TW201926939A - Phase recovery device and phase recovery method - Google Patents

Phase recovery device and phase recovery method Download PDF

Info

Publication number
TW201926939A
TW201926939A TW106140779A TW106140779A TW201926939A TW 201926939 A TW201926939 A TW 201926939A TW 106140779 A TW106140779 A TW 106140779A TW 106140779 A TW106140779 A TW 106140779A TW 201926939 A TW201926939 A TW 201926939A
Authority
TW
Taiwan
Prior art keywords
phase
pilot
values
calculating
phase errors
Prior art date
Application number
TW106140779A
Other languages
Chinese (zh)
Inventor
珍路易斯 東史特
周裕仁
廖懿穎
賴科印
鄭凱文
童泰來
Original Assignee
晨星半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晨星半導體股份有限公司 filed Critical 晨星半導體股份有限公司
Priority to TW106140779A priority Critical patent/TW201926939A/en
Priority to US16/056,706 priority patent/US20190158266A1/en
Publication of TW201926939A publication Critical patent/TW201926939A/en

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

A phase recovery device includes a phase estimation module receiving a plurality of received signals, where the plurality of received signals includes a plurality of pilot signals and a plurality of data signals, the phase detection module comprising a pilot phase estimation unit calculating a plurality of pilot phase errors according to the plurality of pilot signals; a weighting unit calculating a plurality of weighting values corresponding to the plurality of pilot phase errors; and a combining unit calculating a plurality of phase errors corresponding to the data signals according to the plurality of pilot signals and the plurality of weighting values; and a phase compensating module compensating a plurality of phases of the plurality of received signals according to the phase errors.

Description

相位回復裝置及相位回復方法Phase recovery device and phase recovery method

本發明係指一種相位回復裝置及相位回復方法,尤指一種可精準估測相位誤差的相位回復裝置及相位回復方法。The invention relates to a phase recovery device and a phase recovery method, in particular to a phase recovery device and a phase recovery method capable of accurately estimating a phase error.

在數位通訊系統的接收端進行相位回復(Phase Recovery),可將信號的相位誤差補償回來,以有效降低系統的符元錯誤率(Symbol Error Rate,SER)或位元錯誤率(Bit Error Rate,BER),而改善系統效能。Phase recovery (Phase Recovery) at the receiving end of the digital communication system can compensate the phase error of the signal to effectively reduce the system's Symbol Error Rate (SER) or Bit Error Rate (Bit Error Rate, BER), while improving system performance.

一般來說,相位回復需先對接收信號進行相位誤差估測(Phase Error Detection,PED),再根據所估測出的相位誤差,進行相位補償。現有技術中,相位回復裝置中的相位誤差估測器為開迴路相位誤差估測器(Open Loop PED),開迴路相位誤差估測器的電路結構及運算量雖然較簡單,但其所估測出的相位誤差的精準度也較差。In general, phase recovery requires phase error detection (PED) on the received signal, and phase compensation is performed based on the estimated phase error. In the prior art, the phase error estimator in the phase recovery device is an open loop phase error estimator (Open Loop PED), and the circuit structure and calculation amount of the open loop phase error estimator are simple, but the estimated The accuracy of the phase error is also poor.

因此,如何提供精準估測相位誤差的相位回復裝置及相位回復方法,也就成為業界所努力的目標之一。Therefore, how to provide a phase recovery device and a phase recovery method for accurately estimating the phase error has become one of the goals of the industry.

因此,本發明之主要目的即在於提供一種可精準估測相位誤差的相位回復裝置及相位回復方法,以改善習知技術的缺點。Accordingly, it is a primary object of the present invention to provide a phase recovery device and a phase recovery method that accurately estimate phase errors to improve the shortcomings of the prior art.

本發明揭露一種相位回復裝置,包括一相位估測模組,接收多個接收信號 ,其中該多個接收信號包括多個導頻信號及多個資料信號,該相位估測模組包括一導頻相位估測單元,用來根據該多個導頻信號,計算多個導頻相位誤差;一權重單元,用來根據該多個接收信號中至少一接收信號,計算對應於該多個導頻相位的多個權重值;以及一結合單元,用來根據該多個導頻相位誤差及該多個權重值,計算對應於該多個資料信號的多個相位誤差,其中該多個相位誤差為該多個導頻相位的線性組合;以及一相位補償模組,用來根據該多個相位誤差,補償該多個接收信號的多個相位。The present invention discloses a phase recovery device including a phase estimation module for receiving a plurality of received signals, wherein the plurality of received signals includes a plurality of pilot signals and a plurality of data signals, and the phase estimation module includes a pilot a phase estimating unit, configured to calculate a plurality of pilot phase errors according to the plurality of pilot signals; a weighting unit configured to calculate, according to the at least one received signal of the plurality of received signals, corresponding to the plurality of pilot phases a plurality of weight values; and a combining unit configured to calculate a plurality of phase errors corresponding to the plurality of data signals based on the plurality of pilot phase errors and the plurality of weight values, wherein the plurality of phase errors are a linear combination of a plurality of pilot phases; and a phase compensation module for compensating for a plurality of phases of the plurality of received signals based on the plurality of phase errors.

本發明另揭露一種相位回復方法,包括接收多個接收信號,其中該多個接收信號包括多個導頻信號及多個資料信號;根據該多個導頻信號,計算多個導頻相位誤差;根據該多個接收信號中至少一接收信號,計算對應於該多個導頻相位的多個權重值;根據該多個導頻相位誤差及該多個權重值,計算對應於該多個資料信號的多個相位誤差,其中該多個相位誤差為該多個導頻相位的線性組合;以及根據該多個相位誤差,補償該多個接收信號的多個相位。The present invention further discloses a phase recovery method, including receiving a plurality of received signals, wherein the plurality of received signals includes a plurality of pilot signals and a plurality of data signals; and calculating a plurality of pilot phase errors according to the plurality of pilot signals; Calculating, according to at least one of the plurality of received signals, a plurality of weight values corresponding to the plurality of pilot phases; calculating, according to the plurality of pilot phase errors and the plurality of weight values, corresponding to the plurality of data signals a plurality of phase errors, wherein the plurality of phase errors are linear combinations of the plurality of pilot phases; and compensating for a plurality of phases of the plurality of received signals based on the plurality of phase errors.

第1圖為本發明實施例一相位回復(Phase Recovery)裝置1之方塊圖。相位回復裝置1用來對多個接收信號r進行相位回復。相位回復裝置1包括一相位估測模組10以及一相位補償模組20,相位估測模組10接收多個接收信號r,並計算/估測出對應於多個接收信號r的多個相位誤差x。相位補償模組20根據多個相位誤差x,補償多個接收信號r的多個相位。相位估測模組10包括一導頻相位估測單元12、一權重單元14以及一結合單元16。第2圖為本發明實施例一相位回復方法22之流程圖。FIG. 1 is a block diagram of a Phase Recovery device 1 according to an embodiment of the present invention. The phase recovery device 1 is used to phase restore a plurality of received signals r. The phase recovery device 1 includes a phase estimation module 10 and a phase compensation module 20. The phase estimation module 10 receives a plurality of received signals r and calculates/estimates a plurality of phases corresponding to the plurality of received signals r. Error x. The phase compensation module 20 compensates a plurality of phases of the plurality of received signals r based on the plurality of phase errors x. The phase estimation module 10 includes a pilot phase estimation unit 12, a weight unit 14, and a combining unit 16. FIG. 2 is a flow chart of a phase recovery method 22 according to an embodiment of the present invention.

