TW201727559A - Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount - Google Patents

Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount Download PDF

Info

Publication number
TW201727559A
TW201727559A TW105102410A TW105102410A TW201727559A TW 201727559 A TW201727559 A TW 201727559A TW 105102410 A TW105102410 A TW 105102410A TW 105102410 A TW105102410 A TW 105102410A TW 201727559 A TW201727559 A TW 201727559A
Authority
TW
Taiwan
Prior art keywords
power generation
power plant
data
renewable energy
power
Prior art date
Application number
TW105102410A
Other languages
Chinese (zh)
Inventor
Kun-Hong Chen
Original Assignee
Chun He Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chun He Technology Co Ltd filed Critical Chun He Technology Co Ltd
Priority to TW105102410A priority Critical patent/TW201727559A/en
Publication of TW201727559A publication Critical patent/TW201727559A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention discloses a management method and system for a renewable energy power plant comprising the steps of: selecting a plurality of influence factors of power generation of a renewable energy power plant; collecting multiple power plant data and multiple historical power generation data corresponding to the influence factors of power generation in a first historical time interval; establishing a power generation estimation model according to the power plant data and the historical power generation data; calculating a first estimated power generation amount in a second historical time interval using the power generation estimation model; obtaining an actual power generation amount of the renewable energy power plant in the second historical time interval; comparing the first estimated power generation amount with the actual power generation amount and obtaining a power generation difference; and when the power generation difference is greater than an error tolerance, an abnormal alarm is issued. Through the above method, whether the power generation of the renewable energy power plant is normal can be checked according to the estimated power generation amount.

Description

再生能源電廠的管理方法與系統Management method and system of renewable energy power plant

本創作係有關於一種再生能源電廠的管理方法與系統,特別是有關於應用資料探勘技術的一種再生能源電廠的管理方法與系統。This creative department is concerned with a management method and system for a renewable energy power plant, in particular, a management method and system for a renewable energy power plant with application data exploration technology.

再生能源為來自大自然的能源,例如太陽能、風力、潮汐能、地熱能、生質能或水力等取之不盡,用之不竭的能源,在此不侷限。然而,再生能源發電系統的發電量會受到許多外在因素的影響,例如氣候溫度、太陽日照強度或季節因素等,這些外在因素不同程度地影響再生能源發電系統的發電量,再生能源發電系統可視為一個不穩定的電源,因此,研究再生能源的隨機性與再生能源發電估算技術有著重要意義。Renewable energy is an inexhaustible source of energy from nature, such as solar energy, wind power, tidal energy, geothermal energy, biomass energy or water power, and is not limited here. However, the amount of electricity generated by renewable energy power generation systems will be affected by many external factors, such as climate temperature, solar intensity, or seasonal factors. These external factors affect the power generation of renewable energy power generation systems to varying degrees, and renewable energy power generation systems. It can be regarded as an unstable power source. Therefore, it is important to study the randomness of renewable energy and the estimation technology of renewable energy power generation.

然而,再生能源電廠發電量的隨機性、波動性、間歇性以及不確定性等缺點,造成估算再生能源發電存在一定的困難度,估算結果與實際結果差距過大,造成估算結果不具參考價值。However, the shortcomings such as randomness, volatility, intermittentness and uncertainty of power generation in renewable energy power plants have caused certain difficulties in estimating renewable energy power generation. The difference between the estimation results and the actual results is too large, resulting in no reference value for the estimation results.

因此,存在一種需求,設計用於再生能源電廠的管理方法與系統,透過資料分析與探勘技術,透過過去歷史發電資料、氣候資料以及時間資料先建立發電預測模型,產生可供參考的發電估算模型,根據該發電估算,工作人員可以估算再生能源電廠的歷史時間的發電量,進而判斷再生能源電廠發電是否正常或進行發電量的供電方式的調配。Therefore, there is a need to design a management method and system for a renewable energy power plant. Through data analysis and exploration techniques, a power generation prediction model is first established through past historical power generation data, climate data, and time data to generate a power generation estimation model for reference. According to the power generation estimate, the staff can estimate the amount of power generated by the historical time of the renewable energy power plant, and then determine whether the power generation of the renewable energy power plant is normal or the power supply mode of the power generation is deployed.

本創作之目的在提供一種再生能源電廠的管理方法,透過該再生能源電廠的管理方法可以估算再生能源電廠的發電量,進而比較估算發電量與實際發電量來確認再生能源電廠的發電是否正常。The purpose of this creation is to provide a management method for a renewable energy power plant, through which the power generation amount of the renewable energy power plant can be estimated, and the estimated power generation amount and the actual power generation amount are compared to confirm whether the power generation of the renewable energy power plant is normal.

