TW201739207A - Device and method for recovering clock and data - Google Patents

Device and method for recovering clock and data Download PDF

Info

Publication number
TW201739207A
TW201739207A TW105112841A TW105112841A TW201739207A TW 201739207 A TW201739207 A TW 201739207A TW 105112841 A TW105112841 A TW 105112841A TW 105112841 A TW105112841 A TW 105112841A TW 201739207 A TW201739207 A TW 201739207A
Authority
TW
Taiwan
Prior art keywords
signal
data
clock
generate
phase
Prior art date
Application number
TW105112841A
Other languages
Chinese (zh)
Other versions
TWI601404B (en
Inventor
陳彥中
康文柱
潘辰陽
Original Assignee
創意電子股份有限公司
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創意電子股份有限公司, 台灣積體電路製造股份有限公司 filed Critical 創意電子股份有限公司
Priority to TW105112841A priority Critical patent/TWI601404B/en
Application granted granted Critical
Publication of TWI601404B publication Critical patent/TWI601404B/en
Publication of TW201739207A publication Critical patent/TW201739207A/en

Links

Abstract

A clock and data recovery device includes a data sampling module, a phase detection circuit, a frequency estimator, a clock generation module, and a data recovery module. The data sampling module samples input data according to first clock signals to generate data values, in which the phases of the first clock signals are different from one another. The phase detection circuit detects a phase error of the input data according to at least one second clock signal to generate an error signal. The frequency estimator generates an adjustment signal according to the error signal, a phase threshold value, and a frequency threshold value. The clock generation module generates the first clock signals and at least one second clock signal according to the adjustment signal. The data recovery module generates recovered data corresponding to the input data according to the data values.

Description

時脈資料回復裝置與方法 Clock data recovery device and method

本案是有關於一種積體電路,且特別是有關於時脈資料回復裝置與方法。 This case is related to an integrated circuit, and in particular to the clock data recovery device and method.

由於製程技術快速發展,而使積體電路之操作速度有了大幅的提昇。在高速傳輸的通訊系統中,時脈資料回復(Clock and Data Recovery,CDR)裝置常被用來確保可以正確地讀取所接收的輸入資料。 Due to the rapid development of process technology, the operating speed of the integrated circuit has been greatly improved. In high-speed transmission communication systems, Clock and Data Recovery (CDR) devices are often used to ensure that the received input data is properly read.

在現有技術中,採用相位選取(phase-picking)架構的時脈資料回復裝置多以前饋(feed forward)式電路實現。若當傳輸與接收端的時脈信號有頻率誤差時,採用前饋式操作的時脈資料回復裝置無法即時地消除頻率誤差,進而導至所讀取的資料出現錯誤。 In the prior art, a clock data recovery device using a phase-picking architecture is implemented by a feed forward circuit. If there is a frequency error between the transmission and reception clock signals, the clock data recovery device using the feedforward operation cannot instantaneously eliminate the frequency error, and thus leads to an error in the read data.

為了解決上述問題,本揭示內容之一態樣係於提供一種時脈資料回復裝置。時脈資料回復裝置包含資料取樣模組、相位偵測電路、頻率估計器、時脈產生模組以及資 料回復模組。資料取樣模組用以根據多個第一時脈信號對輸入資料取樣,以產生多個資料值,其中多個第一時脈信號之相位彼此不同。相位偵測電路用以根據至少一第二時脈信號偵測輸入資料中之相位誤差,以產生誤差信號。頻率估計器用以根據誤差信號、相位臨界值以及頻率臨界值產生調整信號。時脈產生模組用以根據調整信號與參考時脈信號產生多個第一時脈信號與至少一第二時脈信號。資料回復模組用以根據多個資料值產生相應於輸入資料之回復資料。 In order to solve the above problems, one aspect of the present disclosure is to provide a clock data recovery device. The clock data recovery device includes a data sampling module, a phase detecting circuit, a frequency estimator, a clock generation module, and a resource Material recovery module. The data sampling module is configured to sample the input data according to the plurality of first clock signals to generate a plurality of data values, wherein the phases of the plurality of first clock signals are different from each other. The phase detecting circuit is configured to detect a phase error in the input data according to the at least one second clock signal to generate an error signal. The frequency estimator is configured to generate an adjustment signal based on the error signal, the phase threshold, and the frequency threshold. The clock generation module is configured to generate a plurality of first clock signals and at least one second clock signal according to the adjustment signal and the reference clock signal. The data recovery module is configured to generate a response data corresponding to the input data according to the plurality of data values.

於一些實施例中,頻率估計器包含第一三角積分調變器、第二三角積分調變器、積分器、計數器以及加法器。第一三角積分調變器用以累計誤差信號產生相位累計值,並在相位累計值高於相位臨界值時輸出第一控制信號。第二三角積分調變器用以累計誤差信號產生頻率累計值,並在頻率累計值高於頻率臨界值時輸出第二控制信號。積分器用以對第二控制信號進行累加,以產生積分信號。計數器用以根據積分信號進行計數,以產生第三控制信號。加法器用以相加第一控制信號與第三控制信號,以產生調整信號。 In some embodiments, the frequency estimator includes a first delta-sigma modulator, a second delta-sigma modulator, an integrator, a counter, and an adder. The first triangular integral modulator generates a phase integrated value for accumulating the error signal, and outputs a first control signal when the phase integrated value is higher than the phase threshold. The second triangular integral modulator is configured to accumulate the error signal to generate a frequency integrated value, and output a second control signal when the frequency integrated value is higher than the frequency threshold. The integrator is configured to accumulate the second control signal to generate an integrated signal. The counter is used to count according to the integrated signal to generate a third control signal. The adder is configured to add the first control signal and the third control signal to generate an adjustment signal.

於一些實施例中,資料回復模組包含資料儲存電路、邊緣偵測電路以及資料選擇電路。資料儲存電路用以儲存前述多個資料值。邊緣偵測電路用以根據多個資料值判斷輸入資料之至少一轉態點,以產生選擇信號。資料選擇電路用以根據選擇信號自資料儲存電路選擇多個資料值中之至少一對應者,以產生回復資料。 In some embodiments, the data recovery module includes a data storage circuit, an edge detection circuit, and a data selection circuit. The data storage circuit is configured to store the plurality of data values. The edge detection circuit is configured to determine at least one transition point of the input data according to the plurality of data values to generate the selection signal. The data selection circuit is configured to select at least one of the plurality of data values from the data storage circuit according to the selection signal to generate the reply data.

於一些實施例中,資料儲存電路更根據本地時 脈信號同步化多個資料值。 In some embodiments, the data storage circuit is more local based The pulse signal synchronizes multiple data values.

於一些實施例中,時脈產生模組包含多相位時脈產生器以及相位內插器。多相位時脈產生器用以根據本地時脈信號產生多個第一時脈信號以及至少一第二時脈信號。相位內插器用以根據調整信號以及參考時脈信號產生本地時脈信號。 In some embodiments, the clock generation module includes a multi-phase clock generator and a phase interpolator. The multi-phase clock generator is configured to generate a plurality of first clock signals and at least one second clock signal according to the local clock signal. The phase interpolator is configured to generate a local clock signal according to the adjustment signal and the reference clock signal.

