TW201812383A - Spatial chirped cavity for temporally stretching/compressing optical pulses - Google Patents

Spatial chirped cavity for temporally stretching/compressing optical pulses Download PDF

Info

Publication number
TW201812383A
TW201812383A TW105129159A TW105129159A TW201812383A TW 201812383 A TW201812383 A TW 201812383A TW 105129159 A TW105129159 A TW 105129159A TW 105129159 A TW105129159 A TW 105129159A TW 201812383 A TW201812383 A TW 201812383A
Authority
TW
Taiwan
Prior art keywords
optical
sub
cavity
spatial
pulse
Prior art date
Application number
TW105129159A
Other languages
Chinese (zh)
Other versions
TWI728999B (en
Inventor
謝堅文
藝青 許
許景江
Original Assignee
港大科橋有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 港大科橋有限公司 filed Critical 港大科橋有限公司
Priority to TW105129159A priority Critical patent/TWI728999B/en
Publication of TW201812383A publication Critical patent/TW201812383A/en
Application granted granted Critical
Publication of TWI728999B publication Critical patent/TWI728999B/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Systems and methods tor optical pulse stretching or compression in time are provided. An apparatus of the subject invention can operate as an optical dispersive element for optical pulse stretching or compression in time, as well as laser scanning in space. An apparatus can include a spatial disperser arranged to divide a collimated optical pulsed beam into a beamlet array of beamlets with equally spaced angles, a beam shaper configured to control the spreading angle of the beamlet array, and a cavity to sequentially reflect the individual beamlets within the beamlet array. The cavity can include two non-parallel surfaces, such as two non-parallel mirrors.

Description

用於在時間上拉伸/壓縮光學脈衝的空間啁啾腔  Space cavity for stretching/compressing optical pulses over time  

本發明係關於用於在時間上拉伸/壓縮光學脈衝的空間啁啾腔。 The present invention relates to a spatial cavity for stretching/compressing optical pulses over time.

脈衝拉伸和壓縮在許多應用中都有用。實現有效脈衝拉伸/壓縮的最常見技術之一是使用光脈衝在其內引導和傳播的長分散光纖。使用光纖實現此任務的一個關鍵屬性是光纖(一般為石英玻璃)的色散,其中不同頻率分量經受不同折射率,並且沿光纖以不同速率有效地傳播。它因此在時間上分隔脈衝內的不同頻率分量,即,脈衝拉伸。分散元件也能夠用作光學脈衝的壓縮器,其中,時間擴展的光脈衝能夠被重新壓縮成滿足要求的應用的脈衝。例如,此操作能夠進行以避免超短脈衝的過度時間展寬,這能夠造成在電信中和在光學顯微術/成像中信號的失真。 Pulse stretching and compression are useful in many applications. One of the most common techniques for achieving effective pulse stretching/compression is the use of long dispersion fibers in which light pulses are directed and propagated. A key attribute for accomplishing this task using fiber optics is the dispersion of an optical fiber (typically quartz glass) in which different frequency components are subjected to different refractive indices and propagate efficiently along the fiber at different rates. It therefore separates the different frequency components within the pulse in time, ie the pulse stretching. The dispersing element can also be used as a compressor for optical pulses, wherein the time-expanded light pulses can be recompressed into pulses that meet the desired application. For example, this operation can be performed to avoid excessive time stretching of ultrashort pulses, which can cause distortion of signals in telecommunications and in optical microscopy/imaging.

雖然光纖已被很好地識別為最常規分散元件之一(用於脈衝拉伸/壓縮),但它們具有阻礙在更廣範圍的應用 中利用光纖的限制。脈衝拉伸/壓縮的可允許操作波長範圍受光纖的材料(更具體地說,光學損耗)限制。由於普通光纖由石英玻璃製成,因此,光學損耗及因此的有效脈衝拉伸/壓縮被優化到從1μm到1.5μm的近紅外光譜窗。這意味著能夠在其上執行光學拉伸/壓縮的光學脈衝的波長強烈取決於光纖的材料損耗,最終限制了波長的操作範圍。 While optical fibers have been well recognized as one of the most conventional dispersive components (for pulse stretching/compression), they have limitations that hinder the use of fiber optics in a wider range of applications. The pulsed stretch/compressible allowable operating wavelength range is limited by the material of the fiber (more specifically, optical loss). Since ordinary fibers are made of quartz glass, optical loss and hence effective pulse stretching/compression are optimized to near-infrared spectral windows from 1 μm to 1.5 μm. This means that the wavelength of the optical pulse on which the optical stretching/compression can be performed strongly depends on the material loss of the fiber, ultimately limiting the operating range of the wavelength.

此外,在光纖中,脈衝拉伸/壓縮不能是主動或動態可調諧。使用光纖的脈衝拉伸/壓縮量由光學脈衝經受的分散控制。總分散與光纖長度直接成正比,而一般情況下,一旦光纖已製成,光纖長度便是固定的,並且不可靈活(以及廣泛)調整。 Furthermore, in fiber optics, pulse stretching/compression cannot be active or dynamically tunable. The amount of pulse stretching/compression using the fiber is controlled by the dispersion experienced by the optical pulse. The total dispersion is directly proportional to the length of the fiber, and in general, once the fiber has been fabricated, the length of the fiber is fixed and not flexible (and widely) adjustable.

另外,光纖中由光學脈衝累積的群延遲分散(GDD)是受限的,並且時間拉伸量也取決於脈衝的光學頻寬。因此,需要長光纖(大約幾十千米的標準電信光纖)以便獲得足夠的GDD以實現有效的脈衝拉伸/壓縮。從設計角度而言,將光纖用於脈衝拉伸/壓縮在空間上是效率低的。 In addition, the group delay dispersion (GDD) accumulated by optical pulses in the fiber is limited, and the amount of time stretching also depends on the optical bandwidth of the pulse. Therefore, long fibers (approximately tens of kilometers of standard telecommunications fibers) are needed in order to obtain sufficient GDD for efficient pulse stretching/compression. From a design perspective, the use of optical fibers for pulse stretching/compression is spatially inefficient.

另外,現有裝置中所有材料附帶的光學非線性是不可避免的,並且對脈衝拉伸/壓縮是有害的。特別是在光纖中,光學脈衝不但經受線性分散(即,在每個頻率的恆定折射率),而且經受折射率取決於光學脈衝包絡的功率分佈的非線性效應。光學脈衝及因此編碼資訊最終在拉伸/壓縮過程期間失真。 In addition, the optical nonlinearity associated with all materials in existing devices is unavoidable and detrimental to pulse stretching/compression. Particularly in optical fibers, optical pulses are not only subjected to linear dispersion (i.e., a constant refractive index at each frequency), but also to nonlinear effects in which the refractive index depends on the power distribution of the optical pulse envelope. The optical pulses and thus the encoded information are eventually distorted during the stretching/compression process.

另一方面,脈衝拉伸一直與執行時空映射的技術一起 用於實現光學波束掃描或操控。此方案允許在需要諸如掃描鏡等機械移動部分的情況下的光學波束掃描,並且因此繞過基本速度限制(受慣性限制)及此類基於機械的波束掃描器的運動偽影。鐳射波束掃描的應用一直廣泛涉及條碼掃描、生物醫學成像、材料科學研究、雷射光束加工和燒蝕和製造業中的自動化表面檢視(包括在超大規模集成(VLSI)工業中的半導體積體電路(IC)晶片製造)。在這些應用中,通過使用光學元件在空間上偏轉波束來進行光學波束掃描。常見的選擇包括檢流計鏡和聲光學偏轉器。 On the other hand, pulse stretching has been used together with techniques for performing spatiotemporal mapping to achieve optical beam scanning or manipulation. This approach allows for optical beam scanning where mechanical moving parts such as scanning mirrors are required, and thus bypasses basic speed limits (limited by inertia) and motion artifacts of such mechanical based beam scanners. Laser beam scanning applications have been extensively involved in bar code scanning, biomedical imaging, materials science, laser beam processing and ablation, and automated surface inspection in manufacturing (including semiconductor integrated circuits in the ultra-large scale integration (VLSI) industry). (IC) wafer fabrication). In these applications, optical beam scanning is performed by spatially deflecting the beam using optical elements. Common choices include galvanometer mirrors and acoustic optical deflectors.

通常,視可行實施而定,波束掃描能夠分類成有源或無源掃描。有源波束掃描器要求可控元件交替(或操控)光學波束的方向。例如,在鐳射掃描成像/光譜學(在生命科學或材料科學應用中廣泛採用)中,能夠由檢流計鏡在某個範圍的角度內連續有角操控鐳射波束。通過與適當的中繼透鏡系統組合,此類有角波束位移能夠變換成橫向波束位移,從而能夠跨被測樣本(例如,生物細胞/組織)橫向掃描聚焦波束。樣品的空間資訊(由於吸收、散射或發光)在時間上由被掃描波束讀出。因此,使用單圖元光電檢測器,能夠從串列時間信號檢索靶心圖表像。最終,這些技術的掃描速率基本上受移動的偏轉光學元件的速度和這些裝置的機械移動限制。檢流計鏡廣泛應用於大多數商用鐳射掃描系統中;然而,由於所有檢流計鏡(包括微電子機械系統(MEMS)掃描器)中的機械慣性,它僅可提供直到500Hz或1kHz的一維(1D)線掃描速率, 通過在鏡子的諧振頻率操作鏡子(即,諧振檢流計鏡)-大多數最高為大約10kHz,能夠實現掃描速率的適中改進。為克服機械限制,人們已發明了聲光學(AO)和電子光學(EO)調製器以實現大約亞MHz到MHz的更高掃描速率。然而,使用這些裝置是以更小範圍的掃描角和更小可分辨掃描點數(即,視野)為代價來實現高掃描速度。AO裝置也由於裝置的衍射效應而遭受另外的光學損耗,而EO裝置一般要求高電壓(>100V)以便為可行成像應用實現合理的掃描範圍。 In general, beam scanning can be classified into active or passive scanning, depending on the feasible implementation. Active beam scanners require controllable elements to alternate (or manipulate) the direction of the optical beam. For example, in laser scanning imaging/spectroscopy (widely used in life sciences or materials science applications), it is possible to continuously manipulate the laser beam from a galvanometer mirror over a range of angles. By combining with an appropriate relay lens system, such angular beam displacements can be transformed into lateral beam displacements to enable lateral scanning of the focused beam across the sample under test (eg, biological cells/tissue). The spatial information of the sample (due to absorption, scattering or luminescence) is read out in time by the scanned beam. Therefore, the single-pixel photodetector can be used to retrieve the bull's-eye chart image from the serial time signal. Ultimately, the scanning rate of these techniques is substantially limited by the speed of the moving deflection optics and the mechanical movement of these devices. Galvanometer mirrors are widely used in most commercial laser scanning systems; however, due to mechanical inertia in all galvanometer mirrors, including microelectromechanical systems (MEMS) scanners, it can only provide one up to 500 Hz or 1 kHz. Dimensional (1D) line scan rate, by operating the mirror at the resonant frequency of the mirror (ie, a resonant galvanometer mirror) - most up to about 10 kHz, enables a modest improvement in scan rate. To overcome mechanical limitations, acoustical optics (AO) and electro-optical (EO) modulators have been invented to achieve higher scan rates of approximately sub-MHz to MHz. However, the use of these devices achieves high scanning speeds at the expense of a smaller range of scan angles and smaller resolvable scan points (i.e., field of view). AO devices also suffer from additional optical losses due to the diffraction effects of the device, while EO devices typically require high voltages (>100 V) to achieve a reasonable scan range for viable imaging applications.

不同於有源波束掃描,無源波束掃描是不涉及直接操縱波束操控/掃描的技術。一個值得注意的示例是基於譜編碼機制的波束掃描。在此技術中,採用了有寬頻波長頻譜的波長可調諧光源(稱為掃頻源)。在時間上對輸出光波長進行掃頻。因此,通過使用稱為空間分散器(例如,棱鏡、衍射光柵、虛擬成像相位陣列等)的光學元件,能夠在不同波長將波束映射到在被測樣品上的不同空間座標(能夠為一維或二維)。由於在時間上對波長進行掃頻,因此,基本上能夠跨樣品對波束進行掃描。由此通過波長調諧及譜編碼概念(即,波長空間映射),間接實現了波束操控。此技術的波束掃描速度主要由鐳射的波長掃頻速率確定,該速率在當前技術發展水準中一般被限於1kHz或100kHz。 Unlike active beam scanning, passive beam scanning is a technique that does not involve direct manipulation of beam steering/scanning. A notable example is beam scanning based on spectral coding mechanisms. In this technique, a wavelength tunable light source (referred to as a sweep source) having a broadband wavelength spectrum is employed. The output light wavelength is swept in time. Thus, by using optical elements called spatial dispersers (eg, prisms, diffraction gratings, virtual imaging phase arrays, etc.), it is possible to map beams at different wavelengths to different spatial coordinates on the sample being tested (can be one-dimensional or Two-dimensional). Since the wavelength is swept in time, it is basically possible to scan the beam across the sample. Beam steering is thus indirectly achieved by wavelength tuning and spectral coding concepts (ie, wavelength space mapping). The beam scanning speed of this technique is primarily determined by the wavelength sweep rate of the laser, which is generally limited to 1 kHz or 100 kHz in current state of the art.

光學時間拉伸技術中使用的常規分散介質是光纖。為實現高解析度波束掃描,要求大量的分散(即,脈衝拉 伸)。這要求光纖有長的長度(長於10千米),這不可避免地造成了驚人的光學損耗。典型光學(玻璃)光纖的低損耗譜區域是從大約1μm到大約1.5μm,限制了操作波長範圍,並且因此限制了此技術的應用。 A conventional dispersion medium used in optical time stretching techniques is an optical fiber. To achieve high resolution beam scanning, a large amount of dispersion (i.e., pulse stretching) is required. This requires a long length of fiber (greater than 10 kilometers), which inevitably results in amazing optical losses. The low loss spectral region of a typical optical (glass) fiber is from about 1 [mu]m to about 1.5 [mu]m, limiting the operating wavelength range and thus limiting the application of this technique.

本發明的實施例提供了用於在時間上拉伸或壓縮光學脈衝並且因此在空間上進行光學波束掃描的有利系統和方法。本發明的設備能夠作為用於在時間上拉伸或壓縮光學脈衝光學分散元件和光學空間波束掃描器操作。 Embodiments of the present invention provide advantageous systems and methods for stretching or compressing optical pulses over time and thus performing optical beam scanning spatially. The apparatus of the present invention is capable of operating as an optical pulsed optical dispersion element and an optical spatial beam scanner for stretching or compressing in time.

