TW201727778A - Wafer process for molded chip scale package with thick backside metallization - Google Patents

Wafer process for molded chip scale package with thick backside metallization Download PDF

Info

Publication number
TW201727778A
TW201727778A TW105102272A TW105102272A TW201727778A TW 201727778 A TW201727778 A TW 201727778A TW 105102272 A TW105102272 A TW 105102272A TW 105102272 A TW105102272 A TW 105102272A TW 201727778 A TW201727778 A TW 201727778A
Authority
TW
Taiwan
Prior art keywords
wafer
metal
layer
semiconductor wafer
encapsulation layer
Prior art date
Application number
TW105102272A
Other languages
Chinese (zh)
Inventor
彥迅 薛
依瑪茲 哈姆扎
約瑟 何
魯軍
牛志強
連國峰
Original Assignee
萬國半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 萬國半導體股份有限公司 filed Critical 萬國半導體股份有限公司
Priority to TW105102272A priority Critical patent/TW201727778A/en
Publication of TW201727778A publication Critical patent/TW201727778A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A wafer process for molded chip scale package (MCSP) comprises: depositing metal bumps on bonding pads of chips on a wafer; forming a first packaging layer at a front surface of the wafer to cover the metal bumps; forming an un-covered ring at an edge of the wafer to expose two ends of each scribe line of a plurality of scribe lines; thinning the first packaging layer to expose metal bumps; forming cutting grooves; grinding a back surface of the wafer to form a recessed space and a support ring at the edge of the wafer; depositing a metal seed layer at a bottom surface of the wafer in the recessed space; cutting off an edge portion of the wafer; flipping and mounting the wafer on a substrate; depositing a metal layer covering the metal seed layer; removing the substrate from the wafer; and separating individual chips from the wafer by cutting through the first packaging layer, the wafer, the metal seed layers and the metal layers along the scribe lines.

Description

用於帶有厚背面金屬化的模壓晶片級封裝的晶圓製程Wafer process for molded wafer level packages with thick back metallization

本發明是關於半導體件的封裝方法。確切地說,本發明旨在提供一種模壓晶片級封裝(MCSP)的改良晶圓製程,以獲得帶有厚背面金屬的薄晶片封裝,且在半導體件的正面及/或背面上具備成型化合物。The present invention relates to a method of packaging a semiconductor device. Specifically, the present invention is directed to an improved wafer process for molded wafer level packaging (MCSP) to obtain a thin wafer package with a thick back metal and a molding compound on the front and/or back side of the semiconductor device.

在晶圓級晶片規模封裝(WLCSP)的技術中,在晶圓上全部完成半導體晶片,從晶圓上分離單獨的晶片封裝後,半導體晶片直接封裝在晶圓級上。因此,晶片封裝的尺寸與原始的半導體晶片的尺寸相同。通常來說,WLCSP技術廣泛應用於半導體件。在本領域中眾所周知,垂直功率件,例如共汲極金氧半場效電晶體(MOSFET)等具有較大的導通電阻(Rdson)。因此,需要削薄晶圓,以減小基板電阻,從而達到減小Rdson的目的。然而,由於晶圓較薄,缺少機械保護,因此薄的晶圓很難處理。另外,為了減小垂直功率件中的Rdson,需要很厚的背面金屬減小擴散電阻。傳統製程通常使用很厚的引線框,將半導體晶片貼裝在厚引線框上。然而,這種方法無法實現100%的晶片規模封裝。In the wafer level wafer scale package (WLCSP) technology, the semiconductor wafer is completely completed on the wafer, and after the individual wafer package is separated from the wafer, the semiconductor wafer is directly packaged on the wafer level. Therefore, the size of the wafer package is the same as that of the original semiconductor wafer. In general, WLCSP technology is widely used in semiconductor devices. It is well known in the art that vertical power devices, such as common-drained metal oxide half field effect transistors (MOSFETs), have large on-resistances (Rdson). Therefore, it is necessary to thin the wafer to reduce the substrate resistance, thereby achieving the purpose of reducing Rdson. However, thin wafers are difficult to handle due to the thin wafers and lack of mechanical protection. In addition, in order to reduce Rdson in the vertical power device, a thick back metal is required to reduce the diffusion resistance. Conventional processes typically use a very thick leadframe to mount a semiconductor wafer on a thick leadframe. However, this method cannot achieve 100% wafer scale packaging.

另外,在傳統的晶片規模封裝技術中,沿晶圓正面的劃線直接切割晶圓,從晶圓上分離單獨的晶片封裝。然而,在削薄晶圓之前,封裝的晶圓正面通常帶有成型化合物,以提高對晶圓的機械支持力,防止削薄晶圓開裂。因此,劃線被成型化合物覆蓋。很難沿晶圓正面的劃線切割晶圓。In addition, in conventional wafer scale packaging techniques, wafers are diced directly along the scribe lines on the front side of the wafer to separate individual wafer packages from the wafer. However, prior to thinning the wafer, the front side of the packaged wafer typically has molding compounds to increase the mechanical support of the wafer and prevent wafer cracking. Therefore, the scribe line is covered by the molding compound. It is difficult to cut the wafer along the scribe line on the front side of the wafer.

因此,基於上述相關習知技術的說明,必須製備在被WLCSP技術的半導體件正面及/或背面上帶有厚背面金屬以及的成型化合物的超薄晶片。Therefore, based on the description of the related art described above, it is necessary to prepare an ultra-thin wafer having a thick back metal and a molding compound on the front and/or back side of the semiconductor article of the WLCSP technology.

本發明的目的在於提出一種用於製備帶有厚背面金屬化的模壓晶片級封裝的晶圓製程,以改善現有技術中的一個或多個問題。It is an object of the present invention to provide a wafer process for preparing a molded wafer level package with thick backside metallization to improve one or more of the problems in the prior art.