根據上述之目的,本創作提供一種再生能源電廠的管理方法,包含下列步驟: 選擇一再生能源電廠的複數種發電量影響因子; 收集在一第一歷史時間區間該些發電量影響因子的複數筆電廠資料與所對應的複數筆歷史發電資料; 根據該些電廠資料與所對應的該些歷史發電資料建立一發電量估算模型; 利用該發電量估算模型計算在一第二歷史時間區間的一第一估算發電量; 獲得該再生能源電廠在該第二歷史時間區間的一實際發電量; 比較該第一估算發電量與該實際發電量,並獲得一發電差異量; 當該發電差異量大於一誤差容許值,發出一異常警訊。According to the above purpose, the present invention provides a management method for a renewable energy power plant, comprising the following steps: selecting a plurality of power generation quantity influence factors of a renewable energy power plant; collecting a plurality of power generation quantity influence factors in a first historical time interval The power plant data and the corresponding plurality of historical power generation data; establishing a power generation estimation model according to the power plant data and the corresponding historical power generation data; using the power generation estimation model to calculate a first historical time interval An estimated power generation amount; obtaining an actual power generation amount of the renewable energy power plant in the second historical time interval; comparing the first estimated power generation amount with the actual power generation amount, and obtaining a power generation difference amount; when the power generation difference amount is greater than one The error tolerance value gives an abnormal warning.

本創作之另一目的在提供一種再生能源電廠的管理系統,透過該再生能源電廠的管理系統可以檢驗實際發電量是否正常,也可以用來估算未來發電量,因而可以進行發電量的輸配電方式調配。Another purpose of this creation is to provide a management system for a renewable energy power plant. Through the management system of the renewable energy power plant, it is possible to verify whether the actual power generation amount is normal or not, and can also be used to estimate the amount of power generation in the future, thereby enabling power transmission and distribution. Provisioning.

根據上述之目的,本創作提供一種再生能源電廠的管理系統,包含: 一選擇模組,用於選擇一再生能源電廠的複數種發電量影響因子; 一資料庫,用於儲存該些發電量影響因子的複數筆電廠資料與所對應的複數筆歷史發電資料; 一資料蒐集模組,連接該選擇模組與該資料庫,從該資料庫中蒐集該些發電量影響因子所對應的該些電廠資料; 一發電量估算模型,連接該資料蒐集模組,透過該些發電量影響因子的該些電廠資料與所對應的該些歷史發電資料訓練該發電量估算模型,且可輸出一估算發電量; 一比較模組,用於比較一實際發電量與該估算發電量的差異。According to the above purpose, the present invention provides a management system for a renewable energy power plant, comprising: a selection module for selecting a plurality of power generation quantity influence factors of a renewable energy power plant; a database for storing the influence of the power generation amounts a plurality of power plant data of the factor and the corresponding plurality of historical power generation data; a data collection module connecting the selection module and the database, and collecting the power plants corresponding to the power generation influence factors from the database A power generation estimation model is connected to the data collection module, and the power generation quantity estimation model is trained by the power generation data of the power generation influence factors and the corresponding historical power generation data, and an estimated power generation amount can be output. A comparison module for comparing the difference between an actual power generation amount and the estimated power generation amount.

透過未來發電量估算結果除了可以用於比較再生能源電廠的實際發電量與估算發電量是否有差別,進而察覺再生能源電廠的發電量是否有異常。另外,本創作的再生能源電廠的管理系統是在一歷史時間區間根據電廠資料(例如各種發電資料或環境資料等)建立發電量估算模型,又該些電廠資料與再生能源電廠的發電量息息相關,讓再生能源電廠發電量的隨機性、波動性、間歇性以及不確定性等因素都可以考量在內,可以估算準確性較高的再生能源發電的發電量,進而讓估算結果與實際結果差距較小。In addition to the difference between the actual power generation of the renewable energy power plant and the estimated power generation, it can be used to compare whether the power generation of the renewable energy power plant is abnormal. In addition, the management system of the renewable energy power plant of the present invention establishes a power generation estimation model based on power plant data (such as various power generation data or environmental data, etc.) in a historical time interval, and the power plant data is closely related to the power generation capacity of the renewable energy power plant. Let the factors such as the randomness, volatility, intermittentness and uncertainty of the power generation of the renewable energy power plant can be considered, and the power generation of the highly accurate renewable energy power generation can be estimated, so that the difference between the estimated result and the actual result is compared. small.

圖1為本創作之再生能源電廠的管理系統的方塊圖。如圖1所示,再生能源電廠的管理系統10包含一選擇模組11、一資料蒐集模組12、一資料庫13、一發電量估算模型14與一比較模組15。再生能源電廠為太陽能電廠、風力電廠、潮汐能電廠、地熱能電廠、生質能電廠或水力發電廠。Figure 1 is a block diagram of the management system of the regenerative power plant of the present invention. As shown in FIG. 1 , the management system 10 of the renewable energy power plant includes a selection module 11 , a data collection module 12 , a database 13 , a power generation estimation model 14 and a comparison module 15 . The renewable energy power plant is a solar power plant, a wind power plant, a tidal power power plant, a geothermal power plant, a biomass power plant or a hydropower plant.