在一實施例中,用於拉伸和/或壓縮光學脈衝的設備能夠包括:佈置成將准直光學脈衝束分割成有等間隔角的子波束的子波束陣列的空間分散器、配置成控制子波束陣列的擴展角的波束成形器及按順序反射子波束陣列內的單獨子波束的腔。腔能夠是空間啁啾腔,並且例如能夠包括兩個非平行反射內表面(例如,鏡子)。單獨反射的子波束每個能夠按順序編碼有不同時間資訊,能夠用作光學空間掃描波束而不涉及任何機械移動部分。 In an embodiment, an apparatus for stretching and/or compressing optical pulses can include: a spatial disperser arranged to split a collimated optical pulse beam into sub-beam arrays of sub-beams of equal spacing, configured to control A beamformer of the extended angle of the sub-beam array and a cavity of the individual sub-beams within the sub-beam array are sequentially reflected. The cavity can be a spatial cavity and can, for example, comprise two non-parallel reflective inner surfaces (eg, mirrors). The separately reflected sub-beams can each be encoded with different time information in sequence, and can be used as an optical spatial scanning beam without involving any mechanical moving parts.

1‧‧‧光輸入 1‧‧‧Light input

2‧‧‧空間分散器 2‧‧‧Space diffuser

3‧‧‧波束成形器 3‧‧‧beamformer

4‧‧‧啁啾腔 4‧‧‧啁啾 cavity

5‧‧‧輸出 5‧‧‧ Output

12‧‧‧衍射光柵 12‧‧‧Diffraction grating

13‧‧‧透鏡 13‧‧‧ lens

14‧‧‧柱面透鏡 14‧‧‧ cylindrical lens

15‧‧‧中繼鏡 15‧‧‧Repeating mirror

16‧‧‧鏡子 16‧‧‧Mirror

17‧‧‧鏡子 17‧‧‧Mirror

18‧‧‧鏡子 18‧‧‧Mirror

19‧‧‧鏡子 19‧‧‧Mirror

20‧‧‧啁啾螺旋狀軌跡 20‧‧‧啁啾 spiral track

21‧‧‧啁啾螺旋狀軌跡 21‧‧‧啁啾Spiral track

22‧‧‧八角形腔 22‧‧‧ Octagonal cavity

22A‧‧‧光線軌跡 22A‧‧‧Light trajectory

23‧‧‧中繼光學系統 23‧‧‧Relay optical system

24‧‧‧掃描波束 24‧‧‧Scanning beam

25‧‧‧類型I空間分散器 25‧‧‧Type I Space Diffuser

26‧‧‧分束器 26‧‧‧beam splitter

27‧‧‧光電檢測器 27‧‧‧Photodetector

28‧‧‧類型II空間分散器 28‧‧‧Type II Space Diffuser

29‧‧‧二向色鏡 29‧‧‧Dichroic Mirror

圖1顯示本發明的裝置的示意圖。 Figure 1 shows a schematic representation of the apparatus of the present invention.

圖2顯示根據本發明的一實施例的啁啾腔。 Figure 2 shows a cavity according to an embodiment of the invention.

圖3顯示有色拉伸/壓縮光學脈衝的示意圖。 Figure 3 shows a schematic of a colored stretch/compress optical pulse.

圖4顯示光學脈衝的輸入和輸出譜的圖形。 Figure 4 shows a graph of the input and output spectra of an optical pulse.

圖5A顯示由分散光纖拉伸的時間拉伸光學信號的圖形。 Figure 5A shows a graph of a time stretched optical signal stretched by a dispersed fiber.

圖5B顯示由本發明的一實施例拉伸的時間拉伸光學信號的圖形。 Figure 5B shows a graph of a time stretched optical signal stretched by an embodiment of the present invention.

圖6顯示基於使用的第二類型(類型II)的空間分散器(例如,透鏡)的脈衝拉伸的示意圖。 Figure 6 shows a schematic diagram of pulse stretching based on a second type (Type II) of spatial diffusers (e.g., lenses) used.

圖7(a)顯示隨鏡對分離變化的群延遲分散的圖形。 Figure 7(a) shows a plot of group delay dispersion as a function of mirror pair separation.

圖7(b)顯示隨鏡對分離變化的群延遲分散的圖形。 Figure 7(b) shows a plot of group delay dispersion as a function of mirror pair separation.

圖8A顯示單輸入光學脈衝。 Figure 8A shows a single input optical pulse.

圖8B顯示由本發明的一實施例生成的脈衝佇列。 Figure 8B shows a pulse train generated by an embodiment of the present invention.

圖9顯示基於使用的第一類型(類型I)的空間分散器,根據本發明的一實施例的裝置的示意圖。 Figure 9 shows a schematic diagram of an apparatus according to an embodiment of the invention based on a first type (Type I) of spatial diffusers used.

圖10A顯示根據本發明的一實施例,空間啁啾腔(在正方形腔中,邊長(N)=4)的頂部示意圖。 Figure 10A shows a top schematic view of a spatial cavity (in a square cavity, side length (N) = 4), in accordance with an embodiment of the present invention.

圖10B顯示根據本發明的一實施例,空間啁啾腔(在正方形腔中,N=4)的側視示意圖及雙通光軌跡。 Figure 10B shows a side view and a two-pass optical trajectory of a spatial cavity (in a square cavity, N = 4), in accordance with an embodiment of the present invention.

圖10C顯示根據本發明的一實施例,空間啁啾腔(在八角形腔中,N=8)的頂部示意圖。 Figure 10C shows a top schematic view of a spatial cavity (in the octagonal cavity, N = 8), in accordance with an embodiment of the present invention.

圖11顯示用於鐳射波束掃描的本發明的裝置的示意圖。 Figure 11 shows a schematic of the apparatus of the present invention for laser beam scanning.

圖12A顯示基於使用的類型I空間分散器,用於鐳射波束掃描的本發明的裝置的示意圖。 Figure 12A shows a schematic of the apparatus of the present invention for laser beam scanning based on the type I spatial disperser used.

圖12B顯示基於使用的類型II空間分散器,用於鐳射波束掃描的本發明的裝置的示意圖。 Figure 12B shows a schematic of the apparatus of the present invention for laser beam scanning based on the type II spatial disperser used.

圖12C顯示基於使用的類型II空間分散器,用於鐳射掃描螢光成像的本發明的裝置的示意圖。 Figure 12C shows a schematic of the apparatus of the present invention for laser scanning fluorescence imaging based on a type II spatial disperser used.

圖13A顯示基於使用的類型II空間分散器,由本發明的裝置捕捉的分辨目標的亮場鐳射掃描圖像。 Figure 13A shows a bright field laser scanned image of a resolved target captured by the apparatus of the present invention based on the Type II spatial diffuser used.

圖13B顯示基於使用的類型II空間分散器,由本發明的裝置捕捉的肺組織切片的亮場鐳射掃描圖像。 Figure 13B shows a bright field laser scanned image of a lung tissue section captured by the device of the present invention based on the type II spatial disperser used.

本發明的實施例提供了用於在時間上拉伸或壓縮光學脈衝的有利系統和方法。由於本發明的設備提供的有序時空映射,設備能夠作為用於在時間拉伸或壓縮光學脈衝和/或進行空間波束掃描的光學分散元件操作。 Embodiments of the present invention provide advantageous systems and methods for stretching or compressing optical pulses over time. Due to the ordered spatiotemporal mapping provided by the apparatus of the present invention, the apparatus is capable of operating as an optically dispersing element for stretching or compressing optical pulses and/or performing spatial beam scanning over time.

光學脈衝拉伸和壓縮對於範圍廣泛的應用是有用的,包括生物醫學應用中的光學成像/顯微術、電信中的光纖或自由空間光學資料傳送及工業和軍事應用中的遠端感測。例如,為克服檢測頻寬限制(特別是在高速光電檢測器在例如中紅外線範圍等關注的光學波長中不是隨時可用時),能夠在檢測前在時間上拉伸一系列的短光學脈衝,每個脈衝攜帶比特(1和0)資訊(即,能夠使資訊“減速”)。 Optical pulse stretching and compression are useful for a wide range of applications, including optical imaging/microscopy in biomedical applications, fiber optic or free-space optical data transmission in telecommunications, and remote sensing in industrial and military applications. For example, to overcome detection bandwidth limitations (especially when high-speed photodetectors are not readily available in optical wavelengths of interest such as the mid-infrared range, etc.), a series of short optical pulses can be stretched over time prior to detection, each The pulses carry bit (1 and 0) information (ie, the information can be "decelerated").

在光譜學的環境中,編碼有顯微資訊(例如,來自分子或生物細胞/組織)的光學寬頻脈衝中的所有分量能夠在時間上被限制,並且在超短時間視窗(例如,亞皮秒到亞納秒)內重疊。脈衝拉伸能夠在時間上有序地分隔頻率 分量,並且因此能夠用於從本質上分析譜特徵而不使用普通分光計。在關注的波長中無有效分光計可用時,或者在要求超快譜分析時,這特別相關。 In a spectroscopy environment, all components in an optical broadband pulse encoded with microscopic information (eg, from molecules or biological cells/tissues) can be limited in time and in ultra-short-time windows (eg, sub-picoseconds) Overlap to Yana seconds). Pulse stretching is capable of sequentially separating frequency components in time and can therefore be used to analyze spectral features intrinsically without the use of a conventional spectrometer. This is particularly relevant when no effective spectrometer is available in the wavelength of interest, or when ultrafast spectral analysis is required.

通過提供能夠在前所未有寬的波長頻譜中執行脈衝拉伸和/或壓縮,用於實現分散的高度可擴展和靈活調諧性的新概念,本發明的實施例能夠有利地繞過使用光纖和常見衍射元件來執行時間脈衝拉伸和壓縮。本發明的實施例能夠在其中執行脈衝拉伸和/或壓縮的波長頻譜例如能夠是從紫外線到紅外線(例如,包括在這些頻帶中的所有波長),但實施例不限於此。本發明的裝置和方法提供的分散(例如,群顯示分散(GDD))能夠優於現有技術。本發明能夠使用填充有空氣的光學腔,提供不同頻率分量的可擴展延遲,填充有空氣的光學腔能夠稱為空間啁啾腔或啁啾腔。在許多實施例中,空間啁啾腔能夠包括一對鏡子,並且鏡子能夠相互是非平行的。在一特定實施例中,空間啁啾腔能夠由一對非平行鏡子和空氣組成。 Embodiments of the present invention can advantageously bypass the use of optical fibers and common diffraction by providing a new concept for performing pulse stretching and/or compression in an unprecedented wide wavelength spectrum for achieving highly scalable and flexible tuning of dispersion. The component performs time pulse stretching and compression. The wavelength spectrum in which the embodiment of the present invention can perform pulse stretching and/or compression can be, for example, from ultraviolet light to infrared light (for example, including all wavelengths in these frequency bands), but the embodiment is not limited thereto. The dispersion (e.g., group display dispersion (GDD)) provided by the apparatus and method of the present invention can be superior to the prior art. The present invention is capable of using an air cavity filled with air to provide a scalable delay of different frequency components, and an optical cavity filled with air can be referred to as a spatial cavity or cavity. In many embodiments, the spatial cavity can include a pair of mirrors, and the mirrors can be non-parallel to each other. In a particular embodiment, the spatial cavity can be comprised of a pair of non-parallel mirrors and air.

在許多實施例中,不同頻率分量的可擴展延遲能夠依賴使用填充有空氣(或自由空間)的光學腔,該腔能夠稱為空間啁啾腔或啁啾腔。空間啁啾腔能夠包括一對鏡子,並且鏡子能夠相互是非平行的。這能夠利用空氣路徑中的高度可擴展光學延遲。因此,能夠完全消除對任何材料分散的依賴性。實施例能夠擴展到任何波長區域而不遭受任何材料損耗,例如從紫外線到紅外線波長,但實施例不限於此。此前所未有寬的範圍通過有關技術脈衝拉伸/壓縮 技術是無法實現的。 In many embodiments, the scalable delay of the different frequency components can rely on the use of an optical cavity filled with air (or free space), which cavity can be referred to as a spatial cavity or cavity. The space cavity can include a pair of mirrors, and the mirrors can be non-parallel to each other. This enables the use of highly scalable optical delays in the air path. Therefore, the dependence on the dispersion of any material can be completely eliminated. Embodiments can be extended to any wavelength region without suffering any material loss, such as from ultraviolet to infrared wavelengths, but embodiments are not limited thereto. Previously, a wide range has not been achieved by the related technology pulse stretching/compression technology.

本發明能夠通過簡單地調整在啁啾腔的鏡子之間的間距,提供調整GDD量的靈活方式。另外,設計能夠動態選擇正常或異常分散區,這是基於光纖的脈衝拉伸/壓縮技術中不存在(或至少幾乎不存在)的獨特特徵。本發明的實施例能夠提供的分散量比諸如棱鏡對或衍射光柵對等有關技術自由空間時間拉伸/壓縮裝置的分散量高出不止一個數量級。此外,可調諧GDD的範圍是高度可擴展(例如,在毫微微秒與納秒之間),而設備的佔用空間保持小而緊湊。 The present invention provides a flexible way of adjusting the amount of GDD by simply adjusting the spacing between the mirrors of the cavity. In addition, the design is capable of dynamically selecting normal or abnormally dispersed regions, a unique feature that does not exist (or at least hardly exists) in fiber-based pulse stretching/compression techniques. Embodiments of the present invention can provide a dispersion amount that is more than an order of magnitude greater than the amount of dispersion of a related free space time stretching/compression device, such as a prism pair or a diffraction grating pair. In addition, the range of tunable GDDs is highly scalable (eg, between femtoseconds and nanoseconds), while the footprint of the device remains small and compact.

圖1顯示本發明的裝置的示意圖。參照圖1,光輸入1(或稱之為光源1)能夠先通過空間分散器2(或稱之為空間波束分散器2),並且空間分散器2能夠將波束的譜(頻率)分量分散到空間中。輸入1例如能夠直接來自從諸如光纖等光導輸出或耦合的光源自由空間,但實施例不限於此。空間分散器2能夠是任何類型的衍射光學元件,如衍射光柵或分散棱鏡,或任何類型的波束發散元件,如透鏡,但實施例不限於此。空間散的光學波束隨後能夠可選地由波束成形器3(例如,基於複合透鏡系統的波束擴展器或壓縮器)再成形,並且能夠耦合到填充有空氣的啁啾腔4(或稱之為空間啁啾腔4)。腔4能夠包括一對非平行鏡子和空氣(即,類Fabry-Perot腔)。在進入啁啾腔前,在頻率分量(即,GDD)之間的光學路徑差別能夠忽略不計。譜分量隨後能夠由腔4反射回,並且它們的光 學路徑能夠反轉。所有反射的譜分量能夠在空間分散器2重新合併,並且正好在空間分散器2後輸出5。 Figure 1 shows a schematic representation of the apparatus of the present invention. Referring to Figure 1, optical input 1 (or referred to as source 1) can pass through spatial diffuser 2 (or spatial beam spreader 2), and spatial diffuser 2 can distribute the spectral (frequency) components of the beam to In space. The input 1 can, for example, come directly from a light source free space that is output or coupled from a light guide such as an optical fiber, but the embodiment is not limited thereto. The spatial diffuser 2 can be any type of diffractive optical element, such as a diffraction grating or a dispersion prism, or any type of beam diverging element, such as a lens, but embodiments are not limited thereto. The spatially scattered optical beam can then optionally be reshaped by beamformer 3 (eg, a beam expander or compressor based on a compound lens system) and can be coupled to a cavity 4 filled with air (or called Space cavity 4). The cavity 4 can include a pair of non-parallel mirrors and air (ie, a Fabry-Perot-like cavity). The optical path difference between the frequency components (ie, GDD) can be neglected before entering the cavity. The spectral components can then be reflected back by the cavity 4 and their optical paths can be reversed. All reflected spectral components can be recombined in the spatial diffuser 2 and output 5 just after the spatial diffuser 2.