本揭示內容之另一態樣係於提供一種時脈資料回復方法,其包含下列多個操作:根據多個第一時脈信號對輸入資料取樣,以產生多個資料值,其中多個第一時脈信號之相位彼此不同;根據至少一第二時脈信號偵測輸入資料中之相位誤差,以產生誤差信號;根據誤差信號、相位臨界值以及頻率臨界值產生調整信號;根據調整信號與參考時脈信號產生多個第一時脈信號與至少一第二時脈信號;以及根據多個資料值產生相應於輸入資料之回復資料。 Another aspect of the present disclosure is to provide a clock data recovery method, including the following operations: sampling input data according to a plurality of first clock signals to generate a plurality of data values, wherein the plurality of first The phases of the clock signals are different from each other; the phase error in the input data is detected according to the at least one second clock signal to generate an error signal; the adjustment signal is generated according to the error signal, the phase threshold value and the frequency threshold value; according to the adjustment signal and the reference The clock signal generates a plurality of first clock signals and at least one second clock signal; and generating response data corresponding to the input data according to the plurality of data values.

於一些實施例中,產生調整信號的操作包含:經由第一三角積分調變器累計誤差信號以產生相位累計值,並在相位累計值高於相位臨界值時輸出第一控制信號;經由第二三角積分調變器累計誤差信號產生頻率累計值,並在頻率累計值高於頻率臨界值時輸出第二控制信號;經由積分器對第二控制信號進行累加,以產生積分信號;經由計數器根據積分信號進行計數,以產生第三控制信號;以及經由加法器相加第一控制信號與第三控制信號,以產生調整信號。 In some embodiments, the generating the adjustment signal comprises: accumulating the error signal via the first delta-sigma modulator to generate a phase integrated value, and outputting the first control signal when the phase integrated value is higher than the phase threshold; The triangular integral modulator cumulative error signal generates a frequency integrated value, and outputs a second control signal when the frequency integrated value is higher than the frequency threshold; accumulates the second control signal via the integrator to generate an integrated signal; The signal is counted to generate a third control signal; and the first control signal and the third control signal are added via an adder to generate an adjustment signal.

於一些實施例中,產生回復資料的操作包含: 儲存多個資料值;根據多個資料值判斷輸入資料之至少一轉態點,以產生選擇信號;以及根據選擇信號選擇多個資料值中之至少一對應者,以產生回復資料。 In some embodiments, the act of generating a reply data includes: Storing a plurality of data values; determining at least one transition point of the input data according to the plurality of data values to generate a selection signal; and selecting at least one of the plurality of data values according to the selection signal to generate a reply data.

於一些實施例中,時脈資料回復方法更包含:根據本地時脈信號同步化多個資料值。 In some embodiments, the clock data recovery method further comprises: synchronizing the plurality of data values according to the local clock signal.

於一些實施例中,產生多個第一時脈信號與至少一第二時脈信號的操作包含:根據本地時脈信號產生多個第一時脈信號以及至少一第二時脈信號;以及經由相位內插器根據調整信號以及參考時脈信號產生本地時脈信號。 In some embodiments, the generating the plurality of first clock signals and the at least one second clock signal comprises: generating a plurality of first clock signals and at least one second clock signal according to the local clock signal; The phase interpolator generates a local clock signal based on the adjustment signal and the reference clock signal.

100‧‧‧時脈資料回復裝置 100‧‧‧clock data recovery device

110‧‧‧資料取樣模組 110‧‧‧ data sampling module

120‧‧‧相位偵測電路 120‧‧‧ phase detection circuit

130‧‧‧頻率估計器 130‧‧‧frequency estimator

140‧‧‧時脈產生模組 140‧‧‧clock generation module

150‧‧‧資料回復模組 150‧‧‧ Data Recovery Module

Din‧‧‧輸入資料 Din‧‧‧ Input data

D1‧‧‧資料值 D1‧‧‧ data value

112‧‧‧資料取樣器 112‧‧‧ data sampler

CLK1、CLK2‧‧‧時脈信號 CLK1, CLK2‧‧‧ clock signal

VE‧‧‧誤差信號 VE‧‧‧ error signal

UP/DOWN‧‧‧調整信號 UP/DOWN‧‧‧Adjustment signal

CLKREF‧‧‧參考時脈信號 CLKREF‧‧‧ reference clock signal

142‧‧‧相位內插器 142‧‧‧ phase interpolator

CLKL‧‧‧本地時脈信號 CLKL‧‧‧ local clock signal

144‧‧‧多相位時脈產生器 144‧‧‧Multi-phase clock generator

152‧‧‧資料儲存電路 152‧‧‧Data storage circuit

Dout‧‧‧回復資料 Dout‧‧‧Reply information

156‧‧‧資料選擇電路 156‧‧‧ data selection circuit

154‧‧‧邊緣偵測電路 154‧‧‧Edge detection circuit

TS1、TS2‧‧‧取樣時間點 TS1, TS2‧‧‧ sampling time point

SE‧‧‧選擇信號 SE‧‧‧Selection signal

232‧‧‧三角積分調變器 232‧‧‧Triangle integral modulator

231‧‧‧三角積分調變器 231‧‧‧Triangle integral modulator

234‧‧‧計數器 234‧‧‧ counter

233‧‧‧積分器 233‧‧‧ integrator

AP‧‧‧相位累計值 AP‧‧‧ phase cumulative value

235‧‧‧加法器 235‧‧‧Adder

VCP、VCF、VCT‧‧‧控制信號 VCP, VCF, VCT‧‧‧ control signals

MP‧‧‧相位臨界值 MP‧‧‧ phase threshold

MF‧‧‧頻率臨界值 MF‧‧‧ frequency threshold

AF‧‧‧頻率累計值 AF‧‧‧ frequency cumulative value

400‧‧‧時脈資料方法 400‧‧‧ Clock data method

VI‧‧‧積分信號 VI‧‧·Integral signal

S410~S450‧‧‧步驟 S410~S450‧‧‧Steps

P1、P2、P3‧‧‧相位 P1, P2, P3‧‧‧ phase

為讓本揭示內容之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1A圖為根據本揭示內容中的一些實施例所繪示的一種時脈資料回復裝置的示意圖;第1B為根據本揭示內容中的一些實施例所繪示的第1A圖中的時脈資料回復裝置的取樣操作與相關技術的取樣操作之示意圖;第2圖為根據本揭示內容中的一些實施例所繪示如第1A圖中的頻率估計器的電路示意圖;第3圖為根據本揭示內容中的一些實施例所繪示如第1A圖中的邊緣偵測電路的操作示意圖;以及第4圖為根據本揭示內容之一些實施例所繪示的一種時脈資料回復方法的流程圖。 The above and other objects, features, advantages and embodiments of the present disclosure will become more apparent and understood. Schematic diagram of the pulse data recovery device; FIG. 1B is a schematic diagram of a sampling operation of the clock data recovery device in FIG. 1A and a sampling operation of the related art according to some embodiments of the present disclosure; Some embodiments in the present disclosure are shown in the circuit diagram of the frequency estimator in FIG. 1A; FIG. 3 is a schematic diagram of the edge detection circuit in FIG. 1A according to some embodiments of the disclosure. FIG. 4 is a flow chart of a clock data recovery method according to some embodiments of the present disclosure.

下文係舉實施例配合所附圖式作詳細說明,但所提供之實施例並非用以限制本發明所涵蓋的範圍,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本發明所涵蓋的範圍。此外,圖式僅以說明為目的,並未依照原尺寸作圖。為使便於理解,下述說明中相同元件將以相同之符號標示來說明。 The embodiments are described in detail below with reference to the accompanying drawings, but the embodiments are not intended to limit the scope of the invention, and the description of structural operations is not intended to limit the order of execution thereof The structure, which produces equal devices, is within the scope of the present invention. In addition, the drawings are for illustrative purposes only and are not drawn to the original dimensions. For ease of understanding, the same elements in the following description will be denoted by the same reference numerals.

