure 4B and Figure 4C. Determination of NK cells (Figure 4C) and CD4 T cells (Figure 4B) in PBMC with CD8-IL2v TA, CD8-IL2v OA and FAP-IL2v by flow cytometry And the proliferation of CD8 T cells (Figure 4C).

5A 、圖 5B 、圖 5C 及圖 5D. 藉由流式細胞測量術來測定在用CD8-IL2v TA、CD8-IL2v OKT8.v11 TA及FAP-IL2v處理靜息PBMC後,CD8 T細胞(圖5A)、NK細胞(圖5B)、CD4 T細胞(圖5C)及調節T細胞(圖5D)中之STAT5磷酸化。 Figure 5A , Figure 5B , Figure 5C and Figure 5D. Flow cytometry was used to determine the CD8 T cells after the resting PBMC were treated with CD8-IL2v TA, CD8-IL2v OKT8.v11 TA and FAP-IL2v (Figure 5A), STAT5 phosphorylation in NK cells (Figure 5B), CD4 T cells (Figure 5C) and regulatory T cells (Figure 5D).

 

Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0001

Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0002

Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0003

Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0004

Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0005

Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0006

Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0007

Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0008

Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0009

Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0010

Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0011

Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0012

Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0013

Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0014

Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0015

Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0016

Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0017

Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0018

Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0019

Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0020

Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0021

Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0022

Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0023

Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0024

Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0025

Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0026

Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0027

Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0028

Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0029

Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0030

Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0031

Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0032

Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0033

Claims (35)