本發明中,每個半導體晶片都包括複數個金屬焊接墊,分別形成在每個半導體晶片的正面上;晶圓製程包括以下步驟:在複數個金屬焊接墊上都製備一個相應的金屬凸塊;在半導體晶圓的正面製備一個第一封裝層,以覆蓋金屬凸塊,其中第一封裝層的半徑小於半導體晶圓的半徑,從而在半導體晶圓的邊緣形成一個未覆蓋環,其中複數個劃線中每個劃線的兩端都位於兩個鄰近的半導體晶片之間,並且延伸到未覆蓋環的正面;削薄第一封裝層,使金屬凸塊從第一封裝層裸露出來;藉由沿著連接在未覆蓋環的正面裸露出來的該每個劃線兩端的直線,切割第一封裝層,沿每個劃線,在削薄第一封裝層的正面,製備一個相應的切割槽;在半導體晶圓的背面研磨,以便在半導體晶圓的背面形成一個凹陷空間,在半導體晶圓的邊緣處形成一個支撐環;在凹陷空間中半導體晶圓的底面,沉積一個金屬種子層;切除半導體晶圓的邊緣部分;翻轉並安裝半導體晶圓在基板上,削薄的第一封裝層直接連接到基板的頂面;沉積一個金屬層,覆蓋金屬種子層;從半導體晶圓上除去基板;以及,藉由沿切割槽,切割第一封裝層、半導體晶圓、金屬種子層以及金屬層,將單獨的半導體晶片從半導體晶圓切割分離;其中,將第一封裝層切割成複數個頂部封裝層,複數個頂部封裝層中各自的頂部封裝層都覆蓋著每個半導體晶片的正面,各自的金屬凸塊都從每個半導體晶片各自的頂部封裝層裸露出來,金屬層切割成複數個底部金屬層,複數個底部金屬層各自的底部金屬層都覆蓋著每個半導體晶片的背面。In the present invention, each of the semiconductor wafers includes a plurality of metal solder pads respectively formed on the front surface of each of the semiconductor wafers; the wafer process includes the steps of: preparing a corresponding metal bump on the plurality of metal solder pads; Forming a first encapsulation layer on the front side of the semiconductor wafer to cover the metal bumps, wherein the radius of the first encapsulation layer is smaller than the radius of the semiconductor wafer, thereby forming an uncovered ring at the edge of the semiconductor wafer, wherein the plurality of scribe lines Two ends of each of the scribe lines are located between two adjacent semiconductor wafers and extend to the front side of the uncovered ring; the first encapsulation layer is thinned to expose the metal bumps from the first encapsulation layer; a line connecting the ends of each of the scribe lines exposed on the front side of the uncovered ring, cutting the first encapsulation layer, and along each scribe line, thinning the front side of the first encapsulation layer to prepare a corresponding cutting groove; Back grinding of the semiconductor wafer to form a recessed space on the back side of the semiconductor wafer, forming a support ring at the edge of the semiconductor wafer; a bottom surface of the semiconductor wafer, depositing a metal seed layer; cutting an edge portion of the semiconductor wafer; flipping and mounting the semiconductor wafer on the substrate, the thinned first encapsulation layer is directly connected to the top surface of the substrate; and depositing a metal layer, Covering the metal seed layer; removing the substrate from the semiconductor wafer; and, by cutting the first encapsulation layer, the semiconductor wafer, the metal seed layer, and the metal layer along the dicing trench, separating and separating the individual semiconductor wafers from the semiconductor wafer; The first encapsulation layer is cut into a plurality of top encapsulation layers, and each of the plurality of top encapsulation layers covers a front surface of each of the semiconductor wafers, and the respective metal bumps are from the top of each of the semiconductor wafers. The encapsulation layer is exposed, the metal layer is cut into a plurality of bottom metal layers, and the bottom metal layers of each of the plurality of bottom metal layers cover the back surface of each of the semiconductor wafers.

較佳地,切割槽延伸到半導體晶圓的正面。Preferably, the dicing trench extends to the front side of the semiconductor wafer.

較佳地,切除半導體晶圓的邊緣部分的步驟包括切除支撐環。Preferably, the step of cutting the edge portion of the semiconductor wafer includes cutting the support ring.

較佳地,凹陷空間的半徑小於第一封裝層的半徑,以至於一部分第一封裝層與一部分支撐環重疊,其中切除半導體晶圓的邊緣部分包括切除支撐環及第一封裝層的重疊部分。Preferably, the radius of the recessed space is smaller than the radius of the first encapsulation layer, such that a portion of the first encapsulation layer overlaps with a portion of the support ring, wherein cutting the edge portion of the semiconductor wafer includes cutting the overlapping portion of the support ring and the first encapsulation layer.

較佳地,在沉積金屬種子層的步驟之前,進一步包括在凹陷空間中的半導體晶圓底面上沉積另一個用於歐姆接觸的第二金屬層,從而使為金屬種子層形成的勢壘不會擴散到半導體晶圓中。Preferably, before the step of depositing the metal seed layer, further comprising depositing another second metal layer for ohmic contact on the bottom surface of the semiconductor wafer in the recessed space, so that the barrier formed for the metal seed layer is not Diffusion into semiconductor wafers.

較佳地,凹陷空間由研磨輪製成,研磨輪的半徑小於半導體晶圓的半徑。Preferably, the recessed space is made of a grinding wheel having a radius smaller than a radius of the semiconductor wafer.

較佳地,在沉積金屬層覆蓋金屬種子層的步驟之後,進一步包括在金屬層上製備一個第二封裝層,其中從半導體晶圓上分離單獨的半導體晶片包括沿切割槽切割第一封裝層、半導體晶圓、種子層、金屬層及第二封裝層,其中將第二封裝層切割成複數個底部封裝層,其中複數個底部封裝層各自的底部封裝層覆蓋著每個半導體晶片各自的底部金屬層。Preferably, after the step of depositing the metal layer covering the metal seed layer, further comprising preparing a second encapsulation layer on the metal layer, wherein separating the individual semiconductor wafer from the semiconductor wafer comprises cutting the first encapsulation layer along the cutting trench, a semiconductor wafer, a seed layer, a metal layer and a second encapsulation layer, wherein the second encapsulation layer is cut into a plurality of bottom encapsulation layers, wherein a bottom encapsulation layer of each of the plurality of bottom encapsulation layers covers a bottom metal of each of the semiconductor wafers Floor.

較佳地,藉由蒸發或濺射沉積金屬種子層。Preferably, the metal seed layer is deposited by evaporation or sputtering.

較佳地,種子層的材料從含有TiNiAg、TiNi及TiNiAl的組別中選取。Preferably, the material of the seed layer is selected from the group consisting of TiNiAg, TiNi and TiNiAl.