請一併參考第1圖及第2圖,相位估測模組10接收多個接收信號r,其中多個接收信號r包括多個導頻信號(Pilot Signal)及多個資料信號(Data Signal)(步驟200),導頻相位估測單元12用來根據多個接收信號r中多個導頻信號,計算多個導頻相位誤差(步驟202)。另一方面,權重單元14根據多個接收信號r中至少一接收信號,計算對應於導頻相位誤差的多個權重值(步驟204)。結合單元16根據多個導頻相位誤差以及多個權重值,計算對應於多個資料信號的多個相位誤差x,其中多個相位誤差x中每個相位誤差x為多個導頻相位的線性組合(Linear Combination)(步驟206)。如此一來,相位補償模組20即可根據多個相位誤差x,補償多個接收信號的多個相位(步驟208)。Referring to FIG. 1 and FIG. 2 together, the phase estimation module 10 receives a plurality of received signals r, wherein the plurality of received signals r includes a plurality of pilot signals (Pilot Signal) and a plurality of data signals (Data Signal). (Step 200), the pilot phase estimation unit 12 is configured to calculate a plurality of pilot phase errors based on the plurality of pilot signals of the plurality of received signals r (step 202). On the other hand, the weighting unit 14 calculates a plurality of weight values corresponding to the pilot phase error based on at least one of the plurality of received signals r (step 204). The combining unit 16 calculates a plurality of phase errors x corresponding to the plurality of data signals according to the plurality of pilot phase errors and the plurality of weight values, wherein each of the plurality of phase errors x is linear of the plurality of pilot phases Linear Combination (step 206). In this way, the phase compensation module 20 can compensate a plurality of phases of the plurality of received signals according to the plurality of phase errors x (step 208).

詳細來說,請參考第3圖,第3圖為多個接收信號r中多個導頻信號rP1 、rP2 、rP3 、rP4 以及多個資料信號rD 的示意圖,多個資料信號rD 為相位回復裝置1於一第一時間欲補償的資料信號,多個導頻信號rP2 以及多個資料信號rD 形成訊框(Frame)Fi ,其中多個資料信號rD 位於訊框Fi 中的資料區間TD ,多個導頻信號rP2 位於訊框Fi 中的導頻區間TP 。多個導頻信號rP1 、rP3 、rP4 為對應於訊框Fi-1 、Fi+1 、Fi+2 的導頻信號。於一實施例中,導頻區間TP 可包含36個導頻信號,而資料區間TD 可包含1440個資料信號。In detail, please refer to FIG. 3, which is a schematic diagram of a plurality of pilot signals r P1 , r P2 , r P3 , r P4 and a plurality of data signals r D in a plurality of received signals r, and a plurality of data signals. r D is a data signal to be compensated by the phase recovery device 1 at a first time, a plurality of pilot signals r P2 and a plurality of data signals r D form a frame F i , wherein a plurality of data signals r D are located The data interval T D in the frame F i , the plurality of pilot signals r P2 are located in the pilot interval T P in the frame F i . The plurality of pilot signals r P1 , r P3 , and r P4 are pilot signals corresponding to the frames F i-1 , F i+1 , and F i+2 . In an embodiment, the pilot interval T P may include 36 pilot signals, and the data interval T D may include 1440 data signals.

步驟202中,導頻相位估測單元12可根據多個導頻信號rP1 、rP2 、rP3 、rP4 ,計算對應於訊框Fi-1 、Fi 、Fi+1 、Fi+2 (或對應於導頻信號rP1 、rP2 、rP3 、rP4 )的導頻相位誤差θ1 、θ2 、θ3 、θ4 ,其中導頻相位估測單元12根據多個導頻信號rP1 ~rP4 計算導頻相位誤差θ1 ~θ4 的技術細節為本領域具通常知識者所知,故於此不贅述。In step 202, the pilot phase estimation unit 12 can calculate corresponding to the frames F i-1 , F i , F i+1 , F i according to the plurality of pilot signals r P1 , r P2 , r P3 , r P4 . +2 (or pilot phase errors θ 1 , θ 2 , θ 3 , θ 4 corresponding to pilot signals r P1 , r P2 , r P3 , r P4 ), wherein pilot phase estimation unit 12 is based on a plurality of derivatives The technical details of calculating the pilot phase errors θ 1 to θ 4 from the frequency signals r P1 to r P4 are known to those skilled in the art and will not be described herein.

步驟204中,權重單元14根據該至少一接收信號,計算對應於導頻相位誤差θ1 ~θ4 的多個權重值w1 ~w4 。請參考第3圖,第3圖為本發明實施例權重單元14之方塊圖,權重單元14包括一互相關計算單元140、一自相關計算單元142、一權重計算單元144以及一量測誤差計算單元146。互相關計算單元140用來根據一時間t,計算相關於時間t而對應於導頻相位誤差θ1 ~θ4 的多個互相關值kyx1 ~kyx4 ,其中多個互相關值kyx1 ~kyx4 分別為一第一相位誤差θt 與該多個導頻相位誤差θ1 ~θ4 的互相關(Cross-correlation),第一相位誤差θt 可為多個資料信號rD 中於時間t的資料信號rD,t 的相位誤差。互相關值kyx1 ~kyx4 可形成一互相關向量Kyx ,即Kyx =[kyx1 , kyx2 , kyx3 ,kyx4 ] T =E{[θ1 , θ2 , θ3 , θ4 ] T θt }(其中E{}代表期望值運算子)。另一方面,量測誤差計算單元146用來根據該至少一接收信號r,計算一量測誤差ε,自相關計算單元142用來根據量測誤差ε,計算多個自相關值,其中多個自相關值為多個導頻相位誤差θ1 ~θ4 的自相關(Auto-correlation),多個自相關值可形成一自相關矩陣Kyy ,其為Kyy =E{[θ1 , θ2 , θ3 , θ4 ] T 1 , θ2 , θ3 , θ4 ]}。權重計算單元144根據互相關向量Kyx (互相關值kyx1 ~kyx4 )及自相關矩陣Kyy (多個自相關值),計算多個權重值w1 ~w4In step 204, the weighting unit 14 calculates a plurality of weight values w 1 to w 4 corresponding to the pilot phase errors θ 1 to θ 4 based on the at least one received signal. Please refer to FIG. 3 , which is a block diagram of a weight unit 14 according to an embodiment of the present invention. The weight unit 14 includes a cross correlation calculation unit 140, an autocorrelation calculation unit 142, a weight calculation unit 144, and a measurement error calculation. Unit 146. The cross correlation calculation unit 140 is configured to calculate a plurality of cross-correlation values k yx1 ~ k yx4 corresponding to the pilot phase errors θ 1 θ θ 4 with respect to the time t according to a time t, wherein the plurality of cross-correlation values k yx1 ~ k yx4 is a cross-correlation of a first phase error θ t and the plurality of pilot phase errors θ 1 ~ θ 4 , respectively, and the first phase error θ t may be a plurality of data signals r D in time The phase error of the data signal r D,t of t . The cross-correlation values k yx1 ~ k yx4 can form a cross-correlation vector K yx , that is, K yx =[k yx1 , k yx2 , k yx3 , k yx4 ] T =E{[θ 1 , θ 2 , θ 3 , θ 4 ] T θ t } (where E{} represents the expected value operator). On the other hand, the measurement error calculation unit 146 is configured to calculate a measurement error ε according to the at least one received signal r, and the autocorrelation calculation unit 142 is configured to calculate a plurality of autocorrelation values according to the measurement error ε, where multiple The autocorrelation value is an autocorrelation of a plurality of pilot phase errors θ 1 ~ θ 4 , and the plurality of autocorrelation values may form an autocorrelation matrix K yy which is K yy = E{[θ 1 , θ 2 , θ 3 , θ 4 ] T 1 , θ 2 , θ 3 , θ 4 ]}. The weight calculation unit 144 calculates a plurality of weight values w 1 to w 4 based on the cross-correlation vector K yx (cross-correlation values k yx1 to k yx4 ) and the autocorrelation matrix K yy (a plurality of autocorrelation values).