一種免疫結合物,其包含突變型介白素-2 (IL-2)多肽及與CD8結合之抗體,其中該IL-2多肽為包含胺基酸取代F42A、Y45A及L72G (相對於人類IL-2序列SEQ ID NO: 13編號)之突變型IL-2多肽。An immunoconjugate comprising a mutant interleukin-2 (IL-2) polypeptide and an antibody that binds to CD8, wherein the IL-2 polypeptide contains amino acid substitutions F42A, Y45A and L72G (relative to human IL- 2 Sequence numbered in SEQ ID NO: 13) mutant IL-2 polypeptide. 如請求項1之免疫結合物, 其中該突變型IL-2多肽為人類IL-2分子,其包含胺基酸取代F42A、Y45A及L72G (相對於人類IL-2序列SEQ ID NO: 13編號);及 其中該抗體包含:(a)重鏈可變區(VH),其包含含SEQ ID NO: 1之胺基酸序列的重鏈互補決定區(HCDR) 1、含SEQ ID NO: 2之胺基酸序列的HCDR 2、含SEQ ID NO: 3之胺基酸序列的HCDR 3;及(b)輕鏈可變區(VL),其包含含SEQ ID NO: 4之胺基酸序列的輕鏈互補決定區(LCDR) 1、含SEQ ID NO: 5之胺基酸序列的LCDR 2及含SEQ ID NO: 6或SEQ ID NO: 28之胺基酸序列的LCDR 3。Such as the immunoconjugate of claim 1, Wherein the mutant IL-2 polypeptide is a human IL-2 molecule, which contains amino acid substitutions F42A, Y45A and L72G (numbering relative to the human IL-2 sequence SEQ ID NO: 13); and Wherein the antibody comprises: (a) a heavy chain variable region (VH), which comprises the heavy chain complementarity determining region (HCDR) containing the amino acid sequence of SEQ ID NO: 1, 1. containing the amino group of SEQ ID NO: 2 The HCDR of the acid sequence 2, the HCDR 3 containing the amino acid sequence of SEQ ID NO: 3; and (b) the light chain variable region (VL), which includes the light chain containing the amino acid sequence of SEQ ID NO: 4 Complementarity determining region (LCDR) 1. LCDR 2 containing the amino acid sequence of SEQ ID NO: 5 and LCDR 3 containing the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 28. 如請求項1或2之免疫結合物,其中該IL-2多肽為突變型IL-2多肽, 其中該突變型IL-2多肽為人類IL-2分子,其包含胺基酸取代F42A、Y45A及L72G (相對於人類IL-2序列SEQ ID NO: 13編號);及 其中該抗體包含:(a)重鏈可變區(VH),其包含與SEQ ID NO: 7之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列;及(b)輕鏈可變區(VL),其包含與SEQ ID NO: 8或SEQ ID NO: 29之胺基酸序列至少約95%、96%、97%、98%、99%或100%一致之胺基酸序列。The immunoconjugate of claim 1 or 2, wherein the IL-2 polypeptide is a mutant IL-2 polypeptide, Wherein the mutant IL-2 polypeptide is a human IL-2 molecule, which contains amino acid substitutions F42A, Y45A and L72G (numbering relative to the human IL-2 sequence SEQ ID NO: 13); and Wherein the antibody comprises: (a) heavy chain variable region (VH), which comprises at least about 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of SEQ ID NO: 7 And (b) the light chain variable region (VL), which comprises at least about 95%, 96%, 97%, 98% of the amino acid sequence of SEQ ID NO: 8 or SEQ ID NO: 29 %, 99% or 100% identical amino acid sequence. 如請求項1或2之免疫結合物,其中該突變型IL-2多肽進一步包含胺基酸取代T3A及/或胺基酸取代C125A。The immunoconjugate of claim 1 or 2, wherein the mutant IL-2 polypeptide further comprises an amino acid substituted for T3A and/or an amino acid substituted for C125A. 如請求項1或2之免疫結合物,其中該突變型IL-2多肽包含SEQ ID NO: 14之序列。The immunoconjugate of claim 1 or 2, wherein the mutant IL-2 polypeptide comprises the sequence of SEQ ID NO: 14. 如請求項1或2之免疫結合物,其中該免疫結合物包含不多於一種突變型IL-2多肽。The immunoconjugate of claim 1 or 2, wherein the immunoconjugate comprises not more than one mutant IL-2 polypeptide. 如請求項1或2之免疫結合物,其中該抗體包含由第一次單元及第二次單元構成的Fc域。The immunoconjugate of claim 1 or 2, wherein the antibody comprises an Fc domain composed of a first subunit and a second subunit. 如請求項7之免疫結合物,其中該Fc域為IgG類,尤其IgG1 子類Fc域。The immunoconjugate according to claim 7, wherein the Fc domain is of the IgG class, especially the IgG 1 subclass Fc domain. 如請求項7之免疫結合物,其中該Fc域為人類Fc域。The immunoconjugate of claim 7, wherein the Fc domain is a human Fc domain. 如請求項1或2之免疫結合物,其中該抗體為IgG類,尤其IgG1 子類免疫球蛋白。The immunoconjugate of claim 1 or 2, wherein the antibody is of the IgG class, especially the IgG 1 subclass immunoglobulin. 如請求項7之免疫結合物,其中該Fc域包含修飾,該修飾促進該Fc域之第一次單元與第二次單元之結合。