TW201709948A - Invasive shockwave probe transducer structure - Google Patents

Invasive shockwave probe transducer structure Download PDF

Info

Publication number
TW201709948A
TW201709948A TW104129416A TW104129416A TW201709948A TW 201709948 A TW201709948 A TW 201709948A TW 104129416 A TW104129416 A TW 104129416A TW 104129416 A TW104129416 A TW 104129416A TW 201709948 A TW201709948 A TW 201709948A
Authority
TW
Taiwan
Prior art keywords
shock wave
module
probe structure
seismic
cover
Prior art date
Application number
TW104129416A
Other languages
Chinese (zh)
Inventor
李廷鑫
林家齊
Original Assignee
寶健科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 寶健科技股份有限公司 filed Critical 寶健科技股份有限公司
Priority to TW104129416A priority Critical patent/TW201709948A/en
Priority to CN201510589450.3A priority patent/CN106491185A/en
Publication of TW201709948A publication Critical patent/TW201709948A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Dentistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

The present invention provides an invasive shockwave probe structure that is a miniature structure and can be probed into a human body. It includes a shell base, a wave generation module and a propagation module. With the implementation of the present invention, ultrasonic devices using the disclosed probe structure can reach through human throat, nasal cavity, urethra, prostate or other organs that require treatments to apply ultrasonic wave. The hit rate can approach to 100%, energy can be saved, and especially, organs that do not require treatment will not be hit by the ultrasonic wave to prevent unnecessary damage. With the application of a control circuit to apply a high frequency voltage waveform with positive and minus voltages, control of the vibration frequency range of the ultrasonic wave can also be improved, the required operating voltage can also be reduced.

Description

侵入式之震波探頭結構 Invasive seismic wave probe structure

本發明為一種震波探頭結構,特別是一種可以深入體內使命中率達到百分之百的侵入式之震波探頭結構。 The invention is a shock wave probe structure, in particular to an intrusive seismic wave probe structure which can penetrate 100% of the mission in the body.

超音波穿透力高,且一般來說對人體無害,通常也可以立即研判身體內部的狀況,然而超音波震波的醫療裝置之使用,卻也需要淵博的技術經驗,使用不當時也會造成傷害,是其最大的缺點。 Ultrasonic penetrating power is high, and generally harmless to the human body. Usually, the internal conditions of the body can be immediately judged. However, the use of medical devices for ultrasonic shock waves requires extensive technical experience, and damage can result from improper use. Is its biggest drawback.

現今使用的超音波震波的醫療裝置,皆是以一個固定頻率的震波,連續進行一段時間的能量擊發。由於這種醫療裝置大致皆無法直接進入人體,對患部的治療或組織活化,經常產生準確度偏移而效率降低的問題,嚴重時甚至會對其他正常的組織或器官造成不必要的傷害,不但產生副作用,甚至引發嚴重的醫療糾紛。 The medical devices used in today's ultrasonic shock waves are powered by a fixed-frequency seismic wave for a period of time. Since such medical devices are generally incapable of directly entering the human body, the treatment or tissue activation of the affected part often causes an accuracy deviation and a decrease in efficiency. In severe cases, it may even cause unnecessary damage to other normal tissues or organs, not only Produce side effects and even cause serious medical disputes.

有鑑於此,如何創新開發,設計出一種可以進入人體之超音波的震波探頭結構,使每一次震波擊發的能量都只有打在需要治療或活化的組織或器官上,便將會是震波碎石醫療裝置 的使用者,以及醫療技術與設備產業所引頸期盼與亟於樂見的事。 In view of this, how to innovate and develop a seismic wave probe structure that can enter the supersonic wave of the human body, so that the energy of each shock wave is only hit on the tissue or organ that needs to be treated or activated, it will be a shock wave gravel. Medical device The users, as well as the medical technology and equipment industry, are looking forward to the future.

本發明為一種侵入式之震波探頭結構,其為一可進入人體之微型結構,並包括有:一殼體基座;一震波模組;以及一傳導模組。藉由本發明之實施,可使超音波發射裝置能夠深達人體的喉嚨、鼻腔、尿道、攝護腺或其他需進行微型手術之器官或組織,對其近距離施加超音波震動,更因深入體內而使命中率達到百分之百,可以節省大量的能源,且不會對不需要進行震波治療的組織或器官造成不必要之傷害。 The invention is an intrusive shock wave probe structure, which is a micro structure that can enter the human body, and includes: a housing base; a shock wave module; and a conductive module. By the implementation of the invention, the ultrasonic emitting device can be deepened into the throat, nasal cavity, urethra, prostate or other organs or tissues requiring microsurgery, and the ultrasonic vibration is applied to the close range, and the ultrasonic wave is deeply penetrated. And the mission rate is 100%, which can save a lot of energy, and will not cause unnecessary damage to tissues or organs that do not need to be treated with shock wave.

