TW202029294A - 沉積硼摻雜矽鍺膜之方法 - Google Patents

沉積硼摻雜矽鍺膜之方法 Download PDF

Info

Publication number
TW202029294A
TW202029294A TW108138529A TW108138529A TW202029294A TW 202029294 A TW202029294 A TW 202029294A TW 108138529 A TW108138529 A TW 108138529A TW 108138529 A TW108138529 A TW 108138529A TW 202029294 A TW202029294 A TW 202029294A
Authority
TW
Taiwan
Prior art keywords
boron
precursor
germanium
substrate
film
Prior art date
Application number
TW108138529A
Other languages
English (en)
Other versions
TWI839400B (zh
Inventor
大衛 柯恩
Original Assignee
荷蘭商Asm 智慧財產控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asm 智慧財產控股公司 filed Critical 荷蘭商Asm 智慧財產控股公司
Publication of TW202029294A publication Critical patent/TW202029294A/zh
Application granted granted Critical
Publication of TWI839400B publication Critical patent/TWI839400B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01017Chlorine [Cl]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01111Halogens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明揭示一種用來沉積硼摻雜矽鍺(Si1-x Gex )膜之方法。該方法可包括:於反應室中提供基板;將基板加熱至沉積溫度;使矽前驅體、鍺前驅體、及鹵化物氣體通過第一氣體注射器流入至反應室中;使硼摻雜物前驅體通過獨立於該第一氣體注射器之第二氣體注射器流入至反應室中;使基板與矽前驅體、鍺前驅體、鹵化物氣體、及硼摻雜物前驅體接觸;及使硼摻雜矽鍺 (Si1-x Gex )膜沉積於基板表面上方。

Description

沉積硼摻雜矽鍺膜之方法
本揭示大致係關於沉積硼摻雜矽鍺(Si1-x Gex )膜之方法及經組構用來沉積硼摻雜矽鍺(Si1-x Gex )膜之半導體沉積設備。
高遷移率半導體(諸如矽鍺(Si1-x Gex ))可被需要使用來製造半導體裝置,因其具有相當高的電子及/或電洞遷移率。利用高遷移率半導體材料形成的裝置與利用較低遷移率半導體(諸如矽)形成的類似裝置相比,理論上可展現較佳效能、較高速度、降低功率消耗、且具有較高崩潰電場。
單晶矽鍺(Si1-x Gex )半導體材料可使用各種技術來沉積或生長。舉例來說,可使用包括分子束磊晶及化學氣相沉積的真空製程來形成單晶矽鍺膜。
在一些半導體裝置應用中,矽鍺膜可摻雜選定雜質以獲得期望導電性。舉例來說,矽鍺膜可經由將硼納入至矽鍺膜中來進行p型摻雜。在一些應用中,可能希望沉積具有受控摻雜濃度分佈的矽鍺膜,諸如,比方說,於矽鍺膜中之受控或可調的硼摻雜物濃度分佈。因此,需要形成具有受控摻雜濃度分佈之矽鍺膜的方法。