在本創作的再生能源電廠的管理系統10中,選擇模組11用於選擇再生能源電廠16的發電量影響因子,換句話說選擇模組11用於選擇會影響發電量的發電量影響因子,這些發電量影響因子為再生能源電廠之電廠資料的種類。選擇模組11可以是電子裝置的一操作介面,工作人員透過選擇模組11選擇用來估算發電量的發電量影響因子。不同的工作人員可以選擇不同的發電量影響因子。資料蒐集模組12連接選擇模組11與資料庫13,根據選擇模組11所選擇之發電量影響因子,資料蒐集模組12從資料庫13中擷取發電量影響因子的電廠資料(如發電資料或環境資料),這些電廠資料為再生能源電廠16的電廠資料,這些資料都是電廠監控設備自動擷取或連結外部資料自動擷取或匯入(如氣象站氣候資料或其他氣候資料提供單位等)或工作人員在日常電廠管理工作時將其記錄,並將其儲存於資料庫13中。In the management system 10 of the regenerative power plant of the present invention, the selection module 11 is configured to select a power generation amount influence factor of the renewable energy power plant 16, in other words, the selection module 11 is configured to select a power generation influence factor that affects the power generation amount, These power generation impact factors are the types of power plant data for renewable energy power plants. The selection module 11 can be an operation interface of the electronic device, and the worker selects a power generation amount influence factor for estimating the power generation amount through the selection module 11. Different workers can choose different power generation impact factors. The data collection module 12 is connected to the selection module 11 and the database 13. According to the power generation influence factor selected by the selection module 11, the data collection module 12 extracts the power generation data of the power generation influence factor from the database 13 (for example, power generation). Data or environmental data), these power plant data are the power plant data of the renewable energy power plant 16 , which are automatically taken or remitted by the power plant monitoring equipment to automatically capture or link external data (such as weather station climate data or other climate data providing units) Etc.) or the staff records them in the daily power plant management work and stores them in the database 13.

另外,資料蒐集模組12也可以用於蒐集氣候資料,資料蒐集模組12可透過有線或無線網路連接氣象網站以擷取歷史的氣象資料或未來的預測氣象資料或衍伸性儲存設備。資料蒐集模組12連接發電量估算模型14,將所蒐集的電廠資料與所對應的歷史發電資料傳輸至發電量估算模型14進行訓練,當所訓練之模型建立後, 進一步透過氣象站或其他氣候資料提供單位取得未來一段時間所需環境氣候資料, 將其代入所建立的模型後而得到未來一段時間估算的發電量。舉例來說,若再生能源電廠為一太陽能電廠,其規模有大有小,例如太陽能電廠可以只包含一個串列的太陽能模組,一個串列的太陽能模組包含多個太陽能模組,在不同實施例中,太陽能電廠也可以包含多個串列的太陽能模組,或者是一個或多個最大功率追蹤器(Maximum Power Point Tracking,MPPT)所包含的多個太陽能模組,甚至可以是一個或多個逆變器所能接收的太陽能模組發電量, 在此並不侷限。In addition, the data collection module 12 can also be used to collect climate data. The data collection module 12 can connect to a weather website through a wired or wireless network to retrieve historical meteorological data or future predicted meteorological data or stretched storage devices. The data collection module 12 is connected to the power generation estimation model 14 and transmits the collected power plant data and the corresponding historical power generation data to the power generation estimation model 14 for training. After the trained model is established, the weather station or other climate is further transmitted. The data providing unit obtains the environmental climate data needed for a period of time in the future, and substitutes it into the established model to obtain the estimated power generation for a period of time in the future. For example, if the renewable energy power plant is a solar power plant, its scale is large or small. For example, a solar power plant can contain only one tandem solar module, and a tandem solar module contains multiple solar modules. In an embodiment, the solar power plant may also include a plurality of tandem solar modules, or multiple solar modules included in one or more Maximum Power Point Tracking (MPPT), or even one or The amount of solar module power that can be received by multiple inverters is not limited here.

接著,即可利用該發電量估算模型14來檢測再生能源電廠的發電量是否異常。舉例來說,若要檢測再生能源電廠昨天發電量是否正常,透過由昨日以前之一段歷史時間所需氣候資料與發電資料所建立發電量估算模型14以及昨日已知氣候資料計算出昨天的估算發電量,再透過比較模組15將估算發電量與從資料庫13所擷取之昨天的實際發電量相比較,若估算發電量與實際發電量之間的差異量大於一誤差容許值,則再生能源電廠的管理系統10輸出一警示訊號,告知再生能源電廠的工作人員昨天的發電量有異常需要作進一步的檢測。另外,發電量估算模型14也可以將未來一段時間的氣候預測資料代入所建立之模型,計算出未來一段時間的估算發電量,根據該估算發電量,工作人員可以調配地區的供配電方式,以避免因為再生能源電廠的發電輸出不穩定導致該地區供電量不足或過剩問題。在此需要說明的是,每經過一段時間,必須針對發電量估算模型14進行再訓練,透過再訓練更新發電量估算模型14。舉例來說,若再生能源電廠為一太陽能電廠,因為太陽能模組的多晶矽、單晶矽或其他材質等面板會隨著時間而降低其轉換效率,每隔一段時間需要更新發電量估算模型14,以避免太陽能電廠在沒有異常情況產生時,發電量估算模型14所估算的發電量還是與實際的發電量差距過大,造成誤判的情況產生。Then, the power generation amount estimation model 14 can be used to detect whether the power generation amount of the regenerative power plant is abnormal. For example, if it is necessary to check whether the power generation of the renewable energy power plant is normal yesterday, the estimated power generation is calculated from the power generation estimation model 14 and the known climate data yesterday from the historical climate data and power generation data required by one of the historical time before yesterday. And comparing the estimated power generation amount with the actual power generation amount obtained from the database 13 by the comparison module 15, and if the difference between the estimated power generation amount and the actual power generation amount is greater than an error tolerance value, the regeneration is performed. The management system 10 of the energy power plant outputs a warning signal to inform the staff of the renewable energy power plant that the power generation yesterday is abnormal and needs further testing. In addition, the power generation estimation model 14 can also substitute the climate prediction data for a certain period of time into the established model, and calculate the estimated power generation amount for a certain period of time. According to the estimated power generation amount, the staff can allocate the power supply and distribution mode of the area to Avoid the problem of insufficient or excess power supply in the region due to unstable power generation output from renewable energy power plants. It should be noted here that each time period, the power generation amount estimation model 14 must be retrained, and the power generation amount estimation model 14 is updated through retraining. For example, if the renewable energy power plant is a solar power plant, because the solar module's polycrystalline silicon, single crystal germanium or other materials will reduce the conversion efficiency over time, the power generation estimation model 14 needs to be updated at intervals. In order to avoid the occurrence of abnormal conditions in the solar power plant, the power generation estimated by the power generation estimation model 14 is still too large from the actual power generation, resulting in a false positive.