本發明提供一種侵入式之震波探頭結構,其包括:一殼體基座,其為一中空殼體且包括有一第一開口;一震波模組,其固設於殼體基座內,震波模組接收一電壓波形後產生一超音波震波;以及一傳導模組,固設於第一開口處且結合於震波模組之輸出端,傳導模組包括一罩體,又罩體內充填一傳導介質。 The invention provides an intrusive seismic wave probe structure, comprising: a housing base, which is a hollow housing and includes a first opening; a shock wave module fixed in the base of the housing, the shock wave The module receives a voltage waveform to generate an ultrasonic wave; and a conductive module is fixed at the first opening and coupled to the output end of the seismic module, the conductive module includes a cover body, and the cover body is filled with a conductive medium.

藉由本發明的實施,可達到下列進步功效: Through the implementation of the present invention, the following advancements can be achieved:

一、可深入體內近距離施加超音波震動,使震波發射裝置的命中率達到百分之百。 First, the ultrasonic vibration can be applied in close proximity to the body, so that the hit rate of the shock wave launcher reaches 100%.

二、節省使用能源。 Second, save energy.

三、不會對不需要進行震波治療的組織或器官造成不必要之傷害。 Third, it will not cause unnecessary damage to tissues or organs that do not require shock wave treatment.

四、以正負電壓波形產生震波,改進超音波頻率信號的控制範圍,更降低需求的操作電壓大小。 Fourth, the seismic wave is generated by the positive and negative voltage waveforms, the control range of the ultrasonic frequency signal is improved, and the operating voltage of the demand is further reduced.

為了使任何熟習相關技藝者了解本發明之技術內容 並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點,因此將在實施方式中詳細敘述本發明之詳細特徵以及優點。 In order to familiarize any skilled artisan with the technical content of the present invention. And the related objects and advantages of the present invention can be easily understood by those skilled in the art, and the details of the present invention will be described in detail in the embodiments. Features and advantages.

100‧‧‧侵入式之震波探頭結構 100‧‧‧Invasive seismic wave probe structure

110‧‧‧殼體基座 110‧‧‧Sheet base

120‧‧‧震波模組 120‧‧‧shock module

130‧‧‧傳導模組 130‧‧‧Transmission module

135‧‧‧密封墊 135‧‧‧ Seal

140‧‧‧蓋體 140‧‧‧ cover

10‧‧‧第一開口 10‧‧‧ first opening

20‧‧‧罩體 20‧‧‧ Cover

30‧‧‧傳導介質 30‧‧‧Transmission medium

40‧‧‧固定座 40‧‧‧ Fixed seat

41‧‧‧第二開口 41‧‧‧second opening

50‧‧‧磁場驅動單元 50‧‧‧Magnetic drive unit

60‧‧‧震波單元 60‧‧‧shock unit

70‧‧‧鐵粉蕊 70‧‧‧ iron powder

80‧‧‧漆包線圈 80‧‧‧Enameled coil

90‧‧‧控制電路 90‧‧‧Control circuit

95‧‧‧正負電壓波形 95‧‧‧ positive and negative voltage waveform

第1圖為本發明實施例之一種侵入式之震波探頭結構之剖視示意圖。 FIG. 1 is a cross-sectional view showing the structure of an intrusive seismic wave probe according to an embodiment of the present invention.

第2圖為本發明實施例之一種侵入式之震波探頭結構之剖視分解圖。 2 is a cross-sectional exploded view showing the structure of an intrusive shock wave probe according to an embodiment of the present invention.

第3圖為本發明實施例之一種震波模組之剖視示意圖。 FIG. 3 is a cross-sectional view showing a shock wave module according to an embodiment of the present invention.

第4A圖為本發明實施例之一種具有密封墊的侵入式之震波探頭結構之剖視示意圖。 4A is a cross-sectional view showing the structure of an intrusive shock wave probe having a gasket according to an embodiment of the present invention.