根據本揭示的至少一個具體例,揭示一種用於沉積硼摻雜矽鍺(Si1-x Gex )膜的方法。該方法可包括:於反應室內提供基板;加熱基板至沉積溫度;使矽前驅體、鍺前驅體、及鹵化物氣體通過第一氣體注射器流入至反應室中;使硼摻雜物前驅體通過獨立於第一氣體注射器之第二氣體注射器流入至反應室中;使基板與矽前驅體、鍺前驅體、鹵化物氣體、及硼摻雜物前驅體接觸;及使硼摻雜矽鍺(Si1-x Gex )膜沉積於基板表面上方。
為了概述本發明及所達成之優於先前技術的優點,本發明之某些目標及優點已在本文中於上文描述。當然,應了解的是,可無須根據本發明之任何特定具體例來達成所有此類目標或優點。因此,例如,本領域技術人士將瞭解到,本發明可以達成或優化如本文中所教示或提示的一個優點或一群優點的方式來實施或進行,但未必達成如本文中所教示或提示的其他目的或優點。
所有該等具體例皆意欲屬於本文所揭示之本發明範疇中。藉由參考附圖之某些具體例的下述詳細說明,該等及其他具體例對本領域技術人士來說將變得更加明顯易懂,且本發明並不限於所揭示之任何特定具體例。
雖然在下文中揭示特定具體例及實例,但是該項技藝者可以理解,本發明延伸超出本發明所具體揭示之具體例及/或用途及其明顯修改及其均等物。因此,其目的在於所揭示之本發明的範疇不應受下文所描述的特定揭示之具體例的限制。
如本文所使用,術語「基板」可指可使用或在其上可形成裝置、電路或膜之任何下層材料。
如本文所使用,術語「磊晶層」可指在下層實質上單晶基板上的實質上單晶層。
如本文所使用,術語「化學氣相沉積」可以意指任何一個製程,其中將基板暴露於一種或更多種揮發性前驅體,該等前驅體在基板上反應及/或分解,以產生所要的沉積物。
如本文所使用,術語「矽鍺」可指包含矽及鍺之半導體材料且可表示為Si1-xGex,其中 1 ≥ x ≥ 0。
本揭示之具體例可包括用來沉積硼摻雜矽鍺(Si1-xGex)膜之方法,及特定而言藉由化學氣相沉積方法來沉積具有受控硼摻雜物濃度分佈之硼摻雜矽鍺膜的方法。本揭示之具體例可提供用來沉積矽鍺膜之方法,其包括使矽鍺膜中鍺納入之均勻度與矽鍺膜中硼納入之均勻度去偶合,使得矽鍺膜中之硼濃度可與矽鍺膜中之鍺濃度獨立地作調整。
藉由化學氣相沉積方法來沉積硼摻雜矽鍺(Si1-xGex)膜之先前方法可利用第一氣體注射器使矽前驅體、鍺前驅體、及硼摻雜物前驅體流入至反應室中,其中該等前驅體接觸受熱基板,於其上發生沉積。在一些先前化學氣相沉積方法中,可藉由選擇性沉積方法來沉積硼摻雜矽鍺(Si1-xGex)膜,及在該等方法中,可利用獨立於第一氣體注射器之第二氣體注射器將蝕刻劑氣體引入至反應室中來實現選擇性沉積製程。在所描述之用來沉積硼摻雜矽鍺(Si1-xGex)膜的先前化學氣相沉積方法中,鍺前驅體及硼摻雜物前驅體皆可使用用於兩前驅體的共同氣體注射器來引入至反應室中。由於鍺前驅體及硼摻雜物前驅體可利用共同的氣體注射器引入至反應室中,因此任何對鍺前驅體流動的修改將會對矽鍺膜中之硼摻雜物納入產生影響,藉此失去對矽鍺(Si1-xGex)膜中硼濃度及鍺濃度的獨立控制。在一些先前CVD方法中,矽前驅體及鹵化物氣體可通過第二氣體注射器引入至反應室中,而硼摻雜物前驅體及鍺摻雜物前驅體可通過第一氣體注射器引入至反應室中。
因此,當前揭示之具體例可包括用來沉積硼摻雜矽鍺(Si1-xGex)膜之方法,其容許獨立控制矽鍺膜中之鍺濃度及硼濃度。具體例可包括經由通過第一氣體注射器將鍺前驅體引入至反應室中及通過獨立於第一氣體注射器之第二氣體注射器將硼摻雜物前驅體引入至反應室中來使鍺前驅體之流動與硼摻雜物前驅體之流動去偶合。本揭示之具體例亦可容許調節硼摻雜矽鍺膜中之硼濃度分佈來針對具有各種表面積之基板調整硼濃度分佈。舉例來說,包括高縱橫比特徵之基板可與平面基板不同地納入硼摻雜物,且本揭示之具體例可容許所沉積矽鍺膜中之硼摻雜物濃度的可調性以補償基板表面積中之差異。