關於本文中所使用之『第一』、『第二』、…等,並非特別指稱次序或順位的意思,亦非用以限定本發明,其僅僅是為了區別以相同技術用語描述的元件或操作而已。 The terms "first", "second", etc., used herein are not intended to refer to the order or order, nor are they intended to limit the invention, only to distinguish between elements or operations described in the same technical terms. Only.

另外,關於本文中所使用之『耦接』或『連接』,均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。 In addition, the term "coupled" or "connected" as used herein may mean that two or more elements are in direct physical or electrical contact with each other, or indirectly in physical or electrical contact with each other, or Multiple components operate or act upon each other.

請參照第1A圖,第1A圖為根據本揭示內容中的一些實施例所繪示的一種時脈資料回復裝置100的示意圖。示例而言,時脈資料回復裝置100包含資料取樣模組110、相位偵測電路120、頻率估計器130、時脈產生模組140以及資料回復模組150。 Please refer to FIG. 1A. FIG. 1A is a schematic diagram of a clock data recovery device 100 according to some embodiments of the present disclosure. For example, the clock data recovery device 100 includes a data sampling module 110, a phase detection circuit 120, a frequency estimator 130, a clock generation module 140, and a data recovery module 150.

資料取樣模組110用以接收輸入資料Din,並根據多個時脈信號CLK1對輸入資料Din取樣,以產生多個資料值D1。於一些實施例中,資料取樣模組110包含多個資料 取樣器112。多個資料取樣器112用以接收輸入資料Din,並耦接至時脈產生模組140以接收多個時脈信號CLK1,其中多個時脈信號CLK1之相位彼此不同。藉由此設置方式,多個資料取樣器112可根據不同的時脈信號CLK1而於不同時間點對輸入資料Din進行取樣,以產生前述的多個資料值D1。於一些實施例中,資料取樣器112可由放大器與切換式電容電路實現,但本揭示內容並不以此為限。 The data sampling module 110 is configured to receive the input data Din and sample the input data Din according to the plurality of clock signals CLK1 to generate a plurality of data values D1. In some embodiments, the data sampling module 110 includes a plurality of materials. Sampler 112. The plurality of data samplers 112 are configured to receive the input data Din and are coupled to the clock generation module 140 to receive the plurality of clock signals CLK1, wherein the phases of the plurality of clock signals CLK1 are different from each other. With this arrangement, the plurality of data samplers 112 can sample the input data Din at different time points according to different clock signals CLK1 to generate the plurality of data values D1 described above. In some embodiments, the data sampler 112 can be implemented by an amplifier and a switched capacitor circuit, but the disclosure is not limited thereto.

相位偵測電路120用以接收輸入資料Din,並根據至少一時脈信號CLK2偵測輸入資料Din的相位誤差,以產生誤差信號VE。於一些實施例中,相位偵測電路120可包含兩個資料取樣器(未繪示)以及相位偵測器(未繪示)。上述兩個資料取樣器可根據兩個時脈信號CLK2對輸入資料Din進行取樣,並將取樣到的兩個資料值(未繪示)輸出至相位偵測器。據此,相位偵測器可比較上述兩個資料值,以產生誤差信號VE。於一些實施例中,前述的兩個時脈信號CLK2之間具有90度的相位差,且上述所取樣到的兩個資料值為同相(in-phase)資料值與正交(quadrature)資料值。於一些實施例中,前述的相位偵測器為二位元(bang-bang)相位偵測器。 The phase detecting circuit 120 is configured to receive the input data Din and detect the phase error of the input data Din according to the at least one clock signal CLK2 to generate the error signal VE. In some embodiments, the phase detecting circuit 120 can include two data samplers (not shown) and a phase detector (not shown). The two data samplers can sample the input data Din according to the two clock signals CLK2, and output the sampled two data values (not shown) to the phase detector. Accordingly, the phase detector can compare the two data values to generate an error signal VE. In some embodiments, the aforementioned two clock signals CLK2 have a phase difference of 90 degrees, and the two data values sampled above are in-phase data values and quadrature data values. . In some embodiments, the aforementioned phase detector is a bang-bang phase detector.

上述相位偵測電路120的設置方式僅為示例,本揭示內容並不以此為限。各種類型的相位偵測電路120亦為本揭示內容所涵蓋的範圍。例如,於另一些實施例中,相位偵測電路120包含Hogge相位偵測器。於又一些實施例中,相位偵測電路120包含Muller-Muller相位偵測器。 The manner of setting the phase detecting circuit 120 is merely an example, and the disclosure is not limited thereto. Various types of phase detection circuits 120 are also within the scope of the disclosure. For example, in other embodiments, phase detection circuit 120 includes a Hogge phase detector. In still other embodiments, the phase detection circuit 120 includes a Muller-Muller phase detector.

頻率估計器130耦接至相位偵測器120,以接收誤差信號VE。頻率估計器130用以根據誤差信號VE、相位臨界值(如後第2圖中的MP)以及頻率臨界值(如後第2圖中的MF)產生調整信號UP/DOWN至時脈產生模組140。 The frequency estimator 130 is coupled to the phase detector 120 to receive the error signal VE. The frequency estimator 130 is configured to generate an adjustment signal UP/DOWN to the clock generation module according to the error signal VE, the phase threshold (such as MP in FIG. 2), and the frequency threshold (such as MF in FIG. 2). 140.

時脈產生模組140耦接至頻率估計器130,以接收調整信號UP/DOWN。時脈產生模組140用以根據調整信號UP/DOWN與參考時脈信號CLKREF產生前述多個時脈信號CLK1與至少一時脈信號CLK2。 The clock generation module 140 is coupled to the frequency estimator 130 to receive the adjustment signal UP/DOWN. The clock generation module 140 is configured to generate the foregoing plurality of clock signals CLK1 and at least one clock signal CLK2 according to the adjustment signal UP/DOWN and the reference clock signal CLKREF.

示例而言,於一些實施例中,時脈產生模組140包含相位內插器142與多相位時脈產生器144。相位內插器142耦接至頻率估計器130以接收調整信號UP/DOWN,並根據調整信號UP/DOWN以及參考時脈信號CLKREF產生相應的本地時脈信號CLKL。例如,假設當前本地時脈信號CLKL具有第一相位。當調整信號UP/DOWN之狀態為UP時,相位內插器142可產生具有第二相位的本地時脈信號CLKL,其中第二相位領先於第一相位。或者,當調整信號UP/DOWN之狀態為DOWN時,相位內插器142可產生具有第三相位的本地時脈信號CLKL,其中第三相位落後於第一相位。 By way of example, in some embodiments, the clock generation module 140 includes a phase interpolator 142 and a multi-phase clock generator 144. The phase interpolator 142 is coupled to the frequency estimator 130 to receive the adjustment signal UP/DOWN, and generates a corresponding local clock signal CLKL according to the adjustment signal UP/DOWN and the reference clock signal CLKREF. For example, assume that the current local clock signal CLKL has a first phase. When the state of the adjustment signal UP/DOWN is UP, the phase interpolator 142 can generate the local clock signal CLKL having the second phase, wherein the second phase is ahead of the first phase. Alternatively, when the state of the adjustment signal UP/DOWN is DOWN, the phase interpolator 142 may generate the local clock signal CLKL having the third phase, wherein the third phase lags behind the first phase.

多相位時脈產生器144耦接至相位內插器142,以接收本地時脈信號CLKL。多相位時脈產生器144耦接至資料取樣模組110以傳送多個時脈信號CLK1。多相位時脈產生器144耦接至相位偵測電路120以傳送至少一時脈信號CLK2。多相位時脈產生器144設置以根據本地時脈 信號CLKL產生前述的多個時脈信號CLK1與至少一時脈信號CLK2。 The multi-phase clock generator 144 is coupled to the phase interpolator 142 to receive the local clock signal CLKL. The multi-phase clock generator 144 is coupled to the data sampling module 110 to transmit a plurality of clock signals CLK1. The multi-phase clock generator 144 is coupled to the phase detecting circuit 120 to transmit at least one clock signal CLK2. The multi-phase clock generator 144 is set to be based on the local clock The signal CLKL generates the aforementioned plurality of clock signals CLK1 and at least one clock signal CLK2.