在通過空間分散器2,並且可選通過波束成形器3後,光學波束的不同頻率分量能夠在不同入射角進入啁啾腔。它們因此能夠在腔中以不同“曲折”軌跡被限制,如圖2所示,這能夠在光線的頻率分量之間產生光學路徑長度差別。但此機制本身不可保證高度可擴展GDD。圖2顯示啁啾腔的示意圖。參照圖2,啁啾腔的非平行鏡配置6的有利特徵能夠導致啁啾曲折軌跡。也就是說,光線在腔內傳播時,曲折路徑能夠變得更緊密擠在一起。換而言之,在兩個鏡子的每次反射的入射角能夠逐漸縮小,直至它達到零(即,法線入射)。由於到空腔中的不同輸入耦合角,單獨的頻率分量能夠傳播不同路徑長度,直至它們在腔中達到其相應的法線入射位置。因此,啁啾軌跡能夠大幅增強路徑長度差別。此外,通過簡單調整腔的鏡子的分隔R 8,GDD能夠在大範圍中可動態調諧。另外,通過更改輸入波束定向,GDD能夠在異常與正常分散區之間靈活交換。這能夠通過例如使用波束成形器或簡單地機械重定向腔來完成。這些有效GDD調諧特徵在所有類型的光纖中均不存在(或至少幾乎不存在)。 After passing through the spatial diffuser 2, and optionally through the beamformer 3, different frequency components of the optical beam can enter the cavity at different angles of incidence. They can thus be constrained in the cavity with different "tortuous" trajectories, as shown in Figure 2, which can create optical path length differences between the frequency components of the light. However, this mechanism itself does not guarantee a highly scalable GDD. Figure 2 shows a schematic view of the sacral cavity. Referring to Figure 2, the advantageous features of the non-parallel mirror configuration 6 of the bore cavity can result in a meandering trajectory. That is to say, when the light propagates in the cavity, the tortuous path can become more compactly squeezed together. In other words, the angle of incidence of each reflection in the two mirrors can be gradually reduced until it reaches zero (ie, normal incidence). Due to the different input coupling angles into the cavity, individual frequency components can propagate different path lengths until they reach their respective normal incidence positions in the cavity. Therefore, the 啁啾 trajectory can greatly enhance the path length difference. In addition, GDD can be dynamically tuned over a wide range by simply adjusting the separation of the mirrors of the cavity R 8 . In addition, by changing the input beam orientation, GDD can flexibly exchange between anomalies and normal dispersion areas. This can be done, for example, by using a beamformer or simply mechanically redirecting the cavity. These effective GDD tuning features are not present (or at least barely present) in all types of fibers.

圖3顯示有色拉伸/壓縮光學脈衝的示意圖。本發明的實施例的另一獨特特徵是曲折軌跡能夠是可反轉的,使得光學波束不但能夠恢復其原始輸入波束輪廓,而且其GDD能夠通過雙通曲折軌跡而加倍,如圖2和3中所 示。恢復輸入波束輪廓(即,保持高光學波束品質)在其與許多應用的相容性方面具有極大的重要性。例如,高光學波束品質應得以保持:在裝置用作超快波長掃頻源時;在波束要耦合到光學波導(如光纖)中以便確保高耦合效率時;以及在波束需要有效中繼到系統中的其它光學元件時。 Figure 3 shows a schematic of a colored stretch/compress optical pulse. Another unique feature of embodiments of the present invention is that the tortuous trajectory can be reversible such that the optical beam can not only recover its original input beam profile, but its GDD can be doubled by a two-pass meandering trajectory, as in Figures 2 and 3. Shown. Restoring the input beam profile (i.e., maintaining high optical beam quality) is of great importance in its compatibility with many applications. For example, high optical beam quality should be maintained: when the device is used as an ultrafast wavelength sweep source; when the beam is to be coupled into an optical waveguide (such as an optical fiber) to ensure high coupling efficiency; and the beam needs to be effectively relayed to the system When other optical components are in use.

再參照圖3,衍射光柵12能夠用作空間分散器。光柵的刻槽密度能夠根據目標譜解析度和操作波長區域進行選擇。空間分散波束能夠由波束成形器3中繼,波束成形器能夠是4F相關器配置中的2透鏡13望遠鏡系統,使得發散波束在耦合到啁啾腔4前能夠被彙聚。兩個透鏡的焦距長度能夠相同或不同。兩個透鏡的合併能夠有效地修改子波束陣列的彙聚角,並且因此修改腔中頻率分量的啁啾曲折軌跡。參照圖9,在某些實施例中,在衍射光柵前能夠一起使用迴圈器和光纖准直器。 Referring again to Figure 3, the diffraction grating 12 can be used as a spatial disperser. The groove density of the grating can be selected according to the target spectral resolution and the operating wavelength region. The spatially dispersed beam can be relayed by a beamformer 3, which can be a 2-lens 13 telescope system in a 4F correlator configuration such that the diverging beams can be concentrated before being coupled to the cavity 4. The focal lengths of the two lenses can be the same or different. The combination of the two lenses can effectively modify the convergence angle of the sub-beam array and thus modify the meandering trajectory of the frequency components in the cavity. Referring to Figure 9, in some embodiments, a looper and fiber collimator can be used together prior to the diffraction grating.

如圖2和3所示,彙聚子波束陣列(空間分散波束)能夠在腔輸入(標記為支點7)的後面的鏡子混合。隨後,每個頻率分量能夠在腔中以其獨特的啁啾曲折路徑被限制,在前後鏡之間來回反彈。一旦在兩個鏡子任意之一上的入射角達到零(即,法線入射),則波束隨後被往回反射,沿相同光學路徑反轉傳播方向。最終在時間上拉伸或壓縮的波束恢復其原來的輸入波束輪廓。此輸出波束能夠由光學迴圈器或光學分路器(兩者均能夠是自由空間或基於光纖的元件)提取。 As shown in Figures 2 and 3, the concentrating sub-beam array (spatial scattered beam) can be mixed at the mirror behind the cavity input (labeled fulcrum 7). Each frequency component can then be constrained in the cavity with its unique meandering path, bounce back and forth between the front and rear mirrors. Once the angle of incidence on either of the two mirrors reaches zero (ie, normal incidence), the beam is then reflected back, reversing the direction of propagation along the same optical path. The beam that is eventually stretched or compressed in time recovers its original input beam profile. This output beam can be extracted by an optical looper or an optical splitter (both of which can be free-space or fiber-based components).

為實現此目的,必須滿足兩個條件。首先,前面的鏡子相對於後面的鏡子以某個角度A/m 10傾斜,其中,m是整數。此傾角完全匹配由衍射光柵的參數確定的空間分散子波束陣列的最小可分辨角A 9的倍除數(multiple division)。基於直接幾何射線追蹤,能夠理解的是,在從前面或後面的鏡子的每次反射後,每個頻率分量相對於下一鏡子的入射角將縮小A/m。此縮小是線性的,並且與在兩個鏡子之間的傾角A/m及反彈的次數成正比。其次,最內側的頻率分量(例如,如圖2和3中示出的紅色波束)的輸入入射角必須是鏡子傾角的整數倍,即,nA/m 11,其中,n是另一整數。 To achieve this, two conditions must be met. First, the front mirror is tilted at an angle A/m 10 relative to the rear mirror, where m is an integer. This tilt angle exactly matches the multiple division of the minimum resolvable angle A 9 of the spatially dispersed sub-beam array determined by the parameters of the diffraction grating. Based on direct geometric ray tracing, it can be understood that after each reflection from the front or back mirror, the angle of incidence of each frequency component relative to the next mirror will be reduced by A/m. This reduction is linear and proportional to the angle of inclination A/m between the two mirrors and the number of bounces. Second, the input incident angle of the innermost frequency component (eg, the red beam as shown in Figures 2 and 3) must be an integer multiple of the mirror tilt angle, i.e., nA/m 11, where n is another integer.

通常,光學脈衝的GDD量由與鏡對有關係的四個量確定:鏡對的空間分隔-R 8;鏡對的傾角-A/m 10;頻率梳的入射角-nA/m 11;及頻率梳的入射定向(對於正常或異常分散)。 In general, the amount of GDD of an optical pulse is determined by four quantities associated with the mirror pair: the spatial separation of the mirror pairs - R 8 ; the inclination of the mirror pair - A / m 10; the angle of incidence of the frequency comb - nA / m 11; The incident orientation of the frequency comb (for normal or abnormal dispersion).

更具體地說,GDD能夠表述為光學頻率ω的函數: More specifically, GDD can be expressed as a function of the optical frequency ω:

其中,R 8是鏡對分隔,k是用於單獨波束的每次反彈的順序,N(ω)是沿用於單獨波束(與不同頻率ω關聯)的啁啾曲折路徑的反彈的總數。它通過相對於啁啾腔的入射輸入角和輸入收斂子波束陣列的總角擴展來提供。同樣地,A是在進入啁啾腔前在空間分散波束的兩個最小可分 辨頻率分量之間的有角分隔,並且由光柵刻槽期間Λ和4F系統的焦距長度f1和f2確定,以及表述為 Where R 8 is the mirror-pair separation, k is the order of each bounce for the individual beams, and N(ω) is the total number of bounces along the meandering path for the individual beams (associated with different frequencies ω). It is provided by the incident input angle relative to the bore and the total angular spread of the input convergence sub-beam array. Similarly, A is the angular separation between the two smallest resolvable frequency components of the spatially dispersed beam before entering the cavity, and is determined by the focal lengths f 1 and f 2 of the刻 and 4F systems during grating grooving, And stated as

其中,ω是光線的中心角頻率,並且c是光速。 Where ω is the central angular frequency of the ray and c is the speed of light.

有多個參數(例如,光柵刻槽密度、射線梳入射角、透鏡焦距)能夠經調諧以調整本發明的裝置中的GDD量。僅出於示範目的,演示了隨腔鏡R的分隔變化而提供的高度可擴展GDD可調諧性。圖7(a)和7(b)顯示隨鏡對分隔而變化的GDD的圖形。參照圖7(a),GDD與鏡子空間分隔R直接成正比。圖7(b)是小GDD區域中圖7(a)的圖形的放大版本,其中,GDD量類似於有關技術自由空間脈衝拉伸/壓縮裝置的可調諧性(例如,光柵對或棱鏡對脈衝拉伸器/壓縮器),而大GDD區域是通過有關技術脈衝拉伸/壓縮裝置不可實現的。為實現大GDD,啁啾腔的尺寸例如能夠設置成R=5釐米分隔,鏡子長度為17釐米,但實施例不限於此;而對於小GDD,腔的大小能夠縮小成例如R=1毫米,並且鏡子長度為4毫米,但實施例不限於此。同能夠與本發明的裝置提供同樣大的GDD量的典型光纖長度(通常使用光纖繞線盤,大約為10-100千米)相比,本發明的裝置遠遠緊湊得多,並且其形成的大小甚至能夠裝入鞋盒內。 Multiple parameters (e.g., grating groove density, ray comb incidence angle, lens focal length) can be tuned to adjust the amount of GDD in the device of the present invention. For illustrative purposes only, the highly scalable GDD tunability provided with variations in the separation of the mirror mirror R is demonstrated. Figures 7(a) and 7(b) show graphs of GDD as a function of mirror pair separation. Referring to Figure 7(a), the GDD is directly proportional to the mirror space separation R. Figure 7(b) is an enlarged version of the pattern of Figure 7(a) in a small GDD region, where the amount of GDD is similar to the tunability of a technique free space pulse stretching/compression device (e.g., grating pair or prism pair pulse) The stretcher/compressor), while the large GDD area is not achievable by the related art pulse stretching/compression device. In order to achieve a large GDD, the size of the cavity can be set, for example, to R=5 cm, and the mirror length is 17 cm, but the embodiment is not limited thereto; and for small GDD, the size of the cavity can be reduced to, for example, R=1 mm, And the mirror length is 4 mm, but the embodiment is not limited thereto. The apparatus of the present invention is much more compact and more compact than typical fiber lengths that can provide the same large amount of GDD as the apparatus of the present invention (typically using fiber-optic reels, about 10-100 kilometers). The size can even fit into the shoe box.

在許多實施例中,脈衝拉伸能夠是輸入角相關時延差 別的結果。因此,到腔的輸入光的子波束不一定具有波長相關輸入角。換而言之,甚至在使用窄帶長脈衝(例如,皮秒)的情況下,許多脈衝拉伸是可能的,而不必借助於大多數要求專門控制以便實現穩定的擊發到擊發操作的皮秒或SC源。 In many embodiments, pulse stretching can be the result of input angle dependent delay differences. Therefore, the sub-beams of the input light to the cavity do not necessarily have a wavelength dependent input angle. In other words, even with narrow-band long pulses (eg, picoseconds), many pulse stretches are possible without having to resort to most picoseconds that require specialized control to achieve a stable firing to the firing operation or SC source.

本發明的實施例中使用的空間分散器能夠具有兩種主要類型:類型I指譜編碼分量(例如,棱鏡或衍射光柵),並且類型II指角編碼分量(例如,透鏡或Fresnel 帶板)。通過兩種不同的工作原理,這兩種類型的分散器分散光學波束,或者促使光學波束發散。 Spatial diffusers used in embodiments of the present invention can have two main types: Type I refers to spectrally encoded components (e.g., prisms or diffraction gratings), and Type II refers to angularly encoded components (e.g., lenses or Fresnel strips). These two types of dispersers disperse the optical beam or cause the optical beam to diverge by two different operating principles.