因此,本揭示之具體例包括用來沉積硼摻雜矽鍺(Si1-xGex)膜之方法 。該等沉積方法可包括:於反應室內提供基板;加熱基板至沉積溫度;使矽前驅體、鍺前驅體、及鹵化物氣體通過第一氣體注射器流入至反應室中;使硼摻雜物前驅體通過獨立於第一氣體注射器之第二氣體注射器流入至反應室中;使基板與矽前驅體、鍺前驅體、鹵化物氣體、及硼摻雜物前驅體接觸;及使硼摻雜矽鍺(Si1-xGex)膜沉積於基板表面上方。
本揭示之方法可參照圖1來理解,圖1說明展示用來沉積硼摻雜矽鍺(Si1-xGex)膜之一非限制性方法的例示性製程流程。沉積硼摻雜矽鍺膜的方法100可由製程方塊110開始,其包括將基板提供至反應室中並將基板加熱至沉積溫度。
在本揭示之一些具體例中,基板可包含平面基板或圖案化基板。圖案化基板可以包含如下基板:其可以包括形成在基板表面之中或之上的半導體裝置結構,例如,圖案化基板可以包含部分製造的半導體裝置結構,諸如電晶體及記憶體元件。圖案化基板可以包括非平面表面,該非平面表面可以包括從基板的主表面向上延伸的一或多個鰭片結構及/或延伸至基板表面中的一或多個凹部 。基板可含有單晶表面及/或一或多個次表面,次表面可包括非單晶表面(諸如多晶表面及非晶表面)。單晶表面可包括例如矽(Si)、矽鍺(SiGe)、鍺錫(GeSn)或鍺(Ge)中之一者或多者。多晶或非晶表面可包含介電材料,諸如氧化物、氮氧化物或氮化物,包括例如氧化矽及氮化矽。
作為非限制性實例,反應室可包含化學氣相沉積系統之反應室。然而,亦預期亦可利用其他反應室(諸如,比方說,原子層沉積反應室)及替代化學氣相沉積系統來執行本揭示之具體例。
繼續參考圖1,例示性方法100的製程方塊110接下來是將基板加熱至反應室內的期望沉積溫度。在本揭示之一些具體例中,方法100可包含將基板加熱至低於約700℃之溫度、或至低於約650℃之溫度、或至低於約600℃之溫度、或至低於約550℃之溫度、或至低於約500℃之溫度、或至低於約450℃之溫度、或甚至至低於約400℃之溫度。例如,在本揭示的一些具體例中,將基板加熱至沉積溫度可包括將基板加熱至介於約400℃與約700℃之間的溫度。
除了控制基板的溫度之外,還可以調節反應室內的壓力。例如,在本揭示的一些具體例中,反應室內的壓力可小於200托(Torr)、或小於100托、或小於50托、或小於25托、或甚至小於10托。在一些具體例中,反應室中的壓力可介於10托與100托之間。
圖1之例示性沉積方法100可繼續進行製程方塊120,其包括使矽前驅體、鍺前驅體、及鹵化物氣體通過第一氣體注射器流入至反應室中。在本揭示的一些具體例中,製程方塊130可與製程方塊120同時進行,其中製程方塊130進一步包括使硼摻雜物前驅體通過獨立於第一氣體注射器之第二氣體注射器流入至反應室中。在一些具體例中,第一氣體注射器及第二氣體注射器皆可包括多口注射器(MPI),其包括複數個用來將氣體混合物提供至反應室中之個別口注射器。
更詳言之,圖2說明可利用來沉積根據本揭示之具體例之矽鍺(Si1-xGex)膜的例示性半導體沉積設備200。在一些具體例中,例示性半導體沉積設備200可包括化學氣相沉積設備。
例示性半導體沉積設備200可包括反應室202、於其上進行沉積的基板204、第一氣體注射器206A、及獨立於第一氣體注射器206A之第二氣體注射器206B。在一些具體例中,第一氣體注射器206A及第二氣體注射器206B可包括多口注射器(MPI)。舉例來說,第一氣體注射器206A可包括第一MPI且可包括複數個個別注射口,諸如例示性的個別注射口208A。此外,第二氣體注射器206B可包括第二MPI且可包括複數個個別注射口,諸如例示性的個別注射口208B。個別注射口可包括由Swagelok® 製造之BMW系列計量閥及例如由HanBay Inc.製造之無刷DC馬達。此外,個別注射口可例如藉由Horiba或MKS儀器製造之質量流量控制器(MFC)來控制。在一些具體例中,第一MPI 206A及第二MPI 206B可以緊密空間關係設置或在空間上分開。第一MPI 206A及第二MPI 206B並不限於五個個別注射口(如圖2中所繪示),而係可視應用而定具有多於或少於五個個別注射口。舉例來說,每個MPI之個別注射口的數目可在1至15、或3至10、或5至8之範圍內,視應用而定。應注意第一MPI 206A及第二MPI 206B之個別口可能具有除圖2中所繪示者外的其他幾何形狀及配置。