The immunoconjugate of claim 7, wherein the Fc domain comprises a modification that promotes the binding of the first unit and the second unit of the Fc domain. 如請求項7之免疫結合物,其中在該Fc域之第一次單元之CH3域中,胺基酸殘基經具有較大側鏈體積的胺基酸殘基置換,藉此在該第一次單元之CH3域內產生可定位於該第二次單元之CH3域內之空腔中的隆凸,且在該Fc域之第二次單元之CH3域中,胺基酸殘基經具有較小側鏈體積的胺基酸殘基置換,藉此在該第二次單元之CH3域內產生可供該第一次單元之CH3域內之該隆凸可定位於其中的空腔。The immunoconjugate according to claim 7, wherein in the CH3 domain of the first unit of the Fc domain, an amino acid residue is replaced with an amino acid residue having a larger side chain volume, thereby in the first The CH3 domain of the subunit produces a protuberance that can be located in the cavity in the CH3 domain of the second subunit, and in the CH3 domain of the second subunit of the Fc domain, the amino acid residues have relatively Amino acid residues with a small side chain volume are replaced, thereby creating a cavity in the CH3 domain of the second subunit in which the protuberance in the CH3 domain of the first subunit can be positioned. 如請求項9之免疫結合物,其中在該Fc域之第一次單元中,位置366處之蘇胺酸殘基經色胺酸殘基置換(T366W),且在該Fc域之第二次單元中,位置407處的酪胺酸殘基經纈胺酸殘基置換(Y407V),且視情況位置366處之蘇胺酸殘基經絲胺酸殘基置換(T366S)且位置368處之白胺酸殘基經丙胺酸殘基置換(L368A) (根據Kabat EU索引編號)。The immunoconjugate of claim 9, wherein in the first unit of the Fc domain, the threonine residue at position 366 is replaced by a tryptophan residue (T366W), and in the second unit of the Fc domain In the unit, the tyrosine residue at position 407 is replaced by a valine residue (Y407V), and optionally the threonine residue at position 366 is replaced by a serine residue (T366S) and the position at 368 Leucine residues were replaced by alanine residues (L368A) (numbering according to Kabat EU index). 如請求項13之免疫結合物,其中在該Fc域之第一次單元中,另外,位置354處之絲胺酸殘基經半胱胺酸殘基置換(S354C)或位置356處之麩胺酸殘基經半胱胺酸殘基置換(E356C),且在該Fc域之第二次單元中,另外,位置349處之酪胺酸殘基經半胱胺酸殘基置換(Y349C) (根據Kabat EU索引編號)。The immunoconjugate of claim 13, wherein in the first unit of the Fc domain, in addition, the serine residue at position 354 is replaced with a cysteine residue (S354C) or the glutamine at position 356 The acid residue is replaced by a cysteine residue (E356C), and in the second unit of the Fc domain, in addition, the tyrosine residue at position 349 is replaced by a cysteine residue (Y349C) ( According to the Kabat EU index number). 如請求項9之免疫結合物,其中該突變型IL-2多肽在其胺基端胺基酸處與該Fc域之一個次單元,特定言之該Fc域之第一次單元的羧基端胺基酸融合,視情況經由連接肽融合。The immunoconjugate of claim 9, wherein the mutant IL-2 polypeptide is at its amino terminal amino acid and a subunit of the Fc domain, specifically, the carboxy terminal amine of the first unit of the Fc domain Base acid fusion, optionally via connecting peptide fusion. 如請求項15之免疫結合物,其中該連接肽具有SEQ ID NO: 15之胺基酸序列。The immunoconjugate of claim 15, wherein the connecting peptide has the amino acid sequence of SEQ ID NO: 15. 如請求項9之免疫結合物,其中該Fc域包含一或多種胺基酸取代,該取代減少與Fc受體(特定言之Fcγ受體)的結合,及/或效應子功能(特定言之抗體依賴性細胞介導之細胞毒性)(ADCC)。The immunoconjugate of claim 9, wherein the Fc domain comprises one or more amino acid substitutions, the substitutions reducing binding to Fc receptors (specifically Fcγ receptors), and/or effector functions (specifically Antibody-dependent cell-mediated cytotoxicity (ADCC). 如請求項17之免疫結合物,其中該一或多種胺基酸取代係在選自以下之群的一或多個位置處:L234、L235及P329 (Kabat EU索引編號)。The immunoconjugate of claim 17, wherein the one or more amino acid substitutions are at one or more positions selected from the group consisting of L234, L235 and P329 (Kabat EU index number). 如請求項9之免疫結合物,其中該Fc域中之各次單元包含胺基酸取代L234A、L235A及P329G (Kabat EU索引編號)。The immunoconjugate of claim 9, wherein each subunit in the Fc domain includes amino acid substitutions L234A, L235A and P329G (Kabat EU index number). 如請求項1或2之免疫結合物,其包含:包含與SEQ ID NO: 9或SEQ ID NO: 30之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列之多肽;包含與SEQ ID NO: 10之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列之多肽;及包含與SEQ ID NO: 11或SEQ ID NO: 12之序列至少約80%、85%、90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列之多肽。