類型I空間分散器基本上執行譜編碼,其中,光源的波長分量映射到不同角傳播方向(即,將波束變換成譜編碼的“子波束”的陣列)。如本文中討論的一樣,由空間啁啾腔造成的不同譜分量之間的GDD或通常而言的路徑長度差別高度取決於子波束角。因此,空間啁啾腔基本上提供波長到時間映射(即,光學時間拉伸)。在本發明的許多實施例中,除相對於彼此,相鄰子波束能夠具有差分時延外,子波束的總體空間佈置在時間拉伸操作後仍得以保持。隨後,通過適當的中繼光學器件,能夠跨被測樣品掃描子波束。就使用類型I空間分散器而言,由於它涉及譜編碼步驟,因此,需要寬頻源。 A Type I spatial disperser basically performs spectral encoding in which the wavelength components of the source are mapped to different angular propagation directions (ie, the beam is transformed into an array of spectrally encoded "sub-beams"). As discussed herein, the GDD or generally the path length difference between different spectral components caused by the spatial chirp is highly dependent on the sub-beam angle. Thus, the spatial cavity provides substantially wavelength to time mapping (ie, optical time stretching). In many embodiments of the invention, the overall spatial arrangement of the sub-beams is maintained after the time stretching operation, except that adjacent sub-beams can have differential delays relative to each other. Sub-beams can then be scanned across the sample being measured by appropriate relay optics. As far as the Type I spatial disperser is concerned, since it involves a spectral coding step, a wide frequency source is required.

也能夠考慮類型II空間分散器以生成子波束陣列。然而,在具有不同傳播角的子波束之間,由於用於類型II的空間分散與波長無關,因此,每個子波束仍保持相同的 完整頻譜。空間啁啾腔造成的每個子波束的時延量完全取決於子波束傳播角,而與波長無關。隨後,在時間上連續分隔反射的子波束;除時延不與波長相關,而是角相關外,這類似於光學時間拉伸過程。這些反射的子波束能夠用作掃描波束,通過使用在空間啁啾腔後的中繼光學器件跨被測樣品對其進行掃描。就使用類型II空間分散器而言,光源不限於寬頻,窄帶脈衝源也可以是光源。這放寬了對易損和/或體積大的超短(越寬頻)鐳射源的嚴格要求,並且即使使用帶有電子光學器件元件的低成本強度調製連續波(CW)鐳射源,也表現良好。 A Type II spatial diffuser can also be considered to generate a sub-beam array. However, between sub-beams with different propagation angles, since the spatial dispersion for Type II is wavelength-independent, each sub-beam still maintains the same complete spectrum. The amount of delay for each sub-beam caused by the spatial cavity is completely dependent on the sub-beam propagation angle, regardless of the wavelength. Subsequently, the reflected sub-beams are successively separated in time; this is similar to the optical time stretching process except that the delay is not wavelength dependent, but angularly related. These reflected sub-beams can be used as scanning beams to scan across the sample being tested using relay optics behind the cavity. In the case of a Type II spatial disperser, the light source is not limited to a wide frequency, and the narrowband pulse source may also be a light source. This relaxes the stringent requirements for fragile and/or bulky ultra-short (wideband) laser sources and performs well even with low cost intensity modulated continuous wave (CW) laser sources with electronic optics components.

圖6顯示基於使用的類型II空間分散器,根據本發明的一實施例的裝置的示意圖。參照圖6,類似於圖3中顯示的設置,在中繼鏡15的反射後,能夠使用柱面透鏡14在空間上散佈准直波束,同時在其它橫向尺寸中,波束仍能夠是准直的。空間發散的波束能夠被視為是子波束的陣列,每個子波束在不同角傳播。類似於圖3,生成的子波束陣列在耦合到空間啁啾腔4前,可選地由波束成形器3(例如,基於複合透鏡系統的波束擴展器或壓縮器)再成形。子波束陣列的單獨子波束能夠以不同入射角在支點7進入空間啁啾腔。時延機制隨後能夠通過圖2來解釋。在雙通(進入並退出)啁啾腔4後,帶有不同入射角的子波束能夠經受不同時延,如在圖3中顯示的類型I空間分散器的情況一樣。 Figure 6 shows a schematic diagram of an apparatus according to an embodiment of the invention based on the type II spatial disperser used. Referring to Figure 6, similar to the arrangement shown in Figure 3, after reflection of the relay mirror 15, the collimating beam can be spatially dispersed using the cylindrical lens 14, while in other lateral dimensions, the beam can still be collimated. . A spatially diverging beam can be considered an array of sub-beams, each sub-beam propagating at a different angle. Similar to FIG. 3, the generated sub-beam array is optionally reshaped by a beamformer 3 (eg, a beam expander or compressor based on a compound lens system) before being coupled to the spatial cavity 4. The individual sub-beams of the sub-beam array can enter the spatial cavity at the fulcrum 7 at different angles of incidence. The delay mechanism can then be explained by Figure 2. After the double pass (enter and exit) of the cavity 4, the sub-beams with different angles of incidence can withstand different delays, as is the case with the Type I spatial diffuser shown in Figure 3.

在使用類型I空間分散器的情況中,子波束的入射角 進行了譜編碼,並且在子波束之間的時間延遲基本上是GDD。相反,就類型II空間分散器而言,操作繞過了譜編碼步驟。因此,由空間啁啾腔造成的每個子波束的時延量能夠完全取決於由空間分散器配置(例如,通過使用簡單的透鏡來更改波束發散)的子波束傳播角(與波長無關)。類型I空間分散器能夠將角編碼成單獨的譜分量,而類型II空間分散器能夠直接定義單獨子波束的角度,每個子波束包括完整的源頻譜。每個單獨子波束保持完整的頻譜內容。因此,將類型II空間分散器用於時延且因此波束掃描的概念(將在下面更詳細描述)能夠實現資訊編碼的更高頻寬容量,並且允許更寬的操作波長範圍。此外,由於它不要求譜編碼步驟,因此能夠產生簡化的無源波束掃描工作原則,即,直接映射時延到空間掃描。這不同於要求映射的兩個步驟(譜編碼及之後的波長時間映射)的典型時間拉伸方案。 In the case of a Type I spatial disperser, the angle of incidence of the sub-beams is spectrally encoded and the time delay between the sub-beams is substantially GDD. In contrast, with the Type II spatial disperser, the operation bypasses the spectral coding step. Thus, the amount of delay for each sub-beam caused by the spatial cavity can depend entirely on the sub-beam propagation angle (independent of wavelength) by the spatial diffuser configuration (eg, by using a simple lens to alter beam divergence). The Type I spatial disperser is capable of encoding the angle into separate spectral components, while the Type II spatial disperser is capable of directly defining the angle of the individual sub-beams, each sub-beam comprising the complete source spectrum. Each individual sub-beam maintains complete spectral content. Thus, the concept of using a Type II spatial disperser for time delay and thus beam scanning (described in more detail below) enables a higher frequency wide capacity of information encoding and allows for a wider range of operating wavelengths. Furthermore, since it does not require a spectral coding step, it is possible to produce a simplified passive beam scanning principle of operation, ie direct mapping delay to spatial scanning. This is different from the typical time stretching scheme that requires two steps of mapping (spectral coding and subsequent wavelength time mapping).

雖然基於二維(2D)幾何光學器件的啁啾腔已描述,但本發明的實施例不限於此。實施例能夠擴展到三維(3D)方案以便改進啁啾腔的緊湊度。例如,能夠使用有高反射率內表面的慢收斂的類錐形腔。圖10顯示由N個反射鏡空間啁啾多邊形腔的2D限制的實施例的示意圖。圖10A顯示方形空間啁啾腔(N=4)的頂視圖,其中,僅一個鏡子(鏡子16)角度傾斜。因此,作為示例,在輸入光線進入鏡子17時,光線能夠沿腔向下,以啁啾螺旋狀軌跡20方式發生,這在顯示腔的側視圖的圖10B中示出。在正常 入射到鏡子之一(例如,鏡子16)上後,光線將沿腔向上以類似的啁啾螺旋狀軌跡21方式發生,並且在鏡子19處退出。此類腔能夠有效地增大誘發的光學路徑。圖10C顯示有光線軌跡22A的八角形腔22(N=8)的頂視圖。此外,高反射器的幾何形狀不一定必須為平面鏡的形狀。通過表面的幾何形狀的仔細工程設計,如蝸牛狀腔,能夠實現在時間上的非線性(例如,二次)啁啾,從而形成設計脈衝拉伸/壓縮的更大自由度。 Although a cavity based on two-dimensional (2D) geometric optics has been described, embodiments of the invention are not limited thereto. Embodiments can be extended to a three-dimensional (3D) scheme to improve the compactness of the cavity. For example, a slow-converging cone-like cavity with a high reflectivity inner surface can be used. Figure 10 shows a schematic diagram of an embodiment of 2D limitation of N mirror spaces 啁啾 polygonal cavity. Figure 10A shows a top view of a square space cavity (N = 4) in which only one mirror (mirror 16) is angled. Thus, by way of example, when input light enters the mirror 17, light can travel down the cavity, in a helical helical trajectory 20, which is shown in Figure 10B, which is a side view of the display cavity. Upon normal incidence onto one of the mirrors (e.g., mirror 16), the light will travel along the cavity upward in a similar helix-like trajectory 21 and exit at mirror 19. Such a cavity is capable of effectively increasing the induced optical path. Figure 10C shows a top view of an octagonal cavity 22 (N=8) with a ray trace 22A. Furthermore, the geometry of the high reflector does not have to be the shape of a mirror. By careful engineering of the geometry of the surface, such as a snail-like cavity, non-linear (eg, quadratic) enthalpy in time can be achieved, resulting in greater freedom in designing pulse stretching/compression.

通過將單獨的時延分量映射到掃描模式中的不同空間座標,空間啁啾腔與空間波束形成器的使用一起,能夠適用於超快全光無源鐳射波束掃描。參照圖11,一旦在從腔的雙通子波束中造成了角相關時延,有角掃頻子波束便通過由中繼光學系統23變換成橫向掃描波束24。此類系統能夠以某種方式配置,使得腔的支點7處在最終波束掃描平面的傅立葉平面上(即,兩個平面應處於空間傅立葉轉換關係)。在此情況下,輸出子波束(即,在雙通軌跡後)能夠由光學迴圈器或光學分路器(兩者均能夠是自由空間或基於光纖的元件)提取,並且輸送到被測樣品。鏡子分隔、鏡子的傾角和子波束的入射角能夠全部是可動態調諧參數。這產生了主動操縱時延及因此操縱波束掃描率的能力。空間啁啾腔造成的此類主動可調諧時延也是高度可擴展的。 By mapping separate delay components to different spatial coordinates in the scan mode, the spatial cavity can be adapted for ultra-fast all-optical passive laser beam scanning along with the use of spatial beamformers. Referring to Figure 11, once the angular correlation delay is caused in the two-pass sub-beam from the cavity, the angularly swept sub-beam is transformed into a transverse scanning beam 24 by the relay optical system 23. Such a system can be configured in such a way that the fulcrum 7 of the cavity is on the Fourier plane of the final beam scanning plane (ie, the two planes should be in a spatial Fourier transformation relationship). In this case, the output sub-beam (ie, after the two-pass trajectory) can be extracted by an optical looper or optical splitter (both can be free-space or fiber-based components) and delivered to the sample under test . The mirror separation, the tilt of the mirror, and the angle of incidence of the sub-beams can all be dynamically tunable parameters. This creates the ability to actively manipulate the delay and thus the beam scan rate. Such active tunable delays caused by spatial chirps are also highly scalable.

圖12顯示在鐳射波束掃描的環境中,根據本發明的實施例的設備的示意圖。圖12A顯示基於使用的類型I空 間分散器25(例如,衍射光柵)的設備,並且圖12B顯示基於使用的類型II空間分散器28(例如,透鏡)的設備。雙通子波束能夠先由分束器26,然後由望遠透鏡系統(例如,在4-f配置中,如圖12所示)路由。這能夠確保通過所需掃描視野,橫向跨樣品對最終掃描波束24進行掃描,掃描視野能夠通過望遠系統的縮小控制。在成像的環境中,作為在成像系統(圖12A和12B)中採用的通常習慣,被掃描點的亮場/暗場資訊能夠由光電檢測器27收集。 Figure 12 shows a schematic diagram of an apparatus in accordance with an embodiment of the present invention in the context of laser beam scanning. Figure 12A shows an apparatus based on the type I spatial disperser 25 (e.g., diffraction grating) used, and Figure 12B shows an apparatus based on the type II spatial disperser 28 (e.g., lens) used. The dual pass sub-beam can be routed first by the beam splitter 26 and then by the telephoto lens system (e.g., in a 4-f configuration, as shown in Figure 12). This ensures that the final scan beam 24 is scanned across the sample laterally through the desired scan field of view, which can be controlled by the zoom-out of the telephoto system. In the imaging environment, as a general practice employed in imaging systems (Figs. 12A and 12B), the bright field/dark field information of the scanned points can be collected by photodetector 27.

本發明的實施例也與螢光成像相容,螢光成像一直以來通常在傳統的時間拉伸或譜編碼成像方面是低效的。這是因為在典型的時間拉伸或譜編碼成像中收集的圖像信號要遵循相同的譜編碼激勵路徑,從而使螢光檢測變得低效。雖然另外的頻率調製和多通道檢測方案已用於螢光譜編碼成像,但本發明的實施例能夠繞過譜編碼步驟(通過使用類型II空間分散器),並且保持與時間拉伸類似的超快優點,由此體現了用於超快螢光圖像檢測的更有效得多的方案。參照圖12C,就螢光成像而言,要求另外的二向色鏡29以將激勵波長與螢光發射波長譜分隔(圖12C顯示使用類型II空間分散器的示例)。 Embodiments of the present invention are also compatible with fluorescence imaging, which has traditionally been inefficient in traditional time stretching or spectrally encoded imaging. This is because image signals collected in typical time stretch or spectrally encoded imaging follow the same spectrally encoded excitation path, making fluorescent detection inefficient. While additional frequency modulation and multi-channel detection schemes have been used for fluorescence spectrally encoded imaging, embodiments of the present invention are able to bypass the spectral encoding step (by using Type II spatial dispersers) and maintain ultra-fast speeds similar to temporal stretching. The advantage thus embodies a much more efficient solution for ultrafast fluorescent image detection. Referring to Figure 12C, for fluorescence imaging, an additional dichroic mirror 29 is required to separate the excitation wavelength from the fluorescence emission wavelength spectrum (Figure 12C shows an example of using a Type II spatial disperser).