在本揭示之一些具體例中,第一氣體注射器206A可使矽前驅體、鍺前驅體、及鹵化物氣體流入至反應中。舉例來說,矽前驅體可包含選自包含下列之群的氫化矽前驅體:矽烷(SiH4)、二矽烷(Si2H6)、三矽烷(Si3H8)、或四矽烷(Si4H10)。或者,矽前驅體可包含選自包含下列之群的氯化矽前驅體:單氯矽烷(MCS)、二氯矽烷(DCS)、三氯矽烷(TCS)、六氯二矽烷(HCDS)、八氯三矽烷(OCTS)或四氯化矽(STC)。在一些具體例中,鍺前驅體可包含鍺烷(GeH4)、二鍺烷(Ge2H6)、三鍺烷(Ge3H8)、或鍺烷基矽烷(GeH6Si)中之至少一者。此外,鹵化物氣體可包含氯氣(Cl2)、或氫氯酸(HCl)中之至少一者。
在本揭示之一些具體例中,第二氣體注射器206B可使硼摻雜物前驅體流入至反應室中。在一些具體例中,第二氣體注射器206B可使由硼摻雜物前驅體所組成的單一氣體流動。在一些具體例中,第二氣體注射器206B可使由載體氣體(例如,N2、Ar、H2 及He)及硼摻雜物前驅體所組成的氣體混合物流動。在一些具體例中,硼摻雜物前驅體包含二硼烷(B2H6)、或三氯化硼(BCl3)、三氟化硼(BF3)、氘-二硼烷(B2D6)中之至少一者。
在本揭示之一些具體例中,p型摻雜物前驅體(即硼摻雜物前驅體)可經替代的p型摻雜物前驅體取代。舉例來說,p型摻雜物前驅體可包含含鎵(Ga)摻雜物前驅體或含鋁(Al)摻雜物前驅體,諸如,比方說,硼氫化物(例如,(Ga(BH4)3)或(Al(BH4)3))、鹵化物、或有機鹵化物。
例示性沉積方法100(圖1)可繼續進行製程方塊140,其包括使基板與矽前驅體、鍺前驅體、鹵化物氣體、及硼摻雜物前驅體接觸。在一些具體例中,使基板與矽前驅體、鍺前驅體、鹵化物前驅體、及硼摻雜物前驅體接觸可同時發生,換句話說,矽前驅體、鍺前驅體、鹵化物氣體、及硼摻雜物前驅體係共同流入至反應室中並且作為包含矽前驅體、鍺前驅體、鹵化物氣體、及硼摻雜物前驅體的氣體混合物與受熱基板相互作用。在一些具體例中,將基板暴露於矽前驅體、鍺前驅體、鹵化物氣體、及硼摻雜物前驅體可包括將前驅體依序地引入至反應室中,換句話說,將前驅體分開並依序地引入至反應室中並接觸基板。
在一些具體例中,使基板與矽前驅體接觸包括使矽前驅體以小於500 sccm、或小於250 sccm、或甚至小於50 sccm的流速通過第一氣體注射器流入至反應室中。舉例來說,矽前驅體可以介於大約1 sccm與大約500 sccm之間的矽前驅體流速流入至反應室中。
在一些具體例中,使基板與鍺前驅體接觸包括使鍺前驅體以小於1000 sccm、或小於300 sccm、或甚至小於10 sccm的流速通過第一氣體注射器流入至反應室中。舉例來說,鍺前驅體可以介於大約1 sccm與大約1000 sccm之間的鍺前驅體流速流入至反應室中。在一些具體例中,鍺前驅體可以稀釋形式提供,且稀釋形式可包含大約1.5%鍺前驅體,諸如,比方說,GeH4。
在一些具體例中,使基板與鹵化物氣體接觸包括使鹵化物氣體以小於500 sccm、或小於250 sccm、或甚至小於100 sccm的流速通過第一氣體注射器流入至反應室中。舉例來說,鹵化物氣體可以介於大約1 sccm與大約500 sccm之間的鹵化物氣體流速流入至反應室中。