較佳地,藉由電鍍及/或化學鍍層沉積金屬層。Preferably, the metal layer is deposited by electroplating and/or electroless plating.

較佳地,金屬層的材料從含有Ag、Cu及Ni的組別中選取。Preferably, the material of the metal layer is selected from the group consisting of Ag, Cu and Ni.

較佳地,研磨半導體晶圓的背面之後,削薄的第一封裝層比半導體晶圓更厚。Preferably, after the back side of the semiconductor wafer is polished, the thinned first encapsulation layer is thicker than the semiconductor wafer.

較佳地,沉積覆蓋金屬種子層的金屬層之後,金屬層的厚度大於半導體晶圓厚度的1/10。Preferably, after depositing the metal layer covering the metal seed layer, the thickness of the metal layer is greater than 1/10 of the thickness of the semiconductor wafer.

閱讀實施例的以下詳細說明並參照各種圖式,本發明的這些特點和優勢對於本領域的技術人員來說,無疑將顯而易見。These features and advantages of the present invention will no doubt become apparent to those skilled in the <RTIgt;

以下結合圖式,藉由詳細說明較佳的具體實施例,對本發明做進一步闡述。然而,圖式僅用於解釋說明,而不用於局限本發明的範圍。The invention will be further illustrated by the following detailed description of the preferred embodiments. However, the drawings are for illustrative purposes only and are not intended to limit the scope of the invention.

第1A圖表示含有複數個半導體晶片101形成在晶圓正面的晶圓100的俯視圖,每個劃線102都位於兩個鄰近的晶片101之間。本領域中眾所周知,藉由沿劃線102切割,將單獨的晶片101與晶圓100分離。通常來說,複數個金屬焊接墊(圖中沒有表示出)形成在每個晶片101的正面,構成晶片的電極,連接到電源、接地端或用於與外部電路之間信號傳輸的連接端。FIG. 1A shows a top view of a wafer 100 having a plurality of semiconductor wafers 101 formed on the front side of the wafer, each scribe line 102 being located between two adjacent wafers 101. As is well known in the art, a separate wafer 101 is separated from wafer 100 by dicing along scribe line 102. Generally, a plurality of metal pads (not shown) are formed on the front side of each wafer 101, forming electrodes of the wafer, connected to a power source, a ground terminal, or a connection for signal transmission with an external circuit.

如第1B圖所示,導電塊110,例如金屬凸塊,形成在每個晶片101正面的每個金屬焊接墊上。金屬凸塊110可以由導電材料,例如銅、金、銀、鋁等類似金屬或其合金製成。金屬凸塊110的形狀可以是球形、橢圓形、立方體、圓柱體或楔形等類似形狀。As shown in FIG. 1B, conductive bumps 110, such as metal bumps, are formed on each of the metal pads on the front side of each wafer 101. The metal bump 110 may be made of a conductive material such as copper, gold, silver, aluminum, or the like, or an alloy thereof. The shape of the metal bump 110 may be a spherical shape, an elliptical shape, a cubic shape, a cylindrical shape, or a wedge shape or the like.

如第2B圖所示,沉積封裝材料,例如環氧樹脂等類似材料,製備特定厚度的第一封裝層120,覆蓋著晶圓100的正面以及所有的金屬凸塊110。如第2A圖及第2B圖所示,第一封裝層120的半徑略小於晶圓100的半徑,從而使第一封裝層120不會覆蓋晶圓100的整個正面,例如靠近晶圓邊緣的未覆蓋環103沒有被第一封裝層120覆蓋。As shown in FIG. 2B, a packaging material such as an epoxy resin or the like is deposited to prepare a first encapsulation layer 120 of a specific thickness covering the front side of the wafer 100 and all of the metal bumps 110. As shown in FIGS. 2A and 2B, the radius of the first encapsulation layer 120 is slightly smaller than the radius of the wafer 100, so that the first encapsulation layer 120 does not cover the entire front surface of the wafer 100, such as near the edge of the wafer. The cover ring 103 is not covered by the first encapsulation layer 120.

如第3B圖所示,研磨第一封裝層120,使金屬凸塊110裸露出來。在一個實施例中,研磨後第一封裝層120的厚度約為50微米至100微米。金屬凸塊110最好由較硬的金屬(例如銅)製成,以便在研磨第一封裝層過程中當金屬凸塊上的灰塵吸附在研磨輪上時,消除對第一封裝層120的研磨表面不必要的污染。在第3B圖中,複數個切割槽121製備形成在削薄後的第一封裝層120的正面上。如第2A圖及第2B圖所示,第一塑膠封裝層120的半徑小於晶圓100的半徑,以確保未覆蓋環103中每個劃線102的兩端不被第一塑膠封裝層120覆蓋。藉由切割第一封裝層120正面上的淺線,可以形成切割槽121,與劃線102對準,劃線102從未覆蓋環103中裸露的兩端開始延伸。確切地說,每個淺線或切割槽121都與第3A圖中所示相應的劃線102重疊。可以調節切割槽121的深度。在一個實施例中,切割槽121A(如第3B圖中的虛線所示)可以穿過第一封裝層120,到達晶圓的正面。As shown in FIG. 3B, the first encapsulation layer 120 is polished to expose the metal bumps 110. In one embodiment, the first encapsulation layer 120 has a thickness of about 50 microns to 100 microns after grinding. The metal bumps 110 are preferably made of a relatively hard metal such as copper to eliminate the grinding of the first encapsulation layer 120 when dust on the metal bumps is adsorbed on the grinding wheel during the grinding of the first encapsulation layer. Unnecessary contamination of the surface. In FIG. 3B, a plurality of cutting grooves 121 are formed on the front surface of the thinned first encapsulation layer 120. As shown in FIGS. 2A and 2B, the radius of the first plastic encapsulation layer 120 is smaller than the radius of the wafer 100 to ensure that both ends of each of the scribe lines 102 in the uncovered ring 103 are not covered by the first plastic encapsulation layer 120. . By cutting the shallow lines on the front side of the first encapsulation layer 120, a dicing groove 121 can be formed, aligned with the scribe line 102, which extends from the bare ends of the cover ring 103. Specifically, each shallow line or cutting groove 121 overlaps with the corresponding scribe line 102 shown in FIG. 3A. The depth of the cutting groove 121 can be adjusted. In one embodiment, the dicing trench 121A (as indicated by the dashed line in FIG. 3B) may pass through the first encapsulation layer 120 to the front side of the wafer.