第4B圖為本發明實施例之一種具有蓋體的侵入式之震波探頭結構之剖視示意圖。 FIG. 4B is a cross-sectional view showing the structure of an intrusive shock wave probe having a cover according to an embodiment of the present invention.

第5圖為本發明實施例之另一種侵入式之震波探頭結構之剖視示意圖。 FIG. 5 is a cross-sectional view showing another structure of an intrusive seismic wave probe according to an embodiment of the present invention.

第6圖為本發明實施例之一種結合控制電路的侵入式之震波探頭結構之方塊示意圖。 FIG. 6 is a block diagram showing the structure of an intrusive seismic wave probe combined with a control circuit according to an embodiment of the present invention.

第7圖為本發明實施例之一種控制電路輸出正負電壓波形至侵入式之震波探頭結構的震波模組並使震波單元產生震動之剖視示意圖。 FIG. 7 is a cross-sectional view showing a method in which a control circuit outputs a positive and negative voltage waveform to a shock wave module of an intrusive shock wave probe structure and generates vibration of the shock wave unit according to an embodiment of the present invention.

第8圖為本發明實施例之一種控制電路輸出之正負電壓波形與其產生之震波波形的示波器量測顯示圖。 FIG. 8 is an oscilloscope measurement display diagram of a positive and negative voltage waveform outputted by a control circuit and a seismic waveform generated therefrom according to an embodiment of the present invention.

如第1圖及第2圖所示,本實施例為一種侵入式之震波探頭結構100,其可為可進入人體之微型結構。侵入式之震波探頭結構100包括有:一殼體基座110;一震波模組120;以及一傳導模組130。 As shown in Figures 1 and 2, this embodiment is an invasive seismic wave probe structure 100 that can be a micro-structure that can enter the human body. The intrusive seismic wave probe structure 100 includes a housing base 110, a shock wave module 120, and a conductive module 130.

如第1圖及第2圖所示,殼體基座110,其為一中空殼體且包括有一第一開口10。由於需進入人體之內,殼體基座110可以選擇以不易變形、無毒或無毒且無溶出之材質製作。 As shown in FIGS. 1 and 2, the housing base 110 is a hollow housing and includes a first opening 10. Due to the need to enter the body, the housing base 110 can be selected to be made of a material that is not easily deformed, non-toxic or non-toxic and has no dissolution.

如第1圖、第2圖及第3圖所示,震波模組120,固設於殼體基座110內,震波模組120係接收一電壓波形後產生一超音波震波。震波模組120又可以包括一固定座40,固定座40具有一容置空間,且有一第二開口41;一磁場驅動單元50,設置於固定座40的容置空間內;及一震波單元60,設置於第二開口41處且與磁場驅動單元50之磁場耦合。 As shown in FIG. 1 , FIG. 2 and FIG. 3 , the seismic module 120 is fixed in the housing base 110 , and the seismic module 120 receives a voltage waveform to generate an ultrasonic wave. The shock wave module 120 may further include a fixing base 40 having a receiving space and a second opening 41; a magnetic field driving unit 50 disposed in the receiving space of the fixing base 40; and a seismic unit 60 And disposed at the second opening 41 and coupled to the magnetic field of the magnetic field driving unit 50.

如此,磁場驅動單元50便可以磁力的大小、方向,以及磁力的改變頻率控制震波單元60,使震波單元60進行震動並發出超音波震波。而所使用的震波單元60可以是一鐵片。 Thus, the magnetic field driving unit 50 can control the seismic unit 60 by the magnitude, direction, and frequency of the magnetic force, so that the seismic unit 60 vibrates and emits ultrasonic shock waves. The shock wave unit 60 used may be an iron piece.

另一方面,如第5圖所示,磁場驅動單元50又可以包括一組鐵粉蕊70,而在鐵粉蕊70之蕊心處,則繞設有一組漆包線圈80。漆包線圈80包繞鐵粉蕊70之蕊心,使得在漆包線圈80上通過一個電壓波形的電流時,便可以使磁場驅動單元50產生磁場,而改變通過漆包線圈80的電流之方向,更可以改變磁場之方向為吸引或排斥震波單元60。 On the other hand, as shown in Fig. 5, the magnetic field driving unit 50 may further include a set of iron powder cores 70, and at the core of the iron powder cores 70, a set of enamel coils 80 are wound. The enamel coil 80 wraps around the core of the iron powder core 70, so that when a current of a voltage waveform is passed through the enamel coil 80, the magnetic field driving unit 50 can generate a magnetic field, and change the direction of the current passing through the enamel coil 80, and The direction of the magnetic field is changed to attract or repel the seismic unit 60.