Such as the immunoconjugate of claim 1 or 2, which comprises: comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98 of the sequence of SEQ ID NO: 9 or SEQ ID NO: 30 A polypeptide with an amino acid sequence that is %, 99%, or 100% identical; comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% with the sequence of SEQ ID NO: 10 Or a polypeptide with a 100% identical amino acid sequence; and comprising at least about 80%, 85%, 90%, 95%, 96%, 97%, 98% with the sequence of SEQ ID NO: 11 or SEQ ID NO: 12 , 99% or 100% identical peptides with amino acid sequence. 如請求項1或2之免疫結合物,其包含:包含SEQ ID NO: 9或SEQ ID NO: 30之胺基酸序列之多肽;包含SEQ ID NO: 10之胺基酸序列之多肽;及包含SEQ ID NO: 11之胺基酸序列之多肽。The immunoconjugate of claim 1 or 2, which comprises: a polypeptide comprising the amino acid sequence of SEQ ID NO: 9 or SEQ ID NO: 30; a polypeptide comprising the amino acid sequence of SEQ ID NO: 10; and A polypeptide of the amino acid sequence of SEQ ID NO: 11. 如請求項1或2之免疫結合物,其包含:包含SEQ ID NO: 9或SEQ ID NO: 30之胺基酸序列之多肽;包含SEQ ID NO: 10之胺基酸序列之多肽;及包含SEQ ID NO: 12之胺基酸序列之多肽。The immunoconjugate of claim 1 or 2, which comprises: a polypeptide comprising the amino acid sequence of SEQ ID NO: 9 or SEQ ID NO: 30; a polypeptide comprising the amino acid sequence of SEQ ID NO: 10; and A polypeptide of the amino acid sequence of SEQ ID NO: 12. 如請求項1或2之免疫結合物,其基本上由突變型IL-2多肽及IgG1 免疫球蛋白分子藉由連接子序列接合而組成。Such as the immunoconjugate of claim 1 or 2, which basically consists of a mutant IL-2 polypeptide and an IgG 1 immunoglobulin molecule joined by a linker sequence. 一或多種經分離之聚核苷酸,其編碼如請求項1至23中任一項之免疫結合物。One or more isolated polynucleotides, which encode the immunoconjugate according to any one of claims 1 to 23. 一或多種載體,特定言之表現載體,其包含如請求項24之聚核苷酸。One or more vectors, in particular expression vectors, which comprise polynucleotides as in claim 24. 一種宿主細胞,其包含如請求項24之聚核苷酸或如請求項25之載體。A host cell comprising the polynucleotide of claim 24 or the vector of claim 25. 一種產生免疫結合物之方法,該免疫結合物包含突變型IL-2多肽及與CD8結合之抗體,該方法包含(a)在適合於表現該免疫結合物之條件下培養如請求項26之宿主細胞,及視情況(b)回收該免疫結合物。A method for producing an immunoconjugate, the immunoconjugate comprising a mutant IL-2 polypeptide and an antibody that binds to CD8, the method comprising (a) culturing a host as in claim 26 under conditions suitable for expressing the immunoconjugate Cells, and optionally (b) recover the immunoconjugate. 一種免疫結合物,其包含突變型IL-2多肽及與CD8結合之抗體,該免疫結合物藉由如請求項27之方法產生。An immunoconjugate comprising a mutant IL-2 polypeptide and an antibody that binds to CD8, the immunoconjugate being produced by the method of claim 27. 一種醫藥組合物,其包含如請求項1至23或28中任一項之免疫結合物及醫藥學上可接受之載劑。A pharmaceutical composition comprising the immunoconjugate according to any one of claims 1 to 23 or 28 and a pharmaceutically acceptable carrier. 如請求項1或2之免疫結合物,其用作藥劑。Such as the immunoconjugate of claim 1 or 2, which is used as a medicament. 如請求項1或2之免疫結合物,其用於治療疾病。Such as the immunoconjugate of claim 1 or 2, which is used for the treatment of diseases. 如請求項31之免疫結合物,其中該疾病為癌症。The immunoconjugate of claim 31, wherein the disease is cancer. 一種如請求項1至23或28中任一項之免疫結合物,其用於製造用於治療疾病之藥劑。An immunoconjugate according to any one of claims 1 to 23 or 28, which is used for the manufacture of a medicament for the treatment of diseases. 如請求項33之用途,其中該疾病為癌症。Such as the use of claim 33, wherein the disease is cancer. 一種如請求項1至23或28中任一項之免疫結合物之用途,其用於製造用於刺激個體之免疫系統之藥劑。A use of the immunoconjugate according to any one of claims 1 to 23 or 28, which is used to manufacture a medicament for stimulating the immune system of an individual.
TW109121834A 2019-07-02 2020-06-29 Immunoconjugates TW202115115A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19183829.1 2019-07-02
EP19183829 2019-07-02