圖2為本創作之再生能源電廠的管理方法的步驟流程圖。如圖2所示,在步驟S201中,透過該選擇模組11選擇一再生能源電廠16的複數種發電量影響因子。再生能源電廠16的發電量影響因子有很多種,而這些發電量影響因子包含時間以及環境資料,環境資料可以是風速、風向、溫度、日照、溼度、降雨量或雲覆量、氣壓或地溫(土壤溫度)等,在此並不侷限,發電資料可以是再生能源電廠16的直流(DC)的數據, 例如電壓、電流、再生能源裝置發電效率(kWh/kWp/h)、千瓦(kW)、每千瓦小時(kWh)或每單位裝置發電量(kWh/kWp)等)或交流(AC)的數據, 例如電壓、電流、再生能源裝置發電效率(kWh/kWp/h)、千瓦(kW)、每千瓦小時(kWh)或每單位裝置發電量(kWh/kWp)等,在此並不侷限。Figure 2 is a flow chart showing the steps of the management method of the regenerative power plant of the present invention. As shown in FIG. 2, in step S201, a plurality of power generation amount influence factors of a regenerative power plant 16 are selected through the selection module 11. There are many factors affecting the amount of power generation in renewable energy power plants16. These power generation factors include time and environmental data. The environmental data can be wind speed, wind direction, temperature, sunshine, humidity, rainfall or cloud cover, air pressure or ground temperature. (soil temperature), etc., is not limited here, and the power generation data may be direct current (DC) data of the renewable energy power plant 16, such as voltage, current, and regenerative power generation efficiency (kWh/kWp/h), kilowatts (kW) , per kilowatt hour (kWh) or power per unit (kWh/kWp), or alternating current (AC) data, such as voltage, current, renewable energy generation efficiency (kWh/kWp/h), kilowatts (kW) , per kilowatt hour (kWh) or power generation per unit (kWh/kWp), etc., is not limited here.

在步驟S202中,透過一資料蒐集模組12從一資料庫13收集在第一歷史時間區間之發電量影響因子的複數筆電廠資料以及所對應的複數筆歷史發電資料。因為這些發電量影響因子都是影響再生能源電廠16發電量的因素,因此收集這些發電量影響因子的電廠資料以及所對應的歷史發電資料,將這些電廠資料作進一步的資料分析、資料探勘與歸納分析。在步驟S203中,根據該些電廠資料與該些歷史發電資料建立一發電量估算模型14。發電量估算模型14可以是包含一資料分析與資料探勘演算法的計算機模組,將發電量影響因子的電廠資料輸入至該發電量估算模型14,利用多筆電廠資料與多筆歷史發電資料將該發電量估算模型14訓練成一最佳的發電量估算模型14。發電量估算模型14所應用的資料分析與資料探勘演算法是應用類神經網路(Artificial Neural Networks,NNs)、最近鄰居法(K-Nearest Neighbor,KNN)或線性回歸(Linear Regression)等資料探勘技術的演算方法,然後透過再生能源電廠之發電量影響因子的歷史氣候資料以及所對應的歷史發電資料,反覆修正該發電量估算模型14,以獲得最佳的發電量估算模型14。資料探勘演算法是應用類神經網路、最近鄰居法或線性回歸等資料探勘技術的演算方法已經應用在股票分析或氣象分析等領域,為本領域具有通常知識者所熟知,將其應用在再生能源電廠的管理分析上,可以獲得可靠的發電估算。In step S202, the plurality of power plant data of the power generation quantity influence factor in the first historical time interval and the corresponding plurality of historical power generation data are collected from a database 13 through a data collection module 12. Because these power generation impact factors are factors affecting the power generation of renewable energy power plants, the power plant data of these power generation impact factors and the corresponding historical power generation data are collected, and these power plant data are further analyzed, data and summarized. analysis. In step S203, a power generation amount estimation model 14 is established based on the power plant data and the historical power generation data. The power generation estimation model 14 may be a computer module including a data analysis and data exploration algorithm, and input power plant data of the power generation influence factor to the power generation estimation model 14, using multiple power plant data and multiple historical power generation data. The power generation amount estimation model 14 is trained into an optimal power generation amount estimation model 14. The data analysis and data mining algorithms used in the power generation estimation model 14 are data exploration using Artificial Neural Networks (NNs), K-Nearest Neighbor (KNN) or Linear Regression. The calculation method of the technology is then repeatedly corrected by the historical climate data of the power generation influence factor of the renewable energy power plant and the corresponding historical power generation data to obtain the optimal power generation estimation model 14 . The data exploration algorithm is a calculation method using data mining techniques such as neural network, nearest neighbor method or linear regression. It has been applied in the fields of stock analysis or meteorological analysis, and is well known to those of ordinary skill in the art, and is applied to regeneration. A reliable power generation estimate can be obtained from the management analysis of the energy power plant.