詳細來說,在假設接收信號r中相位誤差的軌跡運動為布朗運動(Brownian Motion,BM)的情況下(即假設接收信號r中相位誤差隨時間變化的時間函數符合/正比於一布朗運動程序( BM Process)),互相關向量Kyx 可表示為公式1,自相關矩陣Kyy 可表示為公式2,其中常數c 為一任意常數。(公式1)(公式2)In detail, assuming that the trajectory motion of the phase error in the received signal r is Brownian Motion (BM) (ie, it is assumed that the time function of the phase error in the received signal r changes with time is proportional to / proportional to a Brownian motion program (BM Process)), the cross-correlation vector K yx can be expressed as Equation 1, and the autocorrelation matrix K yy can be expressed as Equation 2, where the constant c is an arbitrary constant. (Formula 1) (Formula 2)

於互相關計算單元140計算出互相關向量Kyx 以及自相關計算單元142計算出自相關矩陣Kyy 後,權重計算單元144可根據互相關向量Kyx 以及自相關矩陣Kyy ,計算權重向量w=[w1 , w2 , w3 , w4 ] T (其中權重值w1 ~w4 形成權重向量w)。 權重計算單元144可計算計算權重向量w為w=[w1 , w2 , w3 , w4 ] T =(Kyy )-1 Kyx (公式3)。換句話說,權重計算單元144計算自相關矩陣Kyy 的一反矩陣,並將自相關矩陣Kyy 的反矩陣乘以互相關向量Kyx ,以輸出權重向量w(即權重值w1 ~w4 )。After the cross-correlation calculation unit 140 calculates the cross-correlation vector K yx and the autocorrelation calculation unit 142 calculates the autocorrelation matrix K yy , the weight calculation unit 144 may calculate the weight vector w= according to the cross-correlation vector K yx and the autocorrelation matrix K yy . [w 1 , w 2 , w 3 , w 4 ] T (where the weight values w 1 to w 4 form a weight vector w). The weight calculation unit 144 may calculate the calculation weight vector w as w = [w 1 , w 2 , w 3 , w 4 ] T = (K yy ) -1 K yx (Equation 3). In other words, the weight calculation unit 144 calculates an inverse matrix K yy is the autocorrelation matrix and autocorrelation matrix K yy multiplied by the inverse matrix of the cross-correlation vector K yx, to output a weight vector w (i.e., weight values w 1 ~ w 4 ).

另外,量測誤差計算單元146可根據該至少一接收信號,計算信雜比(Signal-to-Noise Ratio,SNR),並根據信雜比以及相位誤差強度(Phase Noise Intensity)αT,計算量測誤差ε為ε=σ2 /(1476αT),σ2 相關於信雜比(Signal-to-Noise Ratio,SNR),其可正比於信雜比的倒數(Reciprocal)。於一實施例中,量測誤差計算單元146可計算σ2 為σ2 =N0 /(72ES ),其中ES 為符元信號能量(Symbol Energy),N0 為雜訊頻譜密度(Noise Power Density),其中ES 、N0 、αT可視實際狀況而調整。於另一實施例中,量測誤差計算單元146可根據多個接收信號r中至少一接收信號計算出信雜比,並根據信雜比計算出σ2 。另外,量測誤差計算單元146根據該至少一接收信號計算信雜比的技術細節為本領域具通常知識者所知,故於此不贅述。In addition, the measurement error calculation unit 146 may calculate a Signal-to-Noise Ratio (SNR) according to the at least one received signal, and calculate the measurement according to the signal-to-noise ratio and the Phase Noise Intensity (αT). The error ε is ε = σ 2 / (1476αT), and σ 2 is related to the Signal-to-Noise Ratio (SNR), which can be proportional to the reciprocal of the signal-to-noise ratio. In one embodiment, the measurement error calculation unit 146 can calculate σ 2 as σ 2 =N 0 /(72E S ), where E S is the symbol energy (Symbol Energy), and N 0 is the noise spectral density (Noise) Power Density), where E S , N 0 , αT can be adjusted according to actual conditions. In another embodiment, the measurement error calculation unit 146 may calculate a signal-to-noise ratio according to at least one of the plurality of received signals r, and calculate σ 2 according to the signal-to-noise ratio. In addition, the technical details of calculating the signal-to-noise ratio according to the at least one received signal by the measurement error calculation unit 146 are known to those skilled in the art, and thus are not described herein.

步驟206中,結合單元16根據導頻相位誤差θ1 、θ2 、θ3 、θ4 以及權重值w1 、w2 、w3 、w4 ,計算對應於多個資料信號rD 的多個相位誤差x,其中任一相位誤差x可一般性地表示為x= w1 θ1 + w2 θ2 + w3 θ3 + w4 θ4 (公式4)。由於權重向量w是由公式3計算而得,因此結合單元16/相位估測模組10所計算/估測出的相位誤差x為對相位誤差x進行最大似然(Maximum Likelihood,ML)估測。In step 206, the combining unit 16 calculates a plurality of data signals r D corresponding to the pilot phase errors θ 1 , θ 2 , θ 3 , θ 4 and the weight values w 1 , w 2 , w 3 , and w 4 . The phase error x, any of which is generally expressed as x = w 1 θ 1 + w 2 θ 2 + w 3 θ 3 + w 4 θ 4 (Equation 4). Since the weight vector w is calculated by Equation 3, the phase error x calculated/estimated by the combining unit 16/phase estimation module 10 is a Maximum Likelihood (ML) estimation of the phase error x. .

於一實施例中,互相關計算單元140可將資料區間TD 分成N個時間點t0 ~tN (N可等於1440),互相關計算單元140可由公式1計算出對應於時間點t0 ~tN-1 的N個互相關向量Kyx,0 ~Kyx,N-1 ,權重計算單元144可由公式3根據N個互相關向量Kyx,0 ~Kyx,N-1 分別計算出對應於時間點t0 ~tN-1 的權重值(w1,0 , w2,0 , w3,0 , w4,0 )~(w1,N-1 , w2,N-1 , w3,N-1 , w4,N-1 )(其涉及N次反矩陣運算),結合單元16可由公式4計算出對應於資料信號rD,n 的相位誤差xn 為xn = w1,n θ1 + w2,n θ2 + w3,n θ3 + w4,n θ4 ,其中資料信號rD,n 為多個資料信號rD 中對應於時間點tn 的資料信號,時間點tn 可為時間點t0 ~tN 中的一個時間點。In an embodiment, the cross-correlation calculation unit 140 may divide the data interval T D into N time points t 0 ~t N (N may be equal to 1440), and the cross-correlation calculation unit 140 may calculate from the formula 1 corresponding to the time point t 0 . The N cross-correlation vectors K yx, 0 ~ K yx, N-1 of ~t N-1 , the weight calculation unit 144 can be calculated by the formula 3 according to the N cross-correlation vectors K yx, 0 ~ K yx, N-1 respectively. Weight values corresponding to time points t 0 to t N-1 (w 1,0 , w 2,0 , w 3,0 , w 4,0 ) to (w 1,N-1 , w 2,N-1 , w 3, N-1 , w 4, N-1 ) (which involves N inverse matrix operations), the combining unit 16 can calculate from the formula 4 that the phase error x n corresponding to the data signal r D, n is x n = w 1,n θ 1 + w 2,n θ 2 + w 3,n θ 3 + w 4,n θ 4 , wherein the data signal r D,n is a plurality of data signals r D corresponding to the time point t n The data signal, the time point t n may be a time point in the time points t 0 to t N .