在一些具體例中,使基板與硼摻雜物前驅體接觸包括使硼摻雜物前驅體以小於500 sccm、或小於250 sccm、或甚至小於50 sccm的流速通過第二氣體注射器流入至反應室中。舉例來說,硼摻雜物前驅體可以介於大約1 sccm與大約500 sccm之間的硼摻雜物前驅體流速流入至反應室中。在一些具體例中,硼前驅體可以稀釋形式提供,且稀釋形式可包含大約1%硼摻雜物前驅體,諸如,比方說,二硼烷。
例示性沉積方法100可藉由製程方塊150繼續,其包括使硼摻雜矽鍺(Si1-xGex)膜沉積於基板之表面上方。在一些具體例中,添加鹵化物氣體至經引入至反應室中之氣體混合物能夠在基板表面之選定區域上方選擇性地沉積硼摻雜矽鍺(Si1-xGex)膜。舉例來說,可利用本揭示之方法來在半導體裝置結構(諸如FinFET結構或平面FET結構)上方選擇性地沉積硼摻雜矽鍺源極及汲極區域。
在一些具體例中,所沉積之硼摻雜矽鍺(Si1-xGex)膜可具有大於1 × 1020/cm3 、或大於5 × 1020/cm3 、或甚至大於3 × 1021/cm3 之硼濃度。舉例來說,當前揭示之經沉積硼摻雜矽鍺膜可具有介於大約1 × 1020/cm3 與大約3 × 1021/cm3 之間的硼濃度。此外,經沉積硼摻雜矽鍺(Si1-xGex)膜可具有大於0.2、或大於0.3、或大於0.4、或大於0.5、或大於0.6、或甚至大於0.7之鍺含量(x)。在一些具體例中,經沉積硼摻雜矽鍺(Si1-xGex)膜可具有介於大約0.2與大約0.7之間、或甚至介於大約0.3與大約0.5之間的鍺含量(x)。在一些具體例中,沉積矽鍺膜中之鍺含量可不為恆定而係可改變,以致鍺含量可於沉積矽鍺膜中具有分級組成。
在一些具體例中,沉積硼摻雜矽鍺(Si1-xGex)膜可包括沉積硼摻雜矽鍺膜至大於20埃、或大於40埃、或大於60埃、或大於80埃、或大於100埃、或大於250埃、或甚至大於500埃之厚度。在一些具體例中,硼摻雜矽鍺膜可經沉積至低於20埃、或低於10埃、或甚至低於5埃之厚度。在一些具體例中,硼摻雜矽鍺膜可經沉積至介於大約20埃與大約300埃之間之厚度。
在一些具體例中,沉積硼摻雜矽鍺(Si1-xGex)膜可進一步包括沉積具有低於0.8 mΩ•cm、或低於0.6 mΩ•cm、或低於0.4 mΩ•cm、或甚至低於0.2 mΩ•cm之電阻率的經摻雜矽鍺膜。在一些具體例中,所沉積之經摻雜矽鍺膜具有介於大約0.2 mΩ•cm與大約0.8 mΩ•cm之間的電阻率。
當前揭示之具體例可容許跨越基板修改硼摻雜物濃度分佈。在一些具體例中,可修改沉積於基板上之矽鍺膜中之硼摻雜物濃度分佈,同時維持於矽鍺膜中之期望鍺濃度分佈,以致硼摻雜物濃度分佈及鍺濃度分佈可於沉積矽鍺膜中獨立地控制。
更詳言之,圖3包括說明圖300,其說明指示為膜304、306及308之三種例示性硼摻雜矽鍺膜中之硼濃度,三種例示性膜係根據當前揭示之具體例沉積。說明圖300亦說明根據本揭示之具體例所沉積之三種例示性硼摻雜矽鍺膜於基板邊緣處之硼濃度(邊緣硼濃度「EBC」)與於基板中心處之硼濃度(中心硼濃度「CBC」)之間所達成的變化。
此外,於例示性矽鍺膜中硼濃度之變化可以EBC/CBC表示,且EBC/CBC之值針對根據本揭示之具體例所沉積之三種例示性矽鍺膜作圖於標示為302之說明圖中。
更詳言之,標示為304之數據係獲自藉由基線製程沉積之硼摻雜矽鍺膜,其中EBC及CBC稍微匹配,從而產生接近1之EBC/CBC值。作為一非限制性實例,在基線製程中,MPI可包含多個個別注射口,其經打開至相同值。在一些具體例中,本揭示之方法可沉積硼摻雜矽鍺膜,其中EBC及CBC實質上匹配及因此EBC/CBC等於1。
然而,標示為306之數據係獲自根據本揭示之具體例所沉積之硼摻雜矽鍺膜,其中CBC顯著大於EBC,藉此產生小於1之EBC/CBC值。此外,標示為308之數據係獲自根據本揭示之具體例所沉積之硼摻雜矽鍺膜,其中CBC顯著低於EBC,藉此產生大於1之EBC/CBC值。在一些具體例中,EBC/CBC值,及因此硼摻雜矽鍺之摻雜分佈可經由控制通過構成MPI之個別注射口之前驅體的流速來改變。作為一非限制性實例,低於1之EBC/CBC值可經由與MPI之邊緣區域之流動相比提高在MPI之中心區域處之前驅體的流動來達成。