空間啁啾腔提供的波束掃描能夠處在一維(1D)中,但視應用而定,完整的2D成像能夠通過兩種不同策略來實施:(i)2D光柵掃描方案,其中,快速軸掃描通過腔進行,而慢速軸(正交軸)掃描由任何類型的高速波束掃描 器完成,如諧振鏡(例如,大約10kHz)或聲光學偏轉器(AOD)(例如,大約100kHz);(ii)用於流式/即時自動(on-the-fly)成像的一維行掃描,其中,樣品或光源的高速單向運動自動提供一維圖像掃描。這與諸如成像流式細胞術等應用特別相關,這對於臨床診斷和基礎生命科學研究中的高通量檢測、超大規模集成(VLSI)半導體電路晶片檢視和製造業中的大規模品質控制和檢視,包括織物/紙張的篩選是有優勢的。 The beam scanning provided by the spatial cavity can be in one dimension (1D), but depending on the application, the complete 2D imaging can be implemented by two different strategies: (i) 2D raster scanning scheme, where fast axis scanning Performing through the cavity, while slow axis (orthogonal axis) scanning is done by any type of high speed beam scanner, such as a resonant mirror (eg, approximately 10 kHz) or an acousto-optic deflector (AOD) (eg, approximately 100 kHz); A one-dimensional line scan for on-the-fly imaging in which high-speed one-way motion of a sample or source automatically provides one-dimensional image scanning. This is particularly relevant for applications such as imaging flow cytometry for high-throughput detection, ultra-large-scale integration (VLSI) semiconductor circuit wafer inspection and large-scale quality control and inspection in manufacturing for clinical diagnostics and basic life science research. Screening including fabric/paper is advantageous.

在一實施例中,用於拉伸和/或壓縮光學脈衝的設備能夠包括:佈置成將准直光學脈衝束分割成有等(或近似相等)間隔角的子波束的子波束陣列的空間分散器、配置成控制子波束陣列的擴展角的波束成形器及按順序反射子波束陣列內的單獨子波束的腔。空間分散器例如能夠是空間衍射元件。 In an embodiment, an apparatus for stretching and/or compressing optical pulses can include: spatially dispersing a sub-beam array arranged to split a collimated optical pulse beam into sub-beams having equal (or approximately equal) spacing angles a beamformer configured to control the spread angle of the sub-beam array and a cavity that sequentially reflects individual sub-beams within the sub-beam array. The spatial disperser can for example be a spatial diffractive element.

波束成形器能夠包括4F相關器,但實施例不限於此。此類4F相關器能夠包括有各種焦距的兩個或更多個凸透鏡,以控制在子波束陣列內的子波束之間的單獨有角間距。 The beamformer can include a 4F correlator, but embodiments are not limited thereto. Such 4F correlators can include two or more convex lenses with various focal lengths to control the individual angular separation between sub-beams within the sub-beam array.

腔能夠是如本文中所述的空間啁啾腔。腔能夠包括兩個非平行內表面(例如,鏡子)。在一特定實施例中,腔能夠只包括一個入口開口(例如,入口點)。腔的兩個內表面每個能夠具有高反射塗層。視光學路徑長度差/時間分隔的線性的要求而定,腔的兩個內表面的幾何形狀能夠是扁平或彎曲的。腔的兩個內表面的幾何形狀能夠是三維 的。兩個內表面之間的間距能夠填充有空氣。腔和裝置的操作的範圍能夠是任何波長。兩個內表面能夠佈置成具有匹配在子波束陣列的子波束之間角間距的傾角(A/m)。收斂子波束陣列能夠經入口埠進入腔。在某些實施例中,子波束陣列的單獨子波束能夠經受來自內表面的多個反射,並且有傾角(A/m)的整數倍N(ω)的子波束陣列的單獨子波束能夠從腔的內表面反射N(ω)次,其中,在每次反射後單獨子波束的入射角能夠縮小A/m,並且最終變得垂直於最後反射的內表面,其中,有傾角的不同倍數的單獨子波束能夠經受不同次數的反射,其中,有傾角的不同倍數的單獨子波束能夠以不同光學路徑長度傳播,並且其中,有傾角的不同倍數的單獨子波束能夠反轉光學路徑,並且在空間分散器重新合併。 The cavity can be a spatial cavity as described herein. The cavity can include two non-parallel inner surfaces (eg, a mirror). In a particular embodiment, the cavity can include only one inlet opening (eg, an entry point). The two inner surfaces of the cavity can each have a highly reflective coating. Depending on the optical path length difference/linearity of the time separation, the geometry of the two inner surfaces of the cavity can be flat or curved. The geometry of the two inner surfaces of the cavity can be three dimensional. The spacing between the two inner surfaces can be filled with air. The range of operation of the chamber and device can be any wavelength. The two inner surfaces can be arranged to have an inclination (A/m) that matches the angular spacing between the sub-beams of the sub-beam array. The convergence sub-beam array can enter the cavity through the entrance port. In some embodiments, individual sub-beams of the sub-beam array are capable of withstanding multiple reflections from the inner surface, and individual sub-beams of sub-beam arrays having integer multiples of inclination (A/m) N(ω) are capable of The inner surface reflects N(ω) times, wherein the angle of incidence of the individual sub-beams after each reflection can be reduced by A/m and eventually becomes perpendicular to the inner surface of the last reflection, wherein there are separate multiples of the dip The sub-beams are capable of withstanding different numbers of reflections, wherein individual sub-beams of different multiples of dip can be propagated with different optical path lengths, and wherein individual sub-beams with different multiples of dip can reverse the optical path and be spatially dispersed Re-merge.

在腔的兩個內表面每個具有高反射塗層的情況下,高反射塗層的選擇能夠根據光源的中心波長和頻寬。 Where the two inner surfaces of the cavity each have a highly reflective coating, the choice of highly reflective coating can be based on the center wavelength and bandwidth of the source.

空間分散器能夠是光學衍射光柵,但實施例不限於此。光學脈衝的譜分量能夠在空間上擴展到近似等間距有角子波束陣列。 The spatial disperser can be an optical diffraction grating, but the embodiment is not limited thereto. The spectral components of the optical pulse can be spatially extended to an approximately equally spaced angular sub-beam array.

光學脈衝的譜分量能夠在腔誘發的不同光學路徑長度中傳播。光學脈衝的譜分量能夠由於不同光學路徑長度而在時間上擴展,等效於光學脈衝的譜分量經受一定量的色散。 The spectral components of the optical pulse can propagate in different optical path lengths induced by the cavity. The spectral components of the optical pulses can be spread over time due to different optical path lengths, equivalent to a certain amount of dispersion of the spectral components of the optical pulses.

空間分散器能夠是柱面凸透鏡,但實施例不限於此。在某些實施例中,空間頻率分量能夠在准直脈衝波束通過 柱面凸透鏡後生成,其中,空間頻率分量最初在柱面凸透鏡的焦點前收斂,並且在焦點後散佈,並且其中,空間頻率分量擴展到等間距的有角子波束陣列中。 The spatial disperser can be a cylindrical convex lens, but the embodiment is not limited thereto. In some embodiments, the spatial frequency component can be generated after the collimated pulse beam passes through the cylindrical convex lens, wherein the spatial frequency component initially converges before the focus of the cylindrical convex lens and is spread after the focus, and wherein the spatial frequency component Expanded into equally spaced angular beamlet arrays.

光學脈衝的空間頻率分量能夠在腔誘發的不同光學路徑長度中傳播。光學脈衝的空間頻率分量能夠由於不同光學路徑長度而在時間上擴展,等效於將單個脈衝分割成子脈衝的佇列。 The spatial frequency components of the optical pulses are capable of propagating in different optical path lengths induced by the cavity. The spatial frequency components of the optical pulses can be expanded in time due to different optical path lengths, equivalent to dividing a single pulse into a matrix of sub-pulses.

在許多實施例中,本發明的方法能夠包括利用本文中描述的一個或更多個裝置在時間上拉伸和/或壓縮一個或更多個光學脈衝。 In many embodiments, the methods of the present invention can include stretching and/or compressing one or more optical pulses over time using one or more devices described herein.

在許多實施例中,本發明的方法能夠包括使用適合材料製造本文中描述的一個或更多個裝置。 In many embodiments, the methods of the present invention can include the fabrication of one or more devices described herein using suitable materials.

本發明的裝置和方法能夠在範圍廣泛的應用中使用。它們能夠不但用於對標準光纖電信及對非線性光學成像,而且用於對可見光通信的靈活分散補償,可見光通信是用於室內導航和光學Wi-Fi的新興領域。有關技術包括在可見頻譜中能夠採用的無效分散補償技術。鑒於對資料傳送率增大的持續需求,本發明能夠特別有利。另外,本發明的實施例基於範圍從例如紫外線到紅外線波長的光學時間拉伸技術,在允許超快光譜學和顯微術中提供新的範例轉移。應用包括但不限於高通量蜂窩/組織檢驗、呼叫分析、有毒氣體檢測及通過氣體光譜的空氣污染評估。 The apparatus and method of the present invention can be used in a wide range of applications. They can be used not only for standard fiber optic telecommunications and for nonlinear optical imaging, but also for flexible dispersion compensation for visible light communication, an emerging field for indoor navigation and optical Wi-Fi. The related techniques include ineffective dispersion compensation techniques that can be employed in the visible spectrum. The present invention is particularly advantageous in view of the continuing need for increased data transfer rates. Additionally, embodiments of the present invention provide new paradigm shifts in allowing ultrafast spectroscopy and microscopy based on optical time stretching techniques ranging from, for example, ultraviolet to infrared wavelengths. Applications include, but are not limited to, high throughput cellular/tissue inspection, call analysis, toxic gas detection, and air pollution assessment through gas spectroscopy.

在鐳射掃描應用的環境中,本發明的實施例能夠有益於條碼掃描、生物醫學成像、材料科學研究、雷射光束加 工和燒蝕和製造業中的自動化表面檢視(包括在VLSI工業中的半導體積體電路(IC)晶片製造)。 Embodiments of the present invention can benefit from bar code scanning, biomedical imaging, materials science research, laser beam processing and ablation, and automated surface inspection in manufacturing (including semiconductors in the VLSI industry) in the context of laser scanning applications. Integrated circuit (IC) wafer fabrication).

本發明的裝置和方法能夠利用空間啁啾腔的有序時延特徵進行直接串列空時編碼。此特徵能夠允許在有關技術基於光纖的時間拉伸技術不能實現的任何波長區域實現高通量和超快光學成像。另外,它允許螢光時間拉伸成像,而由於在許多確立的螢光生物成像技術操作所處的短波長(即,紫外線(UV)到可見光和近紅外)中缺乏可靠的時間拉伸技術,這是通過任何有關技術時間拉伸成像模態一直不可能的。此外,譜編碼通常對於螢光檢測是低效的(去掃描且因此通常禁止標準共聚焦檢測)。與其大的拉伸時間和低損耗操作一起,本發明的實施例允許超快的螢光成像。 The apparatus and method of the present invention is capable of direct serial space time coding using the ordered delay characteristics of the spatial chirp. This feature enables high throughput and ultrafast optical imaging in any wavelength region that is not possible with fiber-based time stretching techniques. In addition, it allows for fluorescence time stretch imaging, and due to the lack of reliable time stretching techniques in the short wavelengths (ie, ultraviolet (UV) to visible and near infrared) where many established fluorescent bioimaging techniques operate, This has been impossible with any relevant technical time stretching imaging modalities. Furthermore, spectral coding is generally inefficient for fluorescent detection (de-scanning and therefore generally prohibits standard confocal detection). Embodiments of the present invention allow for ultra-fast fluorescence imaging along with its large stretching time and low loss operation.

此外,如果使用類型II空間分散器,則實施例能夠通過放鬆對寬頻脈衝源的要求而簡化時間拉伸成像(即,能夠繞過譜編碼)。這產生更高效率頻寬編碼,並且因此允許要同時使用多個波長區域脈衝源實施彩色成像(例如,在UV、可見光和近工外的波長)。實施例也允許中紅外(中IR)應用,具體而言,由於在中IR中無有關技術高速圖像陣列可用,因此加快了成像和光譜學的速度(例如,用於遠端感應)。 Moreover, if a Type II spatial diffuser is used, embodiments can simplify time stretch imaging (i.e., can bypass spectral coding) by relaxing the requirements for broadband pulse sources. This results in a more efficient bandwidth coding, and thus allows color imaging (eg, wavelengths in the UV, visible, and near-out-of-work) to be performed simultaneously using multiple wavelength region pulse sources. Embodiments also allow for mid-infrared (intermediate IR) applications, in particular, because no high-speed image arrays are available in the medium IR, speeding up imaging and spectroscopy (eg, for far-end sensing) is accelerated.

人們開發了有關技術,使用光學衍射元件(例如,衍射光柵對)或空間分散元件(例如,棱鏡對)實現群延遲分散(GDD),以求繞過使用光纖來執行時間脈衝拉伸和壓 縮。此類技術遭受到大的插入損耗、有限量的分散或兩者,這解釋了它們為何只用於在狹窄範圍(只在毫微微秒與皮秒之間)要求精細GDD調整的應用。此類技術的示例包括用於生物成像應用的非線性光學顯微術的脈衝整形和在光纖傳送前的脈衝“預啁啾”,以便防止在光纖通信中影響信號保真度的不需要的非線性效應。本發明的實施例克服了這些難題,提供了用於實現分散的高度可擴展和靈活調諧性(或GDD)的新穎概念,能夠在前所未有的寬波長頻譜(例如,從紫外線跨到紅外線)中工作。本發明能夠提供的分散能夠優於當前技術。 Techniques have been developed to achieve group delay dispersion (GDD) using optical diffraction elements (e.g., diffraction grating pairs) or spatially dispersed elements (e.g., prism pairs) to bypass the use of optical fibers to perform time pulse stretching and compression. Such techniques suffer from large insertion loss, limited amount of dispersion, or both, which explains why they are only used for applications requiring fine GDD adjustment in a narrow range (between femtoseconds and picoseconds only). Examples of such techniques include pulse shaping for nonlinear optical microscopy for bioimaging applications and pulse "pre-twist" prior to fiber delivery to prevent unwanted non-influence of signal fidelity in fiber optic communication. Linear effect. Embodiments of the present invention overcome these challenges by providing a novel concept for achieving highly scalable and flexible tuning (or GDD) of dispersion that can operate in an unprecedented wide wavelength spectrum (e.g., from ultraviolet to infrared) . The dispersion that the present invention can provide can be superior to the current technology.

人們開發了基於兩步驟方案,執行高速無源波束掃描的技術:(1)脈衝拉伸(分散傅立葉轉換或簡稱為光學時間拉伸),即,基於色散-由於介質的折射率的不同,寬頻光的不同波長(頻率)分量以不同速度傳播的現象,將譜資訊在時間上拉伸到串列時間信號中;以及(2)譜編碼,即,通過使用一維或二維空間分散器,在空間上有序地在不同空間座標分散寬頻光源的譜的不同波長(頻率)。使用此技術的無源波束掃描比上面背景部分中討論的譜編碼波束掃描快得多,這是因為它完全由一般在大約MHz或甚至GHz的脈衝雷射器的重複率控制。 Techniques for performing high-speed passive beam scanning based on a two-step scheme have been developed: (1) pulse stretching (dispersion Fourier transform or simply optical time stretching), ie, based on dispersion - due to the difference in refractive index of the medium, broadband The phenomenon that different wavelength (frequency) components of light propagate at different speeds, stretching the spectral information over time into the serial time signal; and (2) spectral coding, ie by using a one- or two-dimensional spatial diffuser, The different wavelengths (frequencies) of the spectrum of the broadband source are scattered spatially in different spatial coordinates. Passive beam scanning using this technique is much faster than spectrally coded beam scanning as discussed in the background section above, since it is entirely controlled by the repetition rate of a pulsed laser typically at about MHz or even GHz.