於一實施例中,互相關計算單元140可由公式1計算出對應於時間點t0 的1個互相關向量Kyx,0 ,重計算單元144可由公式3根據互相關向量Kyx,0 計算出對應於時間點t0 的權重值(w1,0 , w2,0 , w3,0 , w4,0 )(其僅涉及1次反矩陣運算),結合單元16可由公式4除了計算出資料信號rD,0 的相位誤差x0 (其可視為初始值LW)之外,結合單元16可進一步計算一更新值LRA,使得對應於資料信號rD,n 的相位誤差xn 為xn = LW–n* LRA。In an embodiment, the cross-correlation calculation unit 140 may calculate one cross-correlation vector K yx,0 corresponding to the time point t 0 from the formula 1 , and the re-calculation unit 144 may be calculated by the formula 3 according to the cross-correlation vector K yx,0 . Corresponding to the weight value (w 1,0 , w 2,0 , w 3,0 , w 4,0 ) at the time point t 0 (which involves only one inverse matrix operation), the combining unit 16 can be calculated by the formula 4 In addition to the phase error x 0 of the data signal r D,0 (which may be regarded as the initial value LW), the combining unit 16 may further calculate an update value LRA such that the phase error x n corresponding to the data signal r D, n is x n = LW–n* LRA.

具體來說,請參考第5圖,第5圖為本發明實施例結合單元16之方塊圖。如第5圖所示,結合單元16可包括一初始單元160、一更新單元162以及一累計單元164。初始單元160可根據權重值w1 、w2 、w3 、w4 以及導頻相位誤差θ1 、θ2 、θ3 、θ4 ,計算初始值LW為LW =w1 θ1 + w2 θ2 + w3 θ3 + w4 θ4 ,即計算權重值w1 、w2 、w3 、w4 與導頻相位誤差θ1 、θ2 、θ3 、θ4 之間的一積項和(Sum-of-Product),另外,此時的權重值(w1 , w2 , w3 , w4 )可為對應於時間點t0 的權重值(w1,0 , w2,0 , w3,0 , w4,0 ),及計算初始值LW為LW =w1,0 θ1 + w2,0 θ2 + w3,0 θ3 + w4,0 θ4 。更新單元162可根據權重值w1 、w2 、w3 、w4 以及導頻相位誤差θ1 、θ2 、θ3 、θ4 ,計算更新值LRA,其中更新值LRA可正比於 ( w1 –w41 +(w2 – w32 +(w3 – w23 +(w4 – w14 。累計單元164可根據初始值LW及更新值LRA,計算對應於(時間點tn 的)資料信號rD,n 的相位誤差xn 為xn = LW–n* LRA。Specifically, please refer to FIG. 5, which is a block diagram of the combining unit 16 according to an embodiment of the present invention. As shown in FIG. 5, the combining unit 16 may include an initial unit 160, an updating unit 162, and a accumulating unit 164. The initial unit 160 may calculate the initial value LW as LW = w 1 θ 1 + w 2 θ according to the weight values w 1 , w 2 , w 3 , w 4 and the pilot phase errors θ 1 , θ 2 , θ 3 , θ 4 . 2 + w 3 θ 3 + w 4 θ 4 , that is, a product term sum between the calculated weight values w 1 , w 2 , w 3 , w 4 and the pilot phase errors θ 1 , θ 2 , θ 3 , θ 4 (Sum-of-Product), in addition, the weight value (w 1 , w 2 , w 3 , w 4 ) at this time may be a weight value corresponding to the time point t 0 (w 1,0 , w 2,0 , w 3,0 , w 4,0 ), and the calculated initial value LW is LW = w 1,0 θ 1 + w 2,0 θ 2 + w 3,0 θ 3 + w 4,0 θ 4 . The update unit 162 may calculate the update value LRA according to the weight values w 1 , w 2 , w 3 , w 4 and the pilot phase errors θ 1 , θ 2 , θ 3 , θ 4 , wherein the update value LRA may be proportional to ( w 1 -w 4 ) θ 1 + (w 2 - w 3 ) θ 2 + (w 3 - w 2 ) θ 3 + (w 4 - w 1 ) θ 4 . The accumulating unit 164 can calculate the phase error x n corresponding to the data signal r D,n (at the time point t n ) as x n = LW - n * LRA based on the initial value LW and the updated value LRA.

初始單元160、更新單元162以及累計單元164並不限於以特定電路結構來實現,舉例來說,請參考第6圖至第8圖,第6圖至第8圖分別為為本發明實施例初始單元160、更新單元162以及累計單元164的示意圖。由第6圖可知,初始單元160包括一乘法器MP1以及一累加器ACC1,累加器ACC1包括一加法器AD1以及一暫存器Q1。初始單元160依照一時間順序接收導頻相位誤差θ1 、θ2 、θ3 、θ4 ,例如,初始單元160分別於時間s1 、s2 、s3 、s4 接收導頻相位誤差θ1 、θ2 、θ3 、θ4 。於時間s1 ,乘法器MP1將權重值w1 與導頻相位誤差θ1 相乘,以產生相乘結果w1 θ1 ,初始單元160將相乘結果w1 θ1 儲存於暫存器Q1。於時間s2 ,乘法器MP1將權重值w2 與導頻相位誤差θ2 相乘,以產生相乘結果w2 θ2 ,加法器AD1將相乘結果w2 θ2 與相乘結果w1 θ1 相加,以產生累加結果w1 θ1 + w2 θ2 ,初始單元160將累加結果w1 θ1 + w2 θ2 儲存於暫存器Q1。以此類推,於時間s4 ,乘法器MP1將權重值w4 與導頻相位誤差θ4 相乘,加法器AD1將相乘結果w4 θ4 與對應時間s3 的累加結果w1 θ1 + w2 θ2 + w3 θ3 相加,以產生累加結果w1 θ1 + w2 θ2 + w3 θ3 + w4 θ4 ,初始單元160將累加結果w1 θ1 + w2 θ2 + w3 θ3 + w4 θ4 儲存於暫存器Q1,並輸出初始值LW為LW =w1 θ1 + w2 θ2 + w3 θ3 + w4 θ4The initial unit 160, the update unit 162, and the accumulation unit 164 are not limited to being implemented in a specific circuit configuration. For example, please refer to FIG. 6 to FIG. 8 , and FIG. 6 to FIG. 8 are respectively an initial embodiment of the present invention. A schematic diagram of unit 160, update unit 162, and accumulation unit 164. As can be seen from FIG. 6, the initial unit 160 includes a multiplier MP1 and an accumulator ACC1. The accumulator ACC1 includes an adder AD1 and a register Q1. The initial unit 160 receives the pilot phase errors θ 1 , θ 2 , θ 3 , θ 4 in a time sequence. For example, the initial unit 160 receives the pilot phase error θ 1 at times s 1 , s 2 , s 3 , s 4 , respectively. , θ 2 , θ 3 , θ 4 . At time s 1 , the multiplier MP1 multiplies the weight value w 1 by the pilot phase error θ 1 to generate a multiplication result w 1 θ 1 , and the initial unit 160 stores the multiplication result w 1 θ 1 in the register Q1. . At time s 2 , the multiplier MP1 multiplies the weight value w 2 by the pilot phase error θ 2 to generate a multiplication result w 2 θ 2 , and the adder AD1 multiplies the multiplication result w 2 θ 2 and the multiplication result w 1 θ 1 is added to generate an accumulated result w 1 θ 1 + w 2 θ 2 , and the initial unit 160 stores the accumulated result w 1 θ 1 + w 2 θ 2 in the register Q1. By analogy, at time s 4 , the multiplier MP1 multiplies the weight value w 4 by the pilot phase error θ 4 , and the adder AD1 multiplies the multiplication result w 4 θ 4 with the accumulated result w 1 θ 1 of the corresponding time s 3 + w 2 θ 2 + w 3 θ 3 are added to produce an accumulated result w 1 θ 1 + w 2 θ 2 + w 3 θ 3 + w 4 θ 4 , and the initial unit 160 will accumulate the result w 1 θ 1 + w 2 θ 2 + w 3 θ 3 + w 4 θ 4 is stored in the register Q1, and the initial value LW is output as LW = w 1 θ 1 + w 2 θ 2 + w 3 θ 3 + w 4 θ 4 .