上述時脈產生模組140的設置方式僅為示例,本揭示內容並不以此為限。各種類型的時脈產生模組140亦為本揭示內容所涵蓋的範圍。 The manner of setting the clock generation module 140 is merely an example, and the disclosure is not limited thereto. Various types of clock generation modules 140 are also within the scope of the disclosure.

資料回復模組150耦接至資料取樣模組110,以接收多個資料值D1。資料回復模組150用以根據多個資料值D1選擇相應的資料值,以產生相應於輸入資料Din的回復資料Dout。 The data recovery module 150 is coupled to the data sampling module 110 to receive a plurality of data values D1. The data reply module 150 is configured to select a corresponding data value according to the plurality of data values D1 to generate a reply data Dout corresponding to the input data Din.

示例而言,於一些實施例中,資料回復模組150包含資料儲存電路152、邊緣偵測電路154以及資料選擇電路156。資料儲存電路152耦接至多個資料取樣器112,以接收並儲存多個資料值D1。於一些實施例中,資料儲存電路152為暫存器。於另一些實施例中,由於前述的多個資料值D1為根據多個具有不同相位的時脈信號CLK1取得,資料儲存電路152可進一步根據本地時脈信號CLKL而對多個資料值D1進行同步,並儲存同步化後的多個資料值D1。上述資料儲存電路152的設置方式僅為示例,本揭示內容並不以此為限。各種類型的資料儲存電路152亦為本揭示內容所涵蓋的範圍。 For example, in some embodiments, the data recovery module 150 includes a data storage circuit 152, an edge detection circuit 154, and a data selection circuit 156. The data storage circuit 152 is coupled to the plurality of data samplers 112 to receive and store a plurality of data values D1. In some embodiments, data storage circuit 152 is a scratchpad. In other embodiments, since the plurality of data values D1 are obtained according to a plurality of clock signals CLK1 having different phases, the data storage circuit 152 may further synchronize the plurality of data values D1 according to the local clock signal CLKL. And store the synchronized data values D1. The manner of setting the data storage circuit 152 is merely an example, and the disclosure is not limited thereto. Various types of data storage circuits 152 are also within the scope of the disclosure.

於各個實施例中,邊緣偵測電路154可由執行各種決策演算法的數位電路實現。邊緣偵測電路154耦接至資料儲存電路152,以自資料儲存電路152讀取多個資料值D1。邊緣偵測電路154根據多個資料值D1的狀態而決定輸 入資料Din的至少一轉態點(例如為由邏輯1切換至邏輯0的下降邊緣,或是由邏輯0切換至邏輯1的上升邊緣),以產生選擇信號SE。如此,資料回復模組150可決定多個資料值D1與輸入資料Din的多個位元區間內的中央資料值與邊界資料值的關係。為易於理解,詳細說明將於後述第3圖一併說明。 In various embodiments, edge detection circuitry 154 may be implemented by digital circuitry that performs various decision algorithms. The edge detection circuit 154 is coupled to the data storage circuit 152 to read a plurality of data values D1 from the data storage circuit 152. The edge detection circuit 154 determines the input according to the state of the plurality of data values D1. At least one transition point of the incoming data Din (eg, switching from a logic 1 to a falling edge of a logic 0, or a logic 0 to a rising edge of a logic 1) to generate a selection signal SE. In this manner, the data recovery module 150 can determine the relationship between the central data value and the boundary data value in the plurality of bit intervals of the plurality of data values D1 and the input data Din. For ease of understanding, a detailed description will be described in the third drawing to be described later.

資料選擇電路156耦接至邊緣偵測電路154以接收選擇信號SE,並耦接至資料儲存電路152以讀取多個資料值D1。資料選擇電路156用以根據選擇信號SE而選擇多個資料值D1中至少一對應者。例如,資料選擇電路156包含計數(Tally)電路(未繪示)、位址產生電路(未繪示)以及多工器(未繪示)。於此例中,選擇信號SE為可反映轉態點位置的多個位元資料。計數電路可根據選擇信號SE的多個位元資料產生一控制信號,且位址產生電路根據此控制信號輸出相應的位址信號。如此一來,多個多工器可根據位址信號自資料儲存電路152選擇多個資料值D1中至少一對應者,並輸出為回復資料Dout。 The data selection circuit 156 is coupled to the edge detection circuit 154 to receive the selection signal SE and coupled to the data storage circuit 152 to read the plurality of data values D1. The data selection circuit 156 is configured to select at least one of the plurality of material values D1 according to the selection signal SE. For example, the data selection circuit 156 includes a Tally circuit (not shown), an address generation circuit (not shown), and a multiplexer (not shown). In this example, the selection signal SE is a plurality of bit data that reflects the position of the transition point. The counting circuit can generate a control signal according to the plurality of bit data of the selection signal SE, and the address generation circuit outputs the corresponding address signal according to the control signal. In this way, the plurality of multiplexers can select at least one of the plurality of data values D1 from the data storage circuit 152 according to the address signal, and output the data as the reply data Dout.

上述資料選擇電路156的設置方式僅為示例,本揭示內容並不以此為限。各種類型的資料選擇電路156亦為本揭示內容所涵蓋的範圍。 The manner of setting the data selection circuit 156 is merely an example, and the disclosure is not limited thereto. Various types of data selection circuits 156 are also within the scope of the disclosure.

請參照第1B圖,第1B為根據本揭示內容中的一些實施例所繪示的第1A圖中的時脈資料回復裝置100的取樣操作與相關技術的取樣操作之示意圖。 Referring to FIG. 1B, FIG. 1B is a schematic diagram of a sampling operation of the clock data recovery device 100 in FIG. 1A and a sampling operation of the related art according to some embodiments of the present disclosure.

於一些相關技術中,採用相位選取 (phase-picking)架構的時脈資料回復裝置以前饋(feed forward)式電路實現。若當傳輸端與接收端之間的時脈信號有頻率誤差時,上述相關技術的時脈資料回復裝置所產生的回復資料可能會出現資料錯誤。例如,如第1B圖所示,當出現頻率誤差時,由於相關技術僅採用前饋式電路結構,其取樣時間點TS1會逐漸偏移,而使得所取樣到的資料值出現錯誤。 In some related technologies, phase selection is adopted. The phase-picking architecture of the clock data recovery device is implemented by a feed forward circuit. If there is a frequency error between the clock signal between the transmitting end and the receiving end, the reply data generated by the clock data recovery device of the related art may have a data error. For example, as shown in FIG. 1B, when a frequency error occurs, since the related art only uses a feedforward circuit structure, the sampling time point TS1 is gradually shifted, and the sampled data value is erroneous.