Publications (1)

Publication Number Publication Date
TW202115115A true TW202115115A (en) 2021-04-16

Family

ID=67296960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109121834A TW202115115A (en) 2019-07-02 2020-06-29 Immunoconjugates

Country Status (6)

Country Link
EP (1) EP3994169A1 (en)
JP (1) JP2022538139A (en)
CN (1) CN114051500A (en)
AR (1) AR119338A1 (en)
TW (1) TW202115115A (en)
WO (1) WO2021001289A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018298060B2 (en) 2017-07-03 2021-02-25 Torque Therapeutics, Inc. Immunostimulatory fusion molecules and uses thereof
TW202321283A (en) * 2021-07-20 2023-06-01 美商英伊布里克斯公司 Cd8-binding polypeptides and uses thereof
TW202309102A (en) * 2021-07-20 2023-03-01 美商英伊布里克斯公司 Cd8-targeted modified il-2 polypeptides and uses thereof
CN116041539B (en) * 2022-10-31 2023-07-21 山东博安生物技术股份有限公司 IL-2 mutant immunoconjugates

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2388385B1 (en) 1977-04-18 1982-01-08 Hitachi Metals Ltd ORNAMENT FIXED BY PERMANENT MAGNETS
US4518584A (en) 1983-04-15 1985-05-21 Cetus Corporation Human recombinant interleukin-2 muteins
US5116943A (en) 1985-01-18 1992-05-26 Cetus Corporation Oxidation-resistant muteins of Il-2 and other protein
US5206344A (en) 1985-06-26 1993-04-27 Cetus Oncology Corporation Interleukin-2 muteins and polymer conjugation thereof
WO1987000056A1 (en) 1985-06-26 1987-01-15 Cetus Corporation Solubilization of proteins for pharmaceutical compositions using polymer conjugation
US6548640B1 (en) 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
WO1990005144A1 (en) 1988-11-11 1990-05-17 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
DE3920358A1 (en) 1989-06-22 1991-01-17 Behringwerke Ag BISPECIFIC AND OLIGO-SPECIFIC, MONO- AND OLIGOVALENT ANTI-BODY CONSTRUCTS, THEIR PRODUCTION AND USE
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
ATE164395T1 (en) 1990-12-03 1998-04-15 Genentech Inc METHOD FOR ENRICHMENT OF PROTEIN VARIANTS WITH MODIFIED BINDING PROPERTIES
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
ATE255131T1 (en) 1991-06-14 2003-12-15 Genentech Inc HUMANIZED HEREGULIN ANTIBODIES
GB9114948D0 (en) 1991-07-11 1991-08-28 Pfizer Ltd Process for preparing sertraline intermediates
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
WO1993016185A2 (en) 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Biosynthetic binding protein for cancer marker
US5229109A (en) 1992-04-14 1993-07-20 Board Of Regents, The University Of Texas System Low toxicity interleukin-2 analogues for use in immunotherapy
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
DE69830901T2 (en) 1997-05-02 2006-05-24 Genentech Inc., San Francisco A method for producing multispecific antibodies having heteromultimeric and common components
US6040498A (en) 1998-08-11 2000-03-21 North Caroline State University Genetically engineered duckweed
US6610833B1 (en) 1997-11-24 2003-08-26 The Institute For Human Genetics And Biochemistry Monoclonal human natural antibodies
JP4460155B2 (en) 1997-12-05 2010-05-12 ザ・スクリプス・リサーチ・インステイチユート Humanization of mouse antibodies
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
CA2385347C (en) 1999-10-04 2009-12-15 Medicago Inc. Method for regulating transcription of foreign genes
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
IL149809A0 (en) 1999-12-15 2002-11-10 Genentech Inc Shotgun scanning, a combinatorial method for mapping functional protein epitopes
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
MXPA03004793A (en) 2000-11-30 2004-12-03 Medarex Inc Transgenic transchromosomal rodents for making human antibodies.
JP2005507870A (en) 2001-08-13 2005-03-24 ユニバーシティ・オブ・サザン・カリフォルニア Low toxicity interleukin-2 mutant
RU2312677C9 (en) 2001-12-04 2008-03-27 Мерк Патент Гмбх Immunocytokines possessing modulated selectivity