接著,在步驟S204中,利用該發電量估算模型14計算在一第二歷史時間區間的一第一估算發電量。透過在步驟S203建立該發電量估算模型14後,即可應用該發電量估算模型14計算在第二歷史時間區間的第一估算發電量。然後,在步驟S205中,從資料庫13中獲得該再生能源電廠16在該第二歷史時間區間的一實際發電量,估算在第二歷史時間區間的第一估算發電量是用於將其與在第二歷史時間區間的實際發電量進行比對。在步驟S206中,透過比較模組15比較該第一估算發電量與該實際發電量,以獲得一發電差異量,比較第一估算發電量與實際發電量的目的是要分析是否實際發電量與第一估算發電量的差距是否過大,若差距過大表示實際發電量可能不正常,再生能源電廠16可能有異常,因此在步驟S207中,當該發電差異量大於一誤差容許值,發出一異常警訊。透過本創作的再生能源電廠16的管理方法,可以將估算結果與實際結果進行比較,進而察覺再生能源電廠16是否有異常。Next, in step S204, the first estimated power generation amount in a second historical time interval is calculated using the power generation amount estimation model 14. After the power generation amount estimation model 14 is established in step S203, the power generation amount estimation model 14 can be applied to calculate the first estimated power generation amount in the second historical time interval. Then, in step S205, an actual power generation amount of the renewable energy power plant 16 in the second historical time interval is obtained from the database 13, and the first estimated power generation amount in the second historical time interval is estimated to be used for The actual amount of power generation in the second historical time interval is compared. In step S206, the comparison estimated module 15 compares the first estimated power generation amount with the actual power generation amount to obtain a power generation difference amount, and compares the first estimated power generation amount with the actual power generation amount to analyze whether the actual power generation amount is Whether the gap between the first estimated power generation is too large, if the gap is too large, the actual power generation may be abnormal, and the renewable energy power plant 16 may have an abnormality. Therefore, in step S207, when the power generation difference amount is greater than an error tolerance value, an abnormal alarm is issued. News. Through the management method of the renewable energy power plant 16 of the present invention, the estimation result can be compared with the actual result, and then it is detected whether the regenerative power plant 16 is abnormal.

另外,在本創作中,更包含步驟S208,利用該發電量估算模型14,收集在一未來時間區間該些發電量影響因子的複數筆未來資料,以計算一第二估算發電量,未來資料可以是未來一段時間會影響發電的氣候預測資料,而這些氣候預測資料,可以是風速、風向、溫度、日照、溼度、降雨量或雲覆量、氣壓或地溫(土壤溫度)等,在此並不侷限。計算在一未來時間的一第二估算發電量,並根據該第二估算發電量調整該再生能源電廠16的一可輸出發電量。舉例來說,若明天的第二估算發電量較再生能源電廠16今天的實際發電量大,則調高再生能源電廠16的該可輸出發電量,若明天的第二估算發電量較再生能源電廠16今天的實際發電量小,則調低再生能源電廠16的該可輸出發電量,並依據明日所需用電量,進行輸配電調控。本創作的再生能源電廠16的管理方法,除了可以用來將估算發電量與實際發電量進行比較,也可以估算未來發電量,參考未來發電量以及未來所需用電量,預先調整在未來時間的再生能源電廠16的發電輸出或整合其他電廠進行輸配電,讓再生能源電廠16的管理者可以參考所估算的未來發電量,進而預先調整再生能源電廠16的發電輸出或整合其他電廠進行輸配電。In addition, in the present creation, step S208 is further included, and the power generation amount estimation model 14 is used to collect the plurality of future data of the power generation quantity influence factors in a future time interval to calculate a second estimated power generation amount, and the future data may be It is a climate prediction data that will affect power generation in the future, and these climate prediction data may be wind speed, wind direction, temperature, sunshine, humidity, rainfall or cloud cover, air pressure or ground temperature (soil temperature), etc. Not limited. A second estimated power generation amount is calculated at a future time, and an output power generation amount of the renewable energy power plant 16 is adjusted according to the second estimated power generation amount. For example, if tomorrow's second estimated power generation is larger than the actual power generation of the renewable energy power plant 16 today, the output power generation of the renewable energy power plant 16 is increased, if the second estimated power generation capacity of tomorrow is higher than that of the renewable energy power plant. 16 If the actual power generation is small today, the output power generation of the renewable energy power plant 16 will be reduced, and the power transmission and distribution regulation will be carried out according to the power consumption required tomorrow. The management method of the regenerative power plant 16 of the present invention can be used to compare the estimated power generation amount with the actual power generation amount, and can also estimate the future power generation amount, and refer to the future power generation amount and the future required power consumption, and adjust in advance in the future time. The power generation output of the renewable energy power plant 16 or integration of other power plants for transmission and distribution, allows the manager of the renewable energy power plant 16 to refer to the estimated future power generation, and then pre-adjust the power generation output of the renewable energy power plant 16 or integrate other power plants for transmission and distribution. .