相較於上述相關技術,於時脈資料回復裝置100中,相位偵測電路120、頻率估計器130以及時脈產生模組140配置為回授控制機制。藉由此回授控制機制,當偵測到輸入資料Din出現頻率誤差時,時脈產生模組140會相應調整本地時脈信號CLKL,以降低頻率誤差的影響。如此一來,相較於上述相關技術,回復資料Dout的精準度得以改善。例如,如第1B圖所示,當出現頻率誤差時,藉由前述的回授控制機制的操作,資料取樣模組110的取樣時間點TS2能夠穩定在固定時間,而使得所取樣到的資料值可以維持正確。 Compared with the above related art, in the clock data recovery device 100, the phase detection circuit 120, the frequency estimator 130, and the clock generation module 140 are configured as a feedback control mechanism. By means of the feedback control mechanism, when the frequency error of the input data Din is detected, the clock generation module 140 adjusts the local clock signal CLKL accordingly to reduce the influence of the frequency error. As a result, the accuracy of the reply data Dout is improved compared to the related art described above. For example, as shown in FIG. 1B, when a frequency error occurs, the sampling time point TS2 of the data sampling module 110 can be stabilized at a fixed time by the operation of the feedback control mechanism described above, so that the sampled data value is obtained. Can be maintained correctly.

以下段落將提出各個實施例,來說明時脈資料回復裝置100的功能與應用,但本揭示內容並不僅以下所列的實施例為限。 The following paragraphs will present various embodiments to illustrate the functions and applications of the clock data recovery device 100, but the disclosure is not limited to the embodiments listed below.

請參照第2圖,第2圖為根據本揭示內容中的一些實施例所繪示如第1A圖中的頻率估計器130的電路示意圖。為易於理解,於第2圖中的類似元件將與第1A圖指定相同標號。 Referring to FIG. 2, FIG. 2 is a circuit diagram of the frequency estimator 130 as shown in FIG. 1A according to some embodiments of the present disclosure. For ease of understanding, similar elements in Fig. 2 will be assigned the same reference numerals as in Fig. 1A.

於一些實施例中,頻率估計器130包含三角積分調變器231、三角積分調變器232、積分器233、計數器234以及加法器235。 In some embodiments, frequency estimator 130 includes a delta-sigma modulator 231, a delta-sigma modulator 232, an integrator 233, a counter 234, and an adder 235.

三角積分調變器231耦接至第1A圖中的相位偵測電路120,以接收誤差信號VE。三角積分調變器231用以累加誤差信號VE以產生相位累計值AP,並比較相位累計值AP與相位臨界值MP。當相位累計值AP高於相位臨界值MP時,三角積分調變器231輸出控制信號VCP。 The triangular integral modulator 231 is coupled to the phase detecting circuit 120 in FIG. 1A to receive the error signal VE. The triangular integral modulator 231 is configured to accumulate the error signal VE to generate a phase integrated value AP, and compare the phase integrated value AP with the phase critical value MP. When the phase integrated value AP is higher than the phase threshold MP, the delta-sigma modulator 231 outputs the control signal VCP.

三角積分調變器232耦接至第1A圖中的相位偵測電路120,以接收誤差信號VE。三角積分調變器232用以累加誤差信號VE以產生頻率累計值AF,並比較頻率累計值AF與頻率臨界值MF。當頻率累計值AF高於頻率臨界值MF時,三角積分調變器232輸出控制信號VCF。 The triangular integral modulator 232 is coupled to the phase detecting circuit 120 in FIG. 1A to receive the error signal VE. The triangular integral modulator 232 is configured to accumulate the error signal VE to generate a frequency integrated value AF, and compare the frequency integrated value AF with the frequency threshold MF. When the frequency integrated value AF is higher than the frequency threshold MF, the delta-sigma modulator 232 outputs the control signal VCF.

於一些實施例中,相位臨界值MP與頻率臨界值MF可為預定數值。於另一些實施例中,相位臨界值MP與頻率臨界值MF可預先儲存於頻率估計器130,並可經由外部程式或電路動態地進行調整相位臨界值MP與頻率臨界值MF之值。 In some embodiments, the phase threshold MP and the frequency threshold MF can be predetermined values. In other embodiments, the phase threshold MP and the frequency threshold MF may be pre-stored in the frequency estimator 130, and the values of the phase threshold MP and the frequency threshold MF may be dynamically adjusted via an external program or circuit.

積分器233耦接至三角積分調變器232,以接收控制信號VCF。積分器233用以累加控制信號VCF,以產生積分信號VI。計數器234耦接至積分器233,以接收積分信號VI。計數器234根據積分信號VI產生控制信號VCT。加法器235耦接三角積分調變器231與計數器234,以接收控制信號VCP與控制信號VCT,並將控制信號VCP與控制信 號VCT進行加總後產生調整信號UP/DOWN。 The integrator 233 is coupled to the delta-sigma modulator 232 to receive the control signal VCF. The integrator 233 is used to accumulate the control signal VCF to generate an integrated signal VI. The counter 234 is coupled to the integrator 233 to receive the integrated signal VI. The counter 234 generates a control signal VCT based on the integrated signal VI. The adder 235 is coupled to the delta-sigma modulator 231 and the counter 234 to receive the control signal VCP and the control signal VCT, and the control signal VCP and the control signal After the VCT is added, the adjustment signal UP/DOWN is generated.

於一些實施例中,控制信號VCP、控制信號VCF、積分信號VI與控制信號VCT可為具有多位元的數位信號。當頻率累計值AF高於頻率臨界值MF時,三角積分調變器232切換控制信號VCF之位元值,以使計數器234開始計數。據此,計數器234產生不同的控制信號VCT至加法器235。或者,當相位累計值AP高於相位臨界值MP時,三角積分調變器231可切換控制信號VCP之位元值,以使加法器235產生不同的調整信號UP/DOWN。藉由上述設置方式,當輸入資料Din出現頻率誤差時,時脈產生模組140可根據調整信號UP/DOWN調整本地時脈信號CLKL,以改善回復資料Dout的準確度。 In some embodiments, the control signal VCP, the control signal VCF, the integrated signal VI, and the control signal VCT can be digital signals having multiple bits. When the frequency integrated value AF is higher than the frequency threshold MF, the delta-sigma modulator 232 switches the bit value of the control signal VCF to cause the counter 234 to start counting. Accordingly, the counter 234 generates a different control signal VCT to the adder 235. Alternatively, when the phase integrated value AP is higher than the phase threshold MP, the triangular integral modulator 231 can switch the bit value of the control signal VCP to cause the adder 235 to generate a different adjustment signal UP/DOWN. With the above setting manner, when the frequency error occurs in the input data Din, the clock generation module 140 can adjust the local clock signal CLKL according to the adjustment signal UP/DOWN to improve the accuracy of the reply data Dout.

上述頻率估計器130的設置方式僅為示例,本揭示內容並不以此為限。各種類型的頻率估計器130亦為本揭示內容所涵蓋的範圍。 The manner of setting the frequency estimator 130 is merely an example, and the disclosure is not limited thereto. Various types of frequency estimators 130 are also within the scope of the disclosure.

請參照第3圖,第3圖為根據本揭示內容中的一些實施例所繪示如第1A圖中的邊緣偵測電路154的操作示意圖。為易於理解,於第3圖中的類似元件將與第1A圖指定相同標號。為便於說明,於此例中,資料取樣模組110利用三個時脈信號CLK1對輸入資料Din的位元區間進行取樣,其中三個時脈信號CLK1的相位分別為P1、P2與P3。 Referring to FIG. 3, FIG. 3 is a schematic diagram showing the operation of the edge detecting circuit 154 in FIG. 1A according to some embodiments of the present disclosure. For ease of understanding, similar elements in Fig. 3 will be assigned the same reference numerals as in Fig. 1A. For convenience of description, in this example, the data sampling module 110 samples the bit interval of the input data Din by using three clock signals CLK1, wherein the phases of the three clock signals CLK1 are P1, P2, and P3, respectively.