如第5圖所示之磁場驅動單元50,在通過漆包線圈80的電壓波形若使用超音波頻率的電壓波形,便可以使震波單元60產生超音波震波。 The magnetic field drive unit 50 shown in Fig. 5 can cause the shock wave unit 60 to generate ultrasonic shock waves by using a voltage waveform of the ultrasonic frequency when the voltage waveform of the enamelled coil 80 is used.

請復參考如第1圖及第2圖所示,傳導模組130,係固設於殼體基座110的第一開口10處,且傳導模組130係結合於震波模組120產生的超音波震波之輸出端,傳導模組130又包括一罩體20,罩體20內充填有一傳導介質30。 Referring to FIG. 1 and FIG. 2 , the conduction module 130 is fixed to the first opening 10 of the housing base 110 , and the conduction module 130 is coupled to the super generated by the seismic module 120 . At the output end of the acoustic wave, the conduction module 130 further includes a cover 20 filled with a conductive medium 30.

罩體20可以是矽膠材質的罩體20,而罩體20內充填的傳導介質30可以是水、矽膠、或是其他的超音波傳導材質。 The cover 20 may be a cover 20 of silicone material, and the conductive medium 30 filled in the cover 20 may be water, silicone, or other ultrasonic conductive material.

結合於震波模組120之輸出端的傳導模組130,主要係可以將震波模組120產生之超音波震波傳導或發射出去。 The conduction module 130 coupled to the output end of the seismic wave module 120 can mainly transmit or transmit the ultrasonic wave generated by the seismic wave module 120.

所述傳導模組130的罩體20,又可以是一個圓頂形罩體20,而當罩體20與罩體20內的傳導介質30均為矽膠材質時,罩體20與罩體20內的傳導介質30又可以為一體成型之結構。 The cover 20 of the conductive module 130 may be a dome-shaped cover 20, and when the cover 20 and the conductive medium 30 in the cover 20 are both made of silicone, the cover 20 and the cover 20 are inside. The conductive medium 30 can in turn be an integrally formed structure.

接著,請參考如第4A圖所示,震波模組120與傳導模組130之間可以設置有一密封墊135,密封墊135可以設置在震波單元60與傳導模組130之間,而在必要時,密封墊135亦可以夾住震波單元60之邊緣。 Then, as shown in FIG. 4A, a sealing pad 135 may be disposed between the seismic module 120 and the conductive module 130. The sealing pad 135 may be disposed between the seismic unit 60 and the conductive module 130, and when necessary. The gasket 135 can also sandwich the edge of the seismic unit 60.

密封墊135主要可以密封住震波模組120,使侵入式之震波探頭結構100外部的液體、水或異物不會進入震波模組120而影響整體侵入式之震波探頭結構100之功能。 The gasket 135 can mainly seal the shock wave module 120, so that liquid, water or foreign matter outside the intrusive seismic wave probe structure 100 does not enter the seismic wave module 120, thereby affecting the function of the overall invasive seismic wave probe structure 100.

如第4B圖所示之實施例,則是可以於傳導模組130之外側設置一個蓋體140,所設置之蓋體140可以與殼體基座110結合,並夾固住罩體20。 As shown in FIG. 4B, a cover 140 may be disposed on the outer side of the conductive module 130. The cover 140 may be coupled to the housing base 110 and clamp the cover 20.

再者,如第6圖所示,侵入式之震波探頭結構100可以進一步結合一控制電路90,控制電路90輸出一正負電壓波形95至震波模組120的磁場驅動單元50,並進而控制震波模組120的震波單元60產生超音波震波。 Furthermore, as shown in FIG. 6, the intrusive seismic wave probe structure 100 can be further combined with a control circuit 90. The control circuit 90 outputs a positive and negative voltage waveform 95 to the magnetic field driving unit 50 of the seismic module 120, and further controls the seismic mode. The seismic unit 60 of the group 120 produces an ultrasonic shock wave.