類神經網路包含輸入層(input layer)、隱藏層(hidden layer)與輸出層(output layer)。輸入層接收再生能源電廠之發電量影響因子以及所對應發電量的複數筆資料(或稱為訓練資料(training data)或測試資料(testing data)),輸出層輸出類神經網路的訓練結果或計算結果。在應用類神經網路進行發電量估算模型中,依訓練模式,將電廠資料切割成訓練資料、調教資料及測試資料,然後利用訓練資料及調教資料進行發電量估算模型的訓練及調教。所謂的訓練就是將發電量估算模型14根據誤差修改發電量估算模型14的計算方法,透過反覆的測試與修正,將發電量估算模型14訓練成最佳的發電量估算模型14。由於類神經網路的技術為本領域具有通常知識者所熟知,因此有關於類神經網路的詳細介紹不再贅述。A neural network includes an input layer, a hidden layer, and an output layer. The input layer receives the power generation quantity influence factor of the regenerative power plant and the corresponding data of the corresponding power generation amount (or training data or testing data), and the output layer outputs the training result of the neural network or Calculation results. In the application neural network for power generation estimation model, the power plant data is cut into training data, training data and test data according to the training mode, and then the training data and the training data are used to train and adjust the power generation estimation model. The so-called training is to train the power generation amount estimation model 14 into the optimal power generation amount estimation model 14 based on the calculation method of the error-modified power generation amount estimation model 14 through repeated tests and corrections. Since the technology of the neural network is well known to those of ordinary skill in the art, a detailed description of the neural network is not repeated here.

另外,本創作發電量估算模型也可以應用最近鄰居法來估算未來發電量。最近鄰居法的計算方式是根據未來某天的氣象預報資料,找出過去多個(K個)相似天氣的日子,以過去多個相似天氣日子之發電量估算未來一天的發電量。此方法採用多個氣象因子,如日射量、溫度或風速等,透過計算相似度,決定相似天氣的日子的K值,然後整合多個(K個)相似天氣的日子的發電量。整合方法包括平均法及加權平均法。加權平均法根據相似程度設定加權值,越相似,權重越大。由於最近鄰居法的技術為本領域具有通常知識者所熟知,因此有關於最近鄰居法的詳細介紹不再贅述。In addition, the proposed power generation estimation model can also use the nearest neighbor method to estimate future power generation. The nearest neighbor method is calculated based on the weather forecast data of a certain day in the future, and finds the days of multiple (K) similar weathers in the past, and estimates the amount of power generated in the future by the amount of power generated in the past several similar weather days. This method uses multiple meteorological factors, such as solar radiation, temperature or wind speed, to calculate the similarity, determine the K value of the day of similar weather, and then integrate the power generation of multiple (K) days of similar weather. Integration methods include averaging and weighted averaging. The weighted average method sets the weighting value according to the degree of similarity, and the more similar, the larger the weight. Since the techniques of the nearest neighbor method are well known to those of ordinary skill in the art, a detailed description of the nearest neighbor law will not be repeated.

又,本創作發電量估算模型亦可以應用線性回歸法預測模型來估算未來發電量。線性回歸預測模式考慮目前已知之影響因子以及未知之固定性與隨機性影響因子。影響輸出功率的因素眾多,包括設計因素、環境因素、設備因素、天候因素等。為了解各個因素之實質影響,分析時,應盡可能降低影響因子個數或控制因子,以避免交互影響。影響因子具隨機性,而非長時間存在之影響,例如:臨時遮陰、風向、髒污。此類影響是可以估算,由於線性回歸法的技術為本領域具有通常知識者所熟知,因此有關於線性回歸法的詳細介紹不再贅述。In addition, the proposed power generation estimation model can also use the linear regression prediction model to estimate the future power generation. The linear regression prediction model considers currently known impact factors as well as unknown fixed and random impact factors. There are many factors affecting output power, including design factors, environmental factors, equipment factors, and weather factors. In order to understand the substantive impact of each factor, the number of impact factors or control factors should be reduced as much as possible to avoid interaction effects. The impact factor is random, not long-term, such as temporary shading, wind direction, and dirt. Such effects can be estimated, and since the techniques of linear regression are well known to those of ordinary skill in the art, a detailed description of linear regression will not be repeated.

透過上述的說明,瞭解本創作應用類神經網路、最近鄰居法或線性回歸等資料探勘技術的演算方法可以獲得可靠的發電量估算結果。透過發電量估算結果除了可以用於比較再生能源電廠的實際發電量與估算發電量是否有差別,進而查覺再生能源電廠的發電量是否有異常,或者可以估算再生能源電廠的未來發電量,進而調整再生能源電廠的未來電能輸出。Through the above description, the calculation method of the data exploration technology such as the neural network, nearest neighbor method or linear regression of the creation application can obtain reliable power generation estimation results. The results of the power generation estimation can be used to compare whether the actual power generation of the renewable energy power plant is different from the estimated power generation, and then whether the power generation of the renewable energy power plant is abnormal, or the future power generation of the renewable energy power plant can be estimated. Adjust the future power output of renewable energy power plants.