如第4圖所示,原始厚度為760微米的晶圓100,在其背面研磨到50微米至100微米的預定厚度。在一個較佳實施例中,研磨後的第一塑膠封裝層比研磨後的晶圓更厚,用於機械支撐。另外,為了給削薄晶圓提供機械支撐,在晶圓邊緣的支撐環不研磨。如第4圖所示,用研磨輪研磨晶圓100的背面,形成凹陷空間130,研磨輪的半徑小於晶圓100的半徑。凹陷空間130的半徑盡可能的大,使靠近晶圓邊緣的晶片成品率達到最大。在該步驟中,在晶圓100邊緣處形成支撐環104,支撐環104的寬度為晶圓100的半徑和凹陷空間130的半徑之差。在該步驟中,藉由凹陷空間130的深度,可以調節薄晶圓100的設計厚度。支撐環104和削薄封裝層120為削薄晶圓100提供機械支撐,從而使削薄晶圓不會輕易破裂。在一個實施例中,凹陷空間130的半徑小於第一封裝層120的半徑,以便進一步保持削薄晶圓100的機械強度,使一部分第一封裝層120可以與一部分支撐環104部分重疊。在本發明的示例中,可以選擇在凹陷空間130中晶圓100的底面上沉積一個第二金屬層140A,用於歐姆接觸,並用作防止金屬種子層140(如第5圖所示)擴散到半導體晶圓100中的勢壘。As shown in Fig. 4, the wafer 100 having an original thickness of 760 μm is ground on the back side to a predetermined thickness of 50 μm to 100 μm. In a preferred embodiment, the ground first plastic encapsulation layer is thicker than the ground wafer for mechanical support. In addition, in order to provide mechanical support for the thinned wafer, the support ring at the edge of the wafer is not ground. As shown in FIG. 4, the back surface of the wafer 100 is polished by a grinding wheel to form a recessed space 130 having a radius smaller than the radius of the wafer 100. The radius of the recessed space 130 is as large as possible to maximize wafer yield near the edge of the wafer. In this step, a support ring 104 is formed at the edge of the wafer 100, and the width of the support ring 104 is the difference between the radius of the wafer 100 and the radius of the recessed space 130. In this step, the design thickness of the thin wafer 100 can be adjusted by the depth of the recessed space 130. The support ring 104 and the thinned encapsulation layer 120 provide mechanical support for the thinned wafer 100 so that the thinned wafer does not break easily. In one embodiment, the radius of the recessed space 130 is less than the radius of the first encapsulation layer 120 to further maintain the mechanical strength of the thinned wafer 100 such that a portion of the first encapsulation layer 120 may partially overlap a portion of the support ring 104. In an example of the present invention, a second metal layer 140A may be selectively deposited on the bottom surface of the wafer 100 in the recessed space 130 for ohmic contact and used to prevent diffusion of the metal seed layer 140 (as shown in FIG. 5) to A barrier in the semiconductor wafer 100.

如第5圖所示,可以選擇,在凹陷空間130內裸露出來的晶圓100的底面上,用摻雜物重摻雜,然後退火,使摻雜物擴散。在晶圓100的底面沉積(例如藉由蒸發或濺射)一個薄金屬層140(例如TiNiAg、TiNi、TiNiAl或類似材料)。薄金屬層140可以用作種子層140,用於在下一個步驟中沉積厚金屬層。As shown in FIG. 5, it may be selected that the bottom surface of the exposed wafer 100 in the recessed space 130 is heavily doped with a dopant and then annealed to diffuse the dopant. A thin metal layer 140 (e.g., TiNiAg, TiNi, TiNiAl, or the like) is deposited (e.g., by evaporation or sputtering) on the bottom surface of the wafer 100. A thin metal layer 140 can be used as the seed layer 140 for depositing a thick metal layer in the next step.

如第6圖所示,切除削薄晶圓100的邊緣部分105和支撐環104。第一封裝層120的重疊部分122也切除。晶圓的切除邊緣部分105的寬度等於或略大於支撐環104的寬度。As shown in FIG. 6, the edge portion 105 of the wafer 100 and the support ring 104 are cut and thinned. The overlapping portion 122 of the first encapsulation layer 120 is also cut away. The width of the cut edge portion 105 of the wafer is equal to or slightly larger than the width of the support ring 104.

如第7圖所示,將第6圖所示的整個晶圓結構翻轉並安裝在基板142上。基板142可以是虛擬晶圓、金屬板或樹脂板。利用雙面膠帶、熱釋放材料或膠水,可以將第6圖所示的整個晶圓結構安裝在基板142上。As shown in Fig. 7, the entire wafer structure shown in Fig. 6 is inverted and mounted on the substrate 142. The substrate 142 may be a virtual wafer, a metal plate, or a resin plate. The entire wafer structure shown in FIG. 6 can be mounted on the substrate 142 using a double-sided tape, a heat release material, or glue.

如第8圖所示,藉由電鍍及/或化學鍍層,在薄金屬層140上方沉積一個厚底部金屬層124。金屬層124可以是Al、Ag、Cu、Ni、Au等類似金屬。根據形成在晶圓上的半導體晶片的尺寸,底部金屬層124的厚度約為10微米至100微米。通常來說,對於晶圓研磨至100微米或更少,底部金屬層124應至少是晶圓厚度的1/10。對於研磨至50微米的晶圓來說,底部金屬層應至少是晶圓厚度的1/5,最好大於晶圓厚度的1/2。在一個實施例中,藉由50微米左右厚度的研磨晶圓(如第4圖所示),沉積厚度大於50微米的底部金屬層。對於小於50微米的晶圓研磨來說,底部金屬層124應大於晶圓厚度的1/2。由於金屬層124是藉由沉積形成的,因此在晶圓底面和底部金屬層的表面之間,沒有焊錫或環氧樹脂等粘合材料。厚金屬層不僅提供降低阻抗以及更利於散熱的益處,而且在製備過程中尤其是晶圓厚度減至100微米以下後,為晶圓和半導體晶片整體提供機械支撐。然後,如第9圖所示,從晶圓結構上除去基板142。As shown in FIG. 8, a thick bottom metal layer 124 is deposited over the thin metal layer 140 by electroplating and/or electroless plating. The metal layer 124 may be a metal such as Al, Ag, Cu, Ni, Au, or the like. The thickness of the bottom metal layer 124 is from about 10 microns to about 100 microns, depending on the size of the semiconductor wafer formed on the wafer. In general, for wafer polishing to 100 microns or less, the bottom metal layer 124 should be at least 1/10 of the wafer thickness. For wafers polished to 50 microns, the bottom metal layer should be at least 1/5 of the thickness of the wafer, preferably greater than 1/2 of the thickness of the wafer. In one embodiment, a bottom metal layer having a thickness greater than 50 microns is deposited by a ground wafer having a thickness of about 50 microns (as shown in FIG. 4). For wafer polishing less than 50 microns, the bottom metal layer 124 should be greater than 1/2 the thickness of the wafer. Since the metal layer 124 is formed by deposition, there is no bonding material such as solder or epoxy between the bottom surface of the wafer and the surface of the bottom metal layer. The thick metal layer not only provides the benefits of reduced impedance and better heat dissipation, but also provides mechanical support for the wafer and the semiconductor wafer as a whole, during the fabrication process, especially when the wafer thickness is reduced to less than 100 microns. Then, as shown in Fig. 9, the substrate 142 is removed from the wafer structure.