本發明的實施例以只由鐳射源的重複率控制,高達MHz或甚至GHz的掃描速率提供高速鐳射波束掃描。這比任何有關技術的有源或無源波束掃描技術更快了幾個數量級。本發明的波束掃描性能不受機械不穩定性和疲勞影 響,從而允許長期的穩固操作。 Embodiments of the present invention provide high speed laser beam scanning with a scan rate of up to MHz or even GHz controlled only by the repetition rate of the laser source. This is orders of magnitude faster than any related active or passive beam scanning technology. The beam scanning performance of the present invention is not affected by mechanical instability and fatigue, allowing for long-term stable operation.

在本發明的許多實施例中,波束偏轉角範圍只由中繼光學元件確定,而不是啁啾腔本身確定。因此,它能夠靈活地調諧,並且實現寬的偏轉角,克服在有關技術掃描技術(例如,檢流計鏡、AOD和EOD)中掃描速率與偏轉角之間的折中。另外,通過工程設計空間啁啾腔的幾何形狀,能夠在從10到100的寬範圍中調整可分辨掃描點。這與掃描速率(能夠由鐳射源的重複率控制)無關,從而克服了在有關技術的掃描技術(例如,AOD和EOD)中掃描速率與可分辨掃描點之間的折中。 In many embodiments of the invention, the range of beam deflection angles is determined only by the relay optics, rather than by the cavity itself. Thus, it is capable of flexible tuning and achieves a wide deflection angle that overcomes the trade-off between scan rate and deflection angle in related art scanning techniques (eg, galvanometer mirrors, AOD and EOD). In addition, the resolvable scan points can be adjusted over a wide range from 10 to 100 by engineering the geometry of the cavity. This is independent of the scan rate (which can be controlled by the repetition rate of the laser source), thereby overcoming the trade-off between scan rate and resolvable scan points in related art scanning techniques (eg, AOD and EOD).

本發明的實施例解決了有關技術的無源掃描技術展示的幾個問題(例如,基於分散傅立葉轉換的時間拉伸成像模態)。本發明不但能夠用於寬頻超短脈衝鐳射源(一般易損、體積大且成本高),而且它與強度調製CW鐳射源相容(就類型II空間分散器而言),從而為此超快波束掃描技術大幅擴展了光源的選擇。這又暗示多個光源能夠進行波長複用以執行彩色成像,而這是有關技術時間拉伸或譜編碼成像模態中不存在的。此外,與通過光纖實現的光學時間拉伸中的大GDD操作相比,本發明能夠產生極大的GDD,而由於操作能夠完全在自由空間中執行,因而不會由於材料散射和吸收而遭受光學損耗。因此,它不限於通常在光纖中存在的任何特定的工作波長視窗,允許從UV到IR範圍的所有光學無源波束掃描。因此,它是多功能技術,能夠適用於光學生物成像、條碼掃描、遠端 感應、生物醫學成像、材料科學研究、雷射光束加工和燒蝕及製造業中的自動化表面檢視(包括在VLSI業中的半導體IC晶片製造)。另外,至少部分由於腔的自由空間設計,本發明允許在單獨子波束之間的時延分隔的動態調諧。時延分隔能夠變得足夠大,使得它類似於或長於在生物和生物化學研究中廣泛採用的典型螢光分子/探頭的螢光壽命,由此使設備配置成以前所未有的成像速率執行鐳射掃描螢光成像。由於時間拉伸成像長期以來一直被認為與螢光成像不相容,因此,這是個重要的特徵。 Embodiments of the present invention address several of the problems exhibited by the related art passive scanning techniques (e.g., time stretch imaging modalities based on Decentralized Fourier Transform). The invention can be used not only for a broadband ultrashort pulse laser source (generally vulnerable, bulky and costly), but also compatible with an intensity modulated CW laser source (in the case of a Type II space disperser), thereby making it ultrafast Beam scanning technology has greatly expanded the choice of light source. This in turn suggests that multiple light sources can be wavelength multiplexed to perform color imaging, which is not present in technical time stretch or spectrally encoded imaging modalities. Furthermore, the present invention is capable of producing extremely large GDDs compared to large GDD operations in optical time stretching by optical fibers, and since the operation can be performed entirely in free space, it does not suffer from optical loss due to material scattering and absorption. . Therefore, it is not limited to any particular operating wavelength window typically present in the fiber, allowing for all optical passive beam scanning from the UV to the IR range. Therefore, it is a versatile technology that can be applied to optical bioimaging, bar code scanning, remote sensing, biomedical imaging, materials science, laser beam processing and ablation, and automated surface inspection in manufacturing (including in the VLSI industry). Manufacturing of semiconductor IC chips). Additionally, the present invention allows for dynamic tuning of delay separation between individual sub-beams, at least in part due to the free space design of the cavity. The time delay separation can be made large enough to resemble or be longer than the fluorescent lifetime of a typical fluorescent molecule/probe widely used in biological and biochemical research, thereby enabling the device to be configured to perform laser scanning at an unprecedented imaging rate. Fluorescence imaging. Since time stretch imaging has long been considered incompatible with fluorescence imaging, this is an important feature.

本文中引用或敘述的所有專利、專利申請、臨時專利及出版物(包括在“參考文獻”部分中的那些文獻)都通過引用結合於本文中,就好像其全文在此陳述了一樣,包括所有圖形和表格,其限度為它們不與本說明書的明確教導相矛盾。 All patents, patent applications, provisional patents, and publications (including those in the "References" section) cited or recited herein are hereby incorporated by reference in its entirety as if The figures and tables are so limited that they do not contradict the explicit teachings of this specification.

示範實施例  Exemplary embodiment  

本發明包括但不限於以下實施例。 The invention includes, but is not limited to, the following examples.

實施例1. 一種用於拉伸/壓縮光學脈衝的設備,包括:空間分散器,佈置成將准直光學脈衝波束分割成有等間隔角的子波束的子波束陣列;波束成形器,配置成控制子波束陣列的擴展角;以及腔,配置成按順序反射子波束陣列內的單獨子波束。 Embodiment 1. An apparatus for stretching/compressing optical pulses, comprising: a spatial disperser arranged to split a collimated optical pulse beam into sub-beam arrays of sub-beams having equal spacing angles; a beamformer configured to Controlling an extended angle of the sub-beam array; and a cavity configured to sequentially reflect individual sub-beams within the sub-beam array.

實施例2. 如實施例1所述的設備,其中空間分散 器是空間衍射元件。 Embodiment 2. The apparatus of embodiment 1, wherein the spatial disperser is a spatial diffractive element.

實施例3. 如實施例1-2任一項所述的設備,其中波束成形器包括4F相關器。 The apparatus of any of embodiments 1-2, wherein the beamformer comprises a 4F correlator.

實施例4. 如實施例3所述的設備,其中4F相關器包括有各種焦距的兩個或更多個凸透鏡,以控制在子波束陣列內的子波束之間的單獨有角間距。 Embodiment 4. The apparatus of embodiment 3, wherein the 4F correlator comprises two or more convex lenses having various focal lengths to control a separate angular separation between the sub-beams within the sub-beam array.

實施例5. 如實施例1-4任一項所述的設備,其中腔是空間啁啾腔。 The device of any of embodiments 1-4, wherein the cavity is a spatial cavity.

實施例6. 如實施例1-5任一項所述的設備,其中腔包括兩個非平行內表面。 The device of any of embodiments 1-5, wherein the cavity comprises two non-parallel inner surfaces.

實施例7. 如實施例1-6任一項所述的設備,其中腔只包括一個入口埠。 The device of any of embodiments 1-6, wherein the chamber comprises only one inlet port.

實施例8. 如實施例6-7任一項所述的設備,其中腔的兩個內表面每個具有高反射塗層。 The device of any of embodiments 6-7, wherein the two inner surfaces of the cavity each have a highly reflective coating.

實施例9. 如實施例6-8任一項所述的設備,其中腔的兩個內表面的幾何形狀取決於光學路徑長度差別/時間分隔的線性要求。 Embodiment 9. The apparatus of any of embodiments 6-8, wherein the geometry of the two inner surfaces of the cavity is dependent on linearity of optical path length/time separation.

實施例10. 如實施例6-9任一項所述的設備,其中腔的兩個內表面的幾何形狀是扁平的。 Embodiment 10. The apparatus of any of embodiments 6-9, wherein the geometry of the two inner surfaces of the cavity is flat.

實施例11. 如實施例6-9任一項所述的設備,其中腔的兩個內表面的幾何形狀是彎曲的。 Embodiment 11. The apparatus of any of embodiments 6-9, wherein the geometry of the two inner surfaces of the cavity is curved.

實施例12. 如實施例6-11任一項所述的設備,其中腔的兩個內表面的幾何形狀是三維的。 Embodiment 12. The apparatus of any of embodiments 6-11, wherein the geometry of the two inner surfaces of the cavity is three-dimensional.

實施例13. 如實施例6-12任一項所述的設備,其 中在兩個內表面之間的間距填充有空氣。 Embodiment 13. The apparatus of any of embodiments 6-12, wherein the spacing between the two inner surfaces is filled with air.

實施例14. 如實施例1-13任一項所述的設備,其中設備的操作範圍是任何波長。 Embodiment 14. The device of any of embodiments 1-13, wherein the operating range of the device is any wavelength.

實施例15. 如實施例1-13任一項所述的設備,其中設備的操作範圍是從紫外線到紅外線波長。 Embodiment 15. The device of any of embodiments 1-13, wherein the device operates from ultraviolet to infrared wavelengths.

實施例16. 如實施例6-15任一項所述的設備,其中兩個內表面佈置成具有匹配在子波束陣列的子波束之間角間距的傾角(A/m)。 Embodiment 16. The apparatus of any of embodiments 6-15, wherein the two inner surfaces are arranged to have an inclination (A/m) that matches an angular separation between sub-beams of the sub-beam array.

實施例17. 如實施例1-16任一項所述的設備,其中收斂子波束陣列經腔的入口埠進入腔。 The device of any of embodiments 1-16, wherein the converging sub-beam array enters the cavity through the entrance of the cavity.

實施例18. 如實施例6-17任一項所述的設備,其中子波束陣列的單獨子波束經受來自內表面的多個反射,其中帶有傾角(A/m)的整數倍N(ω)的子波束陣列的單獨子波束從腔的內表面反射N(ω)次,其中在每次反射後單獨子波束的入射角能夠縮小A/m,並且最終變得垂直於最後反射的內表面,其中帶有傾角的不同倍數的單獨子波束經受不同次數的反射,其中帶有傾角的不同倍數的單獨子波束能夠通過不同光學路徑長度傳播,以及其中帶有傾角的不同倍數的單獨子波束能夠反轉光學路徑,並且在空間分散器重新合併。 Embodiment 18. The apparatus of any of embodiments 6-17, wherein the individual sub-beams of the sub-beam array are subjected to a plurality of reflections from the inner surface with an integer multiple of the tilt angle (A/m) N(ω The individual sub-beams of the sub-beam array are reflected N(ω) times from the inner surface of the cavity, wherein the angle of incidence of the individual sub-beams can be reduced by A/m after each reflection, and eventually becomes perpendicular to the inner surface of the last reflection , in which individual sub-beams with different multiples of inclination are subjected to different numbers of reflections, wherein individual sub-beams with different multiples of inclination can propagate through different optical path lengths, and individual sub-beams with different multiples of inclination can Reverse the optical path and recombine in the spatial diffuser.

實施例19. 如實施例8-18任一項所述的設備,其中根據光源的中心波長和頻寬選擇高反射塗層。 Embodiment 19. The apparatus of any of embodiments 8-18, wherein the highly reflective coating is selected based on a center wavelength and a bandwidth of the light source.

實施例20. 如實施例1-19任一項所述的設備,其中空間分散器是空間衍射光柵。 The apparatus of any of embodiments 1-19, wherein the spatial diffuser is a spatial diffraction grating.

實施例21. 如實施例20所述的設備,其中光學脈衝的譜分量在空間上擴展到近似等間距有角子波束陣列。 Embodiment 21. The apparatus of embodiment 20 wherein the spectral components of the optical pulses spatially extend to an approximately equally spaced angular sub-beam array.

實施例22. 如實施例18-21任一項所述的設備,其中光學脈衝的譜分量在由腔誘發的不同光學路徑長度中傳播。 Embodiment 22. The apparatus of any of embodiments 18-21, wherein the spectral components of the optical pulses propagate in different optical path lengths induced by the cavity.

實施例23. 如實施例18-21所述的設備,其中光學脈衝的譜分量由於不同光學路徑長度而在時間上擴展,等效於光學脈衝的譜分量經受一定量的色散。 Embodiment 23. The apparatus of Embodiments 18-21 wherein the spectral components of the optical pulses are time-expanded due to different optical path lengths, and the spectral components equivalent to the optical pulses are subject to a certain amount of dispersion.

實施例24. 如實施例1-23任一項所述的設備,其中空間分散器是柱面凸透鏡。 The apparatus of any of embodiments 1-23, wherein the spatial disperser is a cylindrical convex lens.

實施例25. 如實施例24所述的設備,其中在准直脈衝波束通過柱面凸透鏡後生成空間頻率分量,其中空間頻率分量最初在柱面凸透鏡的焦點前收斂,並且在焦點後散佈,以及其中空間頻率分量擴展到等間距有角子波束陣列中。 Embodiment 25. The apparatus of embodiment 24, wherein the spatial frequency component is generated after the collimated pulse beam passes through the cylindrical convex lens, wherein the spatial frequency component initially converges before the focus of the cylindrical convex lens and is dispersed after the focus, and The spatial frequency component is extended to an equally spaced angular sub-beam array.

實施例26. 如實施例18-25任一項所述的設備,其中光學脈衝的空間頻率分量在由腔誘發的不同光學路徑長度中傳播。 Embodiment 26. The apparatus of any of embodiments 18-25, wherein the spatial frequency component of the optical pulse propagates in a different optical path length induced by the cavity.

實施例27. 如實施例18-25任一項所述的設備,其中光學脈衝的空間頻率分量由於不同光學路徑長度而在時間上擴展,等效於將單個脈衝分割成子脈衝的佇列。 Embodiment 27. The apparatus of any of embodiments 18-25, wherein the spatial frequency component of the optical pulse expands in time due to different optical path lengths, equivalent to dividing a single pulse into a matrix of sub-pulses.