示例而言,如第3圖所示,多個資料取樣器112根據上述三個時脈信號CLK1依序取樣到的前6個資料值D1為”0”、”1”、”1”、”1”、”0”、以及”0”。於此例中, 邊緣偵測電路154可對每兩個鄰近的資料值D1執行互斥或操作,偵測輸入資料Din的至少一轉態點。例如,邊緣偵測電路154包含多個互斥或閘。第一個互斥或閘根據第一個資料值D1(”0”)以及第二個資料值D1(”1”)輸出具有邏輯1的信號。第二個互斥或閘根據第二個資料值D1(”1”)以及第三個資料值D1(”1”)輸出具有邏輯0的信號。根據第一個互斥或閘輸出的具有邏輯1的信號,可確定輸入資料Din於對應的兩個取樣時間(亦即具有相位P1的時脈信號CLK1與具有相位P2的時脈信號CLK1)之間存在轉態點。根據第二個互斥或閘輸出的具有邏輯0的信號,可確定輸入資料Din於對應的兩個取樣時間(亦即具有相位P2的時脈信號CLK1與具有相位P3的時脈信號CLK1)之間不存在轉態點。依此類推,可根據多個互斥或閘所輸出的多個信號分析輸入資料Din的轉態點。 For example, as shown in FIG. 3, the first six data values D1 sequentially sampled by the plurality of data samplers 112 according to the three clock signals CLK1 are “0”, “1”, “1”, “ 1", "0", and "0". In this case, The edge detection circuit 154 can perform a mutual exclusion or operation on each of the two adjacent data values D1 to detect at least one transition point of the input data Din. For example, edge detection circuit 154 includes a plurality of mutually exclusive or gates. The first mutex or gate outputs a signal having a logic 1 based on the first data value D1 ("0") and the second data value D1 ("1"). The second mutex or gate outputs a signal having a logic 0 based on the second data value D1 ("1") and the third data value D1 ("1"). According to the signal of logic 1 of the first mutex or gate output, the input data Din can be determined for the corresponding two sampling times (that is, the clock signal CLK1 having the phase P1 and the clock signal CLK1 having the phase P2). There is a transition point between them. According to the second mutex or gate output signal having logic 0, the input data Din can be determined to be corresponding to the two sampling times (that is, the clock signal CLK1 having the phase P2 and the clock signal CLK1 having the phase P3). There is no transition point between them. And so on, the transition point of the input data Din can be analyzed according to multiple signals output by multiple mutually exclusive or gates.

例如,如第3圖所示,發生於對應的取樣時間(亦即相位P1與相位P2之間)上的轉態點數量為6,而發生於其他取樣時間(亦即相位P2與相位P3之間)的上轉態點數量皆為0。據此,邊緣偵測電路154可分析出根據具有相位P1或P2的時脈信號CLK1所取樣到的資料值D1為輸入資料Din的上升或下降邊緣,而根據具有P3的時脈信號CLK1所取樣到的資料值D1為輸入資料Din的中央資料值。如此一來,邊緣偵測電路154輸出相應的選擇信號SE,以使資料選擇電路156選取出多個資料值D1中對應於輸入資料Din的中央資料值中至少一者。於一些實施例中,上述根據轉態點數量來 判斷輸入資料Din的轉態點的操作為中央選取(center-picking)演算法。於一些實施例中,上述判斷輸入資料Din的轉態點數量的操作可由前述的計數(Tally)電路執行。 For example, as shown in FIG. 3, the number of transition points occurring at the corresponding sampling time (ie, between phase P1 and phase P2) is 6, and occurs at other sampling times (ie, phase P2 and phase P3). The number of up-going points is 0. According to this, the edge detecting circuit 154 can analyze the data value D1 sampled according to the clock signal CLK1 having the phase P1 or P2 as the rising or falling edge of the input data Din, and sample according to the clock signal CLK1 having P3. The data value D1 obtained is the central data value of the input data Din. In this way, the edge detection circuit 154 outputs a corresponding selection signal SE, so that the data selection circuit 156 selects at least one of the plurality of data values D1 corresponding to the central data values of the input data Din. In some embodiments, the above is based on the number of transition points. The operation of judging the transition point of the input data Din is a center-picking algorithm. In some embodiments, the above-described operation of determining the number of transition points of the input data Din can be performed by the aforementioned Tally circuit.

於另一些實施例中,邊緣偵測電路154亦可執行多數決(majority-voting)演算法的數位電路實現。例如,如第3圖所示,多個資料取樣器112根據上述三個時脈信號CLK1依序取樣到的前3個資料值D1為”0”、”1”、”1”。由於具有邏輯1的資料值D1的數量較多,邊緣偵測電路154可判定邏輯1為輸入資料Din的中央資料值,並據此判定根據具有相位P1的時脈信號CLK1所取樣到的資料值D1為輸入資料Din的上升或下降邊緣。 In other embodiments, the edge detection circuit 154 can also implement a digital circuit implementation of a majority-voting algorithm. For example, as shown in FIG. 3, the first three data values D1 sequentially sampled by the plurality of data samplers 112 based on the three clock signals CLK1 are "0", "1", "1". Since the number of data values D1 having the logic 1 is large, the edge detecting circuit 154 can determine that the logic 1 is the central data value of the input data Din, and based on this, determine the data value sampled according to the clock signal CLK1 having the phase P1. D1 is the rising or falling edge of the input data Din.

上述邊緣偵測電路154的設置方式僅為示例,本揭示內容並不以此為限。各種採用不同的決策演算法的邊緣偵測電路154亦為本揭示內容所涵蓋的範圍。 The manner of setting the edge detection circuit 154 is merely an example, and the disclosure is not limited thereto. Various edge detection circuits 154 employing different decision algorithms are also within the scope of the disclosure.

第4圖為根據本揭示內容之一些實施例所繪示的一種時脈資料回復方法400的流程圖。為了易於理解,請一併參照第1A圖與第4圖,時脈資料回復裝置100之操作將與時脈資料回復方法400一併說明。 FIG. 4 is a flow diagram of a clock data recovery method 400 in accordance with some embodiments of the present disclosure. For ease of understanding, please refer to FIG. 1A and FIG. 4 together, and the operation of the clock data recovery device 100 will be described together with the clock data recovery method 400.

於步驟S410中,資料取樣模組110根據多個時脈信號CLK1對輸入資料Din取樣,以產生多個資料值D1。示例而言,如第1A圖所示,多個資料取樣器112根據多個不同相位的時脈信號CLK1對輸入資料Din取樣,以連續地產生多個資料值D1。 In step S410, the data sampling module 110 samples the input data Din according to the plurality of clock signals CLK1 to generate a plurality of data values D1. For example, as shown in FIG. 1A, a plurality of data samplers 112 sample the input data Din based on a plurality of clock signals CLK1 of different phases to continuously generate a plurality of data values D1.

於步驟S420中,相位偵測電路120根據至少一第二時脈信號CLK2偵測輸入資料Din中之相位誤差,以產生誤差信號VE。如先前所述,相位偵測電路120可採用各種類型的相位偵測器分析輸入資料Din,以根據輸入資料Din中之相位誤差產生誤差信號VE。 In step S420, the phase detecting circuit 120 detects the phase error in the input data Din according to the at least one second clock signal CLK2 to generate the error signal VE. As previously described, the phase detection circuit 120 can analyze the input data Din using various types of phase detectors to generate an error signal VE based on the phase error in the input data Din.

於步驟S430中,頻率估計器130根據誤差信號VE、相位臨界值MP以及頻率臨界值MF產生調整信號UP/DOWN。示例而言,如先前第2圖所示,頻率估計器130可比較誤差信號VE與相位臨界值MP,並比較誤差信號VE與頻率臨界值MF,以產生相應的調整信號UP/DOWN。 In step S430, the frequency estimator 130 generates an adjustment signal UP/DOWN based on the error signal VE, the phase threshold MP, and the frequency threshold MF. For example, as shown in the previous FIG. 2, the frequency estimator 130 can compare the error signal VE with the phase threshold MP and compare the error signal VE with the frequency threshold MF to generate a corresponding adjustment signal UP/DOWN.