而如第7圖所示,控制電路90輸出正負電壓波形95之方式,可以為一開始先送負電壓波形(第7圖上半部所示,電壓波形以實線表示的部份),讓磁場驅動單元50或鐵粉蕊70與漆包線圈80產生磁性,然後將震波單元60吸引過來(第7圖,以實線箭頭所表示之方向),並且同時把震波單元60變成有磁性。 As shown in FIG. 7, the control circuit 90 outputs a positive and negative voltage waveform 95, which can be a negative voltage waveform (the portion indicated by the solid line in the upper half of Fig. 7). The magnetic field driving unit 50 or the iron powder core 70 and the enamel coil 80 generate magnetism, and then the shock wave unit 60 is attracted (Fig. 7, in the direction indicated by the solid arrow), and at the same time, the shock wave unit 60 is made magnetic.

接著,控制電路90輸出正電壓波形(第7圖上半部所示,電壓波形以虛線表示的部份),使磁場驅動單元50或鐵粉蕊70與漆包線圈80產生的磁性相反,此時震波單元60會因磁性之極性不同而瞬間被排斥推出(第7圖,以虛線箭頭所表示之方向)。 Next, the control circuit 90 outputs a positive voltage waveform (a portion of the voltage waveform indicated by a broken line as shown in the upper half of FIG. 7), and the magnetic field driving unit 50 or the iron powder core 70 is opposite to the magnetic force generated by the enamel coil 80. The shock wave unit 60 is instantaneously repelled due to the difference in polarity of the magnets (Fig. 7, in the direction indicated by the dashed arrow).

如此,震波單元60的被磁場驅動單元50吸引,以及被磁場驅動單元50排斥推出,便進而依照正負電壓波形95的頻率產生超音波震波,超音波震波再透過傳導模組130傳遞至人體內之組織或器官。 In this manner, the shock wave unit 60 is attracted by the magnetic field driving unit 50 and is repelled by the magnetic field driving unit 50, and then the ultrasonic wave is generated according to the frequency of the positive and negative voltage waveform 95, and the ultrasonic wave is transmitted to the human body through the conduction module 130. Tissue or organ.

震波模組120產生的超音波震波,也可經由傳導模組130改變傳播路徑,然後再傳遞至人體內之組織或器官。傳導模組130改變傳播路徑之方式,通常以改變傳導模組130之結構尺寸或外型,使其產生不同的聚焦點來達成。 The ultrasonic wave generated by the seismic module 120 can also be changed via the conduction module 130 and then transmitted to tissues or organs in the human body. The manner in which the conduction module 130 changes the propagation path is usually achieved by changing the structural size or shape of the conduction module 130 to produce different focus points.

如第8圖所示,則為實施例之一種控制電路90輸出至磁場驅動單元50之正負電壓波形95,與其所能產生之震波波形的示波器量測顯示。第8圖上半部之方波,其左方較低電位的部份為 負電壓波形,此時震波單元60受磁場驅動單元50吸引。 As shown in FIG. 8, the control circuit 90 of the embodiment outputs the positive and negative voltage waveforms 95 to the magnetic field driving unit 50, and the oscilloscope measurement display of the seismic waveforms that can be generated. The square wave in the upper half of Fig. 8 has a lower potential part on the left side. The negative voltage waveform, at which time the seismic unit 60 is attracted by the magnetic field drive unit 50.

第8圖上半部之方波,其右方較高電位的部份為正電壓波形,此時震波單元60受便會受到磁場驅動單元50產生的磁場所排斥而改變方向,並進而產生如第8圖下半部所示之震動波。 In the square wave of the upper half of Fig. 8, the higher potential portion on the right side is a positive voltage waveform, and at this time, the shock wave unit 60 is repelled by the magnetic field generated by the magnetic field driving unit 50 to change direction, and thereby generate The shock wave shown in the lower half of Figure 8.

當負電壓波形及正電壓波形之變動頻率在超音波頻率範圍時,所產生之震動波即為超音波震波。 When the fluctuation frequency of the negative voltage waveform and the positive voltage waveform is in the ultrasonic frequency range, the generated shock wave is the ultrasonic vibration wave.

總而言之,侵入式之震波探頭結構100,藉由小型化的微型結構之殼體基座110、震波模組120及傳導模組130之實施,可以深達人體的喉嚨、鼻腔、尿道、攝護腺或其他需進行微型手術之器官或組織,對其近距離施加超音波震動,使命中率達到百分之百。不但可以節省大量的能源,且不會對不需要進行震波治療的組織或器官造成不必要之傷害。 In summary, the intrusive seismic wave probe structure 100 can be deep into the throat, nasal cavity, urethra, and prostate of the human body by miniaturizing the micro-structured housing base 110, seismic module 120, and conduction module 130. Or other organs or tissues that require microsurgery to apply ultrasonic vibration at close range, with a mission rate of 100%. Not only can it save a lot of energy, it will not cause unnecessary damage to tissues or organs that do not require shock wave treatment.