由第7圖可知,更新單元162可包括一乘法單元70、一加總單元72以及一調整單元74。乘法單元70分別將導頻相位誤差θ1 、θ2 、θ3 、θ4 乘以相減結果( w1 –w4 )、(w2 – w3 )、(w3 – w2 )、(w4 – w1 ),以產生相乘結果( w1 –w4 ) θ1 、(w2 – w3 ) θ2 、(w3 – w2 ) θ3 、(w4 – w1 ) θ4 。加總單元72用來將相乘結果( w1 –w4 ) θ1 、(w2 – w3 ) θ2 、(w3 – w2 ) θ3 、(w4 – w1 ) θ4 加總,以產生一加總結果I為I=( w1 –w4 ) θ1 +(w2 – w3 ) θ2 +(w3 – w2 ) θ3 +(w4 – w1 ) θ4 。調整單元74用來將該加總結果乘以一調整係數h,以產生更新值LRA為LRA=h*I=h*[( w1 –w4 ) θ1 +(w2 – w3 ) θ2 +(w3 – w2 ) θ3 +(w4 – w1 ) θ4 ],調整單元74可以乘法器來實現。於一實施例中,調整係數h可等於或正比於(1/N),而N可為1440。As can be seen from FIG. 7, the updating unit 162 can include a multiplying unit 70, a summing unit 72, and an adjusting unit 74. The multiplying unit 70 multiplies the pilot phase errors θ 1 , θ 2 , θ 3 , and θ 4 by the subtraction results ( w 1 - w 4 ), (w 2 - w 3 ), (w 3 - w 2 ), w 4 - w 1 ) to produce multiplication results ( w 1 -w 4 ) θ 1 , (w 2 – w 3 ) θ 2 , (w 3 – w 2 ) θ 3 , (w 4 – w 1 ) θ 4 . The summing unit 72 is used to add the multiplication results ( w 1 -w 4 ) θ 1 , (w 2 - w 3 ) θ 2 , (w 3 - w 2 ) θ 3 , (w 4 - w 1 ) θ 4 In total, to produce a total result I is I = ( w 1 - w 4 ) θ 1 + (w 2 - w 3 ) θ 2 + (w 3 - w 2 ) θ 3 + (w 4 – w 1 ) θ 4 . The adjusting unit 74 is configured to multiply the total result by an adjustment coefficient h to generate an updated value LRA as LRA=h*I=h*[( w 1 —w 4 ) θ 1 +(w 2 – w 3 ) θ 2 + (w 3 - w 2 ) θ 3 + (w 4 - w 1 ) θ 4 ], the adjustment unit 74 can be implemented by a multiplier. In an embodiment, the adjustment factor h may be equal to or proportional to (1/N), and N may be 1440.

由第8圖可知,累計單元164包括暫存器Q2、減法器SB以及多工器MUX。於時間點t0 ,多工器MUX可輸出初始值LW至暫存器Q2,累計單元164將初始值LW儲存於暫存器Q2中,此時暫存器Q2的暫存內容RC為初始值LW。於時間點t1 ,減法器SB將暫存內容RC(即初始值LW)減去更新值LRA,以產生更新過的暫存內容RC’,即RC’= RC – LRA= LW– LRA,另外多工器MUX可將暫存內容RC’ 輸出至暫存器Q2的暫存內容RC為LW– LRA。於時間點t2 ,減法器SB將暫存內容RC(即LW– LRA)減去更新值LRA,以產生更新過的暫存內容RC’,即RC’= RC – LRA= LW–2* LRA,另外多工器MUX可將暫存內容RC’ 輸出至暫存器Q2的暫存內容RC為LW– 2*LRA。以此類推,於時間點tn ,減法器SB將暫存內容RC(即LW–(n–1)* LRA)減去更新值LRA,以產生更新過的暫存內容RC’,即RC’= RC –LRA= LW–n* LRA,並輸出暫存內容RC’為對應於(時間點tn 的)資料信號rD,n 的相位誤差xnAs can be seen from FIG. 8, the accumulation unit 164 includes a register Q2, a subtractor SB, and a multiplexer MUX. At time t 0 , the multiplexer MUX can output the initial value LW to the register Q2, and the accumulation unit 164 stores the initial value LW in the register Q2, and the temporary storage content RC of the register Q2 is the initial value. LW. At time point t 1 , the subtractor SB subtracts the temporary value RC (ie, the initial value LW) from the updated value LRA to generate the updated temporary content RC', ie RC'= RC – LRA= LW– LRA, The multiplexer MUX can output the temporary content RC of the temporary storage content RC' to the temporary storage device Q2 as LW-LRA. At time point t 2 , the subtractor SB subtracts the updated value LRA from the temporary content RC (ie LW - LRA) to produce the updated temporary content RC', ie RC' = RC - LRA = LW - 2 * LRA In addition, the multiplexer MUX can output the temporary content RC of the temporary storage content RC' to the temporary storage device Q2 as LW-2*LRA. By analogy, at time t n , the subtractor SB subtracts the temporary value RC (ie LW - (n - 1) * LRA) from the updated value LRA to generate the updated temporary content RC ', ie RC' = RC - LRA = LW - n * LRA, and the output temporary content RC' is the phase error x n corresponding to the data signal r D,n (at time point t n ).

於步驟208中,相位補償模組20根據多個相位誤差x,補償多個接收信號的多個相位,其技術細節為本領域具通常知識者所知,故於此不贅述。In step 208, the phase compensation module 20 compensates a plurality of phases of the plurality of received signals according to the plurality of phase errors x. The technical details are known to those skilled in the art, and thus are not described herein.

一般來說,最大似然估測具有較佳的效能,但其運算成本相當高,即使可利用公式3計算權重向量w,然而,現有技術中互相關向量Kyx 以及自相關矩陣Kyy 需利用統計的方式來實現,其需要耗費較多的運算量以及進行統計所需的等待時間(Latency)。相較之下,本發明在假設接收信號r中相位誤差的軌跡運動為布朗運動的情況下,互相關計算單元140以及自相關計算單元142可簡單地由公式1及公式2計算出互相關向量Kyx 以及自相關矩陣Kyy ,可使用簡易的方式來實現最大似然估測。In general, the maximum likelihood estimation has better performance, but its computational cost is quite high. Even if the weight vector w can be calculated using Equation 3, the cross-correlation vector K yx and the autocorrelation matrix K yy need to be utilized in the prior art. It is implemented in a statistical manner, which requires a lot of computational effort and the latency required to perform statistics. In contrast, the present invention assumes that the cross-correlation calculation unit 140 and the autocorrelation calculation unit 142 can simply calculate the cross-correlation vector from Equation 1 and Equation 2, assuming that the trajectory motion of the phase error in the received signal r is Brownian motion. K yx and the autocorrelation matrix K yy provide an easy way to achieve maximum likelihood estimation.