針對鍺前驅體及硼摻雜物前驅體利用個別、獨立的氣體注射器之本揭示的具體例容許廣泛修改沉積矽中之硼濃度分佈。舉例來說,在一些具體例中,EBC/CBC值可具有大約0.3之最小值且可具有大約3之最大值。在一些具體例中,EBC/CBC值可在介於大約0.3與大約3間之範圍內,同時於硼摻雜矽鍺膜中維持實質上恆定的鍺含量。
上述揭示內容之實例具體例並未限制本發明的範疇,因為此等具體例僅為本發明之具體例之實例,本發明的範疇係由隨附申請專利範圍及其合法均等物來界定。任何等效具體例皆旨在本發明之範疇內。實際上,熟習此項技術者自前述描述將明白除了本文展示且描述以外的本揭示之各種修飾,諸如所述元件之替代有用組合。該等修飾及具體例亦旨在落在隨附申請專利範圍之範疇內。
100:方法 110:製程方塊 120:製程方塊 130:製程方塊 140:製程方塊 150:製程方塊 200:半導體沉積設備 202:反應室 204:基板 206A:第一氣體注射器 206B:第二氣體注射器 208A:注射口 208B:注射口 300:圖 302:圖 304:硼摻雜矽鍺膜 306:硼摻雜矽鍺膜 308:硼摻雜矽鍺膜
儘管本說明書以具體指出且明確主張被視為本發明之具體例的申請專利範圍作結,但在結合隨附圖式閱讀時可更容易自本揭示之具體例之某些實例的描述來確定本揭示之具體例的優勢,在隨附圖式中:
圖1說明根據本揭示之具體例之例示性沉積方法的製程流程圖;
圖2說明可利用來沉積根據本揭示之具體例之矽鍺(Si1-x Gex )膜的例示性半導體沉積設備;及
圖3說明根據本揭示之具體例沉積之若干硼摻雜矽鍺膜的硼摻雜濃度分佈。
應瞭解,附圖中之元件係為了簡單及清楚起見而進行圖解說明且未必按比例繪製。舉例而言,附圖中一些元件之尺寸可相對於其他元件而放大,以幫助提昇對本揭示內容所說明之具體例的理解。
100:方法
110:製程方塊
120:製程方塊
130:製程方塊
140:製程方塊
150:製程方塊

Claims (23)

  1. 一種用來沉積硼摻雜矽鍺(Si1-xGex)膜之方法,該方法包括: 於反應室中提供一基板; 將該基板加熱至一沉積溫度; 使矽前驅體、鍺前驅體、及鹵化物氣體通過第一氣體注射器流入至該反應室中; 使硼摻雜物前驅體通過獨立於該第一氣體注射器之第二氣體注射器流入至該反應室中; 使該基板與該矽前驅體、該鍺前驅體、該鹵化物氣體、及該硼摻雜物前驅體接觸;及 使該硼摻雜矽鍺(Si1-xGex)膜沉積於該基板之表面上方。
  2. 如請求項1之方法,其中該第一氣體注射器及該第二氣體注射器皆包括多口氣體注射器,該等多口氣體注射器包括複數個用來將氣體混合物提供至反應室中之個別口注射器。
  3. 如請求項1之方法,其中使該基板與該矽前驅體、該鍺前驅體、該鹵化物氣體、及該硼摻雜物前驅體接觸係同時發生。
  4. 如請求項1之方法,其中將該基板加熱至該沉積溫度包括將該基板加熱至介於大約400℃與大約700℃之間的沉積溫度。
  5. 如請求項1之方法,其中該反應室中之壓力係介於10托(Torr)與100托之間。
  6. 如請求項1之方法,其中該矽前驅體包含選自包含下列之群的氫化矽前驅體:矽烷(SiH4)、二矽烷(Si2H6)、三矽烷(Si3H8)、或四矽烷(Si4H10)。
  7. 如請求項1之方法,其中該矽前驅體包括選自包含下列之群的氯化矽前驅體:單氯矽烷(MCS)、二氯矽烷(DCS)、三氯矽烷(TCS)、六氯二矽烷(HCDS)、八氯三矽烷(OCTS)、或四氯化矽(STC)。
  8. 如請求項1之方法,其中使該基板與該矽前驅體接觸包括使該矽前驅體以小於500 sccm的流速流入該反應室中。
  9. 如請求項1之方法,其中該硼摻雜物前驅體包含二硼烷(B2H6)、三氯化硼(BCl3)、三氟化硼(BF3)、或氘-二硼烷(B2D6)中之至少一者。