實施例28. 如實施例1-27任一項所述的設備,能 夠以大約MHz的掃描速率進行高速鐳射波束掃描,其中掃描速率只由鐳射源的重複率控制。 Embodiment 28. The apparatus of any of embodiments 1-27, capable of high speed laser beam scanning at a scan rate of about MHz, wherein the scan rate is controlled only by the repetition rate of the laser source.

實施例29. 如實施例1-27任一項所述的設備,能夠以大約GHz的掃描速率進行高速鐳射波束掃描,其中掃描速率只由鐳射源的重複率控制。 Embodiment 29. The apparatus of any of embodiments 1-27, capable of high speed laser beam scanning at a scan rate of about GHz, wherein the scan rate is controlled only by the repetition rate of the laser source.

實施例30. 如實施例1-29任一項所述的設備,其中設備配置成允許在單獨子波束之間時延分隔的動態調諧。 The device of any of embodiments 1-29, wherein the device is configured to allow for dynamic tuning of delay separation between individual sub-beams.

實施例31. 如實施例30所述的設備,其中在單獨子波束之間的時延分隔足夠大,使得裝置配置成執行鐳射掃描螢光成像。 Embodiment 31. The apparatus of embodiment 30, wherein the time delay separation between the individual sub-beams is sufficiently large such that the apparatus is configured to perform laser-scanning fluorescence imaging.

實施例32. 如實施例1-27和30-31任一項所述的設備,還包括用於鐳射波束掃描的鐳射源,其中設備配置成以大約兆赫(MHz)或千兆赫(GHz)的掃描速率執行高速鐳射波束掃描,以及其中掃描速率只由鐳射源的重複率控制。 Embodiment 32. The apparatus of any of embodiments 1-27 and 30-31, further comprising a laser source for laser beam scanning, wherein the device is configured to be in the order of megahertz (MHz) or gigahertz (GHz) The scan rate performs high speed laser beam scanning, and wherein the scan rate is only controlled by the repetition rate of the laser source.

實施例33. 如實施例1-32任一項所述的設備,其中設備的波束偏轉角範圍不影響腔,使得波束偏轉角範圍可靈活調諧。 Embodiment 33. The apparatus of any of embodiments 1-32, wherein the range of beam deflection angles of the apparatus does not affect the cavity such that the range of beam deflection angles is flexibly tunable.

實施例34. 如實施例1-33任一項所述的設備,其中腔的可分辨掃描點的量由腔的幾何形狀確定。 The device of any of embodiments 1-33, wherein the amount of resolvable scanning points of the cavity is determined by the geometry of the cavity.

實施例35. 如實施例28、29和32任一項所述的設備,其中鐳射源是寬頻超短脈衝鐳射源或強度調製CW鐳射源。 Embodiment 35. The apparatus of any of embodiments 28, 29, and 32, wherein the laser source is a broadband ultrashort pulse laser source or an intensity modulated CW laser source.

實施例36. 如實施例1-35任一項所述的設備,包括提供光學脈衝的多個鐳射源,其中設備配置成對多個光源進行波長複用以執行彩色成像。 Embodiment 36. The apparatus of any of embodiments 1-35, comprising a plurality of laser sources that provide optical pulses, wherein the apparatus is configured to wavelength multiplex a plurality of light sources to perform color imaging.

實施例37. 如實施例1-36任一項所述的設備,其中設備配置成執行從紫外線波長到紅外線波長的光學無源波束掃描。 The device of any of embodiments 1-36, wherein the device is configured to perform an optical passive beam scan from an ultraviolet wavelength to an infrared wavelength.

下面是示出用於實踐本發明的過程的示例。這些示例不應視為限制。 The following is an example showing a process for practicing the present invention. These examples should not be considered limiting.

示例1  Example 1  

使用兩種方案對來自20MHz重複率的商業模式鎖定雷射器的光學脈衝進行時間拉伸:(1)使用長的普通分散光纖(5千米),以及(2)使用根據本發明的一實施例,帶有4釐米×7釐米(鏡分隔×鏡長度)尺寸的啁啾腔(基於類型I空間分散器)。來自雷射器的光學脈衝最初通過稱為自相位元調製的非線性效應,經譜加寬成變換受限的光學脈衝,如圖4中彎曲虛線所示。通過使用本發明的裝置,常規分光計捕獲的輸出譜(實線)顯示幾乎整個輸入頻譜能夠得以保持,而譜失真最小化。 Optical stretching of a commercial mode locking laser from a 20 MHz repetition rate is time stretched using two schemes: (1) using a long common dispersion fiber (5 kilometers), and (2) using an implementation in accordance with the present invention For example, a cavity with a size of 4 cm x 7 cm (mirror separation x mirror length) (based on a Type I space diffuser). The optical pulse from the laser is initially spectrally broadened into a transform-limited optical pulse by a nonlinear effect called self-phase element modulation, as shown by the curved dashed line in FIG. By using the apparatus of the present invention, the output spectrum captured by a conventional spectrometer (solid line) shows that almost the entire input spectrum can be maintained while spectral distortion is minimized.

為進一步檢查本發明的裝置誘發的總GDD,輸出信號由80Gb/s即時示波器捕捉以觀測光學脈衝的時間展寬。圖5A顯示由分散光纖拉伸的時間拉伸光學信號的圖形,並且圖5B顯示由本發明的裝置拉伸的時間拉伸光學信號的圖形。參照圖5A,5千米長的普通分散光纖能夠實 現0.15ns/nm的總群速度分散,促使脈衝的頻譜經脈衝拉伸映射到時間中。脈衝拉伸是玻璃纖維的(材料)色散的結果。相反,本發明的裝置不依賴色散實現脈衝拉伸。實際上,啁啾腔經幾何設計控制的自由空間光學路徑差,將譜資訊映射到時間域。參照圖5B,本發明的裝置的總群速度分散高達0.5ns/nm,總損耗為18dB,這主要是由於鏡長的限制。 To further examine the total GDD induced by the device of the present invention, the output signal is captured by an 80 Gb/s instant oscilloscope to observe the time spread of the optical pulses. Figure 5A shows a graph of a time stretched optical signal stretched by a dispersed fiber, and Figure 5B shows a graph of a time stretched optical signal stretched by the device of the present invention. Referring to Fig. 5A, a 5 km long ordinary dispersion fiber can achieve a total group velocity dispersion of 0.15 ns/nm, causing the spectrum of the pulse to be mapped into time by pulse stretching. Pulse stretching is the result of (material) dispersion of the glass fibers. In contrast, the device of the present invention does not rely on dispersion to achieve pulse stretching. In fact, the free-space optical path difference controlled by the geometric design of the cavity is mapped to the time domain. Referring to Figure 5B, the apparatus of the present invention has a total group velocity dispersion of up to 0.5 ns/nm and a total loss of 18 dB, which is mainly due to the limitation of the mirror length.

示例2  Example 2  

圖6中顯示的設置也基於類型II空間分散器的使用。圖8A顯示啟動到設置的單輸入脈衝,這將它拉伸成脈衝佇列的長包絡。圖8B顯示脈衝佇列。參照圖8A和8B,單脈衝擴展成寬度2.5ns的脈衝佇列的包絡,並且有效圖元的數量超過60。假定有足夠的圖元能夠用於將空間資訊編碼到脈衝佇列中,此脈衝佇列還能夠用於執行時間拉伸成像的另一模態(在亮場成像模式中),這不再依賴譜編碼,並且因此不依賴色散。 The arrangement shown in Figure 6 is also based on the use of a Type II space diffuser. Figure 8A shows a single input pulse initiated to setup, which stretches it into a long envelope of pulse trains. Figure 8B shows the pulse train. Referring to Figures 8A and 8B, a single pulse is spread into an envelope of a pulse train of width 2.5 ns, and the number of valid primitives exceeds 60. Assuming that there are enough primitives that can be used to encode spatial information into the pulse train, this pulse train can also be used to perform another mode of time stretch imaging (in bright field imaging mode), which is no longer dependent Spectral coding, and therefore does not rely on dispersion.

示例3  Example 3  

圖12B中顯示的設置是基於空間啁啾腔和類型II空間分散器的鐳射掃描設置,用於捕捉亮場圖像。圖13顯示由此設置捕捉的代表性亮場圖像(圖13A:解析度目標;圖13B:肺組織切片)。照明的中心波長為大約710nm。按一下發重複率(即,掃描-掃描)為80MHz。腔提 供了快軸一維掃描,而慢軸掃描通過沿正交軸轉換解析度目標來完成。超快行掃描通過直接時空映射來完成,而不同於在有關技術時間拉伸成像模態中採用的兩步驟映射。 The setup shown in Figure 12B is based on a laser scanning setup of a spatial cavity and a Type II spatial diffuser for capturing bright field images. Fig. 13 shows a representative bright field image thus captured (Fig. 13A: resolution target; Fig. 13B: lung tissue section). The center wavelength of the illumination is approximately 710 nm. Press the send repetition rate (ie scan-scan) to 80MHz. The cavity provides a one-dimensional scan of the fast axis, while the slow axis scan is accomplished by converting the resolution target along the orthogonal axis. Ultrafast scans are done by direct spatiotemporal mapping, unlike the two-step mapping employed in the technical time stretch imaging modality.

應理解的是,本文中描述的示例和實施例只是用於說明,並且本領域技術人員將基於此想到其各種修改或更改,並且這些修改或更改要包括在本申請的精神和範圍內及隨附權利要求的範圍內。另外,本文中公開的任何發明或其實施例的任何元素或限制能夠與本文中公開的任何其它發明或其實施例的任何其它元素或限制組合(單獨或以任何組合方式),並且所有此類組合要根據本發明的範圍進行考慮而不是對其的限制。 It should be understood that the examples and embodiments described herein are for illustration only, and that various modifications and changes can be made by those skilled in the art, and such modifications and changes are intended to be included within the spirit and scope of the present application. Within the scope of the claims. In addition, any element or limitation of any invention disclosed herein or any embodiment thereof can be combined with any other element or limitation of the invention disclosed herein or any other element or combination thereof (alone or in any combination), and all such Combinations are considered in accordance with the scope of the invention and are not intended to be limiting.

參考文獻  references  

美國專利4,913,520 (Optical fiber for pulse compression)。 U.S. Patent 4,913,520 (Optical fiber for pulse compression).

美國專利8,068,522 (Hyper dispersion pulse compressor for chirped pulse amplification systems)。 US Patent 8,068,522 (Hyper dispersion pulse compressor for chirped pulse amplification systems).

歐洲專利2144095 (Optical fiber pulse stretcher and module)。 European Patent 2,144,095 (Optical fiber pulse stretcher and module).

K.Goda,K.K.Tsia和B.Jalali所著“Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading”,Appl.Phys.Lett.93, 131109 (2008))。 K. Goda, K. K. Tsia and B. Jalali, "Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading", Appl. Phys. Lett. 93, 131109 (2008)).

E.D.Diebold,N.K.Hon,Z.W.Tan,J.Chou,T.Sienicki,C.Wang及B. Jalali,“Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide”,Optics Express 19, 23809-23817 (2011)。 ED Diebold, NKHon, ZWTan, J. Chou, T. Sienicki, C. Wang and B. Jalali, "Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide", Optics Express 19, 23809-23817 (2011) ).

Z.W.Tan,C.Wang,E.D.Diebold,N.K.Hon及B.Jalali所著“Real-time wave-length and bandwidth-independent optical integrator based on modal dispersion”,Optics Express 20, 14109-14116 (2012)。 "Real-time wave-length and bandwidth-independent optical integrator based on modal dispersion" by Z. W. Tan, C. Wang, E. D. Diebold, N. K. Hon and B. Jalali, Optics Express 20, 14109-14116 (2012).

Y.Qiu,J.Xu,K.K.Y.Wong及K.K.Tsia所著“Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window”,Opt.Express 20, 24115-24123 (2012))。 "Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window" by Y. Qiu, J. Xu, K.K. Y. W. and K. K. Tsia, Opt. Express 20, 24115-24123 (2012)).

S.Reich所著“The use of electro-mechanical mirror scanning devices”,in(International Society for Optics and Photonics, 1976), 47-56。 "The use of electro-mechanical mirror scanning devices" by S. Reich, in (International Society for Optics and Photonics, 1976), 47-56.

M.Gottlieb,C.L.M.Ireland和J.M.Ley所著“Electro-optic and Acousto-optic Scanning and Deflection“,New York, Marcel Dekker, Inc., 1983, 208 p.1(1983))。 M. Gottlieb, C. L. M. Ireland and J. M. Ley, "Electro-optic and Acousto-optic Scanning and Deflection", New York, Marcel Dekker, Inc., 1983, 208 p. 1 (1983)).

Y.Li和J.Katz所著“Laser beam scannng by rotary mirrors.I.Modeling mirror-scanning devices," Appl.Opt.34, 6403-6416 (1995)。 "Laser beam scannng by rotary mirrors. I. Modeling mirror-scanning devices," Appl. Opt. 34, 6403-6416 (1995) by Y. Li and J. Katz.

G.F.Marshall和G.E.Stutz,Handbook of optical and laser scanning (CRC Press, 2011)。 G.F. Marshall and G.E. Stutz, Handbook of optical and laser scanning (CRC Press, 2011).

J.I.Montagu所著“Galvanometric and resonant low inertia scanners”,Opto-Mechanical Devices, Systems, and Data Storage Optics, GF Marshall, ed, 193-288 (1985)。 "Galvanometric and resonant low inertia scanners" by J.I. Montagu, Opto-Mechanical Devices, Systems, and Data Storage Optics, GF Marshall, ed, 193-288 (1985).

G.R.B.E.Römera,P.Bechtold所著“Electro-optic and Acousto-optic Laser Beam Scanners”,Physics Procedia Volume 56, 29-39 (2014) G.R.B.E.Römera, P. Bechtold, "Electro-optic and Acousto-optic Laser Beam Scanners", Physics Procedia Volume 56, 29-39 (2014)

美國專利7,321,605 (Helical optical pulse stretcher)。 U.S. Patent 7,321,605 (Helical optical pulse stretcher).

美國專利7,035,012 (Optical pulse duration extender)。 US Patent 7,035,012 (Optical pulse duration extender).

美國專利5,309,456 (Pulse stretcher)。 U.S. Patent 5,309,456 (Pulse stretcher).

美國專利5,960,016 (Aberration-free, all-reflective laser pulse stretcher)。 U.S. Patent 5,960,016 (Aberration-free, all-reflective laser pulse stretcher).

美國專利6,928,093 (Long delay and high TIS pulse stretcher)。 U.S. Patent 6,928,093 (Long delay and high TIS pulse stretcher).