惟上述各實施例係用以說明本發明之特點,其目的在使熟習該技術者能瞭解本發明之內容並據以實施,而非限定本發明之專利範圍,故凡其他未脫離本發明所揭示之精神而完成之等效修飾或修改,仍應包含在以下所述之申請專利範圍中。 The embodiments are described to illustrate the features of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the present invention and to implement the present invention without limiting the scope of the present invention. Equivalent modifications or modifications made by the spirit of the disclosure should still be included in the scope of the claims described below.

100‧‧‧侵入式之震波探頭結構 100‧‧‧Invasive seismic wave probe structure

110‧‧‧殼體基座 110‧‧‧Sheet base

120‧‧‧震波模組 120‧‧‧shock module

130‧‧‧傳導模組 130‧‧‧Transmission module

10‧‧‧第一開口 10‧‧‧ first opening

20‧‧‧罩體 20‧‧‧ Cover

30‧‧‧傳導介質 30‧‧‧Transmission medium

Claims (10)

一種侵入式之震波探頭結構,其包括:一殼體基座,其為一中空殼體且包括有一第一開口;一震波模組,其固設於該殼體基座內,該震波模組接收一電壓波形後產生一超音波震波;以及一傳導模組,固設於該第一開口處且結合於該震波模組之輸出端,該傳導模組包括一罩體,又該罩體內充填一傳導介質。 An intrusive seismic wave probe structure includes: a housing base that is a hollow housing and includes a first opening; a shock wave module that is fixed in the housing base, the seismic mode The group receives a voltage waveform to generate an ultrasonic wave; and a conductive module is fixed at the first opening and coupled to the output end of the seismic module, the conductive module includes a cover body, and the cover body Fill a conductive medium. 如申請專利範圍第1項所述之震波探頭結構,其中該震波模組包括:一固定座,其具有一容置空間及一第二開口;一磁場驅動單元,設置於該容置空間內;及一震波單元,設置於該第二開口且與該磁場驅動單元之磁場耦合。 The shock wave probe structure of claim 1, wherein the shock wave module comprises: a fixed seat having an accommodating space and a second opening; a magnetic field driving unit disposed in the accommodating space; And a seismic unit disposed in the second opening and coupled to the magnetic field of the magnetic field driving unit. 如申請專利範圍第2項所述之震波探頭結構,其中該磁場驅動單元包括一組鐵粉蕊,又該組鐵粉蕊之蕊心處繞設有一組漆包線圈。 The shock wave probe structure according to claim 2, wherein the magnetic field driving unit comprises a set of iron powder cores, and a set of enamel coils is arranged around the core of the group of iron powder cores. 如申請專利範圍第2項所述之震波探頭結構,其中該震波單元為一鐵片。 The shock wave probe structure of claim 2, wherein the shock wave unit is an iron piece. 如申請專利範圍第1項所述之震波探頭結構,其中該罩體為一圓頂形罩體。 The shock wave probe structure of claim 1, wherein the cover is a dome-shaped cover. 如申請專利範圍第1項所述之震波探頭結構,其中該罩體為一矽膠罩體。 The shock wave probe structure of claim 1, wherein the cover is a silicone cover. 如申請專利範圍第1項或第6項所述之震波探頭結構,其中該罩體與該傳導介質均為矽膠材質且為一體成型之結構。 The shock wave probe structure according to claim 1 or 6, wherein the cover body and the conductive medium are both made of silicone material and are integrally formed. 如申請專利範圍第1項所述之震波探頭結構,其中該震波模組與該傳導模組間設有一密封墊。 The shock wave probe structure of claim 1, wherein the shock wave module and the conductive module are provided with a gasket. 如申請專利範圍第1項所述之震波探頭結構,其中該傳導模組外側設有一蓋體,該蓋體與該殼體基座結合時,用以夾固該罩體。 The shock wave probe structure of claim 1, wherein a cover body is disposed outside the conductive module, and the cover body is used to clamp the cover body when the cover body is coupled with the base of the cover. 如申請專利範圍第1項所述之震波探頭結構,其進一步結合一控制電路,其輸出一正負電壓波形至該震波模組以控制該震波模組產生超音波震波。 The shock wave probe structure of claim 1, further comprising a control circuit that outputs a positive and negative voltage waveform to the seismic wave module to control the seismic wave module to generate an ultrasonic wave.
TW104129416A 2015-09-04 2015-09-04 Invasive shockwave probe transducer structure TW201709948A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104129416A TW201709948A (en) 2015-09-04 2015-09-04 Invasive shockwave probe transducer structure
CN201510589450.3A CN106491185A (en) 2015-09-04 2015-09-16 Invasive seismic probe structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104129416A TW201709948A (en) 2015-09-04 2015-09-04 Invasive shockwave probe transducer structure