NZ556507A (en) 2002-06-03 2010-03-26 Genentech Inc Synthetic antibody phage libraries
WO2004065416A2 (en) 2003-01-16 2004-08-05 Genentech, Inc. Synthetic antibody phage libraries
AU2005230848B9 (en) 2004-03-31 2011-06-02 Genentech, Inc. Humanized anti-TGF-beta antibodies
US7785903B2 (en) 2004-04-09 2010-08-31 Genentech, Inc. Variable domain library and uses
SG172616A1 (en) 2004-04-13 2011-07-28 Hoffmann La Roche Anti-p-selectin antibodies
TWI309240B (en) 2004-09-17 2009-05-01 Hoffmann La Roche Anti-ox40l antibodies
UA95068C2 (en) 2005-02-07 2011-07-11 Глікарт Біотехнолоджі Аг Antigen binding molecules that bind egfr, vectors encoding same, and uses thereof
EP1870459B1 (en) 2005-03-31 2016-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
EP2465870A1 (en) 2005-11-07 2012-06-20 Genentech, Inc. Binding polypeptides with diversified and consensus VH/VL hypervariable sequences
EP1973951A2 (en) 2005-12-02 2008-10-01 Genentech, Inc. Binding polypeptides with restricted diversity sequences
WO2007110205A2 (en) 2006-03-24 2007-10-04 Merck Patent Gmbh Engineered heterodimeric protein domains
US20070292936A1 (en) 2006-05-09 2007-12-20 Genentech, Inc. Binding polypeptides with optimized scaffolds
US20090182127A1 (en) 2006-06-22 2009-07-16 Novo Nordisk A/S Production of Bispecific Antibodies
EP2066796B1 (en) 2006-09-20 2011-06-29 MT-Biomethan GmbH Method and device for separating methane and carbon dioxide from biogas
WO2009061853A2 (en) 2007-11-05 2009-05-14 Massachusetts Institute Of Technology Mutant interleukin-2 (il-2) polypeptides
EP2235064B1 (en) 2008-01-07 2015-11-25 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
US9067986B2 (en) 2009-04-27 2015-06-30 Oncomed Pharmaceuticals, Inc. Method for making heteromultimeric molecules
AU2010285071A1 (en) 2009-08-17 2012-02-02 Roche Glycart Ag Targeted immunoconjugates
LT2519543T (en) 2009-12-29 2016-10-10 Emergent Product Development Seattle, Llc Heterodimer binding proteins and uses thereof
WO2011143545A1 (en) 2010-05-14 2011-11-17 Rinat Neuroscience Corporation Heterodimeric proteins and methods for producing and purifying them
ES2758994T3 (en) 2010-11-05 2020-05-07 Zymeworks Inc Stable heterodimeric antibody design with mutations in the Fc domain
AU2012215573B2 (en) 2011-02-10 2015-11-26 Roche Glycart Ag Mutant interleukin-2 polypeptides
KR101614195B1 (en) 2011-03-29 2016-04-20 로슈 글리카트 아게 Antibody fc variants
EA201892619A1 (en) 2011-04-29 2019-04-30 Роше Гликарт Аг IMMUNOCONJUGATES CONTAINING INTERLEUKIN-2 MUTANT POLYPETIPS
LT2794905T (en) 2011-12-20 2020-07-10 Medimmune, Llc Modified polypeptides for bispecific antibody scaffolds
JP6152120B2 (en) 2012-02-15 2017-06-21 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Affinity chromatography based on Fc receptors
JP6272299B2 (en) 2012-04-20 2018-01-31 メルス ナムローゼ フェンノートシャップ Methods for producing Ig-like molecules, mixtures of Ig-like molecules, recombinant host cells, pharmaceutical compositions, methods for making host cells, and cultures
AU2018298060B2 (en) * 2017-07-03 2021-02-25 Torque Therapeutics, Inc. Immunostimulatory fusion molecules and uses thereof
WO2019033043A2 (en) 2017-08-11 2019-02-14 Genentech, Inc. Anti-cd8 antibodies and uses thereof

Also Published As

Publication number Publication date
WO2021001289A1 (en) 2021-01-07
EP3994169A1 (en) 2022-05-11
CN114051500A (en) 2022-02-15
JP2022538139A (en) 2022-08-31
AR119338A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
TWI780140B (en) Immunoconjugates
US20230134606A1 (en) Immunoconjugates
TW201420607A (en) Interleukin-2 fusion proteins and uses thereof
TW202115115A (en) Immunoconjugates
US20230192795A1 (en) Immunoconjugates
JP2023509952A (en) Novel 4-1BBL trimer-containing antigen-binding molecule
JP2024512709A (en) Protease activating polypeptide
WO2022148853A1 (en) Immunoconjugates
WO2023062048A1 (en) Alternative pd1-il7v immunoconjugates for the treatment of cancer