於步驟S440中,時脈產生模組140根據調整信號UP/DOWN與參考時脈信號CLKREF產生多個時脈信號CLK1與至少一時脈信號CLK2。如先前所述,相位偵測電路120、頻率估計器130以及時脈產生模組140配置為回授機制。等效而言,經由此回授機制,時脈產生模組140可根據調整信號UP/DOWN動態地調整多個時脈信號CLK1與至少一時脈信號CLK2。 In step S440, the clock generation module 140 generates a plurality of clock signals CLK1 and at least one clock signal CLK2 according to the adjustment signal UP/DOWN and the reference clock signal CLKREF. As previously described, phase detection circuit 120, frequency estimator 130, and clock generation module 140 are configured as feedback mechanisms. Equivalently, the clock generation module 140 can dynamically adjust the plurality of clock signals CLK1 and the at least one clock signal CLK2 according to the adjustment signal UP/DOWN.

於步驟S450中,資料回復模組150根據多個資料值D1產生相應於輸入資料Din之回復資料Dout。示例而言,如先前所述,邊緣偵測電路154可藉由執行各種決策演算法來判定輸入資料Din的轉態點,以決定多個資料值D1中何者為輸入資料Din的中央資料值。資料選擇電路156可據此選取出多個資料值D1中對應於輸入資料Din的中央資料值中至少一者,以產生回復資料Dout。 In step S450, the data reply module 150 generates a reply data Dout corresponding to the input data Din according to the plurality of data values D1. For example, as previously described, the edge detection circuit 154 can determine the transition point of the input data Din by executing various decision algorithms to determine which of the plurality of data values D1 is the central data value of the input data Din. The data selection circuit 156 can select at least one of the plurality of data values D1 corresponding to the central data values of the input data Din to generate the reply data Dout.

上述時脈資料回復方法400的多個步驟僅為示例,並非限於上述示例的順序執行。在不違背本揭示內容的各實施例的操作方式與範圍下,在時脈資料回復方法400下的各種操作當可適當地增加、替換、省略或以不同順序執行。 The plurality of steps of the above-described clock data replying method 400 are merely examples, and are not limited to the sequential execution of the above examples. Various operations under the clock data recovery method 400 may be appropriately added, replaced, omitted, or performed in a different order, without departing from the scope of operation of the embodiments of the present disclosure.

綜上所述,本案所提供的時脈資料回復裝置100與其時脈資料回復方法400可透過回授機制來消除輸入資料上的頻率誤差,以改善回復資料的準確度。 In summary, the clock data recovery device 100 and the clock data recovery method 400 provided in the present invention can eliminate the frequency error on the input data through a feedback mechanism to improve the accuracy of the response data.

雖然本案已以實施方式揭露如上,然其並非用以限定本案,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可作各種之更動與潤飾,因此本案之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present case. Anyone skilled in the art can make various changes and refinements without departing from the spirit and scope of the case. Therefore, the scope of protection of this case is considered. The scope defined in the patent application is subject to change.

100‧‧‧時脈資料回復裝置 100‧‧‧clock data recovery device

110‧‧‧資料取樣模組 110‧‧‧ data sampling module

120‧‧‧相位偵測電路 120‧‧‧ phase detection circuit

130‧‧‧頻率估計器 130‧‧‧frequency estimator

140‧‧‧時脈產生模組 140‧‧‧clock generation module

150‧‧‧資料回復模組 150‧‧‧ Data Recovery Module

Din‧‧‧輸入資料 Din‧‧‧ Input data

D1‧‧‧資料值 D1‧‧‧ data value

112‧‧‧資料取樣器 112‧‧‧ data sampler

CLK1、CLK2‧‧‧時脈信號 CLK1, CLK2‧‧‧ clock signal

VE‧‧‧誤差信號 VE‧‧‧ error signal

UP/DOWN‧‧‧調整信號 UP/DOWN‧‧‧Adjustment signal

CLKREF‧‧‧參考時脈信號 CLKREF‧‧‧ reference clock signal

142‧‧‧相位內插器 142‧‧‧ phase interpolator

144‧‧‧多相位時脈產生器 144‧‧‧Multi-phase clock generator

CLKL‧‧‧本地時脈信號 CLKL‧‧‧ local clock signal

Dout‧‧‧回復資料 Dout‧‧‧Reply information

152‧‧‧資料儲存電路 152‧‧‧Data storage circuit

154‧‧‧邊緣偵測電路 154‧‧‧Edge detection circuit

156‧‧‧資料選擇電路 156‧‧‧ data selection circuit

SE‧‧‧選擇信號 SE‧‧‧Selection signal

Claims (10)