如第10圖所示,利用切割機180,沿切割槽121,可以切斷第一封裝層120、晶圓100、種子層140以及厚底部金屬層124,以便使單獨的晶片101與晶圓100分離。因此,將第一封裝層120切割成複數個頂部封裝層1200,種子層140可以切割成複數個種子層1400,厚底部金屬層124可以切割成複數個厚底部金屬層1240,從而獲得複數個晶圓級封裝結構200A。每個封裝結構200A都包括一個頂部封裝層1200,覆蓋在每個晶片101的正面,種子層1400覆蓋在晶片101的背面,厚底部金屬層覆蓋著種子層1400,從頂部封裝層1200裸露出來的金屬凸塊110,用作封裝結構200A的接觸端,用於電接觸外部電路,在封裝結構200A底部裸露出來的厚底部金屬層1240,用作封裝結構200A的接觸端,還用於散熱。As shown in FIG. 10, the first encapsulation layer 120, the wafer 100, the seed layer 140, and the thick bottom metal layer 124 may be cut along the dicing trench 121 by the dicing machine 180 to make the individual wafers 101 and wafers 100. Separation. Therefore, the first encapsulation layer 120 is cut into a plurality of top encapsulation layers 1200, the seed layer 140 may be cut into a plurality of seed layers 1400, and the thick bottom metal layer 124 may be cut into a plurality of thick bottom metal layers 1240 to obtain a plurality of crystals. Round package structure 200A. Each package structure 200A includes a top package layer 1200 overlying the front side of each wafer 101, a seed layer 1400 overlying the back side of the wafer 101, and a thick bottom metal layer overlying the seed layer 1400, exposed from the top package layer 1200 The metal bump 110 serves as a contact end of the package structure 200A for electrically contacting an external circuit, and a thick bottom metal layer 1240 exposed at the bottom of the package structure 200A serves as a contact end of the package structure 200A and also for heat dissipation.

在一個實施例中,晶片101為垂直MOSFET(金屬-氧化物-半導體場效應電晶體),其中電流從晶片的正面流至背面,或者反之亦然。因此,形成在晶片正面的複數個金屬焊接墊都包括一個構成源極電極的焊接墊,以及一個構成柵極電極的焊接墊,底部金屬層1240構成晶片的漏極電極。利用厚底部金屬層1240,可以大幅降低封裝結構200A的電阻。In one embodiment, wafer 101 is a vertical MOSFET (metal-oxide-semiconductor field effect transistor) in which current flows from the front side of the wafer to the back side, or vice versa. Therefore, the plurality of metal pads formed on the front side of the wafer each include a pad constituting the source electrode, and a pad constituting the gate electrode, and the bottom metal layer 1240 constitutes the drain electrode of the wafer. With the thick bottom metal layer 1240, the electrical resistance of the package structure 200A can be greatly reduced.

在另一個實施例中,如第11圖至第13圖所示,可以製備帶有底部封裝層1320的封裝結構200B。如第8圖所示,在薄金屬層140上方沉積厚底部金屬層124之後,製備第二封裝層132,覆蓋厚底部金屬層124,如第11圖所示。然後,如第12圖所示,從晶圓結構上除去基板142。In another embodiment, as shown in Figures 11 through 13, a package structure 200B with a bottom encapsulation layer 1320 can be fabricated. As shown in FIG. 8, after depositing a thick bottom metal layer 124 over the thin metal layer 140, a second encapsulation layer 132 is formed overlying the thick bottom metal layer 124, as shown in FIG. Then, as shown in Fig. 12, the substrate 142 is removed from the wafer structure.

如第13圖所示,切割第一封裝層120、晶圓100、種子層140、厚底部金屬層124以及第二封裝層132,使單獨的晶片101從晶圓100切割分離。因此,將第一封裝層120切割成複數個頂部封裝層1200,種子層140切割成複數個種子層1400,厚底部金屬層124切割成複數個厚底部金屬層1240,第二封裝層132切割成複數個底部封裝層1320,從而獲得複數個封裝結構200B。每個封裝結構200B都包括一個頂部封裝層1200,覆蓋在每個晶片101的正面,種子層1400覆蓋在晶片101的背面,厚底部金屬層1240覆蓋著種子層1400,底部封裝層1320覆蓋著厚底部金屬層1240,從頂部封裝層1200裸露出來的金屬凸塊110,用作封裝結構200B的接觸端,用於電接觸外部電路。在本實施例中,由於厚底部金屬層1240被底部封裝層1320覆蓋,底部金屬層1240不能用作接觸端,用於接觸外部電路。因此,當晶片101為垂直MOSFET時,形成在晶片正面的複數個金屬焊接墊,包括一個構成源極電極的焊接墊、一個構成柵極電極的焊接墊,焊接墊電連接到底部金屬層1240,穿過形成在晶片中的金屬互聯結構(圖中沒有表示出),構成漏極電極。As shown in FIG. 13, the first encapsulation layer 120, the wafer 100, the seed layer 140, the thick bottom metal layer 124, and the second encapsulation layer 132 are diced to separate the individual wafers 101 from the wafer 100. Therefore, the first encapsulation layer 120 is cut into a plurality of top encapsulation layers 1200, the seed layer 140 is cut into a plurality of seed layers 1400, the thick bottom metal layer 124 is cut into a plurality of thick bottom metal layers 1240, and the second encapsulation layer 132 is cut into A plurality of bottom encapsulation layers 1320 are obtained to obtain a plurality of package structures 200B. Each package structure 200B includes a top package layer 1200 overlying the front side of each wafer 101, a seed layer 1400 overlying the back side of the wafer 101, a thick bottom metal layer 1240 overlying the seed layer 1400, and a bottom package layer 1320 covered with a thick layer. A bottom metal layer 1240, a metal bump 110 exposed from the top encapsulation layer 1200, serves as a contact end of the package structure 200B for electrically contacting an external circuit. In the present embodiment, since the thick bottom metal layer 1240 is covered by the bottom package layer 1320, the bottom metal layer 1240 cannot be used as a contact end for contacting an external circuit. Therefore, when the wafer 101 is a vertical MOSFET, a plurality of metal solder pads formed on the front surface of the wafer include a solder pad constituting the source electrode and a solder pad constituting the gate electrode, and the solder pad is electrically connected to the bottom metal layer 1240. A drain electrode is formed through a metal interconnection structure (not shown) formed in the wafer.