美國專利6,739,728 (Short pulse laser stretcher-compressor using a single common reflective grating)。 US Patent 6,739,728 (Short pulse laser stretcher-compressor using a single common reflective grating).

美國專利5,077,621 (Optical pulse compressor)。 U.S. Patent 5,077,621 (Optical pulse compressor).

美國專利申請公佈號2009/0021833 A1 (Chromomodal dispersion apparatus and methods)。 US Patent Application Publication No. 2009/0021833 A1 (Chromomodal dispersion apparatus and methods).

D.R.Herriott和H.J.Schulte所著“Folded Optical Delay Lines”,Applied Optics 4, 883-889 (1965)。 "Folded Optical Delay Lines" by D. R. Herriott and H. J. Schulte, Applied Optics 4, 883-889 (1965).

E.Treacy所著“Optical pulse compression with diffraction gratings”,Quantum Electronics, IEEE Journal of 5, 454-458 (1969)。 "Optical pulse compression with diffraction gratings" by E. Treacy, Quantum Electronics, IEEE Journal of 5, 454-458 (1969).

M.Lai,S.T.Lai和C.Swinger所著“Single-Grating Laser-Pulse Stretcher and Compressor”,Applied Optics 33, 6985-6987 (1994)。 M. Lai, S. T. Lai and C. Swinger, "Single-Grating Laser-Pulse Stretcher and Compressor", Applied Optics 33, 6985-6987 (1994).

O.E.Martinez所著“3000 Times Grating Compressor with Positive Group-Velocity Quantum Electronics 23, 59-64 (1987)。 O.E. Martinez, "3000 Times Grating Compressor with Positive Group-Velocity Quantum Electronics 23, 59-64 (1987).

美國專利3,731,106 (Beam scanner for high power laser) US Patent 3,731,106 (Beam scanner for high power laser)

美國專利4,170,028 (Facet tracking in laser scanning) US Patent 4,170,028 (Facet tracking in laser scanning)

美國專利4,541,694 (Acousto-optic scanner) US Patent 4,541,694 (Acousto-optic scanner)

美國專利4,902,088 A (Integrated optic device for laser beam scanning) US Patent 4,902,088 A (Integrated optic device for laser beam scanning)

美國專利5,052,771 A (Integrated electro-optical scanner) US Patent 5,052,771 A (Integrated electro-optical scanner)

美國專利5,221,933 (Beam scanning Galvanometer with low inertia mirror and magnet) US Patent 5,221,933 (Beam scanning Galvanometer with low inertia mirror and magnet)

美國專利5,615,013 (Galvanometer and camera system) US Patent 5,615,013 (Galvanometer and camera system)

美國專利3,612,659 (Passive beam-deflecting apparatus) US Patent 3,612,659 (Passive beam-deflecting apparatus)

美國專利6,642,504 B2 (High speed confocal microscope) US Patent 6,642,504 B2 (High speed confocal microscope)

美國專利8,376,218 (Apparatus and method for dispersive Fourier-transform imaging) US Patent 8,376,218 (Apparatus and method for dispersive Fourier-transform imaging)

美國專利8,654,441 B2 (Differential interference contrast serial time encoded amplified microscopy) US Patent 8,654,441 B2 (Differential interference contrast serial time encoded amplified microscopy)

美國專利申請公佈號2014/0198365A1 (Multi-beam laser scanning system and method) US Patent Application Publication No. 2014/0198365A1 (Multi-beam laser scanning system and method)

K.K.Tsia,K.Goda,D.Capewell及B.Jalali所著“Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery”,Optics letters 34, 2099-2101 (2009)。 "Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery" by K. K. Tsia, K. Goda, D. Capewell and B. Jalali, Optics letters 34, 2099-2101 (2009).

E.Wang,C.M.Babbey和K.W.Dunn所著“Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems”,Journal of microscopy 218, 148-159 (2005)。 "Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems" by E. Wang, C. M. Babbey and K. W. Dunn, Journal of microscopy 218, 148-159 (2005).

Claims (15)

一種用於拉伸/壓縮光學脈衝的設備,包括:空間分散器,佈置成將准直光學脈衝波束分割成有等間隔角的子波束的子波束陣列;波束成形器,配置成控制所述子波束陣列的擴展角;以及腔,配置成按順序和空間啁啾反射所述子波束陣列內的所述單獨子波束,以及用於提供所述脈衝到指向物理物件的空間域的空時映射的部件。  An apparatus for stretching/compressing optical pulses, comprising: a spatial disperser arranged to split a collimated optical pulse beam into sub-beam arrays of sub-beams having equal spacing angles; a beamformer configured to control the sub-beams An extended angle of the beam array; and a cavity configured to reflect the individual sub-beams within the sub-beam array in sequence and spatially, and to provide a space-time mapping of the pulse to a spatial domain directed to a physical object component.   如申請專利範圍第1項所述的設備,其中所述腔是空間啁啾腔,其中非平行和反射性的兩個內表面形成2D腔或3D腔。  The device of claim 1, wherein the cavity is a spatial cavity, wherein the two inner surfaces that are non-parallel and reflective form a 2D cavity or a 3D cavity.   如申請專利範圍第2項所述的設備,其中在所述兩個內表面之間的間距填充有空氣,由此允許在所述單獨子波束之間時延分隔的動態調諧。  The apparatus of claim 2, wherein the spacing between the two inner surfaces is filled with air, thereby allowing for dynamic tuning of the delay separation between the individual sub-beams.   如申請專利範圍第1項所述的設備,其中所述設備的操作的範圍從紫外線波長到紅外線波長。  The apparatus of claim 1, wherein the operation of the apparatus ranges from an ultraviolet wavelength to an infrared wavelength.   如申請專利範圍第2項所述的設備,其中所述兩個內表面佈置成具有匹配在所述子波束陣列的所述子波束之間所述等間隔角的傾角(A/m)。  The apparatus of claim 2, wherein the two inner surfaces are arranged to have an inclination (A/m) that matches the equally spaced angles between the sub-beams of the sub-beam array.   如申請專利範圍第5項所述的設備,其中所述子波束陣列的所述單獨子波束經受來自所述內表面的多個反 射,其中帶有所述傾角(A/m)的整數倍N的所述子波束陣列的所述單獨子波束從所述腔的所述內表面反射N次,其中在每次反射後所述單獨子波束的入射角能夠縮小A/m,並且最終變得垂直於最後反射的所述內表面,其中帶有傾角的不同倍數的所述單獨子波束經受不同次數的反射,其中帶有傾角的不同倍數的所述單獨子波束能夠通過不同光學路徑長度傳播,以及其中帶有傾角的不同倍數的所述單獨子波束能夠反轉光學路徑,並且在所述空間分散器重新合併。  The device of claim 5, wherein the individual sub-beams of the sub-beam array are subjected to a plurality of reflections from the inner surface with an integer multiple of the tilt angle (A/m). The individual sub-beams of the sub-beam array are reflected N times from the inner surface of the cavity, wherein the angle of incidence of the individual sub-beams after each reflection can be reduced by A/m and eventually become vertical The inner surface of the last reflection, wherein the individual sub-beams with different multiples of the tilt angle are subjected to different numbers of reflections, wherein the individual sub-beams with different multiples of the tilt angle can propagate through different optical path lengths, and The individual sub-beams with different multiples of the tilt angle are capable of reversing the optical path and recombining at the spatial diffuser.   如申請專利範圍第1項所述的設備,其中所述空間分散器是譜編碼自由空間分散器,諸如但不限於柱面凸透鏡,其中在所述准直脈衝波束通過所述柱面凸透鏡後生成空間頻率分量,其中所述空間頻率分量最初在所述柱面凸透鏡的焦點前收斂,並且在所述焦點後散佈,以及其中所述空間頻率分量擴展到所述子波束陣列中,或者譜編碼空間分散器,諸如但不限於衍射光柵,其中在所述准直脈衝波束通過所述衍射後生成譜編碼空間頻率分量,以及其中所述譜編碼空間頻率分量擴展到所述子波束陣列 中。  The apparatus of claim 1, wherein the spatial disperser is a spectrally encoded free space disperser such as, but not limited to, a cylindrical convex lens, wherein the collimated pulse beam is generated after passing through the cylindrical convex lens a spatial frequency component, wherein the spatial frequency component initially converges before a focus of the cylindrical convex lens and is dispersed after the focus, and wherein the spatial frequency component extends into the sub-beam array, or a spectral coding space A diffuser, such as but not limited to a diffraction grating, wherein a spectrally encoded spatial frequency component is generated after the collimated pulse beam passes the diffraction, and wherein the spectrally encoded spatial frequency component is expanded into the sub-beam array.   如申請專利範圍第6或7項所述的設備,其中所述光學脈衝的空間頻率分量在由所述腔誘發的不同光學路徑長度中傳播。  The apparatus of claim 6 or 7, wherein the spatial frequency component of the optical pulse propagates in different optical path lengths induced by the cavity.   如申請專利範圍第6或7項所述的設備,其中所述光學脈衝的譜編碼空間頻率分量由於所述不同光學路徑長度而在時間上擴展,等效於所述光學脈衝的空間頻率分量經受一定量的色散。  The apparatus of claim 6 or 7, wherein the spectrally encoded spatial frequency component of the optical pulse is temporally expanded due to the different optical path length, and the spatial frequency component equivalent to the optical pulse is subjected to A certain amount of dispersion.   如申請專利範圍第6項所述的設備,其中所述光學脈衝的空間頻率分量在由所述腔誘發的不同光學路徑長度中傳播。  The apparatus of claim 6 wherein the spatial frequency component of the optical pulse propagates in different optical path lengths induced by the cavity.   如申請專利範圍第6項所述的設備,其中所述光學脈衝的空間頻率分量由於所述不同光學路徑長度而在時間上擴展,等效於將單個脈衝分割成子脈衝的佇列。  The apparatus of claim 6, wherein the spatial frequency component of the optical pulse is time-expanded due to the different optical path lengths, equivalent to dividing a single pulse into a matrix of sub-pulses.   如申請專利範圍第1至11項任一項所述的設備,其中通過在所述單獨子波束之間引入時延,使得所述設備配置成在空間域中執行所述脈衝的全光學波束掃描,執行空時映射。  The apparatus of any one of claims 1 to 11, wherein the apparatus is configured to perform an all-optical beam scan of the pulse in a spatial domain by introducing a delay between the individual sub-beams , perform a space time mapping.   如申請專利範圍第12項所述的設備,還包括將所述掃描波束投射到成像樣本上的中繼光學元件。  The device of claim 12, further comprising a relay optical element that projects the scan beam onto the imaging sample.   如申請專利範圍第12項所述的設備,還包括單個或多個光源以提供光學脈衝,其中所述設備配置有單色或多色鐳射掃描螢光成像和彩色成像。  The device of claim 12, further comprising a single or multiple light sources to provide optical pulses, wherein the device is configured with monochromatic or multi-color laser scanning fluorescence imaging and color imaging.   如申請專利範圍第1至14項任一項所述的設 備,其中從多個寬頻超短脈衝鐳射源或強度調製連續波鐳射源的單個光源生成光學脈衝。  The apparatus of any one of claims 1 to 14, wherein the optical pulses are generated from a plurality of broadband ultrashort pulse laser sources or a single source of intensity modulated continuous wave laser sources.  
TW105129159A 2016-09-08 2016-09-08 Spatial chirped cavity for temporally stretching/compressing optical pulses TWI728999B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105129159A TWI728999B (en) 2016-09-08 2016-09-08 Spatial chirped cavity for temporally stretching/compressing optical pulses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105129159A TWI728999B (en) 2016-09-08 2016-09-08 Spatial chirped cavity for temporally stretching/compressing optical pulses

Publications (2)

Publication Number Publication Date
TW201812383A true TW201812383A (en) 2018-04-01
TWI728999B TWI728999B (en) 2021-06-01

Family

ID=62639225

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105129159A TWI728999B (en) 2016-09-08 2016-09-08 Spatial chirped cavity for temporally stretching/compressing optical pulses

Country Status (1)

Country Link
TW (1) TWI728999B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660790A (en) * 2022-04-06 2022-06-24 中山大学 Optical pulse time stretching device and method and spectral measurement system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251761A (en) * 1998-12-28 2000-09-14 Toshiba Corp Color cathode ray tube device
US8158960B2 (en) * 2007-07-13 2012-04-17 Cymer, Inc. Laser produced plasma EUV light source
US8440952B2 (en) * 2008-11-18 2013-05-14 The Regents Of The University Of California Methods for optical amplified imaging using a two-dimensional spectral brush
GB2528023A (en) * 2014-03-18 2016-01-13 Stfc Science & Technology High power laser with chirped pulse amplification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660790A (en) * 2022-04-06 2022-06-24 中山大学 Optical pulse time stretching device and method and spectral measurement system

Also Published As

Publication number Publication date
TWI728999B (en) 2021-06-01

Similar Documents

Publication Publication Date Title
CN113161851B (en) Spatially chirped chamber for temporally stretching/compressing optical pulses
JP7002407B2 (en) Wavelength tuning source device
CN104919578B (en) Use the semiconductor inspection and metering system of laser pulse multiplier
US9588326B2 (en) Confocal incident-light scanning microscope with means for frequency conversion
JP5558839B2 (en) Method, arrangement and apparatus for utilizing a wavelength swept laser using angular scanning and dispersion procedures
JP5547868B2 (en) Microscope system and method using the same
US20210191229A1 (en) Supercontinuum source, method for generating and emitting a supercontinuum, multiphoton excitation fluorescence microscope, and multiphoton excitation method
JPH1068889A (en) Device for coupling short pulse laser beam in optical path of microscope and method therefor
US8159663B2 (en) Laser microscope apparatus having a frequency dispersion adjuster
CN110579462B (en) Time-resolved broad-spectrum CARS spectral imaging device based on high-repetition-frequency femtosecond laser
US7385693B2 (en) Microscope apparatus
JPH11119106A (en) Laser scanning microscope
TWI728999B (en) Spatial chirped cavity for temporally stretching/compressing optical pulses
US10837906B2 (en) Measurement device and irradiation device
Boniface et al. Spectrally resolved point-spread-function engineering using a complex medium
US20110199676A1 (en) Confocal microscope
CN109065209B (en) Dual-mode output optical tweezers based on hollow light beams
TW202202901A (en) Broadband illumination tuning
JP3460960B2 (en) Broadband spatial light phase modulator
Reddy et al. High-speed two-photon imaging
WO2017175747A1 (en) Supercontinuum-light-generating light source, supercontinuum-light generation method, multiphoton-excited fluorescence microscope, and multiphoton excitation method
JP2004109368A (en) Microscope
Kivshar Engineered metaoptics forge new nonlinear devices
JP3566936B2 (en) Method and apparatus for measuring time waveform of optical signal electric field
JP2009063666A (en) Microscope