  10. 如請求項1之方法,其中使該基板與該硼摻雜物前驅體接觸包括使該硼摻雜物前驅體以小於500 sccm的流速流入該反應室中。
  11. 如請求項1之方法,其中該鍺前驅體包含鍺烷(GeH4)、二鍺烷(Ge2H6)、三鍺烷(Ge3H8)、或鍺烷基矽烷(GeH6Si)中之至少一者。
  12. 如請求項1之方法,其中使該基板與該鍺前驅體接觸包括使該鍺前驅體以小於300 sccm的流速流入該反應室中。
  13. 如請求項1之方法,其中該鹵化物氣體包含氫氯酸(HCl)或氯氣(Cl2)中之至少一者。
  14. 如請求項1之方法,其中使該基板與該鹵化物氣體接觸包括使該鹵化物前驅體以小於100 sccm的流速流入該反應室中。
  15. 如請求項1之方法,其中該硼摻雜矽鍺(Si1-xGex)膜具有大於大約1 × 1020/cm3 之硼濃度。
  16. 如請求項1之方法,其中該硼摻雜矽鍺(Si1-xGex)膜具有介於大約1 × 1020/cm3 與大約3 × 1021/cm3 之間的硼濃度。
  17. 如請求項1之方法,其中該硼摻雜矽鍺(Si1-xGex)膜具有介於x等於大約0.2與大約0.7之間的鍺含量。
  18. 如請求項1之方法,其中該硼摻雜矽鍺(Si1-xGex)膜具有其中x大於大約0.2之鍺含量。
  19. 如請求項1之方法,其中該硼摻雜矽鍺(Si1-xGex)膜具有介於大約0.2 mΩ•cm與大約0.8 mΩ•cm 之間的電阻率。
  20. 如請求項1之方法,其中該硼摻雜矽鍺(Si1-xGex)膜具有介於大約20埃與大約100埃之間的厚度。
  21. 如請求項1之方法,其中該硼摻雜矽鍺膜中之硼濃度跨越該基板經調整,使得邊緣硼濃度(EBC)及中心硼濃度(CBC)可表示為EBC/CBC,且EBC/CBC具有大約0.3之最小值且具有大約3之最大值。
  22. 如請求項21之方法,其中該硼摻雜矽鍺膜中之硼濃度跨越該基板經調整,同時於該硼矽鍺膜中維持實質上恆定的鍺含量。
  23. 一種用來進行請求項1之方法的半導體沉積設備。
TW108138529A 2018-11-07 2019-10-25 沉積硼摻雜矽鍺膜之方法 TWI839400B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/183,258 US11031242B2 (en) 2018-11-07 2018-11-07 Methods for depositing a boron doped silicon germanium film
US16/183,258 2018-11-07

Publications (2)

Publication Number Publication Date
TW202029294A true TW202029294A (zh) 2020-08-01
TWI839400B TWI839400B (zh) 2024-04-21

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809877B (zh) * 2021-05-19 2023-07-21 美商應用材料股份有限公司 矽鍺的熱沉積

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809877B (zh) * 2021-05-19 2023-07-21 美商應用材料股份有限公司 矽鍺的熱沉積
US11830734B2 (en) 2021-05-19 2023-11-28 Applied Materials, Inc. Thermal deposition of silicon-germanium

Also Published As

Publication number Publication date