以上說明用於解釋說明本發明的典型實施例,無局限性。在本發明的範圍內,還可能存在各種修正和變化。本發明由所附的申請專利範圍限定。The above description is for explaining an exemplary embodiment of the present invention without limitation. Various modifications and changes are possible within the scope of the invention. The invention is defined by the scope of the appended claims.

100‧‧‧晶圓
101‧‧‧晶片
102‧‧‧劃線
103‧‧‧未覆蓋環
104‧‧‧支撐環
105‧‧‧邊緣部分
110‧‧‧金屬凸塊
120‧‧‧第一封裝層
121、121A‧‧‧切割槽
124、1240‧‧‧底部金屬層
1200‧‧‧頂部封裝層
122‧‧‧重疊部分
130‧‧‧凹陷空間
132‧‧‧第二封裝層
1320‧‧‧底部封裝層
140、1400‧‧‧種子層
140A‧‧‧第二金屬層
142‧‧‧基板
180‧‧‧切割機
200A、200B‧‧‧封裝結構
100‧‧‧ wafer
101‧‧‧ wafer
102‧‧‧dick
103‧‧‧Uncovered ring
104‧‧‧Support ring
105‧‧‧Edge section
110‧‧‧Metal bumps
120‧‧‧First encapsulation layer
121, 121A‧‧‧ cutting trough
124, 1240‧‧‧ bottom metal layer
1200‧‧‧Top encapsulation layer
122‧‧‧ overlap
130‧‧‧ recessed space
132‧‧‧Second encapsulation layer
1320‧‧‧ bottom encapsulation layer
140, 1400‧‧ ‧ seed layer
140A‧‧‧Second metal layer
142‧‧‧Substrate
180‧‧‧Cutting machine
200A, 200B‧‧‧ package structure

第1A圖表示半導體晶片形成在半導體晶圓正面的俯視圖。Fig. 1A shows a plan view of a semiconductor wafer formed on the front surface of a semiconductor wafer.

第1B圖表示金屬凸塊形成在半導體晶片的金屬焊接墊上的半導體晶圓的剖面示意圖。Fig. 1B is a schematic cross-sectional view showing a semiconductor wafer in which metal bumps are formed on a metal pad of a semiconductor wafer.

第2A圖及第2B圖分別表示沉積第一封裝層以覆蓋晶圓正面的步驟的俯視圖及剖面示意圖。2A and 2B are respectively a plan view and a cross-sectional view showing a step of depositing a first encapsulation layer to cover the front surface of the wafer.

第3A圖及第3B圖分別表示研磨削薄第一封裝層並且在第一封裝層上製備切割槽的步驟的俯視圖及剖面示意圖。3A and 3B are respectively a plan view and a cross-sectional view showing a step of grinding and thinning the first encapsulation layer and preparing a cutting groove on the first encapsulation layer.

第4圖表示從其背面研磨削薄晶圓的步驟剖面示意圖。Fig. 4 is a schematic cross-sectional view showing the steps of polishing the thinned wafer from the back side thereof.

第5圖表示在削薄晶圓的底面沉積一個薄金屬層步驟的剖面示意圖。Figure 5 is a schematic cross-sectional view showing the step of depositing a thin metal layer on the bottom surface of the thinned wafer.

第6圖表示切割晶圓邊緣部分步驟的剖面示意圖。Figure 6 is a cross-sectional view showing the step of cutting the edge portion of the wafer.

第7圖表示在基板上翻轉及安裝第6圖所示晶圓步驟的剖面示意圖。Fig. 7 is a cross-sectional view showing the step of flipping over and mounting the wafer shown in Fig. 6 on the substrate.

第8圖表示在削薄晶圓底部的薄金屬層上沉積一個厚金屬層步驟的剖面示意圖。Figure 8 is a schematic cross-sectional view showing the step of depositing a thick metal layer on a thin metal layer at the bottom of a thinned wafer.

第9圖表示從第8圖所示步驟製成的晶圓上除去基板步驟的剖面示意圖。Fig. 9 is a schematic cross-sectional view showing the step of removing the substrate from the wafer prepared in the step shown in Fig. 8.

第10圖表示藉由切割第一封裝層、晶圓及金屬層,使裸露的背面金屬與單獨的封裝結構分離步驟的剖面示意圖。Figure 10 is a cross-sectional view showing the step of separating the exposed back metal from the individual package structure by cutting the first encapsulation layer, the wafer, and the metal layer.

第11圖表示除去基板並且分離單獨的封裝結構之前,在第8圖所示的半導體件結構的厚金屬層上製備一個第二封裝層步驟的剖面示意圖。Figure 11 is a cross-sectional view showing the steps of preparing a second encapsulation layer on the thick metal layer of the semiconductor device structure shown in Figure 8 before the substrate is removed and the individual package structures are separated.

第12圖表示從第11圖所示步驟製成的晶圓上除去基板步驟的剖面示意圖。Fig. 12 is a schematic cross-sectional view showing the step of removing the substrate from the wafer prepared in the step shown in Fig. 11.