更進一步地,由於互相關向量Kyx 為時變的(Time Varying)(請參考公式1),為了省去進行N次反矩陣運算,本發明利用初始單元160計算初始值LW,利用更新單元162計算更新值LRA,並利用累計單元164,以逐步更新(Update)的方式,計算出對應於(時間點tn 的)資料信號rD,n 的相位誤差xn (n=1,…,N),其僅需進行1次反矩陣運算,而大幅降低運算複雜度。Further, since the cross-correlation vector K yx is Time Varying (please refer to Formula 1), in order to omit the N-th inverse matrix operation, the present invention calculates the initial value LW using the initial unit 160, and uses the update unit 162. The update value LRA is calculated, and the phase error x n (n=1, . . . , N corresponding to the data signal r D,n (at time point t n ) is calculated by means of the accumulation unit 164 in a stepwise update manner. ), it only needs to perform one inverse matrix operation, which greatly reduces the computational complexity.

另外,導頻信號rP1 、rP2 、rP3 、rP4 時間上分佈於多個資料信號rD 之前以及之後,其所計算出的相位誤差x可視為根據導頻相位誤差θ1 、θ2 、θ3 、θ4 所進行的4階內插(4th Order Interpolation),而可增加其估測精準度。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In addition, the pilot signals r P1 , r P2 , r P3 , and r P4 are temporally distributed before and after the plurality of data signals r D , and the calculated phase error x can be regarded as based on the pilot phase errors θ 1 , θ 2 . , θ 3, the fourth-order interpolation performed by [theta] 4 (4 th order interpolation), the estimated increase its accuracy. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

1‧‧‧相位回復裝置 1‧‧‧ phase recovery device

10‧‧‧相位估測模組 10‧‧‧ Phase Estimation Module

12‧‧‧導頻相位估測單元 12‧‧‧Pilot Phase Estimation Unit

14‧‧‧權重單元 14‧‧‧weight unit

140‧‧‧互相關計算單元 140‧‧‧Related correlation unit

142‧‧‧自相關計算單元 142‧‧‧Autocorrelation calculation unit

144‧‧‧權重計算單元 144‧‧‧weight calculation unit

146‧‧‧量測誤差計算單元 146‧‧‧Measurement error calculation unit

16‧‧‧結合單元 16‧‧‧Combination unit

160‧‧‧初始單元 160‧‧‧ initial unit

162‧‧‧更新單元 162‧‧‧Update unit

164‧‧‧累計單元 164‧‧‧Accumulating unit

20‧‧‧相位補償模組 20‧‧‧ phase compensation module

22‧‧‧相位回復方法 22‧‧‧ Phase recovery method

200~208‧‧‧步驟 200-208‧‧‧ steps

70‧‧‧乘法單元 70‧‧‧Multiplication unit

72‧‧‧加總單元 72‧‧‧Additional unit

74‧‧‧調整單元 74‧‧‧Adjustment unit

Fi-1、Fi、Fi+1、Fi+2‧‧‧訊框F i-1 , F i , F i+1 , F i+2 ‧‧‧ frame

ACC1‧‧‧累加器 ACC1‧‧‧ accumulator

AD1‧‧‧加法器 AD1‧‧‧Adder

h‧‧‧調整係數 H‧‧‧adjustment factor

I‧‧‧加總結果 I‧‧‧ total results

Kyx‧‧‧互相關向量K yx ‧‧‧ cross correlation vector

Kyy‧‧‧自相關矩陣K yy ‧‧‧autocorrelation matrix

LRA‧‧‧更新值 LRA‧‧‧ updated value

LW‧‧‧初始值 LW‧‧‧ initial value

MP1‧‧‧乘法器 MP1‧‧‧ Multiplier

MUX‧‧‧多工器 MUX‧‧‧Multiplexer

Q1、Q2‧‧‧暫存器 Q1, Q2‧‧‧ register

r‧‧‧接收信號 R‧‧‧ receiving signal

rD‧‧‧資料信號r D ‧‧‧Information signal

rP1、rP2、rP3、rP4‧‧‧導頻信號r P1 , r P2 , r P3 , r P4 ‧‧‧ pilot signals

RC、RC’‧‧‧暫存內容 RC, RC’‧‧‧ temporary content

SB‧‧‧減法器 SB‧‧‧Subtractor

TD‧‧‧資料區間T D ‧‧‧ data interval

TP‧‧‧導頻區間T P ‧‧‧Pilot interval

w1~w4‧‧‧權重值w 1 ~ w 4 ‧ ‧ weight value

x‧‧‧相位誤差 X‧‧‧ phase error

αT‧‧‧相位誤差強度 αT‧‧‧ phase error strength

ε‧‧‧量測誤差 ε‧‧‧Measurement error

θ1~θ4‧‧‧導頻相位誤差 θ 1 ~ θ 4 ‧‧ ‧ pilot phase error

第1圖為本發明實施例一相位回復裝置之方塊圖。 第2圖為本發明實施例一相位回復方法之流程圖。 第3圖為多個接收信號中多個導頻信號以及多個資料信號的示意圖。 第4圖為本發明實施例一權重單元之方塊圖。 第5圖為本發明實施例一結合單元之方塊圖。 第6圖為本發明實施例一初始單元之方塊圖。 第7圖為本發明實施例一更新單元之方塊圖。 第8圖為本發明實施例一累計單元之方塊圖。1 is a block diagram of a phase return device according to an embodiment of the present invention. FIG. 2 is a flowchart of a phase recovery method according to an embodiment of the present invention. Figure 3 is a schematic diagram of a plurality of pilot signals and a plurality of data signals in a plurality of received signals. Figure 4 is a block diagram of a weight unit according to an embodiment of the present invention. FIG. 5 is a block diagram of a combination unit according to an embodiment of the present invention. Figure 6 is a block diagram of an initial unit of the embodiment of the present invention. FIG. 7 is a block diagram of an update unit according to an embodiment of the present invention. Figure 8 is a block diagram of an accumulation unit in accordance with an embodiment of the present invention.

Claims (18)