Publications (1)

Publication Number Publication Date
TW201709948A true TW201709948A (en) 2017-03-16

Family

ID=58287049

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104129416A TW201709948A (en) 2015-09-04 2015-09-04 Invasive shockwave probe transducer structure

Country Status (2)

Country Link
CN (1) CN106491185A (en)
TW (1) TW201709948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616220B (en) * 2017-03-31 2018-03-01 寶健科技股份有限公司 Invasive and tilted shockwave treatment device
TWI616181B (en) * 2017-03-31 2018-03-01 寶健科技股份有限公司 Shockwave head

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108652706B (en) * 2017-03-31 2020-09-15 宝健科技股份有限公司 Structure of shock wave head

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506583A1 (en) * 1985-02-25 1986-08-28 Siemens AG, 1000 Berlin und 8000 München Shock wave generator having a freely movable plate
EP0263349A1 (en) * 1986-10-06 1988-04-13 Siemens Aktiengesellschaft Shock wave generator
CN103961806B (en) * 2013-01-29 2017-11-07 重庆海扶医疗科技股份有限公司 Ultrasonic therapeutic head and ultrasonic therapeutic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616220B (en) * 2017-03-31 2018-03-01 寶健科技股份有限公司 Invasive and tilted shockwave treatment device
TWI616181B (en) * 2017-03-31 2018-03-01 寶健科技股份有限公司 Shockwave head

Also Published As

Publication number Publication date
CN106491185A (en) 2017-03-15

Similar Documents

Publication Publication Date Title
KR100991846B1 (en) Shock wave and ultrasound wave integrated therapy device
US20190083354A1 (en) Massage device for pressure wave massage
US7270640B2 (en) Massage device utilizing an unanchored magnet for primary force generation
WO2012078447A3 (en) Ultrasonic surgical instrument, associated surgical method and related manufacturing method
US8222901B2 (en) System and method for intracorporeal elastography
TW201709948A (en) Invasive shockwave probe transducer structure
US11806553B2 (en) Transducer assembly for generating focused ultrasound
EP2265037A3 (en) Devices and transducers with cavity resonator to control 3-d characteristics/harmonic frequencies for all sound/sonic waves
ES2602508B1 (en) Ultrasonic torsion wave transmitter and transducer device comprising
WO2021110847A3 (en) Electrosurgical instrument, generator and apparatus
ITMI20070034U1 (en) DEVICE OF SOUND WAVES WITH ELECTROMAGNETIC CONVERGENCE
US10028758B2 (en) Shockwave probe transducer structure
Sun et al. A novel single-element dual-frequency ultrasound transducer for image-guided precision medicine
JP2015066079A (en) Ultrasonic treatment instrument and surgical operation system
CN114768126A (en) Ultrasonic frequency determination method, ultrasonic output method and device and electronic equipment
Hynynen et al. Lateral mode coupling to reduce the electrical impedance of small elements required for high power ultrasound therapy phased arrays
KR101868632B1 (en) Non-motorized voiceless sound oscillator using repulsive force of magnet
KR20160052257A (en) Ultrasound transducer
KR20080073524A (en) Apparatus for tranducing a signal
RU2752264C1 (en) Device for vibroacoustic noise reduction of room with ability to monitor technical condition
WO2020174532A1 (en) Ultrasound treatment tool
CN209574813U (en) A kind of external stone crushing blast wave generating apparatus
KR200282882Y1 (en) A ultrasound-sting apparatus
Kwon et al. Phase-Inverted Multifrequency HIFU Transducer for Lesion Expansion: A Simulation Study
Pye et al. Characterization of cavitational activity in lithotripsy fields using a robust electromagnetic probe