一種時脈資料回復裝置,包含:一資料取樣模組,用以根據複數個第一時脈信號對一輸入資料取樣,以產生複數個資料值,其中該些第一時脈信號之相位彼此不同;一相位偵測電路,用以根據至少一第二時脈信號偵測該輸入資料中之一相位誤差,以產生一誤差信號;一頻率估計器,用以根據該誤差信號、一相位臨界值以及一頻率臨界值產生一調整信號;一時脈產生模組,用以根據該調整信號與一參考時脈信號產生該些第一時脈信號與該至少一第二時脈信號;以及一資料回復模組,用以根據該些資料值產生相應於該輸入資料之一回復資料。 A clock data recovery device includes: a data sampling module for sampling an input data according to a plurality of first clock signals to generate a plurality of data values, wherein the first clock signals have different phases from each other a phase detecting circuit for detecting a phase error in the input data according to the at least one second clock signal to generate an error signal; a frequency estimator for using the phase threshold according to the error signal And a frequency threshold for generating an adjustment signal; a clock generation module configured to generate the first clock signal and the at least one second clock signal according to the adjustment signal and a reference clock signal; and a data reply The module is configured to generate a response data corresponding to the input data according to the data values. 如請求項1所述的時脈資料回復裝置,其中該頻率估計器包含:一第一三角積分調變器,用以累計該誤差信號產生一相位累計值,並在該相位累計值高於該相位臨界值時輸出一第一控制信號;一第二三角積分調變器,用以累計該誤差信號產生一頻率累計值,並在該頻率累計值高於該頻率臨界值時輸出一第二控制信號;一積分器,用以對該第二控制信號進行累加,以產生一積分信號; 一計數器,用以根據該積分信號進行計數,以產生一第三控制信號;以及一加法器,用以相加該第一控制信號與該第三控制信號,以產生該調整信號。 The clock data recovery device of claim 1, wherein the frequency estimator comprises: a first triangular integral modulator for accumulating the error signal to generate a phase integrated value, and the phase integrated value is higher than the a first control signal is outputted when the phase threshold is used; a second triangular integral modulator is configured to accumulate the error signal to generate a frequency integrated value, and output a second control when the frequency integrated value is higher than the frequency threshold a signal, an integrator for accumulating the second control signal to generate an integrated signal; a counter for counting according to the integrated signal to generate a third control signal; and an adder for adding the first control signal and the third control signal to generate the adjustment signal. 如請求項1所述的時脈資料回復裝置,其中該資料回復模組包含:一資料儲存電路,用以儲存該些資料值;一邊緣偵測電路,用以根據該些資料值判斷該輸入資料之至少一轉態點,以產生一選擇信號;以及一資料選擇電路,用以根據該選擇信號自該資料儲存電路選擇該些資料值中之至少一對應者,以產生該回復資料。 The clock data recovery device of claim 1, wherein the data recovery module comprises: a data storage circuit for storing the data values; and an edge detection circuit for determining the input based on the data values At least one transition point of the data to generate a selection signal; and a data selection circuit for selecting at least one of the data values from the data storage circuit based on the selection signal to generate the reply data. 如請求項2所述的時脈資料回復裝置,其中該資料儲存電路更根據一本地時脈信號同步化該些資料值。 The clock data recovery device of claim 2, wherein the data storage circuit further synchronizes the data values according to a local clock signal. 如請求項1所述的時脈資料回復裝置,其中該時脈產生模組包含:一多相位時脈產生器,用以根據一本地時脈信號產生該些第一時脈信號以及該至少一第二時脈信號;以及一相位內插器,用以根據該調整信號以及該參考時脈信號產生該本地時脈信號。 The clock data recovery device of claim 1, wherein the clock generation module comprises: a multi-phase clock generator for generating the first clock signals and the at least one according to a local clock signal a second clock signal; and a phase interpolator for generating the local clock signal according to the adjustment signal and the reference clock signal. 一種時脈資料回復方法,包含:根據複數個第一時脈信號對一輸入資料取樣,以產生複數個資料值,其中該些第一時脈信號之相位彼此不同;根據至少一第二時脈信號偵測該輸入資料中之一相位誤差,以產生一誤差信號;根據該誤差信號、一相位臨界值以及一頻率臨界值產生一調整信號;根據該調整信號與一參考時脈信號產生該些第一時脈信號與該至少一第二時脈信號;以及根據該些資料值產生相應於該輸入資料之一回復資料。 A clock data recovery method includes: sampling an input data according to a plurality of first clock signals to generate a plurality of data values, wherein phases of the first clock signals are different from each other; according to at least one second clock The signal detects a phase error in the input data to generate an error signal; generating an adjustment signal according to the error signal, a phase threshold, and a frequency threshold; generating the signal according to the adjustment signal and a reference clock signal a first clock signal and the at least one second clock signal; and generating a reply data corresponding to the input data according to the data values. 如請求項6所述的時脈資料回復方法,其中產生該調整信號的操作包含:經由一第一三角積分調變器累計該誤差信號以產生一相位累計值,並在該相位累計值高於該相位臨界值時輸出一第一控制信號;經由一第二三角積分調變器累計該誤差信號產生一頻率累計值,並在該頻率累計值高於該頻率臨界值時輸出一第二控制信號;經由一積分器對該第二控制信號進行累加,以產生一積分信號;經由一計數器根據該積分信號進行計數,以產生一第三控制信號;以及經由一加法器相加該第一控制信號與該第三控制信 號,以產生該調整信號。 The clock data recovery method of claim 6, wherein the generating the adjustment signal comprises: accumulating the error signal via a first triangular integral modulator to generate a phase integrated value, and the integrated value is higher in the phase The phase threshold value outputs a first control signal; accumulating the error signal via a second delta-sigma modulator to generate a frequency integrated value, and outputting a second control signal when the frequency integrated value is higher than the frequency threshold value; And accumulating the second control signal via an integrator to generate an integrated signal; counting by the counter according to the integrated signal to generate a third control signal; and adding the first control signal via an adder With the third control letter Number to generate the adjustment signal. 如請求項6所述的時脈資料回復方法,其中產生該回復資料的操作包含:儲存該些資料值;根據該些資料值判斷該輸入資料之至少一轉態點,以產生一選擇信號;以及根據該選擇信號選擇該些資料值中之至少一對應者,以產生該回復資料。 The method of claim 6, wherein the generating the reply data comprises: storing the data values; determining, according to the data values, at least one transition point of the input data to generate a selection signal; And selecting at least one of the data values according to the selection signal to generate the reply data. 如請求項8所述的時脈資料回復方法,更包含:根據一本地時脈信號同步化該些資料值。 The clock data replying method of claim 8, further comprising: synchronizing the data values according to a local clock signal. 如請求項6所述的時脈資料回復方法,其中產生該些第一時脈信號與該至少一第二時脈信號的操作包含:根據一本地時脈信號產生該些第一時脈信號以及該至少一第二時脈信號;以及經由一相位內插器根據該調整信號以及該參考時脈信號產生該本地時脈信號。 The clock data recovery method of claim 6, wherein the generating the first clock signal and the at least one second clock signal comprises: generating the first clock signals according to a local clock signal and The at least one second clock signal; and generating the local clock signal according to the adjustment signal and the reference clock signal via a phase interpolator.
TW105112841A 2016-04-25 2016-04-25 Device and method for recovering clock and data TWI601404B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105112841A TWI601404B (en) 2016-04-25 2016-04-25 Device and method for recovering clock and data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105112841A TWI601404B (en) 2016-04-25 2016-04-25 Device and method for recovering clock and data

Publications (2)

Publication Number Publication Date
TWI601404B TWI601404B (en) 2017-10-01
TW201739207A true TW201739207A (en) 2017-11-01

Family

ID=61011361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105112841A TWI601404B (en) 2016-04-25 2016-04-25 Device and method for recovering clock and data

Country Status (1)

Country Link
TW (1) TWI601404B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI775389B (en) * 2021-04-15 2022-08-21 智原科技股份有限公司 Clock data calibration circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417407B (en) * 2018-04-27 2022-11-22 瑞昱半导体股份有限公司 Clock data recovery device
CN110611496B (en) * 2018-06-14 2023-04-07 创意电子股份有限公司 Clock data recovery device and phase control method
CN112260685B (en) * 2019-07-22 2023-08-11 创意电子股份有限公司 Clock data recovery device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI775389B (en) * 2021-04-15 2022-08-21 智原科技股份有限公司 Clock data calibration circuit

Also Published As

Publication number Publication date
TWI601404B (en) 2017-10-01

Similar Documents

Publication Publication Date Title
US9793903B1 (en) Device and method for recovering clock and data
US10454667B2 (en) Phase control block for managing multiple clock domains in systems with frequency offsets
JP4754578B2 (en) Phase comparator and phase adjustment circuit
TWI474701B (en) A clock recovery circuit and a parallel output circuit
US7974375B2 (en) Linear phase detector and clock/data recovery circuit thereof
TWI601404B (en) Device and method for recovering clock and data
JP2008066879A (en) Oversampling circuit, and oversampling method
TW202002561A (en) Clock and data recovery device and phase control method
US7936855B2 (en) Oversampling data recovery circuit and method for a receiver
KR20180004283A (en) Multi-Mode Phase-Frequency Detector for Clock and Data Recovery
US11012077B2 (en) Integrated circuit detecting frequency and phase of clock signal and clock and data recovery circuit including the integrated circuit
JP2013070323A (en) Cdr circuit and cdr method
US8513994B2 (en) State machine for deskew delay locked loop
US6960960B2 (en) Frequency detector detecting variation in frequency difference between data signal and clock signal
JP5000635B2 (en) Method and apparatus for bit-synchronizing data transferred across a multi-pin asynchronous serial interface
CN111262562B (en) Metastable state detection circuit
KR20150069493A (en) Dual phase frequency detector circuit for preventing false locking, method of operating the same and clock data recovery circuit employing the same
US7321647B2 (en) Clock extracting circuit and clock extracting method
KR101722437B1 (en) Apparatus and method for detecting frequency, clock and data recovery circuit
CN110611496B (en) Clock data recovery device and phase control method
KR101488597B1 (en) Mutli channel interface apparatus
US11711200B2 (en) Multiphase clock generators with digital calibration
WO2005099164A1 (en) Clock recovery in an oversampled serial communications system
KR20140015931A (en) Receiver for data communication
JP2009284134A (en) Clock data repair circuit