一種相位回復裝置,包括: 一相位估測模組,接收多個接收信號,其中該多個接收信號包括多個導頻信號及多個資料信號,該相位估測模組包括: 一導頻相位估測單元,用來根據該多個導頻信號,計算多個導頻相位誤差; 一權重單元,用來根據該多個接收信號中至少一接收信號,計算對應於該多個導頻相位的多個權重值;以及 一結合單元,用來根據該多個導頻相位誤差及該多個權重值,計算對應於該多個資料信號的多個相位誤差,其中該多個相位誤差為該多個導頻相位的線性組合;以及 一相位補償模組,用來根據該多個相位誤差,補償該多個接收信號的多個相位。A phase recovery device includes: a phase estimation module that receives a plurality of received signals, wherein the plurality of received signals includes a plurality of pilot signals and a plurality of data signals, the phase estimation module comprising: a pilot phase An estimating unit, configured to calculate a plurality of pilot phase errors according to the plurality of pilot signals; a weighting unit configured to calculate, according to at least one of the plurality of received signals, a phase corresponding to the plurality of pilot phases a plurality of weight values; and a combining unit configured to calculate a plurality of phase errors corresponding to the plurality of data signals according to the plurality of pilot phase errors and the plurality of weight values, wherein the plurality of phase errors are more a linear combination of pilot phases; and a phase compensation module for compensating for multiple phases of the plurality of received signals based on the plurality of phase errors. 如請求項1所述的相位回復模組,其中該權重單元包括: 一量測誤差計算單元,用來根據該至少一接收信號,計算一量測誤差; 一互相關計算單元,用來根據一時間,計算相關於該時間的多個互相關值,其中該多個互相關值相關於該多個資料信號中於該時間的第一資料信號的一第一相位誤差與該多個導頻相位誤差的互相關; 一自相關計算單元,用來根據該量測誤差,計算該多個導頻相位誤差的多個自相關值;以及 一權重計算單元,用來根據該多個互相關值及該多個自相關值,計算該多個權重值。The phase recovery module of claim 1, wherein the weighting unit comprises: a measurement error calculation unit configured to calculate a measurement error according to the at least one received signal; and a cross correlation calculation unit for Time, calculating a plurality of cross-correlation values related to the time, wherein the plurality of cross-correlation values are related to a first phase error of the first data signal at the time of the plurality of data signals and the plurality of pilot phases a cross-correlation of errors; an autocorrelation calculation unit for calculating a plurality of autocorrelation values of the plurality of pilot phase errors according to the measurement error; and a weight calculation unit for using the plurality of cross-correlation values and The plurality of autocorrelation values, the plurality of weight values are calculated. 如請求項2所述的相位回復模組,其中該多個互相關值形成一互相關向量,該多個自相關值形成一自相關矩陣,該權重計算單元根據該多個互相關值及該多個自相關值,計算該多個權重值之步驟包含: 計算該自相關矩陣的一反矩陣;以及 將該反矩陣乘以該互相關向量,以輸出該多個權重值。The phase response module of claim 2, wherein the plurality of cross-correlation values form a cross-correlation vector, the plurality of autocorrelation values forming an autocorrelation matrix, the weight calculation unit according to the plurality of cross-correlation values and the The plurality of autocorrelation values, the step of calculating the plurality of weight values includes: calculating an inverse matrix of the autocorrelation matrix; and multiplying the inverse matrix by the cross correlation vector to output the plurality of weight values. 如請求項2所述的相位回復模組,其中該量測誤差計算單元根據該至少一接收信號,計算量測誤差的步驟包括: 根據該至少一接收信號,計算一訊雜比;以及 根據該訊雜比以及一相位雜訊強度,計算該量測誤差。The phase response module of claim 2, wherein the measuring error calculating unit calculates the measurement error according to the at least one received signal, comprising: calculating a signal to noise ratio according to the at least one received signal; The measurement error is calculated by the signal-to-noise ratio and the phase noise strength. 如請求項1所述的相位回復模組,其中該結合單元包括: 一初始單元,用來根據該多個導頻相位誤差及該多個權重值,計算一初始值,其中該多個權重值對應一第一時間; 一更新單元,用來根據該多個導頻相位誤差及該多個權重值,計算一更新值;以及 一累計單元,用來根據該初始值或該更新值,計算該多個相位誤差中的一第一相位誤差; 其中,該第一相位誤差對應一第二時間,該第二時間不早於該第一時間。The phase recovery module of claim 1, wherein the combining unit comprises: an initial unit, configured to calculate an initial value according to the plurality of pilot phase errors and the plurality of weight values, wherein the multiple weight values Corresponding to a first time; an updating unit, configured to calculate an updated value according to the plurality of pilot phase errors and the plurality of weight values; and an accumulating unit configured to calculate the initial value or the updated value a first phase error of the plurality of phase errors; wherein the first phase error corresponds to a second time, the second time is not earlier than the first time. 如請求項5所述的相位回復模組,其中該初始單元計算該多個導頻相位誤差與該多個權重值之間的一積項和作為該初始值。The phase recovery module of claim 5, wherein the initial unit calculates an integral term between the plurality of pilot phase errors and the plurality of weight values as the initial value. 如請求項5所述的相位回復模組,其中該初始單元依照一時間順序接收該多個導頻相位誤差,該初始單元包括: 一乘法器,依照該時間順序將該多個導頻相位誤差分別乘以該多個權重值,以產生多個第一相乘結果;以及 一第一累加器,用來將該多個第一相乘結果累加,以產生該初始值。The phase recovery module of claim 5, wherein the initial unit receives the plurality of pilot phase errors according to a time sequence, the initial unit comprising: a multiplier, the plurality of pilot phase errors according to the time sequence Multiplying the plurality of weight values to generate a plurality of first multiplication results; and a first accumulator for accumulating the plurality of first multiplication results to generate the initial value. 如請求項7所述的相位回復模組,其中該第一累加器包括: 一第一暫存器,用來儲存一第一累加結果;以及 一第一加法器,用來將該第一累加結果與該多個第一相乘結果中一第一相乘結果相加,以產生一第二累加結果。The phase recovery module of claim 7, wherein the first accumulator comprises: a first register for storing a first accumulated result; and a first adder for accumulating the first The result is added to a first multiplication result of the plurality of first multiplication results to generate a second accumulation result. 如請求項5所述的相位回復模組,其中該更新單元包括: 一乘法單元,用來將該多個導頻相位誤差分別乘以多個相減結果,以產生多個第二相乘結果,其中該多個相減結果中的一第一相減結果為該多個權重值中一第一權重值與一第二權重值的相減結果; 一加總單元,用來將該多個第二相乘結果加總,以產生一加總結果;以及 一調整單元,用來將該加總結果乘以一調整係數,以產生該更新值。The phase recovery module of claim 5, wherein the updating unit comprises: a multiplying unit for multiplying the plurality of pilot phase errors by a plurality of subtraction results to generate a plurality of second multiplication results And a first subtraction result of the plurality of subtraction results is a subtraction result of a first weight value and a second weight value of the plurality of weight values; The second multiplied result is summed to produce a summed result; and an adjustment unit is used to multiply the summed result by an adjustment factor to generate the updated value. 如請求項5所述的相位回復模組,其中該累計單元包括: 一第二暫存器,用來儲存一第一暫存內容; 一減法器,用來將該第一暫存內容減去該更新值,以產生一第二暫存內容;以及 一多工器,用來輸出該初始值或該第二暫存內容至該第二暫存器並輸出該第二暫存內容作為該第一相位誤差。The phase recovery module of claim 5, wherein the accumulation unit comprises: a second temporary register for storing a first temporary storage content; a subtractor for subtracting the first temporary storage content Updating the value to generate a second temporary storage content; and a multiplexer for outputting the initial value or the second temporary storage content to the second temporary storage device and outputting the second temporary storage content as the first A phase error. 一種相位回復方法,包括: 接收多個接收信號,其中該多個接收信號包括多個導頻信號及多個資料信號; 根據該多個導頻信號,計算多個導頻相位誤差; 根據該多個接收信號中至少一接收信號,計算對應於該多個導頻相位的多個權重值; 根據該多個導頻相位誤差及該多個權重值,計算對應於該多個資料信號的多個相位誤差,其中該多個相位誤差為該多個導頻相位的線性組合;以及 根據該多個相位誤差,補償該多個接收信號的多個相位。A phase recovery method includes: receiving a plurality of received signals, wherein the plurality of received signals includes a plurality of pilot signals and a plurality of data signals; calculating a plurality of pilot phase errors according to the plurality of pilot signals; Computing at least one of the received signals, calculating a plurality of weight values corresponding to the plurality of pilot phases; calculating a plurality of the plurality of data signals corresponding to the plurality of pilot phase errors and the plurality of weight values a phase error, wherein the plurality of phase errors is a linear combination of the plurality of pilot phases; and compensating for a plurality of phases of the plurality of received signals based on the plurality of phase errors. 如請求項11所述的相位回復方法,其中計算對應於該多個導頻相位的多個權重值的步驟包括: 根據該至少一接收信號,計算一量測誤差; 根據一時間,計算相關於該時間的複數個互相關值,其中該複數個互相關值相關於該多個資料信號中於該時間的第一資料信號的一第一相位誤差與該多個導頻相位誤差的互相關; 根據該量測誤差,計算該多個導頻相位誤差的複數個自相關值,其中該複數個自相關值相關於該多個導頻相位誤差的自相關;以及 根據該多個互相關值及該多個自相關值,計算該多個權重值。The phase recovery method of claim 11, wherein the calculating the plurality of weight values corresponding to the plurality of pilot phases comprises: calculating a measurement error according to the at least one received signal; a plurality of cross-correlation values at the time, wherein the plurality of cross-correlation values are related to a cross-correlation of a first phase error of the first data signal at the time of the plurality of data signals with the plurality of pilot phase errors; Calculating, according to the measurement error, a plurality of autocorrelation values of the plurality of pilot phase errors, wherein the plurality of autocorrelation values are related to autocorrelation of the plurality of pilot phase errors; and according to the plurality of cross correlation values and The plurality of autocorrelation values, the plurality of weight values are calculated. 如請求項12所述的相位回復方法,其中該多個互相關值形成一互相關向量,該多個自相關值形成一自相關矩陣,根據該多個互相關值及該多個自相關值計算該多個權重值的步驟包含有: 計算該自相關矩陣的一反矩陣;以及 計算該多個權重值,其中該多個權重值相關於該反矩陣與該互相關向量的相乘結果。The phase recovery method of claim 12, wherein the plurality of cross-correlation values form a cross-correlation vector, the plurality of autocorrelation values forming an autocorrelation matrix, according to the plurality of cross-correlation values and the plurality of autocorrelation values The step of calculating the plurality of weight values includes: calculating an inverse matrix of the autocorrelation matrix; and calculating the plurality of weight values, wherein the plurality of weight values are related to a multiplication result of the inverse matrix and the cross correlation vector. 如請求項11所述的相位回復方法,其中根據該多個導頻相位誤差及該多個權重值,計算對應於該多個資料信號的多個相位誤差的步驟包括: 根據該多個導頻相位誤差及該多個權重值,計算一初始值,其中該多個權重值對應一第一時間; 根據該多個導頻相位誤差及該多個權重值,計算一更新值;以及 根據該初始值或該更新值,計算該多個相位誤差中的一第一相位誤差; 其中,該第一相位誤差對應一第二時間,該第二時間不早於該第一時間。The phase recovery method of claim 11, wherein the calculating the plurality of phase errors corresponding to the plurality of data signals according to the plurality of pilot phase errors and the plurality of weight values comprises: according to the plurality of pilots Calculating an initial value, wherein the plurality of weight values correspond to a first time; calculating an updated value according to the plurality of pilot phase errors and the plurality of weight values; and according to the initial And a value of the first phase error of the plurality of phase errors; wherein the first phase error corresponds to a second time, the second time is not earlier than the first time. 如請求項14所述的相位回復方法,其中計算該初始值的步驟包括: 計算該多個導頻相位誤差與該多個權重值之間的一積項和,以產生為該初始值。The phase recovery method of claim 14, wherein the calculating the initial value comprises: calculating an product term sum between the plurality of pilot phase errors and the plurality of weight values to generate the initial value. 如請求項14所述的相位回復方法,其中根據該多個導頻相位誤差及該多個權重值計算該初始值的步驟包括: 該初始單元依照一時間順序接收該多個導頻相位誤差; 依照該時間順序將該多個導頻相位誤差分別乘以該多個權重值中,以產生多個第一相乘結果;以及 將該第一相乘結果累加,以產生該初始值。The phase recovery method of claim 14, wherein the step of calculating the initial value according to the plurality of pilot phase errors and the plurality of weight values comprises: the initial unit receiving the plurality of pilot phase errors in a time sequence; Multiplying the plurality of pilot phase errors by the plurality of weight values in accordance with the chronological order to generate a plurality of first multiplication results; and accumulating the first multiplication results to generate the initial values. 如請求項14所述的相位回復方法,其中根據該多個導頻相位誤差及該多個權重值,計算該更新值的步驟包括: 將該多個導頻相位誤差分別乘以多個相減結果,以產生多個第二相乘結果,其中該多個相減結果中的一第一相減結果為該多個權重值中一第一權重值與一第二權重值的相減結果; 將該多個第二相乘結果加總,以產生一加總結果;以及 將該加總結果乘以一調整係數,以產生該更新值。The phase recovery method of claim 14, wherein the calculating the updated value according to the plurality of pilot phase errors and the plurality of weight values comprises: multiplying the plurality of pilot phase errors by a plurality of subtractions As a result, a plurality of second multiplication results are generated, wherein a first subtraction result of the plurality of subtraction results is a subtraction result of a first weight value and a second weight value of the plurality of weight values; The plurality of second multiplied results are summed to produce a summation result; and the summed result is multiplied by an adjustment factor to generate the updated value. 如請求項14所述的相位回復方法,其中根據該初始值或該更新值,產生該多個相位誤差中的該第一相位誤差的步驟包括: 計算該第一相位誤差為該初始值加該更新值至少一次的累加結果。The phase recovery method of claim 14, wherein the generating the first phase error of the plurality of phase errors according to the initial value or the updated value comprises: calculating the first phase error as the initial value plus Update the result of the value at least once.
TW106140779A 2017-11-23 2017-11-23 Phase recovery device and phase recovery method TW201926939A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106140779A TW201926939A (en) 2017-11-23 2017-11-23 Phase recovery device and phase recovery method
US16/056,706 US20190158266A1 (en) 2017-11-23 2018-08-07 Phase recovery device and phase recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106140779A TW201926939A (en) 2017-11-23 2017-11-23 Phase recovery device and phase recovery method