第13圖表示藉由切割第一封裝層、晶圓、金屬層及第二封裝層,將封裝結構頂邊及底邊上的成型化合物與第12圖所示步驟製成的晶圓單獨的封裝結構分離步驟的剖面示意圖。Figure 13 shows a separate package of the wafer formed on the top and bottom sides of the package structure by cutting the first encapsulation layer, the wafer, the metal layer and the second encapsulation layer, and the wafer formed in the step shown in Fig. 12. A schematic cross-sectional view of the structural separation step.

101‧‧‧晶片 101‧‧‧ wafer

110‧‧‧金屬凸塊 110‧‧‧Metal bumps

180‧‧‧切割機 180‧‧‧Cutting machine

1200‧‧‧頂部封裝層 1200‧‧‧Top encapsulation layer

1240‧‧‧底部金屬層 1240‧‧‧ bottom metal layer

1320‧‧‧底部封裝層 1320‧‧‧ bottom encapsulation layer

1400‧‧‧種子層 1400‧‧‧ seed layer

200B‧‧‧封裝結構 200B‧‧‧Package structure

Claims (13)

一種用於封裝形成在半導體晶圓正面的半導體晶片的模壓晶片級封裝的晶圓製程,每一該半導體晶片都包括複數個金屬焊接墊,分別形成在每一該半導體晶片的正面上;該晶圓製程包括以下步驟: 在該複數個金屬焊接墊上都製備相應的一金屬凸塊; 在該半導體晶圓的正面製備一第一封裝層,以覆蓋該金屬凸塊,其中該第一封裝層的半徑小於該半導體晶圓的半徑,從而在該半導體晶圓的邊緣形成一未覆蓋環,其中複數個劃線中每一該劃線的兩端都位於兩個鄰近的該半導體晶片之間,並且延伸到該未覆蓋環的正面; 削薄該第一封裝層,使該金屬凸塊從該第一封裝層裸露出來; 藉由沿著連接在該未覆蓋環的正面裸露出來的每一該劃線兩端的直線,切割該第一封裝層,沿每一該劃線,在削薄該第一封裝層的正面製備相應的一切割槽; 在該半導體晶圓的背面研磨,以便在該半導體晶圓的背面形成一凹陷空間,在該半導體晶圓的邊緣處形成一支撐環; 在該凹陷空間中的該半導體晶圓的底面,沉積一金屬種子層; 切除該半導體晶圓的一邊緣部分; 翻轉並安裝該半導體晶圓在基板上,削薄的該第一封裝層直接連接到基板的頂面; 沉積一金屬層,覆蓋該金屬種子層; 從該半導體晶圓上除去基板;以及 藉由沿該切割槽,切割該第一封裝層、該半導體晶圓、該金屬種子層以及該金屬層,將單獨的該半導體晶片從該半導體晶圓切割分離; 其中,將該第一封裝層切割成複數個頂部封裝層,該複數個頂部封裝層中各自的頂部封裝層都覆蓋著每一該半導體晶片的正面,各自的該金屬凸塊都從每一該半導體晶片各自的頂部封裝層裸露出來,該金屬層切割成複數個底部金屬層,該複數個底部金屬層各自的底部金屬層都覆蓋著每一該半導體晶片的背面。A wafer process for packaging a wafer-level package of semiconductor wafers formed on a front surface of a semiconductor wafer, each of the semiconductor wafers comprising a plurality of metal solder pads respectively formed on a front surface of each of the semiconductor wafers; The circular process includes the following steps: preparing a corresponding metal bump on the plurality of metal solder pads; preparing a first encapsulation layer on the front surface of the semiconductor wafer to cover the metal bump, wherein the first encapsulation layer a radius smaller than a radius of the semiconductor wafer to form an uncovered ring at an edge of the semiconductor wafer, wherein each of the plurality of scribe lines is located between two adjacent semiconductor wafers, and Extending to the front side of the uncovered ring; thinning the first encapsulation layer to expose the metal bump from the first encapsulation layer; each of the lines by being exposed along a front surface of the uncovered ring a straight line at both ends of the line, cutting the first encapsulation layer, along each of the scribe lines, preparing a corresponding cutting groove on the front side of the first encapsulation layer; on the semiconductor wafer Surface grinding to form a recessed space on the back surface of the semiconductor wafer, forming a support ring at the edge of the semiconductor wafer; depositing a metal seed layer on the bottom surface of the semiconductor wafer in the recessed space; An edge portion of the semiconductor wafer; flipping and mounting the semiconductor wafer on the substrate, the thinned first encapsulation layer is directly connected to the top surface of the substrate; depositing a metal layer covering the metal seed layer; and the semiconductor crystal Removing the substrate from the circle; and cutting the separate semiconductor wafer from the semiconductor wafer by cutting the first encapsulation layer, the semiconductor wafer, the metal seed layer and the metal layer along the dicing trench; Cutting the first encapsulation layer into a plurality of top encapsulation layers, wherein each of the plurality of top encapsulation layers covers a front surface of each of the semiconductor wafers, and each of the metal bumps is from each of the semiconductor wafers The respective top encapsulation layers are exposed, the metal layer is cut into a plurality of bottom metal layers, and the bottom metal layers of the plurality of bottom metal layers are respectively Each covering the back surface of the semiconductor wafer. 如申請專利範圍第1項所述之晶圓製程,其中該切割槽延伸到該半導體晶圓的正面。The wafer process of claim 1, wherein the dicing trench extends to a front side of the semiconductor wafer. 如申請專利範圍第1項所述之晶圓製程,其中切除該半導體晶圓的該邊緣部分的步驟包括切除該支撐環。The wafer process of claim 1, wherein the step of cutting the edge portion of the semiconductor wafer comprises cutting the support ring. 如申請專利範圍第3項所述之晶圓製程,其中該凹陷空間的半徑小於該第一封裝層的半徑,以至於一部分該第一封裝層與一部分該支撐環重疊,其中切除該半導體晶圓的該邊緣部分包括切除該支撐環和該第一封裝層的重疊部分。The wafer process of claim 3, wherein the recessed space has a radius smaller than a radius of the first encapsulation layer, such that a portion of the first encapsulation layer overlaps with a portion of the support ring, wherein the semiconductor wafer is cut away The edge portion includes an overlapping portion that cuts off the support ring and the first encapsulation layer. 如申請專利範圍第1項所述之晶圓製程,其中,在沉積該金屬種子層的步驟之前,進一步包括在該凹陷空間中的該半導體晶圓底面上沉積另一個用於歐姆接觸的第二金屬層,從而使為該金屬種子層形成的勢壘不會擴散到該半導體晶圓中。The wafer process of claim 1, wherein before the step of depositing the metal seed layer, further comprising depositing another second for ohmic contact on the bottom surface of the semiconductor wafer in the recessed space The metal layer is such that a barrier formed for the metal seed layer does not diffuse into the semiconductor wafer. 如申請專利範圍第1項所述之晶圓製程,其中該凹陷空間由研磨輪製成,研磨輪的半徑小於該半導體晶圓的半徑。The wafer process of claim 1, wherein the recessed space is made of a grinding wheel having a radius smaller than a radius of the semiconductor wafer. 如申請專利範圍第1項所述之晶圓製程,其中,在沉積該金屬層覆蓋該金屬種子層的步驟之後,進一步包括在該金屬層上製備一第二封裝層,從該半導體晶圓上分離單獨的該半導體晶片包括沿該切割槽切割該第一封裝層、該半導體晶圓、該金屬種子層、該金屬層及該第二封裝層;其中,將該第二封裝層切割成複數個底部封裝層,其中該複數個底部封裝層各自的底部封裝層覆蓋著每一該半導體晶片各自的底部金屬層。The wafer process of claim 1, wherein after depositing the metal layer to cover the metal seed layer, further comprising preparing a second encapsulation layer on the metal layer from the semiconductor wafer Separating the individual semiconductor wafers includes cutting the first encapsulation layer, the semiconductor wafer, the metal seed layer, the metal layer and the second encapsulation layer along the dicing trench; wherein the second encapsulation layer is diced into a plurality of a bottom encapsulation layer, wherein a bottom encapsulation layer of each of the plurality of bottom encapsulation layers covers a respective bottom metal layer of each of the semiconductor wafers. 如申請專利範圍第1項所述之晶圓製程,其中,是藉由蒸發或濺射沉積該金屬種子層。The wafer process of claim 1, wherein the metal seed layer is deposited by evaporation or sputtering. 如申請專利範圍第8項所述之晶圓製程,其中該金屬種子層的材料從含有TiNiAg、TiNi及TiNiAl的組別中選取。The wafer process of claim 8, wherein the material of the metal seed layer is selected from the group consisting of TiNiAg, TiNi, and TiNiAl. 如申請專利範圍第8項所述之晶圓製程,其中,是藉由電鍍及/或化學鍍層沉積該金屬層。The wafer process of claim 8, wherein the metal layer is deposited by electroplating and/or electroless plating. 如申請專利範圍第10項所述之晶圓製程,其中該金屬層的材料從含有Ag、Cu及Ni的組別中選取。The wafer process of claim 10, wherein the material of the metal layer is selected from the group consisting of Ag, Cu, and Ni. 如申請專利範圍第1項所述之晶圓製程,其中,研磨該半導體晶圓的背面之後,削薄的該第一封裝層比該半導體晶圓更厚。The wafer process of claim 1, wherein the first package layer that is thinned is thicker than the semiconductor wafer after the back surface of the semiconductor wafer is polished. 如申請專利範圍第1項所述之晶圓製程,其中,該金屬層的厚度大於該半導體晶圓厚度的1/10。The wafer process of claim 1, wherein the metal layer has a thickness greater than 1/10 of the thickness of the semiconductor wafer.
TW105102272A 2016-01-25 2016-01-25 Wafer process for molded chip scale package with thick backside metallization TW201727778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105102272A TW201727778A (en) 2016-01-25 2016-01-25 Wafer process for molded chip scale package with thick backside metallization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105102272A TW201727778A (en) 2016-01-25 2016-01-25 Wafer process for molded chip scale package with thick backside metallization