10‧‧‧再生能源電廠的管理系統
11‧‧‧選擇模組
12‧‧‧資料蒐集模組
13‧‧‧資料庫
14‧‧‧發電量估算模型
15‧‧‧比較模組
16‧‧‧再生能源電廠
10‧‧‧Management system for renewable energy power plants
11‧‧‧Selection module
12‧‧‧ Data Collection Module
13‧‧‧Database
14‧‧‧Power generation estimation model
15‧‧‧Comparative Module
16‧‧‧Renewable Energy Power Plant

圖1為本創作之再生能源電廠的管理系統的方塊圖。 圖2為本創作之再生能源電廠的管理方法的步驟流程圖。Figure 1 is a block diagram of the management system of the regenerative power plant of the present invention. Figure 2 is a flow chart showing the steps of the management method of the regenerative power plant of the present invention.

Claims (10)

一種再生能源電廠的管理方法,包含下列步驟: 選擇一再生能源電廠的複數種發電量影響因子; 收集在一第一歷史時間區間對應該些發電量影響因子的複數筆電廠資料與所對應的複數筆歷史發電資料; 根據該些電廠資料與所對應的該些歷史發電資料建立一發電量估算模型; 利用該發電量估算模型計算在一第二歷史時間區間的一第一估算發電量; 獲得該再生能源電廠在該第二歷史時間區間的一實際發電量; 比較該第一估算發電量與該實際發電量,並獲得一發電差異量; 當該發電差異量大於一誤差容許值,發出一異常警訊。A method for managing a renewable energy power plant, comprising the steps of: selecting a plurality of power generation quantity influence factors of a renewable energy power plant; collecting a plurality of power plant materials corresponding to the power generation quantity influence factors in a first historical time interval and corresponding plural numbers a historical power generation data; a power generation quantity estimation model is established according to the power plant data and the corresponding historical power generation data; and the first estimated power generation amount is calculated by using the power generation quantity estimation model in a second historical time interval; An actual power generation amount of the renewable energy power plant in the second historical time interval; comparing the first estimated power generation amount with the actual power generation amount, and obtaining a power generation difference amount; when the power generation difference amount is greater than an error tolerance value, issuing an abnormality Warning. 如請求項1所述之再生能源電廠的管理方法,其中該發電量估算模型係利用一最近鄰居法、一線性回歸或一類神經網路所建立。The method for managing a renewable energy power plant according to claim 1, wherein the power generation amount estimation model is established by using a nearest neighbor method, a linear regression, or a type of neural network. 如請求項1所述之再生能源電廠的管理方法,更包含利用該發電量估算模型,計算在一未來時間的一第二估算發電量,並根據該第二估算發電量調整該再生能源電廠的一可輸出發電量。The method for managing a renewable energy power plant according to claim 1, further comprising calculating a second estimated power generation amount at a future time by using the power generation amount estimation model, and adjusting the renewable energy power plant according to the second estimated power generation amount One can output power generation. 如請求項3所述之再生能源電廠的管理方法,其中該第二估算發電量的計算方式是利用該發電量估算模型,收集在該未來時間區間該些發電量影響因子的複數筆未來資料,且該些未來資料為影響該再生能源電廠發電的氣候預測資料。The method for managing a renewable energy power plant according to claim 3, wherein the second estimated power generation amount is calculated by using the power generation amount estimation model to collect a plurality of future data of the power generation quantity influence factors in the future time interval, And these future data are climate prediction data that affect the power generation of the renewable energy power plant. 如請求項1或2所述之再生能源電廠的管理方法,其中該些電廠資料包含氣候資料與發電資料。The method for managing a renewable energy power plant as claimed in claim 1 or 2, wherein the power plant data comprises climate data and power generation data. 如請求項5所述之再生能源電廠的管理方法,其中該氣候資料包含風速、風向、溫度、日照、溼度、降雨量、雲覆量、氣壓或土壤溫度,且該發電資料包含直流發電量或交流發電量。The method for managing a renewable energy power plant according to claim 5, wherein the climatic data includes wind speed, wind direction, temperature, sunshine, humidity, rainfall, cloud cover, air pressure or soil temperature, and the power generation data includes DC power generation or AC power generation. 如請求項5所述之再生能源電廠的管理方法,其中該再生能源電廠為太陽能電廠、風力電廠、潮汐能電廠、地熱能電廠、生質能電廠或水力發電廠。The method for managing a renewable energy power plant according to claim 5, wherein the renewable energy power plant is a solar power plant, a wind power plant, a tidal power power plant, a geothermal power plant, a biomass power plant, or a hydropower plant. 一種再生能源電廠的管理系統,包含: 一選擇模組,用於選擇一再生能源電廠的複數種發電量影響因子; 一資料庫,用於儲存該些發電量影響因子的複數筆電廠資料與所對應的複數筆歷史發電資料; 一資料蒐集模組,連接該選擇模組與該資料庫,從該資料庫中蒐集該些發電量影響因子所對應的該些電廠資料與所對應的該些歷史發電資料; 一發電量估算模型,連接該資料蒐集模組,透過該些發電量影響因子所對應的該些電廠資料與所對應的該些歷史發電資料進行訓練以輸出一估算發電量; 一比較模組,用於比較一實際發電量與該估算發電量的差異。A management system for a renewable energy power plant, comprising: a selection module for selecting a plurality of power generation quantity influence factors of a renewable energy power plant; a database for storing a plurality of power plant data and facilities of the power generation quantity influence factors Corresponding plural historical power generation data; a data collection module, connecting the selection module and the database, collecting the power plant data corresponding to the power generation influence factors from the database and corresponding to the history Power generation data; a power generation estimation model is connected to the data collection module, and the power generation data corresponding to the power generation influence factors and the corresponding historical power generation data are trained to output an estimated power generation amount; A module for comparing the difference between an actual power generation amount and the estimated power generation amount. 如請求項8所述之再生能源電廠的管理系統,其中該發電量估算模型係利用一最近鄰居法、一線性回歸或一類神經網路建立。A management system for a renewable energy power plant according to claim 8, wherein the power generation estimation model is established using a nearest neighbor method, a linear regression, or a type of neural network. 如請求項8所述之再生能源電廠的管理系統,其中該些電廠資料包含氣候資料與發電資料,該氣候資料包含風速、風向、溫度、日照、溼度、降雨量、雲覆量、氣壓或土壤溫度,且該發電資料包含直流發電量或交流發電量。The management system for a renewable energy power plant according to claim 8, wherein the power plant data includes climatic data and power generation data, and the climatic data includes wind speed, wind direction, temperature, sunshine, humidity, rainfall, cloud cover, air pressure or soil. Temperature, and the power generation data includes DC power generation or AC power generation.
TW105102410A 2016-01-26 2016-01-26 Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount TW201727559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105102410A TW201727559A (en) 2016-01-26 2016-01-26 Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105102410A TW201727559A (en) 2016-01-26 2016-01-26 Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount

Publications (1)

Publication Number Publication Date
TW201727559A true TW201727559A (en) 2017-08-01

Family

ID=60186794

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105102410A TW201727559A (en) 2016-01-26 2016-01-26 Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount

Country Status (1)

Country Link
TW (1) TW201727559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669904B (en) * 2017-11-03 2019-08-21 財團法人資訊工業策進會 Computer device and method for determining whether a solar energy panel array is abnormal
TWI684927B (en) * 2018-08-24 2020-02-11 楊念哲 Prediction system and method for solar photovoltaic power generation
TWI740482B (en) * 2020-04-30 2021-09-21 中國鋼鐵股份有限公司 Method for estimating equipment abnormality, computer program product, and computer readable recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669904B (en) * 2017-11-03 2019-08-21 財團法人資訊工業策進會 Computer device and method for determining whether a solar energy panel array is abnormal
TWI684927B (en) * 2018-08-24 2020-02-11 楊念哲 Prediction system and method for solar photovoltaic power generation
TWI740482B (en) * 2020-04-30 2021-09-21 中國鋼鐵股份有限公司 Method for estimating equipment abnormality, computer program product, and computer readable recording medium

Similar Documents

Publication Publication Date Title
Han et al. A PV power interval forecasting based on seasonal model and nonparametric estimation algorithm
Dhimish et al. Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection
Ventura et al. Utility scale photovoltaic plant indices and models for on-line monitoring and fault detection purposes
Wu et al. A novel hybrid model for short-term forecasting in PV power generation
US20180188301A1 (en) Estimation of shading losses for photovoltaic systems from measured and modeled inputs
JP6115764B2 (en) Photovoltaic power generation system, abnormality determination processing device, abnormality determination processing method, and program
US20140188410A1 (en) Methods for Photovoltaic Performance Disaggregation
US11143680B2 (en) Estimation of energy losses due to partial equipment failure for photovoltaic systems from measured and modeled inputs
KR102230548B1 (en) Power generation prediction and efficiency diagnosis system of solar power generation facilities using FRBFNN model
Ventura et al. Development of models for on-line diagnostic and energy assessment analysis of PV power plants: The study case of 1 MW Sicilian PV plant
KR101135386B1 (en) Photovoltaic power generation system perform the maximum power point tracking about the unit group
KR101132323B1 (en) Photovoltaic power generation system perform the maximum power point tracking about the unit group
WO2016166991A1 (en) Diagnostic system for photovoltaic power generation equipment, and program
Iyengar et al. Solarclique: Detecting anomalies in residential solar arrays
CN117318111B (en) Weather prediction-based dynamic adjustment method and system for light energy storage source
Mohan et al. Solar energy disaggregation using whole-house consumption signals
Sun et al. Factoring behind-the-meter solar into load forecasting: Case studies under extreme weather
TW201727559A (en) Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount
Kumar et al. Iot and data mining techniques to detect and regulating of solar power system
Chicco et al. Weather forecast-based power predictions and experimental results from photovoltaic systems
TW201740296A (en) Method and system for predicting power generation capacity of renewable energy using a neural network to accurately calculate the power generation capacity of renewable energy
Fahim et al. Data-driven techniques for optimizing the renewable energy systems operations
Khan et al. Contingency analysis of a power grid with the participation of utility-scale solar PV units: a case study from Sarawak, Malaysia
Oozeki et al. An evaluation method for PV system to identify system losses by means of utilizing monitoring data
US20240030866A1 (en) System for monitoring under-performance of solar power plant