Publications (1)

Publication Number Publication Date
TW201926939A true TW201926939A (en) 2019-07-01

Family

ID=68048967

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106140779A TW201926939A (en) 2017-11-23 2017-11-23 Phase recovery device and phase recovery method

Country Status (1)

Country Link
TW (1) TW201926939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703849B (en) * 2019-08-06 2020-09-01 瑞昱半導體股份有限公司 Smart phase switching method and smart phase switching system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703849B (en) * 2019-08-06 2020-09-01 瑞昱半導體股份有限公司 Smart phase switching method and smart phase switching system

Similar Documents

Publication Publication Date Title
CN103201950B (en) The combined process estimator with variable tap delay line in power amplifier digital pre-distortion
US7577194B2 (en) Equalizer and equalization method
TW200828106A (en) Method and apparatus for carry estimation
CN105891810B (en) A kind of quick self-adapted joint delay time estimation method
US9197262B2 (en) Low-power and low-cost adaptive self-linearization system with fast convergence
JP2008544689A (en) Method and apparatus for using chip sample correlation in one or more received signal processing steps
KR20060135687A (en) Conjugate gradient based channel estimator
Butler et al. Noniterative automatic equalization
TW201926939A (en) Phase recovery device and phase recovery method
US20180278260A1 (en) Bandwidth adjustment method and associated bandwidth adjustment circuit and phase recovery module
US20120328064A1 (en) Phase Tracking in Communications Systems
CN108092723B (en) Independent path Doppler compensation and equalization method under underwater sound double-expansion channel environment
CN111555994B (en) Cluster sparse channel estimation method based on maximum skip rule algorithm
CN104901917B (en) The loop method of adjustment and its realization device of IQ delay inequalities in ofdm communication system
CN110365610A (en) Phase recovery device and phase recovery method
US9544114B2 (en) Method and apparatus for channel estimation and equalization
JP4513219B2 (en) Prefix nonlinear distortion compensator
JP3986457B2 (en) Input signal estimation method and apparatus, input signal estimation program, and recording medium therefor
TW201724089A (en) Frequency domain adaptive filter system with second-order sliding discrete fourier transform
TWI640180B (en) Time domain equalizer and signal processing method thereof
TW202112067A (en) Apparatus and method for symbol time recovery using feedback loop
WO2016090562A1 (en) Method for setting equalization device and equalization device
CN108322410B (en) Time domain equalizer and signal processing method thereof
CN109905136A (en) Weakened phase restoring device and weakened phase restoring method
TWI743950B (en) Method for delay estimation, method for echo cancellation and signal processing device utilizing the same