US20200144058A1 (en) 2020-05-07
KR20200053409A (ko) 2020-05-18
US11031242B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
US11031242B2 (en) Methods for depositing a boron doped silicon germanium film
US10446393B2 (en) Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US11637014B2 (en) Methods for selective deposition of doped semiconductor material
US11296189B2 (en) Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11594600B2 (en) Structures with doped semiconductor layers and methods and systems for forming same
TWI692545B (zh) 形成高p型摻雜鍺錫膜的方法以及包含該等膜的結構和裝置
US9905420B2 (en) Methods of forming silicon germanium tin films and structures and devices including the films
TW202127510A (zh) 用於使用犧牲蓋層選擇性沉積之方法
JP5173140B2 (ja) 電気的に活性なドープト結晶性Si含有膜の堆積方法
US8642454B2 (en) Low temperature selective epitaxy of silicon germanium alloys employing cyclic deposit and etch
KR20170113254A (ko) 바이어스된 다중-포트 인젝션 세팅들을 통한 반경 및 두께 제어
US20130256838A1 (en) Method of epitaxial doped germanium tin alloy formation
KR20090015138A (ko) 클로로폴리실란들을 이용한 실리콘-포함 막들의 선택적 증착 방법들 및 시스템들
KR20080089403A (ko) 도핑된 반도체 물질들의 에피택시 증착
TWI839400B (zh) 沉積硼摻雜矽鍺膜之方法
US20240006176A1 (en) Method of forming p-type doped silicon-germanium layers and system for forming same
US20230349069A1 (en) Structures with boron- and gallium-doped silicon germanium layers and methods and systems for forming same
US20230352301A1 (en) Method of selectively forming crystalline boron-doped silicon germanium on a surface
TW202414540A (zh) 形成p型摻雜矽鍺層之方法、使用此方法形成源極區及汲極區中之一或多者的方法、包含使用此方法形成源極區及汲極區中之一或多者的結構
US20170194138A1 (en) Low temperature selective deposition employing a germanium-containing gas assisted etch