Publications (1)

Publication Number Publication Date
TW201727778A true TW201727778A (en) 2017-08-01

Family

ID=60186499

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105102272A TW201727778A (en) 2016-01-25 2016-01-25 Wafer process for molded chip scale package with thick backside metallization

Country Status (1)

Country Link
TW (1) TW201727778A (en)

Similar Documents

Publication Publication Date Title
US9245861B2 (en) Wafer process for molded chip scale package (MCSP) with thick backside metallization
TWI479620B (en) Chip scale surface mounted semiconductor device package and process of manufacture
TWI466250B (en) Large soldering area wafer level package structure and the fabrication method thereof
US10403603B2 (en) Semiconductor package and fabrication method thereof
TWI791775B (en) Semiconductor device with backmetal and related methods
TW201205699A (en) Embedded wafer-level bonding approaches
TW201411743A (en) Molded WLCSP with thick metal bonded and top exposed
US8563361B2 (en) Packaging method of molded wafer level chip scale package (WLCSP)
US10424542B2 (en) Semiconductor device
CN105336718B (en) The downward semiconductor devices of source electrode and its manufacturing method
JP2017519360A (en) Dicing method for wafer level packaging and semiconductor chip having dicing structure adapted for wafer level packaging
CN105448854A (en) Wafer manufacturing method for thickly-back-metalized molded chip-scale package
US9520380B2 (en) Wafer process for molded chip scale package (MCSP) with thick backside metallization
US20220246475A1 (en) Component and Method of Manufacturing a Component Using an Ultrathin Carrier
US8778735B1 (en) Packaging method of molded wafer level chip scale package (WLCSP)
US20060281315A1 (en) Process of manufacture of ultra thin semiconductor wafers with bonded conductive hard carrier
CN106997852A (en) Wafer process for the molding wafer-level package with thick back face metalization
TW201727778A (en) Wafer process for molded chip scale package with thick backside metallization
TWI567889B (en) A wafer process for molded chip scale package (mcsp) with thick backside metallization
US10559510B2 (en) Molded wafer level packaging
JP2011171644A (en) Semiconductor device and method of manufacturing the same
TWI555159B (en) Battery protection package and process of making the same
US11728424B2 (en) Isolation in a semiconductor device
TWI657544B (en) Wafer level chip size packaging structure and manufacturing method thereof
KR20140042094A (en) Semiconductor device and fabricating method thereof